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Abstract. Two-level full factorial design was applied to screen the important parameters for 

production of xylanase by newly isolated Bacillus sp. from landfill soil. Five production 

parameters were considered: initial pH media (pH 5–9), inoculum size (5%–10% v/v), 

incubation period (18–30 h), temperature (30–50 °C) and agitation speed (0–200 rpm). 

Xylanase activity was estimated using dinitrosalicylic acid (DNS) based on the xylose released 

under specified assay conditions. Based on the factorial analysis, it was observed that the 

significant parameters in the xylanase production were temperature, agitation speed and initial 

pH of media. Meanwhile, the interaction between temperature and initial pH of media gave the 

highest influenced to the xylanase production. The model revealed that the highest xylanase 

activity can be achieved at 123.34 U/mL with initial pH media of 7.0, 30 h incubation period, 

5% (v/v) inoculum size, agitation speed of 100 rpm at 40 °C. Confirmation run produced the 

highest experimental xylanase activity by Bacillus sp. at 123.10 U/mL with 0.17% of error than 

the predicted one. Hence, the model was reliably predicting the xylanase production. 

1. Introduction 

The substrate of xylanase: xylan [1] is the main carbohydrate component in hemicellulose that can be 

found in the plant cell walls. It comprises up to 20% to 35% dry weight of hardwood plants, softwood 

plants and agricultural waste [2]. Complete xylan degradation requires the operation of different 

xylanolytic enzymes include endoxylanase, β-xylosidase, α-glucoronidase, acetyl esterase and α-

arabinofuranosidase. These xylanases are responsible for degradation of xylan into usable products 

such as xylooligosaccharides, xylotetrose, xylotriose, xylobiose, and xylose [3, 4].  

Diverse genera and species of microorganisms for instance actinomycetes, bacteria, yeast and fungi 

have been recognized to be the rich sources of xylanase [5, 6]. There are many reports on xylanase 

production by microorganisms such as Streptomyces thermovulgaris [7], Streptomyces sp. [8], 

Aspergillus foetidus [9], Aspergillus flavus [10], Aspergillus carneus [11], Coprinopsis cinereal [12], 

Pichia pastoris [2], Penicillium sp. [13], Bacillus amyloliquifaciens [14], Bacillus tequilensis [15], 

Bacillus pumilus [16], Bacillus subtilis [17], Micrococcus sp. [18], Acetobacter xylinum and 

Cellulomonas uda [3]. Among the microorganism sources, bacteria are the most preferable because of 

their stability at high pH and temperature which assist the industrial purpose [14]. The family of 

Bacillus has been explored broadly among bacterial xylanase. Bacillus species are the suitable 

xylanase producer from the industrial perspective due to their potential to synthesis high level of 

proteins and extracellular enzymes and also because of their rapid growth rate [15, 17]. Huge scale 
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cultivation of actinomycetes and fungi is challenging due to their slow time of generation, inadequate 

oxygen transfer and production of high viscous byproducts such as polymers [19].  

The biotechnological applications of microbial xylanase in various industries include the animal 

feed, food, detergents, textiles, paper and pulp, biofuel and chemicals production, fruit and vegetable 

processing, bread manufacturing, clarification of fruit juices and wines, and in waste treatment [1, 14]. 

These vast applications of xylanase in industries escalate the value and importance of the enzyme. The 

xylanase production was influenced by the microorganism type and its strain [20], nutrient type and its 

concentration and growth conditions [21]. Screening and optimizing the nutritional parameters are 

essential to determine the optimum production of xylanase [13]. Moreover, the successful industrial 

application of xylanase that requires cost effective in mass production can be achieved by optimizing 

the fermentation process and media formulation[9].  

Statistical experimental design techniques for screening and optimizing the parameters are needed 

to provide statistical models which investigate several independent parameters simultaneously and to 

determine interactions effects between them [2]. Meanwhile, the one-factor-at-a-time (OFAT) 

technique having extensive of time which involve large number of experiments and analysis of many 

parameters as well as high reagents and materials consumption [22]. Therefore, the statistical 

techniques are better choice than OFAT technique in order to overcome these problems. 

Hence, this study was aimed to screen the culture conditions for xylanase production by the landfill 

soil isolate, Bacillus badius using full factorial design. The studied culture conditions were agitation 

speed, inoculum size, temperature, incubation period and initial pH of media. 

