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MATERIALS ENGINEERING | RESEARCH ARTICLE

Evaluation of hard capsule application from
seaweed: Gum Arabic-Kappa carrageenan
biocomposite films
Fatmawati Adam1,2*, Jurida Jamaludin1, Siti Hana Abu Bakar1, Ruwaida Abdul Rasid1 and
Zulkafli Hassan1

Abstract: At present, plant-based hard capsule such as hydroxypropyl methylcel-
lulose (HPMC) has a high demand in drug delivery application but the production
process is expensive with limited reactant supply. κ-carrageenan has been used as a
gelling agent in HPMC hard capsule production. This study aims to develop gum
Arabic (GA)-κ-carrageenan biocomposite, a potential material to produce hard
capsule. The GA-κ-carrageenan biocomposite films were prepared at different κ-
carrageenan weight ratios of 33% (GC33), 50% (GC50) and 67% (GC67) at constant
concentration of polyethylene glycol and alginate. The control films of GA film and
κ-carrageenan film were compared. The film and hard capsule formed from GC67
shows the highest tensile strength and capsule loop of 36.21 MPa and 34.11 N,
respectively at 1058 mPa.s solution viscosity at 300 rpm shear rate. The hard
capsule disintegrated at 7.30 min. The addition of GA is compatible to make the
hard capsule surface smoother. Thus, this biocomposite has the potential to be
developed for future hard capsule.
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1. Introduction
Hard capsule is a versatile oral drug delivery, which is mainly from gelatin source using the dip-
coated technology. Gelatin can be porcine or bovine source (Karim & Bhat, 2008; Morrison et al.,
1999; Yap & Gam, 2019). However, an awareness issue in the gelatin source and its status for
some consumers such as Bovine Spongiform Encephalopathy (BSE) and religious dietary (Mutalib
et al., 2015; Sha et al., 2018). All gelatin hard capsules are required to have the certification of BSE
free (Sherry Ku et al., 2010). Many development works were conducted to replace of the gelatin-
based hard capsule with plant-based hard capsule to resolve this issue. Consuming the plant-
based hard capsule has the benefit to reduce the risk of BSE infection in human. Exploration of
new plant material with strong cellulosic fiber from different plant materials such as Dracanea
reflexa (Manimaran et al., 2019), Tridax procumbens (Vijay et al., 2019), Kenaf fiber (Khan et al.,
2019) in the development of hard capsule is progressing. In their work, the extracted fibers
demonstrated good tensile property as reinforced biocomposite due to its cellulose and hemi
cellulose contents.

A new plant-based hard capsule was investigated from polysaccharide sources such as
Hydroxypropyl methylcellulose (HPMC) (Al-Tabakha, 2010; Sherry Ku et al., 2010), modified
starches (Bae et al., 2008; Ezan et al., 2017), pullulan (Sakata & Otsuka, 2009) and carrageenan
(Abu Bakar & Adam, 2017; Hamdan et al., 2018) as the alternative source of material have also
been done. As hard capsule, HPMC has the problem of large gap between the body and cap part,
which causes leakage of the encapsulated drug (Sherry Ku et al., 2010). Starch hard capsules are
usually produced by blending starch with other gelling agents such as HPMC (Zhang et al., 2013)
and carrageenan (Bae et al., 2008) to promote gel formation. Pullulan hard capsule on the other
hand has a lower mechanical strength (Vuddanda et al., 2017).

Seaweed maybe used as food packaging for example, a thin sheet of dry seaweed is an excellent
sushi wrapper (Børresen, 2014). The food wrapping application can be further explored and developed
from seaweed such as hard and soft capsule application for pharmaceutical product. Red seaweed
Kappa carrageenan (κ) extract has beenwidely applied as a gelling agent in gelatin-free hard capsules
production (He et al., 2017). The extracts may also be found from green seaweeds such as ulvans,
brown seaweeds such as alginates and red seaweeds such as carrageenans (Zia et al., 2016). Seaweed
has a valuable source of biological active compound (Chye et al., 2017).

