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Abstract. Mixed matrix membranes (MMMs) were fabricated from a 25 wt% of polysulfone (PSf) 
with halloysite nanotubes (HNTs) selected as the inorganic filler. The incorporation of 1 wt% to 5 
wt% of HNTs in the membrane is promising in improving the performance of the membrane for gas 
separation due to its barrier properties. HNTs was modified by surface-etched method before it is 
embedded into the membrane in order to reduce the interfacial defects as well as the agglomeration 
in the membrane. This study further investigated the improvement of the polymer-clay interface 
interaction, characterize the functional groups, structure and surface area of the newly modified clay 
and also mechanical properties of the membrane. From the FTIR spectra, it can be seen that the 
functional group of surface-etched HNTs reduced in intensities compared to the unmodified HNTs. 
There are no distinct changes in XRD pattern for both unmodified and modified HNTs and tensile 
strength shows an increment in MMMs embedded with modified clay compared to unmodified clays. 
The incorporation of surface-etched HNTs was able to improve the membrane properties to a desired 
membrane that can be applied in the CO2 and CH4 separation.  

 

1. Introduction 

Gas separation is one of the important steps in order to provide a healthy pipeline system. Carbon dioxide 
as it generally known is an acidic gas which its presence in the pipeline stream may cause damage to the 
pipeline itself. Existence of CO2 in the stream would give a more acidic gas stream as well as giving a 
corrosion effect on the pipeline [1]. In the recent years, separating gases via mixed matrix membranes has 
caught the attention of researchers. The process of CO2 capture specifically, by using membrane separation 
is promising as it involving high energy efficient, simplicity in operation and also environmentally 
sustainable according to [2]. It is not only help to provide a healthy gas stream but also promising a long-
lasting usage of the pipeline and equipment. Mixed matrix membranes consist of two phases which are 
continuous phase and dispersed phase. These phases represent organic polymer and also inorganic fillers 
respectively. Nine types of polymers used in about 80% of gas separation [3]. However, this polymeric 
membrane did have some drawbacks as it resulting in different behavior for the permeability and selectivity 
of the membrane. Therefore, few researchers came out with a type of membrane with the incorporation of 
inorganic fillers. It is proven that by dispersing fillers which will act as molecular sieves, in the membrane, 
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could help to improve the performance of the membrane especially for its permeability and gas selectivity 
[2, 3]. 

Polysulfone is a glassy polymer that is often used in membrane separation. Glassy polymer as has 
a rigid chain structures with a restricted segmental motion [4]. Many researchers have been using 
polysulfone as the polymer in continuous phase as it possesses good permeability and selectivity in gas 
separation [5, 6, 7, 8]. It is also a good polymer to be used for gas separation due to its mechanical, thermal 
and chemical stabilities [9]. HNTs generally possess 13.8±1.4 nm of average lumen internal diameter and 
30 to 70 nm of external diameter [10]. Previous studies show a better performance of membranes by using 
various types of inorganic fillers such as zeolites, carbon molecular sieves, metal organic frameworks 
(MOFs), carbon nanotubes and many more different kinds of fillers. However, the use of HNTs provide is 
favorable due to it is naturally abundant and can be purchased in a low cost. It is also proven to be 
environmentally safe upon operation.  

