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Abstract. The thermal column at the TRIGA PUSPATI (RTP) research reactor can produce 

thermal neutron. However, the optimization on the thermal neutron flux produced should be 

performed to gain a sufficient thermal neutron for boron neutron capture therapy purpose. Thus, 

the objective of this review is to optimize the thermal neutron flux by designing the collimator 

with different materials at the thermal column. In order to fulfil the requirement, set by the IAEA 

standard, the study of BNCT around the world was being reviewed to study the suitable 

measurement, material, design, and modification for BNCT at the thermal column of TRIGA 

MARK-II, Malaysia. Initially, the BNCT mechanisms and history was review. Then, this paper 

review on the design and modifications for BNCT purpose around the world. Based on this 

review, suitable material and design can be used for the BNCT in Malaysia. Moreover, this paper 

also reviews the current status of BNCT at the RTP with the measurement of the thermal neutron 

flux was conducted along the thermal column at 250 kW. The thermal column of RTP was 

divided into 3 phases (Phase 1, Phase 2 and Phase 3) so that an accurate measurement can be 

obtained by using gold foil activation method. This value was used as a benchmark for the 

neutron flux produced from the thermal column. The collimator was designed using different 

types of materials, and their characteristic towards gamma and neutron flux was investigated. 

The reviewed demonstrated that the final thermal neutron flux produced was significantly for 

BNCT purpose. Lastly, this paper recommends the future research can be conducted on BNCT 

at RTP. 

 

 

 

1.  Introduction 
Cancer is the most leading cause of death based on 172 countries in the world [1]. In fact, cancer had 

caused death over 8.2 million each year, which was roughly estimated about 13% around the world [2]. 

There are more than 100 types of cancer exist and each requiring different techniques of diagnosis. 

BNCT is one of the promising methods in order to cure cancer by using neutron source either from 

nuclear research reactor or neutron generator such as an accelerator. BNCT method used the 

combination of low energy of neutron (slow neutron) irradiation and the targeting of a tumour site 

injected with a proper boron containing compound. Basically, the tumour cell was not directly destructed 

by neutron, but indirectly destroyed by the results of nuclear reaction between neutron and boron. In 

theory, the BNCT also is one of the forms of radiotherapy which is selectively kills the cancer cells and 

less effect on other normal cell that used photon that will selectively deposited in tumour cell of boron 

carriers such as BPA and BSH. The standard boron carries compound must be enriched by Boron-10 

about 20% natural abundance. The patient will be irradiated with slow energy of neutron to reach the 

ratio of high concentration of boron in the tumour cell [3]. The irradiation with slow neutron points out 
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of nuclear reaction that form the products of Boron-10 capture the thermal neutron and as a result of 

production Boron-10 convert into Boron-11 which decay from the emission of an alpha particle [4].  

Initially in BNCT, thermal neutron is captured by Boron-10 and becomes unstable because of its 

properties towards neutron. Neutron, especially thermal neutron was well known for its neutral 

properties (no electrical charge) and could be absorbed by atomic nuclei which collide with it to create 

heavier isotope. The unstable reaction of Boron-10 and thermal neutron results of emitting both high 

LET (Linear Energy Transfer) α and γ before it changes to Lithium-7. The LET is a term that used to 

measure the force acting on a charged particle travelling through matter [5]. There are three factors 

affecting LET which is charge, velocity and the mass of the particle [6]. BNCT emitted both high LET 

α and γ which have deeper penetration in the range of ~10µm which is approximately to the diameter of 

mammalian cell and promptly attenuating the radiation [7]. Hence, the BNCT give a highly localized 

treatment to the tumour cell compare to other treatment. The basic nuclear reaction is illustrated in 

Figure 1. 

 

 
Figure 1. Neutron capture by the boron and subsequent nuclear reaction and nuclear fission [8]. 

 
The neutron produce from the research reactor was mostly use in the studies of BNCT around the 

world [8]. This kind of research are aim to develop a BNCT facility for the cancer treatment studies with 

safe and controlled from radiation and practically using slow neutron emitted from the Malaysia TRIGA 

MARK II research reactor (RTP). Thus, the first steps to achieve the long-term goal is to establish the 

suitability neutron fluxes produce from the research reactor. Commonly, most of the TRIGA reactor has 

a thermal column, which is the special place design to produce thermal neutron which can be utilized in 

BNCT facility. Therefore, the thermal column of RTP was identified to produce thermal neutron source 

in the investigation. In contemplation of developing the facility at the thermal column of RTP, the 

thermal neutron beam needs to be optimized by designing suitable ideal neutron collimator. 

 
2.  BNCT historical and review 

After several years of disclosure of neutron by James Chadwick in 1932, Locher was firstly proposed 

the concept of neutron capture therapy. Locher discovered the availability of slow neutron capture with 

the high cross section naturally occurring isotope B-10 because of its properties that have high avidity 

in absorbing slow neutron. This is the initially described the BNCT in 1936 [9]. According to Chen [10], 

the uses of boron in BNCT was because of the properties of boron was highly selectively absorb by 

malignant tumour cells and it was mainly proposed of the destruction of cancer cells only. In theory, if 

boron could be selectively concentrated in a tumour and the volume then exposed to thermal neutrons, 

a higher radiation dose to the tumour relative to adjacent normal tissue would result [5]. This persuade 

the first clinical trials of BNCT in year 1950s-1960s using thermal neutron at Massachusetts General 

Hospital (MGH) and at the Brookhaven National Laboratory (BNL) and the trials were to identify the 

significant of the BNCT as an efficiency therapeutic treatment. The first clinical trial was considered as 

a failure because of the insufficient beam penetration but to curtail this problem, other trials was 

conducted at the Massachusetts Institute of Technology Research Reactor (MITR-I) with maximum 
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surgical of the tumour’s precedent to BNCT. As the early stage of BNCT trials, there is no evidence of 

any survival using BNCT [11]. 

