
Adopting Jaya Algorithm for Team Formation Problem
Md. Abdul Kader
Faculty of Computing

Universiti Malaysia Pahang
Pahang, Malaysia

kdr2k10@gmail.com

Kamal Z. Zamli
Faculty of Computing

Universiti Malaysia Pahang
Pahang, Malaysia

kamalz@ump.edu.my

ABSTRACT
This paper presents a simple and mighty metaheuristic algorithm,
Jaya, which is applied to solve the team formation (TF) problem
and it is a very fundamental problem in many databases and
expert collaboration networks or web applications. The Jaya does
not need any distinctive parameters that require comprehensive
tuning, which is usually troublesome and inefficient. Among
several optimization methods, Jaya is chosen for TFP because of
its simplicity and it always avoids the worst solutions and moving
towards the global best solution. This victorious nature makes
Jaya Algorithm more powerful and significant as compared to any
other contemporary optimization algorithms. To evaluate the
efficiency of the Jaya Algorithm (JA) against another
metaheuristic algorithm, Sine-Cosine Algorithm (SCA), both
algorithms are tested and assessed for the TF problem solution
using an ACM dataset containing experts and their skills. The
experimental results validate the improved performance of the
optimization solutions and the potential of JA with fast
convergence for solving TF problems which are better than SCA.

CCS Concepts
• Mathematics of computing Mathematical analysis
Mathematical optimization Non-parametric optimization

Keywords
Team formation problem; Jaya optimization algorithm; Sine-
Cosine algorithm; Metaheuristic algorithm; Application of Jaya
algorithm.

1. INTRODUCTION
Recently, it is observed that dealing with different tasks through
collaboration with experts is increasing massively in any network.
Finding the experts and creating the best groups or teams for
specific jobs with required skills is always a challenging task.
This challenge leads to the research of the team formation (TF)
problem in many real-life applications [1-8]. The TF problem goal
is to find the best group of experts who have the desired skills and
cost-effective communication with other experts [8]. Although
technological improvement eliminates the geographical and local
constraints, there are several methods independently proposed for
calculating communication costs between experts in literature [1-
5, 8].

Researchers investigated and proposed many strategies on how to
find the best team adequately [5, 7, 9-14]. Among them,
metaheuristics often work much better in practice. These
algorithms are popular because of their simplicity, easy
implementation in any programming language, and solution
diversity. There are two principal phases in metaheuristics termed
as exploitation and exploration. Exploitation uses neighbor
information obtained from local search and tries to find the local
best solution, while the exploration phase tends to explore
different feasible regions in the whole search area and tries to find
the global best solution [15]. The challenge is to balance these two
phases of metaheuristics, which affects the performance of these
algorithms.
In literature, metaheuristics algorithms are classified into two
broad categories, such as single solution based metaheuristic
algorithms and multi-solution based or population-based
metaheuristic algorithms [16]. Population-based metaheuristic
algorithms are further classified into two broad categories. These
are evolutionary-based and swarm-based metaheuristic algorithms
[17]. However, both types are probabilistic and require standard
controlling parameters. Besides, some of them need their
algorithm-specific control parameters. The improper tuning of
these parameters either provides the local optimal solutions or
increases the computational cost [18].
Previous research reported many optimization techniques to solve
TF problems. In this paper, a well-known distinct parameter-free
metaheuristic algorithm, Jaya, which is proposed by R. Venkata
Rao in 2016 [18] is chosen for the TF problem solution because of
its simplicity and robustness and researchers used it in many
applications like [19-21]. To the best of understanding of the
writer, there is no previous study used the most straightforward
Jaya algorithm in this TF problem area and this paper aims to take
this opportunity to find out the JA potential in the TF problem
solution. Furthermore, to make the experiment fair, the efficiency
of JA is compared with the Sine-Cosine Algorithm (SCA) [22] for
the TF problem solution. SCA is another new population-based
metaheuristic and it is useful in solving real problems [23].
This paper is structured accordingly as follows. Section 2,
describes an overview of the Jaya algorithm. Section 3 delivers
the technique of using Jaya in the TF problem. Section 4 describes
the performance comparison of JA and SCA from the results of
the experiment and the description of the work. Finally, Section 5
concludes the paper.

