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Abstract. This paper presents the effect of TiO2 and Al2O3-ethylene glycol based nanofluids 

on cutting temperature and surface roughness during turning process of AISI 1018. Minimum 

quantity lubrication (MQL) method has been recognized in minimizing the usage of cutting 

fluid, as a step to achieve cleaner environment and sustainable machining. However, the low 

thermal conductivity of base fluid in minimum quantity lubrication system caused the 

insufficient removal of heat generated in cutting zone. Addition of nanoparticles to the base 

fluid was then introduced to enhance the performance of cutting fluids. In this study, the 

machinability of AISI 1018 (mild steel) was investigated under dry machining and nanofluid 

minimum quantity lubrication method. Two types of nanofluids (TiO2 and Al2O3 nanofluid) 

with concentration 0.05, 0.15 and 0.3 wt.% were used in this study. The experiments were 

conducted on lathe machine, using tungsten carbide as cutting tool. Three cutting speed (350, 

550 and 750 m/min), three depth of cut (0.5, 1.0 and 1.5 mm) and fixed minimum quantity 

lubrication system nozzle pressure (5 bar) were applied throughout turning operation. To 

determine the relationship between machining parameters and cutting temperature and surface 

roughness values were measured. Based on results obtained, the cutting temperature of 

workpieces with usage of nanofluids in MQL system gave lower value compared to dry 

machining. The surface roughness of machined parts was also improved under NFMQL 

methods. In conclusion, when the nanofluid-MQL method was employed, the amount of 

cutting fluid was reduced and machining performance improved. 

 

1.  Introduction 

In industrial manufacturing, machining is widely used in removing materials to convert it into the 

desired shape. Machining operation widely employed in methods such as turning, milling and drilling. 

Turning operation is specifically used to shaped cylindrical part using single-point cutting tools. 

However, the relative motion during machining can cause extensive plastic deformation, and almost 
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99% of energy utilized from it were converted into heat [1]. As the temperature rises during 

machining, tool strength decrease, and leading to faster wear and tool failure [2]. Thus, the cutting 

fluids were used to cool down the heat around the cutting zone so that the workpiece and cutting tool 

can be kept under controlled temperature. However, since mid-1990s, there has been trend worldwide 

to minimize or eliminate the use of cutting fluids due to economic, environmental and human health 

issue during its use as well as during the disposal [3]. This has led to near dry machining and dry 

machining practices with significant benefits such as improving air and health quality, also reducing 

the cost of machining operations. Near dry machining (NDM) is basically the application of fine mist 

of an air-fluid mixture, containing very little amount of cutting fluids, to the cutting zone [4-6]. This 

process was also known as minimum quantity lubrication (MQL). The flow rates of MQL typically 

amount to 1-100 mL/h, estimated to be 1/10000 of that used in conventional flooding methods. 

 Depending on the type of machining operation, cutting fluid needed as coolant, lubricant or both. 

The effectiveness of cutting fluid depends on several factors such as type of machining operation, tool 

and workpiece materials, cutting speed and method of application [7]. Since MQL involves only a 

small amount of lubricant, it is essential to make sure that lubrication provided is sufficient [8]. 

However, common base fluids such as oil, water, ethylene glycol and etc. have poor thermal 

conductivity. Thus, a new generation of fluid with addition of nanoparticles need to be developed in 

order to enhance performance of cutting fluid in machining performance [9-13]. Therefore, various 

studies have conducted to investigate the effect and performance of adding nanoparticle in cutting 

fluids [4, 6, 14-16]. The performance of nanofluid containing various nanoparticles such as Al2O3, 

TiO2, SiO2 and MoS2 has been widely researched. References [17-21] in their study have observed 

significant improvement in thermal behaviour of nanofluid as it enhanced the thermal conductivity as 

concentration of nanoparticles increased. However, the linearity of relationships still needs further 

research. Besides cooling functionality, nanoparticles in nanofluid also act as lubrication mechanism. 

Nanofluids have higher lubricity as nanoparticle provides formation of surface protective film, rolling 

effect, polishing effect and mending effect. The nano-sized particle can be deposited on damage 

surface in order to compensate the loss of mass [22-24]. 

