THE MECHANICAL PROPERTIES OF CONCRETE CONTAINS PALM OIL CLINKER AS COARSE AGGREGATE REPLACEMENT AND POFA AS CEMENT REPACEMENT

AFAN MOHAMMED SALAH AVDULLAH

B. ENG (HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

THE MECHANICAL PROPERTIES OF CONCRETE CONTAINS PALM OIL CLINKER AS COARSE AGGREGATE REPLACEMENT AND POFA AS CEMENT REPACEMENT

AFAN MOHAMMED SALAH ABDULLAH

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources

UNIVERSITI MALAYSIA PAHANG

JANUARY 2019

SUPERVISOR'S DECLARATION

"I hereby declare that I have checked this project report and, in my opinion this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Civil Engineering (Hons)."

Signature	:	
Name of Supervisor	:	DR.FADZIL BIN MAT YAHAYA
Date	:	14 th JANUARY 2019

STUDENT'S DECLARATION

"I hereby declare that the work on this thesis is my own except for quotation and summaries, which have been duly, acknowledge in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree."

Signature	:	
Name	:	AFAN MOHAMMED SALAH ABDULLAH
ID Number	:	AA14272
Date	:	14 th JANUARY 2019

ACKNOWLEDGEMENTS

First and foremost, all the praise and thanks are to the Almighty Allah, for giving me the strength to complete this final year project as a requirement for graduation of the Bachelor's Degree (Hons.) Civil Engineering from University Malaysia Pahang (UMP).

Secondly, I would like to thank a number of people, to whom I am greatly indebted. Without them, this research might not have been successfully accomplished. I wish to express my gratitude to my supervisor DR.Fadzil Bin Mat Yahaya for his patience and guidance throughout this study. Thank you for believing in my abilities and for giving me the foundation to explore further in this area. I would like also to thank the technical staffs of Civil Engineering Concrete Laboratory UMP for helping and guiding me during conducting the lab tests. Moreover, my thanks to all my friends who helped, supported and motivated in my study and in my personal life which their encouragement and motivation are highly appreciated.

Not to be forgotten, my parents who have always support me through my overseas journey and made every opportunity available to me throughout my life. Even thought, they are far away, their prayers and blessings are immensely appreciated which I may not be able to repay. I would like also to thank my family's members specially my brothers Salah, Abdulgsdood, , khatab and sadeeg for their continuous support.

ABSTRACT

The usage of agricultural waste in form of ashes as one of the constituent materials in concrete has been done through the years The dumping of POC in growing quantity throughout the years worsen the environmental pollution, consumes larger disposal area and increases the cost spent by the palm oil mill in managing the waste. The main aim of this research is to study the mechanical performance of concrete containing palm oil clinker as partial course aggregate replacement with fix percentage and palm oil fuel ash as cement replacement the increasing aggregate and cement mining activity to due to growth of construction industry in Malaysia, demand toward construction material. In addition, the escalation of palm oil clinker (POC) and POFA disposal from Malaysian palm oil industry have caused negative impact to the environment quality. The objectives of this study are to investigate the effect of palm oil clinker as partial course aggregate replacement and POFA as partial cement on workability, compressive, flexural strength. Generally, there are three different percentages of POFA replacement in concrete mixture, which are 0%, 5%, and 10% respectively of palm oil fuel ash and fix percentage of POC, which is 25% in all mix. For compressive strength test and flexural test, the concrete are tested on 7, and 28 days. The same mixture also, was used to conduct module of elasticity test and tensile test. The concrete mixture was designed according to British standard with water cement ratio of 0.45. For compressive strength test, 24 cubes size 150mm x 150mm x 150mm were tested on 7, and 28 days each. Meanwhile, for flexural test, 24 concrete beam size 100mm x 100mm x 500mm been tested on 7, and 28 days for each test. Not to forget the slump test also was conducted for fresh concrete test. This research reveals the usage of POFA in concrete mixture can improve the compressive strength test and acoustical properties specifically for sound insulation. But the usage of POFA in concrete mixture strictly must not exceed 10% as it will decrease the performance of the concrete strength on the other hand the best percentage for palm oil clinker as course aggregate partial replacement is 25% otherwise will lead to decrease compressive and flexural strength