One of the challenges to enhance BNCT during those years is to develop and improve the new boron 

compound to achieve suitable tumour to brain concentration. Initially, in the early stage of BNCT 

studies, sulfhydryl–polyhedral borane (BSH) and borated phenylalanine (BPA) were used to improve 

the tumours to boron concentration ratio. This study was conducted by Dr Hatanaka, a neurosurgeon 

from Japan who being the apprentice to Dr Sweet at MGH (Massachusetts General Hospital) in 1968 

after he returned to Japan. By using the BSH as a boron carrier, Dr Hatanaka had performed the open 

skull irradiation of the brain tumours using slow neutron [12]. After the success of the experiment in 

Japan, there are several groups of researchers working of BNCT using BSH for the brain tumour and as 

a result there are about 200 patients being treated with this technique with encouraging result [12]. At 

the same time, Dr Mishima a researcher from Japan also that working on borated phenylalanine (BPA) 

for treat malignant melanoma. Based on the documentation of Dr Mishima clinical trial and experiment 

on BNCT using BPA recorded that the normal skin of human is very response towards the BNCT 

treatment for malignant melanoma. In 1993, the beam use for BNCT had been more focus on 

intermediate neutron beam or epithermal neutron compared to the thermal neutron beam. The epithermal 

neutron was believed to have more penetration that can help in reducing the scalp reaction without 

having any complications. The MITR-II becomes the first who conducted the BNCT using the 

epithermal neutron to the human in 1994. The use of epithermal neutron for BNCT also had being widely 

use at the same time when the BMRR reactor apply to clinical trial for central nervous system tumours 

[11]. 

In Finland, the BNCT was conducted at the TRIGA MARK II type FiR1 reactor. The patients are 

intravenous administered with BPA-F as a boron carrier and was irradiated with the use of epithermal 

neutron without having other surgical procedures [13]. For the BNCT purpose, the neutron moderator 

material use is FLUENTAL which are the combination of 69% of AlF3, 30% of metallic Al and 1 % of 

LiF7. For the shield purpose bismuth was used to shield low gamma, thermal neutron and fast neutron 

contamination. The uses of the epithermal neutron beam for BNCT have been confirmed by the Finnish 

dosimetry team and verified by Idaho National Laboratory, Nuclear Research Institute (NRI) Republic 

of Czech and also Massachusetts Institute of Technology (MIT). According to [5], the advantage of 

using the TRIGA reactor for BNCT purpose is the stability and the availability to produce and supply 

the high neutron intensity with the low radiation background of the treatment beam. The clinical trials 

using TRIGA reactor had been done also at Europe, Japan and USA and none of the BNCT was 

postponed or cancel due to the reactor problem. The result of BNCT by using TRIGA reactor had 

convince the construction of BNCT for MARIA research reactor at the Institute of Atomic Energy at 

Swierk [14]. The schematic diagram of the FiR-1 BNCT facility has been show as Figure 2. 

 

 

Figure 2. Illustration view of FiR-1 BNCT facility [15]. 
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Despite of the research in BNCT by mostly government sector around the world, there are one private 

health company had looked forward of BNCT which is Boneca. According to Pohjola [16], the Boneca 

had proved their passion on BNCT by proved that the BNCT can be used to treat the head and neck 

cancer more beneficial compare to the conventional therapy. In fact, on 2007 there are clinical trials on 

12 patients who suffering head and neck cancer with good response and result.  About 7 patients had 

been successfully eliminated the tumour and the remaining patients had substantial tumour shrinkage 

with most of them have moderate adverse effect. To consider the good result, Boneca had looking 

forward by expand their study on BNCT for head and neck cancer for 30 more patients [16]. One of the 

reasons for choosing BNCT is the dose to the tumour can be increase without exceed the normal tissues 

tolerance [17].  

In Turkey, the research of BNCT was conducted at the ITU (Istanbul Technical University) TRIGA 

MARK II research reactor. To produce high intensity and quality of neutron beam for BNCT purpose, 

the radial beam port has been modified. It has collimator from the material of polyethylene and 

Cerrobend installed. Cerrobend are the combination of 50% bismuth, 31.8% of lead and 18.2% of Sn.  

Figure 3 shows the geometry design of Polyethylene/ Cerrobend collimator. 

 

 

Figure 3. Geometric characteristic of Polyethylene/Cerrobend Collimator [18]. 

Before installing the collimator, the initial step must be used to measure the neutron flux produced 

by using neutron activation analysis (Au-Cd Foils). Then the results from the neutron activation analysis 

was used to verified using MCNP (Monte Carlo Neutron Particle) simulation. The used of polyethylene 

as collimator is good to reduce the slow neutron while the Cerrobend is more efficient to provide and 

produces the epithermal neutron [18]. Despite the use of research reactor as the neutron source for 

BNCT, the accelerator facility also is recognized as a neutron source. The accelerator is a machine that 

can be used to accelerate proton to the required energy for the reaction and results of neutron emitted at 

the energy range appropriate for BNCT [12]. The advantages of using accelerator are easy to operate, 

required less people to handle it compares to the research reactor, less overall risk than reactor and 

cheaper. The accelerator can be classified based on the range of low energy electrostatics machines to 

the higher energy cyclotrons. This accelerator however produces high energy neutron energy which is 

beyond the BNCT limit. Thus, the use of accelerator as a neutron source need the brute force moderation 

or large moderator assemblies for specifically obey the neutron specification for BNCT [19]. 

