# AN EXPERIMENTAL STUDY OF THE STRUCTURAL CAPACITY OF RECTANGULAR CONCRETE BEAM WITH RICE HUSK CONCRETE (RHC) UNDER FLEXURAL TEST- 5% AND 15% RICE HUSK REPLACEMENT

## MUHAMMAD ADIB AZRI BIN MOHAMAD NASARUDDIN

## B. ENG(HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

## UNIVERSITI MALAYSIA PAHANG

| DECLARATION OF THESIS AND COPYRIGHT                                                                                                                                                                                                                                                                     |                                                                                                                       |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Author's Full Name                                                                                                                                                                                                                                                                                      | : MUHAMMAD ADIB AZRI BIN MOHAMAD NASARUDDIN                                                                           |  |  |  |  |
| Date of Birth                                                                                                                                                                                                                                                                                           | : <u>25 OCTOBER 1993</u>                                                                                              |  |  |  |  |
| Title                                                                                                                                                                                                                                                                                                   | : AN EXPERIMENTAL STUDY OF THE STRUCTURAL                                                                             |  |  |  |  |
|                                                                                                                                                                                                                                                                                                         | CAPACITY OF RECTANGULAR CONCRETE BEAM WITH_                                                                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                         | RICE HUSK CONCRETE (RHC) UNDER FLEXURAL TEST-                                                                         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                         | 5% AND 15% OF RICE HUSK REPLACMENT                                                                                    |  |  |  |  |
| Academic Session                                                                                                                                                                                                                                                                                        | : 2018/2019                                                                                                           |  |  |  |  |
| I declare that this thesi                                                                                                                                                                                                                                                                               | s is classified as:                                                                                                   |  |  |  |  |
| CONFIDENTIA                                                                                                                                                                                                                                                                                             | L (Contains confidential information under the Official                                                               |  |  |  |  |
| □ RESTRICTED                                                                                                                                                                                                                                                                                            | (Contains restricted information as specified by the                                                                  |  |  |  |  |
| ☑ OPEN ACCESS                                                                                                                                                                                                                                                                                           | organization where research was done)*<br>I agree that my thesis to be published as online open access<br>(Full Text) |  |  |  |  |
| I acknowledge that Un                                                                                                                                                                                                                                                                                   | iversiti Malaysia Pahang reserves the following rights:                                                               |  |  |  |  |
| <ol> <li>The Thesis is the Property of Universiti Malaysia Pahang</li> <li>The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for<br/>the purpose of research only.</li> <li>The Library has the right to make copies of the thesis for academic exchange.</li> </ol> |                                                                                                                       |  |  |  |  |
| Certified by:                                                                                                                                                                                                                                                                                           |                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                         |                                                                                                                       |  |  |  |  |
| (Student's Signat                                                                                                                                                                                                                                                                                       | ure) (Supervisor's Signature)                                                                                         |  |  |  |  |
| <u>931025-08-693</u><br>New IC/Passport N<br>Date:                                                                                                                                                                                                                                                      | 35 SHARIZA BINTI MAT ARIS<br>umber Name of Supervisor<br>Date:                                                        |  |  |  |  |

NOTE : \* If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.



## SUPERVISOR'S DECLARATION

I hereby declare that I have checked this project and in my opinion, this project is adequate in terms of scope and quality for the award of the Bachelor Degree of Civil Engineering

(Supervisor's Signature) Full Name : SHARIZA BINTI MAT ARIS Position : LECTURER Date :



### STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : MUHAMMAD ADIB AZRI BIN MOHAMAD NASARUDDIN ID Number : AA15052 Date :

## AN EXPERIMENTAL STUDY OF THE STRUCTUAL CAPACITY OF RECTANGULAR CONCRETE BEAM WITH RICE HUSK CONCRETE (RHC) UNDER FLEXURAL TEST- 5% AND 15% OF RICE HUSK REPLACEMENT

#### MUHAMMAD ADIB AZRI BIN MOHAMAD NASARUDDIN

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JANUARY 2019

#### ACKNOWLEDGEMENTS

Alhamdulillah, all the praise are for the Almighty, Allah S.W.T, who bestowed me with ability and strength to complete this thesis despite all the challenged I need to face. First of all, I would like to express my sincere gratitude to my supervisor, Madam Shariza Bt Mat Aris for her patience, valuable guidance and her time in order to consult me on how to conduct this study from the beginning until the end of my research. Her guide was very details step by step and really easy to understand. Without her patience and guidance, I will never reach to the end of my study.

Secondly, my precious thanks is to my mother who keep supporting me in term of morality and financial. There are several situations that make me demoralized but thanks to her continuous moral support, I step up again for the sake of my study, my family and my future. Special thanks to my course mate who helped me to spent his time and energy during the laboratory work. The idea and opinion that we change together will be part of the valuable memories in our study life.

I also extend my deepest thanks to all the staff at Concrete Laboratory of University Malaysia Pahang for their kindness to help me during my laboratory work and testing. They share all their experience with me and I gain a lot of knowledge from them especially for hands on work in lab. Not to forget, I would like to thank UMP Library for provide me the best references in my research to get better view in my scope of study. Lastly, thank you to all parties that involved indirectly to achieve the goals for this study.

#### ABSTRAK

Objektif kajian ini adalah bertujuan untuk mengkaji dan menganalisa tentang kapasiti maksimum bebanan, kapasiti momen maksimum dan tindak balas lanturan yang boleh ditampung oleh konkrit bertetulang dengan penggantian peratusan pasir halus dan sekam padi. Peratusan penggantian antara sekam padi dan pasir di dalam kajian ini ialah 5% dan 15% dengan gred konkrit C25/30. Jumlah sampel rasuk konkrit bertetulang yang telah disediakan adalah sebanyak 9 sampel yang berukuran 1500 mm x 150 mm x 300 mm bagi ujian lenturan dan 9 sampel kiub berukuran 150 mm x 150 mm x 150 mm bagi ujian kekuatan kompresif. Diantara 9 sampel tersebut, 3 daripadanya disediakan sebagai sampel contoh bagi tujuan rujukan dan 6 sampel selebihnya masing-masing dengan 5% dan 15% penggantian sekam padi. Hasil keputusan daripada kajian ini, nilai kapisiti maksimum bebanan bagi 5% penggantian sekam padi di dalam rasuk dan sampel rasuk rujukan menunjukkan tiada perbezaan yang ketara. Walau bagaimanapun, nilai kapasiti maksimum bebanan berkurang apabila penggantian sekam padi di dalam rasuk meningkat sebanyak 15%. Tambahan pula, lenturan rasuk bagi 5% penggantian sekam padi dan rasuk rujukan menunjukkan hasil yang positif dimana nilai lenturan kedua-dua sampel tiada perbezaan yang ketara. Bagi 15% peggantian sekam padi, graf lenturan menunjukkan lenturan terjadi lebih awal berbanding kedua-dua sampel yang lain. Nilai momen maksimum juga semakin berkurangan apabila sekam padi digantikan sebanyak 15% berbanding dengan 5% dan rasuk rujukan. Tujuan kajian ini dilakukan adalah bagi menyumbang alternatif dalam industri pembinaan dengan tujuan menghasilkan bangunan yang lebih murah tetapi mempunyai kekuatan dan kualiti yang sama, membantu menyelamatkan sumber alam semula jadi dan membantu negara dalam masalah kekurangan tempat pelupusan sampah. Kesemua ujian dan kajian telah dilakukan oleh staf yang mahir dan data telah dikumpul dan dianalisa.

#### ABSTRACT

The purpose of this study is to investigate the ultimate loading capacity, maximum moment capacity and deflection that can withstand by a reinforced concrete with the replacement of certain percentage of fine aggregate or sand with raw rice husk. The percentage replacements of the raw rice husks involve in this study are 5% and 15% mixed with concrete grade C25/30. The total of sample that had been prepared is 9 reinforced concrete beams with dimensions of 1500mm x 150mm x 300mm for flexural test and 9 cube samples which dimension size is 150mm x 150mm x 150mm for compressive strength test. Within the 9 beam samples, 3 of it is for controlled sample as references and another 6 beam samples is for 5% and 15% of rice husk replacement respectively. The results from this study indicates that, the ultimate loading capacity between 5% raw rice husk replacement beam and controlled beam show no huge differences. However, the ultimate loading capacity decrease when the rice husk replacement increase up to 15%. In addition, the deflection of 5% testing sample and controlled beam sample shows positive outcome where both deflection value is quite same. For the 15% sample, the curve of deflection shows that the deflection occurs faster than other two samples. The maximum moment also keep decreasing when the 15% replacement of rice husk in the beam while no big gap between the controlled beam and 5% beam samples. The aim of this experimental study is to contribute the idea to construction industry in order to produce economical buildings with same quality of strength, help in saving the natural sources and also help the government on the issues of constraint landfill area. All the testing is conducted in laboratory by the competent technical staff and the result is gathered and analyse precisely.

## TABLE OF CONTENT

| DEC  | LARA    | TION                                           |      |
|------|---------|------------------------------------------------|------|
| TITI | LE PAG  | E                                              | i    |
| ACK  | NOWL    | EDGEMENTS                                      | ii   |
| ABS  | TRAK    |                                                | iii  |
| ABS  | TRACT   |                                                | iv   |
| ТАВ  | LE OF   | CONTENT                                        | v    |
| LIST | Г OF ТА | ABLES                                          | viii |
| LIST | ſ OF FI | GURES                                          | ix   |
| LIST | ſ OF SY | MBOLS                                          | X    |
| LIST | ſ OF AF | BBREVIATIONS                                   | xi   |
| CHA  | PTER    | 1 INTRODUCTION                                 | 12   |
| 1.1  | Backg   | ground Of Study                                | 12   |
| 1.2  | Proble  | em Statement                                   | 13   |
| 1.3  | Objec   | tive                                           | 15   |
| CHA  | APTER 2 | 2 LITERITURE REVIEW                            | 16   |
| 2.1  | Gener   | ral                                            | 16   |
|      | 2.1.1   | Beam Structure                                 | 16   |
|      | 2.1.2   | Concrete Grade                                 | 17   |
|      | 2.1.3   | Behaviour Of Concrete                          | 18   |
|      | 2.1.4   | Effect Of Modification Concrete On Environment | 19   |
| 2.2  | Mater   | rials                                          | 20   |

|      | 2.2.1 Rice Husk Aggregate Concrete | 20 |
|------|------------------------------------|----|
|      | 2.2.2 Steel Reinforced Concrete    | 22 |
| 2.3  | Method From Previous Study         | 22 |
|      | 2.3.1 Research 1                   | 22 |
|      | 2.3.1.1 Method and Result          | 23 |
|      | 2.3.2 Research 2                   | 24 |
|      | 2.3.2.1 Method and Result          | 24 |
| CHA  | PTER 3 METHODOLOGY                 | 28 |
| 3.1  | Introduction                       | 28 |
| 3.2  | Methodology Flowchart              | 29 |
| 3.3  | Material Used                      | 30 |
|      | 3.3.1 Cement                       | 30 |
|      | 3.3.2 Water                        | 30 |
|      | 3.3.3 Coarse Aggregate             | 30 |
|      | 3.3.4 Fine Aggregate               | 31 |
|      | 3.3.5 Rice Husk                    | 31 |
| 3.4  | Concrete Mix Design                | 31 |
| 3.5  | Reinforcement Design               | 32 |
| 3.6  | Parameter Testing                  | 38 |
| 3.7  | Sample Preparation                 | 40 |
| 3.8  | Slump Test                         | 41 |
| 3.9  | Compressive Test                   | 42 |
| 3.10 | Flexural Test                      | 43 |
| 3.11 | Expected Result                    | 43 |

| CHAI | PTER 4  | <b>RESULTS AND DISCUSSION</b> | 44  |
|------|---------|-------------------------------|-----|
| 4.1  | Slump   | Test Result                   | 44  |
| 4.2  | Compr   | ressive Strength Test Result  | 46  |
| 4.3  | Flexura | al Strength TestResult        | 47  |
|      | 4.3.1   | Ultimate Loading Capacity     | 47  |
|      | 4.3.2   | Deflection                    | 50  |
|      | 4.3.3   | Cracking Behaviour            | 53  |
|      | 4.3.4   | Stress-Strain Steel           | 55  |
|      | 4.3.5   | Stress-Strain Concrete        | 56  |
|      | 4.3.6   | Maximum Moment Capacity       | 58  |
| CHAI | PTER 5  | CONCLUSION                    | 60  |
| 5.1  | Introdu | action                        | 60  |
| 5.2  | Conclu  | ision                         | 60  |
| 5.3  | Recom   | mendation                     | 61  |
| REFE | RENCI   | ES                            | 62  |
| APPE | NDIX A  | A                             | 64  |
| APPE | NDIX I  | 3                             | 80  |
| APPE | NDIX (  | C                             | 97  |
| APPE | NDIX I  | )                             | 111 |

## LIST OF TABLES

| Table 2.1 | Compressive strength at 28 days (Salas J, 1986)     | 21 |
|-----------|-----------------------------------------------------|----|
| Table 2.2 | Compressive strength at 28 days (Obilade I.O, 2014) | 21 |
| Table 2.3 | Compressive strength at 28 days (Isma Farhan, 2017) | 21 |
| Table 2.4 | Comparison strength of beams                        | 24 |
| Table 2.5 | Properties of Concrete Used (K.Gunasekaran)         | 25 |
| Table 2.6 | Details reinforcements for both CC and CSC beams    | 25 |
| Table 2.7 | Diameter and numbers of bars used in beams          | 25 |
| Table 2.8 | Result of torsional strength                        | 26 |
| Table 3.1 | Concrete Mix Design                                 | 31 |
| Table 4.1 | Slump Test Result                                   | 44 |
| Table 4.2 | Compressive Test Result                             | 46 |
| Table 4.3 | Maximum Loading Capacity                            | 47 |
| Table 4.4 | Deflection Of Beam                                  | 50 |

### LIST OF FIGURES

| Figure 2.1  | Reinforcement Arrangement                                 | 23 |
|-------------|-----------------------------------------------------------|----|
| Figure 2.2  | Torque Versus Twist For CC1 to CC4 beams                  | 26 |
| Figure 2.3  | Torque versus twist for CSC1 to CSC4                      | 27 |
| Figure 3.1  | Simply Supported Beam                                     | 33 |
| Figure 3.2  | Shear Force Diagram                                       | 33 |
| Figure 3.3  | Bending Moment Diagram                                    | 34 |
| Figure 3.4  | Spacing Detailing Of Beam                                 | 37 |
| Figure 3.5  | Proposed Bar Arrangement                                  | 37 |
| Figure 3.6  | Four Point Loading                                        | 38 |
| Figure 3.7  | Steel Stress-Strain Curve                                 | 39 |
| Figure 3.8  | Concrete Stress-Strain Curve                              | 39 |
| Figure 4.1  | Slump Height Comparison                                   | 45 |
| Figure 4.2  | Compressive Strength Comparison                           | 46 |
| Figure 4.3  | Maximum Load Comparisons For Controlled Beam              | 48 |
| Figure 4.4  | Maximum Load Comparisons For 5% Beam                      | 48 |
| Figure 4.5  | Maximum Load Comparisons For 15% Beam                     | 49 |
| Figure 4.6  | Average Maximum Loads For All Percentage                  | 49 |
| Figure 4.7  | Deflection Comparison Curve For Controlled Beam           | 51 |
| Figure 4.8  | Deflection Comparison For 5% Beam                         | 51 |
| Figure 4.9  | Deflection Comparison For 15% Beam                        | 52 |
| Figure 4.10 | Average Maximum Deflection For All Percentage             | 52 |
| Figure 4.11 | Cracking Of Controlled Beam Sample                        | 53 |
| Figure 4.12 | Cracking Of 5% Rice Husk Replacement Beam                 | 53 |
| Figure 4.13 | Cracking Of 15% Rice Husk Replacement Beam                | 54 |
| Figure 4.14 | Average Stress-Strain Steel For Controlled Beam           | 55 |
| Figure 4.15 | Average Stress-Strain Steel For 5% Beam Sample            | 55 |
| Figure 4.16 | Average Stress-Strain Steel For 15% Beam Sample           | 56 |
| Figure 4.17 | Average Stress-Strain Concrete For Controlled Beam Sample | 56 |
| Figure 4.18 | Average Stress-Strain Concrete For 5% Beam Sample         | 57 |
| Figure 4.19 | Average Stress-Strain Concrete For 15% Beam Sample        | 57 |
| Figure 4.20 | Moment Capacity Of Singly Reinforced Beam                 | 58 |

## LIST OF SYMBOLS

| %   | Percentage         |
|-----|--------------------|
| Kg  | Kilogram           |
| mm  | Millimetre         |
| Ν   | Newton             |
| kN  | Kilo Newton        |
| Mpa | Mega Pascal        |
| ٤y  | Steel Strain       |
| εc  | Concrete Strain    |
| RHC | Rice Husk Concrete |

## LIST OF ABBREVIATIONS

| %   | Percentage         |
|-----|--------------------|
| Kg  | Kilogram           |
| mm  | Millimetre         |
| Ν   | Newton             |
| kN  | Kilo Newton        |
| Mpa | Mega Pascal        |
| ٤y  | Steel Strain       |
| Еc  | Concrete Strain    |
| RHC | Rice Husk Concrete |

#### **CHAPTER 1**

#### **INTRODUCTION**

#### 1.1 Background Of Study

Shelter is reffered to any architectural structure or building that provides cover to the mankind or living organisms. World population currently 7.3 billion is expected to reach 8.5 billion by 2030 and 9.7 billion in 2050 according to new UN DESA report, "World Population Prospects: 2015 Revision". Increasing the population will also lead to the increasing of buildings such as shelter, workplace and infrastructural. Generally know that, every structural building is bulit using concrete. The environmental impact of concrete whether it application or production become serious issues nowadays. Many researches all around the world struggle in their study to overcome this issue and come out with several solutions. The biggest problem from this issue is, concrete will only produce by mixing of several natural resources which are cement, aggregate and water. As the time goes by, production of concrete cannot only depend on these resources all the time because sooner or later, the natural resources decreasing by time. Nowadays, there are so many researcher and scientist come out with innovative ways to enhance the production of concrete using alternative resources.

This research is focuses on how a structure react when the fine aggregate is partially replace with some percentage of raw rice husk in concrete mixing. Some must be asked why fine aggregate and why rice husk. The main reason for replacement of fine aggregate or commonly called sand is due to intensively used of this raw material not only in construction industries to make cement, mortar, ceramics and glass but also being used in other industries such as in water filtration, in chemicals and metals processing and in plastic industry. The United Nations Environment Programme stipulates that" the use of sand greatly exceed their natural renewal rates". One can imagine that the problem will solve easily due to desert covered almost 20% of Earth with sand. The truth is not all type of sand is suitable for the market demand. The facts is several countries from Middle East that surrounded by desert imported large quantities of sand. As an example, Qatar imported sand and gravel around \$6.5B in 2012 (Schoof, J, 2016). Meanwhile in Malaysia now, about 0.48 million tonne of rice husk (UNDP,2002) still not fully utilized. Rice husk or rice hulls are the coatings of seeds, or grains of rice. It function is to protects the seed during growing season since it formed from hard materials which are opaline silica and lignin. General knows, Malaysian staple food is rice. Therefore, Malaysia's agriculture department is targeting to expand the output of paddy sector to 9 to 10 tons per hectare in 2020 (NCER,2007). Increasing of paddy residue will lead to the waste management problem if cannot be manage in good condition. The burning of it will cause serious air pollution (Singh,2015). Besides the excess amount of rice husk in Malaysia, it is chosen as byproduct due to the price also far cheaper than sand that surely can give positive impact of the concrete price in the future.

The concrete containing agriculture product such as rice husk is categorized as light weight concrete. The advantages of the lightweight concrete are larger strength-to-weight ratio, greater strain capacity, lower changes of the size of object with a change in temperature and better heat and sound insulation (Chen 2008). However, lightweight concrete also has its correlated disadvantages such as lower indirect tensile strength and lower workability.

#### **1.2 Problem Statement**

The conventional reinforced concrete design method seem to lead several issue in term of environmental and cost whether it production or application. It is time to confidently consider the other alternative of making it such as partial replacement of main material with by-product or unutilized agriculture material in order to minimize the negative impacts. The main problem that led to this alternative is limited of natural resources which are used in production of concrete structure. One of the raw materials for concrete mixing is fine aggregate or also known as sand. This study try to find solution by replacing some percentage of find aggregate with raw rice husk obtain from paddy factory. Second is environmental issue. The fine aggregate will only get by sand mining from terrestrial deposits like river channel, flood plain alluvial and marine deposits such as at the shore and offshores deposits (Gelabert, 1997). River sand mining can causes the destruction of aquatic habitats by bed degradation, lower water levels and channel degradation. The physical disturbance of sediment while dredging the sand affects the suspended solids and the turbidity of water increasing. The turbidity will degraded water quality and reduce light penetration within river affect the photosynthesis rates and fish population in the river. The most dangerous effect of sand mining is the water quality will drop drastically according to Water Quality Index (WQI). If the WQI shows the quality of river in Class 3, it will need extensive treatment before it can be used by people.

Third issue is cost of sand as raw material in concrete production. We are living in era that cost of building are too expansive that people cannot afford to buy their own houses especially in Malaysia. Any alternative of concrete production that can reduce the cost of building surely welcoming in this industry for the benefit of all people as long as it can promise that the new method ensure the structure safety.

Last but not least, constraint of landfill area is one of the problems that need to take into account (Shafie, 2015). Uses of unutilized rice husk may give a bit positive solution to the problem. Landfill area in Malaysia also limited to domestic waste. The addition of agriculture waste may lead to the lack of landfill area. Moreover, if these unutilized agriculture dispose by burning them, surely it will cause serious haze pollution not only in Malaysia but may be dispersed to our neighbour surround us like Indonesia, Thailand and Singapore. One way as what is proposed in this research paper is to use the rice husk as by-product or partial replacement of fine aggregate. This may help a lot to reduce the few problems that related to concrete environmental issue, cost of structure and maintaining environmental health.

#### 1.3 Objective

The main objective of this research is to determine any potential of rice husk in its natural state that can be utilize as partial replacement of fine aggregate in concrete mixing. The following is three specific objectives in order to achieve the main target:

- i. To evaluate the ultimate loading capacity that can resist by rice husk reinforced concrete at difference percentage of replacement in fine aggregate.
- ii. To determine the maximum moment capacity that capable to accept by rice husk reinforced concrete.
- iii. To acknowledge the behaviour of deflection of rice husk reinforced concrete beam structure.

#### **CHAPTER 2**

#### LITERITURE REVIEW

#### 2.1 General

Before a concrete can be modify, it is importance to know everything about concrete in term of its type, classification or behaviour. This sub chapter will give further explanation and information that has been gathered from other research all around the world. This sub chapter is divided into 3 parts which are concrete grade, behavior of concrete and the effect of concrete modification to environment.

#### 2.1.1 Beam Structure

Historically squared timber, metal or stone were used widely in structure such as houses and factory before the invention of concrete beam. In building construction, a beam is a horizontal member spanning an opening and carrying a load. These loads may come from the floor slab, brick wall and roof. The beam member will receive all the loads and transfer it to column and direct to the foundation. It is also a structural element that can withstand load primarily by resisting against bending. The force from external loads and its own weight tend to bend the structure and it is called a bending moment.

There are several type of beams used in construction to satisfy the design or aesthetic value of the buildings. The type of beams can be classified based on it support such as simply supported beam, fixed beam, over hanging beam, continuous beam and cantilever beam. All these beams have different support at the both end. In construction, continuous beams are commonly found due to it have more than two support along the span. Internally, beams experience compressive, tensile and shear stresses as a result of loads applied to them. An increasing interest is currently shown worldwide for good quality lightweight concrete structure. Because of it proven advantage, LWC structure are now used in the construction of lo-rise and high-rise building, bridges, industrial facilities, sea vessels and coastal systems. (Ivan Tomicic, 2012) in his study clearly stated that the effect of strengthening and ductility of lightweight concrete beam and normal weight concrete beam have shown similar result which mean that, the lightweight concrete beam.

#### 2.1.2 Concrete Grade

There are various type of concrete shall be used in construction depends on the type of structure itself. They can be divided between light grade concrete, standard grade concrete and high strength concrete. The different of these concrete are the uses of it. As examples, concrete grade C10 is plain concrete and used for patio slabs, pathways or non-structural work. Meanwhile, grade C25 is categorized under standard grade concrete that usually used for normal construction in all areas. Differ from grade C50, it is classed under concrete with pre tendons according to BS 8110, 1997. This type of concrete class widely used for creating foundations and beams for structural support and roads. It is the most durable grade and can withstand chemical corrosion.

Standard concrete grade used in normal concrete considered as the perfection of concrete mixing commonly found in structure (Meyer,2009). It 4 basic materials which are cement, fine aggregate, coarse aggregate and water strong enough to be used in structure without any supplementary ingredient in it. Although it is commonly used in construction, the normal concrete seems to face constraint due to decreasing of the main resources in the world.

Introducing of lightweight concrete, more or less open the eyes of the world. Lightweight concrete has many favourable engineering properties such as its light weight, high strength, low expansibility, good heat insulation, sound dampening qualities, water and fire resistance, durability, stable volume and surely low cost (H.Y. Wang, 2015). Lightweight aggregate also have lower water absorption, and electrical resistance compare to standard aggregate (A.Elsharief, 2005). A concrete can be

categorized as lightweight aggregate concrete is when the aggregate have dry unit weight below than 1200 kg/m<sup>3</sup> (Mohammed, 2013). Lightweight aggregates concrete not only perfume well in structure but also have many advantages, including high strength, good tensile strain and low thermal conductivity coefficient. This is the main reasons this research paper focus on the structure behaviour of lightweight aggregate concrete that use rice husk as partial replacement.

#### 2.1.3 Behaviour Of Concrete

The concrete containing rice husk as partial replacement of aggregate has proved it very light in weight but low strength achieved (Salas J and Veras J, 1986). According to (J-C Benezet, 2014), the standard requirement for lightweight concrete categories is the density of light structural need to achieve below 2000 kg/m<sup>3</sup> and compressive strength above 15 MPa. The result of his research conclude that the average density of lightweight concrete of rice husk aggregate about 800 kg/m<sup>3</sup> which below the requirement for lightweight concrete. Meanwhile, result from (Salas J and Veras J) shows that, the maximum of compressive strength achieved by natural husk is 17 MPa which is higher the requirement when 20% of aggregate replaced by rice husk. However, this researcher mentioned that the strength will be increasing if only replace the sand instead of sand and gravel.

In another study, it stated that the compressive strength of rice husk concrete aggregate can achieved up to 15.05 MPa and 12.24 Mpa when about 10% and 15% mix proportion respectively (Isma Farhan, 2017). According to his result, the best and workability percent of replacing rice husk is 15%. Several testing had been done to approve this statement which is slump test, compressive test and flexural test. The result of slump test shows that, the height of concrete slump containing 15% rice husk is 53 mm. The compressive strength at 28 days curing show that 12.24 MPa achieved. This result can be accepted as lightweight concrete according to BS 8110, 1997. The result of flexural test from his study shows that 15% of replacement rice husk is 4.8 Mpa at 28 days.

According to previous study from (Obilade, I.O, 2014), the rice husk concrete aggregate can achieved 14.47 MPa but the density of the concrete nearly achieved below 2000kg/m<sup>3</sup> which is 2167kg/m<sup>3</sup>. In this study, the concrete mix proportion was 1:2:4 by both weight and volume. The results of compressive strength show it almost the same among this research which is between 10 Mpa to 15 Mpa. The method of the test also almost the same where uses of raw rice husk as partial replacement of fine aggregate.

Based on many previous researches, most of them likely to compare the replacement of aggregate between rice husk and hemp hurd. (J-C Benezet, 2014) in his study used to compare the result of lime hump concrete (LHC) and lime rice husk concrete (LRC). The approach of the paper is quite original since cereal husks are used in a lightweight insulating concrete designed with an identical way as for LHC. One of the finding in this study is rice husk are characterized by very thin about 80  $\mu$ m compared to hemp hurd about 1 mm. It is known that the greater the amount of pores of smaller size, the lower the thermal conductivity. A study by (B.Federic, 2017) show that the unconfined compressive strength of LRC is lower than that of LHC even though a same mix proportioning is used for both plant-based concretes. It mentioned that the packing of rice husk could be enhanced by increasing the rice husk content on the concrete while reducing the binder content in order to keep the bulk density below 730 kg/m<sup>3</sup>.

#### 2.1.4 Effect Of Modification Concrete On Environment

The construction relies heavily on conventional materials such as cement, granite and sand for production of concrete. Concrete is the world's most consumed man made material (Naik, 2008). The use of agriculture and industrial waste to complement other traditional materials in construction provides both practical and economical advantages. The uses of waste materials in construction contribute to conservation of natural resources and protection of the environment (Ramezanianpour, Mahidikhani and Ahmadibeni, 2009). According to (Obilade, I.O, 2014), rice husk in Nigeria produced from Ile Ife usually dumped in open thereby impacting the environment negatively without any benefit.

As the building sector presents major impacts on the natural environment, the development of eco-friendly concrete materials using plant aggregates has emerged as a high priority (M. Chabannes, 2014). This type of concrete allows moving towards a low carbon material with good thermos-physical properties. According to the research paper, rice husk can be consumed for electricity generation because of their calorific value. However, the incineration process is dangerous to human health and environment. Most of the study done by several researcher, they successfully proved that rice husk can be used as by-product either as cement partial replacement or sand partial replacement. For the cement replacement, the rice husks need to be burn into ash. Theoretically, the burning process is not really environment approach. The uses of raw rice husks in concrete material without any burning have rarely been investigated as the sand partial replacement. However, the process is really environmental way since it not uses any additional energy into it. Moreover, the uses of sand can be reduces drastically in concrete mixing process.

#### 2.2 Materials

In modification of concrete mixing, it need 5 basic raw material which are cement, coarse aggregate, fine aggregate, raw rice husks and water. In this study, the concept from previous researcher had been used. This sub-topic will explain details on the material that will be used in producing simply supported beam using rice husk concrete.

#### 2.2.1 Rice Husk Aggregate Concrete

Replacement of partial aggregate by rice husk is to produce lightweight concrete structure. This study is the extension of previous study on testing compressive strength of rice husk aggregate concrete by several researcher such as (Salas.J, 1986), (Obilade I.O, 2014), (B. Federic, 2017) and (Isma Farhan, 2017). The rice husk aggregate concrete will be used in beam structure to analyze the reaction or behavior of the structure that using rice husk aggregate concrete.

The rice husk used by (Obilade I.O, 2014) was obtained from Ile Ife, Nigeria. Since sand is denser than rice husk, replacement by an equal mass of rice husk leads to a larger increase in volume than replacement by an equal volume of sand. Increase in quantity of rice husk increase the specific surface area, thereby more water would be required.

According to (B. Federic, 2017), the raw rice husk used it the study was coming from Biousud (Arles, France). The bulk density of rice husk in the study is 90 kg/m<sup>3</sup> while the true density in solid phase is 1480 kg./m<sup>3</sup>. The study indicates that 90% of rice husks have an equivalent area diameter between 3.40 mm to 5.75 mm used as aggregate. It is contradicted with (Salas.J, 1986) that mentioned in his study the density of loose and compacted husk is 121.5 kg/m<sup>3</sup> and 145.3 kg/m<sup>3</sup> respectively. The most important result from their testing was the result of compressive strength. (Obilade I.O, 2014), (Salas J, 1986) and (Isma Farhan, 2017) have proved that the compressive strength of rice husk concrete can achieve up to 15 MPa by certain percentage of replacement.

