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Abstract. The performance of Particle Swarm Optimization (PSO) brings attention to the field 

of algorithms when deals with different optimization problems. Due to her simple 

implementation, small consumption, and very effective in finding a solution in many problems, 

(PSO) becomes well known to the field of algorithms. In addition, the late proposed algorithms 

mostly are compared to the well-known algorithm such as PSO. Thus, the Global African Buffalo 

Optimization (GABO) was proposed lately and yet not been compared to the old well-known 

algorithms in terms of accuracy and time consumption. However, in this paper, a comparison 

between Particle Swarm Optimization (PSO) and Global African Buffalo Optimization (GABO) 

algorithms was performed. Five different nonlinear equations with their upper and lower 

boundaries values were selected as the test optimization functions problem in addition to PSO 

was applied to real case study. The experimental results illustrated the differences in the 

performances of both algorithms toward the optimum solution. At the end of the experiments, 

the PSO algorithm quickly convergence towards the optimum solution using a few particles and 

iterations rather than GABO. However, the experimental result showed that PSO achieved good 

results in all the test cases within a short time. In many cases, PSO and GABO are promising 

optimization methods. 

Keywords: PSO; GABO; Convergence; Sphere Function; Rastrigrin function, Griewank Function; Rosenbrock 

Function; Shubert Function 

1.  Introduction  

Optimization algorithms are applied in many applications such as business activities, engineering, and 

industrial designs with the aim of either minimizing or maximizing an objective function by 

methodologically selecting the input values [1]. Lately, nature-inspired optimization algorithms have 

increasingly been gaining popularity in the field of science and engineering [2]. This development has 

thrilled many researchers and they have deduced various reasons for it. Some researchers argue that 

these algorithms are successful because they were developed to replicate some of the most successful 

concepts in biological, physical, and chemical processes which occur naturally [3, 4]. With this situation, 

the issue of algorithmic choice always surfaces (since there exists so many to choose from) whenever 

the need for optimization arises [5]. There is a general understanding that the ‘best’ algorithm for solving 

any problem should mainly be selected based on the nature of the problem being faced. The ‘No free 

lunch’ optimization theorem reinforced this line of thought [6, 7]. In fact, there is no agreement on the 
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recommended principles guiding the choice of algorithms when faced with nonlinear large-scale 

optimization tasks [8].  

In addition, the PSO was developed by Kennedy & Eberhart in 1995 with inspiration from the foraging 

behavior of birds. Different from evolutionary concept of Genetic algorithm (GA) which is based on 

Darwin's "survival of the fittest" concept, the PSO finds the optimal solution through collaboration 

between individuals. The study has found that the PSO is suitable for solving complex optimization 

problems [9,10]. The PSO algorithm has been greatly received and effectively applied to many function 

optimization and engineering technologies. It could be said that, through the analysis of biological 

communities, swarm intelligence of other complex behaviors such as their cooperation and competition 

can often produce some effective solutions to problems [9,10]. In addition, PSO algorithm has been 

successful in most cases than other algorithms such as GA, Simulating Annealing (SA), and Differential 

Evolution [11,12,13]. 

Thus, in this study, the PSO algorithm was studied based on the time consumption and convergence 

speed in order to reach global optima [9, 10]. Moreover, the Global African Buffalo Optimization 

(GABO) algorithm was proposed by [14] with inspiration from the global search behavior of the African 

Buffalo Optimization (ABO) algorithm [15]. The GABO algorithm showed better performances 

compared to the original ABO when studied with 2 optimization functions problem. However, this study 

focuses on the comparison between PSO and GABO algorithms by testing 3 global optimization 

functions based on the computational time and accuracy of each algorithm. The remaining part of this 

article is arranged as follows: Section two discussed the PSP and GABO methods while Section three 

explained the experimental process and the results of the study. Section four presented the conclusion 

of the study. 