 Surface roughness is an indicator of quality for machined materials, therefore measuring surface 

roughness is important [25]. In measuring surface roughness, average surface roughness presented 

with Ra symbol; which is the arithmetic average value of departure of the profile from mean line to 

sampling length [26]. Surface roughness usually influenced by various factors such as tool geometry 

and feed, cutting conditions, tool wear and deflections, cutting fluids and workpiece properties [27, 

28]. During turning process, heat generated by friction between cutting tool and workpiece would 

cause the cutting tool to wear. Thus, the cutting fluid penetrating between cutting tool and workpiece 

(cutting zone) plays an important role to control the heat generated at the contact surface and reduces 

friction. Therefore, it is important to measure the temperature at the cutting zone to ensure the 

effectiveness of using nanofluids as cutting fluid during machining process. Significant improvement 

made by various single-phase and hybrid nanofluids has been recorded in term of energy consumption, 

tool life and surface quality of workpiece. By realizing the multiple benefits offered by nanofluids, this 

research aims to better understand the effectiveness of TiO2 and Al2O3 nanoparticle as an additive to 

the base fluid. This study demonstrates the effectiveness of nanofluid-MQL (NFMQL) method using 

TiO2 and Al2O3 nanofluids in order to enhance the cooling capacity, as well as thermal conductivity 

and improving surface quality during turning of AISI 1018. 

 

2.  Experimental Procedure 

2.1.  Material, cutting parameters and cutting tool 

The material used in the experiment is mild steel, with the specification of AISI 1018. As shown in its 

alloy composition in table 1, this alloy contains 0.212% of carbon and majority content of ferum 

(98.4%), with other composition including silicon, manganese and chromium. Tungsten carbide 
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T9125 were used during turning operation as cutting tool and were replaced for every different 

concentration of nanofluids used. Turning process in this study was conducted using Lathe Machine 

ERL 1330, with UNIST Coolubricator MQL system fixed to the lathe machine as can be seen in figure 

1. Experiment conditions details of turning process were shown in table 2. 

 

 

Figure 1. Experimental setup for turning operation with Nanofluid-MQL method. 

Table 1. The alloy composition of AISI 1018 (mild steel). 

Elements Fe C Si Mn Cr P 

Weight (%) 98.4 0.212 0.222 0.561 0.162 <0.003 

 

2.2.  Nanofluids Preparation 

In this study, the nanofluids were prepared by using TiO2 (diameter 30-50nm) and Al2O3 (diameter 

50nm) nanoparticles, purchased from US Nanomaterial Inc. Ethylene glycol (brand Sigma Aldrich) 

with purity ≥99.75% was chosen as the base fluid. Each type of nanofluids was produced in three 

concentrations, 0.05, 0.15 and 0.3wt.%. The amounts of nanoparticles to disperse in the base fluid 

were calculated and weighted using weight balance. All concentrations were prepared by mixing the 

base fluid with nanoparticle using magnetic stirrer for 2 hours and ultra-sonicated in sonicator for 

another 3 hours. The long hours of sonication process were needed in order to ensure that 

nanoparticles well dispersed in base fluid. In this study, the stability and thermal properties for 

nanofluids were measured at each concentration. Zeta potential values were measured using Litesizer 

Particle Analyzer in order to analyse the stability of nanofluids. Meanwhile, thermal conductivity of 

nanofluids were measured using KD2 Pro Thermal Analysis under temperature 30˚C, 50˚C and 70˚C. 

Table 3 shows the properties of ethylene glycol, TiO2 and Al2O3 nanoparticles. 

 

2.3.  Cutting Temperature and Surface Roughness Measurements 

The present work measures the effect of TiO2 and Al2O3 nanofluids towards cutting temperature and 

surface roughness of machined workpiece throughout the turning process. Thus, the temperatures of 

workpiece were recorded in three different time frames; before, in the middle and at the end of the 

machining process using Forward-looking Infrared (FLIR) thermal camera. Meanwhile, the surface 

roughness of machined workpieces was measured using surface roughness tester.  

Workpiece Nozzle 

Chuck 
Outlet 

port 

 
Cutting 

tool 
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Table 2. Experimental conditions. 

Item Description 

Machine tool Lathe Machine ERL 1330 

MQL system UNIST Coolubricator MQL 

Workpiece material AISI 1018 (mild steel) 

Workpiece size 32mm diameter, 150mm length 

Cutting tool Tungsten Carbide T9125 

Cutting speed (m/min) 350, 550, 750 

Feed rate (mm/rev) 0.3, 0.4, 0.5 

Depth of cut (mm)  0.5, 1.0, 1.5 

Environment Dry, Nanofluid MQL 

 
Table 3. Properties of base fluid and nanoparticles. 

