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Abstract. Observations of alterations in the structural and chemical properties have been
commonly performed to understand the process by which polymers degrade. The validity of each
observational procedure depends primarily on the test material and type of degradation. An
appropriate method for the characterization of polymers can often be utilized to examine the
properties of degradation. The service life of a polymer depends strongly on the conditions to
which the material is subjected. On the other hand, the stability of the material, including
nanocomposite polymer blends, often dictates its usefulness. Thus, this review was aimed to
evaluate the degradation of nanocomposite polymer blends, with specific focus on the role of the
fillers and the composition of the blends. The factors that could significantly affect the
degradation of the same were the presence of a filler, as well as the morphology and composition
of the blends.
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1. Introduction

Being a relatively new and rapidly-expanding field, membrane innovations offer numerous benefits (e.g.
energy productivity, cost-effectiveness, and environmental friendliness) over the conventional
partitioned procedures. In addition, layer innovations can easily be combined with other partitioning
strategies to improve the efficiency of the overall process as well as cut down the cost of detachment.
Figure 1 shows the schematic graphs of two types polymeric membranes for separating gas which can
considered as cheap and energy-efficient tools. However, its relatively lower thermal resistance restricts
its utilization in certain industries. While some polymeric membranes can be run in extreme conditions,
the need to cool down hot streams for example, will cancel off the energy- and cost-efficiencies of the
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technology, thereby rendering it impractical [1-3]. In view of that, polymer modification efforts have
been made to come up with synthetic polymeric membranes which can withstand high temperatures.

Thermally-stable polymers — especially carbocyclic and heterocyclic ones — have been introduced by
scientists [2]. Yet, these polymers are poorly soluble in common organic solvents and have high phase-
transition temperatures. Despite their low processability, some studies have reported the successful
utilization of thermally-stable polymers to produce membranes with satisfactory separation
characteristics and performances [2, 4, 5]. The future trajectory of the gas separation field entails full
exploitation of the advantages of thermally-stable polymeric membranes for market-worthy
performances. The said polymers can be made up of a single repeat monomer (homopolymers) or two
or more monomers (copolymers), apart from being either amorphous or crystalline [6]. Generally, most
polymers have both amorphous and crystalline regions, the latter of which gives rise to a stronger
polymer since the tendency of slippage between the chains is lower [7-9].
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Figure 1. Schematic diagrams of (a) Hz-selective membranes and (b) CO»-
selective membranes [10].

Below glass-transition temperatures [Tg], polymers form a hard structure, and vice versa. Subsequent
to their discovery, synthetic polymers have been employed in various applications. Tailoring of the
polymers’ properties will produce polymeric devices of different strengths for use in biomedical (e.g.
pharmaceutical, medical, dental, food, and cosmetic) industries [11-13]. The way by which a polymer
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degrades following its implantation in a biological system can determine whether it is biodegradable or
non-biodegradable. Usually, polymers with C-C backbones are highly resistant to degradation while
those with heteroatoms (i.e. esters and anhydrides) are susceptible to degradation. Figure 2 summarizes
the stages involved in the degradation of biodegradable polymers, where the primary mode of
degradation is chain-cleavage via hydrolysis (either through abiotic/ non-enzymatic hydrolysis or
enzyme-promoted hydrolysis). On the other hand, polymers which are very resistant to hydrolysis are
characterized as oxo-degradable systems [14].

2. Overview of polymers degradability and durability

Natural degradation refers to the changes in the properties of a material following exposure to natural
outdoor conditions, namely sunlight (directly or indirectly), heat, oxygen, moisture, and other factors.
The types of polymer degradation are shown in figure 3. Microorganisms, ozone, airborne chemical
pollutants (e.g. sulfur oxides and nitrogen oxides), and salt are some of the external factors that can exert
a significant impact on the process of degradation. Furthermore, these environmental agents will also
act on other components — such as dyes, pigments, processing additives, absorbers, and stabilizers — that
reside within the polymer matrices.
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Figure 2. Steps involved in polymer biodegradation by hydrolysis [14].
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Figure 3. Types of polymer degradation.