κ- carrageenan is extracted from red seaweed mainly comes from two different species
which are Eucheuma cottonii and Kappaphycus alvarezii extract (Jiao et al., 2011). κ-carra-
geenan consists of D-galactose residues linked alternately to 3-linked-β-D-galactopyranose
and 4-linked-β-D-galactopyranose units (Prajapati et al., 2014). κ-carrageenan has one sul-
fate group per disaccharide repeating unit with 20% of ester-sulfate content and an average
relative molecular mass above 100 kDa (Zia et al., 2016). Due to its excellent gelling ability, κ-
carrageenan is commonly used as the gelling agent in the hard capsule production (Li, Ni, et
al., 2014). Some studies were conducted by incorporating κ-carrageenan with other compo-
site of natural polysaccharides such as chitosan, alginates and grapefruit seed to produce
edible films (Paula et al., 2015; Tavassoli-Kafrani et al., 2016) and biodegradable food packa-
ging (Kanmani & Rhim, 2014). An interaction between carrageenan and isovanillin was
modeled to understand their molecule electronic surface potential and enthalpy in the
physical crosslinking in the biocomposite for the hard capsule application. Hydroxyl (isova-
nillin)-sulfate (carrageenan) and aldehyde (isovanillin)-hydroxyl (carrageenan) points demon-
strated strong hydrogen bonds at lengths of 1.74–1.79 Å (Adam et al., 2020).
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Gum Arabic (GA) consists of galactose (40% of residues), arabinose (24%), rhamnose (13%) and
glucuronic acid (23%) (Espinosa-andrews et al., 2007). It was found in plant based as a polysac-
charide acid rich in calcium, magnesium, and potassium salts (Islam et al., 1997). GA has a
complex structure and long chain with more than one different repeating monosaccharide units
(Lopez-Torrez et al., 2015). Besides, it was used as an emulsifier (Y. Liu et al., 2014), tablet-coating
agent (Lu et al., 2003) and as crosslinker in scaffold development (Sarika et al., 2014). GA is also
suitable for edible film formation. However, it must be mixed with other materials such as protein
(Li, Zhu, et al., 2014), starch (Apandi et al., 2013), and alginate (Tsai et al., 2017) to form edible film.
This is because pure GA film exhibits brittleness problem (Jamaludin et al., 2017) and can crack
easily. Thus, this work is to investigate the GA and semi refined κ-carrageenan (SRC) biocomposite
film to improve the morphology and mechanical properties of the hard capsules, to seek its
potential in the application of hard capsule.

2. Materials and methods

2.1. Materials
GA used was supplied by TIC Gum Co., Ltd. SRC was purchased from Takara Sdn Bhd, Sabah.
Alginate and Polyethylene glycol (PEG 400) as plasticizer were purchased from Sigma Aldrich,
Malaysia.

2.2. Raw material characterizations
Elemental composition and molecular weight analysis carbon, hydrogen, nitrogen, and sulfur
(CHNS) elemental composition of GA and SRC was determined using fully automated PerkinElmer
2400 Series II CHNS/O Elemental Analyzer. About 2 mg were weighed in clean containers and
introduced into the analyzer. The samples undergo oxidative decomposition and the subsequent
reduction of nitrogen and sulfur oxides with the production of elemental gases as the final
products: carbon dioxide (CO2), water (H2O), elemental nitrogen (N2), and sulfur dioxide (SO2).
The concentration of each element in the sample was calculated automatically using the software
supplied with the CHNS/O analyzer. The elemental composition of a sample is expressed in terms
of the weight percent of each element in the compound.

Inductively Coupled Plasma with Mass Spectrometry (ICP-MS) on raw material samples using
ICP-MS Spectrometer; Brand Agilent, Model 7500A. Due to the sample is in powder form, the
sample preparation was carried out by using Ultrawave Digestor Instrument (Single Reaction
Chamber Microwave Digestion System). Small amount (< 0.5 g) of sample were digested with
6 mL of nitric acid and 2 mL hydrogen peroxide in closed Teflon vessels. The temperature and
pressure were controlled automatically using a computer interface. Once the digestion is com-
pleted, the samples were allowed to cool, and then diluted with high-purity water and ready for
the ICP-MS analysis.

