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The area is a membrane that works faster than any publicly accessible scheme. 
Membrane technology are more useful than other kinds of membranes for CO2/CH4 
separation, which includes both carbon and zeolite molecular sieves and amorphous 
silica matrix. Besides, there are several related to the membrane system such as 
insufficient heat and chemical stability and plasticisation sensitivity. The further 
improve the transmitter system's position in the separation of gas and economic saving 
are the advantage of membrane technology to the world. Despite centuries of studies 
on the topic, fewer than ten polymer kinds are currently used for business gas 
separation, and no polymer specifically intended for this function. New membrane 
must deliver substantial rises in CO2 permeance and selectivity of CO2 / CH4 relative to 
current technologies to contend internationally. 
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1. Introduction 
 

The traditional gas separation methods are the advantages offered by the operation of a unit of 
necessary membrane gas separation [1,2]. Membranes created for hydrogen purification (H2) and 
emphasises the removal of carbon dioxide (CO2) from methane (CH4). Separating CO2 from natural 
gas streams is an important industrial process in which it is anticipated that the membrane structure 
will perform a more significant part in the future. The separation of CH4 and CO2 is vital to the industry 
especially for natural gas [3,4]. Twenty trillion cubic feet of standard natural gas was produced in the 
US each year, 20% of these gases require significant treatment [5,6]. Besides, there are 70% of the 
total gas can be found in CO2 natural gas wells which can lead to erosion and reduce the calorific 
value of natural gas [7-9]. The US government has decided that the configuration of the tank must 
below 2%. The benefits of separating membrane gas from traditional methods include small energy 
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consumption, the convenience of use, and modest effect on the environment. Current business 
plastic cell fluxes and selectivity, however, are too low to handle significant quantities of gas and only 
small-scale amine factories working under 30 million standard cubes can be damaged by them every 
day [10,11]. Volume relaxation is defined in the form of a slowly increasing amount with time over 
specific pressures [12]. The membrane must also have outstanding heat and chemical stability, plastic 
strength (for polymeric membranes), shrinking strength, small price equipment and scale [13]. In the 
petroleum and chemical processing industries, hydrogen gas is used for various purposes, namely 
hydrodesulfurization, syngas and ammonia production, Fischer Tropsch synthesis, and for 
hydrogenation and hydrocracking reactions [14]. H2 is produced worldwide of about 41 MM 
tons/year [10]. Hence the more efficient and economical H2 separation method is needed for 
continuous use. The present H2 separation method involves swing stress adsorption, cryogenic 
distillation, and extraction of membranes. The latter is usually more cost-effective and profitable [15-
17]. 

The morphology of the membrane is characterised by electron microscopy screening (SEM). To 
evaluate the efficiency of membrane separation, gas permeance and selectivity are used. For each 
cross-membrane pressure, the amount of gas (in the mole) passing through the known membrane 
area per unit of time is used to represent membrane permeates. The gas permeance the proportion 
of any two species permeance the membrane and being used as a selectivity test of the removal 
effectiveness. Also, the literature permeates membrane in some of the systems used to demonstrate 
consensus and the outcomes recorded in both SI and Barrers branches. Barriers transformed into SI 
units when the author provides the density of the membrane. The median frequency is used for 
devices where the recorded density variety is used. Another common gas permeation device is the 
GPU (carbon permeation device) that can be transformed straight to SI units. Permeance of the value 
mentioned as Eq. (1): 
 

                                (1) 
 
For a 1 μm thickness. 
 

                                 (2) 
 
2. H2 Membrane Separation for Porous Materials 
 

CVD-prepared silica membranes for H2 separation have been widely researched that provides an 
overview of the study conducted over the past several years [18-20]. Nearly all the studies reviewed 
using inorganic α-alumina supports that are coated by a single or multiple layer of γ-alumina [21,22]. 
The permeance of H2 is generally in the order of 10-7 mol m-2 s-1Pa-1 also H2 selectivity from 70 to 
10,000. The silica precursor called TEOS is the most commonly utilized despite the successful use of 
another type of precursors, for example, phenyltrimethoxysilane (PTMS) and tetramethoxysilane 
(TMOS) [23,24]. O2 is mostly used as an oxidizing agent to encourage decomposition of the silica 
precursor; however, it has been stated that the decomposition of the silica precursor occurs in an 
inert atmosphere [25,26]. Figure 1 shows membrane reactor for hydrogen production from natural 
gas at the Tokyo Gas Company [27]. 
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Fig. 1. Membrane reactor for hydrogen production from natural gas at the 
Tokyo Gas Company [27] 