Modification of the inorganic filler surface have proved to be able to help in the improvement of 
the membrane’s performance. By modifying the outer surface of the nanotubes could help in improving the 
affinity of the HNTs towards the non-polar media [11]. CO2 adsorption and selectivity can be improved by 
increasing the alkalinity via chemical modification of the HNTs [12]. Surface-etching modification of the 
HNTs supposedly resulting in increasing roughness of its surface which can help in tuning the supports 
properties of the HNTs as well as act as adsorption sites and active centres chemical reaction directly [13]. 
An increment occurred in term of loading capacity and surface area from 9 to 35% and 200-300 m2/g 
respectively, after the HNTs underwent etching process with sulphuric acid [14]. This increment is 
important since the HNTs depends on its loading capacity and lumen size to function well [11]. On the other 
hand, selective etching by acidic treatment of the alumina sheets may results in enlarged cavity of the clay 
nanotubes [15].  
 Various methods have been done to increase the inorganic filler dispersion in the membranes as 
well as reducing the interfacial defects of the MMMs. For example, the sed in-situ growth of filler particles 
in a polymer particle suspension for the membrane preparation [16, 17]. Other than that, the surface 
inorganic filler also has been introduced with functional groups and metal nanoparticles which help to 
increase solubility of penetrant in the nanocomposite membranes [4, 18]. Besides, there are also studies 
done on incorporating MMMs with reduced inorganic filler size such as [19], which reduced the particle 
size of the graphene oxide and ZIF/80 and [20], with reduced crystal sized of Cu-BTC that has shown the 
increment in permeability and solubility of the MMMs.   
 This study was conducted to modify the HNTs by increasing the surface roughness via surface-
etching process and thus help in reducing interfacial defects as well as improving the polymer-clay 
interaction. HNTs underwent the modification were incorporated into the PSf membrane and characterized 
by using FTIR, XRD and also tensile strength. Based on these analyses, the membranes have improved 
properties that are desirable for better gas separation. 
 
2.0 Experimental 

2.1. Materials 

The polymer used in this research is polysulfone supplied by Sigma Aldrich in the form of pellets while 
HNTs used are also purchased from the same supplier under the same trade which is Sigma-Aldrich. Solvent 
used to dissolve the PSf is N-methylpyrollidone (NMP) under the trade of Merck. For surface-etching 
process of the HNTs, sodium carbonate (Na2CO3) supplied by HmBG Chemicals and sodium nitrate 
(NaNO3) supplied by Merck were used. 

2.2. Modification of HNTs 
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Surface-etched HNTs were prepared by grounding 0.6 g of Na2CO3, 10.0 g of NaNO3 and 2.0 g of raw HNTs 
powders in a mortar. After that, the mixture was put into a ceramic crucible and heated up for 1 hour at 
350℃ with heating rate of 5℃/min. The mixture was let to cool down before washing with diluted nitric 
acid and deionised water to remove soluble salts and impurities from the mixture. Lastly, the mixture was 
dried overnight in a vacuum oven at 80℃ [21]. 

2..3 Membrane fabrication  

Neat membrane preparation started with the PSf being dried in an oven at 60℃ for 24 hours to ensure that 
the moisture in the PSf is fully dried. Then the PSf were mixed with N-methylpyrollidone (NMP) with the 
ratio of 25:75 wt%. This mixture was stirred by using overhead stirrer at 215 rpm until the PSf fully 
dissolved. For MMMs, the HNTs were mixed in the NMP prior to the addition of PSf.  

 After mixing, the solution was sonicated in a water bath for 40 minutes with loosened cap to release 
air bubbles formed during the stirring process. Followed by this process, the solution was left overnight to 
further remove bubbles trapped in the solution. The next step was casting the solution to form a membrane 
by pouring a small amount of the solution were poured onto clean glass plate and casted. Then the membrane 
formed was soaked in water bath overnight and then transferred and immersed in methanol solution for 4 
hours to further remove the solvent in the membrane. The membranes were then dried for 3 days before 
characterization [22].  

Table 1. Mixed matrix membranes preparation formulation. 

Membranes PSf (wt%) NMP (wt%) HNTs (wt%) 
U1 25 75 1 wt% unmodified 
U2 25 75 2 wt% unmodified 
U3 25 75 3 wt% unmodified 
U4 25 75 4 wt% unmodified 
U5 25 75 5 wt% unmodified 
SE1 25 75 1 wt% surface-etched 

SE2 25 75 2 wt% surface-etched 
SE3 25 75 3 wt% surface-etched 
SE4 25 75 4 wt% surface-etched 
SE5 25 75 5 wt% surface-etched 

 

