
An Educational Tool Aimed at Learning Metaheuristics
Md. Abdul Kader
Faculty of Computing

Universiti Malaysia Pahang
Pahang, Malaysia

kdr2k10@gmail.com

Jamal A. Jamaluddin
Pakaratwork Sdn. Bhd
47820 Petaling Jaya
Selangor, Malaysia

jamal@pakaratwork.com

Kamal Z. Zamli
Faculty of Computing

Universiti Malaysia Pahang
Pahang, Malaysia

kamalz@ump.edu.my

ABSTRACT
In this paper, we introduce an education tool for learning
metaheuristic algorithms that allows displaying the convergence
speed of the corresponding metaheuristic upon setting/changing
the dependable parameters. This tool can be an educational
assistant for beginners to learn metaheuristic in theoretical
lectures as well as practical sessions. Implemented with Java, this
tool provides a friendly GUI for setting the parameters and display
the result from where the learner can see how the selected
algorithm converges for a particular problem solution. Initially,
this tool adopts only Crow Search, Jaya, and Sine Cosine
algorithms. But more metaheuristics will be included in future
research. However, this application is a useful tool that will help
not only beginner learners but also the researchers. This paper also
describes the proposed software tool and the mentioned
metaheuristics in detail and provides future research work on it.

CCS Concepts
• Computing methodologies Symbolic and algebraic
manipulation Symbolic and algebraic algorithms
Optimization algorithms

Keywords
Metaheuristic Algorithm; Crow Search Algorithm (CSA); Jaya
Algorithm (JA); Sine Cosine Algorithm (SCA); Applications of
CSA; Metaheuristic Algorithms Learning Tool.

1. INTRODUCTION
Resource depletion forces people to make maximum profit at
minimum cost, which is generally known as optimization. Several
methods are proposed to solve optimization problems in literature.
Among them, metaheuristic algorithms show enormous interest to
the researchers for solving severe real-world optimization
problems. These algorithms have global search capability (but no
guarantee for getting optimal solution), provide solution rapidly,
and offer easy handling and less time consumption to solve any
complex real-world problem [1]. Many classification criteria may
be used for metaheuristics [2] like nature-inspired metaheuristics
versus non-nature-inspired or other metaheuristics, memory usage
versus memoryless methods, deterministic versus stochastic,
single-solution based search versus population-based search,

greedy versus iterative. Among them, this paper emphasizes on
the first broad category of classification that is nature-inspired
versus non-nature-inspired classification.

There are many nature-inspired metaheuristics are proposed in the
literature. Crow Search Algorithm (simulate the intelligent food
hiding behavior of crows) [3], Sooty Tern Optimization Algorithm
(simulate the migration and attacking behaviors of sooty terns in
real life) [4], Salp Swarm Algorithm (simulate swarming behavior
of salps during navigating and foraging in oceans) [5], Owl Search
Algorithm (simulate hunting mechanism of the owls in dark) [6]
and Squirrel Search Algorithm (simulate dynamic foraging and
gliding behavior) [7], Nomadic People Optimizer (simulate living
behavior) [8] are recently developed and most popular
metaheuristics. Besides, some example of other (non-nature-
inspired) metaheuristics are Jaya Algorithm (always move
towards the best solution and should avoid the worst solution) [9],
Sine Cosine Algorithm (fluctuate outwards or towards the best
solution using sine cosine function) [10], TLBO (simulate the
effect of influence of a teacher on learners) [11], Henry Gas
Solubility Optimization (simulate the behavior of Henry’s law)
[12], Simulated Annealing (simulate the annealing technique used
in metallurgy) [13], Artificial Electric Field Algorithm (simulates
the Coulomb's law of electrostatic force) [14]. Despite having a
large variety of metaheuristic algorithms, there are still lack of
tools [15, 16] to support learners (beginners or researchers in
related areas) with the easiest and cost-effective way.

There exists a few example of this kind of tool in literature such as
in [17], a lego robot-based platform for learning metaheuristics
through robot experiments which requires a costly hardware
platform, in [18], an educational software tool (Problem
Metaheuristic Solver) for the generic study of the concepts related
to the optimization field which emphasizes on designing and
analyzing the behavior of metaheuristics in a complicated way,
and in [19], a web-based educational tool where two
metaheuristics are adopted for benchmark functions only.