ABSTRAK

Penggunaan sampah pertanian dalam bentuk abu sebagai salah satu bahan konkrit dalam konkrit telah dilakukan selama bertahun-tahun Pembuangan POC dalam kuantiti yang semakin meningkat sepanjang tahun memburukkan pencemaran alam sekitar, menggunakan kawasan pelupusan yang lebih besar dan meningkatkan kos yang dibelanjakan oleh sawit kilang minyak dalam menguruskan sisa buangan. Tujuan utama kajian ini adalah untuk mengkaji prestasi mekanikal konkrit yang mengandungi klinker minyak kelapa sawit sebagai pengganti agregat kursus separa dengan peratusan penetapan dan abu bahan api kelapa sawit sebagai penggantian simen peningkatan agregat dan aktiviti perlombongan simen disebabkan oleh pertumbuhan industri pembinaan di Malaysia, permintaan terhadap bahan pembinaan. Di samping itu, peningkatan klinker minyak kelapa sawit (POC) dan pelupusan POFA dari industri minyak sawit Malaysia telah memberi impak negatif terhadap kualiti alam sekitar. Objektif kajian ini adalah untuk mengkaji kesan klinker kelapa sawit sebagai pengganti agregat kursus separa dan POFA sebagai simen separa pada kebolehkerjaan, kekuatan mampatan, lenturan. Secara amnya, terdapat tiga peratusan yang berbeza daripada penggantian POFA dalam campuran konkrit, iaitu 0%, 5%, dan 10% masing-masing ash ash minyak sawit dan menetapkan peratusan POC, iaitu 25% dalam semua campuran. Untuk ujian kekuatan mampatan dan ujian lenturan, konkrit diuji pada 7, dan 28 hari. Campuran yang sama juga digunakan untuk menjalankan modul ujian keanjalan dan ujian tegangan. Campuran konkrit direka mengikut standard British dengan nisbah simen air sebanyak 0.45. Untuk ujian kekuatan mampatan, saiz 24 kiub 150mm x 150mm x 150mm diuji pada 7, dan 28 hari setiap satu. Sementara itu, untuk ujian lenturan, 24 saiz rasuk beton 100mm x 100mm x 500mm telah diuji pada 7, dan 28 hari untuk setiap ujian. Tidak lupa ujian kecondongan juga dijalankan untuk ujian konkrit yang baru. Kajian ini menunjukkan penggunaan POFA dalam campuran konkrit dapat meningkatkan ujian kekuatan mampatan dan sifat akustik khusus untuk penebat bunyi. Tetapi penggunaan POFA dalam campuran konkrit secara tegas tidak boleh melebihi 10% kerana ia akan mengurangkan prestasi kekuatan konkrit di sisi lain peratusan terbaik untuk klinker minyak sawit sebagai penggantian sebahagian agregat

TABLE CONTANT

	Page
SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS	xiii

CHAPTER 1 INTRODUCTION

1.1	BACKGROUND OF STUDY	1
1.2	PROBEM STATEMENT	3
1.3	OBJECTIVES OF STUDY	4
1.4	RESEARCH ETHODOLOGY	5
1.5	SIGNIFICANCE OF STUDY	5
1.6	SCOPE OF STUDY	6
1.7	LAYOUT OF THESIS	7

CHAPTER 2 LITERATURE REVIEW

2.2	APPLICATION OF CONCRETE IN CONSTRUCTION	11
	2.2.1 Concrete	11
	2.2.2 Lightweight Concrete	12
2.3	PROPERTIES OF OF CONCRETE	
	2.3.1 Workability	14
	2.3.2 Compressive Strength	15
	2.3.2.1 Water-cement ratio	17
	2.3.2.2 Degree of compaction	17
	2.3.2.3 Age	17
	2.3.2.4 Curing of concrete	18
	2.3.3.5 Flextural Strength	19
2.4	PERMEAVILITY OF CONCRETE	20
2.5	DURABILITY OF CONCRETE	15
2.6	WASTES AND POLLUTIONS	22
2.7	PALM OIL CLINKER	22
	2.7.1 palm oil clinker as coarse aggregate	24
	2.7.2 Concrete contain palm oil clinker	25
2.8	PALM OIL FUEL ASH	25
2.9	AGGREGATE	28
	2.9.1 Aggregate production process	29
	2.9.2 Coarse Aggregate	29
	2.9.3 Fine Aggregate	30
2.10	WATER	31
2.11	SUMMARY REMARK	32