2.4. Membrane Characterization 

The spectra from FTIR that obtained by using fourier transform infrared (FTIR) with the attenuated total 
reflection (ATR) accessory conducted by Perkin Elmer Spectrum 100 with wavelength ranging from 400 to 
4000 cm-1. This analysis was used to determine the successfulness of the etching process of the HNTs by 
studying the functional group of the HNTs as well as the MMMs. X-ray diffraction (XRD) data were 
obtained by using X Pert Pro XRD with generator voltage and tube current at 40 kV and 230 mA respectively 
with Cu Kα1 at 0.154056 nm and Kα2 at 0.154439 nm. The tensile strength was done by using a tensile test 
machine, Shimadzu Trapezium Lite X Version 1.1.2. Prior to the test, membranes were cut into a rectangular 
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with the dimension of 25 x 50 mm2. The membranes were tested with 5 mm/min of cross head speed. The 
tensile strength and elongation at break of the membranes were obtained. 

 

3.0 Results and Discussion 

3.1 FTIR 

3.1.1 Unmodified and Surface-etched HNTs 

The modified powder HNTs were sent for FTIR in order to identify the changes in the composition of the 
modified and unmodified HNTs. Figure 1 shows the FTIR spectra of the unmodified (U) and surface-etched 
(SE) HNTs powder. From the spectrum of surface-etched HNTs, it can be seen that there is a significant 
reduction of the intensity of the stretching vibration at the wavelength of 3963 and also 3620 cm-1 if 
compared to the unmodified HNTs. These reductions are due to the loss of O-H group during the etching 
process that occur on the chemical bonds of the silica and alumina sheet [13]. Other than these peaks, 
surface-etched HNTs show almost similar composition characteristics as the unmodified HNTs. However, 
peak at 1347 cm-1 of surface-etched HNTs shows the significant difference of these spectra. It might be due 
to the hydroxyl vibration which contribute to the presence of adsorbed water molecules [23]. The bending 
vibrations peak of Si-O group can be found at wavelength 519 and 522 cm-1 for unmodified and surface-
etched HNTs respectively. At frequencies 441 and 449 cm-1 shows the presence of Al-O group and peaks at 
frequencies 725 and 745 cm-1 shows the presence of the Si-O-Al for both surface-etched and unmodified 
HNTs respectively. From this modification, it can be seen that the intensity of bending vibration of the Al-
OH group is reduced at the frequency of 906 cm-1 of unmodified HNTs and 910 cm-1 of surface etched 
HNTs. The weakening of these stretching vibrations was due to the breakage of the Si-O bond on the etching 
site [21]. 

 

Figure 1. FTIR spectra of unmodified and surface-etched HNTs. 

 

 

3.1.2 MMMs Embedded with Unmodified and Surface-etched HNTs 

From the figure 2a, the spectra of MMMs with unmodified HNTs can be seen from 1 wt%, 2 wt%, 3 wt%, 
4 wt% and 5 wt%, while figure 2b shows the spectra for MMMs with surface-etched HNTs from 1wt%, 
2wt%, 3wt%, 4wt% and 5wt%. As can be seen from the figure, the spectra show that there is no significant 
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difference between the different of the unmodified HNTs embedded into the membrane. Almost all of the 
same spectra can be seen from 1 wt% to 5 wt% of HNTs in the membrane. Peak ranging at 2966 to 2969 
cm-1 from U1 to U5 represent the stretching vibration of the C-H bond in polysulfone. All of these 
membranes show the peak of 1584 cm-1 and 1294 cm-1 which contribute to the stretching vibration of the 
C=C benzene ring and O=S=O bond of the polysulfone respectively. Si-O and Al-O peak of the HNTs can 
be observed at the peak ranging from 1013 to 1080 cm-1. By comparing both of these spectra it can be seen 
that no distinct changes can be seen as both consist of the same materials and chemicals used during 
membrane fabrication. However, the intensity of the peak representing the Si-O bond seems to be weakened 
for MMMs incorporated with surface-etched MMMs due to the etching process that took place at the etching 
site of the HNTs as explained in 3.1.1. 
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Figure 2.  FTIR spectra for MMMs with (a) unmodified HNTs and (b) surface-etched HNTs 