The molecular weight of GA and SRC was determined using gel permeation chromatography,
GPC- Agilent 1260 A. The solution was prepared by dissolving 0.5 g of sample in 100 mL of ultra-
pure water and stirred for an overnight to ensure that the sample was fully dissolved. The test
solution was filtered using 0.45 mm nylon filter (Whatman, 13 mm). The mobile phase was water
at a flow rate of 1 mL min−1.

2.3. Fourier transform infrared (FTIR) spectroscopy
FTIR spectra of GA, SRC, and biocomposite films were recorded on Fourier Transform Infrared
Spectroscopy (FTIR) (Thermo Nicolet). About 4 mg of the dried samples were mixed with KBr
powder (with the ratio of 1:10). Hydraulic press was used to form the sample pellets under
500 kg/cm2 pressure and placed on the sample disc. FTIR spectra were collected with 32 scans,
and the spectral range is between 400 and 4000 cm−1 with 1 cm−1 interval.

Adam et al., Cogent Engineering (2020), 7: 1765682
https://doi.org/10.1080/23311916.2020.1765682

Page 3 of 17



2.4. Preparation of biocomposite solutions and biocomposite films
The biocomposite solutions were prepared by dissolving 6 g GA powder in 200 mL deionized water
and heated at 70 °C under continuous stirring for 1 h. The SRC was added into the GA solution and
mixing continued for another 2 h. Then, 0.5 g alginate and 1.5 g PEG 400 were added into the
biocomposite solution and the solution was continuously stirred for 1 h. The GA and SRC biocom-
posite solutions were prepared to obtain a biocomposite solution with different mass ratios of SRC
to GA, which were 33% w/w (GC33), 50% w/w (GC50) and 67% w/w (GC67), respectively. Hard
capsules were prepared by dipping stainless steel mold pins (size 1) into the solutions and then
drying at 37 °C. The hard capsules samples were labeled with GC33, G50, and GC67 for SRC
composition of 33, 50, and 67% w/w. Controlled films were also prepared similar under similar
conditions.

2.5. Solution Viscosity measurement
Viscosity of the solution was measured by a rotational rheometer equipped with LCT 25 4000010
geometry. For each tests, 16.5 mL of solution was poured into the Brookfield rheometer (Rheo
3000, USA) sample compartment of cup and bob type prior to the measurement. The sample then
was analyzed using a programmed speed of 300 revolution per minute (rpm) of shear rate with
100 MPoints at constants 40 °C triplicate.

2.6. Hard capsule and film characterization

2.6.1. Mechanical properties of hard capsule and films
Tensile strength. The tensile strength of films was determined using Electronic Universal Testing
Machine (VEW 260E, Victor, Malaysia), with 500 N load cell. The method was in accordance to ASTM
D882-12 and crosshead speed of 50 mm min−1. Samples were cut into strip (20 × 100 mm) strips
and thickness of films was determined as average of five random positions of the film samples
using a Vernier callipers. Tensile machine was operated with initial grip separation of 80 mm, and
crosshead speed of 50 mm/min (Hamdan et al., 2018).

Capsule loop. The capsule loop test was conducted by using CT3 Texture Analyzer (Brookfield,
USA) with a capsule loop tensile fixture (TA-CLT) and was loaded with a 50 kg load cell. The capsule
was mounted onto the pair of rods. The probe travels upwards with target value of 5.0 mm at a
speed of 0.50 mm/s until the hard capsules were pulled apart and the applied force was recorded.

2.6.2. Thermal properties. Differential scanning calorimetry (DSC) measurements were carried out
by a Q2000 DSC (TA instrument, USA). Approximately 3 mg of film samples were weighed into
aluminum pan, and the thermal scan was run from 30 to 350 °C at a heating rate of 10 °C/min. Dry
nitrogen was used as the purge gas at a flow rate of 50 mL/min. Thermal data were determined at
least by triplicate on each sample. Meanwhile thermo-gravimetric analysis (TGA) was performed on
a TGA-1 (Mettler Toledo Instrument) from room temperature to 600 °C with a heating rate of 10 °C/
min under a nitrogen atmosphere.