2. OVERVIEW OF JAYA ALGORITHM
Jaya is a meta-heuristic algorithm that is easier, more efficient,
and more powerful algorithm for finding the global best solution.
It has been applied to many benchmark functions for constrained
and unconstrained problems successfully. Additionally, Jaya is
like TLBO which has two phases (teacher and learner) [24], but
JA does not require the learner phase [18]. Jaya works by
establishing the solution to problems through avoiding the worst
solutions and moving towards the best optimal solution. Although

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ICSCA 2020, February 18–21, 2020, Langkawi, Malaysia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7665-5/20/02…$15.00
https://doi.org/10.1145/3384544.3384593

it is algorithm-specific parameter-free, its performance depends
on only a few control parameters, which are common to many
optimization algorithms like population size, number of
generations, and number of design variables. The working
principle of the Jaya algorithm is described below.

Figure 1. Flowchart of the Jaya algorithm.

All the terminologies assumed and used in JA are shown in the
following Table 1.

Table 1. Terminologies used in Jaya

Terms Explanation
Objective Function f(x)
Population Size k=1,2,…,n
Design Variables j=1,2,…,m
best Candidate f(x)best
worst Candidate f(x)worst

Xj,k,i
jth design variable for the kth candidate
at ith iteration

X'j,k,i Modification of Xj,k,i

Xj,best,i j variable for the best

Xj,worst,i j variable for the worst

r1,j,i random number in the range of [0, 1]

r2,j,i random number in the range of [0, 1]

The Jaya algorithm begins by adjusting its basic parameters.
These are termination criteria (here the maximum number of
iterations are considered as the termination condition), population
size (number of candidate solutions), and number of design
variables. In the second and third steps, the best and worst
solution is identified from the population and modify the solutions
according to Equation 1, which is for the jth variable at ith
iteration.

X'j,k,i = Xj,k,i +r1,j,i (Xj,best,i -|Xj,k,i|)–r2,j,i (Xj,worst,i -|Xj,k,i|) (1)

In the fourth step shown in Figure 1, it is seen that if the updated
solution is better than the previous solution, then it accepts and
replaces the previous solution otherwise keeps the previous
solution. In the final step, if the termination condition is satisfied,
then it reports the optimum solution; otherwise, get back to the
second step of this algorithm.
By analyzing Equation 1, it can be clear that the search avoids the
worst solutions, i.e., moving away from the worst solution and
keep moving towards the best solution, i.e., closer to the success.
Additionally, finding the best solution or its convergence rate is
faster than the others.

3. TEAM FORMATION PROBLEM USING
JAYA ALGORITHM
Now we formally define the TF problem that we address in this
paper. Let E be the set of m experts or design variables (i.e. j = 1,
2,....,m). S is the set of all unique skills for all the experts in E. C
is the cost set between each pair of experts in E. n is the number
of candidate solutions or population size. T is the set of n
candidate solutions (i.e. k = 1,2,…,n). Mitr is the maximum
number of iterations used for termination criteria. f(Tj,k,i) is the
objective function or cost function where i = 1,2,…, Mitr, and it
returns the cost of jth design variable for the kth candidate at the ith
iteration. Algorithm 1 shows how Jaya can be used in the TF
problem solution to get the best optimum solution.

Algorithm 1: TF Problem Using Jaya Algorithm

Input: The population Tk [k=1,2,…,n]
Output: The best obtained Team
1 : procedure TFJA
2 : Initialize the parameters m, n, Mitr
3 : Calculate fitness f(T)
4 : while(i < Mitr) do
5 : for k 1 to n do
6 : Identify f(T)best and f(T)worst
7 : for j 1 to m do
8 : r1,j,i rand() and r2,j,i rand()
9 : Update the solutions using the following equation
10: T'j,k,i=Tj,k,i +r1,j,i(Tj,best,i -| Tj,k,i|)
 –r2,j,i(Tj,worst,i -| Tj,k,i|)
11: Calculate fitness f(T)
12: if (f(T'j,k,i)< f(Tj,k,i)) then
13: Update the earlier solution
14: end if
15: end for
16: end for
17: i i+1
18: end while
19: return best obtained Team
20: end procedure

In Algorithm 1, the required parameters are initialized, and the pre
fitness of all candidates is calculated before entering the main
loop. The main loop will run Mitr times at best. After identifying
the f(T)best and f(T)worst, all solutions are calculated using Equation
1 and updated if the best solution is found out (line no. 7 to line
no. 15 of Algorithm 1) and this process will continue for each
population (line no. 5 to line no. 16 of Algorithm 1). The same
process repeated (line no. 4 to line no. 18 of Algorithm 1) until the
maximum fitness covered or reaching the maximum iteration.