Over the last decades, the evolution of technologies that provides
opportunities to create digital learning environments that
complement traditional learning systems. This is the main
inspiration for the development of the proposed educational
software tool that can be used for learning metaheuristic
algorithms. For the initial development and simplicity of the
proposed software tool, only three algorithms are adopted. These
are the Crow Search Algorithm (CSA) from the nature-inspired
category and Jaya Algorithm (JA) and Sine Cosine Algorithms
(SCA) from non-nature-inspired or another category.

The first algorithm, CSA, offers ease implementation and less
adjustable parameters which imitates the intelligent behavior of
crows for hiding and finding food. It provides outstanding results
when solving engineering design/optimization problems. There
are many improvements and hybridizations of CSA have been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
ICSCA 2020, February 18–21, 2020, Langkawi, Malaysia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7665-5/20/02…$15.00
https://doi.org/10.1145/3384544.3384597

proposed in the literature for different optimization problems
because no metaheuristics can be useful for all optimization
problems. The second algorithm, Jaya which is easier, more
efficient, and more powerful algorithm for finding the global best
solution. It has been applied to many benchmark functions for
constrained and unconstrained problems successfully. The third
algorithm, Sine Cosine algorithm which creates random candidate
solutions initially and fluctuates them towards and backwards the
best solution using sine cosine functions. During optimization, it
avoids the local optima and converges to global optima
effectively.

The name of this proposed software tool is ETLMA in short
which has a graphical user interface that can dynamically display
the convergence rate to find the best solution of the corresponding
optimization algorithm. Parameter settings of selected
metaheuristic can be changed/modified and display the
corresponding convergence graph dynamically. It helps the users
or learners to understand the effect of changing the parameter
settings of the corresponding metaheuristic in the convergence
graph.

ETLMA tool is coded in Java, run in windows 10 using CPU Intel
core i7 2.20 GHz speed, and 8GB RAM. Learners can experiment
using ETLMA as long as they run the ETLMA software.
Moreover, ETLMA can be applied for digital educational
purposes. Educators can easily show beginners to better
understand the convergence rate upon changing the parameter
settings of selected metaheuristic.

The paper is structured accordingly as follows. Section 2 presents
overview of the original CSA, JA, and SCA algorithms. A
detailed discussion of ETLMA is presented in Section 3. Section
4, outlines the applications of CSA in engineering design
problems and JA and SCA. Finally, Section 5 concludes this study
and gives the scope for future work.

2. OVERVIEW OF METAHEURISTIC
ALGORITHMS
2.1 Crow Search Algorithm (CSA)
This sub-section presents a general overview of the standard Crow
Search Algorithm (CSA). This algorithm is a stochastic
population-based nature-inspired novel metaheuristic algorithm
that is proposed by Alireza Askarzadeh in 2016 [3] for solving
continuous optimization problems. This algorithm was inspired by
the intelligent behavior of Crows for hiding excess food. Each
crow searches for better food sources or hiding places in the
environment. The working principle of the CSA is described
below.

The pseudocode of CSA is shown in Algorithm 1. It contains
eight steps that briefly stated as follows:

1. Initialization of optimization problem (objective function,
decision variables, and constraints) and CSA parameters
(flock length (N), maximum number of iteration (itrmax),
flight length (fl), awareness probability (AP)).

2. Initialization positions with randomly generated feasible
solution vector of the crows and fill the memory (m) by the
initial position.

3. Fitness or objective function evaluation (fitness quality is
evaluated using the decision variable values).

4. Crows new position generation by the following equation
(repeated for all the crows) where , is the position vector
of ith crow in itr iteration.

5. Check and update the crow’s location if the position is
feasible.

6. Fitness evaluation for the new locations.
7. If the fitness of the new position is better than the fitness of

memory position than update memory with the new position.
8. Check to stop criterion (repeated until itrmax is reached).

Algorithm 1: Pseudocode of the original CSA

Procedure CSA
 Randomly initialize N crows positions in the search space
 Evaluate the position of the crows
 Memory initialization of each crow
 while itr < itrmax do
 for i = 1: N (all N crows of the flock) do
 Randomly choose one of the crows to follow (for example j) Define an awareness probability Generate r [0, 1] if r AP then xi,itr+1 = xi,itr + ri ×fl ×(mj,itr xi,itr) else xi,itr+1 = a random position end if
 end for
 Check the feasibility of new positions Evaluate the new position of the crows Update the memory of crows itr = itr+1
 end while
end procedure

2.2 Jaya Algorithm (JA)
This sub-section presents a general overview of the Jaya
algorithm. It works by establishing the solution to problems
through avoiding the worst solutions and moving towards the best
optimal solution. Although it is algorithm-specific parameter-
free, its performance depends on only a few control parameters,
which are common to many optimization algorithms like
population size, number of generations, and number of design
variables [20]. The working principle of the Jaya algorithm is
described below.