Each aforementioned component is subject to environmental effects individually or in combination.
Accordingly, various factors in a typical habitat — sun-based radiation, temperature, moisture, oxidative
conditions, and mechanical toxins — can act intelligently via a debasement procedure. Therefore, the
general impact of degradation can be greatly complex. With reference to the basis above, polymer
degradation is categorized into thermal debasement (heat), thermo-oxidative debasement (heat and
oxygen), thermomechanical debasement (heat and stress), photo degradation (light), photo-oxidative
corruption (light and oxygen), biodegradation (natural operators), mechanical debasement (mechanical
stress), and so on. A polymeric material will typically experience warm, thermo-oxidative, and
photograph oxidative debasements throughout its preparation and utilization. Figure 4 shows the types
of degradation and stabilization pathways of polymer.
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Figure 4. Different pathways of degradation and stabilization [15].
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It is commonly accepted that the degradation is an irreversible process. Chemical degradation of
polymers for instance, significantly affects their performance including the daily-used plastic materials.
Commonly, the change of polymer properties from its initial state, either desirable or not is called
“degradation” [16]. Thus, degradation can be considered as a generic term for all kinds of reaction in a
polymer [17, 18], usually involving a number of physical and/or chemical processes with small
morphological changes. These processes can lead to significant decline of the polymeric material quality
i.e. poor mechanical or electrical properties, before finally losing its functionality [13, 19]. In biological
tissues, polymers undergo degradation by means of hydrolytic or enzymatic lysis of their polymeric
bonds, thereby forming waste metabolites. Evidently, hydrolytic degradation of polymers is preferred
over its enzymatic counterpart since the polymers undergo a more consistent degradation rate at different
sites of the body [13, 17, 20]. As a side note, biodegradable polymers include natural polymers (i.e.
cellulose), modified natural polymers (i.e. cellulose acetate), or chemically-synthesized polymers.
Synthetic biodegradable polymers are largely favored since they can be modified to improve the
consistency of their degradation behaviors and properties [20]. Chemical degradation significantly
affects the performance of the polymers, including plastic materials of daily used. Throughout
degradation, polymer oxidation (mechano-oxidation) produces hydroperoxide, which affects the
thermo-/photo-oxidation rate during the subsequent aging and weathering. Information of the
mechanism of polymer degradation has facilitated the development of efficient stabilizers and
sensitizers to enhance the performance of the product [19, 21], and produce environmental-friendly
(biodegradable) plastics respectively [22]. Biodegradation can be achieved by any one of the ways as
shown in figure 5 [23]. Evidently, polymer degradation has both harmful and beneficial aspects. In terms
of the former, reduction in polymeric performance and manifestation of safety hazards can occur if the
process is left unchecked. Otherwise, with proper management, it can be utilized to create new and
promising materials [13, 24, 25].

Figure 5. Biodegradation pathway to treat plastics [23].
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Artificial weathering gadgets are instruments for acquiring data with respect to the potential
debasement behaviors of polymeric materials. In spite of the fact that these gadgets have certain
inadequacies, they still provide valuable data on the behaviors of the said materials. The most-preferred
feature of research gadgets is that they accelerate the debasement of the test materials. This can be
achieved either by extending the time of exposure to the environmental factors (e.g. persistent exposure
to artificial light, heat, and wet/dry cycles) or increasing the intensity of the variables. Specific stabilizers
can be incorporated into a polymer framework to protect the latter from the ecological variables. Hence,
information of the debasement of the polymer is highly essential for enhancing the strength and security
of the material. By and large, debasements can be evaluated by observing the progressive changes in the
structures and properties of the polymers. One benefit of a touchy procedure is that it enables the time
of initiation of debasement to be identified, thereby reducing the amount of time required for
assessments. Despite the legitimacy of the aforementioned method, the relationships between the
outcomes to the commonsense material execution (e.g. carbonyl compound development versus
embrittlement) need to be determined.

In most cases, the introduction of additives may alter the service lives of polymers. For instance,
sensitizers can be introduced to promote the oxidation of polymers via the production of singlet oxygen
(1 02) molecules which results in energy transfer to the polymer or its self-decomposition [26, 27]. In
addition, stabilizers can be added to the polymers to improve the latter’s durability by minimizing the
rate of degradation or by protecting them from environmental factors [28]. The disadvantages of the
utilization of the single-additive system include compatibility issues, migration of low-molecular weight
stabilizers, immobility of high-molecular weight stabilizers, and inadequately -efficient
organophosphites. Excellent protection against degradation can arise from the synergistic effects of
screeners, quenchers, ultraviolet absorbers, and antioxidants [29]. To overcome the evaporation and
migration problems, higher molecular weight stabilizers — which are usually polymers — can be added.
These stabilizers can be produced via three methods:

e  Stabilizer-polymer grafting;
e  Homo-/ co-polymerization of monomers anchored with stabilizers;
e Incorporation of photo-rearranging polymers as additives.

