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Abstract. Lignocellulosic biomass is the most abundant biodegradable material that has been 
used in obtaining various of valuable products. However, the conversion may hinder due to its 
solvent insoluble characteristic which can be treated by nitric acid pretreatment. Therefore, the 
present study aimed to investigate the effect of nitric acid pretreatment on oil palm frond 
bagasse (OPFB) for achieving high xylan recovery. A two-level factorial design was employed 
to determine the best condition for the process. The result revealed that the sequence of 
contribution effect toward the increment of xylan recovery was found to be temperature > solid 
loading > reaction time > acid concentration > agitation. Pretreatment of OPFB with nitric acid 
discovered the temperature of 37 °C with 5% solid loading at 0.01% acid concentration for 24 
hours without agitation were determined as the best condition to recover up to 27.63% of 
xylan. The present results highlight that nitric acid pretreatment has the potential to improve 
xylan recovery by removing lignin to facilitate enzymatic hydrolysis for product recovery. 

1.  Introduction 
The chemicals production via petrochemical process have created many environmental problems 
which urge the researchers to find alternative ways to replace this process. Hence, biochemical 
approach for chemical production has gain attention recently due to its environmentally friendly 
process to substitute the synthetic chemicals production, and this process is named as biorefinery. 
Biorefinery is the technique to convert biomass into valuable bio-based products where at the same 
time can minimize the carbon produced throughout the process [1]. The source of biomass used in 
biorefinery can be classified into several categories; household waste, animals and plants waste and 
agricultural and forestry residues [2]. 

One of the sources that widely studied currently in biorefinery field is lignocellulosic biomass due 
to its compositions that having a potential to produce numerous types of chemicals. This biomass 
comes from plant dry matter that build up by cellulose, hemicellulose and lignin as the major 
components besides other small amount elements such as protein and arabinose [3]. In lignocellulosic 
biomass, cellulose make a major structure with approximately 35–50% from the overall 
lignocellulosic biomass components and exist as a crystal in nature [4,5]. In contrast, hemicellulose 
has an amorphous structure and is a second major component in lignocellulosic biomass with 20–35% 
from the overall components [6]. The structure in hemicellulose mainly derived from xylan where the 
monomer unit of xylan was discovered by can be used as a resource to produce other products 
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including xylitol, glucose, xylooligosaccharides, ethanol and furfural [7–10]. However, lignin, which 
also made up a major component in lignocellulosic biomass, is well known as its complex molecule 
structure that resistant to chemical and enzyme attack. On account on this, it is necessary to break the 
structure that link cellulose, hemicellulose and lignin to make the chemical production process become 
possible [11]. 

Currently in tropical countries, oil palm biomass especially oil palm frond has turn up as the 
valuable materials that can be utilized in bioconversion due to its valuable content and readily 
available. There were approximately 44 million tonnes of OPF was attained during the replanting 
season and only left rotten or burned in the land field [12]. This action lead to the environmental 
degradation from the open burning and dumping of large amount of these agricultural residues. In 
2010, OPF was identified inherent a potential to be used in biorefinery as a source for fermentable 
sugar production and since has been studied to produce many other products including glucose, 
bioethanol, succinic acid, quercetin and poly(3-hydroxybutyrate) [1,11,13–15].  

Several processes were identified has been implemented in converting lignocellulosic biomass into 
value added products and one of it is the process that involve a pretreatment step namely physical, 
chemical or biological. However, combination of physical and chemical pretreatment is often used in 
most of the pretreatment process to improve downstream desired product yield [16–18]. Generally, the 
biomass was first subjected to mechanical pretreatment where in this step, the large size of biomass 
was grinded for the size reduction purpose [19]. After the desired size was obtained, the biomass then 
was subjected into the treatment using chemical to break the chemical structure in the biomass. The 
type of chemical pretreatments that notable in literature are alkali, acid and ionic liquid pretreatment 
[19]. For the xylan isolation process, most of the previous studies used alkali solvent to break the 
chemical structure and hence dissolve xylan into the alkaline liquid that was called as a black liquor 
[20]. However, Kumar et al. [21] has mentioned that the used of dilute acid as a pretreatment stimulant 
can alter the biomass structure besides is more economical compared to other chemical pretreatment 
processes.  

Thus, this study was done to evaluate the factors that understand give effect to dilute nitric acid 
(HNO3) pretreatment of oil palm frond bagasse (OPFB) with the aim to get high xylan content. To 
achieve this, two level fractional factorial analysis and research surface methodology (RSM) was 
implemented with five factors were evaluated; temperature, reaction time, solid loading, acid 
concentration and agitation. 