CHAPTER 3 METHODOLOGY

3.1	INTRODUCTION	34
3.2	FLOWCHART OF RESEARCH	35
3.3	THE MATERILAS USED	36
	3.3.1 Cement	36
	3.3.2 Coarse Aggregate	37
	3.3.3 Fine Aggregate	38
	3.3.4 Water	38
	3.3.5 Palm Oil Clinker	39
	3.3.6 Palm Oil Fuel Ash	40
3.4	PROCESSING OF PALM OIL CLINKER	41
3.5	CONCRETE PREPARATION	45
	3.5.1 Mix Process	46
	3.5.2 Compacting Process	46
	3.5.3 Curing Process	46
3.6	CONCRETE MIX PROPORTION	47
	3.6.1 Sample Specimen Preparation	48
3.7	TESTING METHOD	
	3.7.1 Slump Test	49
	3.7.2 Compressive Strength Test	50
	3.7.3 Flexural Strength Test	52

CHAPTER 4 RESULTS AND DISCUSSION

4.1	INTRODUCTION	54
4.2	SLUMP TEST	55
4.3	COMPRESSIVE STRENGTH	58
4.4	FLEXURAL STRENGTH	60

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1	INTRODUCTION	62
5.2	CONCLUSION	62
5.3	RECOMMENDATIONS	63

REFERENCES

65

LIST OF TABLES

Table No.	Tittle	Page
Table 3.1: Mix pro	portion	47
Table 3.2: Compre	essive strength tests specimen	
Table 3.3: Flexura	al strength tests specimen	

LIST OF FIGURES

Figure No	D. Tittle	Page
Figure 1.1:	: Waste Hierarchy	3
Figure 2.1	: Slump test	14
Figure 2.2	: Specimen at Failure	16
Figure 2.3	: Relation between strength and water/cement ratio of concrete	17
Figure 2.4	: The influence of moist curing on the strength of concrete	
	With a water/cement ratio 0.5	18
Figure 2.5	: Strength development of concrete containing 335 kg	
	OPC per cubic meter	19
Figure 2.6	: Flexural strength test	20
Figure 2.7	: Palm oil clinker	23
Figure 2.8	: Compressive Strength	24
Figure 2.9	: Palm oil production	27
Figure 3.1:	: Flowchart of Final Year Project	35
Figure 3.2	: Portland Cement	37
Figure 3.3	: Coarse Aggregate	37
Figure 3.4	: Fine Aggregate	
Figure 3.5	: Palm Oil Clinker (POC)	
Figure 3.6	: Palm Oil Fuel Ash	40
Figure 3.7	: Palm Oil Clinker (POC) Processing	41
Figure 3.8	: Palm Oil in Gambang	42
Figure 3.9	: Collecting Palm Oil Clinker from Factory	42
Figure 3.1	0: Washing Palm Oil Clinker	43

Figure 3.11: Inserting Palm Oil Clinker in Oven4	3
Figure 3.12: Crushing POC by Hummer4	4
Figure 3.13: Inserting POC into Crushing Machine4	4
Figure 3.14: Sieving POC by Sieve Machine4	-5
Figure 3.15 Apparatus used in slump test4	9
Figure 3.16: Slump test5	50
Figure 3.17: Compressive Strength Machine5	51
Figure 3.18: Flexural Strength Machine5	;3
Figure 4.1: Effect of POC content on workability of concrete 5	6
Figure 4.2: Slump value in 0% of POC replacement5	6
Figure 4.3: Slump value in 25% of POC replacement5	57
Figure 4.4: Slump value in 25% of POC and 5% POFA replacement5	57
Figure 4.5: Slump value in 25% of POC and 10% POFA replacement5	58
Figure 4.6: Compressive Strength of cube specimens on 7 days curing5	;9
Figure 4.7: Compressive Strength of cube specimens on 28 days curing	50
Figure 4.8: Flexural Strength of beam specimens on 7 days curing	51
Figure 4.9: Flexural Strength of beam specimens on 28 days curing	51