Properties Ethylene 

Glycol 

TiO2  Al2O3  

Colour Colourless White White 

Density (g/cm3) 1.113 4.23 3.95 

Molar mass (g/mol) 62.07 79.86 101.96 

Purity (%) ≥ 99.75 ≥ 99 ≥ 99 

 
3.  Results and Discussion 

3.1.  Properties of Nanofluids 

The variations of thermal conductivity value in function of nanofluid concentration and temperature 

can be seen in table 4. It is clearly shown from data obtained that thermal conductivity increase when 

concentrations increase. This trend reveals that adding nanoparticles enhanced the thermal 

conductivity of fluids compared to the base fluid (ethylene glycol). However, thermal conductivity of 

nanofluids in this study was found not dependant to the temperature rise. Some results from certain 

concentration pointed out the decrement trend over increasing temperature. This finding contradicts to 

conclusions by some researchers that thermal conductivity increase with temperature rise due to more 

collisions between particle and increasing Brownian motions [29]. Nevertheless, thermal conductivity 

value for TiO2 nanofluid with concentration 0.15% shows increment as temperature increased from 

30˚C to 70˚C. This may related to stability of nanofluid, since dispersion of nanoparticle in base fluid 

did affect the measurement of thermal conductivity.  

References [30-32] have also observed the enhancement of thermal conductivity of conventional 

fluids when added with nanoparticles. There are few factors that affected the enhancement of thermal 

conductivity of nanofluid such as temperature condition, the shape of nanoparticles, size of 

nanoparticles, type of nanoparticles and type of base fluids [33-35]. By adding the nanoparticles in 

base fluid, the thermal conductivity was expected to improve since nanoparticles have higher thermal 

properties compared to base fluid [36, 37]. In experimental investigation conducted by references [38, 

39], the maximum enhancement of TiO2 nanofluid was recorded at smaller particle size and higher 

concentration (0.2vol.% to 2.0 vol.%). Results obtained in this study coincide with this finding, where 

thermal conductivity value increase as nanofluid concentration increase at temperature 30˚C. Other 

researchers [29, 33, 40] also agreed with this discovery, where addition of Al2O3 nanoparticle with 

various size to different base fluid increased the thermal conductivity. 
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Table 4. Thermal Conductivity of nanofluids vs temperature. 

Concentration (%) 

Thermal Conductivity (W/m˚C) 

TiO2 nanofluid Al2O3 nanofluid 

30˚C 50˚C 70˚C 30˚C 50˚C 70˚C 

0.05 0.283 0.315 0.288 0.295 0.292 0.290 

0.15 0.298 0.303 0.323 0.296 0.294 0.285 

0.30 0.298 0.294 0.294 0.298 0.298 0.291 

  

The stability of nanofluids was measured using zeta potential analysis, which considered as 

qualitative observation of nanofluids colloidal stability in static conditions. The stability of nanofluids 

was determined by the zeta potential value, typically range from 0 to 60 mV, categorized to the 

different level of stability and settling. Table 5 shows the measured zeta potential value for both 

nanofluids for all concentrations. For TiO2 nanofluids with concentration 0.05 and 0.30wt.%, the value 

indicates that the suspension has moderate stability and little settling. Meanwhile, concentration 0.15% 

gave value of 41.02 mV, indicates that the nanofluid has good stability with possible settling. The 

stability of TiO2 nanofluid with concentration of 0.15% explained the enhanced thermal conductivity 

with increasing temperature discussed before. On the other hand, Al2O3 nanofluid with all three 

concentration gave lower zeta potential value, signifying that the nanofluid has some stability with 

lightly settling.  

 

Table 5: Zeta potential value for nanofluids. 

Concentration 

(%) 

Zeta potential value (mV) 

TiO2 Al2O3 

0.05 22.14 11.51 

0.15 41.02 11.37 

0.30 28.12 16.73 

 

3.2.  Effect of Nanofluids on Reducing Cutting Temperature 

The heat generated at the cutting zone resulted from the friction of cutting tools and workpiece can be 

controlled or lowered by the penetration of cutting fluids into the zone. The cutting temperatures in 

this study were measured average nine times for every nanofluid concentration, according to different 

cutting speed and depth of cut. Figure 2 shows comparison of cutting temperature of workpiece during 

dry machining and NFMQL method. For NFMQL method, the temperature value of nanofluids with 

concentration 0.05wt.% and depth of cut 0.5mm were taken as comparison. Generally, the cutting 

zone temperature for all machining conditions shows increment trend as the cutting speed increased 

from 350m/min to 750m/min. However, dry machining record the highest value of temperature 

between 77.4˚C to 81.2˚C. In machining process, when the cutting speed rise, it generally increase the 

friction and subsequently increase the temperature of the chip-tool interface [41]. The high cutting 

temperature during dry machining happened because of no cooling agent was applied throughout 

machining operation. Meanwhile, the cutting temperature of workpiece when applied TiO2 nanofluid 

range from 69.2˚C to 73.5˚C, reducing 10.6% of heat generated compared to dry machining. The 

usage of Al2O3 nanofluid reduces more temperature (18.5%) compared to dry machining. Figure 3 

shows comparison between cutting temperature for both nanofluids under three concentrations. It 

shows that Al2O3 outperform TiO2 nanofluids in reducing temperature for all concentrations, under 

different cutting speed. 
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Figure 2. Cutting temperature of workpieces using dry machining and NFMQL method. 
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Figure 3. Cutting temperature of the workpiece using TiO2 and Al2O3 nanofluids during 