Algorithm 2: Pseudocode of the original JA

Procedure JA
 Randomly initialize population size,
 number of design variables, termination criteria
 while itr < itrmax do
 Identify best and worst solution
 Modify the solutions based on best and worst solutions
 X'j,k,i = Xj,k,i +r1,j,i (Xj,best,i - |Xj,k,i|) – r2,j,i (Xj,worst,i - |Xj,k,i|)

 if X'j,k,i > Xj,k,i then
 accept and replace the previous solution else
 keep the previous solution end if
 itr = itr+1
 end while
 Report the optimum solution
end procedure

In Algorithm 2, the Jaya algorithm begins by initializing its basic
parameters. These are termination criteria (here the maximum
number of iterations are considered as the termination condition),
population size (number of candidate solutions), and number of

design variables. In the second and third steps, the best and worst
solution is identified from the population and modify the
solutions. In the fourth step shown, it is seen that if the updated
solution is better than the previous solution, then it accepts and
replaces the previous solution otherwise keeps the previous
solution. In the final step, if the termination condition is satisfied,
then it reports the optimum solution; otherwise, get back to the
second step of this algorithm.
2.3 Sine Cosine Algorithm (SCA)
The sine-cosine algorithm (SCA) is a popular population-based
metaheuristic algorithm proposed by Mirjalili [10]. It creates
random candidate solutions initially and fluctuates them towards
and backwards the best solution using sine cosine functions which
are the same operator with a 90-degree phase shift [21]. During
optimization, it avoids the local optima and converges to global
optima effectively. The working principle of the Sine Cosine
Algorithm is described below.

Algorithm 3: Pseudocode of the original SCA

Procedure SCA
 Randomly initialize a set of search agents (solutions) (X)
 while itr < itrmax do
 Evaluate each of the search agents
 by the objective function
 Update the best solution obtained so far (P=X*)
 Update r1, r2, r3, and r4
 Update the position of the search agents by
 following equation

sin | |, 0.5cos | |, 0.5

 itr = itr+1
 end while
 Report the global optimum solution
end procedure

In Algorithm 3, the SCA begins by initializing a set of search
agents or solutions (X), termination criteria (here the maximum
number of iterations are considered as the termination condition).
The algorithm then evaluates each search agent by objective
function and updates the best solution obtained so far. Then
update the random variables , , , and which will be used
in the equation mentioned in Algorithm 3 to update the position of
the search agents. In the final step, if the termination condition is
satisfied, then it reports the optimum solution, and the SCA
algorithm terminates the optimization process by default.

3. PROPOSED TOOL (ETLMA)
The recommended metaheuristic learning tool (ETLMA) is an
educational software tool developed in Java Standard Edition 8
and aimed at learning the generic concept related to the
metaheuristic. ETLMA is focused on studying metaheuristics,
CSA, JA, and SCA. In this context, ETLMA has been designed to
be used as an assistant during the theoretical lectures and as an
experimental tool during the practical session, especially for
convergence analysis. The main objective of ETLMA is to
encompass the stages shown in Figure 1 when solving
optimization problems as follows.

1. Problem Selection: ETLMA provides options to choose
optimization problems for finding the best solution.

2. Configure the Parameters: The selected metaheuristic has
multiple components/parameters that are needed to initialize,
which determine how the search space will explore. ETLMA

will set the parameters for the selected optimization problems
automatically, which are changeable for further analysis.

3. Execution of metaheuristic: Upon completion of the
parameter settings, this stage will calculate the convergence
rate of the selected metaheuristic for the specific
optimization problem.

4. Assessment of Result: ETLMA eases the assessment by
generating the convergence curve, which shows that how
selected metaheuristic behaves for the specific optimization
problem.

Figure 2 portrays a friendly graphical user interface (GUI) of
ETLMA. And an example of calculating and showing
convergence rate using arbitrary values of selected metaheuristic’s
parameters for finding the optimal solution is shown in Figure 3.

1. Problem Selection 2. Configure the
Parameters

3. Execution of
Metaheuristic 4. Assessment of Result

Figure 1. Stages of solving optimization problems by ETLMA.

1
2

3
4

5
6

7
8

9
10

14

13

12

11

Figure 2. Graphical User Interface of ETLMA Tool.

Figure 3. An example of calculating and showing convergence

rate using arbitrary values of selected metaheuristic’s
parameters for finding the optimal solution.