 
Hollow fibers are leading compared to the traditional ceramic tubular membranes due to the 

properties of high ratio of area to volume. Hollow fiber can be mounted into multi-tube reactors that 
will improve the use of volume. The silica separation layer has been discovered to be deposited on 
the outside of the fiber in all the report mentioned [28]. It is useful in separation but cannot be used 
in catalytic membrane reactors due to abrasion issues resulting from the contact between the 
permselective layers with the catalyst pellets. A more in-depth investigation of the outcomes stated 
in all but two research in the literature seems to have evacuated reactants through the pore walls 
during the CVD implementation [19]. Vacuum application is asserted to enhance the coverage of 
silica deposition defects [29]. Studies stated that, if an intermediate layer of γ-alumina is applied to 
the α-alumina substrate before CVD, the H2 permeance is improved by an order of magnitude 
approximately [30]. The molar flow rate of silica precursor varied by more than two orders of 
magnitude but there was no evaluation of the impacts on H2 permeance or selectivity. Three of the 
researches used O2 or O3, which functions as an oxidant to encourage decomposition in membrane 
pores of the silica precursor [31-33]. The implementation of the oxidant reagent gives a significant 
impact of increasing the final H2 permeance than the research based on only the thermal 
decomposition of the silica precursor. 
 
3. CO2/CH4 Membrane Separation 
 

The present CO2 separation method on porous inorganic assistance, amorphous silica substrates, 
fiber substrates, blended medium substrates, and RTIL membranes includes zeolites and carbon 
molecular sieve. Literary reports published in recent years are used to review these systems 
[6,34,35]. Zeolite is a pore-structured aluminosilicate. In general, zeolite covers consist of a thin 
coating of several micrometres of zeolite placed on a covering such as tubular metal or porous α-
alumina. Excellent heat and mechanical strength and chemical resistance are among the benefits that 
this membrane provides over traditional polymer gas separation membranes [36,37]. The separation 
of zeolite membranes is accomplished through molecular sieving with surface diffusion. The traps 
forming the zeolite's pore framework have the capacity to distinguish liquids depending on their 
kinetic diameter. Due to preferential adsorption in CO2 instances, separation is increased at reduced 
temperatures [38]. Previous research showed the excellent results for both selectivity and 
permeance for the zeolite membrane [39]. Zeolite membranes supported by either stainless steel or 
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α-alumina showed the highest values for both permeance CO2 and selectivity of CO2 / CH4. Carreon 
and co-workers are able to synthesize SAPO-34 zeolite membranes on porous α-alumina support with 
permeance CO2 1.0 - 2.0 x 10-6 mol m-2 s-1 Pa-1 and CO2 / CH4 selectivity 86-171 [40]. SAPO CO2-
permeance membranes 3.9 x 10-8 — 2.0 x 10-7 mol m-2 s-1 Pa-1 and CO2 / CH4 selectivity 32-118 
described by two other accounts from the same study unit. The membrane is ready on the backing, 
a porous stainless-steel pipe, by crystallization in situ. 

Furthermore, the DDR-type zeolite fibers constitute extremely hydrophobic assistance on α-
alumina with 2.9 x 10-7 mol m-2 s-1 Pa-1 CO2 permeable and more than 400 CO2/CH4 selectivities at 
house temperature [41]. Overall, in comparison with traditional polymer membranes, zeolite 
membranes demonstrate an enhancement in the design of gas separation. This can be ascribed to 
the present existence of transportation of zeolite gas. The zeolites have a transparent porous 
network, and if the membrane separation layer is thin, high gas dependency can be achieved. In gas 
zeolite membranes, size exclusion and selective adsorption are segregated, resulting in more 
excellent selectivity following the dispersion process than polymer membranes. Zeolite does not 
show plasticization until even at elevated concentrations, the selectivity of CO2 / CH4 is outstanding. 
Unlike polymeric membranes, zeolite fibers can resist comparatively high pressures in the existence 
of oxygen. It is essential that CO2 / CH4 choice with temperature declines owing to reduced specific 
CO2 adsorption. Also, high cost, hard to process, and hard to manage, offsetting some of their 
appealing characteristics of separation. Commercial implementation cannot take place until the cost 
of the zeolite membrane is lowered by a percentage of 10 [42]. Figure 2 shows High-flux CHA zeolite 
membranes for H2 separations [43]. 
 