2.  Methodology  

2.1.  Particle Swarm Optimization 

The PSO was first presented by Kennedy & Eberhart [9, 10] as an optimization framework based on 

inspiration from the social life pattern and movement dynamics of birds, fish, and insects. In the PSO, 

the swarm is modelled by the particles and each particle has a velocity and position within a 

multidimensional space. It is used to find the best global position and its information on the best 

neighbour. When the particle in the swarm stochastically and independently search for their destination, 

they exchange information with each other, causing their movement towards the optimal point from 

different directions and paths. Consequently, they will be able to explore a wide search area, giving the 

best probability of establishing the global optimum [9, 10]. When compared to the other algorithms, one 

major advantage of PSO is that it is easy to implement because it does not require crossover, decoding, 

or encoding like the GA. Furthermore, its computational time is cost-efficient when compared to the 

other algorithms because it uses a small number of parameters. PSO is simple in both numerical and 

theoretic implementation; its simplicity, robustness, and stability made it suitable for application in 

several fields, such as electric motor, image processing, and automatic systems [16, 17, 18, 19]. 

Basically, the PSO is comprised of a swarm of “n” particles whose position individually represents a 

tentative solution to the fitness function within the dimensional search space. The updating of the 

particles’ position is dependent on the following three factors, which are the particles’ inertia weight 𝜔, 
the local best position 𝑝(𝑡), and the global best position 𝐺(𝑡). These factors are calculated within the 

velocity and position of each particle using the following equations: 

𝑣𝑖(𝑡 + 1) = 𝜔𝑣𝑖 + 𝑐1𝑟1(𝑝(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝐺(𝑡) − 𝑥𝑖(𝑡))   

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)       

Where 𝑣𝑖(𝑡 + 1) is the velocity of particle 𝑖  at iteration 𝑡, 𝜔 is the inertia weight equal to 1,  𝑐1𝑐2 are 

the acceleration constant, 𝑟1𝑟2 are a random number between (0,1), 𝑝(𝑡) is the local best position already 

found by particle 𝑖 until iteration 𝑡, 𝐺(𝑡) is the global best position found in the entire particle 𝑖 until 

iteration 𝑡, and  𝑥𝑖(𝑡) is the particle position 𝑖 at iteration 𝑡.   
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2.2.  Global African Buffalo Optimization  

With the ability of the buffalos to recognize the global best position in a standard ABO algorithm at step 

3 [13], the buffalos were made to perform a research of the best position found by the ABO buffalos to 

ensure that the global best position are the same and as close enough to the global optimum solution as 

possible. This can be seen in step 4. With this idea, some modifications of the standard ABO algorithm 

are proposed. The modified algorithm selected the best position which has already been found by the 

ABO buffalos and then set them as the best position to be tested by considering the lower and the upper 

values of the herds’ best (𝒃𝒈𝒎𝒂𝒙). After this, the algorithm then starts to search for the optimum global 

solution. In step 5 if the global optimum solution was found, then ABO move to step 6 if not, it repeats 

steps 2-5. But Step 6 in GABO is asking to ensure the global best is reached if not repeat step 2-6 (This 

is the primary difference between ABO and GABO). Step 7 outputs the optimum values which means 

the best minimum values. In this way, the buffalos can search for more domains. The Pseudocode of the 

proposed GABO is presented in Figure 1: 

 

1. Initialize the buffalos randomly to nodes within the solution space; 

2. Update the exploitation of the buffalos using:  

𝑚𝑘′ = 𝑚𝑘 + 𝑙𝑝1(𝑏𝑔 − 𝑤𝑘) + 𝑙𝑝2(𝑏𝑝. 𝑘 − 𝑤𝑘), Where 𝑚𝑘 and 𝑤𝑘 represents the 

exploitation and exploration moves, respectively of the kth buffalo (k=1,2,…,N), 𝑙𝑝1 and 𝑙𝑝2 

are learning factors, 𝑏𝑔 is the herds best fitness, and 𝑏𝑝 is the individual best buffalos 

locations. 

3. Update the exploration fitness of the buffalos using the equation below: 

 𝑚𝑘′ = (𝑤𝑘 + 𝑚𝑘). 