2. Methods 

2.1. Microorganism and preparation of inoculum 

Bacillus badius isolated from Malaysia landfill soil was obtained from Laboratory of Faculty of 

Chemical & Natural Resources Engineering, Universiti Malaysia Pahang (UMP). The bacteria were 

maintained on nutrient agar plate. The isolation and screening on the xylanolytic ability were 

previously described by Masngut et al. [23].  

Inoculum of the Bacillus sp. was cultured by transferring a single loop of Bacillus sp. from nutrient 

agar plate into 100 mL broth medium containing (in g/L): glucose 10.0, peptone 10.0, ammonium 

sulphate 2.5, dipotassium phosphate 2.0 and magnesium sulphate 0.3, at initial media pH of 7.0. The 

mixture was incubated at 37 °C and agitated at 150 rpm. Culture with OD600 2.0 was used as the 

vegetative cells for inoculum source. 

2.2. Experimental setup 

The media contained (in g/L): xylan 10.0, peptone 10.0, ammonium sulphate 2.5, dipotassium 

phosphate 2.0 and magnesium sulphate 0.3. These media components were dissolved in buffer 

solutions. Three different buffer solutions according to desired pH of media were prepared. Sorensen’s 

phosphate buffer (pH 7), Tris−HCl buffer (pH 8) and Glycine−NaOH buffer (pH 9) were used for this 

study. Medium was sterilized at 121 °C for 15 min. 

The bacteria were grown in media supplemented with single carbon source which is corn core 

xylan. The submerged fermentation was carried out with a working volume of 50 mL in 250 mL of 

cotton plugged Erlenmeyer flasks. Fermentations were carried out according the designated run by 

Design-Expert®. Optical density at 600 nm and pH reading were taken at the beginning and the end of 

the fermentation. As fermentation ceased, the media were centrifuged at 10,000 rpm and 4 °C for 15 

min. The clear supernatant was collected and used as a source of crude enzyme for xylanase assay.
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2.3. Software used 

The experiment design of five parameters in xylanase production were generated and analyzed with 

the aid of Design-Expert® (Version 7.1.6, Stat-Ease, Inc., Minneapolis, MN) software. 

2.4. Design of experiment 

The 25 two-level full factorial design (FFD) was utilized to show the statistical significance of five 

parameters which were initial pH of media, incubation period, inoculum size, temperature, and 

agitation speed in the xylanase production by Bacillus species. Table 1 shows the designated 

parameters and levels to be employed in the experiments. In the experimental design, low and high 

factorial points were coded as −1 and +1, respectively, while the midpoint was coded as 0. The setting 

of range for parameters were based on the investigation of single parameters (screening process by 

OFAT method) as defined by Rosli et al. [24]. A total of 35 experimental runs were generated by the 

software as shown in table 2. The experiments were carried out in duplicates with xylanase activity 

(U/mL) as the response. 

 

Table 1. Parameters and coded value for factorial design. 

Parameter Code 
Level 

Unit 
−1 0 +1 

Initial pH of 

media 
A 7 8 9 pH 

Incubation period B 18 24 30 H 

Inoculum size C 5 10 15 % (v/v) 

Temperature D 35 37 40 °C 

Agitation speed E 100 150 200 rpm 

2.5. Assay of xylanase activity  

Estimation of xylanase activity was conducted by using recommended methodology by Kim et al. 

[25] with some modification. Activity of xylanase was determined by estimation of reducing sugars 

released from corn core xylan using dinitrosalicylic acid (DNS) reagent. A reaction mixture 

containing 0.2 mL of diluted crude enzyme, 0.5 mL of 1% xylan solution in 0.05 M phosphate 

buffer (pH 6.0) and 0.3 mL of phosphate buffer (pH 6.0) was incubated at 50 °C for 10 min. After 

that, the enzymatic reaction was stopped by adding 3 mL of DNS reagent, boiled in a capped glass 

tube at 100 °C for 5 min and quenched to room temperature for color stabilization. Subsequently, 

the absorbance was determined at 520 nm. All experimental works were performed in triplicates. A 

standard D-xylose plot was used as the reducing sugar expressed in this assay. One unit of xylanase 

activity was defined as the quantity of xylanase needed to release 1 µmol of xylose per minute under 

specified standard assay conditions, as in the equation 1, where m and c represent the slope and 

intercept from the D-xylose standard, respectively. 