 
Fig. 2. High-flux CHA zeolite membranes for H2 separations [43] 

 
Carbon membranes are random porous networks that are generated under regulated 

circumstances by thermosensitive polymer thermosets and have excellent heat and chemical stability 
[44]. Pyrolysis produces layers with a molecular aspect (molecular sieve) allocation of the small pore 
volume. Depending on the preparation circumstance, the pore magnitude in carbon fibers used to 
separate the gas ranges from 0.35 to 1 nm [45]. Pore construct can be defined as a comparatively big 
gap comparable in volume to the gas molecules in the "tight" throat. The primary mechanism of gas 
transport is the diffusion of molecules where smaller dimensional particles are absorbed by choice 
compared to larger dimensional particles [46]. More substantial molecule permeability is strictly 
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sterically restricted while permeation of smaller molecules of a specific size occurs faster. The 
interaction of the gas molecules with the walls of the carbon molecular sieve made up of two teams 
that repulsive and attractive. The gas molecule is required to overcome the activation energy barrier 
that results from the rejection force passing through the pore opening. The significant changes in 
permeance caused by small changes in the size of the molecule can be explained by the diffusion 
activated through the membrane. The second mechanism of transport in the carbon membrane is 
associated with surface diffusion with selective adsorption. Carbon membrane, which depends on 
the particular surface diffusion mechanism, generally has a larger pore size and is capable of 
separating highly adsorbent gas (NH3, CO2, H2S) from the adsorbent gas (CH4, O2, N2) and can either 
be supported (on tube or flat) or not supported [47]. Unsupported carbon membranes (flat or 
tubular) are fragile and difficult to maintain, and, moreover, thicker than supported membranes and 
thus exhibit lower gas permeability. Carbon membrane supported permeates better showcase for 
decreasing the thickness of the active layer, which reduces the resistance to gas flow — carbon 
molecular sieve membranes displaying excellent properties of separation CO2 / CH4. 

Yoshimune and Kenji [48] synthesized unsupported carbon membranes. The results show that 
the selectivity of CO2 / CH4 are very high 100-130 but low permeance (2.8x10-9 - 7.5x10-9 mol m-2 s-
1 Pa-1). This phenomenon is due to the high membrane thickness (23-25 m) [48]. Jiang et al., [49] 
synthesized double-layer hollow membranes on Matrimid support. The emission of CO2 on this 
membrane was relatively low (4.2x10-9 mol m-2 s-1 Pa-1) due to the collapse of micropores in the 
support layer, but CO2 / CH4 selectivity was high [49]. Membrane selectivity is impaired in the thin 
layer of carbon separation (1μm) supported on α-alumina, but nonetheless, the results are promising. 
The thin layer of active carbon separation must be defect-free if the membrane selectivity is 
significantly reduced. The carbon membrane has many of the same problems as the zeolite 
membrane. Instead, they are costly, hard to process, and hard to manage. Other disadvantages 
include the susceptibility of carbon membranes to oxidizing agents and the degradation of water 
vapour over time [50,51]. The synthesized stable carbon membranes, required to have technology 
accessible first to create excellent polymeric membranes. Under very narrow circumstances, 
polymeric substrates must be pyrolyzed, which can be hard to enhance. The amorphous and 
mesoporous membranes are the two types of silica membrane that can be split by membrane 
morphology. In cases of amorphous silica, or claims of mesoporous silica, these membranes are 
usually generated by CVD or sol-gel synthesis from silica precursors or by sol-gel or hydrothermal 
synthesis. CVD-prepared membrane using conventional silica precursors like TEOS or tetramethyl 
orthosilicate (TMOS) usually produces a small silica microporous or nonporous film appropriate for 
H2 or He separation [29]. In relatively small gas molecules, these membranes are very soluble, but 
the permeability of bigger gas molecules such as CO2 is very low. It is essential to use silica precursors 
comprising significant organic components, such as phenyl clusters, to attain greater CO2 absorption 
levels through the CVD process. Two types of research investigated here using phenyl-containing 
precursors that form a tight silica-packed porous framework relative to normal CVD [52]. The 
mesoporous membrane provided by the sol-gel technique has a clear pore structure and acts as a 
molecular sieve. Sol-gel pathways are an easy way to produce silica layers, but the final morphology 
of the membrane is highly dependent on the synthesis parameters. This enables monitoring of the 
exact pore morphology and composition, but also makes the ultimate membrane susceptible to 
synthesis circumstances and thus hard to replicate. In particular, more significant emissions in sol-
gel-prepared membranes are much greater in the CVD membrane relative to CVD, but membrane 
stabilization and film durability [18]. 
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4. Polymeric Membranes 
 