NFMQL method. 

 

Through the data obtained, the nanofluid application in MQL system has been proven successful in 

reducing the heat generated at the cutting zone. Efficient penetration of nanofluids into the cutting 

zone leads to the formation of nanoparticles layer with lower shearing strength. These layering around 

the particle may give a path for rapid conduction, thus lowering the heat generated at cutting zone. 

This finding was agreed by reference [42] where they conducted study on two different class of 

nanofluids, coolant and lubrication type. TiO2 and Al2O3 nanoparticles which fall under lubricant type 

reduce grinding temperature (19.6%, 28.9%) and gave better performance compared to coolant type 

nanoparticles such as NiO and CuO (14.5%, 15.9%). Although both nanofluids gave better 

performance compared to dry machining conditions, significance difference of cutting temperature 

measured can be seen in both figure 2 and figure 3. The good performance of Al2O3  nanofluids in 

reducing cutting temperature can be explained by its structure and characteristics. The spherical shape 

of Al2O3 nanoparticle reduces the sliding friction to the workpiece surface, and instead change the 

friction to combination of rolling and sliding friction (bearing effect). Thus, alongside effective 

penetration into the cutting zone, less friction consequently decreases cutting force and cutting 

temperature of the workpieces. Thus, it can be concluded that mechanism of TiO2 and Al2O3 
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nanoparticles in reducing cutting temperature were by decreasing the friction and cutting force, and 

not by increasing the heat removal through cooling actions. 

3.3.  Effect of Nanofluids on Surface Roughness Value  

The surface quality of machined products is generally associated with the surface roughness of 

workpiece. In this study, surface roughness of machined workpiece for dry machining condition and 

NFMQL condition measured using surface roughness tester. Surface roughness presented with Ra 

symbol is expressed as irregularities of material resulted from various machining operations. Surface 

roughness usually affected by few factors such as cutting parameters, cutting fluids and workpiece 

properties. Figure 4 shows the surface roughness (measured in µm) for three machining condition with 

depth of cut 0.5mm and three different cutting speeds. The surface roughness of workpiece under dry 

machining condition obviously was higher compared to the NFMQL method’s workpiece. Moreover, 

the roughness of the workpiece constantly reduces as the cutting speed increase. The same trend was 

also recorded for both nanofluids used in NFMQL method. 
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Figure 4. The surface roughness of machined workpiece during dry machining and 

NFMQL method. 

 Table 6 and 7 show the surface roughness value of machined workpiece using TiO2 and Al2O3 

nanofluid with various concentrations respectively. Based on the data obtained, when comparing the 

Ra value for workpiece under dry machining condition, TiO2 nanofluid shows larger decrement 

compared to Al2O3 nanofluid. At cutting speed 350m/min and depth of cut 0.5mm, addition of TiO2 

nanoparticles enhanced the surface roughness by 39%, 65% and 83% for concentration 0.05, 0.15 and 

0.3wt.% respectively. Moreover, the Ra values continue to decrease over the increasing cutting speed 

and nanofluid concentration. 

 For Al2O3 nanofluid, the overall roughness value decrease compared to dry machining condition. 

At cutting speed 350m/min and depth of cut 0.5mm, enhancement of Ra values recorded by 19.7%, 

24.8% and 29.3% for concentration 0.05, 0.15 and 0.3wt.% respectively. The Ra value for these set of 

workpiece also follow the decrement trend as cutting speed and nanofluid concentration increased. 

Less improvement in Ra value by Al2O3 nanoparticles may be caused by two things. First, the 

properties of the nanoparticles that have high hardness compared to the workpiece and led to micro-

abrasive on the workpiece surface.  This finding also supported by Wang Y, Li C, Zhang Y, Yang M, 

Zhang X, Zhang N and Dai J [43], where higher concentration of nanofluid resulted in poorer surface 

quality of machined parts. The second opinion involved the stability of nanofluid, where the ‘not so 
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well’ dispersed nanoparticles in base fluid tend to agglomerate with each other to form microparticle. 

