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ABSTRACT 
In this paper, we introduce an education tool for learning 
metaheuristic algorithms that allows displaying the convergence 
speed of the corresponding metaheuristic upon setting/changing 
the dependable parameters. This tool can be an educational 
assistant for beginners to learn metaheuristic in theoretical 
lectures as well as practical sessions. Implemented with Java, this 
tool provides a friendly GUI for setting the parameters and display 
the result from where the learner can see how the selected 
algorithm converges for a particular problem solution. Initially, 
this tool adopts only Crow Search, Jaya, and Sine Cosine 
algorithms. But more metaheuristics will be included in future 
research. However, this application is a useful tool that will help 
not only beginner learners but also the researchers. This paper also 
describes the proposed software tool and the mentioned 
metaheuristics in detail and provides future research work on it. 
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Optimization algorithms 
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1. INTRODUCTION 
Resource depletion forces people to make maximum profit at 
minimum cost, which is generally known as optimization. Several 
methods are proposed to solve optimization problems in literature. 
Among them, metaheuristic algorithms show enormous interest to 
the researchers for solving severe real-world optimization 
problems. These algorithms have global search capability (but no 
guarantee for getting optimal solution), provide solution rapidly, 
and offer easy handling and less time consumption to solve any 
complex real-world problem [1]. Many classification criteria may 
be used for metaheuristics [2] like nature-inspired metaheuristics 
versus non-nature-inspired or other metaheuristics, memory usage 
versus memoryless methods, deterministic versus stochastic, 
single-solution based search versus population-based search, 

greedy versus iterative. Among them, this paper emphasizes on 
the first broad category of classification that is nature-inspired 
versus non-nature-inspired classification.  

There are many nature-inspired metaheuristics are proposed in the 
literature. Crow Search Algorithm (simulate the intelligent food 
hiding behavior of crows) [3], Sooty Tern Optimization Algorithm 
(simulate the migration and attacking behaviors of sooty terns in 
real life) [4], Salp Swarm Algorithm (simulate swarming behavior 
of salps during navigating and foraging in oceans) [5], Owl Search 
Algorithm (simulate hunting mechanism of the owls in dark) [6] 
and Squirrel Search Algorithm (simulate dynamic foraging and 
gliding behavior) [7], Nomadic People Optimizer (simulate living 
behavior) [8] are recently developed and most popular 
metaheuristics. Besides, some example of other (non-nature-
inspired) metaheuristics are Jaya Algorithm (always move 
towards the best solution and should avoid the worst solution) [9], 
Sine Cosine Algorithm (fluctuate outwards or towards the best 
solution using sine cosine function) [10], TLBO (simulate the 
effect of influence of a teacher on learners) [11], Henry Gas 
Solubility Optimization (simulate the behavior of Henry’s law) 
[12], Simulated Annealing (simulate the annealing technique used 
in metallurgy) [13], Artificial Electric Field Algorithm (simulates 
the Coulomb's law of electrostatic force) [14]. Despite having a 
large variety of metaheuristic algorithms, there are still lack of 
tools [15, 16] to support learners (beginners or researchers in 
related areas) with the easiest and cost-effective way.  

There exists a few example of this kind of tool in literature such as 
in [17], a lego robot-based platform for learning metaheuristics 
through robot experiments which requires a costly hardware 
platform, in [18], an educational software tool (Problem 
Metaheuristic Solver) for the generic study of the concepts related 
to the optimization field which emphasizes on designing and 
analyzing the behavior of metaheuristics in a complicated way, 
and in [19], a web-based educational tool where two 
metaheuristics are adopted for benchmark functions only. 

Over the last decades, the evolution of technologies that provides 
opportunities to create digital learning environments that 
complement traditional learning systems. This is the main 
inspiration for the development of the proposed educational 
software tool that can be used for learning metaheuristic 
algorithms. For the initial development and simplicity of the 
proposed software tool, only three algorithms are adopted. These 
are the Crow Search Algorithm (CSA) from the nature-inspired 
category and Jaya Algorithm (JA) and Sine Cosine Algorithms 
(SCA) from non-nature-inspired or another category.  