2.  Materials and methods 

2.1.  Materials 
This study used oil palm frond collected from local plantation in Kuantan, Pahang. To get the OPFB, 
the OPF was pressed using sugarcane pressed machine to remove juice in pressed OPF. The obtained 
bagasse then dried under sun for up to 3 days until the moisture content of OPFB less than 10%. After 
drying process, the OPFB was grinded to get OPFB in fiber form then was subjected to sieving to 
make sure the size of OPFB fiber was less than 2 mm. The sieved OPFB then stored in -20 freezer for 
further used.  

2.2.  Acid pretreatment 
The raw OPFB fiber were soaked in dilute nitric acid at condition as per shown in table 1. The 
concentration of nitric acid added to the substrate was varied in the range 0.01 to 1.0% while the solid 
to liquid loading was assorted between 5 to 20%. The acid pretreatment of OPFB was conducted for 6 
to 24 hours at 37 to 90 °C in water bath with (200 rpm) and without agitation. Once the pretreatment 
process was completed, the substrate then filtered and washed with tap water until neutral. The sample 
was dried in oven at 60 °C for overnight then stored prior further analysis. 
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2.3.  Two-level factorial analysis experimental setup 
For factorial analysis study, Design Expert 7.0 (Stat-Ease Inc., USA) software was implemented to 
conduct the experimental design. As displayed in table 1, five factors were believed will affected the 
pretreatment process; temperature (°C), reaction time (hours), solid loading (w/v %), acid 
concentration (v/v %), and agitation (rpm). The response of screening process using Response Surface 
Methodology (RSM) generated by the software as tabulated in table 2 where the coded values of -1 
represent the low value while +1 is otherwise. 

Table 1. Experimental design for factorial analysis with its response. 

Factors Coded Type of factor Low value 
(-1) 

High value 
(+1) Units 

Temperature A Numerical 37 90 °C 
Reaction time B Numerical 6 24 hours 
Solid loading C Numerical 5 20 % (w/v) 
Acid concentration D Numerical 0.01 1.00 % (v/v) 
Agitation E Categorical No Yes rpm 

2.4.  Determination of glucan, xylan and lignin composition 
The composition of glucan, xylan and lignin in raw material was determined according to the National 
Renewable Energy Laboratory (NREL) method. The sample was first subjected to two step extraction 
process with 8 hours water extraction using water as a solvent in the first step followed by 24 hours 
extraction using ethanol in the second step. The extraction process was done to remove extractives in 
sample to prevent interference in analysis process later [22]. The extracted sample then put through 
acid hydrolysis to extract structural carbohydrates and determine the amount of lignin in biomass 
using 72% sulfuric acid (H2SO4) [23]. In this process, 0.3 g extractive free sample was added with 
3mL 72% H2SO4 and incubated for 1 hour at 30 °C. After that, the sample was added with 84 mL 
distilled water and autoclaved at 121 °C for 1 hour to complete the cycle. 

2.5.  Quantification of structural carbohydrates 
Structural carbohydrates in sample were determined using high performance liquid chromatography 
(HPLC) equipped with refractive index (RI) detector and Rezex RHM-Monosaccharide H+, 300 × 7.8 
mm (Phenomenex) column. This column use required deionized water as mobile phase which flow at 
0.4 mL/min with 5 µL injection volume at 60 °C column temperature. The glucan and xylan were 
quantified based on calibration curve obtained from the standard prepared within the range 0.5 to 10 
g/L. 

3.  Results and discussions 

3.1.  Characterization of OPFB 
Chemical composition of non-treated oil palm frond bagasse (OPFB) obtained in this study was 42.8% 
glucan, 20.9% xylan, 31.9% lignin, 0.8% ash and 3.6% extractives [24]. The results showed 
similarities for glucan and xylan described by Abdul Manaf [25] which recorded 41.7% and 18.5% of 
glucan and xylan respectively. However, lignin found in this study was much higher compared to 
theirs with difference as much as 11.4%. Therefore, it is important to remove lignin component to 
ensure high xylan content can be achieved. High lignin content may hinder the extraction of xylan due 
to formation of lignin-carbohydrate complexed that has formed between lignin and hemicellulose [26]. 

3.2.  Factors affecting dilute nitric acid pretreatment  
Screening the factors affecting dilute nitric acid pretreatment for high xylan recovery was performed 
and analyzed using 25-1 fractional factorial design. High xylan recovery can be obtained by minimizing 
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lignin from OPFB. Meanwhile, glucan was preserved during acid hydrolysis since mild condition was 
subjected.  Table 2 shows the experiment result of 16 runs for glucan, xylan and lignin. High xylan 
recovery was achieved at 37 °C with 5% solid loading and 0.01% acid concentration for 24 hours 
without agitation (Standard order 3). At these conditions, lignin was found to be 15.03% which was 
the lowest amount with glucan was 57.02%. The increment showed mild condition could improve 
xylan content while reducing 52.88% of lignin by converting it into phenolic compounds [27,28].  