Sensitizers or stabilizers are commonly employed to enhance the properties of polymeric materials,
especially during the preparation of nanocomposites [9]. Generally, an equilibrium between execution
and operation times is required for all materials, including polymers [30]. Unlike polymers which
originate from renewable resources, petroleum-based ones are cheaper to produce and frequently
perform better in any application. Thus, the idea is to utilize polymers with long lives to enhance the
performance of their short-lived counterparts (such as biological polymers). Ultimately, to achieve this
goal, the study approach should entail the management of the production-service-waste process with
respect to the three pillars of sustainability, namely Planet (environmental pillar), People (social pillar),
and Profit (economic pillar). In particular, the sustainability of bio-based polymers is a theme which has
been put forward because of its significance with regards to the environment, technological development,
and economic growth [31, 32]. In view of the decent potencies and capabilities of the most commonly-
used petroleum-based polymers, bio-based ones need to be meticulously modified in terms of properties
like modulations, applications, and disposal methods so that the valorization, service conditions, and/ or
discarding of the said polymers fulfil the expectations. Moreover, the aforementioned processes have to
be financially and economically efficient, and environmentally friendly.

The selection of suitable materials and synthesis methods is paramount in order to ensure that the
applications of bio-based polymers perform well with respect to their long-term properties [33]. There
needs to be a balance between the performance and processing of these polymers. Thus, the end-of-life
fates of bio-based products should not only be determined with respect to the carbon life cycle, but also
from the perspectives of their valorization in feedstock, conversion into distinctive materials, as well as
vitality [34, 35]. In this case, the long-term properties of polymers are reflected by the durability of the
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materials in the presence of degrading factors such as humidity, temperature, or sunlight. The next three
sections concern the energetic, biological, and material valorizations, all of which are essential to
enhance the values of the polymers with respect to their expected end-of-life and performance prospects.
To sum up, the current research has proposed various methods to improve the end-of-life and long-term
properties. The specific purpose of this exercise was to expand the literature on the maintainable and
sustainable designs of bio-based polymers [36].

2.1. Degradation and durability properties and end-of-life of polymers

The terms “durability” and “degradation”, as well as “long-term properties” and “end-of-life” of
polymers, are related to one another. Degradation refers to a process which results in the deterioration
of any physical property of a polymer. In general, the said process starts at the amorphous/crystalline
interface, and affects the mechanical properties, thermal stability, distribution of lamellar thickness, as
well as crystallinity. The distinct aspects of each term will be demonstrated with respect to the scope of
the analysis in question. Although bio-based polymers are expected to perform well, the improvement
of their long-term properties is determined by the extent to which their strengths are conserved. It is
essential to monitor and select the most effective degradation pathways to eliminate plastic waste [37].
Evidently, these two aspects should be taken into consideration during the selection of appropriate
materials for particular applications. In addition, a balance between the simple end-of-life pathway and
durability of a plastic product needs to be struck in order to minimize the negative impact on the
environment. Instead of the end-of-life of a material, the end-of-life of a polymer should be considered
instead so as to provide such products with second-life uses. This in turn will enhance the service-life
and value of the polymer. A simple method to realize the above idea is by sending discarded polymers
to downgraded applications, for which they will be incorporated into other materials to improve their
applicability, generate energy or feedstock, or recoup carbon sources [38, 39].

The physicochemical properties of bio-based polymers are subjected to different operations or
evaluations of the applied valorization conditions. Specifically, the maintenance of the performances of
the polymers, or the monitoring of the extent of degradation, will guarantee the appropriate valorization
of the materials. In this case, the evaluations of the properties began with a miniaturized approach (i.e.,
structure-morphology), culminating in macro-response assessments (i.e. thermal or rheological
properties, mechanical characteristics, interfacing with the application at the durability stage and with
the environment, effects on the environmental and human well-being, release of low-molecular weight
compounds during degradation, durability, as well as reenactment of service conditions).

2.2. Thermal degradation

Thermal degradation refers to the heat-induced deterioration of chemical compounds into smaller
components which do not recombine after cooling. In the case of polymers, this process is divided into
four categories:

e Degradation occurring below glass transition temperature, which can initiate basic alterations
known as physical aging;

e Degradation occurring between glass transition and melting temperatures, which results in the
loss of dimensions owing to the transformation of the material into a more crystalline structure
or the decomposition of the low molecular weight additives;

e Degradation occurring between melting and decomposition temperatures, which an extremely
important piece of information in ensuring the processability of second-life bio-based goods;
and

o Degradation above decomposition temperature, which is also referred to as energetic valorization.

