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 This paper presents the modelling and simulation of a π-shaped Mg3Sb2 

based thermoelectric generator. The performance of the proposed 

thermoelectric generator is evaluated with finite element analysis. A number 
of thermocouples were varied for high output power and power efficiency 
factor. Based on the analysis, we demonstrated that enhancement of the 
temperature gradient and the number of thermocouples are beneficial for 
high output power and power efficiency factor of Mg3Sb2 based 
thermoelectric generator. A high output power and power efficiency factor  
of 8.89 mW and 3.47 mWmm-2K-2 were obtained at a temperature gradient  
of 500K across the hot and cold side for four Mg3Sb2 based thermocouples, 
respectively. The obtained results show that the developed device could be 

used to drive portable electronic devices. 
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1. INTRODUCTION  

With the rapid growth of industrialization, the need for electricity in everyday life is enhanced.  

Due to the deficit of fossil fuel, natural gas, and coal, the alternative source of energy is one of the major 

challenges in the 21st century. Besides, the emission of carbon while fossil fu el and coal burnt has a great 

effect to accelerate global warming [1]. Thus reduction of carbon emissions has become a global priority 

owing to the serious effect on climate change. To counter this issue, significant effort has been given  

to developed green energy harvesters. Green energy harvesters transduce various forms of energy such as 

sunlight, mechanical vibrations, ocean waves, and human body heat into electrical energy while maintaining 

a green energy environment [2-3]. A thermoelectric generator (TEG) is a kind of energy harvester that 

transmutes heat energy to electrical energy employing the principle of the Seebeck effect [4-5]. It has several 
features such as its high reliability and durability at low cost, no maintenance required, and direct conversion 

with no intermediate energy conversion process [6-7]. Besides, it has the potential to enhanced the longevity 

of an electrical device while maintaining both emissions and noise free operation i.e. provides clean energy 

by reducing greenhouse gas and carbon emissions [8]. Thus, this device has been widely used to power 

portable electronic devices such as glucose monitoring device [9], electroencephalography (EEG) [10], 

accelerometer [11], sweat conductivity monitoring [12], pressure-temperature Sensor [13], and human 

motion monitoring [14], whose power requirement is in the range of mW to μW.  

To design an efficient TEG, two factors must be taken into considerations such as thermoelectric 

(TE) materials and heat loss reduction. Among TE materials, bismuth telluride (Bi2Te3) is widely used for TE 

power generations due to its high efficiency at near room temperature. For instance, Chen et al. fabricated  

a TEG with Bi2Te3 and Bi0.5Sb1.5Te3 as n-type and p-type TE legs, and obtained maximum output power (Pout) 
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of 127 nW at a temperature difference of 32.5 K [15]. Nour et al. modelled a TEG with Bi2Te3 and showed  

a Pout of 1.5 W for hot and cold side temperatures of 671 K and 354 K, respectively [16]. Kong et al. 

developed a wearable TEG employing flexible Bi2Te3 films and achieved open circuit voltage and Pout  

of 48.9 mV and 693.5 nW, respectively [17]. Besides, lead telluride (PbTe) has been widely studied for 

medium range temperature TE applications i.e. in the range in between (450-850) K. For example, Mei et al. 

modelled a segmented TEG with PbTe-Bi2Te3 for enhanced device efficiency [18]. Wang et al. designed 

TEG with PbTe legs, and obtained a Pout of 7.6 W at a temperature difference of 500K [19]. Nevertheless, 

toxicity and exiguous quantity of lead (Pb) and tellurium (Te) presented in these materials make them 

adverse for TE applications. Alternatively, magnesium antimonide (Mg3Sb2), a non-toxic and abundant in 

nature, has been emerged as promising thermoelectric material owing to its excellent TE properties such as 
its high S which is around 300 μVK-1 and low thermal conductivity <1 [20]. Typically, Mg3Sb2 behaves as  

a p-type material due to the intrinsic vacancy of Mg and thus exhibits low σ and overall ZT value of 0.94  

[21-22]. Nevertheless, using proper dopants its behaviour has been transformed into the n-type material with 

the highest ZT value up to 1.85 [23]. 

This paper presents a 3D (dimensional) modelling and simulations of a π-shaped TEG with p-type 

and n-type Mg3Sb2 based TE legs. The heat distribution through the p-type and n-type Mg3Sb2 based TE legs 

are analyzed. Besides, the generated thermoelectric voltage, maximum output power, and thermoelectric 

power efficiency factor are calculated and analyzed using finite element analysis. This paper is organized as 

follows: the design and working principle of TEG are discussed in Section 2. Section 3 presents the finite 

element analysis and governing equations for the TEG operation. Section 4 presents the key results and 

analysis, and finally, the paper is concluded in Section 5. 
 