The GUI is organized and labeled in the following parts:

1. Problem Selection: There are three metaheuristics (CSA, JA,
and SCA) and five optimization problems that are added in
ETLMA, which will be described in the later section.

2. Problem Dimension: Search space dimension. (only for
CSA)

3. Population Size: Number of searchers or population size.
4. Awareness Probability (AP): Convergence rate will increase

for the small values of AP and vice versa. (only for CSA)
5. Flight Length (fl): fl<1 leads the local search and fl>1 leads

to the global search. (only for CSA)
6. Lower Bound: Minimum value of any random location in

search space.
7. Upper Bound: Maximum value of any random location in

search space.
8. Max Iteration: Termination criteria.
9. Evaluate: Clicking this button will calculate and show the

convergence curve for the selected metaheuristic.
10. Clear: Clicking this button will clear all the parameter values

and set them to null.
11. Save Chart: Clicking this button will save the convergence

curve shown in part no. 12.
12. Convergence Curve: For each clicking on the button

“Evaluate” will show the convergence curve in this area.
13. Displays the name of the proposed software tool.
14. Exit/Closing the ETLMA.

4. APPLICATIONS OF METAHEURISTICS
IN ENGINEERING DESIGN PROBLEMS
In ETLMA, six engineering optimization (Design) problems that
are mentioned in [3] are used for experimenting the CSA’s
convergence rate. The parameter settings for solving those design
problems are presented in Table 1.

Table 1. Parameter setting used in ETLMA for solving
engineering design problems [3].

SI Engineering Design Problem N itrmax fl AP
1. Three-Bar Truss 50 500 2 0.1
2. Pressure Vessel 50 5000 2 0.1
3. Tension/Compression Spring 50 1000 2 0.1
4. Welded Beam 50 2000 2 0.1
5. Gear Train 20 500 2 0.1
6. Belleville Spring 50 1000 2 0.1

Although there are a few default optimization problems added in
ETLMA, this tool can be used for other optimization problems by
setting the parameters’ value to show the convergence curve.
Figure 4-6 shows the CSA’s convergence rate for finding the
global best solution to the corresponding optimization problem.
For the limitation of the number pages, only figures (CSA’s
convergence rate) for the first three engineering optimization
problems mentioned in Table 1 are shown. Figure 7 and Figure 8,
show the convergence rate for the selected function [(x-2)*(x-4)].

5. CONCLUSION AND FUTURE WORK
This paper describes an education software tool ETLMA for
assisting the learners in understanding metaheuristics (CSA, JA,
SCA). This software tool attempts to conduit the gap between the
learning of theory and practice by exploring the features of
metaheuristics. Using the ETLMA, learners able to see and
understand the effect of updating the parameter setting of the
selected metaheuristic dynamically. Future research works will
include more metaheuristics and benchmark functions in this tool.
Additionally, a learner can pick the better metaheuristic which
convergences faster than the others for the same parameter
settings. Authors of this paper believe that ETLMA is useful for
learning metaheuristic fundamentals.

Figure 4. Graph showing the CSA’s convergence rate for the

Three-Bar Truss problem.

Figure 5. Graph showing the CSA’s convergence rate for the

Pressure Vessel problem.

Figure 6. Graph showing the CSA’s convergence rate for the

Tensor/Compression Spring problem.

Figure 7. Graph showing the JA’s convergence rate for the

selected function.

Figure 8. Graph showing the SCA’s convergence rate for the

selected function.

6. ACKNOWLEDGMENTS
This research is funded by RDU Grant No. UIC191202: The
Development of T-Way Test Generation Tool for Combinatorial
Testing from Universiti Malaysia Pahang.

7. REFERENCES
[1] M. Jain, A. Rani, and V. Singh, "An improved Crow Search

Algorithm for high-dimensional problems," Journal of
Intelligent & Fuzzy Systems, vol. 33, no. 6, pp. 3597-3614,
2017.

[2] E.-G. Talbi, Metaheuristics: From Design to Implementation.
Wiley Publishing, 2009, p. 593.

[3] A. Askarzadeh, "A novel metaheuristic method for solving
constrained engineering optimization problems: Crow search
algorithm," Computers & Structures, vol. 169, pp. 1-12,
2016/06/01/ 2016, doi:
https://doi.org/10.1016/j.compstruc.2016.03.001.