There are numerous methods for the evaluation of thermal degradation of polymers. The simplest
one entails the use of ovens to detect the presence of impurities (e.g. moisture) without resulting in the
decomposition of the main polymers [7, 40-42]. From there, thermal degradation is assessed in terms of
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molar masses and physicochemical properties. To evaluate thermal degradation (at temperatures up to
the melting point or glass transition temperature), crystallinity, crystallization, as well as cold-
crystallization temperatures or the crystallinity degree, Differential Scanning Calorimetry (DSC) is a
feasible method. However, DSC is not suitable for the induction of thermal degradation at sub-glass
transition temperatures since it consumes a lot of time. Rather, Dynamic Mechanical Thermal Analysis
(DMTA) is a more appropriate method to test the impact of temperature on polymers [42]. Specifically,
it can be used to evaluate the mechanical properties of polymers far below the melting temperatures by
means of creep experiments. Finally, Thermogravimetric Analysis (TGA) is a very useful method to test
the thermal decomposition of polymer-based materials in either inactive or oxidative conditions [43-
45].

The growing interest and utilization of polymeric materials over the last couple of decades
contributed to their commercial success, apart from giving rise to creative researches on the same. Even
though this scenario is encouraging for the polymer-related organizations, the immense rate of utilization
of these materials worldwide poses dangers to the nature in view of the accumulation of difficult-to-
dispose waste materials [46]. As indicated by a study by Achilias et al. [47], 78 wt% of all plastic wastes
are accounted for by polymers like Polyethylene (PE), Polypropylene (PP), Polystyrene (PS), Polyvinyl
chloride (PVC), as well as those which contain epoxy resins and polyurethanes. Thermal degradation is
not preferred in manufacturing and application. However, polymers with high thermal sensitivity can be
degraded faster. This property is highly valuable for polymer squander administration and furthermore
to recoup vitality. In view of the current challenges in landfilling and reusing polymer wastes, pyrolysis
is a promising technique to overcome the issues [46]. In this study, polymeric materials were heated in
the presence of oxygen under controlled conditions, thereby resulting in the breaking of the
macromolecular structure. From here, oligomeric items and even monomers of interest can be created.
For instance, the monomers, dimers, and trimers of styrene can be recouped into essential items via the
warm corruption of PS. The degradation pathway of polymers can be controlled by modifying the
reactant decomposition processes to yield profitable substances [48]. With the existing researches on
waste-to-energy innovations, it has been discovered that catalytic fast pyrolysis (CFP) was an
appropriate method to specifically convert biomass into high-quality biofuel. The processing of waste
plastics via CFP can enhance the aromatic yield and reduce the coke arrangement [49].

Numerous reports on the thermal degradation of different polymers (i.e. polymers which have been
used commercially and the progressing ones with their diverse blends and composite configurations)
have surfaced in the past few years. The type of degradation is heavily dependent on the type of polymer
and many other factors. Distinctive modern analytical instruments have been utilized to decide the key
factors that trigger and sustain degradation following prolonged contact to heat in a latent environment
[50]. Experiments have also been conducted in air to comprehend the role of oxygen in degradation.
These analyses are especially helpful in the predictions of the administration lives and highest
temperatures for the safe utilization of the material. Information on the same will be important in the
determination of the capacities and applications of the end products, thereby promoting a more effective
utilization of the existing materials. Awareness of the unpredictability of the outcomes of decomposition
and the persistence of the chemical nature of the materials post-degradation can facilitate the
development of appropriate safety protocols to minimize the associated hazards.

In light of these blending investigations, the corruption pathway systems and the response energies
were created [51]. Nevertheless, exact predictions of the polymeric material reactions in thermal
environments are still difficult to achieve. This is because the test results remain uncertain, and that the
exact mechanisms of the procedure are, as yet, obscure. Hence, a more inclusive methodology needs to
be devised to describe the degradation energies of polymers. Thermal degradation of polymer
composites is a much more complicated issue because the fillers frequently influence the rearrangement
of the polymers [52]. With the exception of the relatively new field of nanocomposites, there is
surprisingly little information on the commercial viability of the composite frameworks; the overall
strengths of unfilled polymers have not been taken into consideration. With reference to waste-to-vitality
innovations, additional research is needed to come up with pyrolytic fluids with higher octane values
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which reduce the build-up of substances. This is turn gives rise to superb materials for the delivery of
gas without much need for refining. An increase in the amount of rubber in dumps and landfills (the
majority of which is accounted for by old tires) constitutes a nidus for ecological and fire hazards.