Table 2.1: Compressive strength at 28 days (Salas J, 1986)

| Percentage     | 0     | 20    | 40   | 60   | 80   | 90   | 100  |
|----------------|-------|-------|------|------|------|------|------|
| Rice Husk (%)  |       |       |      |      |      |      |      |
| Compressive    | 22.16 | 14.96 | 7.73 | 6.30 | 3.30 | 3.05 | 1.65 |
| Strength (MPa) |       |       |      |      |      |      |      |

Table 2.2: Compressive strength at 28 days (Obilade I.O, 2014)

| Percentage     | 0     | 5     | 10    | 15    | 20    | 25    |
|----------------|-------|-------|-------|-------|-------|-------|
| Rice Husk (%)  |       |       |       |       |       |       |
| Compressive    | 22.15 | 17.62 | 15.31 | 14.76 | 13.98 | 12.62 |
| Strength (MPa) |       |       |       |       |       |       |

Table 2.3: Compressive strength at 28 days (Isma Farhan, 2017)

| Percentage     | 0     | 5     | 10    | 15    |
|----------------|-------|-------|-------|-------|
| Rice Husk (%)  |       |       |       |       |
| Compressive    | 33.18 | 23.56 | 15.05 | 12.24 |
| Strength (MPa) |       |       |       |       |

#### 2.2.2 Steel Reinforced Concrete

General knows that any reinforce concrete having low tensile strength and ductility meanwhile they very good in compressive strength. Due to this concrete behaviour, it always counteracted with inclusion of reinforcement steel that having higher tensile strength and ductility. In simply words, concrete is sufficiently strong to compression forces by nature, but tension force can crack it. Deformed rebar on reinforcing steel have been standard requirement since 1968. According to Eurocode 1992-1-1:2004 clause 3.2.2 (3), the application rules for structure design and detailing are specific to yield strength range from 400 Mpa to 600 Mpa.

(Tariq AlJaafreh, 2016) in his study strengthening of lightweight reinforced concrete beams using carbon fibre reinforced polymers (CFRP) used the reinforcement that had a yield strength of 413 MPa (60,000 psi). However, this research study on rice husk aggregates concrete will state the yield strength of rebar as constant which is 500 MPa (72.5 psi) referred to the Eurocode standard and the type of material is high-yield steel.

#### 2.3 Method From Previous Study

There was several studies before this succeed to make beam structure that based on lightweight concrete. Among of them used to partially replaced aggregate with fibre reinforced polymer, steel fibre and coconut shell. All the application of this study will be the references paper in the process of making lightweight simply supported beam structure with rice husk mix concrete. There are several criteria that can be learn from other researcher such as in term of the amount of sample, the type of testing on the structure and the design of the beam.

## 2.3.1 Research 1 : Strengthening Of Lightweight Reinforced Concrete Beams Using Carbon Fiber Reinforced Polymer (Tariq ALJaafreh, University Of Texas At Arlington, 2016)

This research purposed to investigate the effect of utilizing "Fiber Reinforced Polymer" (FRP) on the lightweight concrete beams. The main hypothesis is that such utilization of the FRP will lead to strengthened lightweight beams.

#### 2.3.1.1 Method And Results

In his study, 8 samples of lightweight reinforced concrete that designed to strengthen beams by using CFRP sheet. The beams in this experiment were 152.4 mm wide x 203.2 mm deep x 1575 mm long (6 inch wide x 8 inch deep by 62 inch long). The flexural reinforcement steel consisted of 2#3 bars on the bottom side. The top reinforcement steel consisted of 2#3 bars. The shear link consisted stirrups size #3 and spaced 6 inch centre-centre in the middle 304.8 mm (12 inch) portion of the beams and 76 mm (3 inch) centre to centre on the rest of the beams. The cover on the bottom side was 1.5 inch, but the cover top and side were 25.4 mm (1 inch). Two pure beams were considered as control beams as the standard references whereas 6 other beams were strengthen by CFRP.



Figure 2.1: Reinforcement Arrangement

The entire specimens were casted with lightweight concrete which have average compressive strength of 28.9 MPa and the yield strength of 413 MPa. The beam then was tested using four point loading testing to determine the load deflection relationship. Two supports were used at each side of beams. The support used from thick steel to prevent any deflection at the support. A loading of 1780 kN was setting and adjusted at the center of the beam. The end result of the testing as follow:

| Beam | Theoretical   | Experimental  | Max         | Percentage strength increase |
|------|---------------|---------------|-------------|------------------------------|
|      | Failure Load, | Failure Load, | Deflection, | compared with exp.           |
|      | kN            | kN            | mm          |                              |
| B1   | 51.9          | 53.6          | 29.7        | NA                           |
| B2   | 66.7          | 51.4          | 12.7        | -4.1%                        |
| B3   | 66.7          | 54.14         | 11.94       | +1.00%                       |
| B4   | 66.7          | 60.1          | 12.19       | +12.11%                      |

Table 2.4: Comparison strength of beams

2.3.2 Research 2 : Study On Reinforced Lightweight Coconut Shell Concrete Beam Behavior Under Torsion (K.Gunasekaran, Department Of Civil Engineering, SRM University, Kattankulathur, India, 2014)

The aimed of this study paper is to investigate and evaluates the results of coconut shell concrete beams subjected to torsion and compared with conventional concrete beams. This research is quiet closely to rice husk concrete beam due to the aggregate replacement was from plant residue.

#### 2.3.2.1 Method And Results

Eight beams, four with coconut shell concrete and four with conventional concrete were fabricated and tested in this study. The study includes general cracking characteristics, pre cracking behavior and analysis, post cracking behavior and analysis, minimum torsional reinforcement, torsional reinforcement, ductility, crack width and stiffness. Both for coconut shell concrete (CSC) and conventional concrete (CC) have minimum compressive strength of 25 MPa at 28 days. It was fixed as target strength with minimum workability consideration.

The cross-sectional dimension of beam was taken as 200 mm x 275 mm and the length of the beam was taken as 1200 mm center to center for both CSC and CC. In both cases, the concrete grade has been considered as M25. Tables below show clearly the material used by K. Gunasekaran in his testing.

| Parameters                                    | CSC              | CC               |  |
|-----------------------------------------------|------------------|------------------|--|
| Min targeted strength (Mpa)                   | 20-25            | 20-25            |  |
| Cement content (kg/m <sup>3</sup> )           | 510              | 320              |  |
| Sand (kg/m <sup>3</sup> )                     | 750              | 710              |  |
| Coconut shell (CS), (kg/m <sup>3</sup> )      | 332              | _                |  |
| Crushed granite stone (kg/m <sup>3</sup> )    | -                | 1171             |  |
| Water-cement ratio (w/c)                      | 0.42             | 0.55             |  |
| Mis ratio                                     | 1:1.47:0.65:0.42 | 1:2.22:3.66:0.55 |  |
| Slump (mm)                                    | 06               | 10               |  |
| 28 day hardened density, (kg/m <sup>3</sup> ) | 1970             | 2385             |  |
| 28 day compressive strength, MPa              | 26.40 27.00      |                  |  |

Table 2.5: Properties of Concrete Used (K.Gunasekaran)

Table 2.6: Details reinforcements for both CC and CSC beams

| Beams        | Area of longitudinal reinforcement, | Spacing of transverse |  |
|--------------|-------------------------------------|-----------------------|--|
|              | (mm <sup>2)</sup>                   | reinforcements, (mm)  |  |
| CC1 and CSC1 | 312.15                              | 120                   |  |
| CC2 and CSC2 | 452.38                              | 90                    |  |
| CC3 and CSC3 | 383.08                              | 100                   |  |
| CC4 and CSC4 | 257.48                              | 150                   |  |

Table 2.7: Diameter and numbers of bars used in beams

| Beams        | Longitudinal reinforcement | Transverse reinforcement 2-legged |  |
|--------------|----------------------------|-----------------------------------|--|
| CC1 and CSC1 | 2H8 mm Ø at top            | 8 mm at 150 mm c/c                |  |
|              | 2H10 mm Ø at bottom        |                                   |  |
| CC2 and CSC2 | 2H10 mm Ø at top           | 8 mm at 120 mm c/c                |  |
|              | 2H10 mm Ø at bottom        |                                   |  |
| CC3 and CSC3 | 2H10 mm Ø at top           | 8 mm at 100 mm c/c                |  |
|              | 2H12 mm Ø at bottom        |                                   |  |
| CC4 and CSC4 | 2H12 mm Ø at top           | 8 mm at 90 mm c/c                 |  |
|              | 2H12 mm Ø at bottom        |                                   |  |

The testing for beams was done in a loading frame of capacity 40 tones. Load was applied by means of a hydraulic jack of capacity 25 tones. Twist of the beam was measured by using dial gauges which are fixed at both sides of twist meter with at least

count of 0.01 mm. Due to the study purposed to investigate the torque, K. Gunasekaran shows only torque result in his paper. The result clearly states that there was almost similar behavior in torsion between CC and CSC.

| Beams | Torque (kN.M) | Twist, $\theta$ (rad/m) x 10 <sup>-3</sup> | Torque (kN.M) | Twist, $\theta$ (rad/m) x 10 <sup>-3</sup> |
|-------|---------------|--------------------------------------------|---------------|--------------------------------------------|
| CC1   | 8.09          | 19.40                                      | 11.77         | 58.90                                      |
| CC2   | 10.30         | 28.25                                      | 15.01         | 58.25                                      |
| CC3   | 11.04         | 26.25                                      | 18.03         | 57.50                                      |
| CC4   | 12.51         | 27.00                                      | 19.50         | 56.80                                      |
| CSC1  | 7.36          | 20.10                                      | 13.54         | 64.70                                      |
| CSC2  | 9.56          | 25.20                                      | 17.66         | 64.10                                      |
| CSC3  | 9.86          | 24.20                                      | 19.50         | 63.30                                      |
| CSC4  | 11.77         | 36.20                                      | 20.25         | 60.10                                      |

Table 2.8: Result of torsional strength



Figure 2.2: Torque Versus Twist For CC1 to CC4 beams



Figure 2.3 : Torque versus twist for CSC1 to CSC4

#### **CHAPTER 3**

#### METHODOLOGY

#### 3.1 Introduction

In this chapter, all method and procedure explained clearly to run this research. In order to achieve the purpose of this project, it needs to be done carefully and correctly by referring American Society for Testing Material (ASTM) and British Standard (BS). The testing and method in this study used the research from (K.Gunasekaran, 2014) of "Study On Reinforced Lightweight Coconut Shell Concrete Beam Behavior Under Torsion" as side references.

There are several testing that carried out in this research study as to prove that rice husk concrete is effective to use in beam structure. In order to recognize the effectiveness, flexural testing had been done first to acknowledge the behaviour of deflection and to determine ultimate load before beam failure. Before that, the rice husk concrete specification is met first as the study done by (Isma Farhan, 2017). Therefore, two standard testing for concrete before it can be cast had been done first which are slump test and compressive test. The correct method of conducting the tests led to logical discussion and conclusion at the end of this research which can help to decide whether the objective is achieved or not.



The previous flow chart shows exactly the complete planning process of this research starting form preparing the sample until come out with conclusion at the end of this study. The process begin with preparing 9 sample of beam which are 3 normal aggregate concrete beams and 6 rice husk aggregate concrete beams. The 3 beams are used as the reference for comparison between standard and modify structure beams. The flexural testing only done after 28 days of curing meanwhile slump and compressive test are straight away done during casting process. The result obtain will be analyse before come out with conclusion.

#### 3.3 Material Used

This research produce lightweight beam structure by using concrete with rice husk mixing by certain percentage. This is because, lightweight structure may cost lower than the normal weight structure. The concrete grade used is the normal concrete grade which is C25/30. All material used to prepare sample will be discuss in this subtopic.

#### 3.3.1 Cement

As a bonding factor, ordinary Portland cement is used in the mixing of concrete. In this study, the type of cement used is Orang Kuat Ordinary Portland Cement which the specification follow the outlined in BS 12:1958.

#### 3.3.2 Water

Water may look as a simple material but the importance of water in concrete mixing cannot be denied. It need to be ensured that the water was free from chemical effect and should clear impurities. Water act as an activation of chemical process that will help to bind all the material during concrete mixed. Common practice in Malaysia, tap water is enough to be used in the concrete mixing. However, its quantity needs to be controlled because excess or lack of water may affect the compressive strength of concrete or its workability.

#### **3.3.3** Coarse Aggregate

Coarse aggregate used in preparing this sample is crushed aggregate obtained from civil lab. The size of these aggregate is bigger than 4.75 mm comply with the ASTM standard for coarse aggregate. Coarse aggregate have angular physical shape that will act as interlocking to restrain the movement. These materials also affect the strength of concrete. In order to make well graded aggregate, it is really encourage to using several size of aggregate.

The function of mixing several sizes is to ensure the void between coarse aggregate is small. It means that the bigger size of aggregate will give the strength to the structure while the smaller size of it will fulfil the gap between bigger aggregate.

#### **3.3.4** Fine Aggregate

According to ASTM, the specific size for fine aggregate is smaller than 4.75 mm. The function of fine aggregate is to fill the void that cannot be reach by coarse aggregate due to the size is smaller. This will make the concrete denser and stronger compared to concrete that only contain course aggregate. In this sample preparation, fine aggregate used is river sand provided in Civil lab that have been sieved to remove the particle that have size bigger than 4.75 mm.

#### 3.3.5 Rice Husk

As the manipulated variable in this research, rice husk is used in order to replace the fine aggregate by certain percentage until it gets the ideal ratio. The rice husk sample was collected from local rice mill located in Rompin, Pahang. The rice husks need to be sieved first to remove unwanted particle and it will be dried in oven for 24 hours to reduce the moisture content.

#### 3.4 Concrete Mix Design

The concrete mix design used in this study was taken the data in previous research by (Isma Farhan, 2017). There are three percentage of replacement in the concrete as follows:

| Percentage      | Water, | Cement, | Aggregate |            | Raw Rice |
|-----------------|--------|---------|-----------|------------|----------|
| Replacement (%) | Kg     | Kg      | Fine, Kg  | Course, Kg | Husk, Kg |
| 0               | 46     | 78      | 242       | 214        | 0        |
| 5               | 46     | 78      | 230       | 214        | 3.04     |
| 15              | 46     | 78      | 206       | 214        | 9.12     |

Table 3.1 Concrete Mix Design

Based on the weight classes in the table above, it can conclude that the ratio used in mixing concrete is 1: 3.1: 2.7 and the water to cement ratio is 0.57.

#### 3.5 Reinforcement Design

In this research, the reinforcement design is according to the Eurocode 2. The beam is design as simply supported beam with span of 1.5 m length. Based on the Eurocode 2, the design for simply supported beam is refer as design for rectangular section. In order to propose the size, the formula of diameter bar used is get from section 6.1: MS EN 1992-1-1:2010 under design for flexural. In this study, the reinforcement design is calculated only for the normal concrete beam. This means that, the concrete density used in the calculation is  $25 \text{ kg/m}^3$  and the loading consider is only the self-weight of the beam. All the calculation design is based on the dimension of the beam which is 150 mm of width, 300 mm of height and the length is 1500 mm.


Figure 3.1: Simply Supported Beam

 $\epsilon M_A = 0(cw + ve)$   $0.5(50) + 0.8(50) - 1.3(R_B) = 0$   $R_B = 50 \ kN$   $\epsilon F_y = 0 \uparrow + ve$   $R_A - 50 - 50 + 50 = 0$   $R_A = 50 \ kN$ For Loading

Shear Force Diagram



Figure 3.2: Shear Force Diagram

Bending Moment Diagram



Figure 3.3: Bending Moment Diagram

For Selfweight

Beam Selfweight =  $(0.15 \times 0.3) \times 25 = 1.125 \text{ kN/m}$ 

$$1.125 \frac{kN}{m} \times 1.5 m = 1.688 kN$$
$$W_d = 1.35(1.688) + 1.5(0) = 2.278kN$$

$$M = \frac{(2.278 \times 1.5^2)}{8} = 0.481 \ kN. m$$

 $M_{ED} = 25 \; kN.\,m + 0.481 \; kN.\,m = 25.481 \; kN.\,m$ 

- Concrete strength,  $fck = 25 \text{ N/mm}^2$
- Steel strength,  $fyk = 500 \text{ N/mm}^2$
- Ø bar, t = 12 mm
- $\emptyset$  link = 6 mm

Durability, fire resistance and bond.

- $C_{nom,bond} = 12 \text{ mm} + 10 = 22 \text{ mm}$
- $C_{nom, durability} = 25 \text{ mm} + 10 = 35 \text{ mm}$

R60;  $b_{min} = 120$ ; a = 40

•  $C_{\text{nom,fire}} = 40 - 6 - 6 = 28 \text{ mm}$  Use: Cnom = 35 mm

Effective depth, d

$$d = h - C_{nom} - \emptyset link - \frac{\emptyset bar}{2}$$
  
$$d = 300 - 35 - 6 - \frac{12}{2} = 253 mm$$
 Use d = 253 mm

## Maximum moment design, Med = 25.481 kN.m

$$k = \frac{25.481 \times 10^{6}}{25 \times 150 \times 253^{2}} = 0.106 < 0.167 \text{ (compression not required)}$$
$$z = d \left[ 0.5 + \sqrt{0.25 - \frac{0.106}{1.134}} \right] = 0.90d$$
$$As, req = \frac{25.481 \times 10^{6}}{0.87 \times 500 \times 0.90 \times 253} = 257.26 \text{ mm}^{2}$$

**Proposed 3H12 ( 339 mm<sup>2</sup> )** 

As, 
$$min = 0.26(\frac{2.6}{500})(150 \times 253) \le 0.0013(150 \times 253)$$
  
As,  $min = 51.53 \ge 49.34$  As,  $min = 51.53 \text{ mm}^2$ 

As,  $max = 0.04bh = 0.04 \times 150 \times 300 = 1800 \text{ }mm^2$  As,  $max = 1800 \text{ }mm^2$ 

Shear reinforcement design

$$V_{Rd,max} = \frac{0.36(150)(253)(25)(1 - \frac{25}{250})}{(25 + \tan 22)} = 105.851 \, kN$$

$$\succ$$
 Ved = 50 kN < Vrd,max = 105.851 kN ; Use θ = 22°

 $\frac{Asw}{S} = \frac{50 \times 10^3}{0.78(500)(253)(25)} = 0.203$ 

Try H6 = 56.6  $\text{mm}^2$ 

*spacing*, 
$$S = \frac{56.6}{0.203} = 278.8$$

Maximum spacing, Smax = 0.75(253) = 189.8 mm

Minimum link

$$\frac{Asw}{S} = \frac{0.08 \times \sqrt{25 \times 150}}{500} = 0.12$$

Try  $H6 = 56.6 \text{ mm}^2$ 

*spacing*, 
$$S = \frac{56.6}{0.12} = 472 \ mm$$

Use shear & minimum link ; H6-175

$$V_{min} = (\frac{56.6}{175}) \times (0.78 \times 500 \times 253 \times 2.5)$$

$$Vmin = 79.78 \ kN > Ved = 50 \ kN$$

Use Vminimun = 50 kN

Deflection

$$\rho_0 = \sqrt{25} \times 10^{-3} = 0.005 \quad < \quad \rho = \frac{265.39}{150 \times 253} = 0.007$$

$$l/d = 1.0 \left[ 11 + 1.5\sqrt{25} \left( \frac{0.005}{0.007 - 0} \right) + \frac{1}{12}\sqrt{25} \left( \frac{0}{0.007} \right) = 16.36 \right]$$

- Modification factor 2 = 1.0
- Modification factor 3 = (339/257.26) = 1.32

 $(l/d)_{allowable} = 16.36 \times 1.0 \times 1.32 = 21.60$ 

$$(l/d)_{actual} = \frac{1500}{253} = 5.93 < (l/d)_{allowable}$$

Deflection Pass !

Cracking

$$fs = \frac{500}{1.15} \times \frac{1}{1.35} \left[ \frac{100 + 1.125(1.5)}{1.35(101.685)} \right] \frac{1}{1} = 238.56 \sim 240$$

Wk = 0.3 mm; fs = 240 N/mm<sup>2</sup>; max bar spacing = 200 mm

$$S_{actual} = \frac{150 - (2 \times 35) - (2 \times 6) - 12}{3 - 1} = 28 \ mm \ < Smax = 200 \ mm$$

Cracking Pass !

Detailing



Figure 3.4: Spacing Detailing Of Beam



Figure 3.5: Proposed Bar Arrangement

#### **3.6** Parameter Testing

For this research study, there are few parameters considered to ensure the quality of the structure member achieve standard to be used in daily construction. The parameters that are involved as follows:

#### I. Flexural Strength

Flexural strength is from the result of Magnus Frame Four Point Test. It is defined as value of stress in samples just before it yield or until fracture.

Manually, the stress can be calculated by formula of  $\sigma = \frac{3FL}{2bd^2}$ .



Figure 3.6: Four Point Loading

#### II. Strain Steel

Steel is used as the reinforcing material in concrete so that it good in tension. All ductile material such as structural steel can be analysed by its ability to yield in normal temperature. The liner portion of the curve in figure below is elastic region and the slope is Young modulus.



Figure 3.7: Steel Stress-Strain Curve

## III. Strain Concrete

Concrete is considered as brittle material due to the ultimate strength and breaking strength are the same. The typical stress-strain curve for brittle is liner. This brittle type of material does not have yield point and necking not happen before failure. In concrete strain, the tensile strength usually negligible compared to the compressive strength.



Figure 3.8: Concrete Stress-Strain Curve

#### IV. Deflection

The deflection behaviour is important in the parameter testing of beam structure. This is because, the ultimate load before achieving maximum deflection will show the result of the capability of rice husk concrete beam.

#### **3.7** Sample Preparation

There are two type of sample prepared in this study which is beam member and cube. The beam member is needed to test the flexural strength and the cube is to test the compressive strength. The mould used in this preparation is plastic mould for cube and timber formwork for beam structure. The dimension of cube samples is 150 mm (W) x 150 mm (L) x 150 mm (H) while the sample of beam have dimension of 150 mm (W) x 300 mm (H) x 1500 mm (L).

For cube test, the total numbers of sample are 3 unit samples taken from same concrete that use to cast the beam. Meanwhile, there are 9 samples of beam casted which are 3 standard beams that contains 0% of rice husk aggregate and 6 rice husk concrete beam with difference percentage of rice husk replacement. The 3 standard beams used as reference for normal concrete beam structure to compare with the rice husk concrete beam structure at the end of the study.

For the standard beam that contains 0% of rice husk, the mixing of concrete contain of 46 kg of water, 78 kg of cement, 242 kg of fine aggregate and 214 kg of course aggregate with the concrete mix design ratio is 1: 3.1: 2.7 and the water to cement ratio is 0.57 according to study done by (Isma Farhan, 2017).

#### 3.8 Slump Test

The concrete slump test is used for the measurement of a property of fresh concrete. It is done comply with ASTM C143/C 143M-05. The concrete slump test is used to determine of concrete's workability or fluidity, also indirectly to determine of concrete consistency or stiffness. The test is popular due to the simplicity of apparatus used and simple procedure. It indicates the behaviour of compacted concrete cone under the action of gravitational force. This testing is useful to controlling the quality of concrete used in structure due to it can indicate the changes value of slump in term of it materials, water content or proportion of mixing.

The apparatus used in slump test is mould, temping rod, scale for measurement, scoop, base plate and brush. The slump mould should made of metal with thickness is not less than 1.5 mm and in cone shape. The height of slump cone is 300 mm with 200 mm of the base diameter and 100 mm for the top diameter. The steel temping rod have 600 mm of its length and 16 mm of the diameter.

The first step in slump test is ensured the internal surface of the mould is thoroughly cleaned and freed from superfluous moisture before commencing the test. If the cone is in completely dry in condition, it needs to be dampening using a damp cloth. The mould then placed on a smooth, horizontally levelled rigid and non-absorbent surface such as rigid plate. It is held firmly in place during filling by standing on two foot pieces provided in the slump cone. The mould is filled with concrete in three layers with each approximately one-quarter of height of the mould. Each layer need to be tamped down with 25 strokes using tamping rod. After tamping the top layer, the concrete is struck off level with a trowel and any mortar leaked out between mould and base plate is cleaned away. This is the most important part where the mould is then removed from concrete immediately by raising it slowly and carefully in vertical direction and read the slump. The test is completed in 90 seconds.

#### **3.9** Compressive Test

Compressive strength test or also known as cube test is one of the common testing that had been done in all construction in the world. It is importance because by this single test it can be judge whether the concreting has been done properly or not by analysed the compressive strength result. For general construction, compressive strength varies from 15 MPa to 30 MPa and higher in commercial and industrial structure.

There are several factors considered in compressive strength testing such as water – cement ratio, cement strength itself, quality of concrete material and quality control during the production of concrete. Test for compressive strength is carried out either in cube or cylinder. This test is one of the damage concrete test based on specification of British Standard Institution 2009 ( BS EN 12390-3:2009 ).

For cube test 3 numbers of specimens with dimension of 150 mm x 150 mm x 150 mm x 150 mm cubical moulds is prepared. This concrete is poured in the mould and tempered properly to reduce the void in the concrete. After 24 hours, these moulds removed and the test samples are put in water for curing process. The surface of these samples was made even and smooth. In order to get it, cement paste was put and spread smoothly on the whole area of specimen. On the 28<sup>th</sup> days of curing process, the sample tested by compression testing machine. The load applied gradually at the rate of 1 N/mm<sup>2</sup> per second till the specimen fails. Then, load at the failure divided by area of specimen gives the compressive strength of concrete.

The type of compressive strength testing machine used is MATEST S.p.A. TREVIOLO 2408 ITALY that has 2,000 kN capacity.

#### 3.10 Flexural Test

Generally, flexural test is important to determine the flexural modulus or flexural strength of a material. When then sample placed under flexural loading all three fundamental stresses present which are tensile, compressive and shear. Flexural strength is defined as maximum stress at the outermost fibre either compression or tension side of samples. Meanwhile, flexural modulus is calculated from slope of the stress vs strain deflection curve. These two values used to evaluate the ability of beam to withstand flexure or bending forces.

In this study, the type of flexural test used is four points loading. During the test conducted, ASTM C 78 - 2 used as the reference. The loading was gradually increment until the samples failure. The result showed in graphical format for flexural strength and yield strength. In this research study, apparatus used for flexural test is Magnus Frame Four Point Test.

#### **CHAPTER 4**

#### **RESULTS AND DISCUSSION**

## 4.1 Slump Test

The method of slump test used to acknowledge the fluidity of the concrete shown by the stiffness of the concrete after removing the slump mould. In other words, this test purposed to see how much water effect the concrete mixing. If water is too much, the slump concrete will be totally collapse. Table 4.1 below shows the result of slump test for 3 type of sample. Only a true slump is of any use in the test. A collapse slump will generally mean that the mix is too wet or that it is a high workability mix, for which the slump test is not appropriate. Very dry mixes having slump 0 – 25 mm are typically used in road making, low workability mixes having slump 10 – 40 mm are typically used for foundations with light reinforcement, medium workability mixes with slump 50 – 90 mm, are typically used for normal reinforced concrete placed with vibration, high workability concrete with slump > 100 mm is typically used where reinforcing has tight spacing, and/or the concrete has to flow a great distance.

|                           | 1                  |
|---------------------------|--------------------|
| Percentage Replacement, % | Slump Height, (mm) |
| 0                         | 61                 |
| 5                         | 58                 |
| 15                        | 52                 |

Table 4.1: Slump Test Result



Figure 4.1: Slump Height Comparison

Based on this result, the minimum of slump height is 52 mm and maximum is 61 mm. It shows that the concrete has medium workability mixes suitable for normal reinforced concrete placed with vibration. The decreasing of slump height value might be because of the rice husk is a good absorbing materials. Comparing the beam with 0% of rice husk and 15% of rice husk, the water was absorbed more for the beam sample with high percentage of rice husk replacement. Moreover, the workability also effect a little bit. Compared both 0% and 15%, the concrete with 15% of rice husk is quite difficult to handle during the process of vibration because the fluidity of the concrete is less.

#### 4.2 Compressive Strength Test

Compressive test or cube test using 150 mm x 150 mm x 150 mm cube test. The sample taken is the same batch of concrete mixing for the beam. In this study, 3 samples for every percentage of rice husks mixing is taken for cube test. The samples were then cured for 28 days. The result of compressive strength for all percentage of rice husk replacement is tabulated below.

| Percentage Replacement (%) | Load (kN) | Compressive Strength (MPa) |
|----------------------------|-----------|----------------------------|
| 0                          | 716.4     | 31.84                      |
| 5                          | 510.1     | 22.67                      |
| 15                         | 265.03    | 11.78                      |

Table 4.2: Compressive Test Result



Figure 4.2: Compressive Strength Comparison

Based on the data and the chart, it clearly show that the replacement of rice husk have given influence to the strength of the beam in term of maximum load that can accept by the cube sample. For the controlled sample, it has the highest value of stress which is 31.84 MPa, follow by the 5% replacement sample which is 22. 67 MPa and 15% sample which is 11.78 MPa. A hypothesis can be made is the increase amount of rice husk as the fine aggregate replacement, the decrease value of stress obtained. This may be happened due to the properties of the rice husk itself. Rice husk is a good water absorption material. When it mixed with the same amount of water and cement for the different percentage, rice husk will absorb the water in a quick time. When the water content in the concrete mixing is decrease, the bonding strength between others material also decreases.

## 4.3 Flexural Strength Test

The beam sample tested on the 28 days of curing. The method of curing beams sample is by covering it with wet gunny and spray with water every day. The testing involved for this test is four point loading test according to ASTM C78. All the data collected is given in the table below.

|         | Table 4.3 Maximum Loading Capacity |         |         |  |  |  |
|---------|------------------------------------|---------|---------|--|--|--|
| Sample  | Controlled                         | 5%      | 15%     |  |  |  |
| 1       | 121.206                            | 145.710 | 137.582 |  |  |  |
| 2       | 137.565                            | 121.206 | 87.375  |  |  |  |
| 3       | 121.928                            | 121.928 | 136.453 |  |  |  |
| Average | 126.900                            | 127.130 | 120.470 |  |  |  |

#### 4.3.1 Ultimate Loading Capacity



Figure 4.3 Maximum Load Comparisons For Controlled Beam



Figure 4.4 Maximum Load Comparisons For 5% Beam



Figure 4.5 Maximum Load Comparisons For 15% Beam



Figure 4.6 Average Maximum Loads For All Percentage

The average load of 2 samples for controlled beam and 5% rice husk replacement beam shows no drastically impact to the maximum loading capacity. Both sample show no difference in ultimate loading curves where the load increasing linearly until reach at the failure point and drastically dropped. Based on the result and the graphical curves, there are no big effect of 5% rice husk replacement on the beam due to it still can achieve the same maximum load as the controlled beam. However, for the 15% of rice husk replacement in concrete beam, the result and the curve show it the maximum load of the beam can achieve is quite lesser than other two samples which is 120.47 kN. This may happen due to the properties of the rice husk itself compared to the fine aggregate. Rice husks had a good reaction with water content where it will absorb the water quickly. When the water content lesser, the bonding between others material will become loosen and will affect the strength of concrete. Furthermore, the size of raw rice husk is bigger than fine aggregate. Even though the rice husk is sieve with 4.75 mm which is the size of fine aggregate, but the actual size of sand is tinier than raw rice husk. In other words, sand will filled more gaps in the concrete particle while rice husk will left small gaps between the bonding.

#### 4.3.2 Deflection

The result of deflection get from the transducer reading put below the beam. When the load apply to the beam, the transducer start to give value of deflection of the beam in millimetre. The reading of deflection is collected and tabulated below.

| Sample  | Controlled (mm) | 5% (mm) | 15% (mm) |
|---------|-----------------|---------|----------|
| 1       | 7.207           | 8.775   | 11.617   |
| 2       | 7.893           | 7.194   | 10.674   |
| 3       | 7.519           | 7.929   | 10.398   |
| Average | 7.540           | 7.966   | 10.896   |

Table 4.4: Deflection Of Beam



Figure 4.7: Deflection Comparison Curve For Controlled Beam



Figure 4.8: Deflection Comparison For 5% Beam



Figure 4.9: Deflection Comparison For 15% Beam



Figure 4.10: Average Maximum Deflection For All Percentage

The deflection behaviour of both samples shows similarities which are both achieves about 7 mm to 8 mm range of beam deflection. Based on the curves, the deflection of beam will continue increase when beam is applied by the load. It also shows that, there are no huge impact between controlled beam and beam with 5% rice husk replacement. Differ with other two samples, beam with 15% rice husk replacement

have the highest deflection which is 10.896 mm and the maximum deflection occurred faster than other two samples.