The first algorithm, CSA, offers ease implementation and less 
adjustable parameters which imitates the intelligent behavior of 
crows for hiding and finding food. It provides outstanding results 
when solving engineering design/optimization problems. There 
are many improvements and hybridizations of CSA have been 
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proposed in the literature for different optimization problems 
because no metaheuristics can be useful for all optimization 
problems. The second algorithm, Jaya which is easier, more 
efficient, and more powerful algorithm for finding the global best 
solution. It has been applied to many benchmark functions for 
constrained and unconstrained problems successfully. The third 
algorithm, Sine Cosine algorithm which creates random candidate 
solutions initially and fluctuates them towards and backwards the 
best solution using sine cosine functions. During optimization, it 
avoids the local optima and converges to global optima 
effectively.  

The name of this proposed software tool is ETLMA in short 
which has a graphical user interface that can dynamically display 
the convergence rate to find the best solution of the corresponding 
optimization algorithm. Parameter settings of selected 
metaheuristic can be changed/modified and display the 
corresponding convergence graph dynamically. It helps the users 
or learners to understand the effect of changing the parameter 
settings of the corresponding metaheuristic in the convergence 
graph.  

ETLMA tool is coded in Java, run in windows 10 using CPU Intel 
core i7 2.20 GHz speed, and 8GB RAM. Learners can experiment 
using ETLMA as long as they run the ETLMA software. 
Moreover, ETLMA can be applied for digital educational 
purposes. Educators can easily show beginners to better 
understand the convergence rate upon changing the parameter 
settings of selected metaheuristic.  

The paper is structured accordingly as follows. Section 2 presents 
overview of the original CSA, JA, and SCA algorithms. A 
detailed discussion of ETLMA is presented in Section 3. Section 
4, outlines the applications of CSA in engineering design 
problems and JA and SCA. Finally, Section 5 concludes this study 
and gives the scope for future work. 

2. OVERVIEW OF METAHEURISTIC 
ALGORITHMS 
2.1 Crow Search Algorithm (CSA) 
This sub-section presents a general overview of the standard Crow 
Search Algorithm (CSA). This algorithm is a stochastic 
population-based nature-inspired novel metaheuristic algorithm 
that is proposed by Alireza Askarzadeh in 2016 [3] for solving 
continuous optimization problems. This algorithm was inspired by 
the intelligent behavior of Crows for hiding excess food. Each 
crow searches for better food sources or hiding places in the 
environment. The working principle of the CSA is described 
below. 

The pseudocode of CSA is shown in Algorithm 1. It contains 
eight steps that briefly stated as follows: 

1. Initialization of optimization problem (objective function, 
decision variables, and constraints) and CSA parameters 
(flock length (N), maximum number of iteration (itrmax), 
flight length (fl), awareness probability (AP)).  

2. Initialization positions with randomly generated feasible 
solution vector of the crows and fill the memory (m) by the 
initial position. 

3. Fitness or objective function evaluation (fitness quality is 
evaluated using the decision variable values). 

4. Crows new position generation by the following equation 
(repeated for all the crows) where ,  is the position vector 
of ith crow in itr iteration. 

5. Check and update the crow’s location if the position is 
feasible.  

6. Fitness evaluation for the new locations. 
7. If the fitness of the new position is better than the fitness of 

memory position than update memory with the new position. 
8. Check to stop criterion (repeated until itrmax is reached). 

Algorithm 1: Pseudocode of the original CSA 

Procedure CSA 
      Randomly initialize N crows positions in the search space  
      Evaluate the position of the crows  
      Memory initialization of each crow  
      while itr < itrmax do  
            for i = 1: N (all N crows of the flock) do  
                  Randomly choose one of the crows to follow                    (for example j)                    Define an awareness probability                   Generate r [0, 1]                    if r AP then                          xi,itr+1 = xi,itr + ri ×fl ×(mj,itr xi,itr )                  else                          xi,itr+1 = a random position                    end if  
            end for 
            Check the feasibility of new positions              Evaluate the new position of the crows              Update the memory of crows              itr = itr+1
      end while 
end procedure 

2.2 Jaya Algorithm (JA) 
This sub-section presents a general overview of the Jaya 
algorithm. It works by establishing the solution to problems 
through avoiding the worst solutions and moving towards the best 
optimal solution.  Although it is algorithm-specific parameter-
free, its performance depends on only a few control parameters, 
which are common to many optimization algorithms like 
population size, number of generations, and number of design 
variables [20]. The working principle of the Jaya algorithm is 
described below. 