Pyrolysis of waste rubber is regarded as one of the most encouraging methods for the recoupment of
significant items. The present routine with regards to the landfilling of waste polymers does not permit
the recovery of the materials' esteem, apart from having natural outcomes, while modern mechanical
reusing misfortune [53-55]. Hence, a more sustainable method is needed to better understand the
recyclability and end-of-life issues of polymers, which would likewise build up a round materials
economy [56]. Yao and Wilkie [57] have examined the heat degradation of PS, poly(sodium 4-
styrenesulfonate), PSSNa, and poly(styrene-co-sodium 4-styrenesulfonate) copolymer blends of.
Accordingly, they have demonstrated that the warm degradation of the blends occurs in two autonomous
steps: when low amounts of PSSNa are present, there is direct inhibition hindrance of the corruption of
PS. Conversely, when larger amounts of the former are utilized, there is an expanded arrangement of
char which provides thermal protection. All in all, the phenomenon likely to occur when the temperature
of corruption of the synthesized polymer is close to the moderately-high temperature of degradation of
PSSNa. Naffakh et al [58] who examined the thermal decompositions of blends of poly(aryl ether
ketone), PEEK, and a thermotropic fluid crystalline polymer (LCP), have found that the mechanisms of
degradation were essentially expedited by mixing. In further detail, they have demonstrated that the
mechanisms of corruption of the pure polymers were the same as those of the components of the blend.
Hence, the abovementioned thermal degradation behavior was, for the most part, related to a higher
corruption rate rather than an altered system.

2.3. Hydrolytic and hydrothermal degradation

In the case of bio-polymer, the most established type of bio-based polymer degradation is the hydrolysis
of ester linkages. Therefore, polyesters account for the majority of such polymers in biomedical
applications. There are two main ways by which biopolymers are hydrolyzed, namely passive and active
methods which employ chemical hydrolysis and enzymatic reactions respectively. Evidently, the latter
is more useful in natural polymers like Polyhydroxyalkanoates (PHAs) and polysaccharides. Polylactic
acid or polylactide (PLA) and Polyglycolide (PGA) degrade via simple hydrolysis of their ester bonds
— a process which does not require the catalysis by enzymes [48, 59]. During hydrolysis, a series of
overlapping stages progressively reduces the molar mass and thus, alters the macroscopic
physicochemical properties. The 1SO10993-13:2010 protocol is usually employed to simulate the
service-life conditions of biomedical materials. In short, this method involves the exposure of materials
to an analytic medium (e.g. water, human fluid simulants, or phosphate buffer solution) for different
durations at 37°C to mimic in vivo conditions. Degradation can be monitored in both liquid and solid
fractions. On the other hand, for non-biomedical purposes, the ISO62:2008 (a modified water absorption
protocol) can be used to accelerate the hydrothermal degradation of polymers. In this case, both water
and temperature resembled the actual service conditions.

2.4. Degradable polymers

Of late, polymers have garnered a lot of attention owing to certain reasons. One simple example is the
development of inflatable rubber tires. This would have been unlikely to happen without the use of
natural or later, synthetic rubber as an energy-absorbing component. Moreover, materials like plastics
have replaced some traditional materials as packaging in view of their superior physical properties
(toughness and strength), lightness and barrier properties. Additionally, plastics have the ability to
protect consumables against degeneration at low cost, thereby leading to improved distribution of
foodstuff to the extent that plastics are now indispensable in modern retailing [60, 61]. Plastics are also
more energy-efficient as compared with traditional materials [47, 62]. Relative to paper, the efficacy of
plastics like polyethylene in protecting goods is around 1 to 2 by weight, which greatly reduces the
consumption of paper and hence, deforestation rate [47]. However, the volumes of waste plastics,
synthetic fibers, and rubber pose an increasingly serious problem to the disposal authorities. It used to
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be relatively inexpensive to dispose of domestic and industrial wastes in holes in the ground at the
peripheries of towns and cities. Unfortunately, reductions in the number of such sites, coupled with the
increasing bulk of the wastes, have led to an unacceptable increase in the cost of transporting packaging
wastes to landfill sites.