 

3.2 XRD patterns for unmodified and surface-etched HNTs 

Figure 3(a) and (b) shows the comparison in XRD pattern of both unmodified and surface-etched HNTs. 
From both of these figures, there is no significant difference could be found. This has proved that surface 
treatment does not give a huge effect on the phase structure of the HNTs [21]. According to the figure, peak 
2ϴ=11.8 contribute to the d001 diffraction plane with a basal spacing of 0.74nm can be seen in both XRD 
pattern of MMMs. Peak at 2ϴ=24.8 can be observed in both patterns shown as the d002 diffraction plane 
with 0.358nm basal spacing. Both of these peaks are attributed to the dehydrated halloysite structure [10]. 
Tubular structure of the HNTs can be confirmed by the presence of intense diffraction at 2ϴ=19.87. This 
peak which has 0.446nm basal spacing is attributed to the d002 plane. SiO2 can be seen at the diffraction peak 
at 2ϴ=26.6 with basal spacing 0.334nm and attributed to the d020 plane [24].  

 

Figure 3. XRD pattern for (a) unmodified and (b) surface-etched HNTs 



26th Regional Symposium on Chemical Engineering (RSCE 2019)

IOP Conf. Series: Materials Science and Engineering 778 (2020) 012163

IOP Publishing

doi:10.1088/1757-899X/778/1/012163

7

 

3.3 Tensile strength of the membrane 

From the data obtained, tensile strength of the membrane can be calculated and thus shown in graphs below 
with membranes embedded with unmodified HNTs (MU) versus membranes incorporated with surface-
etched HNTs (MSE). As can be seen in the graph from figure 4a, for the MMMs with unmodified HNTs, 
the tensile strengths are slightly increase from 1wt% to 5wt% of HNTs embedded.  While for MMMs with 
surface-etched HNTs, the tensile strength fluctuated as the weight loadings of the HNTs increases. This 
fluctuating phenomenon could be due to the agglomerated HNTs in the membrane. There is an increment 
in MMMs with surface-etched HNTs compared to unmodified HNTs. According to the graph in figure 4b, 
it can be seen that the elastic modulus of the MMMs increases as the weight percentage of the HNTs 
embedded increases for both types of membranes. This could be attributed to the better dispersion and good 
interaction of the HNTs in the polymer matrix. However, at 5wt% of HNTs in both types of the MMMs 
seems to be decreases which might be due to poor dispersion of the HNTs since the filler has the highest 
probability to be agglomerated at this concentration [25]. The elongation at break for both types of MMMs 
is shown in figure 4c. From this chart, it can be seen that the elongation at break of both MMMs were 
fluctuated as the HNTs loadings increases. However, the flexibility of MMMs did increases as the surface-
etched HNTs were added into the polymeric membrane.  

  
Figure 4a. Tensile strength of MMMs incorporated 
with unmodified vs surface-etched HNTs 
 

Figure 4b. Elastic modulus of MMMs incorporated 
with unmodified vs surface-etched HNTs 
 

 

 

Figure 4c. Elongation at break of MMMs 
incorporated with unmodified vs surface-etched 
HNTs 
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4.0 Conclusion 

Surface-etched HNTs were prepared through alkali-etching process by using sodium carbonate (Na2CO3) 
and sodium nitrate (NaNO3) as the main chemicals. Mixed matrix membranes were applied with this 
modified HNTs starting from 1 wt% to 5 wt%. FTIR shows a desirable spectrum of surface-etched HNTs 
compared to unmodified HNTs. Modified HNTs shows a similar peak pattern to the unmodified HNTs 
which shows that the modification did not alter the phase structure of the HNTs. While mechanical strength 
of the membranes was improved with the incorporation of the surface-etched HNTs. From this analysis, it 
is envisaged that surface-etched HNTs could help to improve the MMMs performance in separating gases. 
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