# 4.3.3 Cracking Behaviour

General knows that concrete being weakest in tension. A concrete under an assumed working load will definitely crack at tension side, and the beam will be collapsed if no reinforcement is provided. The figure below shows the cracking behaviour of the beam samples between controlled beam and 5% rice husk replacement beam.



Figure 4.11: Cracking Of Controlled Beam Sample



Figure 4.12: Cracking Of 5% Rice Husk Replacement Beam



Figure 4.13: Cracking Of 15% Rice Husk Replacement Beam

From the previous cracking figure, it clearly shows that the beam of 5% and 15% rice husk replacement experience more tension crack rather than the controlled beam. There are 3 stages that can be obvious during the testing. Stage 1 is at zero external loads, where both samples only carried its own weight. During this stage, no crack was observed. Stage 2 comes when the load was incrementally applied to the samples. At this stage, deflection starts to occur slowly. As the results, both 5% and 0% sample experienced the first crack in the range of 55 kN to 65 kN of load while the first crack for 15% noticed at 47 kN. The minor first crack occur at the bottom side of the beam due to the slight deflection occurred. This also known as deflection crack or tension cracks because it happens at tension side of the beam. At stage 3, when the loads reach up to the range of 70 kN to 80 kN, all 3 sample start to show diagonal cracks about 45 degree angles. This happen due to the increasing of shear stress and it is also called as shear cracks.



Figure 4.14: Average Stress-Strain Steel For Controlled Beam



Figure 4.15: Average Stress-Strain Steel For 5% Beam Sample



Figure 4.16: Average Stress-Strain Steel For 15% Beam Sample

Based on the stress-strain steel curve that had been plotted above, all samples can reach stress value up to 2.5 MPa before it failed. This is meant that, the replacement of rice husk does not affect the steel strain curve. However, it is difficult to get the exact value of strain due to the strain gauge might be torn inside the concrete beam.



## 4.3.5 Stress-Strain Concrete

Figure 4.17: Average Stress-Strain Concrete For Controlled Beam Sample



Figure 4.18: Average Stress-Strain Concrete For 5% Beam Sample



Figure 4.19: Average Stress-Strain Concrete For 15% Beam Sample

Differ with the steel strain, concrete strain shows the reaction of the concrete with the replacement of rice husk within sand in the concrete mix. Based on the graph plotted, it shows that the stress value is dropped when the percentage of rice husk replacement increased up to the 15%.

# 4.3.6 Maximum Moment Capacity



Figure 4.20: Moment Capacity Of Singly Reinforced Beam

$$Ec = 4700\sqrt{fck} = 4700\sqrt{25} = 23500 Mpa$$

*Es* = 200000 *Mpa* 

Modular Ratio:

$$n = \frac{Es}{Ec} = \frac{200000}{23500} = 8.5$$

Allowable Stress:

$$fs = 140$$
 Mpa for steel grade G275 ;  $fc = 0.45$  (25) = 11.25 Mpa

Steel Area:

$$As = 3 \times \frac{1}{4}\pi(12^2) = 108\pi \ mm^2$$

 $nAs = 8.5(108\pi) = 918\pi \ mm^2$ 

Moment Of Area:

$$150(x)\left(\frac{x}{2}\right) = nAs(d-x)$$

$$75x^{2} = 918\pi(253-x)$$

$$75x^{2} + 918\pi x - 232254\pi = 0$$

$$x1 = 81.26, x2 = -119.72$$

Moment Inertia:

$$I_{NA} = \frac{150x^3}{3} + nAs(d-x)^2$$
$$I_{NA} = \frac{150(81.26^3)}{3} + 918\pi(253 - 81.26)^2$$
$$I_{NA} = 111890728 \ mm^4$$

Moment Capacity Concrete:

$$fc = \frac{Mx}{I_{NA}}$$

$$11.25 = \frac{M(81.26)(1000^2)}{111890728}$$

 $M=15.49\,kN.\,m$ 

Moment Capacity Steel:

$$\frac{fs}{n} = \frac{M(d-x)}{I_{NA}}$$
$$\frac{140}{8.5} = \frac{M(253 - 81.26)(1000^2)}{111890728}$$

 $M = 10.73 \ kN.m$  Use Safety Value Of Moment M,capacity = 10.73 kN.m

### **CHAPTER 5**

#### CONCLUSION

## 5.1 Introduction

The previous chapter shows all the data collected and have been analysis the effect of rice husk replacement between fine aggregate to the reinforced concrete beam. In this chapter, the overall experimental study were concluded and provided with several recommendations for future study or development. The main purpose of the study is to investigate whether rice husk replacement between fine aggregate is either acceptable or not in term of the maximum loading capacity, maximum moment capacity and the deflection.

#### 5.2 Conclusion

There are some positive potential in order to solve the problem of running out of sand resources in this world especially in Malaysia, solve the landfill issue and also prevent from air pollution. Furthermore, the potential of reducing the construction price also might be achieved. Based on the result, several conclusions can be made;

I. Replacement of 5% amount of rice husk between fine aggregate in reinforced concrete beam can produce the same value of maximum loading capacity with controlled beam sample. Both maximum loading for 0% sample and 5% was 126.9 kN and 127.13 kN respectively for aged of curing 28 days. In other words, the 5% of rice husk replacement does not give huge impact towards the strength of structure. However, when the volume of rice husk replacement increase, the maximum loading capacity that can accept by the beam sample is decrease. In other word, the increase of raw rice husk in the beam up to 15% give impact towards the structure strength.

- II. In term of deflection, both sample shows similarity where the range of beam deflection is between 7.5 mm to 8 mm. There was no big difference for the rice husk replacement beam. The deflection is acceptable due to the design allowable deflection is 21.60 mm. For the 15% beam sample, the deflection increases up to 10.896 mm although the maximum load is lower than other two samples. This shows that, the 15% rice husk replacement in beam tend to deflect more.
- III. The replacement of 5% raw rice husk can be proposed to be used in construction industry of normal or lightweight structure such as single storey houses. However, the limitation or cut off for the replacement is at 15% due to the decreasing of maximum load and increasing in the deflection.

## 5.3 Recommendation

For the further study on this matter, some recommendation in this chapter might be help to ensure that the rice husk concrete can be used in structure. In order to improve this study, it is highly recommended to have specific coefficient of concrete design mix for certain percentage of rice husk replacement. Furthermore, the investigation of the design mix with additional of additive might be a good recommendation for future study so that the percentage of raw rice husk that can be replaced may improve up to 15% and the strength of the structure increase.

In addition, the workability of the rice husk replacement concrete also need to be improve as the workability of concrete containing rice husk is lower due to the properties of rice husk as a good water absorption. General worker will found it very difficult to handle it during the casting process because the fluidity of the concrete decreases as the percentage of rice husks increases.

#### REFERENCES

Akinwumi, I. I., Awoyera, P. O., Olofinnade, O. M., Busari, A. A., & Okotie, M. (2016). Rice husk as a concrete constituent: Workability, water absorption and strength of the concrete. *Asian Journal of Civil Engineering*, *17*(7), 887–898.

Carmo, R., & Júlio, E. (2017). New Trends for Reinforced Concrete Structures: Some Results of Exploratory Studies. *Infrastructures*, 2(4), 17.

Chabannes, M., Becquart, F., Garcia-Diaz, E., Abriak, N. E., & Clerc, L. (2017). Experimental investigation of the shear behaviour of hemp and rice husk-based concretes using triaxial compression. *Construction and Building Materials*, *143*, 621–632.

Chabannes, M., Bénézet, J. C., Clerc, L., & Garcia-Diaz, E. (2014). Use of raw rice husk as natural aggregate in a lightweight insulating concrete: An innovative application. *Construction and Building Materials*, *70*, 428–438.

Charif, A., Shannag, M. J., & Dghaither, S. (2014). Ductility of reinforced lightweight concrete beams and columns. *Latin American Journal of Solids and Structures*, *11*(7), 1251–1274.

Czaderski, C., Hahnebach, B., & Motavalli, M. (2006). RC beam with variable stiffness and strength. *Construction and Building Materials*, *20*(9), 824–833.

Dan Gavriletea, M. (2017). Environmental impacts of sand exploitation. Analysis of sand market. *Sustainability (Switzerland)*, 9(7).

Gelabert, P. A. (1997). Environmental Effects of Sand Extractions Practices in Puerto Rico. *Coastal Region and Small Island Papers*.

Gunasekaran, K., Ramasubramani, R., Annadurai, R., & Prakash Chandar, S. (2014). Study on reinforced lightweight coconut shell concrete beam behavior under torsion. *Materials and Design*, *57*, 374–382.

Hunag, L. J., Wang, H. Y., & Wang, S. Y. (2015). A study of the durability of recycled green building materials in lightweight aggregate concrete. *Construction and Building Materials*, *96*, 353–359.

Kaklauskas, G. (1999). A new stress-strain relationship for cracked tensile concrete in flexure. *Statyba*, *5*(6), 349–356.

Kwon, S. J., Yang, K. H., & Mun, J. H. (2018). Flexural tests on externally post-tensioned lightweight concrete beams. *Engineering Structures*, *164*(October 2017), 128–140.

Meyer, C. (2009). The greening of the concrete industry. *Cement and Concrete Composites*, 31(8), 601–605.

Obilade, I. O. (2014). Experimental Study On Rice Husk As Fine Aggregates In Concrete, (1992), 9–14.

Olmedo, F. I., Valivonis, J., & Cobo, A. (2017). Experimental Study of Multilayer Beams of Lightweight Concrete and Normal Concrete. *Proceedia Engineering*, *172*, 808–815.

Isma Farhan Bin Roslan B . ENG ( HONS .) CIVIL ENGINEERING. (n.d.).(2017). Properties Of Concrete With Partial Rice Husk As Fine Aggregate Replacement

Salas, J., Alvarez, M., & Veras, J. (1986). Lightweight insulating concretes with rice husk. *International Journal of Cement Composites and Lightweight Concrete*, 8(3), 171–180.

Schneeberger, H. (1994). The stress-strain relationship of concrete. *Materials and Structures*, 27(2), 91–98.

Shafie, S. M. (2015). Paddy residue based power generation in malaysia: Environmental assessment using LCA approach. *ARPN Journal of Engineering and Applied Sciences*, *10*(15), 6643–6648.

Sri Ravindrarajah, R., & Tam, C. T. (1984). Flexural strength of steel fibre reinforced concrete beams. *International Journal of Cement Composites and Lightweight Concrete*, 6(4), 273–278.

est, C. C., Test, C. C., Concrete, C., Concrete, C., Aggregates, C., Aggregates, C., Concrete, S. L. (2000). Lightweight Aggregates for Structural Concrete 1. *Concrete*, *4*, 3–6.

Zhu, W., Li, J., Du, H., Yao, Z., Lv, M., & Xu, Y. (2017). Influence of material properties and structural parameters on the performance of near-space use lightweight insulation structure. *Applied Thermal Engineering*, *124*, 432–441.

# APPENDIX A

## FLEXURAL TEST DATA ( CONTROLLED BEAM SAMPLE )

|         |               | Concrete | Steel  | Steel  | Steel  |
|---------|---------------|----------|--------|--------|--------|
| Load,kN | Deflection,mm | Strain   | Strain | Strain | Strain |
|         |               |          | 1      | 2      | 3      |
| 0       | 0             | 0        | 0      | 0      | 0      |
| 0       | 0             | 0        | 0      | 0      | 0      |
| 0.056   | 0.004         | 0        | 0      | 2      | 0      |
| 0.075   | 0.009         | 0        | 0      | 3      | 0      |
| 0.092   | 0.037         | 0        | 0      | 3      | 0      |
| 0.111   | 0.064         | 0        | 0      | 4      | 0      |
| 0.09    | 0.077         | 0        | 0      | 3      | 0      |
| 0.094   | 0.065         | 0        | 0      | 2      | 0      |
| 0.089   | 0.041         | 0        | 0      | 2      | 0      |
| 0.098   | 0.034         | 0        | 0      | 1      | 0      |
| 0.099   | 0.011         | 0        | 0      | 0      | 0      |
| 0.126   | 0             | 0        | -1     | -1     | 0      |
| 0.176   | 0             | 0        | -2     | -2     | -1     |
| 0.163   | 0             | 0        | -3     | -3     | -1     |
| 0.196   | 0.002         | 0        | -4     | -3     | -1     |
| 0.177   | 0.001         | 0        | -6     | -5     | -1     |
| 0.193   | 0.002         | -1       | -5     | -6     | -1     |
| 0.211   | 0.001         | -1       | -5     | -7     | -1     |
| 0.224   | 0.002         | -2       | -5     | -8     | -1     |
| 0.223   | 0.002         | -3       | -5     | -8     | -2     |
| 0.244   | 0.002         | -3       | -5     | -8     | -2     |
| 0.233   | 0.002         | -4       | -6     | -9     | -2     |
| 0.242   | 0.002         | -5       | -7     | -9     | -2     |
| 0.25    | 0.001         | -5       | -7     | -9     | -2     |
| 0.229   | 0             | -6       | -7     | -9     | -2     |
| 0.222   | 0             | -7       | -8     | -9     | -2     |
| 0.227   | 0             | -7       | -8     | -9     | -2     |
| 0.197   | 0             | -7       | -9     | -9     | -2     |
| 0.172   | 0             | -8       | -10    | -9     | -2     |
| 0.136   | 0             | -9       | -11    | -9     | -2     |
| 0.144   | 0             | -9       | -10    | -9     | -2     |
| 0.146   | 0             | -10      | -10    | -9     | -2     |
| 0.157   | 0             | -9       | -10    | -9     | -2     |
| 0.162   | 0             | -9       | -11    | -9     | -2     |
| 0.16    | 0             | -8       | -10    | -9     | -2     |
| 0.195   | 0             | -10      | -11    | -9     | -2     |
| 0.189   | 0             | -10      | -12    | -9     | -2     |

| 0.194 | 0 | -11 | -12 | -9 | -2 |
|-------|---|-----|-----|----|----|
| 0.208 | 0 | -11 | -12 | -9 | -2 |
| 0.205 | 0 | -10 | -12 | -9 | -2 |
| 0.207 | 0 | -10 | -12 | -9 | -2 |
| 0.202 | 0 | -11 | -12 | -9 | -2 |
| 0.196 | 0 | -11 | -12 | -9 | -2 |
| 0.223 | 0 | -11 | -12 | -9 | -2 |
| 0.195 | 0 | -11 | -12 | -9 | -2 |
| 0.205 | 0 | -11 | -13 | -9 | -3 |
| 0.207 | 0 | -10 | -12 | -9 | -2 |
| 0.22  | 0 | -10 | -12 | -9 | -2 |
| 0.238 | 0 | -10 | -12 | -9 | -2 |
| 0.217 | 0 | -10 | -12 | -9 | -2 |
| 0.218 | 0 | -11 | -13 | -9 | -2 |
| 0.236 | 0 | -11 | -12 | -9 | -2 |
| 0.223 | 0 | -11 | -12 | -9 | -2 |
| 0.235 | 0 | -10 | -13 | -9 | -2 |
| 0.232 | 0 | -11 | -12 | -9 | -2 |
| 0.247 | 0 | -10 | -13 | -9 | -2 |
| 0.26  | 0 | -10 | -13 | -9 | -2 |
| 0.271 | 0 | -10 | -13 | -9 | -2 |
| 0.261 | 0 | -11 | -13 | -9 | -2 |
| 0.251 | 0 | -11 | -13 | -9 | -2 |
| 0.249 | 0 | -12 | -13 | -9 | -2 |
| 0.252 | 0 | -11 | -13 | -9 | -2 |
| 0.247 | 0 | -11 | -13 | -9 | -2 |
| 0.245 | 0 | -11 | -14 | -9 | -2 |
| 0.238 | 0 | -10 | -14 | -9 | -2 |
| 0.254 | 0 | -8  | -13 | -7 | -2 |
| 0.263 | 0 | -8  | -12 | -7 | -2 |
| 0.283 | 0 | -9  | -12 | -7 | -2 |
| 0.277 | 0 | -10 | -12 | -8 | -2 |
| 0.28  | 0 | -11 | -12 | -8 | -2 |
| 0.281 | 0 | -11 | -13 | -9 | -2 |
| 0.282 | 0 | -11 | -13 | -9 | -2 |
| 0.276 | 0 | -10 | -12 | -9 | -2 |
| 0.273 | 0 | -9  | -13 | -9 | -2 |
| 0.3   | 0 | -9  | -13 | -9 | -2 |
| 0.294 | 0 | -9  | -13 | -8 | -2 |
| 0.308 | 0 | -10 | -12 | -7 | -2 |
| 0.311 | 0 | -11 | -12 | -8 | -2 |
| 0.314 | 0 | -11 | -12 | -7 | -2 |
| 0.322 | 0 | -11 | -12 | -7 | -2 |
| 0.303 | 0 | -11 | -12 | -7 | -2 |

| 0.306 $0$ $-11$ $-12$ $-7$ $-2$ $0.327$ $0$ $-11$ $-12$ $-6$ $-2$ $0.338$ $0$ $-11$ $-12$ $-7$ $-2$ $0.334$ $0$ $-11$ $-12$ $-6$ $-2$ $0.333$ $0$ $-11$ $-12$ $-6$ $-2$ $0.361$ $0$ $-11$ $-13$ $-5$ $-2$ $0.355$ $0$ $-11$ $-14$ $-6$ $-2$ $0.357$ $0$ $-11$ $-14$ $-6$ $-2$ $0.351$ $0$ $-11$ $-14$ $-5$ $-2$ $0.354$ $0$ $-11$ $-14$ $-6$ $-2$ $0.354$ $0$ $-11$ $-14$ $-6$ $-2$ $0.358$ $0$ $-11$ $-14$ $-6$ $-2$ $0.363$ $0$ $-11$ $-14$ $-5$ $-2$ $0.363$ $0$ $-11$ $-14$ $-6$ $-2$ $0.363$ $0$ $-11$ $-14$ $-6$ $-2$ $0.363$ $0$ $-11$ $-14$ $-5$ $-2$ $0.363$ $0$ $-11$ $-14$ $-5$ $-2$ $0.365$ $0.001$ $-11$ $-14$ $-5$ $-2$ $0.365$ $0.001$ $-11$ $-14$ $-5$ $-2$ $0.365$ $0.001$ $-11$ $-14$ $-5$ $-1$ $0.366$ $0$ $-14$ $-15$ $-2$ $-1$ $0.366$ $0$ $-14$ $-15$ $-2$ $-1$ $0.378$ <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th></td<>                                        |       |       |     |     |      |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-----|-----|------|----|
| 0.3270-11-12-6-2 $0.338$ 0-11-12-7-2 $0.334$ 0-11-12-6-2 $0.333$ 0-11-11-12-6-2 $0.361$ 0-11-13-6-2 $0.355$ 0-11-14-6-2 $0.357$ 0-11-14-6-2 $0.351$ 0-11-14-5-2 $0.354$ 0-11-14-5-2 $0.354$ 0-11-14-5-2 $0.366$ 0-12-14-6-2 $0.363$ 0-11-14-5-2 $0.363$ 0-11-14-5-2 $0.363$ 0-11-14-6-2 $0.325$ 0-12-14-6-2 $0.328$ 0-12-14-6-2 $0.365$ 0.001-11-14-3-2 $0.365$ 0.001-11-14-3-2 $0.365$ 0.001-11-14-3-2 $0.365$ 0.001-11-14-4-1 $0.378$ 0.001-13-14-4-1 $0.379$ 0.001-13-14-2-1 $0.384$ 0.002-14-15-2-2 $0.386$ 0.001-14-15-2-1 $0.394$ 0.002-14 <td< td=""><td>0.306</td><td>0</td><td>-11</td><td>-12</td><td>-7</td><td>-2</td></td<>                                                                                                                                                                                                                                                                     | 0.306 | 0     | -11 | -12 | -7   | -2 |
| 0.3380-11-12-7-2 $0.334$ 0-11-12-6-2 $0.333$ 0-11-11-6-2 $0.361$ 0-11-13-6-2 $0.355$ 0-11-14-6-2 $0.357$ 0-11-14-6-2 $0.351$ 0-11-14-5-2 $0.354$ 0-11-14-5-2 $0.354$ 0-11-14-5-2 $0.364$ 0-12-14-6-2 $0.363$ 0-11-14-5-2 $0.363$ 0-11-14-5-2 $0.363$ 0-11-14-6-2 $0.363$ 0-11-14-6-2 $0.363$ 0-11-14-6-2 $0.325$ 0-12-14-6-2 $0.328$ 0-12-14-6-2 $0.365$ 0.001-11-14-3-2 $0.365$ 0.001-11-14-3-2 $0.365$ 0.001-11-14-3-2 $0.365$ 0.001-13-14-4-1 $0.366$ 0-14-15-5-1 $0.389$ 0.001-13-14-4-1 $0.379$ 0.001-14-15-2-1 $0.384$ 0.002-14-15-2                                                                                                                                                                                                                                                                                                                                                                   | 0.327 | 0     | -11 | -12 | -6   | -2 |
| 0.3340-11-12-6-2 $0.333$ 0-11-112-6-2 $0.361$ 0-11-113-5-2 $0.355$ 0-11-114-6-2 $0.357$ 0-11-14-6-2 $0.351$ 0-11-14-5-2 $0.354$ 0-11-14-5-2 $0.354$ 0-11-14-5-2 $0.354$ 0-11-14-5-2 $0.358$ 0-11-14-5-2 $0.363$ 0-11-14-5-2 $0.363$ 0-11-14-5-2 $0.363$ 0-11-14-5-2 $0.363$ 0-11-14-5-2 $0.365$ 0-12-14-6-2 $0.325$ 0-12-14-6-2 $0.365$ 0.001-11-14-3-2 $0.365$ 0.001-11-14-3-2 $0.365$ 0.001-11-14-3-2 $0.366$ 0-14-15-5-1 $0.389$ 0.001-13-14-4-1 $0.379$ 0.001-13-14-2-1 $0.379$ 0.001-14-15-2-1 $0.386$ 0.001-14-15-2-2 $0.384$ 0.002-14-15                                                                                                                                                                                                                                                                                                                                                              | 0.338 | 0     | -11 | -12 | -7   | -2 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.334 | 0     | -11 | -12 | -6   | -2 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.333 | 0     | -11 | -12 | -6   | -2 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.361 | 0     | -11 | -13 | -6   | -2 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.355 | 0     | -11 | -13 | -5   | -2 |
| 0.3450-11-14-6-2 $0.351$ 0-11-14-5-2 $0.354$ 0-11-14-5-2 $0.36$ 0-12-14-6-2 $0.344$ 0-12-14-6-2 $0.358$ 0-11-14-5-2 $0.363$ 0-11-14-5-2 $0.363$ 0-12-14-6-2 $0.325$ 0-12-14-6-2 $0.325$ 0-12-14-5-2 $0.365$ 0.001-11-14-3-2 $0.365$ 0.001-11-14-3-2 $0.365$ 0.001-11-14-3-2 $0.365$ 0.001-11-14-3-2 $0.365$ 0.001-13-14-4-1 $0.366$ 0-14-15-5-1 $0.366$ 0-14-15-5-1 $0.379$ 0.001-13-14-4-1 $0.379$ 0.001-14-15-2-1 $0.386$ 0.001-14-15-2-1 $0.386$ 0.001-14-15-2-2 $0.387$ 0.001-14-15-2-2 $0.387$ 0.001-14-15-2-2 $0.387$ 0.001-14-15-2-2 $0.419$ 0.001-15                                                                                                                                                                                                                                                                                                                                                 | 0.357 | 0     | -11 | -14 | -6   | -2 |
| 0.3510 $11$ $14$ $5$ $2$ $0.354$ 0 $11$ $14$ $5$ $2$ $0.36$ 0 $12$ $14$ $6$ $2$ $0.344$ 0 $12$ $14$ $6$ $2$ $0.358$ 0 $11$ $14$ $5$ $2$ $0.363$ 0 $11$ $14$ $5$ $2$ $0.334$ 0 $12$ $14$ $6$ $2$ $0.325$ 0 $12$ $14$ $6$ $2$ $0.328$ 0 $12$ $14$ $5$ $2$ $0.365$ $0.001$ $11$ $14$ $3$ $2$ $0.365$ $0.001$ $11$ $14$ $3$ $2$ $0.365$ $0.001$ $11$ $14$ $3$ $2$ $0.365$ $0.001$ $13$ $14$ $4$ $1$ $0.366$ $0$ $14$ $15$ $1$ $14$ $0.366$ $0$ $14$ $14$ $1$ $14$ $0.378$ $0.001$ $13$ $14$ $4$ $1$ $0.379$ $0.001$ $14$ $15$ $2$ $1$ $0.386$ $0.001$ $14$ $14$ $2$ $1$ $0.386$ $0.001$ $14$ $15$ $2$ $2$ $0.387$ $0.001$ $14$ $15$ $2$ $2$ $0.387$ $0.001$ $14$ $15$ $2$ $2$ $0.387$ <td>0.345</td> <td>0</td> <td>-11</td> <td>-14</td> <td>-6</td> <td>-2</td>                                                                                                                                                | 0.345 | 0     | -11 | -14 | -6   | -2 |
| 0.3540 $-11$ $-14$ $-5$ $-2$ $0.36$ 0 $-12$ $-14$ $-6$ $-2$ $0.344$ 0 $-12$ $-14$ $-6$ $-2$ $0.358$ 0 $-11$ $-14$ $-5$ $-2$ $0.363$ 0 $-11$ $-14$ $-5$ $-2$ $0.334$ 0 $-12$ $-14$ $-6$ $-2$ $0.325$ 0 $-12$ $-14$ $-6$ $-2$ $0.328$ 0 $-12$ $-14$ $-5$ $-2$ $0.365$ $0.001$ $-11$ $-14$ $-3$ $-2$ $0.365$ $0.001$ $-11$ $-14$ $-3$ $-2$ $0.365$ $0.001$ $-11$ $-14$ $-3$ $-1$ $0.365$ $0.001$ $-13$ $-14$ $-4$ $-1$ $0.366$ $0$ $-14$ $-15$ $-5$ $-1$ $0.389$ $0.001$ $-13$ $-14$ $-4$ $-1$ $0.379$ $0.001$ $-14$ $-14$ $-4$ $-1$ $0.379$ $0.001$ $-14$ $-15$ $-2$ $-1$ $0.386$ $0.001$ $-14$ $-15$ $-2$ $-1$ $0.386$ $0.001$ $-14$ $-15$ $-2$ $-2$ $0.387$ $0.001$ $-14$ $-15$ $-2$ $-2$ $0.387$ $0.001$ $-14$ $-15$ $-2$ $-2$ $0.387$ $0.001$ $-14$ $-15$ $-2$ $-2$ $0.387$ $0.001$ $-14$ $-15$ $-2$ $-2$                                                                                                  | 0.351 | 0     | -11 | -14 | -5   | -2 |
| 0.36 $0$ $-12$ $-14$ $-6$ $-2$ $0.344$ $0$ $-12$ $-14$ $-6$ $-2$ $0.358$ $0$ $-11$ $-14$ $-5$ $-2$ $0.363$ $0$ $-11$ $-14$ $-5$ $-2$ $0.363$ $0$ $-12$ $-14$ $-6$ $-2$ $0.325$ $0$ $-12$ $-14$ $-6$ $-2$ $0.328$ $0$ $-12$ $-14$ $-5$ $-2$ $0.365$ $0.001$ $-11$ $-14$ $-3$ $-2$ $0.365$ $0.001$ $-11$ $-14$ $-3$ $-1$ $0.365$ $0.001$ $-113$ $-14$ $-4$ $-1$ $0.365$ $0.001$ $-13$ $-14$ $-4$ $-1$ $0.366$ $0$ $-14$ $-15$ $-5$ $-1$ $0.366$ $0$ $-14$ $-15$ $-5$ $-1$ $0.366$ $0$ $-14$ $-14$ $-4$ $-1$ $0.366$ $0$ $-14$ $-14$ $-4$ $-1$ $0.389$ $0.001$ $-13$ $-14$ $-3$ $-1$ $0.379$ $0.001$ $-14$ $-15$ $-2$ $-1$ $0.386$ $0.001$ $-14$ $-15$ $-2$ $-1$ $0.394$ $0.002$ $-14$ $-15$ $-2$ $-2$ $0.387$ $0.001$ $-14$ $-15$ $-2$ $-2$ $0.387$ $0.001$ $-14$ $-15$ $-2$ $-2$ $0.427$ $0.001$ $-14$ $-15$ $-2$ $-2$ <                                                                                      | 0.354 | 0     | -11 | -14 | -5   | -2 |
| 0.344 $0$ $-12$ $-14$ $-6$ $-2$ $0.358$ $0$ $-11$ $-14$ $-5$ $-2$ $0.363$ $0$ $-11$ $-14$ $-5$ $-2$ $0.334$ $0$ $-12$ $-14$ $-6$ $-2$ $0.325$ $0$ $-12$ $-14$ $-6$ $-2$ $0.328$ $0$ $-12$ $-14$ $-5$ $-2$ $0.365$ $0.001$ $-11$ $-14$ $-3$ $-2$ $0.365$ $0.001$ $-11$ $-14$ $-3$ $-2$ $0.355$ $0$ $-13$ $-14$ $-3$ $-1$ $0.348$ $0.001$ $-13$ $-14$ $-4$ $-1$ $0.366$ $0$ $-14$ $-14$ $-4$ $-1$ $0.366$ $0$ $-14$ $-14$ $-4$ $-1$ $0.378$ $0.001$ $-13$ $-14$ $-3$ $-1$ $0.378$ $0.001$ $-14$ $-15$ $-2$ $-1$ $0.379$ $0.001$ $-14$ $-15$ $-2$ $-1$ $0.386$ $0.001$ $-14$ $-15$ $-2$ $-2$ $0.38$ $0.001$ $-14$ $-15$ $-2$ $-2$ $0.387$ $0.001$ $-14$ $-15$ $-2$ $-2$ $0.387$ $0.001$ $-14$ $-15$ $-2$ $-2$ $0.387$ $0.001$ $-14$ $-15$ $-2$ $-2$ $0.387$ $0.001$ $-14$ $-15$ $-2$ $-2$ $0.387$ $0.001$ $-14$ $-15$ $-2$ <t< td=""><td>0.36</td><td>0</td><td>-12</td><td>-14</td><td>-6</td><td>-2</td></t<> | 0.36  | 0     | -12 | -14 | -6   | -2 |
| 0.3580-11-14-5-2 $0.363$ 0-11-14-5-2 $0.334$ 0-12-14-6-2 $0.325$ 0-12-14-5-2 $0.328$ 0-12-14-5-2 $0.365$ 0.001-11-14-3-2 $0.365$ 0.001-11-14-3-2 $0.365$ 0.001-11-14-3-2 $0.365$ 0.001-13-14-4-1 $0.366$ 0-14-15-5-1 $0.348$ 0.001-13-14-4-1 $0.366$ 0-14-14-4-1 $0.366$ 0-14-14-4-1 $0.379$ 0.001-13-14-3-1 $0.379$ 0.001-14-15-2-1 $0.394$ 0-15-15-2-1 $0.386$ 0.001-14-15-2-2 $0.386$ 0.001-14-15-2-2 $0.387$ 0.001-14-15-2-2 $0.387$ 0.001-14-15-2-2 $0.427$ 0.001-14-15-1-2 $0.419$ 0.001-15-15-1-2 $0.419$ 0.001-15-15-1-2 $0.419$ 0.001-15-15-1-1 $0.419$ 0.001 <td>0.344</td> <td>0</td> <td>-12</td> <td>-14</td> <td>-6</td> <td>-2</td>                                                                                                                                                                                                                                                           | 0.344 | 0     | -12 | -14 | -6   | -2 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.358 | 0     | -11 | -14 | -5   | -2 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.363 | 0     | -11 | -14 | -5   | -2 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.334 | 0     | -12 | -14 | -6   | -2 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.325 | 0     | -12 | -14 | -6   | -2 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.328 | 0     | -12 | -14 | -5   | -2 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.365 | 0.001 | -11 | -14 | -3   | -2 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.365 | 0.001 | -11 | -14 | -3   | -2 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.355 | 0     | -13 | -15 | -3   | -1 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.348 | 0.001 | -13 | -14 | -4   | -1 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.366 | 0     | -14 | -15 | -5   | -1 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.389 | 0.001 | -13 | -14 | -5   | -1 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.406 | 0     | -14 | -14 | -4   | -1 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.378 | 0.001 | -13 | -14 | -3   | -1 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.379 | 0.001 | -14 | -15 | -2   | -1 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.394 | 0     | -15 | -15 | -2   | -1 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.386 | 0.001 | -14 | -15 | -2   | -1 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.409 | 0.002 | -14 | -14 | -2   | -1 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.394 | 0.002 | -14 | -15 | -2   | -2 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.38  | 0.001 | -14 | -15 | -3   | -2 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.364 | 0.001 | -14 | -15 | -2   | -2 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.387 | 0.001 | -14 | -15 | -2   | -2 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.42  | 0.002 | -14 | -15 | -2   | -2 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.427 | 0.001 | -14 | -15 | -1   | -2 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.419 | 0.001 | -15 | -15 | -1   | -2 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.392 | 0.001 | -15 | -15 | -2   | -1 |
| 0.4550.001-15-15-1-10.4610.004-15-15-29-10.4340.015-15-15-104-10.4340.012-15-15-104-10.410.005-15-15-104-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.417 | 0.001 | -15 | -15 | -3   | -2 |
| 0.4610.004-15-15-29-10.4340.015-15-15-104-10.4340.012-15-15-104-10.410.005-15-15-104-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.455 | 0.001 | -15 | -15 | -1   | -1 |
| 0.4340.015-15-104-10.4340.012-15-15-104-10.410.005-15-15-104-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.461 | 0.004 | -15 | -15 | -29  | -1 |
| 0.434         0.012         -15         -15         -104         -1           0.41         0.005         -15         -15         -104         -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.434 | 0.015 | -15 | -15 | -104 | -1 |
| 0.41 0.005 -15 -15 -104 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.434 | 0.012 | -15 | -15 | -104 | -1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.41  | 0.005 | -15 | -15 | -104 | -1 |