2.6.3. X-ray diffraction (XRD). XRD patterns of GA film, SRC film and biocomposite films were
measured by a Rigaku Miniflex X-Ray Diffractometer equipped with a multichannel detector by
the use of a Cu Ka1(k = 0.15406 nm) monochromatic X-ray beam. All the samples were measured
within 2θ range of 3 to 60 degrees.

2.6.4. Surface morphologies. Scanning Electron Microscopy (SEM) was performed on hard capsule
samples to study its surface morphology. It was conducted at an accelerating voltage of 10 kV on
CARL ZEISS EVO50 Scanning Electron Microscope. The hard capsule samples were coated with a
thin platinum layer before measurement to avoid charging effect due to electron accumulation for
clear scanning.
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2.6.5. Disintegration test. The disintegration test (DT) was carried out using the Distek Evolution
6100 (Belgium), at 50 rpm paddle speed with 37 ± 2 °C of 600 mL of deionized water accordance to
U.S Pharmacopeia standard. Hard capsule was filled with lactose as placebo and assistance in the
disintegration process. Disintegration time was recorded once lactose was released into the water.

2.7. One-way analysis of variance (ANOVA)
The Analysis of variance (ANOVA) was used to calculate the confidence level p-value with the
testing null analysis (Ho) and alternative analysis (Hi) for solution viscosity, hard capsule thickness,
capsule loop, tensile strength, and disintegration time of GC33, GC50, and GC67 sample formula-
tion. The level of significance α = 0.05 was set for comparison of rejection value.

3. Results and discussion

3.1. Raw material characterizations
The elemental analysis shows the C, H, N, S compositions of GA are 40.693% (C), 5.927% (H),
0.100% (N), and 0.351% (S). The molecular weight of GA is 102.631 kDa at 8.6 min using gel
permeation chromatography. The molecular weight of SRC was not determined because there was
no any peak detected by the GPC analyzer. This may be due to the prepared concentration of SRC
solution was too low during the measurement. Weight composition of 31.23% (C), 6.18% (H),
1.033% (N) and 2.483% (S) were analyzed from SRC. ICPMS analysis characterized the inorganic
chemical elements such as sodium, and potassium of GA and SRC. GA has the highest amount of
sodium and the lowest of potassium, which are 455,569.28 mg/L and 149.57 mg/L respectively,
while SRC has less potassium at 65,909.09 mg/L and sodium at lower 4504.70 mg/L. The higher
content of sodium in the GA contributes to its high solubility in water compare to SRC. Solubility of
material decreased with the increase of the potassium content (Rhim, 2012). This is because the
presence of potassium ions in SRC solution contributes to the double helix formation to form gel or
viscous solution (Campo et al., 2009).

Fourier Transform Infrared Spectroscopy (FTIR) was carried out to identify and confirm the
functional group in GA and SRC (Figure 1). FTIR trend shows a broadband range from 3600 to
3000 cm−1, which represents the stretch of bonded hydroxyl (OH) (Selvakumaran & Muhamad,
2015). A band range of 3200–3600 cm−1 is attributed to the stretching of hydroxyl group of
carrageenan and water (Husna et al., 2019). Band in the range of 3000 to 2700 cm−1 and 1800
to 1500 cm−1 describes the stretching of C-H bonds and the carbonyl groups (C = O), respectively
(Nayak et al., 2012). κ-carrageenan has the finger-print region peaks at 1228, 925 and 846 cm−1,

Figure 1. FTIR trends of gum
Arabic (GA) and semi refined κ-
carrageenan (SRC).
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which attributed to the ester sulfate group (O = S = O), 3,6-anhydrogalactose (C-O-C), and
galactose-4-sulfate (C-O-S), respectively (Ili Balqis et al., 2017; Sun et al., 2018). The peak at
1066 cm−1 was assigned to the stretch of the C-O-C glycosidic linkage. Abad et al. (2003) has
reported that glycosidic linkage in κ-carrageenan can be found at band range of 1010 to
1080 cm−1. The glucuronic acids of GA has specific vibrations at 1450 and 1363 cm−1 due to the
C = O symmetric stretching and—OH bending, respectively (Bajpai & Kumari, 2015). Meanwhile, a
broad band at around 1029 cm−1 represents the alkene C-H bend. The hydrogen bonding donor
and acceptor of functional groups in both GA and SRC can improve the uniformity and compat-
ibility of GA-SRC mixture to form the interaction in biocomposite film.

