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 Background: Software systems are getting larger in size and functionality. Exhaustive 
software testing is becoming nearly impossible with larger systems. Objective: 
Researchers are focusing on methods and strategies to optimize software testing process 
by applying computational based strategies as well as Artificial Intelligence (AI) based 
strategy. Results: This paper reviews the AI based strategies and its effectiveness in 
being solution for this optimization problem compared to computational based tools 
and strategies. Conclusion: write the main conclusion for your paper. 

 
INTRODUCTION 

 
 Design of Experiment (DOE) has been known to be effective for software configuration testing (Hoskins, 
D.S., 2005). Here, each component of the system is called a “factor,” and each test case is called an 
“experimental run.” An experimental run represents a test case to comprehend the system’s components, where 
each component is represented by its valid numeric value or configuration (Chan, F.T.,). When the system is 
tested exhaustively, the “full factorial” design of the experiment is used. However, when the system is large and 
the full factorial design is not desirable, the “fractional factorial” design is used to reduce the experimental run 
to a subset of the full factorial design. The fractional factorial design is used with systems of numeric factors; 
conversely, systems with categorical factors cannot use this method for experiments (Montgomery, D.C., 2006). 
The D-Optimality design, on the other hand, has been used with systems, including categorical factors, to reduce 
the experimental run by selecting a subset of runs from the full factorial. Instead of a purely random subsets 
selection of experimental runs from the full factorial design, the use of the D-Optimality design method in 
experiments leads to the production of experimental runs that are closer to full factorial design (Hoskins, D.S., 
2005). 
 Recently, an alternative design based on Covering Array (CA) has been used for the approximation of full 
factorial design (Hoskins, D.S., 2005). Compared with D-Optimality, empirical evidence demonstrates that CA 
produces better results than the full factorial approximation experiments (Hoskins, D.S., 2005; Hoskins, D.S., 
2004). In such a design, each t-set of factors (or system components) is covered by a set of experimental runs (at 
least once) to form a CA. Motivated by the effectiveness of CAs, a number of recent studies have focused on the 
construction of CAs for configuration testing using t-way strategies, where t signifies the interaction strength of 
the component. These strategies aim to optimally reduce the number of test cases (i.e., the number of rows in the 
CA) by ensuring that each test case greedily covers the required t-interactions (or t-set of factors) at least once 
for a typically large space of possible test values. Considering CA construction as an NP hard computational 
optimization problem (Yilmaz, C., 2004) many strategies based on AI have been developed in the literature 
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including Genetic Algorithm (GA) (Chen, X., 2009; Shiba, T., 2010), Ant Colony (ACA) (Chen, X., 2009; 
Wang, Z.Y., 2008; Cohen, M.B., 2008), Particle Swarm Optimization (PSO) (Ahmed, B.S., 2011, Ahmed, B.S. 
2012) and more. Several AI based strategies are being reviewed in this article. 
 
Literature: 
 This section of the article presents an overview of previous works on related field that provide the necessary 
background for the purpose of this review. 
 
A. Combinatorial Testing: 
 Today, software systems are built using multiple components. These components often have interactions 
amongst them to execute a system’s function. Often, system faults are caused by unexpected interactions 
amongst these components (Williams, A.W. and R.L. Probert, 2001). Exhaustive testing, i.e. testing all possible 
combinations is reasonable for a small system but the number of combinations grow larger with larger systems.  
 Exhaustive testing is impossible for large and complex systems due to factors including time, cost, and 
resource constraints. In that case, one approach used is to guarantee that we test all pairs of interactions or all n-
way interactions (Cohen et al, 2003). For this reason, there is a need for an intelligent sampling strategy that can 
select a subset of inputs as test data from an inherently large search space. Recently, the widespread use of t-way 
strategy (where t indicates the interaction strength) has provided a dramatic solution to such a problem. Dalal et 
al. (1999) present empirical results that shows the pairwise interactions testing finds large number of existing 
faults in a software system. Burr et al. (1998) provides more empirical results to support the effectiveness of this 
type of test coverage. If restricted to pairwise coverage, it is not guaranteed that faults that occur with three or 
four way interactions can be found (Cohen, M.B., 2003). 
 Many AI based search strategies (e.g. based on genetic algorithm (GA), Ant Colony algorithm (ACA), 
Particle Swarm Optimization, as well as Harmony Search Algorithm) have been developed to optimize CA 
construction.  
 