4. Set the best position 𝑏𝑝 to be the new dimension of the global best position 𝑏𝑔𝑚𝑎𝑥. 

5. Is the global best position found and 𝑏𝑔𝑚𝑎𝑥 is updating? Yes, go to step 6. If no repeat step 

1 to 5. 

6. If the stopping condition is not reached, revert to step 2, else, proceed to step 6. 

7. Result the best solution. 

 

Figure 1: Pseudocode of GABO 

 

 

The performance of GABO was greatly improved with the introduction of the search for the optimum 

global solution of the best position that has already been found by buffalos into the original version of 

ABO. This improvement was evident through the experimental study carried out on the benchmark 

problem of Sphere and Rosenbrock functions. To further illustrate the relevance of this study, the results 

of the experiments using the two non-linear tested functions were discussed and reported [9]. 

 

3.  Experimental Setup  

For comparison, five nonlinear functions and one case study was investigated.  

3.1.  The Nonlinear functions  

 

The Sphere function is the first function as described by Eq. 1: 

 

𝑓(𝑥) =  ∑ 𝑥2𝑛
𝑖=1           (1) 

 

Where 𝑥 = [𝑥1, 𝑥2, …, 𝑥𝑛] is an n-dimensional real-valued vector.  

The Rosenbrock function is the second function as described by Eq. 2: 

 

𝑓1(𝑥) =  ∑ (100(𝑥𝑖 − 𝑥𝑖
2)

2𝑛
𝑖=1 + (𝑥𝑖 − 1)2)       (2) 
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The generalized Rastrigrin function is the third function as described by Eq. 3: 

 

𝑓2(𝑋) = ∑ (𝑋𝑖
2𝑛

𝑖=1 − 10 cos(2𝜋𝑋𝑖) + 10)         (3) 

 

The fourth function is Griewank function described by equation (4): 

𝑓3(𝑋) =
1

4000
 ∑ 𝑋𝑖

2𝑛
𝑖=1 − ∏ cos (

𝑋𝑖

√𝑖
) + 1𝑛

𝑖=1           (4) 

 

The fifth function is Shubert function described by equation (5): 

 

𝑓4(𝑥) = (∑ 𝑖 cos ((𝑖 + 1)𝑥1 + 𝑖5
𝑖=1 )(∑ 𝑖 cos ((𝑖 + 1)𝑥2 + 𝑖5

𝑖=1          (5) 

 

 

As recommended by [9], the selection of the upper and lower as the original values was done to facilitate 

the benchmarking. The initialization of the lower and upper values of the two function is presented in 

Table 1. 

 

Table 1: The lower and upper values 

Function  The lower and upper values 

𝑓(𝑥) [-10, 10] 

𝑓1(𝑥) [-5, 10] 

𝑓2(𝑋) [-5.12, 5.12] 

𝑓3(𝑋) [-100,100] 

𝑓4(𝑋) [-10,10] 

 

Studying the PSO and GABO algorithms, different population sizes were used for each function and 

these population sizes are 10, 20, and 30 particles and buffalos. The maximum number of iteration is set 

to be 30, 60, and 90 with the dimension is 5 in both algorithms. To get the mean global best position, 

each algorithm was evaluated 5 times. 

 

3.2.  Case study  

Parameter estimation of the kinetics in metabolic model is difficult task due to this kinetics are reported 

from different laboratories in different condition, many pathways, and ordinary differential equations 

(ODE) consuming huge time. Thus, the main metabolic model of Escherichia Coli (E. Coli) formulated 

by [20, 22] was used as a case study due to its large scale kinetic parameters and the estimation may can 

be performed. This model contains 5 pathways with 172 kinetic parameters in addition to metabolites 

and enzymes. 

4.  Result  

4.1.  The functions result  

 

The PSO global best position presented a perfect result when compared with the result of GABO. 

Moreover, as shown in Table 3, 4, 6, 7, 9, and 10, PSO presented a faster convergence speed towards 

the optimum values compared to GABO. However, PSO’s convergence was quick in both functions. 