4. EXPERIMENTAL RESULTS AND
DISCUSSION
JA (Algorithm 1) and SCA were coded in Java, run in windows
10 using CPU Intel core i7 2.20 GHz speed, and 8GB RAM.
Although JA can be tested for any number of skills between 1 and
the total number of unique skills that exist in the corresponding
dataset, this algorithm is tested for five sets of skills which include
10, 20, 30, 40, 50 skills. For each skill set, both JA and SCA run
by ten times for the same set of population/candidate solutions
and taken the average of all results to make the experiment fair.
To test the performance of Jaya and Sine-Cosine Algorithms, a
middle size formatted and cleaned dataset, ACM dataset
(https://github.com/MAK660/Dataset/blob/master/Experts_Skills_
Dataset.txt), which contains a total of 3702 experts and 5197
unique skills is used in this experiment. As we aim to measure the
efficiency of the Jaya algorithm, Table 2 to Table 6 shows the
experimental results of this study. The average of best, max, mean
(for all populations) values of team size and team cost calculated
and shown at the bottom of each table (Table 2 to Table 6) and
they are presented graphically in Figure 2 and Figure 3. Although
the performance of optimization depends on the number of
required skills to covered by the number of experts, it is observed
from Figure 2 and Figure 3 that the value of team size and team
cost are proportional to the number of required skills to find for
the optimization of TF problems.
An experimental comparison of JA and SCA for each skillset is
shown in Table 7. The average (10 runs) of best and mean values
of team size and team cost and their average running time(ms) for
the mentioned test skills are stated for comparison. Figure 4
shows the comparison of best and mean team sizes (TS) for the
different sets of test skills between JA and SCA. Figure 5 show
the comparison of the best and mean team cost (TC) for the
different sets of test skills between JA and SCA. The average
running time (ms) comparison is shown in Figure 6. This
experimental comparison shows a noticeable improvement that all
the average results (team size, team cost and running time) are
close to the best outcome, and JA always performs better than
SCA for the optimization of TF problems. Moreover, a graphical
analysis of Team size (TS) vs. Team Cost (TC) for best and mean
value is shown in Figure 7 where the team size vs. team cost curve
of JA is always better (less) than the team size vs. team cost curve
of SCA in both cases.

5. CONCLUSION
In this paper, we presented a brief knowledge of the team
formation problem and reviewed the working principle of the Jaya
algorithm. The reasons for choosing Jaya are mentioned when
handling optimization problems like the TF problem. From Table
2-6, it is observed that average results of team size (best, max,
mean) and team cost (best, max, mean) are close to the best
solution, which is acceptable for the TF problem. To make the
experiment fair and to analyze the efficiency of JA, SCA is used
in this study. From the experimental comparison of JA and SCA
shown in Table 7, Jaya proves its computation capability of faster
convergence than SCA in the TF problem solution. The authors
have strongly presented that this work achieves what it was
looking for effectively.

6. ACKNOWLEDGMENT
This research is funded by RDU Grant No. UIC191202: The
Development of T-Way Test Generation Tool for Combinatorial
Testing from Universiti Malaysia Pahang.

Table 2. Experimental results for ten skills set.
Number of Skills: 10

Team Size Team Cost
Run No. Best Max Mean Best Max Mean

1 3 5 4.00 3.00 09.47 5.91
2 3 7 4.50 3.00 19.10 8.07
3 3 6 4.90 3.00 14.37 9.22
4 3 6 4.00 3.00 13.57 6.05
5 3 5 4.00 3.00 09.63 5.96
6 3 6 4.60 3.00 13.27 7.72
7 3 5 4.00 3.00 09.57 5.95
8 4 5 4.50 5.80 09.70 7.48
9 3 6 4.30 3.00 14.06 7.24

10 3 6 3.90 3.00 13.48 5.76
Average: 3.10 5.70 4.27 3.28 12.62 6.93

Table 3. Experimental results for twenty skills set.
Number of Skills: 20

Team Size Team Cost
Run No. Best Max Mean Best Max Mean

1 9 17 13.70 34.40 126.38 84.89
2 11 19 14.30 51.47 162.93 93.39
3 12 17 14.30 63.26 127.87 92.09
4 11 18 14.60 53.19 144.46 96.90
5 8 18 13.40 27.58 144.87 84.31
6 11 19 15.20 53.68 160.71 104.96
7 8 17 12.90 27.76 123.47 76.76
8 13 21 16.00 74.53 201.17 117.31
9 8 17 13.20 27.02 129.22 78.86