This microparticle increases the Ra value of machined workpiece, thus decrease the surface quality.  

 

Table 6. Surface roughness value measured for workpiece using TiO2 nanofluid. 

Cutting speed 

(m/min) 

Depth of 

cut (mm) 

Surface roughness, Ra (µm) 

TiO2 

0.05% 0.15% 0.30% 

350 

0.5 5.33 3.04 1.47 

1.0 5.88 3.55 1.85 

1.5 6.49 4.18 2.37 

550 

0.5 5.05 2.98 1.29 

1.0 5.45 3.42 1.62 

1.5 6.21 3.84 2.29 

750 

0.5 4.74 2.62 0.72 

1.0 5.05 3.37 1.53 

1.5 6.05 3.68 2.11 

 

Table 7. Surface roughness value measured for workpiece using Al2O3 nanofluid. 

Cutting speed 

(m/min) 

Depth of 

cut (mm) 

Surface roughness, Ra (µm) 

Al2O3 

0.05% 0.15% 0.30% 

350 

0.5 7.02 6.58 6.18 

1.0 7.89 7.04 6.50 

1.5 8.35 7.81 6.99 

550 

0.5 6.42 5.98 5.74 

1.0 7.17 6.49 6.04 

1.5 7.70 7.24 6.45 

750 

0.5 5.41 5.18 4.54 

1.0 6.16 6.08 5.02 

1.5 7.05 6.5 5.87 

 According to reference [44] there are three levels on how nanoparticles assist in cutting operation 

and affecting surface roughness during the machining process. For the first level, nanoparticles 

partially embedded a machined surface, sheared and change shape due to compression. The sheared 

off debris then continue to assist cutting, as well as nanoparticle that rolls on surface. When the 

nanofluid become more concentrated, partially embedded nanoparticles were ploughed off by new 

nanoparticle and continue to polish the surface. However, the ploughed off nanoparticle would 

develop thin films as a result of high loading damage, in accordance to result found by reference [45]. 

At the third level, when concentration of nanofluid further increase, nanoparticles impregnated the 

surface pores and later shoved off by incoming particles. These motions soon produce more 

lubricating film, thus the surface gets polished and improved quality surface.  

 Based on the result obtained through this study, it is clear that by adding nanoparticles in cutting 

fluid, surface quality of the machined workpiece can be enhanced. This statement was supported by 

reference [46] in their study where the addition of TiO2 nanoparticles in vegetable oil reduce the 

average surface roughness by 34.7%, 11.64% and 7.22% compared to dry, conventional and wet 

machining respectively. Besides that, references [47] and [48] also evaluated the performance of nano 

graphite-based cutting fluid and found that the nanofluid reduce the cutting force by 54% and surface 

roughness by 30% compared to conventional flood cooling. However, for certain nanoparticles like 

Al2O3, the selection of concentration value was important in order to ensure the improvement of 
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surface quality. References [43] and [49] agreed that by adding Al2O3 nanoparticles with concentration 

less than 2.0 vol.% can help produced more refined surface finish. Besides that, use of larger diameter 

(80nm) would also deteriorate the surface finish, compared to smaller diameter (40nm) of 

nanoparticles. This conclusion was also supported by [50-53]. 

4.  Conclusions 

The following conclusions may be drawn based on results obtained from the experimental 

investigation conducted: 

 

i) In term of stability of nanofluid, TiO2 have moderate stability with possible settling, compared to 

Al2O3 nanofluid that has little stability and likely has settling. The more stable nanofluid would 

affect the enhancement of thermal conductivity; therefore exert influence on machining 

performance.  

ii) TiO2 and Al2O3 nanofluid enhance the thermal conductivity in the function of increasing 

concentration, but not dependent in function of rising temperature. These occurred due to little 

stability of nanofluids produced. 

iii) Cutting temperature for workpiece machined under NFMQL method reduced compared to dry 

machining condition. The decrement in temperature resulted from proper cooling action by a 

nanofluid, which led to lower friction and increased heat removal. 

iv) When comparing both nanofluids in NFMQL method to dry machining, surface roughness, Ra 

value for workpiece using TiO2 nanofluid gave better result than Al2O3 nanofluid. However, 

roughness of machined workpiece using both nanofluids shows decrement trend as the 

concentration increased. 

v) Based on results obtained through this study, it can be concluded that addition of nanoparticles to 

the cutting fluid does enhance the thermal conductivity, lower the cutting temperature at the 

cutting zone and improve surface roughness of the machined workpiece. 
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