There are several studies around the world, including Argentina, Italy, Japan, Russia, United 

Kingdom and Israel regarding to development of AB-BNCT (accelerator base BNCT). The studies of 

the accelerator around the world consider on the different type of accelerator and the nuclear reaction. 

In Argentina for example, they investigated on the 𝐶(𝑑, 𝑛) 𝑁1413  reaction as a neutron source for BNCT 

while in United Kingdom the reaction of 𝐿𝑖7 (𝑝, 𝑛) 𝐵𝑒7  are being studied as a neutron source to produce 

an epithermal neutron source for BNCT [20]. In terms of nuclear reaction, it can be divided into two 

different type which is endothermic reaction and exothermic reaction. The study on 𝐵𝑒(𝑑, 𝑛) 𝐵109  

reaction show that the 𝐵𝑒9  have advantages on thermo-mechanical properties 𝐿𝑖7  because it can lead 

the stabilization of residual products. Hence, become the advantages for hospitality-based facility 

because the 𝐵𝑒(𝑑, 𝑛) 𝐵109   can be utilized about 1.4MeV, which implying the smallest possible 

accelerator compare to others [19]. Another neutron source can be used for BNCT purpose is a sealed 
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generator tube. The sealed generator tube is neutron generators which use the microwave ion source to 

produce the deuterium and tritium ions from the plasma. According to Solleh [5], the mechanisms of 

the sealed generator tube is by the microwave ions will yield a higher fraction of monoatomic ion species 

in the ion beam. Then the ions will accelerate to impinge the beam on the target with the energy of 14.1 

MeV D-T neutrons that are generated from the fusion reaction. In fact, the yield of the neutron can be 

automatically controlled by the system and can have the stable yield also.  Actually, the main objective 

of the development of a sealed generator tube is to study the feasibility of the neutron for BNCT to cure 

liver tumour. In procedures, there are four sealed generator tube use and produce about 4 x 

1011 ncm−2s−1 and two directly placed on each side of the patient's liver [19].  

As mentioned above, the energy produced from the sealed generate or tube was 14.1 MeV is slightly 

high and cannot be used directly for destroying the tumour and the liver. Thus, the uses of neutron 

moderator were essential to produce the neutron energy in the intermediate form energy range. Different 

type of neutron moderator in the BSA (beam shaping assembly) are being provided which the neutron 

produce from the sealed generator tube must be passing through it to optimize the neutron for the BNCT 

purpose. Moreover, the direction of the neutron beam also needs to be guide and the study show that the 

reflector material such as lead can be used as a neutron reflector [19]. In terms of safety, the uses of the 

sealed generator tube as a neutron source is safer than the accelerator. 

 
2.1.  Neutron Properties 

In 1932, James Chadwick discovered the subatomic particle called neutron while working at the 

Cavendish Laboratory. Neutron with symbol n or 𝑛0 is identified with the characteristic of neutral (no 

electrical charge) and have a large mass comparable to proton. Neutrons are neutral and not affected by 

the electrons in an atom or by the positive charge of the nucleus. As consequences, neutron passes 

through the atomic electron cloud. In short, neutrons collide with nuclei but not with the atoms [21]. 

The kinetic energy of the neutron was significance in determining the nature of interaction between the 

neutron and the nucleus. Cacuci [21], stated that the interaction of neutron-nuclei will reduce the 

characteristic quantity of de Broglie wavelength ƛ = λ/2π of the neutron –nucleus centre of mass system 

which defined, 

 

                              ƛ=√
ℎ2

2𝑀𝐸
                                                             (2.1) 

 

where), ƛ is the wavelength (m), M is the reduced mass (kg), E is the kinetic energy (kg m2 s-2) and h is 

the Planck constant. 

 

2.1.1.  Neutron absorption. Neutron absorption is defined as a neutron absorbed by the nucleus forming 

new particles. There are four type of neutron absorption which is radioactive capture, fission, charged 

particle emission and neutron emission. The neutron reaction cross section can be used to identify the 

probability of the neutron reaction with the consideration of one mono-energy neutron source interact 

with the nucleus which end up as a neutron flux, ø (neutron cm-2 s-1). Equation 2.2 relate the relation of 

neutron flux, ø with n (neutron cm-3) which is the number of neutrons per unit volume and its with 

neutron velocity, v (cm s-1). 

 
ø = nv                                                                                              (2.2) 

 
𝑁 · 𝑑𝑥 (nuclei m-3) is used when the target material contains N atom per unit volume have a certain 

width which has symbol as 𝑑𝑥.   

 

σ =
𝐶

ø 𝑁·𝑑𝑥
                                                                                          (2.3) 
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The equation above shows the neutron cross-section σ (barns), whereas 𝐶 is belong to the 

neutron absorption (barns) [22]. 