| 0.408 $0.008$ $-14$ $-15$ $-104$ $-1$ $0.443$ $0.006$ $-15$ $-15$ $-104$ $-1$ $0.456$ $0.011$ $-15$ $-15$ $-104$ $-1$ $0.464$ $0.015$ $-15$ $-15$ $-104$ $-1$ $0.468$ $0.012$ $-15$ $-15$ $-104$ $-1$ $0.455$ $0.011$ $-15$ $-15$ $-103$ $-11$ $0.455$ $0.012$ $-15$ $-15$ $-103$ $-11$ $0.452$ $0.012$ $-15$ $-15$ $-103$ $-11$ $0.462$ $0.012$ $-15$ $-15$ $-103$ $-11$ $0.462$ $0.012$ $-15$ $-15$ $-103$ $-11$ $0.481$ $0.015$ $-15$ $-15$ $-103$ $-11$ $0.494$ $0.018$ $-15$ $-15$ $-103$ $01$ $0.492$ $0.018$ $-15$ $-15$ $-103$ $01$ $0.487$ $0.018$ $-15$ $-15$ $-103$ $01$ $0.488$ $0.022$ $-15$ $-15$ $-103$ $01$ $0.496$ $0.021$ $-15$ $-15$ $-103$ $01$ $0.492$ $0.022$ $-15$ $-15$ $-103$ $01$ $0.492$ $0.022$ $-15$ $-15$ $-103$ $01$ $0.492$ $0.023$ $-15$ $-15$ $-103$ $01$ $0.53$ $0.023$ $-15$ $-15$ $103$ $01$ $0.53$ $0.025$ $-15$ $-15$ $-102$ $01$ </th <th>0.408</th> <th>0.008</th> <th>-14</th> <th>-15</th> <th>-104</th> <th>_1</th> | 0.408   | 0.008 | -14 | -15 | -104 | _1 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-----|-----|------|----|
| 0.443 $0.006$ $-15$ $-15$ $-104$ $-1$ $0.456$ $0.015$ $-15$ $-15$ $-104$ $-1$ $0.464$ $0.015$ $-15$ $-15$ $-104$ $-1$ $0.469$ $0.016$ $-15$ $-15$ $-104$ $-1$ $0.468$ $0.012$ $-15$ $-15$ $-104$ $-1$ $0.455$ $0.011$ $-15$ $-15$ $-103$ $-1$ $0.455$ $0.012$ $-15$ $-15$ $-103$ $-1$ $0.452$ $0.012$ $-15$ $-15$ $-103$ $-1$ $0.481$ $0.015$ $-15$ $-103$ $-1$ $0.494$ $0.018$ $-15$ $-15$ $-103$ $-1$ $0.494$ $0.018$ $-15$ $-15$ $-103$ $-1$ $0.494$ $0.018$ $-15$ $-15$ $-103$ $0$ $0.497$ $0.018$ $-15$ $-15$ $-103$ $0$ $0.498$ $0.02$ $-15$ $-15$ $-103$ $0$ $0.498$ $0.021$ $-15$ $-15$ $-103$ $0$ $0.496$ $0.021$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.022$ $-15$ $-15$ $-103$ $-1$ $0.482$ $0.023$ $-15$ $-15$ $103$ $0$ $0.492$ $0.024$ $-15$ $-15$ $103$ $0$ $0.53$ $0.025$ $-15$ $-15$ $103$ $0$ $0.53$ $0.025$ $-15$ $-15$ $102$ $0$ $0.545$ $0.03$                                                                                                  | 0 4 4 2 |       |     |     | _    | Τ- |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.443   | 0.006 | -15 | -15 | -104 | -1 |
| 0.464 $0.015$ $-15$ $-104$ $-1$ $0.469$ $0.016$ $-15$ $-15$ $-104$ $-1$ $0.468$ $0.012$ $-15$ $-15$ $-103$ $-1$ $0.455$ $0.012$ $-15$ $-15$ $-103$ $-1$ $0.455$ $0.012$ $-15$ $-15$ $-103$ $-1$ $0.462$ $0.012$ $-15$ $-15$ $-103$ $-1$ $0.462$ $0.012$ $-15$ $-15$ $-103$ $-1$ $0.481$ $0.018$ $-15$ $-15$ $-103$ $-1$ $0.494$ $0.018$ $-15$ $-15$ $-103$ $-1$ $0.494$ $0.018$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.018$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.022$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.021$ $-15$ $-15$ $-103$ $0$ $0.496$ $0.021$ $-15$ $-15$ $-103$ $-1$ $0.496$ $0.022$ $-15$ $-15$ $-103$ $-1$ $0.492$ $0.024$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.024$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.025$ $-15$ $-15$ $-103$ $0$ $0.53$ $0.025$ $-15$ $-15$ $-103$ $0$ $0.53$ $0.025$ $-15$ $-15$ $-102$ $0$ $0.53$ $0.038$ $-15$ $-102$ $0$ $0$ $0.54$ $0.03$                                                                                                  | 0.456   | 0.01  | -15 | -15 | -104 | -1 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.464   | 0.015 | -15 | -15 | -104 | -1 |
| 0.468 $0.012$ $-15$ $-104$ $-1$ $0.455$ $0.011$ $-15$ $-15$ $-103$ $-1$ $0.455$ $0.012$ $-15$ $-15$ $-103$ $-1$ $0.462$ $0.012$ $-15$ $-15$ $-103$ $-1$ $0.481$ $0.015$ $-15$ $-15$ $-103$ $-1$ $0.494$ $0.018$ $-15$ $-15$ $-103$ $-1$ $0.494$ $0.018$ $-15$ $-15$ $-103$ $-1$ $0.492$ $0.018$ $-15$ $-15$ $-103$ $0$ $0.487$ $0.018$ $-15$ $-15$ $-103$ $0$ $0.487$ $0.018$ $-15$ $-15$ $-103$ $0$ $0.498$ $0.02$ $-15$ $-15$ $-103$ $0$ $0.498$ $0.02$ $-15$ $-15$ $-103$ $0$ $0.496$ $0.021$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.022$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.024$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.024$ $-15$ $-15$ $-103$ $0$ $0.53$ $0.023$ $-15$ $-15$ $-103$ $0$ $0.53$ $0.025$ $-15$ $-15$ $-103$ $0$ $0.53$ $0.025$ $-15$ $-15$ $-102$ $0$ $0.53$ $0.035$ $-15$ $-102$ $0$ $0$ $0.53$ $0.035$ $-15$ $-102$ $0$ $0$ $0.53$ $0.038$                                                                                                           | 0.469   | 0.016 | -15 | -15 | -104 | -1 |
| 0.455 $0.011$ $-15$ $-15$ $-103$ $-1$ $0.455$ $0.012$ $-15$ $-15$ $-103$ $-1$ $0.462$ $0.012$ $-15$ $-15$ $-103$ $-1$ $0.481$ $0.015$ $-15$ $-15$ $-103$ $-1$ $0.494$ $0.018$ $-15$ $-15$ $-103$ $-1$ $0.492$ $0.018$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.018$ $-15$ $-15$ $-103$ $0$ $0.497$ $0.018$ $-15$ $-15$ $-103$ $0$ $0.498$ $0.02$ $-15$ $-15$ $-103$ $0$ $0.498$ $0.02$ $-15$ $-15$ $-103$ $0$ $0.498$ $0.021$ $-15$ $-15$ $-103$ $0$ $0.496$ $0.021$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.022$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.022$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.024$ $-15$ $-15$ $-103$ $0$ $0.499$ $0.02$ $-15$ $-15$ $-103$ $0$ $0.53$ $0.025$ $-15$ $-15$ $-103$ $0$ $0.53$ $0.025$ $-15$ $-15$ $-102$ $0$ $0.545$ $0.03$ $-15$ $-102$ $0$ $0$ $0.53$ $0.035$ $-15$ $-102$ $0$ $0$ $0.545$ $0.03$ $-15$ $-102$ $0$ $0$ $0.594$ $0.038$                                                                                                         | 0.468   | 0.012 | -15 | -15 | -104 | -1 |
| 0.455 $0.012$ $-15$ $-10$ $-1$ $0.462$ $0.012$ $-15$ $-15$ $-103$ $-1$ $0.481$ $0.015$ $-15$ $-15$ $-103$ $-1$ $0.494$ $0.018$ $-15$ $-15$ $-103$ $-1$ $0.492$ $0.018$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.018$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.018$ $-15$ $-15$ $-103$ $0$ $0.498$ $0.02$ $-15$ $-15$ $-103$ $0$ $0.498$ $0.02$ $-15$ $-15$ $-103$ $0$ $0.496$ $0.021$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.022$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.022$ $-15$ $-15$ $-103$ $-1$ $0.482$ $0.023$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.024$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.024$ $-15$ $-15$ $-103$ $0$ $0.53$ $0.025$ $-15$ $-15$ $-103$ $0$ $0.53$ $0.025$ $-15$ $-15$ $-102$ $0$ $0.53$ $0.028$ $-15$ $-15$ $-102$ $0$ $0.53$ $0.035$ $-15$ $-102$ $0$ $0$ $0.53$ $0.035$ $-15$ $-102$ $0$ $0$ $0.545$ $0.03$ $-15$ $-102$ $0$ $0$ $0.594$ $0.038$ $-15$                                                                                                          | 0.455   | 0.011 | -15 | -15 | -103 | -1 |
| 0.462 $0.012$ $-15$ $-15$ $-103$ $-1$ $0.481$ $0.015$ $-15$ $-15$ $-103$ $-1$ $0.494$ $0.018$ $-15$ $-15$ $-103$ $-1$ $0.492$ $0.018$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.018$ $-15$ $-15$ $-103$ $0$ $0.498$ $0.02$ $-15$ $-15$ $-103$ $0$ $0.498$ $0.021$ $-15$ $-15$ $-103$ $0$ $0.496$ $0.021$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.022$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.022$ $-15$ $-15$ $-103$ $-1$ $0.492$ $0.024$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.024$ $-15$ $-15$ $-103$ $0$ $0.5$ $0.023$ $-15$ $-15$ $-103$ $0$ $0.53$ $0.025$ $-15$ $-15$ $-103$ $0$ $0.53$ $0.025$ $-15$ $-15$ $-103$ $0$ $0.53$ $0.025$ $-15$ $-15$ $-103$ $0$ $0.53$ $0.028$ $-15$ $-15$ $-102$ $0$ $0.53$ $0.03$ $-15$ $-102$ $0$ $0$ $0.53$ $0.035$ $-15$ $-102$ $0$ $0$ $0.53$ $0.035$ $-15$ $-102$ $0$ $0$ $0.53$ $0.038$ $-15$ $-15$ $-102$ $0$ $0.536$ $0.04$                                                                                                               | 0.455   | 0.012 | -15 | -15 | -103 | -1 |
| 0.481 $0.015$ $-15$ $-15$ $-103$ $-1$ $0.494$ $0.018$ $-15$ $-15$ $-103$ $-1$ $0.492$ $0.018$ $-15$ $-15$ $-103$ $0$ $0.498$ $0.02$ $-15$ $-15$ $-103$ $0$ $0.498$ $0.02$ $-15$ $-15$ $-103$ $0$ $0.496$ $0.021$ $-15$ $-15$ $-103$ $0$ $0.496$ $0.021$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.022$ $-15$ $-15$ $-103$ $-1$ $0.482$ $0.023$ $-15$ $-15$ $-103$ $-1$ $0.492$ $0.024$ $-15$ $-15$ $-103$ $-1$ $0.492$ $0.024$ $-15$ $-15$ $-103$ $0$ $0.5$ $0.023$ $-15$ $-15$ $-103$ $0$ $0.53$ $0.025$ $-15$ $-15$ $-103$ $0$ $0.53$ $0.025$ $-15$ $-15$ $-103$ $0$ $0.53$ $0.025$ $-15$ $-15$ $-103$ $0$ $0.53$ $0.025$ $-15$ $-15$ $-102$ $0$ $0.545$ $0.03$ $-15$ $-15$ $-102$ $0$ $0.532$ $0.035$ $-15$ $-15$ $-102$ $0$ $0.532$ $0.035$ $-15$ $-15$ $-102$ $0$ $0.533$ $0.038$ $-15$ $-15$ $-102$ $0$ $0.534$ $0.039$ $-15$ $-15$ $-102$ $0$ $0.596$                                                                                                            | 0.462   | 0.012 | -15 | -15 | -103 | -1 |
| 0.494 $0.018$ $-15$ $-15$ $-103$ $-1$ $0.492$ $0.018$ $-15$ $-15$ $-103$ $0$ $0.487$ $0.018$ $-15$ $-15$ $-103$ $0$ $0.498$ $0.02$ $-15$ $-15$ $-103$ $0$ $0.496$ $0.021$ $-15$ $-15$ $-103$ $-1$ $0.482$ $0.023$ $-15$ $-15$ $-103$ $0$ $0.492$ $0.022$ $-15$ $-15$ $-103$ $-1$ $0.482$ $0.022$ $-15$ $-15$ $-103$ $-1$ $0.482$ $0.022$ $-15$ $-15$ $-103$ $-1$ $0.492$ $0.024$ $-15$ $-15$ $-103$ $-1$ $0.492$ $0.024$ $-15$ $-15$ $-103$ $0$ $0.5$ $0.023$ $-15$ $-15$ $-103$ $0$ $0.53$ $0.025$ $-15$ $-15$ $-103$ $0$ $0.53$ $0.025$ $-15$ $-15$ $-103$ $0$ $0.529$ $0.027$ $-15$ $-15$ $-102$ $0$ $0.533$ $0.028$ $-15$ $-15$ $-102$ $0$ $0.532$ $0.031$ $-15$ $-102$ $0$ $0$ $0.533$ $0.035$ $-15$ $-102$ $0$ $0.545$ $0.03$ $-15$ $-15$ $-102$ $0$ $0.533$ $0.035$ $-15$ $-102$ $0$ $0.594$ $0.038$ $-15$ $-15$ $-102$ $0$ $0.586$ $0.04$ $-15$ <t< td=""><td>0.481</td><td>0.015</td><td>-15</td><td>-15</td><td>-103</td><td>-1</td></t<>             | 0.481   | 0.015 | -15 | -15 | -103 | -1 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.494   | 0.018 | -15 | -15 | -103 | -1 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.492   | 0.018 | -15 | -15 | -103 | -1 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.487   | 0.018 | -15 | -15 | -103 | 0  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.498   | 0.02  | -15 | -15 | -103 | 0  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.508   | 0.022 | -15 | -15 | -103 | 0  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.496   | 0.021 | -15 | -15 | -103 | -1 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.482   | 0.023 | -15 | -15 | -103 | 0  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.492   | 0.022 | -15 | -15 | -103 | -1 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.48    | 0.022 | -15 | -15 | -103 | -1 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.492   | 0.024 | -15 | -15 | -103 | -1 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.499   | 0.02  | -15 | -15 | -103 | 0  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5     | 0.023 | -15 | -15 | -103 | 0  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.532   | 0.025 | -15 | -15 | -103 | 0  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.543   | 0.025 | -15 | -15 | -103 | 0  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.529   | 0.027 | -15 | -15 | -103 | 0  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.53    | 0.028 | -15 | -15 | -102 | 0  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.545   | 0.03  | -15 | -15 | -102 | 0  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.529   | 0.03  | -15 | -15 | -102 | 0  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.532   | 0.031 | -15 | -15 | -102 | 0  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.553   | 0.035 | -15 | -15 | -102 | 0  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.594   | 0.038 | -15 | -15 | -102 | 0  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.596   | 0.038 | -15 | -14 | -102 | 0  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.586   | 0.04  | -15 | -15 | -102 | 0  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.584   | 0.039 | -15 | -15 | -102 | 0  |
| 0.576         0.04         -15         -15         -102         0           0.592         0.039         -15         -15         -102         0           0.614         0.038         -15         -15         -102         0           0.615         0.039         -14         -15         -102         0           0.583         0.04         -14         -15         -102         0           0.604         0.039         -14         -15         -102         0           0.604         0.039         -14         -15         -102         0           0.602         0.041         -15         -102         0                                                                                                                                                                                                                                                                                                                                                 | 0.6     | 0.038 | -15 | -15 | -102 | 0  |
| 0.592         0.039         -15         -15         -102         0           0.614         0.038         -15         -15         -102         0           0.615         0.039         -14         -15         -102         0           0.583         0.04         -14         -15         -102         0           0.604         0.039         -14         -15         -102         0           0.604         0.039         -14         -15         -102         0           0.602         0.041         -15         -102         0                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.576   | 0.04  | -15 | -15 | -102 | 0  |
| 0.6140.038-15-15-10200.6150.039-14-15-10200.5830.04-14-15-10200.6040.039-14-15-10200.6020.041-15-1020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.592   | 0.039 | -15 | -15 | -102 | 0  |
| 0.6150.039-14-15-10200.5830.04-14-15-10200.6040.039-14-15-10200.6020.041-15-15-1020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.614   | 0.038 | -15 | -15 | -102 | 0  |
| 0.583         0.04         -14         -15         -102         0           0.604         0.039         -14         -15         -102         0           0.602         0.041         -15         -102         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.615   | 0.039 | -14 | -15 | -102 | 0  |
| 0.604         0.039         -14         -15         -102         0           0.602         0.041         -15         -15         -102         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.583   | 0.04  | -14 | -15 | -102 | 0  |
| 0.602 0.041 -15 -15 -102 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.604   | 0.039 | -14 | -15 | -102 | 0  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.602   | 0.041 | -15 | -15 | -102 | 0  |
| 0.629 0.042 -15 -15 -102 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.629   | 0.042 | -15 | -15 | -102 | 0  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.637   | 0.041 | -15 | -15 | -102 | 0  |

| 0.66  | 0.042 | -15 | -15 | -102 | 0 |
|-------|-------|-----|-----|------|---|
| 0.659 | 0.042 | -15 | -15 | -102 | 0 |
| 0.679 | 0.045 | -14 | -15 | -102 | 0 |
| 0.648 | 0.045 | -14 | -15 | -102 | 0 |
| 0.635 | 0.044 | -14 | -15 | -102 | 0 |
| 0.622 | 0.043 | -14 | -15 | -102 | 0 |
| 0.662 | 0.043 | -14 | -15 | -102 | 0 |
| 0.668 | 0.046 | -14 | -15 | -102 | 0 |
| 0.707 | 0.045 | -14 | -15 | -102 | 0 |
| 0.689 | 0.046 | -15 | -15 | -102 | 0 |
| 0.663 | 0.047 | -15 | -15 | -102 | 0 |
| 0.689 | 0.049 | -15 | -15 | -102 | 0 |
| 0.711 | 0.051 | -15 | -15 | -102 | 0 |
| 0.693 | 0.052 | -15 | -15 | -102 | 0 |
| 0.708 | 0.052 | -15 | -15 | -102 | 0 |
| 0.739 | 0.054 | -15 | -15 | -102 | 0 |
| 0.751 | 0.054 | -15 | -15 | -102 | 0 |
| 0.767 | 0.054 | -15 | -15 | -102 | 0 |
| 0.797 | 0.057 | -15 | -15 | -102 | 0 |
| 0.791 | 0.057 | -15 | -15 | -102 | 0 |
| 0.79  | 0.06  | -15 | -15 | -102 | 0 |
| 0.796 | 0.061 | -15 | -15 | -102 | 0 |
| 0.805 | 0.063 | -15 | -15 | -102 | 0 |
| 0.786 | 0.064 | -15 | -15 | -102 | 0 |
| 0.8   | 0.065 | -15 | -15 | -102 | 0 |
| 0.838 | 0.065 | -15 | -15 | -102 | 0 |
| 0.861 | 0.066 | -15 | -15 | -102 | 0 |
| 0.855 | 0.067 | -15 | -15 | -102 | 0 |
| 0.872 | 0.073 | -15 | -15 | -102 | 0 |
| 0.895 | 0.072 | -15 | -15 | -102 | 0 |
| 0.887 | 0.074 | -15 | -15 | -102 | 0 |
| 0.919 | 0.075 | -15 | -15 | -102 | 0 |
| 0.925 | 0.077 | -15 | -15 | -102 | 0 |
| 0.94  | 0.078 | -15 | -15 | -102 | 0 |
| 0.967 | 0.079 | -15 | -15 | -102 | 0 |
| 0.978 | 0.08  | -15 | -15 | -102 | 0 |
| 0.975 | 0.08  | -15 | -15 | -102 | 0 |
| 0.997 | 0.08  | -15 | -15 | -102 | 0 |
| 1.03  | 0.08  | -15 | -15 | -102 | 0 |
| 1.046 | 0.08  | -15 | -15 | -102 | 0 |
| 1.104 | 0.081 | -15 | -15 | -102 | 0 |
| 1.124 | 0.081 | -15 | -15 | -102 | 0 |
| 1.134 | 0.081 | -15 | -15 | -102 | 0 |
| 1.152 | 0.081 | -15 | -15 | -102 | 0 |
| 1.193 $0.081$ $-13$ $-13$ $-102$ $0$ $1.219$ $0.081$ $-15$ $-15$ $-102$ $0$ $1.227$ $0.081$ $-15$ $-15$ $-102$ $0$ $1.246$ $0.081$ $-15$ $-15$ $-102$ $0$ $1.26$ $0.081$ $-15$ $-15$ $-102$ $0$ $1.293$ $0.081$ $-14$ $-15$ $-102$ $0$ $1.305$ $0.081$ $-13$ $-15$ $-102$ $0$ $1.351$ $0.081$ $-12$ $-15$ $-102$ $0$ $1.399$ $0.082$ $-13$ $-15$ $-102$ $0$ $1.425$ $0.082$ $-13$ $-15$ $-102$ $0$ $1.444$ $0.083$ $-13$ $-15$ $-102$ $0$ $1.462$ $0.084$ $-12$ $-14$ $-102$ $0$ $1.472$ $0.084$ $-12$ $-14$ $-102$ $0$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.219 $0.081$ $-13$ $-13$ $-102$ $0$ $1.227$ $0.081$ $-15$ $-15$ $-102$ $0$ $1.246$ $0.081$ $-15$ $-15$ $-102$ $0$ $1.26$ $0.081$ $-15$ $-15$ $-102$ $0$ $1.293$ $0.081$ $-14$ $-15$ $-102$ $0$ $1.305$ $0.081$ $-13$ $-15$ $-102$ $0$ $1.351$ $0.081$ $-12$ $-15$ $-102$ $0$ $1.399$ $0.082$ $-13$ $-15$ $-102$ $0$ $1.425$ $0.082$ $-13$ $-15$ $-102$ $0$ $1.444$ $0.083$ $-13$ $-15$ $-102$ $0$ $1.462$ $0.084$ $-12$ $-14$ $-102$ $0$ $1.472$ $0.084$ $-12$ $-14$ $-102$ $0$                                        |
| 1.227 $0.081$ $-13$ $-13$ $-102$ $0$ $1.246$ $0.081$ $-15$ $-15$ $-102$ $0$ $1.26$ $0.081$ $-15$ $-15$ $-102$ $0$ $1.293$ $0.081$ $-14$ $-15$ $-102$ $0$ $1.305$ $0.081$ $-13$ $-15$ $-102$ $0$ $1.351$ $0.081$ $-12$ $-15$ $-102$ $0$ $1.399$ $0.082$ $-13$ $-15$ $-102$ $0$ $1.425$ $0.082$ $-13$ $-15$ $-102$ $0$ $1.444$ $0.083$ $-13$ $-15$ $-102$ $0$ $1.462$ $0.084$ $-12$ $-14$ $-102$ $0$ $1.472$ $0.084$ $-12$ $-14$ $-102$ $0$                                                                               |
| 1.240 $0.081$ $-13$ $-15$ $-102$ $0$ $1.26$ $0.081$ $-15$ $-15$ $-102$ $0$ $1.293$ $0.081$ $-14$ $-15$ $-102$ $0$ $1.305$ $0.081$ $-13$ $-15$ $-102$ $0$ $1.351$ $0.081$ $-12$ $-15$ $-102$ $0$ $1.399$ $0.082$ $-13$ $-15$ $-102$ $0$ $1.425$ $0.082$ $-13$ $-15$ $-102$ $0$ $1.444$ $0.083$ $-13$ $-15$ $-102$ $0$ $1.462$ $0.084$ $-12$ $-14$ $-102$ $0$ $1.472$ $0.084$ $-12$ $-14$ $-102$ $0$                                                                                                                      |
| 1.20 $0.081$ $-13$ $-13$ $-102$ $0$ $1.293$ $0.081$ $-14$ $-15$ $-102$ $0$ $1.305$ $0.081$ $-13$ $-15$ $-102$ $0$ $1.351$ $0.081$ $-12$ $-15$ $-102$ $0$ $1.399$ $0.082$ $-13$ $-15$ $-102$ $0$ $1.425$ $0.082$ $-13$ $-15$ $-102$ $0$ $1.444$ $0.083$ $-13$ $-15$ $-102$ $0$ $1.462$ $0.084$ $-12$ $-14$ $-102$ $0$ $1.472$ $0.084$ $-12$ $-14$ $-102$ $0$                                                                                                                                                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.303 0.081 -13 -13 -102 0   1.351 0.081 -12 -15 -102 0   1.399 0.082 -13 -15 -102 0   1.425 0.082 -13 -15 -102 0   1.444 0.083 -13 -15 -102 0   1.462 0.084 -12 -14 -102 0   1.472 0.084 -12 -14 -102 0                                                                                                                                                                                                                                                                                                                |
| 1.351 0.081 -12 -13 -102 0   1.399 0.082 -13 -15 -102 0   1.425 0.082 -13 -15 -102 0   1.444 0.083 -13 -15 -102 0   1.462 0.084 -12 -14 -102 0   1.472 0.084 -12 -14 -102 0                                                                                                                                                                                                                                                                                                                                             |
| 1.333 0.082 -13 -13 -102 0   1.425 0.082 -13 -15 -102 0   1.444 0.083 -13 -15 -102 0   1.462 0.084 -12 -14 -102 0   1.472 0.084 -12 -14 -102 0                                                                                                                                                                                                                                                                                                                                                                          |
| 1.425 0.082 -15 -162 0   1.444 0.083 -13 -15 -102 0   1.462 0.084 -12 -14 -102 0   1.472 0.084 -12 -14 -102 0                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.444   0.005   15   15   162   0     1.462   0.084   -12   -14   -102   0     1.472   0.084   -12   -14   -102   0                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.402   0.004   12   14   102   0     1.472   0.084   -12   -14   -102   0                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 1513 1 0.0851 -171 -171 -1071 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.515 0.005 112 14 102 0<br>1.526 0.085 -11 -13 -102 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.520 0.085 11 15 102 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 567 0 088 -9 -12 -102 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1 585 0 089 -10 -12 -102 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1 628 0 09 -8 -11 -102 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 633 0 095 -9 -11 -102 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1 675 0 1 -8 -10 -102 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 713 0 15 -9 -11 -102 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,735 0,179 -9 -12 -102 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.806 0.178 -10 -11 -102 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.866 0.179 -8 -8 -102 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.905 0.179 -6 -7 -102 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.941 0.179 -5 -5 -102 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.976 0.179 -2 -4 -102 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.012 0.18 -1 -2 -101 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.023 0.18 -1 -2 -101 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.064 0.187 0 -1 -101 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.062 0.194 0 -1 -101 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.099 0.195 0 -1 -100 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.118 0.195 0 -1 -99 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.173 0.195 0 0 -98 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.195 0.195 0 0 -98 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.225 0.195 0 0 -97 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.265 0.195 0 0 -97 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.313 0.195 0 0 -96 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.357 0.195 0 0 -94 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.437 0.197 0 0 -94 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.463 0.206 0 0 -94 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.519 0.211 0 0 -93 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.554 0.217 0 0 -93 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|       | 0.000 |   |   |     |   |
|-------|-------|---|---|-----|---|
| 2.599 | 0.226 | 0 | 0 | -93 | 0 |
| 2.627 | 0.233 | 0 | 0 | -93 | 0 |
| 2.704 | 0.24  | 0 | 0 | -91 | 0 |
| 2.746 | 0.256 | 0 | 0 | -90 | 0 |
| 2.773 | 0.22  | 0 | 0 | -91 | 0 |
| 2.81  | 0.196 | 0 | 0 | -89 | 0 |
| 2.861 | 0.195 | 0 | 0 | -90 | 0 |
| 2.928 | 0.194 | 0 | 0 | -91 | 0 |
| 2.968 | 0.195 | 0 | 0 | -92 | 0 |
| 2.988 | 0.195 | 0 | 0 | -93 | 0 |
| 3.061 | 0.195 | 0 | 0 | -94 | 0 |
| 3.089 | 0.195 | 0 | 0 | -92 | 0 |
| 3.133 | 0.195 | 0 | 0 | -93 | 0 |
| 3.187 | 0.195 | 0 | 0 | -93 | 0 |
| 3.248 | 0.195 | 0 | 0 | -93 | 0 |
| 3.311 | 0.195 | 0 | 0 | -93 | 0 |
| 3.351 | 0.196 | 0 | 0 | -93 | 0 |
| 3.372 | 0.199 | 0 | 0 | -93 | 0 |
| 3.454 | 0.209 | 0 | 0 | -92 | 0 |
| 3.479 | 0.222 | 0 | 0 | -91 | 0 |
| 3.546 | 0.233 | 0 | 0 | -91 | 0 |
| 3.592 | 0.243 | 0 | 0 | -90 | 0 |
| 3.665 | 0.257 | 0 | 0 | -91 | 0 |
| 3.73  | 0.265 | 0 | 0 | -89 | 0 |
| 3.765 | 0.273 | 0 | 0 | -88 | 0 |
| 3.824 | 0.275 | 0 | 0 | -88 | 0 |
| 3.848 | 0.276 | 0 | 0 | -87 | 0 |
| 3.926 | 0.276 | 0 | 0 | -87 | 0 |
| 3.965 | 0.276 | 0 | 0 | -87 | 0 |
| 4.033 | 0.276 | 0 | 0 | -87 | 0 |
| 4.072 | 0.277 | 0 | 0 | -86 | 0 |
| 4.137 | 0.278 | 0 | 0 | -86 | 0 |
| 4.173 | 0.28  | 0 | 0 | -86 | 0 |
| 4.219 | 0.283 | 1 | 0 | -86 | 0 |
| 4.267 | 0.287 | 1 | 0 | -86 | 0 |
| 4.315 | 0.291 | 1 | 0 | -86 | 0 |
| 4.398 | 0.293 | 1 | 0 | -86 | 0 |
| 4.454 | 0.293 | 1 | 0 | -86 | 1 |
| 4.508 | 0.293 | 1 | 0 | -86 | 1 |
| 4.559 | 0.293 | 1 | 0 | -86 | 1 |
| 4.659 | 0.295 | 1 | 0 | -86 | 1 |
| 4.74  | 0.305 | 2 | 0 | -86 | 1 |
| 4.793 | 0.32  | 2 | 0 | -86 | 1 |
| 4.847 | 0.333 | 2 | 0 | -86 | 1 |