B. Covering Array: 
 Covering arrays (CA) are combinatorial designs useful in "pairwise testing" or "t-wise testing" of software 
system. Since exhaustive testing is impractical in most large systems, CA has been proposed and empirically 
studied for application to software interaction testing to find errors coming from all t-wise (or smaller) 
interactions of parameter values, whilst reducing the number of tests needed to be carried out (Hoskins, D.S., et 
al., 2005; Burr, K. and W. Young, 1998). CA has been introduced to complement Orthogonal Array (OA) 
limitations. Since, OA requires the component values to be uniform; it has been shown to be too restrictive 
(Wang, Z.Y., et al., 2008). CA emerged to overcome this limitation of OA (Shiba, T., et al., 2004). Compared 
with other methods, empirical evidence demonstrates that CA produces better results than full factorial 
approximation experiments (McCaffrey, 2010; Sthamer, H., 1995). These strategies aim to optimally reduce the 
number of test cases (i.e., the number of rows in the CA) by ensuring that each test case greedily covers the 
required t-interactions (or t-set of factors) at least once for a typically large space of possible test values.  
 A covering array, CA λ (N; t, k, v), is an N × k array for which every N × t sub array has the property that 
every t-tuple appears as a row at least λ times. Here t is the strength, k is the number of factors (degree), and v is 
the number of symbols for each factor (order). When λ is 1, every t-way interaction is covered at least once; this 
is the case of most interest, and we often omit λ when it is 1. The covering array is optimal if it contains the 
minimum possible number of rows. The size of such a covering array is the covering array number: 
CAN (t, k, v) 
 
C. Covering Array NP Optimization Problem: 
 CA construction has been considered as NP hard computational optimization problem in determining 
covering array number (Yilmaz, C., 2004; Torres-Jimenez, J., E. Rodriguez-Tello, 2010). Some other 
applications related to the CA construction problem arise in experimental design where it is absolutely necessary 
to test the interaction of all combinations of t parameters, and hence that all such selections are covered by 
columns of the array (Chateauneuf, M.A. 2002). 
 Addressing the problem of finding the covering array number in reasonable time has been the focus of 
much research. Amongst the approximate methods that have been developed for constructing covering arrays 
are recursive methods, algebraic methods, greedy methods and meta-heuristic methods. More and more 
researches are focused on developing AI techniques in this literature. This is because AI-based strategies 
naturally excel in dealing with combinatorial optimization problem and outperformed other strategies. AI-based 
strategies for constructing CA include Genetic Algorithm (GA), Ant Colony (ACA), Simulated Annealing (SA), 
Particle Swarm Optimization (PSO), Harmony Search Algorithm (HS) and more. 
 
AI Strategies In Ca Construction: 
A. Genetic Algorithm for Pairwise Test Sets (GAPTS)[8]: 
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 All the GA based strategies rely on chromosomes of individuals with fitness value which indicates the 
effectiveness in solving the problem.  Chromosomes with high fitness values used to produce offspring solutions 
which have the same or increased fitness value. Eventually, the fittest chromosomes will dominate the 
population when the low fitness level chromosomes are replaced by the offspring. 
 McCaffrey (2010) proposed Genetic Algorithm for Pairwise Test Sets (GAPTS) as a possible solution for 
generating pairwise test sets (Ahmed, B.S., 2011). GAPTS is tested against seven benchmark input sets, and the 
results are compared with other pairwise test generation algorithms. GAPTS uses the population size of 20. This 
size is relatively small compared to other genetic algorithms. GAPTS’s effectiveness did not increase with 
larger population size with respect to the final pairwise test set size.  
 GAPTS algorithm uses roulette wheel method in selecting the individuals as basis of offspring production. 
Being the common selection method in GA, roulette wheel selects individuals for GAPTS by the ratio of the 
fitness value to the sum of all fitness value in the population. For crossover, GAPTS uses single-point crossover 
method. To ensure each crossover operation produces two valid chromosome-solutions, GAPTS ensures the 
crossover point location fell on the test vector boundary. A fixed mutation rate of 0.001 used in GAPTS. Each 
gene is independently mutated to new legal gene value with probability equals to mutation rate. 
 

 
 
Fig. 1: Principal GAPTS Data Structure. 
 