 

2.1.2.  Neutron shielding 

In neutron shielding determination, the consideration of neutron intensity is very important to determine 

the best shielding material purposely to shield unwanted neutron. The intensity equation is given as: 

 

      𝐼𝑑 =𝐼𝑜. 𝑒−𝜇𝑑                                                (2.4) 

 

where  𝐼𝑑  is the final intensity of neutron after the shielding (neutron cm-2 s-1), 𝐼𝑜 is the initial intensity 

(neutron cm-2 s-1) of neutron before shielding, d is shielding thickness (cm) and μ is the neutron 

attenuation coefficient (cm-1).In the deep penetration of fast neutron, equal of the fast neutron fluence is 

produced and the including fast neutron deep in a hydrogenous medium. Moreover, as the neutron 

energy decrease, the cross section of hydrogen in the high MeV energy region increases then lead to 

lower-energy neutron scatter than the high energy neutron. Basically, the attenuation of fission neutron 

is even practically by both hydrogen medium and non-hydrogen shield. The interaction of (n, γ) 

absorption cross-section of all of the medium used for shielding in the energy region was negligible and 

has no significant role in the removing the fast neutron because of the removed cross-section can be 

represent by the total fast neutron cross-section, an energy average of fission neutron and neutron 

scattering. Thus, to remove the cross-section is sufficient when the material used contain high hydrogen 

concentrations [5]. In addition, the fast neutron is attenuated very poorly with the non-hydrogenous 

material such as iron, lead and aluminium which is slightly used for photon shielding. Thus, the 

attenuation of fast neutron through this non-hydrogenous material can be neglected. The interaction 

between the fast neutron in the shielding design could produce the slow neutron and the intermediate 

neutron which also leads to the gamma production. In this research, one of the main aims is to 

successfully capture the gamma-ray dose at the surface of BNCT design with a proper consideration of 

shielding design and material. It is important to calculate and simulate the slow neutron and epithermal 

neutron in a shielding design for BNCT purpose.  

One of the reasons for thermal neutron to be calculated is because of its properties of not being 

observed until the thermalization occurs. Moreover, during the process of the thermalization, the 

scattering can occur because of the addition of the fluences that become more isotropic. There is one 

approach that can be used in order to compute the build-up factor of low energy inside the shielding by 

using the combination of removal theory and multigroup diffusion theory. The combination of both 

theories, removal theory that defined as the penetration of fast neutron and multi-group diffusion theory 

which describe the subsequent thermalization and thermal diffusion lead to the contribution of the total 

dose at the shielding surface by the capture the gamma particle produced deep in the shielding and as a 

result of neutron absorption [5]. 

 

2.1.3.  Neutron collimator 

In this review, the most important part to be developed and studied is collimator. Collimator are well 

known as a beam limiting device that widely used in various industries including optical, medical and 

nuclear. Its acts as a filter of the beam allowing the beam in the specific direction to travel trough. In 

BNCT, the collimator inside the shielding purpose was to reflect the neutrons back into the beam [11]. 

In large neutron source such RTP, the neutron collimator important to reduce the neutron and gamma 

flux for specific purposes such as BNCT, neutron radiography, diffractometer and other application that 

use direct neutron source from the RTP. There are three common types of neutron collimator that widely 

used, namely are pinhole collimator, Soller collimator and divergent collimator. The neutron collimator 

must be properly design for the BNCT research facility. The thermal neutron flux emitted from the 

collimator used for BNCT must have good quality beam with the high intensity as required by IAEA 

standard. The use of collimator will avoid the over exposed of the thermal neutron, fast neutron, 

epithermal neutron and gamma ray to the patient. In order to design suitable collimator for BNCT 

research facility, the parameter of L/D ratio must be considered. The L/D is defined as the degree of 

divergence of the neutron beam where L stands for the length of the collimator while D is the diameter 
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of the entrance aperture [5]. To build the collimator, the combination of neutron collimator material, 

neutron shielding material and neutron moderator material specification are very important. In order to 

obtain these specifications, a simulation based on Monte Carlo N-Particle Transport Code (MCNP) 

method can be used to generate the suitable parameters for neutron collimator. 

 

2.1.4 Neutron moderator 

In order to optimize the neutron flux beam into the maximum output. Most of the fast neutron produce 

at the thermal column should be material that moderated using low atomic mass, does not produce moist, 

does not decompose in high radiation field and the neutron activation product produce should be short 

in half life. Commonly, in new world, the suitable material use to neutron moderator are Al, Al2CO3, 

Al3F and D2O. The material that have low absorption cross section Σa (barns) and high diffraction cross-

section Σd (barns). The moderation efficiency can be determine based on the moderation power (barns) 

and moderation ratio using equation 2.6 and 2.7 [22]. 

 

Moderation Power = ξΣd                             (2.5) 

 

To become a good moderator material, each material should have high moderation ratio. The 

equation 2.7 below show the diffraction cross-section Σd (barns) over absorption cross section Σa 

(barns). 

 

Moderation ratio = ξ
∑𝑑

∑𝑎
                             (2.6) 

 

2.2.  BNCT design and modifications 

In this review, the arrangement, geometry and the design of the BNCT facility are being considered to 

optimize the thermal and epithermal neutron flux for successfully use as a beam in BNCT studies. There 

are several case studies that are being observed around the world in to order to find the feasibility in 

modifying the epithermal neutron and the thermal neutron at the research reactor for BNCT. The Table 

1 shows the recommended value for BNCT by [11]. 

 

Table 1. The recommended value for BNCT by IAEA [11] 

 

BNCT Beam Port Parameters Recommended value 

Thermal neutron    >109 neutron.cm-2s-1 

Gamma flux <10-13 γcm-2s-1 

 

In Iran, the research regarding to BNCT has taken place at the Tehran research Reactor (TRR). TRR 

is a TRIGA type reactor, which has a thermal column with the cross section of 1.2 m x 1.2 m and 3 m 

length. Initially, this thermal column has been filled with the graphite blocks, but for the BNCT purpose, 

they need to modify the thermal column to meet the thermal neutron beam criteria specified by IAEA. 