PSO required only 0.23 sec to achieve the global best position while 0.95 sec was required by GABO 

to achieve the same feat in Sphere function. In Rosenbrock function, PSO required only 0.35 sec to 

achieve the global best position while GABO required 1.03 sec. In Rastrigrin function, PSO required 
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0.41 sec to achieve the global best position while GABO required 0.92 sec. These comparisons are 

depicted below. In addition, the PSO algorithm searching wide area in all cases than GABO with 3100 

and 2709 iteration respectively. 

Table 2 presents the testing of the Sphere function using PSO & GABO on a 5-dimensional space with 

(10, 20, 30) particles and buffalos, and (30, 60, 90) iterations. Table 2 showed that PSO achieved a good 

global best position. In Table 3 & 4 below, the time consumption of Sphere function by PSO and GABO 

is presented. The PSO searching 3100 times in the Sphere function within 0.23s means that searching 

large space with a short time to ensure the optimum solution is given. While GABO searching 2709 

times in the Sphere function within 2.42s.    

 

 

Table 2: PSO & GABO results for Sphere function 

Particles & buffalos 

size 

Dimension  Iteration  PSO global best position  GABO global best 

position  

10 5 30 

60 

90 
 

2.2569e-5 

3.2074e-6 

2.7257e-7 
 

1.2630e-4 

2.2053e-4 

2.0382e-5 
 

20 5 30 

60 

90 
 

5.2174e-7 

3.5328e-8 

2.0172e-9 
 

2.2846e-4 

2.0258e-5 

3.0124e-3 
 

30 5 30 

60 

90 
 

3.2538e-9 

4.2860e-10 

4.2584e-11 
 

2.5402e-5 

3.0245e-4 

3.5682e-6 
 

 

 

Table 3: Time consumption of Sphere function by PSO 

Function name  Calls  Total time Self-time 

PSO 1 1.169s 0.23s 

Sphere  3100 1.146s 1.146s 

 

 

Table 4: Time consumption of Sphere function by GABO 

Function name  Calls  Total time Self-time 

GABO 1 3.37s 0.95s 

Sphere  2709 2.42s 2.42s 

 

 

Table 5 presented the testing of the Rosenbrock function using PSO & GABO. The parameters used are: 

5-dimensional space with 10, 20, 30 particles & buffalos, and 30, 60, 90 iterations. There was 

improvement in the global best position of PSO compared to that of GABO (Table 5). Furthermore, 

PSO presented a faster convergence speed toward the optimum compared to GABO (Tables 6 & 7). 

However, it was observed that the PSO convergences quickly as it achieved the global best position 

within 0.035 sec while 1.03 sec was required for GABO to achieve a similar feat (Tables 6 & 7). Finally, 

the total time performance speed of the PSO and GABO algorithm is 1.607s and 2.59s respectively with 

90 iterations.  
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Table 5: PSO & GABO results for Rosenbrock function 

Particles & buffalos 

size 

Dimension  Iteration  PSO global best position  GABO global best 

position  

10 5 30 

60 

90 
 

0 

0 

0 
 

0.402 

0.375 

0.324 
 

20 5 30 

60 

90 
 

0 

0 

0 
 

0.321 

0.284 

0.247 
 

30 5 30 

60 

90 
 

0 

0 

0 
 

0.235 

0.215 

0.145 
 

 

 

Table 6: Time consumption of Rosenbrock by PSO 

Function name  Calls  Total time Self-time 

PSO 1 1.607s 0.035s 

Rosenbrock 3100 1.572s 1.572s 

 

 

Table 7: Time consumption of Rosenbrock function by GABO 

Function name  Calls  Total time Self-time 

GABO 1 2.59s 1.03s 

Rosenbrock 2709 1.56s 1.56s 

 

 

In Table 8 below, the Rastrigrin function was tested using PSO and GABO. The parameters used are: 

5-dimensional space with 10, 20, 30 particles & buffalos, and 30, 60, 90 iterations. It was discovered 

that the global best position of PSO improved better than the result of GABO as seen below in Table 5. 