3.2. GA and SRC biocomposite films and hard capsule
In Figure 2, the increased amount of SRC from 33 to 67% has increased the solution viscosity to
1058 mPa.s at 300 rpm of shear rate at probability of rejection p-value = 0.0043 using level of
significance α = 0.05. The higher viscosity increased the hard capsule thickness up to 0.115 mm at
probability of rejection p-value = 0.0515. The incorporation of SRC did change the hard capsule
thickness, but not significantly. A similar result was observed with other composite film such as
carrageenan/grapefruit seed extract film (Kanmani & Rhim, 2014). The addition of 67% of SRC in
the formulation produced a desirable thickness of the hard capsule. Based on this viscosity result,
the solution with viscosity value above 600 mPa.s lead to the ability of the dipping bar to be dipped
into the solution and formed the hard capsule. A simple test has been conducted to investigate the
trend and behavior of aqueous carrageenan and GA solutions also the both mixture. It was
observed that aqueous carrageenan (for CF sample) and gum arabic-κ-carrageenan (for GC33,
GC50, GC67) demonstrated a non-Newtonian fluid trend. For aqueous GA solution (for GF sample),
the viscosity reading could not be measured (0 mPa.s) for shear rate from 0 to 200 s−1. This unique
property of GA solution is due to the presence of Arabinogalactan molecule in each GA molecule
structure (Da Silva et al., 2015). The high water solubility and low viscosity properties of GA solution
results in a high demand of GA as stabilizer in the food and drinks industry applications (Stephen &
Churms, 2006). The addition of SRC in the GA solution showed an improvement in its rheology
property, which are its solution viscosity and gelling properties.

Figure 3 shows the tensile strength and capsule loop results of the films and hard capsules,
respectively. Tensile strength of SRC film is 25.51 MPa. However, the tensile strength of GA film was
not able to be measured due to the brittleness of the formed film. The increased of the SRC in the
GA solution showed the increased of the tensile strength, the capsule loop, and low brittleness of
the biocomposite films. The tensile strength of GC33, GC50, and GC67 are 23.70 MPa, 27.12 MPa,
and 36.21 MPa, respectively, while the capsule loop of GC33, GC50, and GC67 are 7.93 N, 19.83 N
and 34.11 N, respectively. Both tensile strength and capsule loop have p-value of 0.00125 and
0.000072 values, respectively, at α = 0.05 from ANOVA test. Similar trend of the tensile strength

Figure 2. Solution viscosity and
hard capsule thickness at the
different of SRC concentration.

Solution viscosity and hard
capsule thickness values are
presented as mean values ±
standard deviation with P-
value are 0.0043 and 0.0515,
respectively.
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was observed due to the effect of the increment in the material concentration has also been
reported in manufacturing of agar-based film (Arham et al., 2016). The increased of the tensile
strength is probably due to the interaction formation between two material components of GA and
SRC film in the biocomposite film production.

3.3. Thermal properties of mixed hard capsules
Figure 4 shows the differential scanning calorimeter (DSC) thermogram of GF, CF, and the hard
capsules with the addition of SRC, alginate and PEG 400 which are GC33, GC50, and GC67. The first
exothermic peak may be associated with SRC degradation as demonstrated by Ili Balqis et al.
(2017). Meanwhile the second exothermic peak is contributed by the GA decomposition at a higher

Figure 3. Capsule loop and ten-
sile strength of GC33, GC50 and
GC67.