Figure 4 shows the thermal column of TRR before the modifications while the Figure 5 shows the 

thermal column after the modifications.  
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Figure 4. Schematic diagram of thermal column before modifications [23]. 

 

 
 

Figure 5. Schematic diagram of thermal column after modifications [23]. 

 

 The main objective of the modification of the thermal column at the TRR is achieve by rearrange 

the graphite blocks as figure above. Besides that, the gamma dose rate at the exit of the thermal column 

also being consider by placed the gamma shield before the collimator. Based on the measurement using 

neutron activation analysis and TLD-700 dosimeter, the modification of the thermal column for BNCT 

purpose at TRR had produce about 5.6 x 108 neutron.cm-2 s-1 of the thermal neutron beam and the gamma 

dose rate calculated was 0.57 Gyh-1 while the cadmium ratio (CR) is 186 for gold foils. The advantages 

of this modification are minimal changes in the thermal column structure thus there are no disruption to 

the other TRR normal activities. Another advantage is the sample and the phantom for BNCT can be 

irradiated outside of the thermal column [23]. At the same time, the TRR researchers also found the 

potential to produce the epithermal neutron at the TRR based on the determination using MCNP (Monte 

Carlo N-Particle). For further research, the BSA (beam shaping assembly) has been designed and also 

modified to produce the epithermal neutron flux intensity required by IAEA for BNCT purpose.  At first 

to optimize the thermal column to produce epithermal neutron as recommended by IAEA, the BSA 

design had been made by using MCNP4 code by considering that all the graphite blocks had been 
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removed. The design of the BSA included the important parts such as thermal neutron filter, neutron 

reflector, neutron moderator and the gamma filter with the recommended of the suitable material use for 

BNCT by IAEA [23]. 

 

 
 

Figure 6. MCNP geometry of BSA for epithermal neutron beam BNCT [23] 

 

As show on the Figure 6, labelled 1 on the design shows the reactor core. The reactor core must be 

considered as a neutron source for the reactor. The number 2 on the design is a gamma filter in which 

the material use is lead block. This material was used to sufficiently filter the prompt gamma produce 

from the reactor core. Number 3, is an Aluminium canned graphite blocks and number 4 is the neutron 

moderator. In this design, the neutron moderator become the neutron parameter to be observe and the 

material use where are Al, Al2CO3, Al3F, MgF2, PbF2, Al/AlF3 alloy (30% Al, 70% AlF3), and Fluental 

alloy (30% Al, 69% AlF3, 1% LiF) with different thickness. Number 5 on the BSA was the air that filled 

inside the collimator while the number 6 was the neutron reflector. The neutron reflector in this design 

is solid material in the form of Pb and PbF2 with different thickness. The gamma filter was being label 

as 7 with the use of bismuth material and the number 8 show that the thermal neutron filters that use Cd 

(cadmium) at the beginning and the end of the neutron moderator with 2 mm thickness. Number 9 on 

the design shows the phantom or sample place [23]. 

The result of the BSA design using simulation of MCNP4 shows that the epithermal neutron produce 

was > 1.0 x 109 neutron.cm-2 s-1 and the fast neutron produce was > 4 x 108 neutron.cm-2 s-1 that had 

proved the material use in this design was feasible enough. The use of thermal neutron filter also helps 

to give the higher value of epithermal neutron flux produce at the beam port as the thermal neutron was 

absorb by the cadmium sheets. According to Kasesaz and friends [23], the BSA design can be suggested 

for the thermal column of TRR with the use of 20 cm of aluminium as the best neutron moderator and 

the 2 mm cadmium sheet as thermal neutron filter that can highly produce about > 1.0 x 109 neutron.cm-

2 s-1 of epithermal neutron beam. As summarize, there are several materials that had studied their 

characteristics towards neutron by few researchers around the world for BNCT purpose. Neutron 

shielding material studied by a few researchers for BNCT purpose include material such as Bismuth, 

Fluental, Aluminum, CF2, and Heavy Water [24,25,26,27,3,28]. On other hand, materials such as 

Lithium Polyethylene, Polyethylene, Li2CO3-PE, Pb, Nickel and Paraffin have proven consist of neutron 

collimate characteristic [29,18,26,27,24,28]. Lastly, the study of material characteristic towards neutron 

show that material such as Aluminium, Heavy Concrete, Ordinary concrete, Borated Polyethylene, 

Polyethylene and Ice [24,25,30,31,28,5]. 
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3.  Current Status on BNCT At Triga Mark-II 

 

3.1.  Measurement of neutron flux at the thermal column of RTP 

Initially, the measurement of the thermal neutron flux was conducted along the thermal column at 250 

kW. The thermal column was divided into 3 phases (Phase 1, Phase 2 and Phase 3 as display in Figure 

7) so that an accurate measurement can be obtained by using gold foil activation method. This value 

was used as a benchmark for the neutron flux produced from the thermal column for BNCT purpose 

[32].  

 

Figure 7. Phase 1, Phase 2 and Phase 3 at the thermal column of RTP [33]. 