 

𝑋𝑦𝑙𝑎𝑛𝑎𝑠𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (
𝑈

𝑚𝐿
) =

𝐹𝑖𝑛𝑎𝑙 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒−𝑐

𝑚
×

𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒

𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒
×

1

𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
×

1000 𝜇𝑔

1 𝑚𝑔
×

1 𝜇𝑚𝑜𝑙𝑒

150.13 𝜇𝑔
  

(1) 
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Table 2. Full factorial design experimental runs. 

Standard run 

order 

Parameter  

A B C D E 

1 −1 −1 −1 −1 −1 

2 +1 −1 −1 −1 −1 

3 −1 +1 −1 −1 −1 

4 +1 +1 −1 −1 −1 

5 −1 −1 +1 −1 −1 

6 +1 −1 +1 −1 −1 

7 −1 +1 +1 −1 −1 

8 +1 +1 +1 +1 −1 

9 −1 −1 −1 +1 −1 

10 +1 −1 −1 +1 −1 

11 −1 +1 −1 +1 −1 

12 +1 +1 −1 +1 −1 

13 −1 −1 +1 +1 −1 

14 +1 −1 +1 +1 −1 

15 −1 +1 +1 +1 −1 

16 +1 +1 +1 +1 −1 

17 −1 −1 −1 −1 +1 

18 +1 −1 −1 −1 +1 

19 −1 +1 −1 −1 +1 

20 +1 +1 −1 −1 +1 

21 −1 −1 +1 −1 +1 

22 +1 −1 +1 −1 +1 

23 −1 +1 +1 −1 +1 

24 +1 +1 +1 −1 +1 

25 −1 −1 −1 +1 +1 

26 +1 −1 −1 +1 +1 

27 −1 +1 −1 +1 +1 

28 +1 +1 −1 +1 +1 

29 −1 −1 +1 +1 +1 

30 +1 −1 +1 +1 +1 

31 −1 +1 +1 +1 +1 

32 +1 +1 +1 +1 +1 

33 0 0 0 0 0 

34 0 0 0 0 0 

35 0 0 0 0 0 
A, B, C, D and E are the initial pH of media, incubation period, inoculum size, temperature and agitation 

speed, respectively. The transformation selection is None 

3. Results and discussions 

3.1. Screening of parameters affecting xylanase production 

The screening result shows that the xylanase activity was ranged between 77.53 U/mL to 155.65 

U/mL during the production. The highest activity was recorded at 155.65±0.00 U/mL with 

fermentation condition at the initial media pH value of 8, incubation period of 24 h, inoculum size of 

10% (v/v), agitation speed of 150 rpm and temperature of 37 °C.  
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3.2. Model from two-level factorial 

The regression model in term of coded parameter and actual parameter are shown in equation 2 and 

equation 3, respectively. These equations can be used as models for predicting response at different 

operation conditions. 

 

Coded parameter: 

𝑌 =  100.36 −  6.33𝐴 +  1.17𝐵 −  1.53𝐶 +  5.72𝐷 +  4.90𝐸 −  5.80𝐴𝐷 +
 2.28𝐴𝐸 −  5.05𝐷𝐸   

(2) 

where Y is referred as response, which is the xylanase activity. The main effects: A, B, C, D and E are 

indicated the initial pH of media, incubation period, inoculum size, temperature and agitation speed, 

respectively. The interaction effects are referred to AD, AE and DE. 

 

Actual parameter: 

𝑋𝑦𝑙𝑎𝑛𝑎𝑠𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  −819.32445 +  73.78616 ×  𝑝𝐻 +  0.19502 ×
 𝑖𝑛𝑐𝑢𝑏𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 −  0.30626 ×  𝑖𝑛𝑜𝑐𝑢𝑙𝑢𝑚 𝑠𝑖𝑧𝑒 +  26.89954 ×  𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 +
 1.24768 ×  𝑎𝑔𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑 −  2.31884 ×  (𝑝𝐻 ×  𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)  +  0.045632 ×

 (𝑝𝐻 ×  𝑎𝑔𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑)  −  0.040394 ×  (𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ×  𝑎𝑔𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑)  

(3) 

3.3. Analysis of variance (ANOVA) 

Analysis of variance (ANOVA) computed by Design-Expert® software was applied for the 

determination of significant parameter and tabulated in table 3. The parameters that affect the xylanase 

production were screened at the confidence level of 95% on the basis of their effects. 