| 4.889 | 0.347 | 2  | 0 | -86 | 1  |
|-------|-------|----|---|-----|----|
| 4.953 | 0.361 | 2  | 0 | -86 | 1  |
| 5.03  | 0.37  | 2  | 0 | -86 | 2  |
| 5.077 | 0.373 | 3  | 0 | -86 | 2  |
| 5.147 | 0.374 | 2  | 0 | -86 | 3  |
| 5.207 | 0.374 | 3  | 0 | -86 | 3  |
| 5.274 | 0.374 | 3  | 0 | -86 | 4  |
| 5.333 | 0.375 | 3  | 0 | -86 | 3  |
| 5.388 | 0.377 | 3  | 1 | -86 | 4  |
| 5.499 | 0.38  | 3  | 1 | -86 | 5  |
| 5.586 | 0.385 | 3  | 1 | -85 | 6  |
| 5.65  | 0.389 | 3  | 1 | -85 | 6  |
| 5.723 | 0.39  | 3  | 1 | -85 | 7  |
| 5.79  | 0.391 | 3  | 1 | -85 | 6  |
| 5.86  | 0.391 | 3  | 1 | -85 | 6  |
| 5.956 | 0.398 | 3  | 1 | -85 | 7  |
| 6.006 | 0.414 | 3  | 1 | -85 | 7  |
| 6.084 | 0.429 | 3  | 1 | -85 | 7  |
| 6.164 | 0.444 | 3  | 1 | -85 | 7  |
| 6.244 | 0.461 | 3  | 1 | -84 | 7  |
| 6.347 | 0.47  | 3  | 1 | -84 | 6  |
| 6.426 | 0.471 | 3  | 1 | -84 | 7  |
| 6.513 | 0.472 | 3  | 1 | -84 | 7  |
| 6.574 | 0.472 | 3  | 1 | -84 | 7  |
| 6.652 | 0.474 | 3  | 2 | -84 | 8  |
| 6.74  | 0.477 | 3  | 2 | -84 | 8  |
| 6.842 | 0.482 | 3  | 2 | -84 | 9  |
| 6.909 | 0.487 | 3  | 1 | -84 | 10 |
| 7.013 | 0.488 | 3  | 2 | -84 | 10 |
| 7.041 | 0.488 | 3  | 2 | -84 | 11 |
| 6.758 | 0.488 | 3  | 1 | -84 | 8  |
| 7.003 | 0.502 | 3  | 2 | -84 | 10 |
| 7.19  | 0.533 | 3  | 2 | -83 | 11 |
| 7.304 | 0.559 | 3  | 2 | -83 | 12 |
| 7.443 | 0.568 | 3  | 2 | -83 | 13 |
| 7.557 | 0.569 | 3  | 3 | -83 | 14 |
| 7.649 | 0.569 | 3  | 3 | -83 | 15 |
| 7.746 | 0.571 | 3  | 3 | -83 | 15 |
| 7.828 | 0.573 | 4  | 3 | -83 | 15 |
| 7.922 | 0.579 | 5  | 3 | -83 | 16 |
| 8.016 | 0.585 | 6  | 3 | -83 | 16 |
| 8.098 | 0.586 | 9  | 3 | -83 | 16 |
| 8.176 | 0.586 | 11 | 3 | -83 | 16 |
| 8.286 | 0.589 | 12 | 3 | -83 | 16 |

| 8.408  | 0.609 | 15 | 3  | -83 | 16 |
|--------|-------|----|----|-----|----|
| 8.5    | 0.632 | 15 | 3  | -83 | 16 |
| 8.591  | 0.654 | 17 | 3  | -83 | 16 |
| 8.689  | 0.666 | 18 | 3  | -83 | 16 |
| 8.823  | 0.667 | 19 | 3  | -83 | 16 |
| 8.921  | 0.667 | 19 | 3  | -83 | 16 |
| 9.063  | 0.67  | 19 | 3  | -83 | 16 |
| 9.136  | 0.676 | 19 | 3  | -83 | 16 |
| 9.255  | 0.683 | 19 | 3  | -83 | 16 |
| 9.358  | 0.684 | 19 | 3  | -81 | 16 |
| 9.448  | 0.685 | 19 | 3  | -80 | 16 |
| 9.579  | 0.7   | 19 | 3  | -77 | 16 |
| 9.711  | 0.724 | 19 | 3  | -76 | 16 |
| 9.81   | 0.751 | 19 | 3  | -76 | 16 |
| 9.891  | 0.764 | 19 | 3  | -74 | 16 |
| 10.019 | 0.764 | 19 | 3  | -72 | 16 |
| 10.132 | 0.766 | 19 | 3  | -71 | 17 |
| 10.247 | 0.769 | 19 | 4  | -69 | 17 |
| 10.389 | 0.778 | 19 | 4  | -68 | 17 |
| 10.508 | 0.781 | 20 | 5  | -68 | 17 |
| 10.612 | 0.782 | 20 | 7  | -68 | 17 |
| 10.761 | 0.797 | 20 | 9  | -68 | 17 |
| 10.9   | 0.822 | 21 | 10 | -68 | 18 |
| 10.977 | 0.845 | 21 | 12 | -68 | 18 |
| 11.119 | 0.86  | 21 | 14 | -68 | 18 |
| 11.254 | 0.862 | 21 | 14 | -68 | 18 |
| 11.4   | 0.864 | 21 | 17 | -68 | 18 |
| 11.58  | 0.868 | 21 | 18 | -68 | 18 |
| 11.713 | 0.877 | 21 | 18 | -68 | 18 |
| 11.858 | 0.879 | 21 | 18 | -68 | 18 |
| 11.984 | 0.88  | 22 | 19 | -67 | 19 |
| 12.159 | 0.895 | 22 | 19 | -67 | 19 |
| 12.326 | 0.917 | 22 | 19 | -67 | 19 |
| 12.512 | 0.941 | 22 | 19 | -66 | 19 |
| 12.656 | 0.957 | 22 | 19 | -66 | 19 |
| 12.82  | 0.96  | 22 | 19 | -66 | 19 |
| 12.967 | 0.96  | 22 | 19 | -65 | 19 |
| 13.098 | 0.963 | 23 | 19 | -65 | 19 |
| 13.289 | 0.968 | 25 | 19 | -65 | 19 |
| 13.479 | 0.975 | 28 | 20 | -65 | 19 |
| 13.654 | 0.977 | 31 | 20 | -65 | 19 |
| 13.816 | 0.977 | 34 | 21 | -65 | 19 |
| 14.008 | 0.98  | 36 | 21 | -65 | 19 |
| 14.163 | 0.998 | 37 | 21 | -65 | 19 |

| 14.35  | 1.022 | 37 | 21 | -65 | 19 |
|--------|-------|----|----|-----|----|
| 14.534 | 1.046 | 37 | 21 | -65 | 20 |
| 14.725 | 1.057 | 37 | 21 | -65 | 22 |
| 14.893 | 1.057 | 37 | 21 | -65 | 25 |
| 15.082 | 1.059 | 38 | 22 | -64 | 27 |
| 15.28  | 1.063 | 39 | 22 | -61 | 29 |
| 15.472 | 1.071 | 39 | 22 | -58 | 31 |
| 15.655 | 1.074 | 40 | 22 | -57 | 33 |
| 15.873 | 1.075 | 40 | 22 | -52 | 34 |
| 16.089 | 1.089 | 40 | 22 | -49 | 34 |
| 16.284 | 1.113 | 40 | 24 | -49 | 34 |
| 16.488 | 1.14  | 40 | 26 | -49 | 34 |
| 16.718 | 1.154 | 40 | 29 | -49 | 35 |
| 16.926 | 1.155 | 40 | 31 | -49 | 35 |
| 17.138 | 1.157 | 40 | 35 | -49 | 35 |
| 17.419 | 1.163 | 40 | 37 | -48 | 36 |
| 17.624 | 1.171 | 40 | 37 | -48 | 36 |
| 17.844 | 1.172 | 41 | 37 | -47 | 36 |
| 18.084 | 1.189 | 43 | 37 | -47 | 37 |
| 18.316 | 1.214 | 47 | 38 | -46 | 37 |
| 18.561 | 1.241 | 51 | 38 | -46 | 37 |
| 18.784 | 1.252 | 55 | 39 | -46 | 37 |
| 19.013 | 1.254 | 56 | 39 | -46 | 37 |
| 19.289 | 1.258 | 56 | 40 | -46 | 37 |
| 19.561 | 1.268 | 56 | 40 | -46 | 37 |
| 19.798 | 1.272 | 56 | 40 | -46 | 37 |
| 20.053 | 1.296 | 57 | 40 | -46 | 37 |
| 20.364 | 1.328 | 58 | 40 | -46 | 38 |
| 20.627 | 1.349 | 58 | 40 | -46 | 38 |
| 20.867 | 1.351 | 59 | 40 | -46 | 38 |
| 21.132 | 1.354 | 59 | 40 | -44 | 40 |
| 21.442 | 1.364 | 59 | 40 | -41 | 44 |
| 21.717 | 1.367 | 59 | 42 | -37 | 47 |
| 22.039 | 1.379 | 59 | 46 | -34 | 49 |
| 22.325 | 1.413 | 59 | 50 | -32 | 51 |
| 22.584 | 1.443 | 62 | 53 | -31 | 53 |
| 22.875 | 1.448 | 68 | 55 | -31 | 53 |
| 23.189 | 1.451 | 73 | 56 | -30 | 53 |
| 23.487 | 1.461 | 74 | 56 | -30 | 53 |
| 23.765 | 1.465 | 74 | 56 | -29 | 53 |
| 24.083 | 1.479 | 74 | 57 | -28 | 53 |
| 24.392 | 1.51  | 76 | 58 | -28 | 54 |
| 24.7   | 1.543 | 76 | 58 | -28 | 54 |
| 25.053 | 1.546 | 77 | 59 | -28 | 55 |

| 25.353 | 1.553 | 77 | 59  | -28 | 55  |
|--------|-------|----|-----|-----|-----|
| 25.676 | 1.562 | 75 | 61  | -27 | 56  |
| 26.005 | 1.566 | 73 | 68  | -23 | 56  |
| 26.313 | 1.597 | 59 | 75  | -12 | 56  |
| 26.613 | 1.636 | 57 | 94  | 8   | 57  |
| 26.924 | 1.643 | 56 | 109 | 24  | 69  |
| 27.28  | 1.649 | 55 | 119 | 31  | 72  |
| 27.563 | 1.659 | 45 | 141 | 48  | 86  |
| 27.881 | 1.667 | 40 | 163 | 64  | 106 |
| 28.22  | 1.703 | 40 | 171 | 76  | 111 |
| 28.53  | 1.738 | 40 | 185 | 82  | 122 |
| 28.922 | 1.742 | 40 | 190 | 87  | 128 |
| 29.262 | 1.749 | 40 | 204 | 99  | 131 |
| 29.575 | 1.758 | 40 | 212 | 106 | 146 |
| 29.908 | 1.775 | 40 | 231 | 126 | 160 |
| 30.265 | 1.822 | 40 | 247 | 143 | 176 |
| 30.551 | 1.839 | 39 | 261 | 157 | 188 |
| 30.925 | 1.845 | 38 | 273 | 170 | 202 |
| 31.282 | 1.855 | 38 | 281 | 176 | 211 |
| 31.625 | 1.865 | 38 | 295 | 191 | 221 |
| 31.984 | 1.903 | 37 | 302 | 195 | 227 |
| 32.338 | 1.935 | 37 | 316 | 210 | 239 |
| 32.669 | 1.939 | 37 | 322 | 215 | 247 |
| 33.077 | 1.952 | 37 | 336 | 230 | 259 |
| 33.442 | 1.965 | 37 | 352 | 241 | 271 |
| 33.829 | 2.005 | 37 | 367 | 250 | 280 |
| 34.149 | 2.034 | 37 | 382 | 266 | 295 |
| 34.517 | 2.038 | 33 | 396 | 276 | 307 |
| 34.873 | 2.05  | 27 | 413 | 288 | 317 |
| 35.227 | 2.064 | 23 | 429 | 303 | 333 |
| 35.613 | 2.109 | 22 | 445 | 310 | 348 |
| 35.988 | 2.131 | 22 | 455 | 322 | 355 |
| 36.345 | 2.137 | 22 | 465 | 324 | 368 |
| 36.743 | 2.148 | 22 | 473 | 330 | 372 |
| 37.084 | 2.157 | 22 | 483 | 340 | 385 |
| 37.425 | 2.196 | 22 | 491 | 342 | 389 |
| 37.766 | 2.228 | 22 | 501 | 346 | 395 |
| 38.088 | 2.233 | 22 | 507 | 358 | 406 |
| 38.439 | 2.244 | 22 | 519 | 360 | 409 |
| 38.749 | 2.248 | 22 | 521 | 361 | 422 |
| 39.058 | 2.274 | 22 | 534 | 362 | 426 |
| 39.359 | 2.307 | 22 | 539 | 373 | 434 |
| 39.692 | 2.326 | 21 | 543 | 377 | 443 |
| 39.977 | 2.331 | 21 | 556 | 379 | 445 |

| 40.329 | 2.341 | 21 | 559 | 380 | 458 |
|--------|-------|----|-----|-----|-----|
| 40.685 | 2.345 | 21 | 572 | 389 | 462 |
| 40.998 | 2.369 | 21 | 576 | 395 | 464 |
| 41.302 | 2.4   | 21 | 583 | 397 | 478 |
| 41.642 | 2.423 | 21 | 593 | 398 | 481 |
| 41.968 | 2.428 | 21 | 596 | 401 | 487 |
| 42.288 | 2.438 | 21 | 609 | 413 | 498 |
| 42.631 | 2.442 | 21 | 613 | 415 | 500 |
| 42.987 | 2.468 | 21 | 618 | 417 | 510 |
| 43.305 | 2.508 | 21 | 630 | 421 | 517 |
| 43.641 | 2.522 | 21 | 633 | 432 | 519 |
| 43.928 | 2.526 | 21 | 645 | 434 | 530 |
| 44.256 | 2.536 | 21 | 649 | 435 | 536 |
| 44.55  | 2.539 | 21 | 651 | 436 | 537 |
| 44.747 | 2.544 | 21 | 653 | 444 | 540 |
| 44.877 | 2.564 | 21 | 664 | 450 | 551 |
| 44.973 | 2.586 | 21 | 666 | 451 | 553 |
| 44.986 | 2.606 | 21 | 667 | 451 | 553 |
| 45.088 | 2.619 | 21 | 667 | 451 | 554 |
| 45.367 | 2.62  | 21 | 669 | 451 | 556 |
| 45.705 | 2.624 | 21 | 672 | 453 | 558 |
| 46.038 | 2.635 | 21 | 684 | 454 | 570 |
| 46.363 | 2.638 | 21 | 687 | 457 | 573 |
| 46.684 | 2.663 | 21 | 688 | 468 | 574 |
| 46.974 | 2.694 | 21 | 698 | 470 | 583 |
| 47.294 | 2.717 | 21 | 705 | 472 | 590 |
| 47.601 | 2.72  | 21 | 707 | 472 | 592 |
| 47.851 | 2.73  | 21 | 714 | 473 | 593 |
| 48.107 | 2.735 | 21 | 722 | 484 | 604 |
| 48.434 | 2.754 | 21 | 725 | 488 | 609 |
| 48.767 | 2.783 | 21 | 726 | 490 | 611 |
| 49.067 | 2.813 | 21 | 737 | 491 | 612 |
| 49.358 | 2.816 | 20 | 741 | 493 | 623 |
| 49.667 | 2.824 | 20 | 742 | 504 | 628 |
| 49.947 | 2.832 | 20 | 744 | 507 | 630 |
| 50.269 | 2.841 | 20 | 748 | 508 | 633 |
| 50.576 | 2.871 | 20 | 759 | 509 | 645 |
| 50.872 | 2.905 | 20 | 761 | 512 | 647 |
| 51.214 | 2.914 | 20 | 762 | 523 | 648 |
| 51.562 | 2.923 | 19 | 764 | 525 | 657 |
| 51.913 | 2.93  | 19 | 776 | 527 | 664 |
| 52.345 | 2.954 | 19 | 780 | 529 | 667 |
| 52.775 | 2.993 | 19 | 775 | 541 | 674 |
| 53.19  | 3.011 | 19 | 709 | 544 | 683 |

| 53.584 | 3.021 | 19 | 704 | 546 | 685 |
|--------|-------|----|-----|-----|-----|
| 54.038 | 3.029 | 19 | 704 | 549 | 693 |
| 54.457 | 3.061 | 19 | 704 | 561 | 702 |
| 54.849 | 3.101 | 19 | 704 | 564 | 705 |
| 55.286 | 3.111 | 19 | 704 | 565 | 717 |
| 55.718 | 3.123 | 19 | 680 | 574 | 721 |
| 56.166 | 3.14  | 19 | 601 | 581 | 724 |
| 56.63  | 3.178 | 19 | 593 | 583 | 736 |
| 57.108 | 3.206 | 19 | 594 | 584 | 740 |
| 57.558 | 3.229 | 19 | 595 | 596 | 744 |
| 57.979 | 3.295 | 19 | 595 | 629 | 757 |
| 58.427 | 3.308 | 19 | 596 | 639 | 759 |
| 58.879 | 3.321 | 19 | 602 | 645 | 763 |
| 59.37  | 3.35  | 19 | 610 | 654 | 776 |
| 59.864 | 3.392 | 19 | 611 | 657 | 778 |
| 60.36  | 3.405 | 19 | 613 | 658 | 790 |
| 60.833 | 3.419 | 18 | 614 | 670 | 795 |
| 61.328 | 3.447 | 19 | 614 | 674 | 800 |
| 61.853 | 3.49  | 19 | 622 | 676 | 812 |
| 62.365 | 3.505 | 18 | 630 | 683 | 815 |
| 62.87  | 3.516 | 18 | 631 | 691 | 825 |
| 63.368 | 3.549 | 18 | 632 | 694 | 832 |
| 63.874 | 3.593 | 18 | 633 | 694 | 837 |
| 64.388 | 3.606 | 17 | 638 | 703 | 850 |
| 64.902 | 3.625 | 16 | 647 | 711 | 852 |
| 65.451 | 3.671 | 15 | 649 | 713 | 865 |
| 66.02  | 3.699 | 14 | 651 | 719 | 870 |
| 66.591 | 3.718 | 14 | 651 | 729 | 879 |
| 67.146 | 3.763 | 13 | 658 | 731 | 888 |
| 67.735 | 3.795 | 12 | 666 | 736 | 893 |
| 68.339 | 3.812 | 11 | 667 | 747 | 905 |
| 68.948 | 3.85  | 11 | 667 | 750 | 907 |
| 69.505 | 3.887 | 10 | 669 | 752 | 916 |
| 70.074 | 3.898 | 10 | 678 | 764 | 925 |
| 70.661 | 3.914 | 10 | 686 | 767 | 928 |
| 71.208 | 3.954 | 9  | 688 | 768 | 941 |
| 71.725 | 3.99  | 9  | 693 | 774 | 944 |
| 72.216 | 4.009 | 8  | 704 | 784 | 949 |
| 72.697 | 4.048 | 7  | 706 | 786 | 960 |
| 73.135 | 4.084 | 7  | 707 | 787 | 962 |
| 73.485 | 4.087 | 7  | 707 | 787 | 963 |
| 73.711 | 4.094 | 5  | 707 | 789 | 963 |
| 73.24  | 4.096 | 3  | 705 | 787 | 962 |
| 71.654 | 4.083 | 3  | 688 | 774 | 947 |

| 70.508 | 4.048 | 2  | 672 | 766 | 939  |
|--------|-------|----|-----|-----|------|
| 70.513 | 4.048 | 2  | 670 | 765 | 938  |
| 71.069 | 4.079 | 3  | 675 | 766 | 942  |
| 71.617 | 4.087 | 3  | 685 | 768 | 943  |
| 72.1   | 4.091 | 3  | 686 | 768 | 944  |
| 72.544 | 4.097 | 3  | 688 | 769 | 945  |
| 72.966 | 4.102 | 3  | 688 | 780 | 955  |
| 73.444 | 4.109 | 3  | 696 | 785 | 961  |
| 73.971 | 4.135 | 3  | 704 | 787 | 963  |
| 74.577 | 4.171 | 3  | 706 | 795 | 975  |
| 75.304 | 4.189 | 5  | 714 | 804 | 981  |
| 76.068 | 4.2   | 6  | 722 | 812 | 994  |
| 76.822 | 4.233 | 7  | 724 | 822 | 1002 |
| 77.58  | 4.276 | 8  | 725 | 824 | 1016 |
| 78.222 | 4.293 | 8  | 725 | 834 | 1019 |
| 78.548 | 4.34  | 8  | 725 | 838 | 1023 |
| 78.951 | 4.382 | 7  | 730 | 839 | 1032 |
| 79.592 | 4.402 | 10 | 741 | 842 | 1037 |
| 80.28  | 4.453 | 12 | 740 | 845 | 1047 |
| 80.97  | 4.492 | 13 | 741 | 857 | 1055 |
| 81.661 | 4.549 | 14 | 741 | 860 | 1061 |
| 82.327 | 4.581 | 15 | 743 | 861 | 1073 |
| 82.979 | 4.605 | 15 | 744 | 861 | 1077 |
| 83.681 | 4.657 | 15 | 752 | 861 | 1090 |
| 84.384 | 4.681 | 16 | 759 | 861 | 1094 |
| 85.042 | 4.711 | 17 | 761 | 861 | 1108 |
| 85.719 | 4.763 | 18 | 762 | 869 | 1111 |
| 86.394 | 4.782 | 18 | 768 | 876 | 1122 |
| 87.069 | 4.819 | 19 | 778 | 877 | 1129 |
| 87.723 | 4.866 | 19 | 780 | 879 | 1135 |
| 88.369 | 4.886 | 19 | 781 | 879 | 1146 |
| 88.939 | 4.939 | 19 | 781 | 880 | 1149 |
| 89.517 | 4.976 | 19 | 787 | 881 | 1160 |
| 90.121 | 4.991 | 19 | 795 | 887 | 1166 |
| 90.558 | 5.041 | 19 | 796 | 889 | 1167 |
| 90.867 | 5.081 | 19 | 796 | 884 | 1168 |
| 91.402 | 5.137 | 19 | 798 | 891 | 1178 |
| 91.978 | 5.17  | 19 | 799 | 895 | 1183 |
| 92.57  | 5.213 | 19 | 800 | 896 | 1185 |
| 93.194 | 5.265 | 19 | 799 | 898 | 1196 |
| 93.754 | 5.342 | 19 | 802 | 898 | 1203 |
| 94.328 | 5.375 | 20 | 810 | 898 | 1206 |
| 94.972 | 5.427 | 20 | 815 | 908 | 1219 |
| 95.625 | 5.461 | 21 | 817 | 913 | 1222 |

| 96.27   | 5.499 | 21  | 818 | 915 | 1234   |
|---------|-------|-----|-----|-----|--------|
| 96.85   | 5.551 | 21  | 820 | 916 | 1240   |
| 97.487  | 5.579 | 22  | 830 | 916 | 1244   |
| 98.136  | 5.634 | 22  | 833 | 917 | 1257   |
| 98.77   | 5.669 | 22  | 834 | 920 | 1259   |
| 99.348  | 5.724 | 24  | 835 | 928 | 1271   |
| 99.929  | 5.757 | 35  | 836 | 932 | 1277   |
| 100.517 | 5.801 | 37  | 836 | 932 | 1283   |
| 101.106 | 5.848 | 39  | 836 | 932 | 1295   |
| 101.664 | 5.881 | 42  | 837 | 933 | 1299   |
| 102.24  | 5.934 | 66  | 843 | 933 | 1311   |
| 102.75  | 5.965 | 86  | 850 | 934 | 1314   |
| 103.31  | 6.019 | 104 | 852 | 935 | 1322   |
| 103.917 | 6.052 | 121 | 854 | 935 | 1331   |
| 104.572 | 6.095 | 140 | 855 | 935 | 1335   |
| 105.238 | 6.14  | 161 | 859 | 935 | 1349   |
| 105.904 | 6.169 | 179 | 869 | 941 | 1352   |
| 106.577 | 6.209 | 196 | 871 | 947 | 1257   |
| 107.211 | 6.242 | 213 | 872 | 950 | -6321  |
| 107.861 | 6.275 | 229 | 873 | 951 | -17028 |
| 108.501 | 6.323 | 244 | 878 | 952 | -17597 |
| 109.161 | 6.351 | 261 | 888 | 953 | -17597 |
| 109.811 | 6.4   | 275 | 889 | 953 | -17597 |
| 110.416 | 6.444 | 304 | 891 | 953 | -17597 |
| 111.03  | 6.499 | 329 | 891 | 954 | -17597 |
| 111.648 | 6.536 | 349 | 891 | 957 | -17597 |
| 112.252 | 6.577 | 371 | 891 | 964 | -17597 |
| 112.855 | 6.625 | 390 | 891 | 969 | -17597 |
| 113.447 | 6.662 | 408 | 892 | 969 | -17597 |
| 114.054 | 6.715 | 434 | 892 | 971 | -17597 |
| 114.645 | 6.755 | 469 | 898 | 972 | -17597 |
| 115.225 | 6.812 | 499 | 907 | 972 | -17597 |
| 115.832 | 6.854 | 527 | 908 | 972 | -17597 |
| 116.412 | 6.902 | 549 | 910 | 973 | -17597 |
| 116.911 | 6.941 | 571 | 910 | 977 | -17597 |
| 117.377 | 6.996 | 592 | 910 | 980 | -17597 |
| 117.852 | 7.035 | 614 | 913 | 986 | -17597 |
| 118.419 | 7.097 | 636 | 922 | 987 | -17597 |
| 118.963 | 7.145 | 660 | 926 | 988 | -17597 |
| 119.498 | 7.206 | 683 | 927 | 989 | -17597 |
| 120.063 | 7.249 | 727 | 928 | 990 | -17597 |
| 120.6   | 7.306 | 787 | 928 | 990 | -17597 |
| 121.047 | 7.35  | 824 | 929 | 990 | -17597 |
| 121.497 | 7.41  | 849 | 929 | 990 | -17597 |

| 121.897 | 7.453 | 872 | 929 | 990 | -17597 |
|---------|-------|-----|-----|-----|--------|
| 121.928 | 7.519 | 888 | 929 | 990 | -17597 |
| 121.081 | 7.599 | 875 | 920 | 984 | -17597 |
| 120.567 | 7.67  | 871 | 911 | 972 | -17597 |
| 120.447 | 7.736 | 862 | 910 | 972 | -17597 |
| 120.33  | 7.806 | 855 | 910 | 971 | -17597 |
| 120.154 | 7.873 | 854 | 910 | 970 | -17597 |
| 120.036 | 7.933 | 852 | 910 | 969 | -17597 |
| 120.043 | 8.001 | 847 | 910 | 969 | -17597 |
| 120.04  | 8.065 | 837 | 910 | 969 | -17597 |
| 119.966 | 8.127 | 836 | 910 | 967 | -17597 |
| 119.521 | 8.204 | 834 | 908 | 955 | -17597 |
| 118.993 | 8.28  | 825 | 903 | 953 | -17597 |
| 118.023 | 8.365 | 816 | 890 | 942 | -17597 |
| 117.312 | 8.446 | 803 | 880 | 934 | -17597 |
| 116.774 | 8.514 | 798 | 873 | 931 | -17597 |
| 115.714 | 8.599 | 786 | 861 | 917 | -17597 |
| 114.674 | 8.682 | 778 | 846 | 906 | -17597 |
| 113.826 | 8.765 | 763 | 835 | 897 | -17597 |
| 113.071 | 8.846 | 759 | 823 | 889 | -17597 |
| 112.346 | 8.926 | 744 | 815 | 879 | -17597 |
| 111.936 | 8.999 | 743 | 811 | 878 | -17597 |
| 111.649 | 9.072 | 740 | 801 | 876 | -17597 |
| 111.407 | 9.144 | 731 | 799 | 872 | -17597 |
| 111.208 | 9.211 | 725 | 799 | 863 | -17597 |
| 111.039 | 9.28  | 725 | 798 | 861 | -17597 |
| 110.811 | 9.345 | 723 | 797 | 861 | -17597 |
| 110.416 | 9.388 | 716 | 788 | 860 | -17597 |
| 109.836 | 9.409 | 707 | 780 | 850 | -17597 |
| 109.476 | 9.419 | 705 | 776 | 843 | -17597 |
| 109.221 | 9.423 | 703 | 766 | 842 | -17597 |
| 109.037 | 9.426 | 694 | 762 | 842 | -17597 |
| 108.829 | 9.429 | 688 | 762 | 840 | -17597 |
| 108.642 | 9.434 | 688 | 761 | 839 | -17597 |
| 108.46  | 9.437 | 687 | 760 | 838 | -17597 |
| 108.31  | 9.442 | 685 | 759 | 825 | -17597 |
| 108.199 | 9.444 | 685 | 757 | 824 | -17597 |
| 108.067 | 9.433 | 680 | 751 | 814 | -17597 |
| 107.947 | 9.444 | 671 | 747 | 856 | -17597 |