Algorithm 2: Pseudocode of the original JA 

Procedure JA 
      Randomly initialize population size,  
            number of design variables, termination criteria  
      while itr < itrmax do  
            Identify best and worst solution 
            Modify the solutions based on best and worst solutions 
            X'j,k,i = Xj,k,i +r1,j,i (Xj,best,i - |Xj,k,i|) – r2,j,i (Xj,worst,i - |Xj,k,i|) 

            if X'j,k,i > Xj,k,i then  
                  accept and replace the previous solution             else  
                 keep the previous solution             end if  
            itr = itr+1
      end while 
      Report the optimum solution 
end procedure 

In Algorithm 2, the Jaya algorithm begins by initializing its basic 
parameters. These are termination criteria (here the maximum 
number of iterations are considered as the termination condition), 
population size (number of candidate solutions), and number of 



design variables. In the second and third steps, the best and worst 
solution is identified from the population and modify the 
solutions. In the fourth step shown, it is seen that if the updated 
solution is better than the previous solution, then it accepts and 
replaces the previous solution otherwise keeps the previous 
solution. In the final step, if the termination condition is satisfied, 
then it reports the optimum solution; otherwise, get back to the 
second step of this algorithm. 
2.3 Sine Cosine Algorithm (SCA) 
The sine-cosine algorithm (SCA) is a popular population-based 
metaheuristic algorithm proposed by Mirjalili [10]. It creates 
random candidate solutions initially and fluctuates them towards 
and backwards the best solution using sine cosine functions which 
are the same operator with a 90-degree phase shift [21]. During 
optimization, it avoids the local optima and converges to global 
optima effectively. The working principle of the Sine Cosine 
Algorithm is described below. 

Algorithm 3: Pseudocode of the original SCA 

Procedure SCA 
      Randomly initialize a set of search agents (solutions) (X) 
      while itr < itrmax do  
            Evaluate each of the search agents  
                   by the objective function 
           Update the best solution obtained so far (P=X*) 
           Update r1, r2, r3, and r4 
           Update the position of the search agents by  
                  following equation 

                   
sin | |, 0.5cos | |, 0.5 

            itr = itr+1
      end while 
      Report the global optimum solution 
end procedure 

In Algorithm 3, the SCA begins by initializing a set of search 
agents or solutions (X), termination criteria (here the maximum 
number of iterations are considered as the termination condition). 
The algorithm then evaluates each search agent by objective 
function and updates the best solution obtained so far. Then 
update the random variables , , , and which will be used 
in the equation mentioned in Algorithm 3 to update the position of 
the search agents. In the final step, if the termination condition is 
satisfied, then it reports the optimum solution, and the SCA 
algorithm terminates the optimization process by default. 

3. PROPOSED TOOL (ETLMA) 
The recommended metaheuristic learning tool (ETLMA) is an 
educational software tool developed in Java Standard Edition 8 
and aimed at learning the generic concept related to the 
metaheuristic. ETLMA is focused on studying metaheuristics, 
CSA, JA, and SCA. In this context, ETLMA has been designed to 
be used as an assistant during the theoretical lectures and as an 
experimental tool during the practical session, especially for 
convergence analysis. The main objective of ETLMA is to 
encompass the stages shown in Figure 1 when solving 
optimization problems as follows. 

1. Problem Selection: ETLMA provides options to choose 
optimization problems for finding the best solution.  

2. Configure the Parameters: The selected metaheuristic has 
multiple components/parameters that are needed to initialize, 
which determine how the search space will explore. ETLMA 

will set the parameters for the selected optimization problems 
automatically, which are changeable for further analysis. 

3. Execution of metaheuristic: Upon completion of the 
parameter settings, this stage will calculate the convergence 
rate of the selected metaheuristic for the specific 
optimization problem. 

4. Assessment of Result: ETLMA eases the assessment by 
generating the convergence curve, which shows that how 
selected metaheuristic behaves for the specific optimization 
problem. 