Table 3. ANOVA analysis for xylanase production. 

Source Mean square F-value p-value 

Model 659.16 56.33 < 0.0001 

A 1280.38 109.41 < 0.0001 

B 43.81 3.74 0.0644 

C 75.04 6.41 0.0180 

D 1048.54 89.60 < 0.0001 

E 767.66 65.60 < 0.0001 

AD 1075.40 91.90 < 0.0001 

AE 166.58 14.23 0.0009 

DE 815.85 69.72 < 0.0001 

Lack of Fit 8.82 0.20 0.9851 
A, B, C, D and E are the initial pH of media, incubation period, inoculum size, temperature and agitation 

speed, respectively 

 

The regression model was significant, accurate and well-fitted with the data of experiment, which 

indicated by the p-value that was less than 0.05. Model terms A (initial pH of media), C (inoculum 

size), D (temperature), E (agitation speed), AD (interaction between pH and temperature), AE 

(interaction between pH and agitation speed) and DE (interaction between temperature and agitation 

speed) were also significant. 

The R-Squared is the multiple correlation coefficients that measure the amount of variation about 

the mean of the model. The closer the value of R-Squared to One, the better the model is. The R-

Squared value was 0.9474 which is good considering that this model deals with biological component. 

The “Predicted R-Squared” of 0.8932 was in reasonable agreement with the “Adjusted R-Squared” of 

0.9306. 

The p-value for lack-of-fit that was at 0.9851 (shown in table 3) indicated that it was insignificant 

and thus showed that the model was valid. The lack-of-fit is defined as a measure of the failure of a 

model to represent domain experimental data at which data points were not included in the regression 
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model or variations in the models cannot be accounted by random error. If there is a significant lack-

of-fit, the response is not fitted. 

3.4. Main effect analysis 

Main effect analysis is one of the elements investigated in the factorial analysis. Pareto chart 

interpreted by the factorial analysis as shown in figure 1 illustrate the parameter that has statistically 

significant effect to the xylanase production. This figure shows two reference lines. The lower line 

represents the effect of t-value limit; used to consider statistically significant at 95% confidence level 

for each individual effect, while the upper line is called the Bonferroni limit. Any parameters that 

exceed the upper line are significant and any parameters below the lower  line are considered 

insignificant [26]. Therefore, from figure 1, the significant parameters; initial pH of media (A), 

temperature (D) and agitation speed (E) and significant interaction between parameters; AD, DE and 

AE exceed the Bonferroni-limit line. The remaining parameters which did not pass the Bonferroni-

limit line were insignificant to the xylanase production. 

 

Figure 1. Pareto chart; A, B, C, D and E are the initial pH of media, incubation period, inoculum size, 

temperature and agitation speed, respectively. Half-coloured bars represent manually selected 

parameters; fully-coloured bars represent unselected parameters.  

 

A study by Cunha et al. [9] on the xylanase production by Aspergillus foetidus via factorial design 

reported that the culture conditions were reduced from three parameters to only one significant 

parameter which was the pH. His study reported the highest xylanase activity at 13.98 U/mL. 

Meanwhile, study by Kaushala et al. [27] indicated that all investigated culture conditions were 

significance which were temperature, pH, inoculum size and substrate concentration. Their maximum 

xylanase activity by Bacillus sp. was recorded at 8.18 U/mL [27]. Besides, Tandon et al. [28] revealed 

that parameters such as pH, temperature and inoculum sizes were major significant culture conditions 

on xylanase production from Bacillus atropheaus (maximum xylanase activity: 85.16 U/g).  