The organic polymer is the material most commonly used in gas separation membranes [53]. The 
polymer can be split into two groups, i.e. running above crystal transfer temperature (a plastic 
polymer) and working below crystal transfer rate (crystal polymer). Polymer glasses can efficiently 
distinguish molecules depending on tiny variations in molecule dimensions [54]. In the magnitude 
and structure of the rubber polymer, they are more competitive and therefore, more appropriate for 
CO2 separation. According to Henry's law of gas absorption in rubber polymer; the absorption in glass 
polymers can be described by the complicated absorption isotherms connected with the unabsorbed 
size of the matrix when discharged under the glass transition temperature. Complete details of 
solubility can be discovered elsewhere in glass polymers [55]. Commercial polymer membranes have 
asymmetric constructions that are usually backed by porous materials with tiny specific strands. The 
thicker backing layer guarantees the structure's stability while the thinner protective coating enables 
higher flux of gas through the membrane. Recently papers on technologies that mix various polymers. 
In the case of mixed membranes, glass polymers are covered with high diffusivity in a matrix of rubber 
polymer to incorporate high selectivity from the latter [56]. Besides, the glassy polymer provides 
mechanical support to the matrix structure and rubber [57]. The polymer membranes are not porous 
and gas permeation mechanism administered by the deployment of the solution. Therefore, the 
mechanism was by the solubility in the polymer matrix [58]. The gas molecules absorb from the 
portion of the feed into the gas membrane interface, dissolving and absorbing the molecules through 
the membrane with random dispersion. Dissemination happens between polymer chains in free-
volume components (0.2 and 0.5 nm in length) that occur and continually vanish owing to thermal 
motion. 

The dispersion of gases through the naturally non-porous polymeric structure is slow, and thus 
the polymer membrane exhibits low CO2 permeance with moderate CO2 / CH4 selectivity. Polymer 
membranes now monopolize the market due to low material cost and processing facilities [54]. 
Compared with other membrane systems described above, the polymer membrane is more 
comfortable to handle more than the critical current scale. The polymer membrane systems studied 
in this chapter generally exhibit permeances below 1x10-8 mol m-2 s-1 Pa-1. The reduced gas 
permeability of the polymer membrane can be understood from the gas diffusion mechanism. 
Permeance is naturally low because gas must dissolve in and absorb through non-porous solids. Also, 
there is a well-known trade-off between the selectivity and permeance for polymer membranes. 
Despite intense research on membrane gas separation in recent years, polymer membranes have not 
been able to progress beyond the "line of death" called the Robeson plot which describes the 
precision selections in polymer membranes. 
 
5. Mixed Matrix Membranes 
 

Organic-inorganic membrane consisting of a mixture of inorganic particles. Mixed matrix 
membranes attempt to mix the handling of polymeric materials with outstanding molecular sieve 
vapour separation properties [59]. Gas transferred through the inorganic and polymer stage. 
Inorganic ions may behave as molecular sieves. Transportation happens primarily through the 
inorganic stage at very elevated inorganic load. There are also blended matrix membranes that 
depend on inorganic fillers, selectively absorbing various gases [36]. According to Suzuki and 
Yasuharu [60] the suitable option for CO2 / CH4 of 54-95 was 6FDA-TAPOB modified hyperbranched 
polyimide – silica hybrid with tetramethoxysilane as a precursor. The mixed matrix membrane regime 
CO2 permeance investigated in this section usually drops below 1x10-8 mol m-2 s-1 Pa-1. There was 
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no vital rise in CO2 / CH4 selectivity over a polymer membrane in the general composite membrane 
of organic-inorganic. 
 
6. Conclusions 
 

Some of membrane systems have CO2 permeability above 1x 10-6 mol m-2 s-1Pa-1 with an ideal 
CO2 / CH4 choice above 100. The findings achieved with PTES thermal decomposition binary organic-
inorganic silica membranes show that these membranes function well in comparison with other kinds 
of membranes. For comparison, low CO2 permeances in the range of 1x 10-11 to 1x 10-8 mol m-2 s-
1Pa-1 and CO2 / CH4 selectivity between 15 and 100 were shown by organic membranes (polymeric). 
Mixed matrix membranes showed no significant increase in CO2 separation compared to polymeric 
membranes. The CO2 surface is usually less than 1x 10-9 mol m-2 s-1Pa-1, and the ideal CO2 / CH4 
choice is less than 100. Compared to other membrane separation technologies, supported ionic liquid 
substrates demonstrate lower CO2 / CH4 separation efficiency. Overall, the CO2 permeance backed 
by ionic liquid filters is more significant than polymer matrix or blended, but the selectivity of CO2 / 
CH4 is low. 
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