There is also increasing awareness that societies should treat wastes as a resource by recycling the
same into useful products rather than by burying them. Accordingly, in developed countries, it has
become a responsibility for the producers of packaging to recover and recycle such materials that would
otherwise have ended up in landfills [63]. It is now accepted, for reasons that will become apparent in
the following discussion, that the term “recycling” needs to be broadened to not only include
reprocessing or mechanical recycling, but also other methods for the conservation of the materials’
intrinsic values (e.g. energy- and biological-recycling). It is likely that hitherto the end of the second
decade of this century, domestic and industrial wastes will be reused by means of a combination of these
methods, and that only wastes with little or no potential value will be disposed of at sanitary landfills
[47, 63, 64].

3. Photodegradation and stabilization

The functions of materials depend on their durability in the operating environment and the extent to
which they interact with the environmental elements [65]. Therefore, information of the degradation and
stabilization of polymer-nanocomposites are very crucial from the scientific and industrial perspectives.
However, there are limited studies on these aspects. Only with an understanding of the mechanisms of
degradation of the materials can the products’ service lives be prolonged. Nowadays, polymer-clay
hybrids, which are being used in outdoor applications, are exposed to UV rays and other undesirable
environmental aspects.

3.1. Photooxidation

With reference to outdoor applications, it is especially imperative to take into account the resistances of
the materials to photo-oxidation. Evidently, even when polymers are subjected to ordinary utilization
conditions, photo-oxidative degradation will still occur, which in turn leads to the general deterioration
of their macroscopic properties because of the variety in molecular weights, compound structures, and
morphologies [66]. The concentrations of the blends have an influence on the photodegradative behavior
of a polymer mix. Evidently, these behaviors may not resemble those of the pure parts, connections
among the distinctive species in the blends amid degradation and among the degradation items can
happen. These chemical responses can either speed up the rate of degradation of the pure components
or stabilize the impact [60]. The additional substances are not regularly connected in the event of the
photostability of polymer blends and. As such, it is hard to estimate the photostability of the polymer
blends with reference to the photoresistances of the unmodified parts. The photostability of PVC has
been enhanced by its mixing with excess poly(vinyl alcohol) (PVA) [67]. Also, it has been demonstrated
that the photostability of PVC/PVA blends was greater than that of unmodified PVC, even though both
materials were less photostable than PVA. Specifically, in PVC/PVA blends, the number of carbonyl
compounds was lower than the estimation derived from the additivity rule. Hence, this suggested that
photooxidation prevented the formation of C=0 to some degree in the blends. As a matter of fact, the
photodecomposition of PVC/PV A blends relies on their connections between the segments.

The abovementioned negative impact was attributable to the way by which Cl radicals formed during
the photodehydrochlorination of PVC react with the tertiary H molecules in the polystyrene of the MBS
(one of the modifying agents used to improve the plastic properties) copolymer. The molecules then
enter the Poly (methyl methacrylate) (PMMA) chains of the MBS copolymer to initiate the
depolymerization of MBS. It has been reported that MBS hastened the photo-oxidation of PVC [68].
Apparently, peroxides break down into carbonyl and hydroxyl groups since the polybutadiene of MBS
effortlessly forms peroxides in the presence of O,. The accumulation of carbonyl groups in MBS can
lead to the photoinitiation of PVC, thereby speeding up photo-oxidation. It is extremely cumbersome to
predict the degradation behavior of a polymer blend with respect to the properties of its pure components

10
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is. The concentrations of the blends, in addition to the presence of a compatibilizer, can influence the
degradation behavior of a polymer mix. As such, the behavior can have variable courses of corruption
of the unadulterated segments since communications between the distinctive species in the blends and
degrading substances take place during corruption. In this way, regular connections between the added
substances are unlikely to occur during the degradation of polymer blends. This is in view of the fact
that the rate of corruption of a polymer blend can be higher, equal to, or lower than that of the
unadulterated parts.

4. Conclusions

In summary, the information of degradation and stability of polymer are crucial in order to ensure its
practicability to be applied in various application can be enhanced. Therefore, the in-depth
understanding of degradation mechanism of the polymeric under specific condition is beneficial the gain
the information for further modification physical and chemical properties. However, obtaining data from
experimental analysis in the effort to understand the fundamental understanding on degradation,
durability and stability is still insufficient. Therefore, the requirement on theoretical study based on
modelling and simulation would give the researcher a clear picture on the fundamental behind those
arising issues. The exploration on the research regarding the improvement durability and stability
properties of the polymers can be realized by adopting the nanotechnology aspect especially in self-
healing polymer structures and integrity. This self-healing properties of polymer can open up a new
versatility of the polymer material to be applied in various application where the half-life of the polymer
either synthetic or bio-based polymer are becoming a critical factor for its commercialization.
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