 GAPTS uses two mechanisms to address the population stagnation effect. Form of elitism used to ensure 
chromosomes with highest fitness values are immune from removal in each generation. A form of immigration 
used to randomly generate chromosomes to be inserted for every 1000 generation. GAPTS algorithm is 
implemented in C# programming language by using published results as guidelines. McCaffery’s study focus on 
investigating effectiveness of GAPTS with respect to test set size. GAPTS test results then compared and 
analyzed with results from other pairwise test set generation tools. Promisingly, GAPTS produce comparable or 
better results than other tools in 39 out of 40 instances. However GAPTS algorithm required more generation 
time than other tools. GAPTS took significant time as the input size increased. McCaffrey mentioned in his 
study that time required by different algorithms is not a significant factor in most software testing scenarios. 
 
B. Ant Colony System Based Variable Strength Interaction Testing (ACS – VSIT) (Chen, X., 2009): 
 The VSIT proposed by Chen et al. is based on Ant Colony System (ACS), a promising variant of Ant 
Colony Optimization algorithm (ACO). ACS has advantage over other variants of ACO because its edge 
selection rule which provides the direct way to the balance between new edge exploration and accumulated 
knowledge about the problem. Besides that, the global updating rule is applied only to the best  solution 
available. ACS is also capable of applying local pheromone updating rule whilst ants construct a solution. 
 

 
 
Fig. 2: Graph representation of solution space. 
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 Figure 2 shows the solution space of the ACS used to generate a single test. ACS simulate the behavior of 
artificial ants crawling on this graph. Pheromone is a variable associated with each edge, readable and modified 
by those artificial ants. Chen et al. approach adopts one-test-a-time strategy. This strategy initializes and empty 
the test suite at first, then continues to generate a test, removes the interaction covered by the test and adds it to 
the test suite. The loop is terminated and test suite returned when all the interactions are covered.  
 This test suite generation can be summarized as follow. A set of ants are initially put on a node where each 
ant repeatedly apply the edge selection rule to build a solution. Both the heuristic information and the 
pheromone information will guide the rule. Local updating rule will be applied by the ants to modify the 
pheromone amount on the visited edges. Pheromone amount is modified again once all ants have built their 
solutions. This will be done by applying global updating rule. In Chen’s algorithm, heuristic values are decided 
by considering both the number of interactions and its corresponding strength. One-test-a-time strategy has a 
characteristic that, earlier generated tests have more interaction coverage. That affects the interaction coverage 
ability of tests which are generated later. Chen et al. adopts tests minimization algorithm to merge some of the 
tests without compromising the interaction coverage and therefore reduce the final test suite size.  
 The experimental run of the proposed algorithm is designed in Java. The inputs are obtained from a 
previous research by Cohen, which is based on Simulated Annealing (SA). The best results out of 20 
experimental runs then compared with Cohen’s result and some other greedy algorithms such as Density, 
ParaOrder and tools such as PICT and TVG. Chen’s results analyze thoroughly in comparison with all these 
previous research results. ACS based VSIT nearly resemble Cohen’s SA approach results and outperformed the 
rest of the methods and tools. Although, Cohen’s method is proven to yield better results of constructing CA in 
most of the cases, ACS managed to produce similar results with Cohen’s method. Chen et al. even records the 
time taken for ACS VSIT to generate those CA, which put Chen’s research in between Cohen’s algorithm and 
the other algorithms and tools that have been analyzed in terms of performance. 
 