## **APPENDIX B**

## FLEXURAL TEST DATA ( 5% BEAM SAMPLE )

|         |               | Concrete | Steel  | Steel  | Steel  |
|---------|---------------|----------|--------|--------|--------|
| Load,kN | Deflection,mm | Strain   | Strain | Strain | Strain |
|         |               |          | 1      | 2      | 3      |
| 0       | 0             | 0        | 0      | 0      | 0      |
| 0       | 0             | 0        | 0      | 0      | 0      |
| -0.136  | -0.03         | 0        | 0      | -1     | -1     |
| -0.154  | -0.035        | 0        | 0      | -1     | -2     |
| -0.108  | -0.029        | 0        | 0      | -1     | -2     |
| -0.092  | -0.017        | 0        | 0      | -1     | -2     |
| -0.111  | 0.031         | 0        | 0      | 0      | -2     |
| -0.123  | 0.043         | 0        | 0      | -1     | -2     |
| -0.092  | 0.026         | 0        | 0      | -1     | -2     |
| -0.122  | -0.001        | 0        | 0      | -2     | -2     |
| -0.134  | -0.03         | 0        | 0      | -2     | -2     |
| -0.122  | -0.033        | 0        | 0      | -2     | -2     |
| -0.101  | -0.032        | 0        | 0      | -2     | -2     |
| -0.071  | -0.031        | 0        | 0      | -1     | -2     |
| -0.011  | -0.031        | 0        | 0      | 0      | -2     |
| -0.024  | -0.031        | 0        | 0      | 0      | -2     |
| -0.013  | -0.03         | 0        | 0      | -1     | -2     |
| -0.04   | -0.03         | 0        | 0      | -2     | -2     |
| -0.039  | -0.031        | 0        | 0      | -2     | -2     |
| 0.002   | -0.031        | 0        | 0      | -2     | -2     |
| 0.002   | -0.031        | 0        | 0      | -2     | -2     |
| -0.027  | -0.031        | -1       | 0      | -3     | -2     |
| -0.032  | -0.031        | -1       | 0      | -4     | -2     |
| -0.007  | -0.031        | -1       | 0      | -4     | -2     |
| -0.008  | -0.034        | -1       | 0      | -5     | -2     |
| 0       | -0.035        | -2       | 0      | -5     | -2     |
| 0       | -0.033        | -3       | 0      | -5     | -2     |
| -0.034  | -0.033        | -3       | 0      | -5     | -2     |
| -0.056  | -0.032        | -5       | 0      | -6     | -2     |
| -0.045  | -0.031        | -7       | 0      | -6     | -2     |
| -0.031  | -0.031        | -6       | 0      | -6     | -2     |
| -0.021  | -0.032        | -5       | 0      | -6     | -2     |
| -0.055  | -0.033        | -5       | 0      | -6     | -2     |
| -0.059  | -0.032        | -7       | 0      | -7     | -2     |
| -0.067  | -0.033        | -7       | 0      | -7     | -2     |
| -0.072  | -0.032        | -7       | 0      | -7     | -2     |
| -0.057  | -0.032        | -8       | 0      | -7     | -2     |

| -0.042 | -0.031 | -8  | -1 | -7 | -2 |
|--------|--------|-----|----|----|----|
| -0.029 | -0.031 | -8  | -1 | -7 | -2 |
| -0.025 | -0.032 | -9  | -1 | -7 | -2 |
| -0.04  | -0.032 | -10 | -1 | -7 | -2 |
| -0.032 | -0.032 | -8  | -1 | -7 | -3 |
| -0.029 | -0.032 | -8  | -1 | -7 | -3 |
| -0.017 | -0.032 | -10 | -1 | -7 | -3 |
| -0.022 | -0.033 | -11 | -1 | -7 | -3 |
| -0.005 | -0.032 | -10 | -1 | -7 | -3 |
| -0.025 | -0.032 | -10 | -1 | -7 | -3 |
| -0.05  | -0.032 | -10 | -1 | -8 | -3 |
| -0.05  | -0.032 | -11 | -1 | -8 | -3 |
| -0.039 | -0.031 | -11 | -1 | -7 | -3 |
| -0.013 | -0.031 | -11 | -1 | -7 | -3 |
| -0.036 | -0.031 | -10 | -1 | -6 | -3 |
| -0.039 | -0.031 | -12 | -1 | -6 | -3 |
| -0.042 | -0.032 | -12 | -1 | -6 | -3 |
| -0.068 | -0.032 | -12 | -1 | -7 | -3 |
| -0.043 | -0.032 | -12 | -1 | -6 | -3 |
| -0.019 | -0.032 | -12 | -1 | -7 | -3 |
| -0.029 | -0.032 | -12 | -1 | -6 | -3 |
| -0.014 | -0.03  | -12 | -1 | -7 | -3 |
| 0.013  | -0.03  | -13 | -1 | -6 | -3 |
| 0.019  | -0.028 | -13 | -1 | -6 | -3 |
| -0.01  | -0.027 | -13 | -1 | -6 | -3 |
| -0.007 | -0.03  | -13 | -1 | -6 | -3 |
| 0.014  | -0.027 | -13 | -1 | -5 | -3 |
| 0.029  | -0.027 | -13 | -1 | -5 | -3 |
| 0.034  | -0.028 | -14 | -1 | -5 | -3 |
| 0.036  | -0.026 | -15 | -1 | -5 | -3 |
| 0.02   | -0.027 | -14 | -1 | -6 | -3 |
| 0.025  | -0.028 | -14 | -1 | -6 | -3 |
| 0.014  | -0.027 | -14 | -1 | -6 | -3 |
| -0.004 | -0.027 | -15 | -1 | -6 | -3 |
| -0.018 | -0.024 | -15 | -1 | -7 | -3 |
| -0.034 | -0.022 | -15 | -1 | -6 | -3 |
| -0.041 | -0.023 | -15 | -1 | -5 | -3 |
| -0.078 | -0.021 | -15 | -2 | -6 | -3 |
| -0.089 | -0.019 | -15 | -1 | -6 | -3 |
| -0.049 | -0.02  | -15 | -1 | -5 | -3 |
| -0.009 | -0.021 | -15 | -1 | -5 | -3 |
| -0.026 | -0.02  | -15 | -2 | -4 | -3 |
| -0.007 | -0.019 | -15 | -2 | -4 | -3 |
| -0.027 | -0.018 | -15 | -1 | -4 | -3 |

| -0.043 | -0.004 | -15 | -1 | -4 | -3 |
|--------|--------|-----|----|----|----|
| -0.034 | 0.009  | -15 | -2 | -4 | -3 |
| -0.059 | 0.002  | -15 | -2 | -3 | -3 |
| -0.038 | 0.001  | -15 | -2 | -4 | -3 |
| -0.027 | -0.005 | -15 | -2 | -4 | -3 |
| -0.042 | -0.007 | -15 | -2 | -4 | -3 |
| -0.049 | -0.004 | -15 | -2 | -4 | -3 |
| -0.009 | 0      | -15 | -2 | -3 | -3 |
| -0.023 | 0.001  | -15 | -2 | -3 | -3 |
| -0.021 | 0      | -15 | -2 | -3 | -3 |
| -0.008 | -0.001 | -15 | -2 | -3 | -3 |
| -0.004 | -0.002 | -15 | -1 | -3 | -3 |
| 0.008  | -0.001 | -15 | -2 | -2 | -3 |
| 0.002  | -0.002 | -15 | -2 | -2 | -3 |
| 0.021  | 0      | -15 | -2 | -2 | -3 |
| 0.039  | 0.017  | -15 | -2 | -3 | -3 |
| 0.034  | 0.003  | -15 | -2 | -2 | -3 |
| 0.044  | 0      | -15 | -2 | -2 | -3 |
| 0.025  | -0.009 | -15 | -2 | -1 | -3 |
| 0.035  | -0.007 | -15 | -2 | -2 | -3 |
| 0.038  | -0.008 | -15 | -2 | -1 | -3 |
| 0.02   | -0.009 | -15 | -2 | -1 | -3 |
| 0.011  | -0.009 | -15 | -1 | 0  | -3 |
| 0.025  | -0.009 | -15 | -2 | -1 | -3 |
| 0.036  | -0.008 | -15 | -2 | -1 | -3 |
| 0.032  | -0.007 | -15 | -2 | -1 | -3 |
| 0.071  | -0.006 | -15 | -2 | -1 | -3 |
| 0.07   | -0.005 | -15 | -2 | -1 | -3 |
| 0.046  | -0.004 | -15 | -2 | -1 | -3 |
| 0.05   | -0.005 | -15 | -2 | -2 | -3 |
| 0.045  | -0.004 | -15 | -2 | -2 | -3 |
| 0.049  | -0.004 | -15 | -2 | -2 | -3 |
| 0.051  | -0.004 | -15 | -2 | -2 | -3 |
| 0.073  | -0.005 | -15 | -2 | -1 | -3 |
| 0.056  | -0.006 | -15 | -2 | -1 | -2 |
| 0.064  | -0.006 | -15 | -2 | 0  | -2 |
| 0.072  | -0.005 | -15 | -2 | 0  | -2 |
| 0.063  | -0.006 | -15 | -2 | 0  | -3 |
| 0.087  | -0.004 | -15 | -2 | 0  | -3 |
| 0.094  | 0      | -15 | -2 | 0  | -3 |
| 0.092  | -0.002 | -15 | -2 | 0  | -2 |
| 0.076  | -0.001 | -15 | -2 | 0  | -3 |
| 0.1    | -0.001 | -15 | -2 | 1  | -3 |
| 0.082  | -0.001 | -15 | -2 | 1  | -3 |

| 0.09  | -0.001 | -15 | -2 | 0 | -2 |
|-------|--------|-----|----|---|----|
| 0.103 | -0.001 | -15 | -2 | 1 | -3 |
| 0.107 | -0.001 | -15 | -2 | 1 | -3 |
| 0.122 | -0.001 | -15 | -2 | 1 | -2 |
| 0.112 | 0      | -15 | -2 | 1 | -3 |
| 0.156 | 0      | -15 | -2 | 1 | -2 |
| 0.15  | 0.001  | -15 | -2 | 1 | -2 |
| 0.146 | 0      | -15 | -2 | 1 | -3 |
| 0.162 | 0.001  | -15 | -2 | 1 | -3 |
| 0.167 | 0.001  | -15 | -2 | 1 | -3 |
| 0.187 | 0.004  | -15 | -2 | 1 | -3 |
| 0.153 | 0.003  | -15 | -2 | 1 | -3 |
| 0.159 | 0.003  | -15 | -2 | 0 | -3 |
| 0.174 | 0.004  | -15 | -2 | 1 | -3 |
| 0.196 | 0.006  | -15 | -2 | 0 | -3 |
| 0.194 | 0.007  | -15 | -2 | 0 | -3 |
| 0.214 | 0.01   | -15 | -2 | 0 | -3 |
| 0.196 | 0.012  | -15 | -2 | 0 | -3 |
| 0.224 | 0.011  | -15 | -2 | 0 | -3 |
| 0.24  | 0.013  | -15 | -2 | 0 | -3 |
| 0.246 | 0.015  | -15 | -2 | 0 | -3 |
| 0.239 | 0.018  | -15 | -2 | 0 | -3 |
| 0.257 | 0.017  | -15 | -2 | 0 | -3 |
| 0.234 | 0.02   | -15 | -2 | 0 | -3 |
| 0.26  | 0.023  | -15 | -2 | 0 | -3 |
| 0.292 | 0.024  | -15 | -2 | 1 | -3 |
| 0.288 | 0.025  | -15 | -2 | 1 | -3 |
| 0.315 | 0.028  | -15 | -3 | 1 | -3 |
| 0.311 | 0.031  | -15 | -2 | 1 | -3 |
| 0.329 | 0.031  | -15 | -2 | 1 | -3 |
| 0.327 | 0.033  | -15 | -3 | 1 | -3 |
| 0.32  | 0.036  | -15 | -2 | 1 | -3 |
| 0.337 | 0.037  | -15 | -2 | 1 | -3 |
| 0.349 | 0.038  | -15 | -2 | 0 | -3 |
| 0.368 | 0.039  | -15 | -2 | 1 | -3 |
| 0.379 | 0.041  | -15 | -2 | 2 | -3 |
| 0.378 | 0.042  | -15 | -2 | 2 | -3 |
| 0.394 | 0.042  | -15 | -2 | 2 | -3 |
| 0.417 | 0.043  | -15 | -2 | 2 | -2 |
| 0.405 | 0.043  | -15 | -2 | 2 | -3 |
| 0.432 | 0.043  | -15 | -2 | 3 | -3 |
| 0.448 | 0.043  | -15 | -2 | 4 | -2 |
| 0.485 | 0.044  | -15 | -2 | 4 | -2 |
| 0.502 | 0.043  | -15 | -2 | 3 | -2 |

| 0.548 | 0.044 | -15 | -2 | 3 | -2 |
|-------|-------|-----|----|---|----|
| 0.552 | 0.044 | -15 | -2 | 3 | -2 |
| 0.566 | 0.044 | -15 | -3 | 3 | -2 |
| 0.61  | 0.044 | -15 | -2 | 3 | -2 |
| 0.624 | 0.044 | -15 | -2 | 3 | -2 |
| 0.634 | 0.044 | -15 | -3 | 4 | -2 |
| 0.655 | 0.044 | -15 | -2 | 4 | -2 |
| 0.719 | 0.044 | -15 | -2 | 4 | -2 |
| 0.746 | 0.044 | -15 | -3 | 4 | -3 |
| 0.737 | 0.045 | -15 | -3 | 4 | -2 |
| 0.757 | 0.046 | -15 | -3 | 3 | -2 |
| 0.764 | 0.046 | -15 | -2 | 4 | -2 |
| 0.808 | 0.047 | -15 | -2 | 4 | -3 |
| 0.838 | 0.047 | -15 | -3 | 5 | -3 |
| 0.836 | 0.048 | -15 | -3 | 4 | -2 |
| 0.862 | 0.048 | -15 | -2 | 4 | -3 |
| 0.895 | 0.049 | -15 | -3 | 4 | -3 |
| 0.932 | 0.051 | -15 | -3 | 4 | -3 |
| 0.952 | 0.052 | -15 | -3 | 5 | -3 |
| 0.98  | 0.054 | -15 | -3 | 5 | -3 |
| 0.996 | 0.056 | -15 | -3 | 5 | -3 |
| 1.033 | 0.058 | -15 | -3 | 5 | -3 |
| 1.05  | 0.059 | -15 | -3 | 5 | -3 |
| 1.065 | 0.06  | -15 | -2 | 5 | -3 |
| 1.063 | 0.06  | -15 | -3 | 6 | -2 |
| 1.11  | 0.06  | -15 | -3 | 6 | -2 |
| 1.123 | 0.06  | -15 | -2 | 6 | -2 |
| 1.151 | 0.06  | -15 | -2 | 6 | -2 |
| 1.161 | 0.06  | -15 | -2 | 6 | -2 |
| 1.228 | 0.06  | -15 | -3 | 6 | -2 |
| 1.238 | 0.06  | -15 | -2 | 6 | -2 |
| 1.23  | 0.06  | -15 | -2 | 6 | -2 |
| 1.278 | 0.061 | -15 | -3 | 6 | -2 |
| 1.307 | 0.061 | -15 | -3 | 6 | -2 |
| 1.329 | 0.062 | -15 | -3 | 6 | -2 |
| 1.352 | 0.064 | -15 | -2 | 6 | -2 |
| 1.387 | 0.068 | -15 | -2 | 6 | -2 |
| 1.416 | 0.074 | -15 | -3 | 6 | -2 |
| 1.448 | 0.078 | -15 | -2 | 6 | -2 |
| 1.51  | 0.085 | -15 | -2 | 6 | -2 |
| 1.538 | 0.091 | -15 | -2 | 6 | -2 |
| 1.577 | 0.094 | -15 | -3 | 6 | -2 |
| 1.583 | 0.097 | -15 | -2 | 6 | -2 |
| 1.634 | 0.1   | -15 | -2 | 6 | -2 |

| 1.655 | 0.105 | -15 | -2 | 6 | -2 |
|-------|-------|-----|----|---|----|
| 1.645 | 0.11  | -15 | -2 | 6 | -2 |
| 1.717 | 0.117 | -15 | -2 | 6 | -2 |
| 1.774 | 0.123 | -15 | -2 | 6 | -2 |
| 1.78  | 0.129 | -15 | -2 | 6 | -2 |
| 1.807 | 0.132 | -15 | -2 | 6 | -2 |
| 1.841 | 0.137 | -15 | -2 | 6 | -2 |
| 1.908 | 0.139 | -15 | -2 | 6 | -2 |
| 1.924 | 0.14  | -15 | -2 | 6 | -2 |
| 1.954 | 0.141 | -15 | -2 | 6 | -2 |
| 1.985 | 0.141 | -15 | -2 | 6 | -2 |
| 2.034 | 0.141 | -15 | -2 | 6 | -2 |
| 2.094 | 0.141 | -15 | -2 | 6 | -2 |
| 2.144 | 0.141 | -15 | -2 | 6 | -2 |
| 2.189 | 0.141 | -15 | -2 | 6 | -2 |
| 2.204 | 0.141 | -15 | -2 | 6 | -2 |
| 2.202 | 0.142 | -15 | -2 | 6 | -2 |
| 2.242 | 0.142 | -15 | -1 | 6 | -2 |
| 2.291 | 0.142 | -15 | -1 | 6 | -2 |
| 2.301 | 0.143 | -15 | -2 | 6 | -2 |
| 2.36  | 0.144 | -15 | -1 | 6 | -2 |
| 2.416 | 0.145 | -15 | -1 | 6 | -2 |
| 2.415 | 0.146 | -15 | -1 | 6 | -2 |
| 2.434 | 0.147 | -15 | -1 | 6 | -2 |
| 2.458 | 0.149 | -15 | -1 | 6 | -2 |
| 2.541 | 0.151 | -15 | -1 | 6 | -2 |
| 2.607 | 0.153 | -15 | -1 | 6 | -2 |
| 2.65  | 0.155 | -15 | -1 | 6 | -2 |
| 2.691 | 0.157 | -15 | -1 | 6 | -2 |
| 2.74  | 0.158 | -15 | -1 | 6 | -2 |
| 2.758 | 0.158 | -15 | -1 | 6 | -2 |
| 2.809 | 0.158 | -15 | -1 | 6 | -2 |
| 2.857 | 0.158 | -15 | -1 | 6 | -2 |
| 2.876 | 0.158 | -15 | -1 | 6 | -2 |
| 2.919 | 0.158 | -15 | -1 | 6 | -2 |
| 2.98  | 0.158 | -15 | -1 | 6 | -2 |
| 3.001 | 0.158 | -14 | -1 | 6 | -2 |
| 3.035 | 0.16  | -14 | -1 | 6 | -2 |
| 3.084 | 0.162 | -13 | -1 | 6 | -2 |
| 3.123 | 0.165 | -12 | -1 | 6 | -2 |
| 3.156 | 0.171 | -10 | -1 | 7 | -2 |
| 3.231 | 0.18  | -10 | -1 | 7 | -2 |
| 3.278 | 0.186 | -10 | 0  | 7 | -2 |
| 3.314 | 0.192 | -9  | 0  | 7 | -2 |

| 3.37  | 0.197 | -8 | -1 | 7 | -2 |
|-------|-------|----|----|---|----|
| 3.445 | 0.202 | -8 | 0  | 7 | -2 |
| 3.461 | 0.208 | -8 | 0  | 7 | -2 |
| 3.525 | 0.215 | -6 | 0  | 7 | -2 |
| 3.563 | 0.223 | -7 | 0  | 7 | -2 |
| 3.625 | 0.231 | -5 | 0  | 7 | -2 |
| 3.669 | 0.236 | -5 | 0  | 7 | -2 |
| 3.717 | 0.237 | -4 | 0  | 7 | -2 |
| 3.77  | 0.238 | -5 | 0  | 8 | -2 |
| 3.8   | 0.239 | -4 | 0  | 8 | -2 |
| 3.85  | 0.239 | -3 | 0  | 8 | -2 |
| 3.903 | 0.239 | -2 | 0  | 8 | -2 |
| 3.954 | 0.239 | -1 | 0  | 8 | -2 |
| 4.007 | 0.239 | -1 | 0  | 8 | -2 |
| 4.038 | 0.24  | -1 | 0  | 8 | -2 |
| 4.11  | 0.241 | -1 | 0  | 8 | -2 |
| 4.151 | 0.242 | 0  | 0  | 8 | -2 |
| 4.176 | 0.243 | 0  | 0  | 8 | -2 |
| 4.242 | 0.245 | 0  | 0  | 8 | -2 |
| 4.29  | 0.248 | 0  | 0  | 9 | -2 |
| 4.352 | 0.251 | 0  | 0  | 9 | -2 |
| 4.416 | 0.254 | 0  | 0  | 9 | -2 |
| 4.491 | 0.255 | 0  | 0  | 9 | -2 |
| 4.561 | 0.256 | 0  | 0  | 9 | -2 |
| 4.621 | 0.256 | 0  | 0  | 9 | -2 |
| 4.68  | 0.256 | 0  | 0  | 9 | -2 |
| 4.714 | 0.256 | 0  | 0  | 9 | -2 |
| 4.771 | 0.257 | 0  | 0  | 9 | -2 |
| 4.824 | 0.26  | 0  | 0  | 9 | -2 |
| 4.879 | 0.266 | 0  | 0  | 9 | -2 |
| 4.946 | 0.276 | 0  | 0  | 9 | -2 |
| 4.99  | 0.286 | 0  | 0  | 9 | -2 |
| 5.039 | 0.291 | 0  | 0  | 9 | -2 |
| 5.092 | 0.297 | 0  | 0  | 9 | -2 |
| 5.15  | 0.305 | 0  | 0  | 9 | -2 |
| 5.235 | 0.317 | 0  | 0  | 9 | -2 |
| 5.285 | 0.326 | 0  | 0  | 9 | -1 |
| 5.35  | 0.334 | 0  | 0  | 9 | -2 |
| 5.425 | 0.335 | 0  | 0  | 9 | -1 |
| 5.478 | 0.336 | 0  | 0  | 9 | -1 |
| 5.552 | 0.337 | 0  | 0  | 9 | 0  |
| 5.592 | 0.337 | 0  | 0  | 9 | 1  |
| 5.639 | 0.337 | 0  | 0  | 9 | 2  |
| 5.709 | 0.339 | 0  | 0  | 9 | 2  |

| 5.793 | 0.34  | 0 | 0  | 9  | 3  |
|-------|-------|---|----|----|----|
| 5.862 | 0.343 | 0 | 0  | 9  | 3  |
| 5.899 | 0.347 | 1 | 0  | 9  | 4  |
| 6     | 0.351 | 1 | 0  | 9  | 4  |
| 6.073 | 0.353 | 1 | 0  | 9  | 5  |
| 6.135 | 0.353 | 1 | 0  | 9  | 6  |
| 6.196 | 0.353 | 1 | 0  | 9  | 7  |
| 6.263 | 0.354 | 1 | 0  | 9  | 9  |
| 6.361 | 0.355 | 1 | 1  | 9  | 10 |
| 6.469 | 0.365 | 2 | 1  | 9  | 12 |
| 6.547 | 0.379 | 2 | 3  | 9  | 12 |
| 6.633 | 0.388 | 2 | 4  | 10 | 13 |
| 6.699 | 0.394 | 2 | 4  | 9  | 13 |
| 6.751 | 0.405 | 2 | 5  | 10 | 13 |
| 6.816 | 0.42  | 2 | 7  | 10 | 14 |
| 6.907 | 0.43  | 3 | 7  | 10 | 14 |
| 6.964 | 0.434 | 3 | 7  | 10 | 14 |
| 7.036 | 0.434 | 3 | 9  | 10 | 14 |
| 7.12  | 0.434 | 3 | 8  | 10 | 14 |
| 7.204 | 0.435 | 3 | 10 | 10 | 14 |
| 7.299 | 0.437 | 3 | 12 | 11 | 14 |
| 7.39  | 0.439 | 3 | 12 | 11 | 14 |
| 7.522 | 0.443 | 3 | 13 | 11 | 14 |
| 7.628 | 0.449 | 3 | 14 | 12 | 14 |
| 7.709 | 0.451 | 3 | 15 | 12 | 14 |
| 7.797 | 0.451 | 3 | 15 | 13 | 14 |
| 7.86  | 0.451 | 3 | 15 | 13 | 14 |
| 7.943 | 0.453 | 3 | 15 | 14 | 14 |
| 8.045 | 0.462 | 3 | 15 | 14 | 14 |
| 8.128 | 0.478 | 3 | 15 | 15 | 14 |
| 8.213 | 0.489 | 3 | 15 | 16 | 14 |
| 8.345 | 0.5   | 3 | 15 | 16 | 14 |
| 8.421 | 0.521 | 3 | 15 | 16 | 14 |
| 8.535 | 0.53  | 3 | 15 | 17 | 14 |
| 8.622 | 0.532 | 3 | 15 | 18 | 14 |
| 8.741 | 0.532 | 3 | 15 | 19 | 15 |
| 8.815 | 0.534 | 3 | 15 | 20 | 15 |
| 8.916 | 0.536 | 3 | 15 | 21 | 15 |
| 9.021 | 0.542 | 3 | 15 | 22 | 15 |
| 9.104 | 0.548 | 3 | 16 | 22 | 15 |
| 9.188 | 0.549 | 3 | 16 | 22 | 15 |
| 9.343 | 0.549 | 3 | 16 | 23 | 16 |
| 9.452 | 0.554 | 3 | 16 | 24 | 16 |
| 9.551 | 0.571 | 3 | 16 | 24 | 16 |

| 9.662  | 0.587 | 3  | 16 | 24 | 16 |
|--------|-------|----|----|----|----|
| 9.767  | 0.606 | 3  | 16 | 24 | 16 |
| 9.865  | 0.625 | 4  | 17 | 24 | 16 |
| 9.966  | 0.629 | 4  | 17 | 25 | 17 |
| 10.046 | 0.63  | 6  | 17 | 25 | 17 |
| 10.151 | 0.631 | 8  | 17 | 25 | 17 |
| 10.255 | 0.634 | 11 | 18 | 25 | 17 |
| 10.361 | 0.641 | 12 | 18 | 25 | 17 |
| 10.513 | 0.646 | 13 | 18 | 25 | 17 |
| 10.603 | 0.646 | 15 | 18 | 25 | 17 |
| 10.718 | 0.649 | 17 | 18 | 25 | 17 |
| 10.824 | 0.664 | 18 | 18 | 25 | 17 |
| 10.974 | 0.682 | 18 | 18 | 25 | 17 |
| 11.082 | 0.699 | 18 | 18 | 25 | 17 |
| 11.216 | 0.72  | 18 | 18 | 25 | 17 |
| 11.348 | 0.727 | 18 | 18 | 25 | 17 |
| 11.474 | 0.727 | 18 | 18 | 25 | 17 |
| 11.622 | 0.73  | 18 | 18 | 26 | 17 |
| 11.722 | 0.734 | 18 | 18 | 26 | 17 |
| 11.827 | 0.742 | 19 | 18 | 26 | 17 |
| 11.996 | 0.744 | 19 | 18 | 26 | 17 |
| 12.099 | 0.745 | 19 | 19 | 27 | 17 |
| 12.259 | 0.759 | 19 | 19 | 27 | 17 |
| 12.391 | 0.779 | 19 | 19 | 27 | 17 |
| 12.521 | 0.797 | 19 | 19 | 27 | 17 |
| 12.677 | 0.819 | 20 | 19 | 28 | 19 |
| 12.825 | 0.825 | 20 | 20 | 28 | 21 |
| 12.994 | 0.826 | 20 | 22 | 28 | 23 |
| 13.148 | 0.83  | 21 | 24 | 28 | 24 |
| 13.272 | 0.838 | 21 | 26 | 28 | 26 |
| 13.449 | 0.842 | 21 | 27 | 28 | 28 |
| 13.602 | 0.843 | 21 | 30 | 28 | 30 |
| 13.707 | 0.863 | 21 | 31 | 28 | 32 |
| 13.848 | 0.884 | 21 | 34 | 28 | 32 |
| 13.974 | 0.911 | 22 | 34 | 28 | 32 |
| 14.161 | 0.922 | 22 | 34 | 28 | 32 |
| 14.368 | 0.924 | 22 | 34 | 28 | 32 |
| 14.52  | 0.928 | 22 | 34 | 28 | 32 |
| 14.66  | 0.937 | 22 | 34 | 28 | 32 |
| 14.809 | 0.939 | 22 | 34 | 28 | 32 |
| 14.974 | 0.945 | 22 | 34 | 28 | 33 |
| 15.166 | 0.97  | 22 | 34 | 29 | 33 |
| 15.314 | 0.993 | 22 | 35 | 29 | 33 |
| 15.468 | 1.017 | 22 | 35 | 30 | 33 |

| 15.639 | 1.02  | 22 | 35 | 31 | 34 |
|--------|-------|----|----|----|----|
| 15.811 | 1.023 | 24 | 36 | 33 | 34 |
| 15.984 | 1.032 | 26 | 36 | 34 | 34 |
| 16.209 | 1.037 | 29 | 36 | 35 | 35 |
| 16.371 | 1.04  | 31 | 37 | 37 | 35 |
| 16.532 | 1.063 | 34 | 37 | 39 | 35 |
| 16.741 | 1.084 | 36 | 37 | 40 | 35 |
| 16.892 | 1.111 | 37 | 37 | 42 | 35 |
| 17.128 | 1.118 | 37 | 37 | 42 | 35 |
| 17.311 | 1.12  | 37 | 37 | 43 | 35 |
| 17.5   | 1.128 | 37 | 37 | 43 | 35 |
| 17.681 | 1.135 | 37 | 37 | 43 | 35 |
| 17.883 | 1.137 | 37 | 37 | 43 | 35 |
| 18.119 | 1.163 | 37 | 38 | 43 | 35 |
| 18.341 | 1.182 | 37 | 40 | 43 | 35 |
| 18.563 | 1.211 | 38 | 43 | 43 | 35 |
| 18.75  | 1.215 | 38 | 45 | 43 | 36 |
| 18.944 | 1.218 | 39 | 50 | 44 | 37 |
| 19.195 | 1.226 | 39 | 52 | 45 | 41 |
| 19.431 | 1.232 | 40 | 52 | 45 | 43 |
| 19.655 | 1.236 | 40 | 52 | 46 | 46 |
| 19.877 | 1.258 | 40 | 52 | 46 | 49 |
| 20.138 | 1.278 | 40 | 53 | 46 | 51 |
| 20.388 | 1.306 | 40 | 53 | 46 | 51 |
| 20.624 | 1.313 | 40 | 54 | 46 | 51 |
| 20.83  | 1.316 | 40 | 54 | 46 | 51 |
| 21.091 | 1.324 | 40 | 55 | 46 | 52 |
| 21.341 | 1.33  | 42 | 55 | 46 | 52 |
| 21.595 | 1.332 | 47 | 55 | 46 | 53 |
| 21.868 | 1.355 | 52 | 55 | 46 | 53 |
| 22.141 | 1.378 | 55 | 55 | 47 | 54 |
| 22.414 | 1.406 | 55 | 55 | 47 | 54 |
| 22.646 | 1.411 | 56 | 56 | 49 | 54 |
| 22.945 | 1.415 | 56 | 56 | 50 | 54 |
| 23.212 | 1.425 | 57 | 59 | 52 | 54 |
| 23.497 | 1.428 | 58 | 65 | 55 | 54 |
| 23.769 | 1.442 | 58 | 70 | 58 | 54 |
| 24.039 | 1.468 | 59 | 71 | 60 | 55 |
| 24.337 | 1.498 | 59 | 71 | 62 | 59 |
| 24.623 | 1.508 | 60 | 72 | 62 | 64 |
| 24.912 | 1.512 | 71 | 73 | 62 | 68 |
| 25.163 | 1.522 | 74 | 74 | 62 | 69 |
| 25.462 | 1.525 | 76 | 74 | 62 | 69 |
| 25.758 | 1.541 | 77 | 74 | 63 | 70 |

| 26.101 | 1.566 | 79   | 77  | 64  | 71  |
|--------|-------|------|-----|-----|-----|
| 26.412 | 1.597 | 93   | 88  | 64  | 72  |
| 26.719 | 1.606 | 102  | 90  | 65  | 72  |
| 27.04  | 1.612 | 121  | 92  | 65  | 72  |
| 27.315 | 1.622 | 174  | 93  | 65  | 80  |
| 27.636 | 1.628 | 248  | 104 | 68  | 89  |
| 27.969 | 1.657 | 350  | 110 | 83  | 100 |
| 28.262 | 1.688 | 419  | 114 | 95  | 109 |
| 28.602 | 1.704 | 462  | 126 | 100 | 114 |
| 28.908 | 1.709 | 497  | 129 | 102 | 126 |
| 29.217 | 1.719 | 531  | 130 | 112 | 128 |
| 29.515 | 1.725 | 567  | 144 | 118 | 140 |
| 29.86  | 1.752 | 606  | 148 | 121 | 146 |
| 30.119 | 1.784 | 647  | 160 | 134 | 157 |
| 30.443 | 1.801 | 692  | 166 | 140 | 165 |
| 30.8   | 1.806 | 742  | 179 | 154 | 180 |
| 31.15  | 1.818 | 786  | 185 | 158 | 184 |
| 31.473 | 1.828 | 823  | 196 | 170 | 199 |
| 31.802 | 1.856 | 853  | 203 | 175 | 202 |
| 32.12  | 1.888 | 879  | 206 | 176 | 212 |
| 32.463 | 1.899 | 903  | 219 | 186 | 219 |
| 32.807 | 1.906 | 929  | 222 | 192 | 222 |
| 33.138 | 1.917 | 953  | 229 | 194 | 235 |
| 33.496 | 1.932 | 978  | 239 | 196 | 238 |
| 33.838 | 1.961 | 1006 | 241 | 208 | 243 |
| 34.182 | 1.993 | 1029 | 253 | 211 | 255 |
| 34.516 | 1.999 | 1056 | 258 | 213 | 257 |
| 34.873 | 2.01  | 1083 | 263 | 223 | 265 |
| 35.218 | 2.017 | 1108 | 275 | 229 | 275 |
| 35.546 | 2.047 | 1142 | 278 | 232 | 279 |
| 35.896 | 2.078 | 1174 | 290 | 240 | 292 |
| 36.217 | 2.095 | 1205 | 296 | 248 | 295 |
| 36.554 | 2.101 | 1234 | 309 | 250 | 309 |
| 36.892 | 2.111 | 1268 | 314 | 261 | 313 |
| 37.206 | 2.123 | 1301 | 328 | 267 | 324 |
| 37.535 | 2.15  | 1333 | 333 | 270 | 331 |
| 37.857 | 2.182 | 1364 | 347 | 283 | 338 |
| 38.144 | 2.192 | 1393 | 351 | 286 | 348 |
| 38.451 | 2.2   | 1419 | 359 | 290 | 351 |
| 38.782 | 2.209 | 1447 | 369 | 302 | 365 |
| 39.12  | 2.224 | 1474 | 377 | 305 | 368 |
| 39.461 | 2.251 | 1506 | 387 | 312 | 381 |
| 39.767 | 2.284 | 1536 | 394 | 322 | 387 |
| 40.064 | 2.291 | 1574 | 405 | 330 | 400 |