Capsule loop and tensile
strength values are presented
as mean values ± standard
deviation with P-value are
0.000072 and 0.00125,
respectively.

Figure 4. DSC trend of GF, C33,
GC50, GC67 and CF.
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temperature, which is above 300 ºC as reported similarly by Zohuriaan and Shokrolahi (2004). The
changes of endothermic and exothermic transition trends of biocomposites were observed with
the increased of the SRC weight percentage. The broad endothermic peak temperatures of GC50
and GC67 appeared clearly at 94.24 °C and 103.45 °C, respectively, as a similar trend of sample CF
endothermic peak. These broad endothermic transitions correspond to the water desorption due to
the hydrophilic nature of SRC (J. Liu et al., 2018). The DSC trend for GF demonstrated a broad
exothermic peak at 302.70 °C. The exothermic peak temperature of GC67 shifted to 202.63 °C
when the biocomposite was added up to 67% w/w of SRC. The exothermic peak of GC67 sample
was found to be less sharp than CF. The change in the thermogram trend may be caused by the
changes of the molecule structures in the GA and SRC biocomposite films.

Figure 5. A) TGA and b) DTG
trends of GF, GC33, GC50, GC67
and CF.
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Thermal stability of biocomposite films from two polysaccharides investigated using TGA ther-
mogram and DTG curves as shown in Figure 5. TGA thermogram shows a weight-decreasing
pattern of the biocomposite films. DTG curve represents the peak at temperature with the max-
imum weight loss during thermal biocomposite film decomposition (Tmax). Thermal analyses show
two significant thermal events for all the formulations (Figure 5a). The first stage of weight loss
occurred at around 100 °C, which represents water evaporation, and bonded water through
hydrogen bonds (Martins et al., 2012). The second stage at 200 to 450 °C with maximum peaks
in the DTG curve (Figure 5b) is related to polysaccharide decomposition (Zohuriaan & Shokrolahi,
2004).

TGA trends of all samples demonstrate a similar trend except for GC67 and CF. Three samples
including GF, GC33, and GC50 began to decompose rapidly at 200 ºC and completed at approxi-
mately 450 ºC with the final constant residue in the range of 24.21 to 25.95%. The weight loss
during the thermal degradation of GF, GC33, and GC50 were 60.92, 60.98, and 60.99%, respec-
tively. The lowest weight loss during the major film decomposition of GC67 was 53.69% with the
final residue of about 30.79%. The DTG trend shows control sample, GF has the highest Tmax, which
is 307.71 °C. In contrast, GC67 has the lowest Tmax value, which is 217.87 °C. After the incorpora-
tion of SRC, decomposition temperature was slightly decreased. The Tmax of the biocomposites and
control films from DTG curves, were 302.25, 285.27, and 238.79 °C for GC33, GC50, and CF,
respectively. These results imply that the addition of SRC altered the thermal stability of biocom-
posite films, whereby biocomposite film become less stable compared to the GF sample.

3.4. Solid state analysis
Figure 6 shows the XRD graphs of the individual components of GA film, SRC film and biocomposite
films. The results show that GF has different structures when compared to CF and biocomposite
films. The XRD pattern for GF shows a broad peak with two narrow peaks at 2θ = 20.80º and 23.18°.
These two peaks indicate that GA is partially crystalline in nature with dominant amorphous phase
(Kaith et al., 2015). XRD pattern for CF illustrates the first broad band, and the second minor peak
was observed at 2θ from 20° to 30°. It may be attributed to the κ-carrageenan-based film as
demonstrated in previous studies (Azizi et al., 2017; Rhim & Wang, 2014; Selvakumaran &
Muhamad, 2015). The presence of sharp peak at 2θ = 29.80° is probably due to inorganic salts
such as potassium chloride (KCl) present in the κ-carrageenan films (Martins et al., 2012) and it is
in agreement with the ICPMS analysis.