Table 2. A 25-1 fractional factorial design at different pretreatment conditions with percentage of 
glucan, xylan and lignin. 

Standard 
Order 

Variables  Responses 
A B C D E  Glucan (%) Xylan (%) Lignin (%) 

1 37 6 5 0.01 Yes  51.39 23.64 17.58 
2 90 6 5 0.01 No  47.06 22.18 26.95 
3 37 24 5 0.01 No  57.02 27.63 15.03 
4 90 24 5 0.01 Yes  49.83 22.78 21.07 
5 37 6 20 0.01 No  53.06 23.80 22.53 
6 90 6 20 0.01 Yes  56.75 25.85 17.29 
7 37 24 20 0.01 Yes  52.73 23.25 23.76 
8 90 24 20 0.01 No  73.33 0.00 26.66 
9 37 6 5 1 No  54.50 25.43 18.95 

10 90 6 5 1 Yes  62.51 17.00 20.40 
11 37 24 5 1 Yes  50.56 22.46 21.53 
12 90 24 5 1 No  60.15 16.56 19.95 
13 37 6 20 1 Yes  49.32 21.08 19.11 
14 90 6 20 1 No  58.41 14.8 23.68 
15 37 24 20 1 No  49.01 21.03 26.41 
16 90 24 20 1 Yes  64.06 0.00 31.33 

A: Temperature (°C); B: Reaction time (hours); C: Solid loading (%); D: Acid concentration (%); E: Agitation 
(rpm). 

3.3.  Statistical modeling and ANOVA 
Analysis of variance (ANOVA) for glucan, xylan and lignin are presented in table 3. The study found 
that the model developed by Design Expert software based on the analysis were significant for all the 
responses with F-value were 30.86, 230.47 and 19.05. In addition, the p-value of all the models were 
less than 0.05 which also indicating that the models were strongly significant. The determination of 
coefficient (R2) found in this study showed 99.5, 99.89 and 98.7% of the data well-fit the model. The 
result indicated high agreement were observed between the predicted and actual values.  

Table 3. Analysis of variance for glucan, xylan and lignin content. 

Response Glucan Xylan Lignin 
Model Significant Significant Significant 
F-value 30.86 230.47 19.05 
p-value 0.0318 0.0004 0.0166 
R-Squared 0.995 0.9989 0.987 
Adj R-Squared 0.9628 0.9946 0.9352 

 
Table 4 presents the regression coefficient of linear regression equation for glucan, xylan and 

lignin. The relationship between the factors and response can be explained by the positive and 
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negative sign of the values. Positive sign indicates that the increase of the factor’s value could increase 
the response. On the other hand, the negative sign implied the decrease of the response value with the 
increase of the value of factor. In order to improve xylan recovery in this study, low level value of the 
factors should be applied. While, high level value of agitation may improve the process. However, 
based on the coefficient value of 0.29 showed by the factors obviously indicated insignificant effects 
was expressed by the factor. Therefore, contribution of low- or high-level value of agitation was not 
important for the process which may be removed in further study.  

Table 4. Regression coefficient of experimental model 
for glucan, xylan and lignin. 

 
Coefficient Estimate 

Factor Glucan Xylan Lignin 
Intercept 55.61 19.22 22.01 
A-Temperature  3.41 -4.32 1.40 
B-Reaction time  1.48 -2.51 1.20 
C-Solid loading  1.48 -2.99 1.83 
D-Acid concentration  0.46 -1.92 0.66 
E-Agitation  -0.96 0.29 -0.51 
AB 1.35 -2.56 N/A 
AC 2.65 -1.74 -0.51 
AD 1.81 -0.88 N/A 
AE N/A 1.22 N/A 
BC 1.22 -2.65 1.99 
BD -1.60 N/A 0.93 
BE -1.83 N/A 1.71 
CD -2.34 N/A 0.63 
CE N/A 1.03 -0.47 
DE 1.51 -2.45 0.93 

 
Model equation for glucan, xylan and lignin through dilute nitric acid pretreatment was generated 

using the regression coefficient value from table 5. The equations for the response of glucan, xylan 
and lignin are presented as in equation (1), (2) and (3), respectively below:  

 (1) 

 (2) 

 (3) 

where A, B, C, D and E are referred as the main effects of temperature, reaction time, solid loading, 
acid concentration and agitation. Meanwhile, AB, AC, AD, AE, BC, BD, BE, CD, CE and DE are the 
interaction effects. 