 

In the Phase 1 measurement, there are two main data to be analyse which is thermal neutron flux and 

epithermal neutron flux. From the data tabulated in Table 4.1, stringer G7 produced highest thermal 

neutron flux compared to E4, E10, L7, J10 and J4 with 7.42 x 1011 neutron.cm-2s-1 at the sample position 

of G19. In contrast, the lowest thermal neutron flux produced from this measurement was from the 

stringer E10 at the sample position of E18. Based on the Table 2, the positioning of the stringer was one 

of the main factors that contribute to the production of thermal neutron flux. The stringer G7 was located 

at the centre of the graphite thermal column and the closet stringer to the RTP core compared with E4, 

E10, L7, J10 and J4 [32]. In contrast, the position of stringer E10 (which is located above the reactor 

core) demonstrated the lowest thermal neutron flux due to the high volume of shielding material. Besides 

that, the epithermal neutron flux graph indicated that the highest result of epithermal neutron come from 

holes G19 with 1.16 x 1011 neutron.cm-2s-1 compare to the lowest result from stringers L7. The location 

of stringer L7 was nearest to the RTP moderator has produce the effect of thermalization. The interaction 

of the irradiated samples and coolant as an effect of thermalization has produced less epithermal neutron 

flux. The thermalization also affects the measured value of cadmium ratio from L7.  

The statistically analysis using gold foil activation method can be used to determine the value of 

cadmium ratio. The cadmium ratio defines as the evaluation of activating nuclide of epithermal neutron 

compared to the thermal neutron [33]. The measurement of cadmium ratio is extensive in Phase 1 to 

determine the quality of the thermal and epithermal neutron produce from the stringer. The holes L47 

from stringer L7 was significantly produced the highest cadmium ratio with 247.34 compared to other 

stringers. In contrast, most of the holes positioned next to the reactor core produced lower cadmium 

ratio compare to the holes positioned farther the reactor core. For example, holes G19 from stringer have 

lowest cadmium ratio due to positioning. This concludes the stringer L7 was had high active nuclide of 

epithermal neutron compared to the thermal neutron despite having lowest epithermal neutron flux and 

thermal neutron flux. To construct validity the gold foil activation measurement at Phase 1, the 

experiment results from this research was compared with measurement result using gold foil activation 

method from previous BNCT research at the thermal column at RTP [34]. Table 3 shows the comparison 
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between the epithermal neutron flux and thermal neutron flux by using foil activation measurement from 

this research and previous research.  

 

Table 2. Phase 1 measurement of epithermal neutron flux and thermal neutron flux using the gold foil 

activation method [32].  

 

Stringers Holes Thermal Neutron 

Flux, 

neutron.cm-2s-1  

Epithermal Neutron 

Flux, 

neutron.cm-2s-1 

E4 E07 7.05 x 1010 1.11 x 1010 

E09 2.34 x 1010 3.10 x 108 

E12 2.24 x 1010 2.18 x 109 

E10 E13 5.75 x 1010 2.64 x 109 

E16 1.04 x 1010 1.33 x 109 

E18 1.35 x 109 6.61 x 107 

G7 G19 7.42 x 1011 1.16 x 1011 

G24 2.81 x 1011 2.30 x 109 

G26 2.41 x 1010 1.32 x 108 

G28 1.47 x 1010 2.03 x 108 

G31 1.85 x 1010 1.73 x 108 

J4 J32 5.39 x 1010 2.94 x 109 

J35 8.31 x 1010 2.12 x 108 

J37 7.31 x 1010 1.81 x 108 

J10 J38 6.78 x 1010 2.50 x 109 

J40 1.63 x 1010 2.07 x 108 

J43 9.79 x 109 1.13 x 108 

L7 L44 2.10 x 1010 1.24 x 109 

L46 1.48 x 1010 6.65 x 107 

L47 1.20 x 1010 3.98 x 107 

 

 

Table 3. The measurement of thermal and epithermal by using gold foil activation method [32,34]. 

Position This research, neutron.cm-2s-1 Munem (2007), neutron.cm-2s-1 

Thermal Epithermal Thermal Epithermal 

G19 7.42 x 1011 1.16 x 1011 2.64 x 1011 7.63 x 109 

G24 2.81 x 1011 2.30 x 109 2.45 x 1010 5.79 x 107 

G28 1.47 x 1010 2.03 x 108 3.75 x 109 4.58 x 106 

G31 1.85 x 1010 1.73 x 108 3.11 x 108 7.47 x 105 

 

 Based on Table 3, the data of the neutron flux measured by both researches from position G19, G24, 

G28 and G31 follows the decrease trend but there is some difference in terms of flux. The differences 

between reactor power operation during the measurement had affected the flux production for both 

epithermal neutron and thermal neutron. Thermal neutron produces were within the range of 1011 to 1010 

neutron.cm-2s-1 for 250 kW [32]. The thermal neutron flux was flutter due to the reactor power noise on 

the neutron distribution that had effect on random neutron fluctuation [35]. The epithermal neutron flux 

and thermal neutron flux of Phase 3 and Phase 2 has been displayed on the Table 4.4. The result shows 

that the stringers G7 produce the maximum production of thermal neutron flux of 3.62 x 107 neutron.cm-

2s-1 at the distance of 142 cm. Basically, the neutron flux decreases linearly with the length. Thus, at the 

Phase 2, both thermal and epithermal neutron flux declining from the 107 to the 106 for thermal neutron. 

For the Phase 3, the results of the thermal neutron flux decline about 25% from the 3.53 x 106 neutron.cm-
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2s-1 and flutter back to 1.28 x 106 neutron.cm-2s-1 at the last sample (A6) in the distance of 283.9 cm from 

the thermal column. The fluctuation of the thermal neutron was occurred when there was air exposure 

along the Phase 3 and the interaction between them.  