LIST OF SYMBOLS

mmMillimetremm²Millimetre squarem³Cubic metreμmMicro metregGramkgKilogram per cubic metrekg/m³Kilogram per cubic metreMPaMega PascalkNKilo newtonC °Degree Celsius°DegreekN/secKilo newton per secondfcCompressive strength of concrete specimenPMaximum load carried by the specimen during testingAAreaRModulus of Rupture	%	Percent
m³Cubic metreµmMicro metregGramkgKilogramkg/m³Kilogram per cubic metreMPaMega PascalkNKilo newtonC °Degree Celsius°DegreekN/secKilo newton per secondfcCompressive strength of concrete specimenPMaximum load carried by the specimen during testingAArea	mm	Millimetre
µmMicro metregGramkgKilogramkg/m³Kilogram per cubic metreMPaMega PascalKNKilo newtonC °Degree Celsius°DegreekN/secKilo newton per secondf_cCompressive strength of concrete specimenPMaximum load carried by the specimen during testingAArea	mm²	Millimetre square
gGramkgKilogramkg/m³Kilogram per cubic metreMPaMega PascalkNKilo newtonC °Degree Celsius°DegreekN/secKilo newton per second f_c Compressive strength of concrete specimenPMaximum load carried by the specimen during testingAArea	m ³	Cubic metre
kgKilogramkg/m³Kilogram per cubic metreMPaMega PascalkNKilo newtonC°Degree Celsius°DegreekN/secKilo newton per secondfcCompressive strength of concrete specimenPMaximum load carried by the specimen during testingAArea	μm	Micro metre
kg/m³Kilogram per cubic metreMPaMega PascalkNKilo newtonC °Degree Celsius°DegreekN/secKilo newton per second f_c Compressive strength of concrete specimenPMaximum load carried by the specimen during testingAArea	g	Gram
MPaMega PascalKNKilo newtonC °Degree Celsius°DegreekN/secKilo newton per second f_c Compressive strength of concrete specimenPMaximum load carried by the specimen during testingAArea	kg	Kilogram
kNKilo newtonC °Degree Celsius°DegreekN/secKilo newton per secondfcCompressive strength of concrete specimenPMaximum load carried by the specimen during testingAArea	kg/m³	Kilogram per cubic metre
C°Degree Celsius°DegreekN/secKilo newton per secondfcCompressive strength of concrete specimenPMaximum load carried by the specimen during testingAArea	MPa	Mega Pascal
 Degree kN/sec Kilo newton per second f_c Compressive strength of concrete specimen P Maximum load carried by the specimen during testing A Area 	kN	Kilo newton
kN/secKilo newton per secondfcCompressive strength of concrete specimenPMaximum load carried by the specimen during testingAArea	C °	Degree Celsius
fcCompressive strength of concrete specimenPMaximum load carried by the specimen during testingAArea	0	Degree
PMaximum load carried by the specimen during testingAArea	kN/sec	Kilo newton per second
A Area	f_c	Compressive strength of concrete specimen
	Р	Maximum load carried by the specimen during testing
R Modulus of Rupture	А	Area
	R	Modulus of Rupture
<i>l</i> Distance between the support	l	Distance between the support
b Net width	b	Net width
d Depth	d	Depth

CHAPTER 1

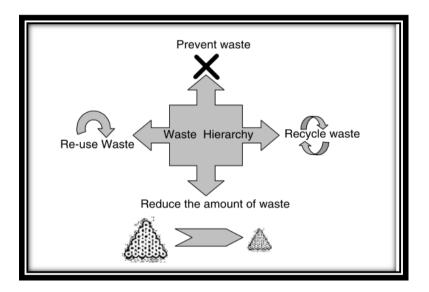
INTRODUCTION

1.1 BACKGROUND OF STUDY

Since the early age, human civilization has started inventing things for the purpose of survival. However as time passes by, the dynamic human mind made them easily became weary of using the same tools or method in their life and always yearn for improvement. Because of the end user demand, until now researchers is motivated to continuous work industriously leading to design of new material or modification of the existing things to be better than before and at the same time fulfil the current consumer requirement. In the field of building industry, construction material specifically concrete is one of the areas that have be subjected to constant research in order to support the growing industry need besides offering more choices of material for contractors to used in construction project.

Concrete is one of the most important materials in building construction and other infrastructure works. About 2.7 billion m³ of concrete was generated in 2002 worldwide, which is more than 0.4 m³ of concrete generated per person once a year (Naik, 2008). It is anticipated that the need for concrete will increase further to almost 7.5 billion m³ (about 18 billion tons) a year by 2050 (Monteiro, 2015). Such an enormous utilization of concrete calls for higher use of natural aggregates and cement, thus taking toll on the environment. At least three-quarters of the total volume of concrete consists of coarse and fine aggregates (Rafieizonooz, 2016).

At the same time in Malaysia, the government, professional bodies and private companies are beginning to take heed in the necessity to reduce this environmental problem. Construction industry must inevitably change its historic methods of operating with little regard for environmental impacts to a new mode that makes environmental concerns a on the concern previously, centerpiece of its efforts. Environment is relatively a small part of most of construction development. However, with the growing awareness on non-of depletion to protection due environmental the renewable resources, global warming and extremity of destruction to ecology and biodiversity impact, this issue have construction practitioners the by gain wider attention worldwide (Nazirah Zainul Abidin, 2010).