Figure 6. XRD pattern of gum
Arabic film, semi refined κ-car-
rageenan film, and biocompo-
site films.
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A change in XRD pattern of biocomposite films was observed when SRC was added. The two
sharp peaks at 2θ of 20.80º and 23.18° disappeared. The broad amorphous band and a narrow
peak were observed in the biocomposites XRD patterns. XRD patterns of all biocomposites demon-
strated a broad peak at 23° and a narrow peak in the range of 2θ from 29.70° to 29.80º. It has
followed some low diffraction peaks intensity at 2θ ranging from 47.80° to 48.88º. Characteristic
peaks of GF completely changed due to the rearrangement of the polymer network and inter-
rupted the interactions between the polymers. This suggests the formation of new biocomposite of
GA and κ-carrageenan molecules as in agreement in the FTIR analysis.

3.5. FTIR analysis of samples
Figure 7 shows the FTIR spectra of GF, GC33, GC50, GC67 and CF films. The bands at 1605 and
1743 cm−1 describe the stretching of the C = O in the D-galactose of GA and κ-carrageenan (Sun et
al., 2018). The C-O stretching is from 1037 cm−1 (primary alcohol) to 1040 cm−1 (secondary alcohol)
in κ-carrageenan and GA. Incorporation of SRC in biocomposite films, some new bands were
observed between 400 cm −1 to 1034 cm−1 and 1240 cm −1 in the FTIR spectra of GC33, GC50
and GC67 biocomposite films. These bands are corresponding to sulfate ester, glycosidic linkages,
3,6-anhydrogalactose and galactose-4-sulfate ester in κ-carrageenan (Ili Balqis et al., 2017). The
changes of polymer structures with the addition of SRC affected the mechanical properties of
biocomposite films. Interaction between the functional groups of κ-carrageenan and GA may be
due to van der Waals forces and hydrogen bonding. The changing of peak intensity and broadness
of region 3200–3600 cm−1 for OH, 1635 cm −1 for NH and 1700–1800 cm−1 for C = O regions could
be observed. They are the regions are the region of hydrogen bonding donor and acceptors. This
suggests the hydrogen bonding formation in the biocomposite involved the hydrogen bond donor
and acceptor in GA and SRC.

3.6. Surface morphology
Table 1 presents the surface morphologies and hard capsule produces from the different weight
ratios. From Table 1, GC50 and GC67 hard capsules show a rigid shape and translucent in
appearance. GC33 is a flexible or stiff film when SRC amount is less. The surface morphology of
GA film shows the smooth surface with some cracks. The presence of cracks on the GA film surface
morphology is due to its brittleness property. In the biocomposite formulation, the interaction of
more than two components and the polymer chain arrangement in the film matrix can influence
the morphology result (Iahnke et al., 2015). The smooth surface without any phase separation on
the biocomposite film shows the compatibility between the two materials when they were mixed
uniformly (Zhang et al., 2013). In Table 1, the SRC film surface morphology suggests a rough
surface due to its entanglement behavior. The CF film became entangled due to the water loss
rapidly from CF film after the drying process. The addition of SRC into the GA film has changed the

Figure 7. FTIR spectra of GF,
GC33, GC50, GC67, and CF.
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smooth surface to be a rough surface. In Table 1, it was determined that the samples started to
disintegrate is less than 7.30 min through DT at probability of rejection p-value = 0.0493 using level
of significance α = 0.05. In comparison to Hamdan et al. (2018), the capsule carrageenan-cellulose
nanocrystal started to disintegrate in less than 7.7 min. Addition of GA was able to reduce the
disintegration time of carrageenan polymer of hard capsule biocomposite as GA is more soluble in
water in comparison to carrageenan in water.

4. Conclusions
This study concludes that GA and SRC biocomposite is suitable and has the potential for the hard
capsule application. The compatibility of GA and SRC composite was demonstrated by the incre-
ment of the viscosity solution at 67% of SRC addition (GC67). This reflects the molecular interaction
between GA and SRC to produce homogeneous and viscous biocomposite solution with the dipping
ability to form hard capsule. The thermal property trends of the biocomposites such as heat
transitions and TGA were shifted to the lower temperature, similar to the SRC film trend.
However, the film surface of bicomposite becomes rough when the contents of the SRC increased.
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