| 40.385 | 2.303 | 1608 | 411 | 341 | 405 |
|--------|-------|------|-----|-----|-----|
| 40.685 | 2.309 | 1641 | 424 | 344 | 416 |
| 41.025 | 2.337 | 1672 | 427 | 357 | 424 |
| 41.284 | 2.364 | 1701 | 441 | 361 | 432 |
| 41.594 | 2.387 | 1734 | 447 | 365 | 441 |
| 41.915 | 2.392 | 1767 | 460 | 377 | 447 |
| 42.218 | 2.403 | 1799 | 464 | 380 | 459 |
| 42.501 | 2.409 | 1828 | 477 | 387 | 461 |
| 42.758 | 2.437 | 1857 | 481 | 397 | 472 |
| 43.058 | 2.465 | 1883 | 492 | 408 | 479 |
| 43.371 | 2.485 | 1909 | 498 | 415 | 480 |
| 43.661 | 2.489 | 1936 | 500 | 417 | 494 |
| 43.93  | 2.5   | 1961 | 514 | 430 | 498 |
| 44.209 | 2.505 | 1990 | 518 | 434 | 504 |
| 44.48  | 2.532 | 2020 | 524 | 440 | 515 |
| 44.723 | 2.554 | 2044 | 534 | 451 | 517 |
| 44.916 | 2.58  | 2058 | 537 | 454 | 525 |
| 45.103 | 2.583 | 2073 | 541 | 457 | 532 |
| 45.281 | 2.587 | 2077 | 552 | 468 | 534 |
| 45.399 | 2.594 | 2081 | 553 | 470 | 535 |
| 45.45  | 2.599 | 2081 | 555 | 472 | 535 |
| 45.502 | 2.6   | 2077 | 555 | 472 | 537 |
| 45.682 | 2.606 | 2081 | 558 | 473 | 548 |
| 45.986 | 2.633 | 2093 | 570 | 483 | 551 |
| 46.316 | 2.659 | 2107 | 573 | 488 | 553 |
| 46.631 | 2.68  | 2122 | 574 | 490 | 554 |
| 46.948 | 2.685 | 2135 | 584 | 492 | 566 |
| 47.25  | 2.696 | 2152 | 591 | 504 | 571 |
| 47.549 | 2.708 | 2168 | 595 | 507 | 572 |
| 47.846 | 2.737 | 2183 | 607 | 509 | 579 |
| 48.127 | 2.766 | 2195 | 610 | 514 | 588 |
| 48.397 | 2.779 | 2206 | 615 | 524 | 590 |
| 48.67  | 2.786 | 2221 | 627 | 527 | 591 |
| 48.945 | 2.795 | 2231 | 629 | 528 | 603 |
| 49.258 | 2.812 | 2243 | 636 | 535 | 607 |
| 49.51  | 2.838 | 2257 | 646 | 543 | 609 |
| 49.781 | 2.871 | 2267 | 648 | 545 | 611 |
| 50.054 | 2.878 | 2278 | 656 | 546 | 623 |
| 50.331 | 2.888 | 2280 | 665 | 549 | 626 |
| 50.625 | 2.895 | 2293 | 668 | 561 | 628 |
| 50.867 | 2.922 | 2300 | 681 | 563 | 629 |
| 51.187 | 2.953 | 2315 | 684 | 565 | 641 |
| 51.452 | 2.974 | 2326 | 690 | 569 | 645 |
| 51.756 | 2.982 | 2339 | 701 | 580 | 646 |

| 52.096         | 2.99  | 2353   | 704    | 582 | 654 |
|----------------|-------|--------|--------|-----|-----|
| 52.425         | 3.015 | -3424  | 716    | 583 | 662 |
| 52.78          | 3.046 | -16594 | 721    | 589 | 665 |
| 53.169         | 3.071 | -16594 | 728    | 599 | 669 |
| 53.535         | 3.082 | -16594 | 739    | 601 | 680 |
| 53.94          | 3.097 | -16594 | 749    | 603 | 683 |
| 54.34          | 3.13  | -16594 | 758    | 617 | 690 |
| 54.77          | 3.166 | -16594 | 770    | 620 | 700 |
| 55.189         | 3.176 | -16594 | 778    | 625 | 702 |
| 55.602         | 3.187 | -16594 | 792    | 636 | 711 |
| 56.01          | 3.219 | -16594 | 798    | 639 | 719 |
| 56.393         | 3.257 | -16594 | 812    | 642 | 722 |
| 56.756         | 3.273 | -16594 | 821    | 654 | 734 |
| 57.208         | 3.289 | -16594 | 832    | 656 | 738 |
| 57.607         | 3.324 | -16594 | 844    | 658 | 743 |
| 58.059         | 3.36  | -16594 | 852    | 671 | 755 |
| 58.478         | 3.373 | -16594 | 866    | 675 | 757 |
| 58.912         | 3.392 | -16594 | 873    | 679 | 769 |
| 59.394         | 3.431 | -16594 | 887    | 692 | 775 |
| 59.845         | 3.462 | -16594 | 900    | 694 | 778 |
| 60.354         | 3.474 | -16594 | 909    | 705 | 792 |
| 60.846         | 3.493 | -16594 | 924    | 711 | 795 |
| 61.321         | 3.527 | -16594 | 936    | 715 | 808 |
| 61.835         | 3.56  | -16594 | 944    | 729 | 813 |
| 62.353         | 3.571 | -16594 | -3318  | 731 | 825 |
| 62.877         | 3.593 | -16594 | -17341 | 743 | 831 |
| 63.369         | 3.632 | -16594 | -18004 | 749 | 840 |
| 63.9           | 3.66  | -16594 | -18004 | 758 | 849 |
| 64.418         | 3.675 | -16594 | -18004 | 767 | 855 |
| 64.94          | 3.709 | -16594 | -18004 | 771 | 867 |
| 65.422         | 3.749 | -16594 | -18004 | 784 | 872 |
| 65.908         | 3.765 | -16594 | -18004 | 787 | 885 |
| 66.401         | 3.784 | -16594 | -18004 | 798 | 888 |
| 66.926         | 3.823 | -16594 | -18004 | 805 | 902 |
| 67.44          | 3.854 | -16594 | -18004 | 813 | 905 |
| 67.926         | 3.868 | -16594 | -18004 | 822 | 917 |
| 68.426         | 3.896 | -16594 | -18004 | 825 | 923 |
| <u>6</u> 8.966 | 3.933 | -16594 | -18004 | 839 | 928 |
| 69.404         | 3.953 | -16594 | -18004 | 842 | 940 |
| 69.807         | 3.967 | -16594 | -18004 | 853 | 943 |
| 70.247         | 3.999 | -16594 | -18004 | 860 | 956 |
| 70.573         | 4.03  | -16594 | -18004 | 861 | 960 |
| 69.697         | 4.028 | -16594 | -18004 | 858 | 955 |
| 67.106         | 3.962 | -16594 | -18004 | 841 | 936 |

| 66.532 | 3.95  | -16594 | -18004 | 839  | 924  |
|--------|-------|--------|--------|------|------|
| 66.831 | 3.951 | -16594 | -18004 | 839  | 927  |
| 67.2   | 3.955 | -16594 | -18004 | 841  | 937  |
| 67.577 | 3.963 | -16594 | -18004 | 842  | 939  |
| 67.932 | 3.967 | -16594 | -18004 | 842  | 940  |
| 68.278 | 3.969 | -16594 | -18004 | 843  | 942  |
| 68.692 | 3.991 | -16594 | -18004 | 846  | 943  |
| 69.122 | 4.009 | -16594 | -18004 | 857  | 946  |
| 69.652 | 4.035 | -16594 | -18004 | 859  | 958  |
| 70.248 | 4.05  | -16594 | -18004 | 861  | 961  |
| 70.921 | 4.064 | -16594 | -18004 | 873  | 971  |
| 71.532 | 4.089 | -16594 | -18004 | 879  | 978  |
| 72.199 | 4.127 | -16594 | -18004 | 885  | 986  |
| 72.802 | 4.15  | -16594 | -18004 | 896  | 997  |
| 73.441 | 4.169 | -16594 | -18004 | 902  | 1002 |
| 74.058 | 4.211 | -16594 | -18004 | 915  | 1015 |
| 74.662 | 4.245 | -16594 | -18004 | 919  | 1022 |
| 75.196 | 4.265 | -16594 | -18004 | 932  | 1033 |
| 75.781 | 4.306 | -16594 | -18004 | 935  | 1040 |
| 76.378 | 4.343 | -16594 | -18004 | 948  | 1052 |
| 76.985 | 4.362 | -16594 | -18004 | 953  | 1058 |
| 77.582 | 4.402 | -16594 | -18004 | 962  | 1070 |
| 78.169 | 4.439 | -16594 | -18004 | 971  | 1075 |
| 78.792 | 4.456 | -16594 | -18004 | 976  | 1089 |
| 79.388 | 4.492 | -16594 | -18004 | 988  | 1093 |
| 79.974 | 4.533 | -16594 | -18004 | 991  | 1107 |
| 80.581 | 4.548 | -16594 | -18004 | 1004 | 1112 |
| 81.2   | 4.581 | -16594 | -18004 | 1009 | 1125 |
| 81.81  | 4.625 | -16594 | -18004 | 1020 | 1131 |
| 82.488 | 4.647 | -16594 | -18004 | 1027 | 1144 |
| 83.118 | 4.683 | -16594 | -18004 | 1033 | 1149 |
| 83.757 | 4.729 | -16594 | -18004 | 1044 | 1163 |
| 84.416 | 4.75  | -16594 | -18004 | 1047 | 1171 |
| 85.042 | 4.791 | -16594 | -18004 | 1060 | 1182 |
| 85.643 | 4.831 | -16594 | -18004 | 1064 | 1188 |
| 86.28  | 4.855 | -16594 | -18004 | 1070 | 1200 |
| 86.932 | 4.898 | -16594 | -18004 | 1081 | 1206 |
| 87.564 | 4.932 | -16594 | -18004 | 1083 | 1218 |
| 88.261 | 4.961 | -4041  | -18004 | 1088 | 1225 |
| 88.922 | 5.006 | -10466 | -18004 | 1099 | 1237 |
| 89.557 | 5.034 | -16499 | -18004 | 1102 | 1247 |
| 90.241 | 5.069 | -16594 | -18004 | 1114 | 1256 |
| 90.91  | 5.113 | -16594 | -18004 | 1120 | 1265 |
| 91.61  | 5.138 | -16594 | -18004 | 1124 | 1274 |

| 92.28   | 5.176 | -16594 | -18004 | 1136 | 1276 |
|---------|-------|--------|--------|------|------|
| 92.962  | 5.218 | -16594 | -18004 | 1138 | 1290 |
| 93.608  | 5.244 | -16594 | -18004 | 1144 | 1294 |
| 94.251  | 5.289 | -16594 | -18004 | 1155 | 1306 |
| 94.881  | 5.325 | -16594 | -18004 | 1157 | 1312 |
| 95.505  | 5.36  | -16594 | -18004 | 1158 | 1318 |
| 96.129  | 5.405 | -16594 | -18004 | 1170 | 1330 |
| 96.798  | 5.429 | -16594 | -18004 | 1174 | 1336 |
| 97.485  | 5.468 | -16594 | -18004 | 1176 | 1348 |
| 98.14   | 5.511 | -16594 | -18004 | 1188 | 1357 |
| 98.776  | 5.542 | -16594 | -18004 | 1193 | 1367 |
| 99.336  | 5.597 | -16594 | -18004 | 1194 | 1370 |
| 99.814  | 5.633 | -16594 | -18004 | 1194 | 1383 |
| 100.228 | 5.688 | -16594 | -18004 | 1202 | 1386 |
| 100.33  | 5.736 | -16594 | -18004 | 1197 | 1387 |
| 100.376 | 5.797 | -16594 | -18004 | 1194 | 1387 |
| 100.79  | 5.839 | -16594 | -18004 | 1197 | 1391 |
| 101.395 | 5.892 | -16594 | -18004 | 1209 | 1403 |
| 102.036 | 5.924 | -16594 | -18004 | 1212 | 1408 |
| 102.617 | 5.973 | -16594 | -18004 | 1213 | 1421 |
| 103.199 | 6.012 | -16594 | -18004 | 1226 | 1424 |
| 103.72  | 6.055 | -16594 | -18004 | 1229 | 1435 |
| 104.293 | 6.105 | -16594 | -18004 | 1231 | 1442 |
| 104.876 | 6.147 | -16594 | -18004 | 1237 | 1448 |
| 105.453 | 6.198 | -16594 | -18004 | 1247 | 1460 |
| 106.057 | 6.233 | -16594 | -18004 | 1249 | 1466 |
| 106.619 | 6.282 | -16594 | -18004 | 1250 | 1477 |
| 107.201 | 6.318 | -16594 | -18004 | 1262 | 1482 |
| 107.784 | 6.368 | -16594 | -18004 | 1267 | 1495 |
| 108.346 | 6.405 | -16594 | -18004 | 1268 | 1498 |
| 108.884 | 6.45  | -16594 | -18004 | 1274 | 1511 |
| 109.45  | 6.496 | -16594 | -18004 | 1284 | 1516 |
| 110.012 | 6.537 | -16594 | -18004 | 1286 | 1521 |
| 110.527 | 6.587 | -16594 | -18004 | 1287 | 1532 |
| 111.05  | 6.626 | -16594 | -18004 | 1290 | 1535 |
| 111.592 | 6.675 | -16594 | -18004 | 1302 | 1545 |
| 112.096 | 6.715 | -16594 | -18004 | 1303 | 1552 |
| 112.562 | 6.766 | -16594 | -18004 | 1305 | 1555 |
| 113.04  | 6.806 | -16594 | -18004 | 1305 | 1568 |
| 113.543 | 6.858 | -16594 | -18004 | 1308 | 1571 |
| 114.067 | 6.9   | -16594 | -18004 | 1319 | 1577 |
| 114.519 | 6.951 | -16594 | -18004 | 1321 | 1588 |
| 115.018 | 6.993 | -16594 | -18004 | 1322 | 1590 |
| 115.479 | 7.046 | -16594 | -18004 | 1324 | 1599 |
|         |       | •      | •      |      |      |

| 115.917 | 7.091 | -16594 | -18004 | 1324 | 1608 |
|---------|-------|--------|--------|------|------|
| 116.367 | 7.142 | -16594 | -18004 | 1324 | 1610 |
| 116.807 | 7.188 | -16594 | -18004 | 1331 | 1623 |
| 117.203 | 7.241 | -16594 | -18004 | 1339 | 1626 |
| 117.546 | 7.289 | -16594 | -18004 | 1339 | 1627 |
| 117.853 | 7.344 | -16594 | -18004 | 1339 | 1630 |
| 118.215 | 7.396 | -16594 | -18004 | 1339 | 1642 |
| 118.53  | 7.459 | -16594 | -18004 | 1340 | 1644 |
| 118.801 | 7.52  | -16594 | -18004 | 1340 | 1646 |
| 119.067 | 7.576 | -16594 | -18004 | 1341 | 1646 |
| 119.314 | 7.633 | -16594 | -18004 | 1341 | 1653 |
| 119.51  | 7.687 | -16594 | -18004 | 1341 | 1661 |
| 119.651 | 7.749 | -16594 | -18004 | 1340 | 1661 |
| 119.734 | 7.804 | -16594 | -18004 | 1339 | 1662 |
| 119.814 | 7.867 | -16594 | -18004 | 1339 | 1662 |
| 119.831 | 7.929 | -16594 | -18004 | 1338 | 1662 |
| 119.703 | 7.991 | -16594 | -18004 | 1327 | 1662 |
| 119.319 | 8.062 | -16594 | -18004 | 1324 | 1660 |
| 118.688 | 8.138 | -16594 | -18004 | 1322 | 1647 |
| 117.39  | 8.231 | -16594 | -18004 | 1306 | 1636 |
| 114.609 | 8.361 | -16594 | -18004 | 1278 | 1600 |
| 112.551 | 8.477 | -15099 | -18004 | 1256 | 1574 |
| 111.428 | 8.57  | -10665 | -18004 | 1246 | 1558 |
| 110.509 | 8.656 | -16594 | -18004 | 1231 | 1547 |
| 109.916 | 8.736 | -16594 | -18004 | 1228 | 1535 |
| 109.337 | 8.816 | -16594 | -18004 | 1215 | 1527 |
| 108.676 | 8.895 | -16594 | -18004 | 1211 | 1516 |
| 108.063 | 8.975 | -16594 | -18004 | 1200 | 1510 |
| 107.528 | 9.051 | -16594 | -18004 | 1194 | 1498 |
| 107.097 | 9.125 | -16594 | -18004 | 1192 | 1496 |
| 106.776 | 9.199 | -16594 | -18004 | 1187 | 1492 |
| 106.551 | 9.268 | -16594 | -18004 | 1176 | 1481 |
| 106.234 | 9.343 | -16594 | -18004 | 1176 | 1479 |
| 106.033 | 9.409 | -16594 | -18004 | 1175 | 1477 |
| 105.918 | 9.466 | -16594 | -18004 | 1175 | 1476 |
| 105.386 | 9.504 | -16594 | -18004 | 1171 | 1464 |
| 104.891 | 9.519 | -16594 | -18004 | 1158 | 1460 |
| 104.51  | 9.527 | -16594 | -18004 | 1157 | 1458 |
| 104.19  | 9.532 | -16594 | -18004 | 1156 | 1451 |
| 103.968 | 9.535 | -16594 | -18004 | 1154 | 1443 |
| 103.782 | 9.537 | -16594 | -18004 | 1154 | 1442 |
| 103.597 | 9.54  | -16594 | -18004 | 1149 | 1442 |
| 103.388 | 9.544 | -16594 | -18004 | 1140 | 1442 |
| 103.232 | 9.549 | -16594 | -18004 | 1139 | 1440 |

| 103.089 | 9.553 | -16594 | -18004 | 1139 | 1439 |
|---------|-------|--------|--------|------|------|
| 102.977 | 9.554 | -16594 | -18004 | 1139 | 1439 |

## **APPENDIX C**

## FLEXURAL TEST DATA (15% SAMPLE)

|         |               | Concrete | Steel  | Steel  | Steel  |
|---------|---------------|----------|--------|--------|--------|
| Load,kN | Deflection,mm | Strain   | Strain | Strain | Strain |
|         |               |          | 1      | 2      | 3      |
| 0       | 0             | 0        | 0      | 0      | 0      |
| 0       | 0             | 0        | 0      | 0      | 0      |
| 0.043   | 0             | 0        | 0      | 0      | 0      |
| 0.108   | 0.001         | 0        | 0      | 0      | 0      |
| 0.12    | 0.002         | 0        | 0      | 0      | 0      |
| 0.123   | 0.003         | 0        | 0      | 0      | 0      |
| 0.125   | 0.003         | 0        | 0      | 0      | 0      |
| 0.141   | 0.003         | 0        | 0      | 0      | 0      |
| 0.141   | 0.004         | 0        | 0      | 0      | 0      |
| 0.164   | 0.004         | 0        | 0      | 0      | 0      |
| 0.162   | 0.005         | 0        | 0      | 0      | 0      |
| 0.137   | 0.005         | 0        | 0      | 0      | 0      |
| 0.146   | 0.005         | 0        | 0      | 0      | 1      |
| 0.138   | 0.01          | 0        | 0      | 0      | 3      |
| 0.144   | 0.01          | 0        | 0      | 0      | 2      |
| 0.156   | 0.025         | 0        | 0      | 0      | 1      |
| 0.168   | 0.081         | 0        | 0      | 0      | 2      |
| 0.167   | 0.095         | 0        | 0      | 0      | 3      |
| 0.189   | 0.062         | 0        | 0      | 0      | 3      |
| 0.186   | 0.058         | 0        | 0      | 0      | 3      |
| 0.206   | 0.042         | 0        | 0      | 0      | 5      |
| 0.207   | 0.074         | 0        | 0      | 0      | 5      |
| 0.213   | 0.044         | 0        | 0      | 0      | 4      |
| 0.236   | 0.019         | 0        | 0      | 0      | 4      |
| 0.256   | 0.014         | 0        | 0      | 0      | 5      |
| 0.283   | 0.014         | 0        | 0      | 0      | 6      |
| 0.317   | 0.014         | 0        | 0      | 0      | 5      |
| 0.303   | 0.014         | 0        | 0      | 1      | 4      |
| 0.325   | 0.014         | 0        | 0      | 0      | 5      |
| 0.324   | 0.014         | 0        | 0      | 0      | 7      |
| 0.328   | 0.014         | 0        | 0      | 0      | 6      |
| 0.327   | 0.014         | 0        | 0      | 0      | 4      |
| 0.316   | 0.014         | 0        | 0      | 1      | 5      |
| 0.332   | 0.015         | 0        | 0      | 0      | 6      |
| 0.355   | 0.014         | 0        | 0      | 0      | 5      |
| 0.368   | 0.014         | 0        | 0      | 0      | 4      |
| 0.383   | 0.014         | 0        | 0      | 0      | 4      |

| 0.405 | 0.014 | 0 | 0 | 1  | 6  |
|-------|-------|---|---|----|----|
| 0.408 | 0.014 | 0 | 0 | 0  | 7  |
| 0.418 | 0.014 | 0 | 0 | 1  | 6  |
| 0.408 | 0.014 | 0 | 0 | 1  | 4  |
| 0.432 | 0.014 | 0 | 0 | 2  | 5  |
| 0.457 | 0.015 | 0 | 0 | 1  | 7  |
| 0.462 | 0.015 | 0 | 0 | 1  | 7  |
| 0.464 | 0.015 | 0 | 0 | 2  | 7  |
| 0.48  | 0.016 | 0 | 0 | 2  | 7  |
| 0.516 | 0.017 | 0 | 0 | 3  | 8  |
| 0.522 | 0.017 | 1 | 0 | 4  | 8  |
| 0.523 | 0.024 | 1 | 0 | 7  | 8  |
| 0.523 | 0.022 | 1 | 0 | 6  | 11 |
| 0.523 | 0.025 | 1 | 0 | 9  | 10 |
| 0.538 | 0.027 | 1 | 0 | 9  | 8  |
| 0.554 | 0.03  | 1 | 0 | 9  | 9  |
| 0.586 | 0.035 | 1 | 0 | 11 | 11 |
| 0.634 | 0.037 | 1 | 0 | 11 | 11 |
| 0.672 | 0.041 | 1 | 0 | 9  | 9  |
| 0.684 | 0.044 | 1 | 0 | 10 | 9  |
| 0.693 | 0.046 | 1 | 0 | 11 | 11 |
| 0.742 | 0.048 | 1 | 0 | 12 | 11 |
| 0.758 | 0.052 | 0 | 0 | 11 | 10 |
| 0.822 | 0.054 | 1 | 0 | 11 | 9  |
| 0.835 | 0.059 | 1 | 0 | 12 | 11 |
| 0.857 | 0.061 | 0 | 0 | 12 | 11 |
| 0.899 | 0.072 | 0 | 0 | 13 | 11 |
| 0.936 | 0.073 | 0 | 0 | 14 | 11 |
| 0.993 | 0.084 | 0 | 0 | 14 | 12 |
| 0.979 | 0.093 | 0 | 0 | 13 | 11 |
| 0.938 | 0.095 | 0 | 0 | 12 | 10 |
| 1.039 | 0.095 | 0 | 0 | 13 | 9  |
| 1.093 | 0.096 | 0 | 0 | 13 | 10 |
| 1.14  | 0.097 | 0 | 0 | 14 | 12 |
| 1.201 | 0.097 | 0 | 0 | 14 | 12 |
| 1.254 | 0.099 | 0 | 0 | 15 | 14 |
| 1.32  | 0.1   | 0 | 0 | 15 | 15 |
| 1.382 | 0.102 | 0 | 0 | 15 | 14 |
| 1.413 | 0.103 | 0 | 0 | 15 | 14 |
| 1.483 | 0.106 | 0 | 0 | 15 | 15 |
| 1.516 | 0.109 | 0 | 0 | 15 | 15 |
| 1.603 | 0.111 | 0 | 0 | 15 | 15 |
| 1.641 | 0.111 | 0 | 0 | 15 | 15 |
| 1.672 | 0.112 | 0 | 1 | 15 | 15 |

| 1.721 | 0.112 | 0 | 1  | 15 | 15 |
|-------|-------|---|----|----|----|
| 1.759 | 0.112 | 1 | 2  | 15 | 15 |
| 1.855 | 0.112 | 1 | 2  | 15 | 15 |
| 1.892 | 0.113 | 1 | 3  | 15 | 16 |
| 1.937 | 0.115 | 1 | 3  | 15 | 16 |
| 2.011 | 0.121 | 1 | 4  | 15 | 15 |
| 2.04  | 0.131 | 1 | 5  | 15 | 16 |
| 2.126 | 0.135 | 1 | 5  | 16 | 16 |
| 2.125 | 0.143 | 1 | 5  | 16 | 16 |
| 2.132 | 0.158 | 1 | 5  | 16 | 16 |
| 2.197 | 0.167 | 1 | 7  | 16 | 16 |
| 2.245 | 0.178 | 1 | 8  | 16 | 16 |
| 2.322 | 0.187 | 1 | 9  | 16 | 16 |
| 2.402 | 0.192 | 1 | 10 | 17 | 16 |
| 2.491 | 0.192 | 2 | 10 | 17 | 16 |
| 2.558 | 0.192 | 2 | 12 | 17 | 17 |
| 2.63  | 0.193 | 2 | 13 | 18 | 17 |
| 2.7   | 0.193 | 2 | 13 | 18 | 17 |
| 2.762 | 0.193 | 2 | 14 | 18 | 17 |
| 2.821 | 0.194 | 2 | 14 | 18 | 17 |
| 2.896 | 0.195 | 2 | 15 | 18 | 17 |
| 2.945 | 0.197 | 2 | 15 | 18 | 17 |
| 3.033 | 0.199 | 2 | 15 | 18 | 18 |
| 3.09  | 0.203 | 2 | 15 | 18 | 18 |
| 3.142 | 0.205 | 2 | 15 | 18 | 18 |
| 3.193 | 0.208 | 2 | 15 | 18 | 18 |
| 3.239 | 0.209 | 2 | 15 | 19 | 18 |
| 3.296 | 0.209 | 2 | 15 | 19 | 18 |
| 3.356 | 0.209 | 2 | 15 | 19 | 18 |
| 3.45  | 0.21  | 2 | 15 | 19 | 18 |
| 3.516 | 0.21  | 2 | 15 | 19 | 18 |
| 3.519 | 0.214 | 2 | 15 | 19 | 18 |
| 3.689 | 0.212 | 2 | 15 | 19 | 18 |
| 3.801 | 0.21  | 2 | 15 | 19 | 18 |
| 3.824 | 0.21  | 2 | 16 | 19 | 18 |
| 3.904 | 0.21  | 2 | 16 | 19 | 18 |
| 4.004 | 0.213 | 2 | 16 | 20 | 18 |
| 4.079 | 0.218 | 2 | 16 | 22 | 18 |
| 4.156 | 0.226 | 2 | 16 | 24 | 19 |
| 4.246 | 0.23  | 2 | 16 | 26 | 19 |
| 4.346 | 0.243 | 2 | 17 | 28 | 19 |
| 4.412 | 0.253 | 2 | 17 | 30 | 19 |
| 4.499 | 0.261 | 2 | 17 | 32 | 19 |
| 4.55  | 0.273 | 2 | 17 | 33 | 21 |
|       |       |   |    |    |    |

| 4.625 | 0.28  | 2  | 17 | 34 | 22 |
|-------|-------|----|----|----|----|
| 4.722 | 0.288 | 2  | 18 | 34 | 24 |
| 4.799 | 0.289 | 2  | 18 | 34 | 26 |
| 4.869 | 0.29  | 2  | 18 | 34 | 27 |
| 4.977 | 0.29  | 2  | 18 | 34 | 28 |
| 5.095 | 0.291 | 3  | 18 | 34 | 27 |
| 5.189 | 0.292 | 2  | 18 | 34 | 29 |
| 5.269 | 0.293 | 3  | 18 | 34 | 30 |
| 5.344 | 0.295 | 3  | 18 | 35 | 31 |
| 5.423 | 0.299 | 3  | 18 | 35 | 32 |
| 5.558 | 0.303 | 3  | 18 | 35 | 33 |
| 5.645 | 0.306 | 3  | 18 | 35 | 33 |
| 5.756 | 0.307 | 5  | 18 | 36 | 34 |
| 5.863 | 0.307 | 5  | 18 | 36 | 34 |
| 5.941 | 0.308 | 5  | 19 | 36 | 34 |
| 6.05  | 0.314 | 6  | 19 | 37 | 34 |
| 6.14  | 0.328 | 7  | 19 | 37 | 34 |
| 6.274 | 0.34  | 7  | 19 | 37 | 34 |
| 6.274 | 0.356 | 8  | 19 | 37 | 34 |
| 6.395 | 0.382 | 10 | 19 | 37 | 34 |
| 6.53  | 0.387 | 10 | 19 | 37 | 35 |
| 6.658 | 0.388 | 11 | 20 | 37 | 35 |
| 6.748 | 0.388 | 11 | 22 | 37 | 35 |
| 6.862 | 0.39  | 12 | 25 | 37 | 35 |
| 6.957 | 0.393 | 13 | 28 | 37 | 36 |
| 7.045 | 0.398 | 15 | 31 | 37 | 36 |
| 7.174 | 0.403 | 15 | 33 | 37 | 36 |
| 7.262 | 0.405 | 16 | 34 | 37 | 36 |
| 7.338 | 0.405 | 17 | 34 | 37 | 36 |
| 7.447 | 0.41  | 17 | 34 | 39 | 37 |
| 7.583 | 0.426 | 18 | 34 | 41 | 37 |
| 7.687 | 0.442 | 18 | 34 | 44 | 37 |
| 7.8   | 0.457 | 18 | 34 | 46 | 37 |
| 7.93  | 0.476 | 18 | 34 | 49 | 37 |
| 8.053 | 0.485 | 18 | 34 | 52 | 37 |
| 8.101 | 0.486 | 18 | 34 | 52 | 37 |
| 8.225 | 0.487 | 18 | 35 | 52 | 37 |
| 8.379 | 0.489 | 18 | 35 | 52 | 37 |
| 8.495 | 0.495 | 18 | 35 | 52 | 37 |
| 8.637 | 0.501 | 18 | 36 | 52 | 37 |
| 8.743 | 0.502 | 18 | 36 | 53 | 37 |
| 8.875 | 0.503 | 18 | 36 | 53 | 37 |
| 8.98  | 0.509 | 18 | 37 | 54 | 39 |
| 9.099 | 0.528 | 18 | 37 | 55 | 41 |