Moreover, PSO’s convergence towards the optimum was faster compared to GABO as presented in 

Tables 9 & 10. PSO took only 0.041 sec to reach the best global position while GABO required 0.92 

sec to achieve the same feat (Tables 9 & 10). Finally, the total time performance speed of the PSO and 

GABO algorithm is 1.184s and 2.74s respectively with 90 iterations.  

 

 

Table 8: PSO & GABO results for Rastrigrin function 

Particles & buffalos 

size 

Dimension  Iteration  PSO global best position  GABO global best 

position  

10 5 30 

60 

90 
 

2.3891e-2 

2.2357e-4 

3.6824e-2 
 

1.0325 

1.0213 

1.0105 
 

20 5 30 

60 

90 
 

3.0217e-3 

4.2017e-2 

4.8170e-4 
 

1.0023 

0.9982 

0.9407 
 

30 5 30 

60 

90 
 

1.0843e-5 

3.0281e-6 

4.9107e-7 
 

2.5402e-5 

3.0245e-4 

3.5682e-6 
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Table 9: Time consumption of Rastrigrin by PSO 

Function name  Calls  Total time Self-time 

PSO 1 1.184s 0.041s 

Rastrigrin 3100 1.143s 1.143s 

 

Table 10: Time consumption of Rastrigrin function by GABO 

Function name  Calls  Total time Self-time 

GABO 1 2.74s 0.92s 

Rastrigrin 2709 1.82s 1.82s 

 

 

In Table 11 below, the Griewank function was tested using PSO and GABO. The parameters used are: 

5-dimensional space with 10, 20, 30 particles & buffalos, and 30, 60, 90 iterations. It was discovered 

that the global best position of PSO improved better than the result of GABO as seen below in Table 5. 

PSO’s convergence towards the optimum was faster compared to GABO (Tables 12 & 13). PSO 

required 0.051 sec to achieve the best global position while GABO took 0.71 sec to achieve the same 

feat (Tables 12 & 13). The total time performance speed of the PSO and GABO algorithm is 1.702 sec 

and 2.64 sec, respectively with 90 iterations.  

 

Table 11: PSO & GABO results for Griewank function 

Particles & buffalos 

size 

Dimension  Iteration  PSO global best position  GABO global best 

position  

10 5 30 

60 

90 
 

0.00230 

0.00120 

0.00020 
 

0.903 

0.725 

0.587 
 

20 5 30 

60 

90 
 

0.00040 

0.00051 

0.00064 
 

0.504 

0.358 

0.179 
 

30 5 30 

60 

90 
 

1.4027e-3 

1.0004e-4 

2.2048e-5 
 

0.165 

0.084 

0.067 
 

 

Table 12: Time consumption of Griewank by PSO 

Function name  Calls  Total time Self-time 

PSO 1 1.702s 0.051s 

Griewank 3100 1.651s 1.651s 

 

Table 13: Time consumption of Griewank function by GABO 

Function name  Calls  Total time Self-time 

GABO 1 2.64s 0.71s 

Griewank 2709 1.93s 1.93s 

 

 

In Table 14 below, the Shubert function was tested using PSO and GABO. The parameters used are: 5-

dimensional space with 10, 20, 30 particles & buffalos, and 30, 60, 90 iterations. It was discovered that 

the global best position of PSO improved better than the result of GABO as seen below in Table 5. 

Moreover, PSO’s convergence towards the optimum was faster compared to GABO as presented in 

Tables 15 and 16. It took PSO 0.055 sec to achieve the global best position while GABO took 0.86 sec 

(Tables 15 & 16). The total time performance speed of the PSO and GABO algorithm is 1.326s and 

2.79s respectively with 90 iterations.  
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Table 14: PSO & GABO results for Shubert function 

Particles & buffalos 

size 

Dimension  Iteration  PSO global best position  GABO global best 

position  

10 5 30 

60 

90 
 

0.0231 

0.0095 

0.0082 
 

0.9237 

0.8021 

0.7292 
 

20 5 30 

60 

90 
 

0.0078 

0.0064 

0.0052 
 

0.7023 

0.6087 

0.5742 
 

30 5 30 

60 

90 
 

0.0045 

0.0031 

0.0022 
 

0.5247 

0.4213 

0.3214 
 

 