Figure 1 demonstrates the predicted versus actual yield of glucan, xylan and lignin at various 
pretreatment conditions. The actual values showed a scatter distribution alongside the predicted values 
(straight lines) which indicating high correlation observed between predicted and experimental data. 
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Figure 1. Predicted versus actual yield for (a) glucan (b) xylan and (c) lignin. 

3.4.  Analysis the main effects for xylan recovery 
Analysis of the main effects is important to be evaluated to study the role of each factors in 
contributing xylan recovery. Table 5 presents the percentage contribution of each factors towards the 
pretreatment process. Temperature was found to be the most contributable factors at 29.34%. Solid 
loading stood as the second important factors at 14.05% followed by reaction time and acid 
concentration at 9.85 and 5.81%. Among the factor, agitation was insignificant in contributing to the 
process with value less than 1%.  

Table 5. Percentage contribution of factors affecting xylan content. 

Term % Contribution 
A-Temperature 29.34 
B-Reaction time 9.85 
C-Solid loading 14.05 
D-Acid concentration 5.81 
E-Agitation 0.13 

 
The effects of the factors also can be expressed by half-normal plot as shown in Figure 2. The 

farthest to the right point indicated the higher effect presented by the factor. The figure illustrated 
similarities between table 5 in term of degree of significance which A (temperature) showed as the 
strongest effect on dilute nitric acid pretreatment for xylan recovery since it was far away from the 
point of zero value followed by C (solid loading), B (reaction time), D (acid concentration) and E 
(agitation). The factor falls along a relatively the straight line is considered insignificant to the process 
which showed by E (agitation). Furthermore, the positive and negative effects given by each factor 
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could also be studied by the plot. As previously mention in regression coefficient values on the 
positive and negative sign, the effects illustrated by half-normal plot are shown by its colour, where 
positive and negative effects are stated by orange and blue colour, respectively. Based on the result, 
temperature was significant in influencing xylan recovery at low level value. Theoretically, 
temperature of 37 °C may promote higher xylan recovery but started to decrease as the temperature 
increases to 90 °C. Temperature increment cause the degradation of hemicellulose (xylan) into xylose. 
Moreover, conversion of xylose into furfural may also arise together with degradation of cellulose 
(glucan) when temperature is excessively increase [29].  

 

 
Figure 2. Half-normal plot of effect for xylan content. 

3.5.  Validation experiment 
Table 6 shows the result of validation experiments which were performed in triplicate based on 
condition suggested by Design Expert software to confirm the suitability of model obtained for xylan 
recovery. In this experiment, glucan at in range value with xylan at maximum value and lignin at 
minimum value were appointed. Based on the software setting, temperature of 37 °C, reaction time of 
24 hours, solid loading of 5% and acid concentration at 0.01% without agitation speed were proposed 
as the best conditions for higher xylan recovery at desirability of 0.977. Predicted values for glucan, 
xylan and lignin at these best conditions were 57.19, 28.04 and 15.78% respectively.  

Table 6. Validation of theoretical value suggested by Design Expert. 

Description Response (%) 
 Glucan Xylan Lignin 
Predicted value  57.19 28.04 15.78 
Experimental value 54.53 ± 0.07 25.89 ± 0.73 16.48 ± 0.18 
Error 4.43 7.69 4.43 

 
The result presented that glucan, xylan and lignin content found in this study were 54.53 ± 0.07, 

25.89 ± 0.73 and 16.48 ± 0.18% with percentage errors of 4.43, 7.69 and 4.43% respectively. 
Percentage error is obtained by subtracting predicted value to experimental value, then, the absolute 
value is divided by the predicted value and multiplied by 100. Low percentage error observed in this 
study implied that the model attained were adequate and repeatable to determine the responses in 
future studies thus improve high xylan recovery by removing high lignin content. 
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4.  Conclusion 
Study on several factors influencing nitric acid pretreatment for xylan recovery from oil palm frond 
bagasse (OPFB) was performed via factorial design. The study found that temperature was the 
strongest factor could affect the process in determining xylan content. Significant experimental models 
were obtained for glucan, xylan and lignin with determination of coefficient of 0.9950, 0.9989 and 
0.987, respectively. Validation experiment with small percentage errors proved the suitability of the 
model for repeatable experiment. High xylan content was successfully recovered by lowering the 
operating conditions for 24 hours while rising the conditions resulted in xylan removal entirely from 
the plant material. The study demonstrates that studying the factors affecting dilute nitric acid 
pretreatment may enhance xylan recovery at the best conditions. 
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