10 8 18 13.30 27.72 142.36 81.19
Average: 9.90 18.10 14.09 44.06 146.34 91.07

Table 4. Experimental results for thirty skills set.
Number of Skills: 30

Team Size Team Cost
Run No. Best Max Mean Best Max Mean

1 17 32 24.80 131.73 477.11 293.77
2 16 26 21.70 116.71 314.63 222.13
3 18 33 24.50 150.26 509.70 287.80
4 18 29 23.00 145.68 388.54 250.36
5 17 30 25.70 132.36 423.08 313.24
6 22 27 24.40 221.84 338.35 275.87
7 20 31 25.50 185.42 443.79 305.36
8 17 31 24.10 134.34 448.98 278.32
9 17 30 23.00 132.12 417.83 252.34
10 20 29 24.20 184.00 389.72 274.56

Average: 18.20 29.80 24.09 153.45 415.17 275.38

Table 5. Experimental results for forty skills set.
Number of Skills: 40

Team Size Team Cost
Run No. Best Max Mean Best Max Mean

1 36 57 43.60 610.97 1543.96 917.37
2 29 51 40.80 397.12 1244.37 820.39
3 30 51 42.70 424.48 1238.25 880.23
4 31 50 44.00 450.86 1185.48 932.41
5 36 50 42.00 614.91 1191.22 844.63
6 27 49 40.30 344.17 1148.26 798.02
7 32 49 40.70 482.69 1144.75 795.58
8 32 50 39.70 482.02 1189.76 765.29
9 28 52 44.20 368.37 1284.70 949.86

10 33 50 40.70 514.76 1175.92 802.67
Average: 31.40 50.90 41.87 469.03 1234.67 850.65

Table 6. Experimental results for fifty skills set.
Number of Skills: 50

Team Size Team Cost
Run No. Best Max Mean Best Max Mean

1 58 82 69.40 1619.98 3243.82 2356.47
2 56 79 70.60 1507.68 3013.40 2429.45
3 42 76 62.00 0839.58 2786.84 1886.74
4 35 77 64.30 0587.31 2858.46 2057.60
5 54 80 63.80 1400.70 3072.34 1998.80
6 54 87 68.50 1401.32 3656.84 2330.99
7 54 86 66.70 1400.93 3557.04 2199.50
8 54 80 68.00 1403.77 3086.72 2256.34
9 49 76 61.70 1156.39 2790.19 1872.08

10 50 83 67.80 1201.66 3332.85 2256.43
Average: 50.60 80.60 66.28 1251.93 3139.85 2164.44

Figure 2. The average value of best, max and mean team size

(TS) for the different sets of test skills using JA.

Figure 3. The average value of best, max and mean team cost

(TC) for the different sets of test skills using JA.

Figure 4. Comparison of best and mean team size (TS) for the

different sets of test skills between JA and SCA.

Figure 5. Comparison of best and mean team cost (TC) for the

different sets of test skills between JA and SCA.

Figure 6. Average running time comparison for the different

sets of test skills between JA and SCA.

Table 7. Performance comparison of JA and SCA

Team Size Team Cost Average Running
Time (ms) Test Best Mean

Best Mean

 Skills JA SCA JA SCA JA SCA JA SCA JA SCA
10 3.10 3.10 4.27 4.50 3.28 3.28 6.93 7.83 20487.90 21332.50
20 9.90 10.60 14.09 14.64 44.06 49.89 91.07 98.95 21237.30 22191.40
30 18.20 19.40 24.09 24.95 153.45 175.16 275.38 297.14 24407.00 25342.90
40 31.40 32.80 41.87 43.94 469.03 513.51 850.65 934.65 23107.10 24076.00
50 50.60 54.90 66.28 70.34 1251.93 1468.00 2164.44 2440.65 23789.20 24419.50

Figure 7. Team Size (TS) vs. Team Cost (TC) analysis of JA

and SCA.

7. REFERENCES
[1] T. Lappas, K. Liu, and E. Terzi, "Finding a team of experts

in social networks," presented at the Proceedings of the 15th
ACM SIGKDD international conference on Knowledge
discovery and data mining, Paris, France, 2009.

[2] M. Kargar and A. An, "Discovering top-k teams of experts
with/without a leader in social networks," presented at the
Proceedings of the 20th ACM international conference on
Information and knowledge management, Glasgow,
Scotland, UK, 2011.

[3] M. Kargar, A. An, and M. Zihayat, "Efficient bi-objective
team formation in social networks," in Joint European
Conference on Machine Learning and Knowledge Discovery
in Databases, 2012: Springer, pp. 483-498.

[4] A. Majumder, S. Datta, and K. V. M. Naidu, "Capacitated
team formation problem on social networks," presented at the
Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining,
Beijing, China, 2012.

[5] A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gionis,
and S. Leonardi, Online Team Formation in Social Networks.
2012.