Figure 2 portrays a friendly graphical user interface (GUI) of 
ETLMA. And an example of calculating and showing 
convergence rate using arbitrary values of selected metaheuristic’s 
parameters for finding the optimal solution is shown in Figure 3.  

1. Problem Selection 2. Configure the 
Parameters

3. Execution of 
Metaheuristic 4. Assessment of Result

 
Figure 1. Stages of solving optimization problems by ETLMA. 
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Figure 2. Graphical User Interface of ETLMA Tool. 

 
Figure 3. An example of calculating and showing convergence 

rate using arbitrary values of selected metaheuristic’s 
parameters for finding the optimal solution. 

The GUI is organized and labeled in the following parts: 

1. Problem Selection: There are three metaheuristics (CSA, JA, 
and SCA) and five optimization problems that are added in 
ETLMA, which will be described in the later section. 



2. Problem Dimension: Search space dimension. (only for 
CSA) 

3. Population Size: Number of searchers or population size.  
4. Awareness Probability (AP): Convergence rate will increase 

for the small values of AP and vice versa. (only for CSA) 
5. Flight Length (fl): fl<1 leads the local search and fl>1 leads 

to the global search. (only for CSA) 
6. Lower Bound: Minimum value of any random location in 

search space. 
7. Upper Bound: Maximum value of any random location in 

search space. 
8. Max Iteration: Termination criteria. 
9. Evaluate: Clicking this button will calculate and show the 

convergence curve for the selected metaheuristic. 
10. Clear: Clicking this button will clear all the parameter values 

and set them to null. 
11. Save Chart: Clicking this button will save the convergence 

curve shown in part no. 12. 
12. Convergence Curve: For each clicking on the button 

“Evaluate” will show the convergence curve in this area. 
13. Displays the name of the proposed software tool. 
14. Exit/Closing the ETLMA. 

4. APPLICATIONS OF METAHEURISTICS 
IN ENGINEERING DESIGN PROBLEMS 
In ETLMA, six engineering optimization (Design) problems that 
are mentioned in [3] are used for experimenting the CSA’s 
convergence rate. The parameter settings for solving those design 
problems are presented in Table 1. 

Table 1. Parameter setting used in ETLMA for solving 
engineering design problems [3]. 

SI Engineering Design Problem N itrmax fl AP 
1. Three-Bar Truss 50 500 2 0.1 
2. Pressure Vessel 50 5000 2 0.1 
3. Tension/Compression Spring 50 1000 2 0.1 
4. Welded Beam 50 2000 2 0.1 
5. Gear Train 20 500 2 0.1 
6. Belleville Spring 50 1000 2 0.1 

Although there are a few default optimization problems added in 
ETLMA, this tool can be used for other optimization problems by 
setting the parameters’ value to show the convergence curve. 
Figure 4-6 shows the CSA’s convergence rate for finding the 
global best solution to the corresponding optimization problem. 
For the limitation of the number pages, only figures (CSA’s 
convergence rate) for the first three engineering optimization 
problems mentioned in Table 1 are shown. Figure 7 and Figure 8, 
show the convergence rate for the selected function [(x-2)*(x-4)].  

5. CONCLUSION AND FUTURE WORK 
This paper describes an education software tool ETLMA for 
assisting the learners in understanding metaheuristics (CSA, JA, 
SCA). This software tool attempts to conduit the gap between the 
learning of theory and practice by exploring the features of 
metaheuristics. Using the ETLMA, learners able to see and 
understand the effect of updating the parameter setting of the 
selected metaheuristic dynamically. Future research works will 
include more metaheuristics and benchmark functions in this tool. 
Additionally, a learner can pick the better metaheuristic which 
convergences faster than the others for the same parameter 
settings. Authors of this paper believe that ETLMA is useful for 
learning metaheuristic fundamentals. 

 
Figure 4. Graph showing the CSA’s convergence rate for the 

Three-Bar Truss problem. 

 
Figure 5. Graph showing the CSA’s convergence rate for the 

Pressure Vessel problem. 

 
Figure 6. Graph showing the CSA’s convergence rate for the 

Tensor/Compression Spring problem. 

 
Figure 7. Graph showing the JA’s convergence rate for the 

selected function. 



 
Figure 8. Graph showing the SCA’s convergence rate for the 

selected function. 
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