Therefore, man has developed concrete to increase the ability, hardness and durability to create a more economical and environmentally friendly concrete, and the construction of skyscrapers and huge structures. Furthermore, Concrete is one of the most important elements of life and must develop to meet the needs of modern times. Supplementary materials are one of the strategies used to improve concrete performance. After many researches, many materials we discovered that contain pozzolanic molecules that can be partially added to cement to improve the performance of concrete and its mechanical properties and the change properties depend on the type and quantity of the material supplemented.

Palm oil industry is one of the major agro-industries in countries like Malaysia, and this industry produces a large amount of waste in the forms of empty fruit bunches, fibres and kernels. These by-products are normally used as fuel to heat up boiler for generation of electricity in palm oil factories.

The studies has revealed that agricultural waste ashes contained high amount of silica and may been used as a pozzolanic material. Palm oil is one of the agro waste ashes whose chemical composition contains a large amount of silica and potentially used as a cement replacement Due to high silica oxide content in POFA that met the pozzolanic properties criteria, it is potentially utilize as cement replacement or as filler to produce strong and durable concrete

1.2 PROBLEM STATEMENT

The problem of waste accumulation exists worldwide, specifically in the densely populated areas. Most of these materials are left as stockpiles, landfill material or illegally dumped in selected areas. Large quantities of this waste cannot be eliminate. However, the environmental impact can be reduce by making more sustainable use of this waste. This is known as the ''Waste Hierarchy'' as shown in (figure 1.1). Its aim is to reduce, reuse, or recycle waste, the latter being the preferred option of waste disposal (Batayneh, et al., 2007).

Figure 1.1: Waste Hierarchy Sources: (Batayneh, et al., 2007).

Large amount of waste generated from palm oil in Malaysia and other Asian-Pacific is commonly use as landfills due to lack of economically attractive use opportunities. Landfilling is detrimental because it causes not only enormous financial burdens to the producer of by-products, but also makes them accountable for the unknown future environmental liabilities. Moreover, due to shrinking of landfill space and increased environmental restrictions, cost of landfilling may be on the high side. Additionally, Malaysia strives to maintain a leading role in palm oil production, thus increased palm oil plantation from 400 hectares in 1920 to about 3.6 million in 2002, with a targeted expansion of 5.2 million by the year 2020 (Basironand Simeh, 2005). Therefore, it

REFERENCES:

- Abutaha, F., & Razak, H. A. (2017). Effect of Coating Palm Oil Clinker Aggregate on the Engineering Properties of Normal Grade Concrete. https://doi.org/10.3390/coatings7100175
- Ahmad, M. H., & Mohd, S. (2007). MECHANICAL PROPERTIES OF PALM OIL CLINKER CONCRETE Mechanical Properties Of Palm Oil Clinker Concrete, (December).
- Aladetuyi, A., Olatunji, G. a, Ogunniyi, D. S., Odetoye, T. E., & Oguntoye, S. O. (2014). Production and characterization of biodiesel using palm kernel oil; fresh and recovered from spent bleaching earth. *Biofuel Research Journal*, 4(4), 134–138.
- Ashraf, M. A., Maah, M. J., Yusoff, I., Wajid, A., & Mahmood, K. (2011). Sand mining effects, causes and concerns: A case study from Bestari Jaya, Selangor, Peninsular Malaysia. *Scientific Research and Essays*, 6(6), 1216–1231. https://doi.org/10.5897/SRE10.690
- Batayneh, M. K., Marie, I., & Asi, I. (2008). Promoting the use of crumb rubber concrete in developing countries. *Waste Management*, 28(11), 2171–2176. https://doi.org/10.1016/j.wasman.2007.09.035
- Batayneh, M., Marie, I., & Asi, I. (2007). Use of selected waste materials in concrete mixes. Waste Management, 27(12), 1870–1876. https://doi.org/10.1016/j.wasman.2006.07.026
- Bolden, J., Abu-Lebdeh, T., & Fini, E. (2013). Utilization of recycled and waste materials in various construction applications. *American Journal of Environmental Sciences*, 9(1), 14–24. https://doi.org/10.3844/ajessp.2013.14.24
- Borkar, M. R. (2006). Sacred yet scientific: ecotheological basis of biodiversity conservation in Goa. *Multiple Dimensions of Global Environmental Change*, 182– 194.
- Cheng, H. (2016). Reuse Research Progress on Waste Clay Brick. Procedia Environmental Sciences, 31, 218–226. https://doi.org/10.1016/j.proenv.2016.02.029

DID. (2009). River Sand Mining Management Guideline.