| 9.219  | 0.542 | 19 | 37  | 55  | 44  |
|--------|-------|----|-----|-----|-----|
| 9.321  | 0.561 | 19 | 37  | 55  | 45  |
| 9.457  | 0.578 | 19 | 37  | 55  | 47  |
| 9.581  | 0.583 | 19 | 37  | 55  | 48  |
| 9.698  | 0.583 | 20 | 37  | 56  | 50  |
| 9.833  | 0.584 | 20 | 37  | 56  | 52  |
| 9.952  | 0.587 | 20 | 37  | 56  | 52  |
| 10.11  | 0.592 | 20 | 37  | 56  | 53  |
| 10.277 | 0.598 | 20 | 39  | 56  | 53  |
| 10.375 | 0.6   | 20 | 42  | 57  | 53  |
| 10.522 | 0.6   | 20 | 45  | 59  | 54  |
| 10.629 | 0.607 | 20 | 47  | 62  | 54  |
| 10.771 | 0.625 | 21 | 51  | 67  | 54  |
| 10.933 | 0.639 | 21 | 52  | 69  | 55  |
| 11.122 | 0.653 | 21 | 52  | 71  | 55  |
| 11.268 | 0.674 | 21 | 52  | 71  | 55  |
| 11.418 | 0.68  | 21 | 52  | 71  | 55  |
| 11.584 | 0.681 | 21 | 53  | 71  | 56  |
| 11.736 | 0.683 | 21 | 53  | 72  | 56  |
| 11.886 | 0.686 | 21 | 54  | 73  | 56  |
| 12.032 | 0.693 | 21 | 55  | 74  | 59  |
| 12.173 | 0.697 | 21 | 55  | 74  | 62  |
| 12.331 | 0.698 | 21 | 55  | 74  | 66  |
| 12.482 | 0.701 | 21 | 56  | 74  | 69  |
| 12.667 | 0.72  | 21 | 56  | 74  | 71  |
| 12.828 | 0.735 | 21 | 58  | 75  | 71  |
| 12.983 | 0.754 | 21 | 67  | 82  | 72  |
| 13.187 | 0.774 | 19 | 72  | 91  | 74  |
| 13.383 | 0.778 | 14 | 74  | 94  | 82  |
| 13.543 | 0.779 | 8  | 84  | 107 | 90  |
| 13.725 | 0.782 | 3  | 90  | 109 | 91  |
| 13.896 | 0.787 | 2  | 91  | 111 | 92  |
| 14.111 | 0.794 | 2  | 92  | 111 | 93  |
| 14.271 | 0.795 | 2  | 93  | 116 | 99  |
| 14.5   | 0.798 | 2  | 99  | 126 | 107 |
| 14.678 | 0.818 | 2  | 107 | 127 | 108 |
| 14.87  | 0.839 | 2  | 108 | 129 | 110 |
| 15.062 | 0.866 | 1  | 110 | 129 | 111 |
| 15.247 | 0.876 | 1  | 111 | 130 | 111 |
| 15.408 | 0.878 | 0  | 111 | 132 | 111 |
| 15.61  | 0.882 | 0  | 113 | 142 | 118 |
| 15.831 | 0.891 | 0  | 121 | 145 | 124 |
| 16.028 | 0.893 | -1 | 126 | 147 | 127 |
| 16.278 | 0.895 | -1 | 127 | 148 | 129 |

| 16.475 | 0.916 | -1  | 129 | 148 | 129 |
|--------|-------|-----|-----|-----|-----|
| 16.653 | 0.94  | -1  | 129 | 149 | 130 |
| 16.845 | 0.967 | -1  | 130 | 159 | 135 |
| 17.039 | 0.974 | -1  | 133 | 163 | 143 |
| 17.244 | 0.976 | -1  | 143 | 165 | 145 |
| 17.48  | 0.985 | -1  | 146 | 166 | 147 |
| 17.716 | 0.991 | -1  | 147 | 167 | 148 |
| 17.96  | 0.995 | -4  | 148 | 171 | 148 |
| 18.171 | 1.017 | -7  | 148 | 182 | 154 |
| 18.4   | 1.036 | -9  | 157 | 183 | 162 |
| 18.633 | 1.064 | -11 | 163 | 185 | 164 |
| 18.868 | 1.071 | -12 | 164 | 185 | 166 |
| 19.116 | 1.074 | -14 | 166 | 190 | 167 |
| 19.381 | 1.084 | -15 | 167 | 200 | 169 |
| 19.618 | 1.088 | -16 | 171 | 202 | 178 |
| 19.856 | 1.1   | -16 | 181 | 203 | 182 |
| 20.104 | 1.125 | -16 | 183 | 204 | 184 |
| 20.384 | 1.146 | -16 | 185 | 212 | 185 |
| 20.625 | 1.168 | -16 | 185 | 219 | 185 |
| 20.902 | 1.171 | -16 | 191 | 221 | 191 |
| 21.178 | 1.179 | -16 | 200 | 222 | 200 |
| 21.475 | 1.186 | -16 | 202 | 228 | 203 |
| 21.771 | 1.196 | -16 | 203 | 238 | 204 |
| 22.03  | 1.222 | -16 | 204 | 240 | 211 |
| 22.297 | 1.251 | -16 | 215 | 241 | 219 |
| 22.6   | 1.267 | -16 | 220 | 250 | 221 |
| 22.865 | 1.27  | -17 | 222 | 257 | 222 |
| 23.184 | 1.281 | -17 | 225 | 259 | 231 |
| 23.474 | 1.284 | -17 | 237 | 261 | 238 |
| 23.747 | 1.302 | -18 | 239 | 274 | 240 |
| 24.03  | 1.332 | -18 | 241 | 276 | 248 |
| 24.307 | 1.361 | -18 | 253 | 278 | 257 |
| 24.619 | 1.365 | -19 | 257 | 281 | 259 |
| 24.89  | 1.373 | -19 | 259 | 292 | 261 |
| 25.194 | 1.382 | -19 | 268 | 295 | 273 |
| 25.462 | 1.395 | -19 | 275 | 296 | 277 |
| 25.707 | 1.417 | -19 | 277 | 302 | 280 |
| 26.053 | 1.447 | -19 | 278 | 312 | 291 |
| 26.356 | 1.462 | -19 | 286 | 314 | 295 |
| 26.655 | 1.466 | -19 | 294 | 315 | 296 |
| 26.959 | 1.477 | -19 | 296 | 324 | 306 |
| 27.273 | 1.484 | -19 | 297 | 331 | 313 |
| 27.6   | 1.513 | -19 | 309 | 333 | 315 |
| 27.931 | 1.544 | -21 | 313 | 336 | 323 |

| 28.246 | 1.561 | -22 | 315 | 348 | 331    |
|--------|-------|-----|-----|-----|--------|
| 28.58  | 1.572 | -25 | 320 | 351 | 333    |
| 28.946 | 1.577 | -27 | 330 | 352 | 333    |
| 29.227 | 1.598 | -28 | 332 | 365 | -614   |
| 29.597 | 1.653 | -31 | 334 | 370 | -10561 |
| 29.916 | 1.66  | -32 | 346 | 373 | -18426 |
| 30.225 | 1.672 | -33 | 350 | 386 | -18615 |
| 30.549 | 1.679 | -34 | 352 | 388 | -18615 |
| 30.905 | 1.708 | -35 | 360 | 393 | -18615 |
| 31.256 | 1.74  | -34 | 368 | 404 | -18615 |
| 31.581 | 1.755 | -35 | 370 | 407 | -18615 |
| 31.938 | 1.762 | -35 | 380 | 415 | -18615 |
| 32.267 | 1.774 | -35 | 387 | 424 | -18615 |
| 32.574 | 1.798 | -35 | 389 | 426 | -18615 |
| 32.907 | 1.829 | -35 | 399 | 434 | -18615 |
| 33.267 | 1.852 | -35 | 405 | 443 | -18615 |
| 33.601 | 1.859 | -35 | 407 | 444 | -18615 |
| 33.919 | 1.87  | -35 | 416 | 456 | -18615 |
| 34.218 | 1.882 | -35 | 423 | 461 | -18615 |
| 34.558 | 1.913 | -35 | 425 | 463 | -18615 |
| 34.922 | 1.958 | -35 | 427 | 476 | -18615 |
| 35.219 | 1.967 | -35 | 440 | 480 | -18615 |
| 35.482 | 1.98  | -35 | 443 | 481 | -18615 |
| 35.774 | 2.002 | -35 | 444 | 493 | -18615 |
| 36.004 | 2.02  | -35 | 450 | 497 | -18615 |
| 36.302 | 2.045 | -35 | 460 | 500 | -18615 |
| 36.619 | 2.054 | -35 | 462 | 502 | -18615 |
| 36.897 | 2.063 | -35 | 463 | 515 | -18615 |
| 37.15  | 2.067 | -35 | 469 | 518 | -18615 |
| 37.474 | 2.091 | -35 | 478 | 519 | -18615 |
| 37.825 | 2.125 | -35 | 480 | 531 | -18615 |
| 38.164 | 2.146 | -35 | 481 | 536 | -18615 |
| 38.427 | 2.148 | -35 | 491 | 537 | -18615 |
| 38.73  | 2.164 | -35 | 497 | 548 | -18615 |
| 39.054 | 2.202 | -35 | 499 | 554 | -18615 |
| 39.329 | 2.239 | -35 | 500 | 555 | -18615 |
| 39.645 | 2.245 | -35 | 505 | 564 | -18615 |
| 39.902 | 2.253 | -35 | 515 | 571 | -18615 |
| 40.149 | 2.26  | -35 | 517 | 573 | -18615 |
| 40.411 | 2.288 | -35 | 518 | 574 | -18615 |
| 40.683 | 2.309 | -36 | 520 | 584 | -18615 |
| 40.951 | 2.336 | -36 | 531 | 591 | -18615 |
| 41.208 | 2.341 | -36 | 534 | 592 | -18615 |
| 41.514 | 2.341 | -36 | 536 | 602 | -18615 |

| 41.812 | 2.346 | -36 | 537 | 608 | -18615 |
|--------|-------|-----|-----|-----|--------|
| 42.077 | 2.355 | -36 | 542 | 611 | -18615 |
| 42.43  | 2.374 | -36 | 552 | 615 | -18615 |
| 42.775 | 2.426 | -36 | 554 | 626 | -18615 |
| 43.046 | 2.441 | -36 | 555 | 629 | -18615 |
| 43.332 | 2.448 | -36 | 558 | 631 | -18615 |
| 43.663 | 2.457 | -36 | 569 | 644 | -18615 |
| 43.961 | 2.485 | -36 | 572 | 647 | -18615 |
| 44.259 | 2.514 | -36 | 574 | 648 | -18615 |
| 44.576 | 2.536 | -36 | 574 | 659 | -18615 |
| 44.866 | 2.54  | -36 | 582 | 665 | -18615 |
| 45.143 | 2.549 | -36 | 590 | 666 | -18615 |
| 45.429 | 2.554 | -36 | 592 | 677 | -18615 |
| 45.712 | 2.572 | -36 | 592 | 683 | -18615 |
| 46.003 | 2.59  | -36 | 598 | 685 | -18615 |
| 46.228 | 2.605 | -36 | 607 | 691 | -18615 |
| 46.556 | 2.631 | -36 | 609 | 702 | -18615 |
| 46.814 | 2.638 | -36 | 610 | 703 | -18615 |
| 47.074 | 2.647 | -36 | 611 | 713 | -18615 |
| 47.131 | 2.651 | -37 | 611 | 719 | -18615 |
| 47.047 | 2.651 | -37 | 611 | 719 | -18615 |
| 47.223 | 2.651 | -37 | 614 | 721 | -18615 |
| 47.459 | 2.668 | -37 | 622 | 722 | -18615 |
| 47.729 | 2.687 | -37 | 626 | 723 | -18615 |
| 47.971 | 2.705 | -36 | 628 | 735 | -18615 |
| 48.242 | 2.728 | -37 | 629 | 739 | -18615 |
| 48.518 | 2.747 | -37 | 630 | 740 | -18615 |
| 48.786 | 2.758 | -37 | 638 | 749 | -18615 |
| 49.103 | 2.783 | -37 | 645 | 757 | -18615 |
| 49.434 | 2.809 | -37 | 647 | 759 | -18615 |
| 49.729 | 2.829 | -37 | 648 | 765 | -18615 |
| 50.019 | 2.844 | -37 | 648 | 775 | -18615 |
| 50.365 | 2.846 | -37 | 657 | 777 | -18615 |
| 50.628 | 2.846 | -37 | 664 | 781 | -18615 |
| 50.912 | 2.859 | -37 | 665 | 793 | -18615 |
| 51.219 | 2.889 | -37 | 666 | 796 | -18615 |
| 51.528 | 2.922 | -37 | 669 | 798 | -18615 |
| 51.805 | 2.929 | -37 | 680 | 811 | -18615 |
| 52.156 | 2.937 | -37 | 683 | 814 | -18615 |
| 52.495 | 2.962 | -37 | 685 | 820 | -18615 |
| 52.831 | 3.018 | -37 | 686 | 831 | -18615 |
| 53.222 | 3.032 | -37 | 698 | 834 | -18615 |
| 53.573 | 3.043 | -37 | 701 | 848 | -18615 |
| 53.949 | 3.071 | -37 | 703 | 852 | -18615 |
| 5/1 372 | 3 1   | -37 | 708 | 866  | -18615               |
|---------|-------|-----|-----|------|----------------------|
| 54.755  | 3,123 | -37 | 719 | 870  | -18615               |
| 55 155  | 3 135 | -37 | 721 | 885  | -18615               |
| 55.544  | 3,146 | -37 | 722 | 889  | -18615               |
| 55.887  | 3,177 | -38 | 728 | 902  | -18615               |
| 56.321  | 3.199 | -38 | 738 | 907  | -18615               |
| 56.714  | 3.219 | -38 | 740 | 919  | -18615               |
| 57.117  | 3.23  | -38 | 744 | 925  | -18615               |
| 57.5    | 3.248 | -38 | 756 | 937  | -18615               |
| 57.951  | 3.295 | -38 | 758 | 944  | -18615               |
| 58.371  | 3.319 | -38 | 760 | 951  | -18615               |
| 58.802  | 3.331 | -38 | 772 | 962  | -18615               |
| 59.229  | 3.346 | -38 | 776 | 969  | -18615               |
| 59.654  | 3.378 | -38 | 777 | 980  | -18615               |
| 60.086  | 3.41  | -38 | 784 | 986  | -18615               |
| 60.509  | 3.415 | -38 | 793 | 998  | -18615               |
| 60.963  | 3.423 | -38 | 795 | 1002 | -18615               |
| 61.408  | 3.435 | -38 | 797 | 1016 | -18615               |
| 61.862  | 3.465 | -38 | 809 | 1019 | -18615               |
| 62.35   | 3.498 | -38 | 814 | 1034 | -18615               |
| 62.826  | 3.517 | -38 | 817 | 1039 | -18615               |
| 63.296  | 3.541 | -38 | 829 | 1053 | -18615               |
| 63.785  | 3.586 | -38 | 832 | 1057 | -18615               |
| 64.267  | 3.616 | -38 | 833 | 1072 | -18615               |
| 64.714  | 3.628 | -38 | 845 | 1076 | -18615               |
| 65.208  | 3.653 | -39 | 850 | 1090 | -18615               |
| 65.648  | 3.684 | -41 | 851 | 1096 | -18615               |
| 66.129  | 3.708 | -41 | 859 | 1109 | -18615               |
| 66.58   | 3.718 | -41 | 867 | 1115 | -18615               |
| 67.065  | 3.726 | -41 | 869 | 1127 | -18615               |
| 67.523  | 3.741 | -42 | 870 | 1132 | -18615               |
| 67.981  | 3.771 | -44 | 879 | 1146 | -18615               |
| 68.435  | 3.803 | -45 | 887 | 1151 | -18615               |
| 68.905  | 3.816 | -45 | 889 | 1164 | -18615               |
| 69.373  | 3.828 | -44 | 897 | 1167 | -18615               |
| 69.827  | 3.882 | -45 | 904 | 1181 | -18615               |
| 70.264  | 3.932 | -45 | 907 | 1186 | -18615               |
| 70.699  | 3.965 | -45 | 909 | 1199 | -1 <mark>8615</mark> |
| 71.128  | 4.001 | -45 | 920 | 1203 | -18615               |
| 71.525  | 4.01  | -45 | 923 | 1214 | -18615               |
| 71.879  | 4.023 | -47 | 925 | 1220 | -18615               |
| 72.184  | 4.049 | -49 | 926 | 1222 | -18615               |
| 72.473  | 4.063 | -49 | 928 | 1234 | -18615               |
| 72.766  | 4.095 | -50 | 935 | 1238 | -18615               |

| 73.055 | 4.099 | -50 | 941  | 1240 | -18615 |
|--------|-------|-----|------|------|--------|
| 73.371 | 4.104 | -51 | 942  | 1247 | -18615 |
| 73.555 | 4.116 | -51 | 943  | 1256 | -18615 |
| 68.993 | 4.016 | -54 | 895  | 1200 | -18615 |
| 67.412 | 3.979 | -53 | 870  | 1183 | -18615 |
| 68.494 | 4.007 | -53 | 883  | 1193 | -18615 |
| 69.445 | 4.025 | -53 | 890  | 1202 | -18615 |
| 70.365 | 4.075 | -53 | 904  | 1213 | -18615 |
| 71.228 | 4.101 | -51 | 908  | 1221 | -18615 |
| 71.958 | 4.115 | -49 | 921  | 1234 | -18615 |
| 72.243 | 4.127 | -49 | 924  | 1238 | -18615 |
| 72.595 | 4.148 | -48 | 925  | 1240 | -18615 |
| 73.162 | 4.175 | -49 | 934  | 1248 | -18615 |
| 73.889 | 4.206 | -49 | 943  | 1259 | -18615 |
| 74.591 | 4.231 | -50 | 949  | 1274 | -18615 |
| 75.263 | 4.266 | -51 | 961  | 1282 | -18615 |
| 75.951 | 4.298 | -52 | 965  | 1295 | -18615 |
| 76.626 | 4.319 | -53 | 978  | 1308 | -18615 |
| 77.245 | 4.362 | -53 | 981  | 1315 | -18615 |
| 77.864 | 4.395 | -53 | 988  | 1330 | -18615 |
| 78.456 | 4.417 | -53 | 997  | 1339 | -18615 |
| 79.056 | 4.453 | -53 | 999  | 1350 | -18615 |
| 79.668 | 4.481 | -53 | 1002 | 1360 | -18615 |
| 80.174 | 4.497 | -53 | 1014 | 1369 | -18615 |
| 80.72  | 4.537 | -53 | 1017 | 1380 | -18615 |
| 81.255 | 4.591 | -53 | 1018 | 1388 | -18615 |
| 81.819 | 4.619 | -53 | 1020 | 1399 | -18615 |
| 82.33  | 4.656 | -53 | 1030 | 1407 | -18615 |
| 82.858 | 4.691 | -53 | 1035 | 1420 | -18615 |
| 83.295 | 4.719 | -53 | 1036 | 1425 | -18615 |
| 83.766 | 4.765 | -53 | 1037 | 1434 | -18615 |
| 84.253 | 4.786 | -53 | 1040 | 1442 | -18615 |
| 84.743 | 4.823 | -53 | 1048 | 1448 | -18615 |
| 85.22  | 4.882 | -53 | 1052 | 1460 | -18615 |
| 85.744 | 4.911 | -53 | 1053 | 1464 | -18615 |
| 86.271 | 4.957 | -53 | 1055 | 1479 | -18615 |
| 86.76  | 4.988 | -53 | 1055 | 1485 | -18615 |
| 87.266 | 5.024 | -53 | 1060 | 1498 | -18615 |
| 87.745 | 5.069 | -53 | 1070 | 1505 | -18615 |
| 88.237 | 5.094 | -53 | 1071 | 1516 | -18615 |
| 88.748 | 5.134 | -53 | 1072 | 1522 | -18615 |
| 89.267 | 5.159 | -53 | 1073 | 1534 | -18615 |
| 89.788 | 5.186 | -53 | 1074 | 1538 | -18615 |
| 90.296 | 5.229 | -53 | 1079 | 1553 | -18615 |

| 90.82   | 5.273 | -53 | 1088 | 1560 | -18615 |
|---------|-------|-----|------|------|--------|
| 91.318  | 5.299 | -53 | 1090 | 1572 | -18615 |
| 91.801  | 5.344 | -53 | 1090 | 1579 | -18615 |
| 92.316  | 5.385 | -53 | 1089 | 1590 | -18615 |
| 92.737  | 5.454 | -53 | 1089 | 1596 | -18615 |
| 93.152  | 5.502 | -53 | 1089 | 1608 | -18615 |
| 93.45   | 5.559 | -53 | 1084 | 1611 | -18615 |
| 93.813  | 5.602 | -53 | 1084 | 1620 | -18615 |
| 94.227  | 5.658 | -53 | 1088 | 1628 | -18615 |
| 94.667  | 5.698 | -53 | 1089 | 1634 | -18615 |
| 95.142  | 5.749 | -53 | 1091 | 1646 | -18615 |
| 95.647  | 5.784 | -53 | 1092 | 1650 | -18615 |
| 96.133  | 5.831 | -53 | 1092 | 1663 | -18615 |
| 96.598  | 5.87  | -53 | 1097 | 1666 | -18615 |
| 97.06   | 5.919 | -53 | 1105 | 1669 | -18615 |
| 97.512  | 5.968 | -53 | 1108 | 1682 | -18615 |
| 98.018  | 6.023 | -53 | 1110 | 1684 | -18615 |
| 98.501  | 6.064 | -53 | 1111 | 1668 | -18615 |
| 99.045  | 6.103 | -53 | 1118 | 1645 | -3972  |
| 99.598  | 6.153 | -54 | 1126 | 1645 | -4209  |
| 100.157 | 6.191 | -54 | 1128 | 1647 | -6831  |
| 100.622 | 6.235 | -54 | 1129 | 1655 | -9091  |
| 101.11  | 6.264 | -54 | 1130 | 1664 | -11143 |
| 101.627 | 6.294 | -54 | 1137 | 1666 | -13614 |
| 102.159 | 6.336 | -54 | 1145 | 1678 | -16941 |
| 102.676 | 6.372 | -54 | 1146 | 1684 | -18529 |
| 103.186 | 6.429 | -54 | 1147 | 1686 | -18615 |
| 103.723 | 6.477 | -54 | 1149 | 1699 | -18615 |
| 104.201 | 6.519 | -54 | 1158 | 1703 | -18615 |
| 104.738 | 6.554 | -54 | 1163 | 1711 | -18615 |
| 105.253 | 6.594 | -54 | 1165 | 1720 | -18615 |
| 105.775 | 6.639 | -54 | 1166 | 1722 | -18615 |
| 106.263 | 6.672 | -54 | 1166 | 1733 | -18615 |
| 106.796 | 6.718 | -54 | 1171 | 1738 | -18615 |
| 107.266 | 6.753 | -54 | 1180 | 1740 | -18615 |
| 107.773 | 6.795 | -54 | 1183 | 1752 | -17446 |
| 108.244 | 6.839 | -54 | 1184 | 1757 | -18615 |
| 108.788 | 6.877 | -54 | 1185 | 1759 | -18615 |
| 109.347 | 6.926 | -54 | 1193 | 1768 | -18615 |
| 109.877 | 6.949 | -54 | 1200 | 1776 | -18615 |
| 110.375 | 6.992 | -54 | 1201 | 1777 | -18615 |
| 110.861 | 7.05  | -54 | 1203 | 1788 | -18615 |
| 111.377 | 7.095 | -54 | 1203 | 1794 | -18615 |
| 111.87  | 7.139 | -55 | 1207 | 1796 | -18615 |

| 112.348 | 7.189 | -55 | 1217 | 1798 | -18615 |
|---------|-------|-----|------|------|--------|
| 112.805 | 7.23  | -55 | 1219 | 1810 | -18615 |
| 113.235 | 7.253 | -55 | 1220 | 1812 | -18615 |
| 113.703 | 7.279 | -54 | 1221 | 1744 | -18615 |
| 114.177 | 7.325 | -54 | 1222 | 1238 | -18615 |
| 114.66  | 7.365 | -55 | 1223 | 1020 | -18615 |
| 115.123 | 7.413 | -55 | 1229 | 1007 | -18615 |
| 115.582 | 7.444 | -55 | 1236 | 998  | -18615 |
| 116.037 | 7.497 | -55 | 1237 | 996  | -18615 |
| 116.491 | 7.542 | -55 | 1239 | 985  | -18615 |
| 116.953 | 7.594 | -55 | 1240 | 981  | -18615 |
| 117.416 | 7.629 | -55 | 1240 | 981  | -18615 |
| 117.869 | 7.671 | -55 | 1240 | 958  | -18615 |
| 118.316 | 7.717 | -55 | 1241 | 926  | -18615 |
| 118.735 | 7.759 | -55 | 1244 | 925  | -18615 |
| 119.198 | 7.81  | -55 | 1249 | 925  | -18615 |
| 119.666 | 7.848 | -55 | 1254 | 924  | -18615 |
| 120.088 | 7.889 | -56 | 1256 | 923  | -18615 |
| 120.543 | 7.928 | -56 | 1257 | 923  | -18615 |
| 120.981 | 7.964 | -56 | 1257 | 923  | -18615 |
| 121.402 | 8.008 | -56 | 1258 | 923  | -18615 |
| 121.831 | 8.049 | -56 | 1259 | 922  | -18615 |
| 122.292 | 8.095 | -56 | 1259 | 922  | -18615 |
| 122.688 | 8.135 | -56 | 1259 | 922  | -18615 |
| 123.117 | 8.186 | -56 | 1259 | 919  | -18615 |
| 123.532 | 8.225 | -56 | 1259 | 912  | -18615 |
| 123.91  | 8.269 | -56 | 1259 | 908  | -18615 |
| 124.282 | 8.316 | -56 | 1261 | 907  | -18615 |
| 124.708 | 8.363 | -56 | 1266 | 907  | -18615 |
| 125.153 | 8.403 | -56 | 1271 | 907  | -18615 |
| 125.508 | 8.437 | -56 | 1273 | 907  | -18615 |
| 125.923 | 8.481 | -56 | 1274 | 907  | -18615 |
| 126.344 | 8.523 | -56 | 1275 | 907  | -18615 |
| 126.745 | 8.559 | -56 | 1275 | 907  | -18615 |
| 127.138 | 8.613 | -56 | 1276 | 906  | -18615 |
| 127.505 | 8.662 | -56 | 1276 | 906  | -18615 |
| 127.918 | 8.7   | -56 | 1277 | 907  | -18615 |
| 128.293 | 8.75  | -56 | 1277 | 907  | -18615 |
| 128.67  | 8.8   | -56 | 1277 | 923  | -18615 |
| 129.024 | 8.847 | -56 | 1277 | 910  | -18615 |
| 129.383 | 8.894 | -56 | 1277 | 907  | -18615 |
| 129.71  | 8.939 | -56 | 1341 | 907  | -18615 |
| 130.102 | 8.99  | -56 | 1369 | 907  | -18615 |
| 130.376 | 9.037 | -56 | 1365 | 907  | -18615 |

| 130.729 | 9.086  | -57 | 1354 | 907 | -18615 |
|---------|--------|-----|------|-----|--------|
| 131.062 | 9.132  | -57 | 1352 | 907 | -18615 |
| 131.402 | 9.183  | -56 | 1353 | 906 | -18615 |
| 131.711 | 9.23   | -57 | 1360 | 888 | -18615 |
| 132.011 | 9.285  | -56 | 1365 | 885 | -18615 |
| 132.306 | 9.341  | -56 | 1375 | 885 | -18615 |
| 132.652 | 9.387  | -56 | 1402 | 888 | -18615 |
| 132.981 | 9.443  | -56 | 1394 | 889 | -18615 |
| 133.242 | 9.517  | -56 | 1392 | 888 | -18615 |
| 133.563 | 9.584  | -56 | 1388 | 888 | -18615 |
| 133.854 | 9.633  | -56 | 1388 | 887 | -18615 |
| 134.126 | 9.683  | -56 | 1388 | 888 | -18615 |
| 134.389 | 9.732  | -56 | 1392 | 888 | -18615 |
| 134.633 | 9.784  | -56 | 1408 | 889 | -18615 |
| 134.857 | 9.834  | -56 | 1414 | 889 | -18615 |
| 135.043 | 9.885  | -56 | 1420 | 889 | -18615 |
| 135.274 | 9.94   | -57 | 1441 | 890 | -18615 |
| 135.464 | 9.988  | -57 | 1418 | 889 | -18615 |
| 135.598 | 10.034 | -56 | 1389 | 890 | -18615 |
| 135.793 | 10.086 | -56 | 1384 | 897 | -18615 |
| 135.951 | 10.142 | -56 | 1383 | 902 | -18615 |
| 136.067 | 10.191 | -57 | 1378 | 902 | -18615 |
| 136.176 | 10.245 | -57 | 1385 | 916 | -18615 |
| 136.284 | 10.298 | -56 | 1388 | 925 | -18615 |
| 136.4   | 10.347 | -56 | 1388 | 924 | -18615 |
| 136.453 | 10.398 | -57 | 1389 | 924 | -18615 |
| 136.432 | 10.457 | -57 | 1389 | 924 | -18615 |
| 136.333 | 10.503 | -57 | 1389 | 923 | -18615 |
| 136.173 | 10.553 | -57 | 1388 | 923 | -18615 |
| 135.98  | 10.608 | -57 | 1388 | 922 | -18615 |
| 135.686 | 10.663 | -58 | 1387 | 917 | -18615 |
| 135.206 | 10.72  | -59 | 1383 | 907 | -18615 |
| 134.78  | 10.773 | -60 | 1371 | 907 | -18615 |
| 134.3   | 10.838 | -61 | 1368 | 905 | -18615 |
| 133.747 | 10.897 | -62 | 1360 | 901 | -18615 |
| 132.959 | 10.952 | -65 | 1350 | 888 | -18615 |
| 131.472 | 11.014 | -67 | 1329 | 875 | -18615 |
| 127.428 | 11.102 | -67 | 1275 | 825 | -18615 |
| 122.19  | 11.208 | -61 | 1196 | 758 | -18615 |
| 119.626 | 11.296 | -57 | 1158 | 724 | -18615 |
| 118.263 | 11.368 | -56 | 1139 | 708 | -18615 |
| 117.363 | 11.461 | -56 | 1127 | 700 | -18615 |
| 116.794 | 11.594 | -56 | 1118 | 686 | -18615 |
| 116.142 | 11.662 | -56 | 1109 | 683 | -18615 |

| 115.599 | 11.73  | -56 | 1099 | 673 | -18615 |
|---------|--------|-----|------|-----|--------|
| 115.031 | 11.792 | -56 | 1092 | 666 | -18615 |
| 114.234 | 11.849 | -56 | 1082 | 656 | -18615 |
| 113.039 | 11.881 | -56 | 1064 | 642 | -18615 |
| 111.977 | 11.897 | -56 | 1051 | 629 | -18615 |
| 111.251 | 11.927 | -56 | 1037 | 621 | -18615 |
| 110.678 | 11.915 | -56 | 1033 | 611 | -18615 |
| 110.215 | 11.915 | -56 | 1021 | 609 | -18615 |
| 109.823 | 11.915 | -55 | 1018 | 608 | -18615 |
| 109.467 | 11.92  | -55 | 1016 | 601 | -18615 |
| 109.166 | 11.951 | -55 | 1015 | 592 | -18615 |
| 108.865 | 12.012 | -55 | 1007 | 592 | -18615 |
| 108.632 | 12.015 | -55 | 1000 | 592 | -18615 |
| 108.396 | 12.011 | -55 | 1000 | 591 | -18615 |
| 108.182 | 12.011 | -55 | 999  | 590 | -18615 |
| 107.997 | 12.012 | -55 | 998  | 589 | -18615 |
| 107.838 | 12.013 | -55 | 997  | 588 | -18615 |
| 107.671 | 12.013 | -55 | 997  | 581 | -18615 |
| 107.545 | 12.013 | -55 | 994  | 576 | -18615 |
| 107.374 | 12.013 | -55 | 989  | 574 | -18615 |
| 107.243 | 12.013 | -55 | 984  | 574 | -18615 |
| 107.116 | 12.015 | -55 | 981  | 574 | -18615 |
| 107.009 | 12.017 | -55 | 981  | 574 | -18615 |
| 106.895 | 12.016 | -55 | 981  | 574 | -18615 |
| 106.775 | 12.016 | -54 | 981  | 574 | -18615 |

## **APPENDIX D**

## **PICTURE OF THIS STUDY**





Reinforcement Bar Installation

Material Preparation

## CONTINUED



Casting Beam Process



Slump Test



Removing Formwork

Curing Beam With Wet Gunny

## **CONTINUED**



Cube Compression Test