[4] G. Dhiman and A. Kaur, "STOA: A bio-inspired based
optimization algorithm for industrial engineering problems,"
Engineering Applications of Artificial Intelligence, vol. 82,
pp. 148-174, 2019/06/01/ 2019, doi:
https://doi.org/10.1016/j.engappai.2019.03.021.

[5] S. Mirjalili, A. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris,
and S. Mirjalili, "Salp Swarm Algorithm: A bio-inspired
optimizer for engineering design problems," Advances in
Engineering Software, 07/01 2017, doi:
10.1016/j.advengsoft.2017.07.002.

[6] M. Jain, S. Maurya, A. Rani, and V. Singh, "Owl search
algorithm: A novel nature-inspired heuristic paradigm for
global optimization," Journal of Intelligent & Fuzzy Systems,
vol. 34, pp. 1573-1582, 03/22 2018, doi: 10.3233/JIFS-
169452.

[7] M. Jain, V. Singh, and A. Rani, "A novel nature-inspired
algorithm for optimization: Squirrel search algorithm,"
Swarm and Evolutionary Computation, vol. 44, 02/01 2018,
doi: 10.1016/j.swevo.2018.02.013.

[8] S. Q. Salih and A. A. Alsewari, "A new algorithm for normal
and large-scale optimization problems: Nomadic People

Optimizer," Neural Computing and Applications, pp. 1-28,
2019.

[9] R. Venkata Rao, "Jaya: A simple and new optimization
algorithm for solving constrained and unconstrained
optimization problems," International Journal of Industrial
Engineering Computations, vol. 7, pp. 19-34, 01/01 2016,
doi: 10.5267/j.ijiec.2015.8.004.

[10] S. Mirjalili, "SCA: a sine cosine algorithm for solving
optimization problems," Knowledge-Based Systems, vol. 96,
pp. 120-133, 2016.

[11] R. V. Rao, V. Savsani, and J. Balic, "Teaching–learning-
based optimization algorithm for unconstrained and
constrained real-parameter optimization problems,"
Engineering Optimization, vol. 44, no. 12, pp. 1447-1462,
2012.

[12] F. A. Hashim, E. H. Houssein, M. S. Mabrouk, W. Al-
Atabany, and S. Mirjalili, "Henry gas solubility optimization:
A novel physics-based algorithm," Future Generation
Computer Systems, vol. 101, pp. 646-667, 2019.

[13] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization
by simulated annealing," science, vol. 220, no. 4598, pp.
671-680, 1983.

[14] A. Yadav, "AEFA: Artificial electric field algorithm for
global optimization," Swarm and Evolutionary Computation,
vol. 48, pp. 93-108, 2019.

[15] K. Z. Zamli, N. A. M. Isa, M. F. J. Klaib, and S. N. Azizan,
"A tool for automated test data generation (and execution)
based on combinatorial approach," International Journal of
Software Engineering and Its Applications, vol. 1, no. 1, pp.
19-35, 2007.

[16] A. A. Alsewari and K. Z. Zamli, "Interaction test data
generation using harmony search algorithm," in 2011 IEEE
Symposium on Industrial Electronics and Applications, 2011:
IEEE, pp. 559-564.

[17] D. Zaldivar, E. Cuevas, O. Maciel, A. Valdivia, E. Chavolla,
and D. Oliva, "Learning classical and metaheuristic
optimization techniques by using an educational platform
based on LEGO robots," The International Journal of
Electrical Engineering & Education, p. 0020720918822738,
2019.

[18] C. Expósito Izquierdo, I. López Plata, and J. M. Moreno
Vega, "Problem MetaHeuristic Solver: An educational tool
aimed at studying heuristic optimization methods," Computer
Applications in Engineering Education, vol. 23, no. 6, pp.
897-909, 2015.

[19] G. Sar man and E. U. Küçüksille, "Web based educational
tool for metaheuristic algorithms," Pamukkale Üniversitesi
Mühendislik Bilimleri Dergisi, vol. 20, no. 2, pp. 46-53,
2014.

[20] A. B. Nasser, F. Hujainah, A. A. Al-Sewari, and K. Z.
Zamli, "An Improved Jaya Algorithm-Based Strategy for T-
Way Test Suite Generation," Cham, 2020: Springer
International Publishing, in Emerging Trends in Intelligent
Computing and Informatics, pp. 352-361.

[21] K. Z. Zamli, F. Din, B. S. Ahmed, and M. Bures, "A hybrid
Q-learning sine-cosine-based strategy for addressing the
combinatorial test suite minimization problem," PloS one,
vol. 13, no. 5, p. e0195675, 2018.