Table 15: Time consumption of Shubert by PSO 

Function name  Calls  Total time Self-time 

PSO 1 1.326s 0.055s 

Shubert 3100 1.271s 1.271s 

 

Table 16: Time consumption of Shubert function by GABO 

Function name  Calls  Total time Self-time 

GABO 1 2.79s 0.86s 

Shubert 2709 1.93s 1.93s 

 

4.2.  The estimation result  

 

As it can be seen in the results function benchmark above, the PSO algorithm performed better than 

GABO algorithm in short time and searching wide area when testing five nonlinear functions. Thus, 

PSO was used to estimate 7 kinetic parameters of the main metabolic model of E. coli [20], were 8 

metabolites of 12 experimental data [21] are optimized and described in Table 17 & 18 respectively. 

However, PSO algorithm achieved 29.36% distance minimization [22].  

 

Table 17: Kinetic parameters estimation by PSO 
Kinetics Original lower Upper  Kinetic estimation by 

PSO 

𝒗𝒎𝒂𝒙
𝒑𝒚𝒌

 1.085 0.9 1.34 1.032 

𝒏𝒑𝒌 3 2.5 3.25 2.647 

𝒊𝒄𝒅h 24.421 23.9 24.6 24.306 

𝒌𝒊𝒄𝒅𝐡
𝒇

 289800 289799.4 289800.7 289799.65 

𝒌𝒊𝒄𝒅𝐡𝒏𝒂𝒅𝒑
𝒅  0.006 0.004 0.04 0.0372 

𝒌𝒊𝒄𝒅𝐡𝒏𝒂𝒅𝒑
𝒎  0.017 0.009 0.05 0.0482 

𝒗𝒎𝒂𝒙
𝒊𝒄𝒍  3.8315 3.3315 4.1 3.594 

 

In Table 18 below, 8 metabolites of (𝐺𝑙𝑐, 𝐺6𝑃, 𝐹6𝑃, 𝑃𝐸𝑃, 6𝑃𝐺, 𝑅𝑢5𝑃, 𝑋𝑢5𝑃, and 𝐸4𝑃) were optimized 

well and the rest of the others metabolites are not optimized due to the nonlinearity of the model, the 
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pathways, there is sum metabolites was lumped, and many kinetics reported or estimated from different 

laboratories in different conditions.  

 

Table 18: The metabolites optimization  

Metabolites  Chassagnole Kadir simulation PSO Optimization 

𝐺𝑙𝑐 0.0556 0.12203 0.1155 

𝐺6𝑃 3.48 0.12989 0.21931 

𝐹6𝑃 0.6 0.021457 0.022598 

𝐹𝐷𝑃 0.272 1.5186 2.5257 

𝑃𝐸𝑃 2.67 1.5076 1.9136 

𝑃𝑌𝑅 2.67 2.8279 3.1883 

6𝑃𝐺 0.808 0.017854 0.01876 

𝑅𝑢5𝑃 0.111 0.021398 0.022488 

𝑋𝑢5𝑃 0.138 0.026516 0.027911 

𝑆7𝑃 0.276 0.00473 0.0473 

𝑅5𝑃 0.398 0.076388 0.027912 

𝐸4𝑃 0.098 0.27837 0.003424 

Distance minimization 0  29.36% 

 

5.  Conclusion   

 

The performance of PSO and GABO algorithms were compared in this study based on selected test 

functions. The best position of the ABO served as the new search dimension for GABO when searching 

for the optimum values. PSO was studied to investigate the efficiency of the studied methods; five 

functions were employed, and one case study was investigated. The experimental outcome pointed 

towards PSO having a quicker convergence compared to the GABO. Because PSO works better than 

GABO, the kinetic parameters estimation was studied for PSO based on the main metabolic model of 

E. coli. Thus, PSO algorithm estimated 7 kinetic parameters and optimized 8 metabolites of 12 

experimental data sets. Nevertheless, PSO was observed to perform accurately but requires more 

investigations on more complex multimodal, separable, and non-separable functions with GABO.  
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