Reference lines 
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Several screening of culture conditions on xylanase productions by another method called Placket-

Burman factorial experimental design were reported by Ingale et al. [29], Ali et al. [30] and 

Gowdhaman et al. [31]. A study by Ingale et al. [29] revealed that wheat bran, pH and temperature 

were identified as statistically significant parameters on xylanase production which the xylanase 

synthesis by Bacillus pumilus was at 557 U/g. Furthermore, a report from Ali et al. [30] indicated that 

14 parameters affecting the xylanase production were screened and they revealed that sucrose, xylan 

and CMC were the most influential culture conditions increasing the production. However, 

temperature parameter was reported to decrease the xylanase production [30]. The highest yield of 

xylanase by Bacillus subtilis was at 165 U/mL [30]. Other than that, a study by Gowdhaman et al. [31] 

published that, moisture content, nitrogen source, MgSO4.7H2O and substrate concentration were 

significant parameters from 9 parameters studied. Their maximum xylanase activity by Bacillus 

aerophilus was revealed at 45.9 U/gds.  

 The highest parameter contributing to the xylanase production was initial pH of media with the 

percentage contribution of 10.86%. The initial pH of the fermentation media may influence the cell 

growth and metabolic product formation. Moreover, the transport of various components across the 

cell membrane is also hugely impact by the initial pH of media [18]. 

The second highest parameter contributing to the xylanase production was temperature, which 

contributes 8.90%. The extracellular enzyme secretion was found to be affected by the incubation 

temperature, possibly by changing the physical properties of the cell membrane [18]. Nagar et al. [32] 

indicated that microorganisms have ability for high enzyme production at their optimum growth 

temperature. The optimum temperature recorded for the maximum growth of most Bacillus sp. for 

xylanase production ranging between 30 to 40 °C [15, 16, 33]. 

Another parameter that was considered during the production of xylanase was agitation speed with 

the percentage contribution of 6.51%. Agitation provides adequate mixing of the nutrients, promote 

good heat transfer, mass transfer, and enhancing dissolved oxygen in the fermentation medium [34]. 

Lower speed of agitation may cause insufficient oxygen contribution in the aerobic fermentation, cell 

clumping and improper mixing of media components, which affect the microbial growth. However, 

high speed of agitation may cause low production due to disruption of cells by shear forces and 

formation of vortex that caused poor mass transfer [34-36]. Therefore, it is essential to provide 

optimum agitation speed in the operation to obtain the maximum enzyme production.  

The correlation between parameters highlighted was tested and as the outcome, three interactions 

provided the significant effect towards xylanase production. The highest percentage of contribution 

was between initial pH of media and temperature with contribution of 9.12%. Meanwhile, the 

interaction between initial pH of media with temperature and interaction between temperature and 

agitation speed gave 1.41% and 6.92% contribution, respectively. The least contributing parameter 

was the incubation period and inoculum size, which only contributes as much as 0.37% and 0.64%, 

respectively. Since these parameters were the least affecting parameter in this study, the values should 

be maintained in further optimization experiment. 

3.5. Validation of the CCD model 

Three runs of validation experiments were performed based on the conditions suggested by Design-

Expert® analysis to validate the model. Comparison between the experimental results obtained and the 

predicted xylanase activity by the model was measured by their percentage of error. From the data in 

table 4, the calculated percentage error was between 0.17 and 3.29%.  

Table 4. Validation runs. 

Run Conditions 
Xylanase activity (U/mL) Error 

(%) Predicted Experimental 

1 pH 7, 30 h, 5% (v/v) inoculum, 40 °C, 100 rpm 123.34 123.10 0.17 

2 pH 7, 29.75 h, 5% (v/v) inoculum, 40 °C, 100 rpm 123.24 125.74 1.77 

3 pH 7, 29.33 h, 5% (v/v) inoculum, 40 °C, 100 rpm 123.05 127.70 3.29 
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This indicates the parameters that contribute to the xylanase production analyzed by the model are 

valid to be used. Therefore, three parameters (initial pH of media, temperature and agitation speed) 

were selected as significant parameters on xylanase production and will be furthered to the 

optimization study. 

Conclusion 

This study was designed and attempted to determine the significant parameters on the xylanase 

production via full factorial design (FFD). Using FFD, initial pH of media, incubation temperature and 

agitation speed were classified as the most influencing parameters on the production of xylanase with 

contribution of 10.86%, 8.90% and 6.51%, respectively. The least affecting parameters are inoculum 

size and incubation period with 0.64% and 0.37%, respectively. By application of the factorial design 

approach, the number of the experimental run can be minimized, and the selected significant 

parameters could be furthered for the optimization studies. 
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