The measurement of epithermal neutron flux also showed the flux decline along the distance. At the 

Phase 2, the initial flux of epithermal neutron was 5.91 x 106 neutron.cm-2s-1 at the distance 142 cm from 

the graphite thermal column and continuously decrease to the 8.90 x 105 neutron.cm-2s-1 at the end of 

Phase 2. At the Phase 3, the last sample A6 produced only 3.89 x 104 neutron.cm-2s-1 which is about 

99.34% reduces from the initial epithermal neutron flux from Phase 2. Technically, the epithermal 

neutron shows the gradually decline of flux along Phase 2 and Phase 3 without any fluctuation and 

follow the standard law of radiation and distance [32]. Both neutron thermal and epithermal neutrons 

flux decrease with the distance from 142 cm to 283.9 cm from graphite thermal column as the flux 

generally is exponentially decreasing with distance [36].  Based on Figure 8, from the Phase 1 to the 

Phase 2, the thermal and epithermal neutron flux is significantly reduced about 99.8% for thermal 

neutron flux and 96.5% for epithermal neutron flux. The uses of graphite as a neutron moderator for the 

research reactor in Phase 1 become the main factor for the tremendously decreases of flux from the 

Phase 1 to the Phase 2. The properties of graphite that have higher thermal conductivity have increased 

the measurement of thermal and epithermal neutron flux at Phase 1 [37]. Across the beam line, the 

thermal neutron flux was higher than epithermal neutron flux with 1.00 x 102 neutron.cm-2s-1 difference 

because the thermal column itself produce are well known as the thermal neutron source at the RTP 

[38]. The aim of this measurement to clearly see the thermal and epithermal neutron across the beam 

line for the optimization purpose for the collimator [32]. 

 

 

Figure 8. The neutron flux measurement across the beam line for the Phase1, Phase 2 and Phase 3 [32]. 

 

3.2.  Characterization of materials for BNCT collimator  

The characterization of material for BNCT collimator were done by experimental approach (TLD and 

Microspec-6) at the thermal column. The characterization of material was important to ensure the 

material use for collimator can optimize the thermal neutron beam and reduces other ionising particles. 

At 100 kW of reactor power, the sample was put inside the shielding box and the TLD detector was 

positioned at the back of sample material. The result display in Table shows that lead has high absorption 

of neutron and gamma dose with the reduction for almost 68% from the background and 75 % for gamma 

dose rate. In contrast, the neutron dose counts from the paraffin superior to the other materials with 0.29 

mSv while the 5% borated polyethylene resulted in higher gamma dose with 0.54 mSv. In order to 

construct the valid result for collimator material selection, the measurement using Microspec-6 and TLD 

600 and 700 to ensure the valid material to be used for BNCT collimator design. All the result displays 
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the characteristic for each material sample in terms of neutron collimate behaviour, thermal neutron 

peak, gamma and neutron shielding and the moderator behaviour towards neutron. The data from both 

detectors was normalized into the percentage of neutron as shown in Figure 9 for neutron. 

 

 

Figure 9. The percentage of neutron produce by using Microspec-6 and TLD detector. 

Based on Figure 9 the result shows that the paraffin has strong moderation and collimate the thermal 

neutron based on the percentage of neutron produce from both detectors although there was the higher 

difference of percentage by both detector with 17%. Previous research conclude that the material 

paraffin can be used as a neutron moderator and collimate for BNCT based on the research by using 

Microspec-2 [38]. The high percentage different of cadmium due to the functionality of Microspec-6 

and TLD. The neutron spectrum from the Microspec-6 was including the thermal neutron, epithermal 

neutron, and fast neutron while the TLD detector more focuses to count the slow neutron (thermal 

neutron and epithermal). Both TLD-600 and TLD-700 have more sensitivity towards thermal neutron 

with more than 86% [39]. Besides that, according to Devine, the Microspec- 6 N-probe give a coarser 

spectrum due to the significant bias in term of energy between the transition region of fast and thermal 

that caused the spectrum in many cases [40].  The measurement by using both Microspec-6 and TLD 

demonstrated the same pattern.  According to result and discussion from both experiment, paraffin and 

30% borated polyethylene were chosen based on their characters as the neutron moderator and neutron 

collimator. Even though 5% borated polyethylene have same characteristic with 30% borated 

polyethylene, but due to the less of boron-containing on the polyethylene have make 5% borated 

polyethylene was least choice for the BNCT collimator design. The presence of boron as the neutron 

absorber could controlled the nuclear reactions [41].  In terms of material shielding, lead and HDPE was 

chosen for further research. The lead was chosen due to the characteristic of gamma shielding and have 

high thermal neutron peak that can be used to increase the thermal neutron intensity for BNCT purpose. 

On other hands, HDPE was selected based on the performance of reducing fast neutron and high neutron 

attenuation coefficient. Besides that, HDPE also have strong moderation characteristic also in contrast, 

the cadmium was least choice due to the higher cost of cadmium itself and the cadmium have lowest 

thermal neutron peak which is suitable for produce high epithermal neutron for BNCT purpose. The 

collimator design on this research for BNCT purpose was aim to focus on a beam of thermal neutron 

compare to the epithermal neutron [42].  
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3.3.  Design of BNCT collimator 

The neutron collimator for BNCT research facility at RTP is divided into two different position of 

collimator which is internal collimator (Phase 2) and external collimator (Phase 3). The internal 

collimator located at the Phase 2 that already has specific dimensions while the external collimator 

located at the Phase 3 which is before the sample. The internal collimator function to focus the neutron 

beam in towards the exit of the collimator while moderating fast neutrons and to filter and absorb gamma 

radiation while the external collimator function is to channel the neutron beam towards the exit for 

irradiating sample, while absorbing scattered neutrons and gamma. The designing collimator for 

research reactor purpose by doing measuring directly and without simulation will lead to radiation 

accident [43]. In fact, the Monte Carlo method to design the collimator was already integrated within 

the MCNPX and can accurately models the neutron transport phenomena [44].  As mentioned before, 

the internal collimator located at the Phase 2 of the thermal column has a specific size and dimensions. 