 

2. DESIGN AND WORKING PRINCIPLE 

The schematic diagram of a π-shaped TEG with thermocouples and its equivalent circuit is 

presented in Figure 1. It constitutes two main parts such as TE legs and its connecting electrodes. Herein, 

both the TE legs consists of the p-type and n-type Mg3Sb2. These legs are electrically connected in series and 

thermally in parallel. The geometrical dimensions of one thermocouple are shown in Table 1. Whenever  

a temperature gradient, ∆T, is applied in between two TE legs, the majority charge carries presented at each 

TE leg tends to diffuse from higher concentration to lower concentration, as a consequence, an electric 

potential will initiate across the TE legs [24]. The heat flux (Q) is applied across hot to the cold side  

and electrical current ( ) flows from n-type to the p-type material due to ∆T, as depicted in Figure 1(a).  
The performance of a TEG is defined by a dimensionless figure of merit (ZT), which is defined as: 

 

   
   

 
 (1) 

 

where S, σ, k is the Seebeck coefficient, electrical conductivity, total thermal conductivity, respectively.  

The equation signifies that a TEG should constitute a high S to enhance the conversion of heat into electrical 

power, a high σ to reduce Joule heating [25], high power factor (PF = S2σ), low thermal conductivity (k) to 
hinder thermal shorting [26], and should maintain a large ΔT in between the hot and cold sides [27].  

Figure 1(b) shows the equivalent circuit model where TEG is modelled as a voltage source, VTE, in series 

with a resistor and which is defined as [28-29]:  

 

                          (2) 

 

 

Table 1. Geometrical dimensions of a thermocouple 
Material Length (mm) Thickness (mm) Width (mm) 

n-type and p-type leg 5 0.8 0.8 

Top side electrode 0.3 0.8 2.4 

Bottom side electrode 0.3 0.8 1.6 

 

 

where n is the number of thermocouples, Snp is the relative Seebeck coefficient of p- type and n-type TE legs, 

and TH and TC are the thermocouple temperatures of the hot and cold side. The TE equivalent resistance, RTE, 

is the total resistance offered by TE legs (rT) and the electrodes (re), which is defined as [30]: 
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where σp, σn, and σe, are the conductivity of p-type TE leg, n-type TE leg, and electrode, respectively, lTE and 

le are the length of TE legs and electrode, respectively, and tTE, wTE, te, and we are the thickness of TE legs, 

width of TE legs, thickness of the the electrode, and width of the electrode, respectively. It should be noted 

that the rT is temperature dependent and it decreases with elevated temperature. Once the VTE and RTE are 

estimated, the current (I) through the TEG can be calculated using the following expression: 

 

  
   

   
  (4) 

 
 

 
 

Figure 1. (a) Schematic diagram of a TEG module with thermocouples and (b) equivalent circuit of a 

thermocouple 

 

 

The Pout and thermoelectric power efficiency factor (ϕ) are defined by the following expressions [28, 30]: 

 

     
   

    
 (5 

 

and  

 

   
    

(                             )      
  

  

    (6) 

 

where lThermocouple and wThermocouple are the length and width of the complete TEG, respectively, and PD defines 

the output power of the TEG. All these parameters are used for analysis, calculate and plot the VTE, Pout, and 

ϕ in the following section. 
 

 

3. FINITE ELEMENT ANALYSIS 

In this work, COMSOL Multiphysics® was used to do the numerical simulation of a 3D model  

of the TEG. Heat transfer and AC/DC modules were used throughout the simulation process. Both these 
modules are used to build the thermoelectric effect and electromagnetic heating of TEGs depending on 

material properties and geometrical dimensions. It was assumed that the TH was 300 K, convective heat flux, 

Q, was 40 Wm-2K-1 which is suitable for real time environment, and there in no heat loss during simulation, 

nevertheless, heat losses are there to the surroundings in the practical case. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Modelling and simulation of magnesium antimonide based thermoelectric generator (Md. Nazibul Hasan) 

689 

In the heat transfer module, whenever ∆T is applied across the TE materials, the heat flow 

equation in the thermoelectric analysis (7) and the relationship between heat flux, and current density of TE 

materials i.e. the energy conservation for a solid domain that includes Joule heating (8) can be obtained, 

which are defined as follows [31]: 

 

(    
  

  
     )     (7) 

 

and  

 

            (
  

  
)           (8) 

 

where ρd, Cp, Q, Qg, k, J, and ρTE defines the density, specific heat capacity, heat flux, heat generation rate per 

unit volume, thermal conductivity, current density, and resistivity of the thermoelectric module, respectively. 