[6] M. Kargar, M. Zihayat, and A. An, "Finding Affordable and
Collaborative Teams from a Network of Experts," 2013, pp.
587-595.

[7] S. Rangapuram, T. Bühler, and M. Hein, Towards Realistic
Team Formation in Social Networks based on Densest
Subgraphs. 2013, pp. 1077-1088.

[8] X. Wang, Z. Zhao, and W. Ng, "USTF: A Unified System of
Team Formation," IEEE Transactions on Big Data, vol. 2,
no. 1, pp. 70-84, 2016, doi:
10.1109/TBDATA.2016.2546303.

[9] M. Fathian, M. Saei-Shahi, and A. Makui, "A New
Optimization Model for Reliable Team Formation Problem
Considering Experts’ Collaboration Network," IEEE
Transactions on Engineering Management, vol. 64, no. 4, pp.
586-593, 2017, doi: 10.1109/TEM.2017.2715825.

[10] J. Basiri, F. Taghiyareh, and A. Ghorbani, "Collaborative
team formation using brain drain optimization: a practical
and effective solution," World Wide Web, 02/18 2017, doi:
10.1007/s11280-017-0440-6.

[11] L. Li, H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin, and N.
Buchler, TEAMOPT: Interactive Team Optimization in Big
Networks. 2016, pp. 2485-2487.

[12] A. Farasat and A. G. Nikolaev, "Social Structure
Optimization in Team Formation," Computers & Operations
Research, vol. 74, 04/01 2016, doi:
10.1016/j.cor.2016.04.028.

[13] V. Baghel and S. Bhavani, Multiple Team Formation using
an Evolutionary Approach. 2019.

[14] A. A. Alsewari and K. Z. Zamli, "Interaction test data
generation using harmony search algorithm," in 2011 IEEE
Symposium on Industrial Electronics and Applications, 2011:
IEEE, pp. 559-564.

[15] X.-S. Yang, "Nature-Inspired Mateheuristic Algorithms:
Success and New Challenges," Journal of Computer
Engineering and Information Technology, vol. 01, 11/28
2012, doi: 10.4172/2324-9307.1000e101.

[16] T. F. Ghanem, W. S. Elkilani, and H. M. Abdul-Kader, "A
hybrid approach for efficient anomaly detection using
metaheuristic methods," Journal of advanced research, vol.
6, no. 4, pp. 609-619, 2015.

[17] H. M. Pandey, "Jaya a novel optimization algorithm: What,
how and why?," in 2016 6th International Conference -
Cloud System and Big Data Engineering (Confluence), 14-15
Jan. 2016 2016, pp. 728-730, doi:
10.1109/CONFLUENCE.2016.7508215.

[18] R. Venkata Rao, "Jaya: A simple and new optimization
algorithm for solving constrained and unconstrained
optimization problems," International Journal of Industrial
Engineering Computations, vol. 7, pp. 19-34, 01/01 2016,
doi: 10.5267/j.ijiec.2015.8.004.

[19] A. Alomoush, A. Alsewari, H. Alamri, and K. Zamli,
"Solving 0/1 Knapsack Problem Using Hybrid HS and Jaya
Algorithms," Advanced Science Letters, vol. 24, pp. 7486-
7489, 10/01 2018, doi: 10.1166/asl.2018.12964.

[20] A. B. Nasser, F. Hujainah, A. A. Al-Sewari, and K. Z.
Zamli, "An Improved Jaya Algorithm-Based Strategy for T-
Way Test Suite Generation," Cham, 2020: Springer
International Publishing, in Emerging Trends in Intelligent
Computing and Informatics, pp. 352-361.

[21] K. Zamli, A. Alsewari, and B. Ahmed, "Multi-Start Jaya
Algorithm for Software Module Clustering Problem,"
Azerbaijan Journal of High Performance Computing, vol. 1,
pp. 87-112, 08/12 2018, doi:
10.32010/26166127.2018.1.1.87.112.

[22] S. Mirjalili, "SCA: a sine cosine algorithm for solving
optimization problems," Knowledge-Based Systems, vol. 96,
pp. 120-133, 2016.

[23] K. Z. Zamli, F. Din, B. S. Ahmed, and M. Bures, "A hybrid
Q-learning sine-cosine-based strategy for addressing the
combinatorial test suite minimization problem," PloS one,
vol. 13, no. 5, p. e0195675, 2018.

[24] R. V. Rao, V. Savsani, and J. Balic, "Teaching–learning-
based optimization algorithm for unconstrained and
constrained real-parameter optimization problems,"
Engineering Optimization, vol. 44, no. 12, pp. 1447-1462,
2012.