- Ibrahim, H. A., Razak, H. A., & Abutaha, F. (2017). Strength and abrasion resistance of palm oil clinker pervious concrete under different curing method. *Construction and Building Materials*, *147*, 576–587. https://doi.org/10.1016/j.conbuildmat.2017.04.072
- Ishtiaq Alam, et al. (2015). Use of Rubber as Aggregate in Concrete : A Review, 4(2), 2–6.
- Kabay, N., Tufekci, M. M., Kizilkanat, A. B., & Oktay, D. (2015). Properties of concrete with pumice powder and fly ash as cement replacement materials. *Construction and Building Materials*, 85, 1–8. https://doi.org/10.1016/j.conbuildmat.2015.03.026
- McCarthy, L. M. (2008). Analysis of alternative water sources for use in the manufacture of concrete.
- Morales O., M. P., & Letelier G., V. (2016). Fired clay bricks made by adding wastes: Assessment of the impact on physical, mechanical and thermal properties. *Construction and Building Materials*, 125, 241–252. https://doi.org/10.1016/j.conbuildmat.2016.08.024
- Nazirah Zainul Abidin. (2010). Sustainable Construction in Malaysia Developers ' Awareness. Proceedings of World Academy of Science, Engineering and Technology, 5(2), 122–129.
- Neville, A. M. (2011). Properties of concrete.
- Nrmca. (2003). CIP 35 Testing Compressive Strength of Concrete. *Concrete in Practice* What, Why & How?, 1–2.
- Poon, C. S., & Chan, D. (2006). Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base. *Construction and Building Materials*, 20(8), 578–585. https://doi.org/10.1016/j.conbuildmat.2005.01.045
- Praveena, R., & Muthadhi, A. (2016). A Review on Application of Seaweed in Construction Industry, 6(9), 139–144.
- Rackham, J. W., Couchman, G. H., Hicks, S. J., Engineering, T., Group, D., Institutions,O. F., ... Required, A. (2015). United States Patent [191. *Engineering Structures*,

102(1), 2121-2136. https://doi.org/10.1017/CBO9781107415324.004

- S. Selvakumar, & Venkatakrishnaiah, R. (2015). Strength Properties of Concrete Using Crumb Rubber with Partial Replacement of Fine Aggregate, (1996), 1171–1175. https://doi.org/10.15680/IJIRSET.2015.0403074
- S, R. S., & Joy, J. A. (2015). Experiment on Foam Concrete with Quarry Dust as Partial Replacement for Filler, *4*(3), 487–493.
- Santos, C. R. dos, Filho, J. R. do A., Tubino, R. M. C., & Schneider, I. A. H. (2013). Use of Coal Waste as Fine Aggregates in Concrete Paving Blocks. *Geomaterials*, 3(2), 54–59. https://doi.org/10.4236/gm.2013.32007
- Skenderovic, I., Kalac, B., & Becirovic, S. (2015). Environmental pollution and waste management. *Balkan Journal of Health Science*, 3(1), 1–10.
- Susilorini, R. M. I. R., Hardjasaputra, H., Sri, T., Galih, H., Reksa, W. S., Ginanjar, H., & Joko, S. (2014). The advantage of natural polymer modified mortar with seaweed: Green construction material innovation for sustainable concrete. *Procedia Engineering*, 95(Scescm), 419–425. https://doi.org/10.1016/j.proeng.2014.12.201
- Toutanji, H. A. (1996). The use of rubber tire particles in concrete to replace mineral aggregates. *Cement and Concrete Composites*, 18(2), 135–139. https://doi.org/10.1016/0958-9465(95)00010-0
- Tsai, W. T., Chen, H. P., Hsieh, M. F., Sun, H. F., & Chien, S. F. (2002). Regeneration of spent bleaching earth by pyrolysis in a rotary furnace. *Journal of Analytical and Applied Pyrolysis*, 63(1), 157–170. https://doi.org/10.1016/S0165-2370(01)00150-4
- Wangrakdiskul, U., & Khonkaew, P. (2014). Use of the Spent Bleaching Earth from Palm Oil Industry in Non Fired Wall Tiles, 2014(July 2014), 1–10. https://doi.org/10.17703/IJACT.2015.3.2.15