The heat flux, Q, in TEG module is defined as the following (9) [32]: 

 

          (9) 

 

Whenever the TEG module reaches a steady state condition, the electric charge and temperature distributions 

are stable. So we get the following equations in AC/DC modules [33]: 
 

        (10) 

 

       (11) 

 

           (12) 

 

where J, Je, Qj, and E defines the current density, external current density, current source, and electrical field, 
respectively. All the (10-12) define the continuity of current, the electrical potential, and current density, 

respectively. 
 

 

4. RESULTS AND ANALYSIS 
After employing the governing equations, the simulation results and the performances of the Mg3Sb2 

based TEG are analyzed in this section. The temperature distribution through p-type and n-type TE legs and 

the effect of varying the number of thermocouples on VTE, Pout, and ϕ are observed and calculated by using 

COMSOL Multiphysics®. The heat distribution of a 3D thermocouple through the p-type and n-type Mg3Sb2 

based TE legs is shown in Figure 2. The TC and TH of the thermocouple are set to 300 K and 800 K, 

respectively, and Q of 40 Wm-2K-1 is applied in order to observe the heat transfer from hot to the cold side as 

shown in Figure 2(a). It can be noted that the heat distribution through the length of n-type TE leg is almost 

linear, nevertheless, the graph is deviated for p-type TE leg in between the length of~ (3-4.5) mm as shown  

in Figure 2(b). It's due to the k value which is slightly higher for n-type than p-type Mg3Sb2 based TE legs. 

After attaining the temperature distribution through the TE legs, VTE is investigated. Figure 3(a) 

shows the 3D simulation results of a thermocouple with the direction of heat flux form hot to the cold side 
and its generated VTE for with TC and TH of 300 K and 800 K, respectively. The cold side of the thermocouple 

is grounded i.e. 0V to develop VTE when the heat is supplied at the TH. As the ∆T in between Mg3Sb2 based 

TE leg increases, the VTE also increases since VTE is directly proportional to ∆T according to (2).  

Besides this equation shows the effect of enhancing the number thermocouples on the generated VTE as shown 

in Figure 3(b). As the number thermocouple increases, the maximum amount of ∆T dissipates through the 

thermocouples and as a result in the enhancement of VTE. A maximum VTE of 727 mV is obtained at  

∆T = 500K for four n-type and p-type Mg3Sb2 based thermocouples. 

The Pout and ϕ of Mg3Sb2 based thermocouples are plotted graphically versus ∆T in Figure 3(c) and 

3(d). It can be noted from the plot that both Pout and ϕ increases exponentially while enhancing the ∆T and 

number of thermocouples. Both these parameters depend on the σ of the p-type and n-type Mg3Sb2 based TE 

legs. As a result, σ of the p-type and n-type Mg3Sb2 based TE legs increases with increasing temperature and 

the overall resistance of the thermocouple decreases according to (3). Thus, both Pout and ϕ are increasing 
exponentially as Pout is inversely proportional to overall resistance and ϕ is directly proportional to Pout 

according to (5) and (6), respectively. A maximum Pout and ϕ of 8880 μW and 3468.7 μWmm-2K-2 is obtained 

at ∆T = 500K for four n-type and p-type Mg3Sb2 based thermocouples, respectively. 
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Figure 2. Simulation results showing (a) 3D heat distribution profile through one thermocouple and  

(b) within the TE legs 

 

 

 
 

Figure 3. Simulation results showing (a) 3D model of a thermocouple with generated thermoelectric voltage. 

Enhancement of (b) thermoelectric voltage, (c) Output power, and (d) thermoelectric power efficiency factor 

while enhancing the number of thermocouples 
 
 

5. CONCLUSION  

This paper proposed the modelling and simulation of a π-shaped Mg3Sb2 based TEG.  

The TE performance has been evaluated and analyzed by analytic modelling and finite element simulation. 

The heat distribution through the p-type and n-type Mg3Sb2 based TE legs have been evaluated and it has 

found that the heat distribution is nearly linear and higher through the n-type leg and slightly deviated and 

lower in p-type leg due to high k value for n-type than the p-type leg. Besides, enhanced VTE value is obtained 

at high ∆T with an enhanced number of thermocouples. Moreover, the maximum Pout and ϕ is obtained with 
an enhanced number of thermocouples and due to the low RTE value of both the Mg3Sb2 based TE legs. The 

result shows that the developed TEG device has the potential to generate 8.89 mW and 3.47 μWmm-2K-2 

class maximum output power and maximum output power efficiency, respectively at ≤ 800K. The analysis 

performed in this research can be a base to generate power from various sources i.e. from the car engine to 

human body heat. Thus, most of the research on π-shaped Mg3Sb2 based TEG could be seen in on-board 

power generation devices in the near future. 
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