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ABSTRAK 

Kertas ini menunjukkan tingkah laku segi empat tiub bentuk T melalui kajian berangka. 

Pertama, beban statik yang digunakan untuk menjalankan prestasi statik pada segi empat 

tiub bentuk T dengan nisbah lebar berbeza pada tiang dan rasuk. Analisis linear pada tiub 

bentuk T termasuk corak kecemaran dan pembangunan beban statik dan anjakan akan 

diterangkan. Model unsur kajian berangka bagi simulasi tiub betntuk T di bawah beban 

statik adalah dicadangkan. Akhirnya, simulasi berangka yang sedang dijalankan untuk 

menyiasat mekanisme kegagalan tiub bentuk T di bawah beban statik. Dalam analisis 

“eigenvalue” untuk segi empat tiub bentuk T juga dicadangkan. Oleh itu, kaedah unsur 

kajian berangka akan digunakan untuk menganggarkan tekanan maksimum dan tekanan 

“buckling” yang kritikal. Secara umum, penyiasatan wajar menilai tingkah laku statik 

untuk segi empat tiub bentuk T. 
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ABSTRACT 

 This paper analyses the behaviour of square tubular T-joint by means of numerical 

studies. Firstly, a static loading is employed to carry out the monotonic static performance 

on cold-formed square tubular T-joints with different width ratio of brace/chord. The 

linear analysis of tubular T-joints including the deformation pattern and the development 

of static loading and displacement will be described. Complementary finite element 

model for simulating the tubular T-joints under static loading is proposed. Finally, the 

numerical simulations are carried out to investigate the failure mechanism of T-joints 

under static loading. The eigenvalue analysis of square tubular T-joints also proposed. 

Therefore, finite element method will be used to estimate the maximum stress and critical 

buckling stress. In general, the investigation to reasonably evaluate the static behaviour 

of square tubular T-joints. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Introduction 

Nowadays industrial building, offshore platform and breakwater has widely used 

and being significantly in architectural and structural systems. All the main tubular 

structures of topside have a mixed deck or support frame and important amount of rolled 

sections are used. The structures have been uncovered and exposed to a big collision as 

a part of force on the joints. These collisions can cause collapse to structures, reducing 

the strength of joints and affecting the structure stability. Therefore, it is important to 

predict the burden damage during design phase so that the structures will be strong and 

last longer in future.  

 

Square tubular according to en.wikipedia.org is a part of hollow structural section 

(HSS) which is type of metal biography. Hollow structural section has many types such 

as circular, square or rectangular hollow section. Square tubular commonly used in 

welded steel frames as the frame will expose to multiple type of loading. Since this 

tubular widely used in structural system, this is because the efficient shapes have uniform 

geometry thus gives static strength characteristic.  

 

For the structure construction, there are need some joint between members at 

some point to complete full structures. These points are called as tubular joints. The main 

member of part of tubular joint is called as chord while the secondary member is called 

as brace. The connections on the tubular joints are based on the shape of alphabetical 

letter such as Type T, Type K, Type N etc. There is a lot combination of connection on 

structural system. There can be a DT joint (Double T joint) which is has double T joint.  
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For tubular joint must have a high strength to hold the forces that acting on the 

section between beam and column in the structures. The forces that high from the capable 

on the joint, the structures will be collapsed. To make the structures not collapse in future, 

there are the common connection that used at the joint. For the joint, the toe weld is use 

since it has direct and efficient in transferring forces from one section to another section.  

 

 

Figure 1.1: Tubular T-joints (de Matos, Costa-Neves, de Lima, Vellasco, & da Silva, 

2015) 

  

Β = b1 / b2 

μ1 = b1 / t1 

μo = bo / to 

γ = bo / (2to) 
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1.2 Problem Statement 

In the industry, there are many type of configurations on the tubular joints such 

as tubular T joints. When the force impacted on the members, the joints also affected. 

The result on the joints will represents the image of the building based on the size of 

brace and chord. Hence, if fault in design on the size of braces and chord members, it will 

affect to the collapse and instability of the building. 

 

To optimize the cost and risks on the structures, the right design on the tubular 

joints need developed. Different thickness of chord and width ratio of brace/chord gives 

the different results on the strength of the tubular joints. The static behaviour for common 

configuration of tubular t-joints with different chord thickness and width ratio of 

brace/chord can determine the highest strength occur on the joints thus can optimize the 

cost and risks on the structure. 

 

 

1.3 Objective 

The objective of this research is to study the behaviour of the tubular T-joints 

under static loadings as shown below. 

 

i. To investigate the static strength of tubular T-joints using finite element. 

ii. To study the deformation modes of tubular T-joints under compressive loading. 
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