In the internal collimator, there are two parts which are inner part and outer part. Both parts have 

different diameter and length, as the inner part has small diameter which is 20 cm with 51.8 cm long 

while the outer part consist of 24 cm diameter and 54.8 cm of length. In fact, the collimators work based 

on the principle of radiation interaction with matter, by shifting or filtering methods. The shifting method 

uses a moderator to lower the neutron energy whereas the filtering method use materials to absorb 

neutrons in certain energies [45].  

 

 

Figure 10. Collimator design using simulation (The number represent the dimension in unit millimetre 

(mm)). 

Basically, the Figure 10 shows the design of the collimator based on the filtering method at the inner 

part and shifting method at the outer part of the collimator by using simulation software of MCNPX. 

The filtering method was described on the 5 cm of hollow cylinder arrange along the inner part of the 

collimator. Meanwhile, the shifting method was described by the conical shape towards the end of the 

collimator. In terms of the collimator casing, the case was fixed and made up by the aluminium grade 

5754 with 4 mm thickness. Both inner part and outer part of the collimator use aluminium 5754 

materials. The aluminium 5754 functions as the internal collimator case. The main reason of using 

aluminium grade 5754 because of it characteristic that have a low neutron activation element [42]. The 

aluminium 5000 series also are extensively used in the research reactor because of their good corrosion 

resistance in the deionized water under 80 Celsius and the good mechanical properties at the temperature 

under 150 Celsius. The internal collimator has been used to put any neutron collimator, shielding, filter 

and moderator material for collimator purpose to optimize the beam of thermal neutron produce from 

the thermal column for BNCT purpose [46]. The result of collimator design based on material 

characterization was compared with preliminary measurement without collimator in Figure 11 [32,47]. 

Figure 11 display the thermal neutron flux along the thermal column with and without collimator on 

Phase 2. The presence of collimator at Phase 2 of thermal column had better thermal neutron production 

rather than without the collimator install. At the distance 142 cm or at the initial of the Phase 2, the 

experiment show that the thermal neutron flux was drop from the 1010 neutron.cm-2s-1 to 107 neutron.cm-
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2s-1 but with the presence of collimator, the thermal neutron flux was slightly lower within the range of 

108 neutron.cm-2s-1. The collimator was sustained the thermal neutron flux until at the 283.9 cm with 

only 20% of thermal neutron reduced. On other hands, from the Phase 2 to the Phase 3 without the 

collimator an experiment was measured that the thermal neutron was reduced to 96%. Overall, the 

thermal neutron with the collimator installation can sustain the higher thermal neutron flux from the 

RTP that can be used for BNCT research [47]. 

 

 

Figure 11. The graphical different of thermal neutron flux along the thermal column by 

simulation (collimator) and experiment [32,47]. 

 

4.  Future research 

The complete BNCT facilities should have biological shielding to be used during the research and 

experiment. In clinical and research of BNCT, the shielding was one of the important aspects to be 

overcome before the future research of BNCT can carried out. The shielding must be good enough to 

shield neutron and secondary gamma that would affect the BNCT research. Therefore, the future 

research on shielding can be carried out as extended from this review. Besides that, the external 

collimator must be included to optimize the beam for BNCT research and to minimize the gamma from 

the centre of collimator. The external variable must have variable aperture for the purpose of BNCT 

research on different cancer in future. 

 

5.  Conclusion 

There is only a research reactor in Malaysia that was identified as an available neutron source for BNCT. 

The thermal column of RTP is determined to be a suitable place for BNCT purpose based on the early 

studied of BNCT. The measurement with the verification by experimental and simulation for the thermal 

neutron at the thermal column was precise that the availability of the thermal column of Malaysia RTP 

was sufficient enough for the development of BNCT as the quality and intensity of the neutron beam 

produced was well within a standard requirement for BNCT facility. The review on the material for 

BNCT collimator around the world benefit on specific material use for designing the ideal collimator 

and beam optimization. The material for designing collimator divide into neutron shielding materials, 

neutron moderator materials and neutron collimate material. This review specifically characterizes those 

material based on their characteristic. This paper also reviews the current status of BNCT at the RTP 

with the measurement of the thermal neutron flux was conducted along the thermal column at 250 kW. 
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The thermal column of RTP was divided into 3 phases (Phase 1, Phase 2 and Phase 3) so that an accurate 

measurement can be obtained by using gold foil activation method. This value in the range of 1.0x106 

neutron.cm-2s-1 as a benchmark for the neutron flux produced from the thermal column. The collimator 

was designed using different types of materials, and their characteristic towards gamma and neutron 

flux was investigated. The reviewed demonstrated that the final thermal neutron flux produced was 

significantly for BNCT purpose with 108 neutron.cm-2s-1 with collimator design. Ultimately, this review 

recommends the future research can be conducted on BNCT at RTP. Thus, the aim of this paper is to 

review the thermal neutron beam by designing the external neutron collimator for the BNCT purpose so 

that the neutron flux obtained is within the range that set by the IAEA standard in the future. 
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