C. Particle Swarm Test Generator(PSTG) (Ahmed, B.S., 2011; Ahmed, B.S., 2012): 
 PSTG is a Particle Swarm Optimization (PSO) based strategy (Ahmed et al., 2012). PSO simulates the 
swarm behavior of flocks of birds or schools of fish. Just like previous strategy, PSO also includes local and 
global searches to manipulate candidate solutions. Each candidate solutions are known as particle and the whole 
population is called as a swarm. By recording information about its movement, each particle works in the search 
space to find a better solution. This information is related to particle of interest, which includes velocity, current 
position, personal best, local best and global best. PSTG is composed of two main algorithms; a Combination 
Generator Algorithm and a Test Suite Generator Algorithm.  
 PSTG combination generator algorithm generates the parameters combinations and the values for each 
parameter combination. Parameters generated in binary, where 0 indicates exclusion and 1 indicates inclusion of 
the particular parameter. Interaction elements are generated accordingly by using those parameter combinations. 
This algorithm then store generated interaction element in an indexed list. Index of each group of the interaction 
elements is then recorded in indexing record to facilitate searching.  
 PSTG test suite generator algorithm adopts the discrete version of PSO. Swarm search space initialized as a 
D-dimensional vector, where each dimension represents a parameter, and contains integer numbers between 0 
and number of values of the ith parameter. PSTG also initializes the velocity of each particle. During iteration, 
particle’s velocity is updated to its current position. Velocity will be rounded to the nearest integer by PSTG in 
case where non-integer velocities are produced. PSTG adopts simplest topology as particles in a swarm matrix 
array choose the neighbors next to each other.  
 Ahmed et al. compared their experimental results with existing AI based strategies and computational based 
strategy. By analyzing results from their work, we can observe GA and ACA perform slightly better than 
AETG, mAETG and PSTG. Due to large search space, SA outperformed all other strategies in most cases. They 
extend their experiment with PSTG by comparing with computational based strategies and tools such as IPOG, 
WHITCH, Jenny, TConfig and TVG. PSTG outperforms these computational strategies in most of the 
configurations. Even when PSTG is not at its best, the test size still fall within the acceptable range. PSTG is 
proven to be competitive with other strategies in most of the cases. 
 
D. Enhanced leader PSO (ELPSO)( Rezaee Jordehi, A., 2015): 
 ELPSO is another variant of PSO designed for solving global optimization problem. All PSO based 
strategies suffers from premature convergence. When solving complex optimization problem, these PSO 
strategies often get trapped in local optima. The weak exploration capability of PSO algorithms causes problems 
in optimization, especially multimodal problems. 
 ELPSO is developed to have a strong explorative and exploitative capability. In conventional PSO, the 
particles may converge prematurely without exploring the search space because they are attracted to swarm 
leader. Also in PSO, there is no mechanism to jumping out from local optima, if the particle is trapped in local 
optimum. ELPSO is designed to solve this two common problems. Main characteristic of ELPSO is to enhance 
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the swarm leader in every iteration of search. In ELPSO, Swarm leader will undergo a five-staged successive 
mutation in each iteration. At the end of each mutation, new swarm leader will replace current swarm leader if it 
has higher fitness value than the current leader. The premature convergence problem is expected to be mitigated 
since different portion of search space is explored to find the best swarm leader in each iteration. In successive 
mutation, the swarm leader is only replaced by the better leader. This ensures the whole swarm is attracted 
towards the region that produced the swarm leader with the higher fitness. This region has more good objective 
values and leads to achievement of more quality solution. 
 Five-staged mutations in ELPSO are classified in two groups; short jump mutation and long jump mutation. 
Whilst short jump mutations help in avoiding premature convergence, high jump mutations ensure the particles 
are not trapped in local optima. These long jump mutations play role as efficient jump-out mechanism for 
particles to jump out of the local optima. In ELPSO, mutations in stage 1, 2 and 3 are known as long jump 
mutations to increase the particles capability to jump out of local optimum after stagnation. 
 In Jordehi’s experiment, ELPSO is validated by comparing with other meta-heuristic optimization 
algorithms such as conventional PSO, firefly swarm optimization (FSO),   gravitational search algorithm (GSA), 
brainstorm optimization (BSOA), artificial bee colony (ABC), HS and GA. The results, approve the 
outperformance of ELPSO in terms of accuracy, convergence rate and scalability.  
 
Conclusion: 
 All the reviewed strategies show the effectiveness of AI based strategies in CA construction. McCaffery’s 
GAPTS is proven to produce better or comparable results than other computational based tools in 39 out of 40 
instances. Whilst, ACS-VSIT produces comparable results with Cohen’s SA [21] algorithm and outperformed 
computational based tools as similar to GAPTS. PSTG comparable results with other AI based algorithms and 
once again produces better results than computational based tools.  
 Based on these, we can conclude that AI based strategies outperformed computational based tools and 
strategies in dealing with combinatorial optimization problem. AI based strategies have been proven as better 
solutions in finding optimized CA number in reasonable time compared to computational based strategies.  
 However, existing works prove that, major drawbacks of these algorithms are: long generation time due to 
repeated loop that try to find the best and near optimal solution and these algorithms only focus on sequence-
less CA. 
 This review will be helpful for researchers to derive or manipulate new variant from existing artificial 
intelligence strategies to overcome the common limitations and drawbacks in generating covering arrays. 
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