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Abstract. In this paper, we present a simulator that has been developed using PD control to study 
3D cable-based parallel robot with four cables. The proposed control technique is widely used 
for dealing with linear systems uncertainties, in this context; we investigated to use the Runge 
Kutta method of 4th order for solving non-linear partial differential equations of our system. The 
main contribution of this work is firstly: modelling of differential equations of our system. 
Secondly, the PD control applied to the dynamic model for different trajectories in order to test 
the accurate tracking of the robot to a desired trajectory. The effectiveness of the proposed 
control strategy is improving the robot performance in terms of tracking a desired path. 
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1. Introduction 
Automation and robotic becoming more important due to demanding on cost effective operations and 
productivity improvement in nowadays [1-3] due to the energy and fuel resources are in pressing for 
supply and sustainability issue [4-7]. Cable-based parallel robots are a special parallel manipulators 
robot in which the end-effectors are driven by cables instead of rigid links [2, 8, 9], the movement being 
provided by the winding and unwinding of cables [10, 11]. This offer incontestable advantages in 
comparison to the robots of classic architecture, tis last it is a type of parallel manipulator used as a 
transmission way of cables connects a fixe base with a mobile platform. The coordinate controller of 
cable lengths and tensions permit the displacement and the application of efforts on the platform. These 
robots have few moving parts, with reduced mass, and are most suitable for tasks requiring high 
performance such as speed and accuracy and provide a large workspace. By moving the cables 
connections points, it is possible to obtain reconfigurable manipulators. In addition, they are easy to 
mount; dismount and transport, in other hand, the main disadvantages of parallel manipulators lie in the 
nature of the cables that can only work in one direction than the traction [12-14]. The best-known 
application is the Skycam, a camera controlled by a cables mechanism that is used for tele-diffusion of 
professional football games. Another area of interest in biomedical applications such as tracking the 
movement of body parts. An example is the CaTraSys (Cassino Tracking System) was used for the 
identification of kinematic parameters and the mobility of man [15, 16]. 

One of the key aspects for cable driven robots is the need of a proper control strategy to achieve 
proper motions without breaking the cables. The PD method has been designed to improve the 
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robustness of robotic system control, as reported for example in [17-19]. In particular, an adaptive PD 
controller can adjust the control torque based on real-time position tracking error in the set-point control 
of the end-effector. The aim of this work is an simulation results  of cables based robot permitting to 
digitalize the appearance 3D for four cables with  kinematics modelling, followed by statics modelling, 
then presents dynamics modelling implement their command in close loop with PD controller. We adopt 
the system using eight cables presented in Gallina, Rossi and Williams II [20]. 

2. System overview 
Figure 1 shows our virtual prototype robot with four cables. The base is fixed and each cable attached 
to the one end of the platform. As the result of motors moments, cable wraps and winds the cables 
around the pulley to control the position and the orientation of the end-effector. The four cables-based 
robots allow a plan movement with 4 degrees of freedom. 

 

 
Figure 1. A virtual prototype of 3D driven parallel robot. 

3. Geometric modelling  
In this section, we present the direct and inverse geometric model for three and four cable-based robots. 

3.1.  Inverse geometric model (IGM) 
This model aims to determine the lengths of the cables "Li", the angles "�i" between the X,Y axes and 
the cables connected to the mobile platform and "�i" between the Z axe the plane X, Y. The inverse 
geometric model can be expressed by the following equations [21]. 
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4. The dynamic response of our system with a pd controller  
In this section, we begin by presenting the dynamic equation of the robot with five and eight cables and 
its state-space representation. Then, the response will be simulated in closed loop with PD controller 
[22] . 

4.1. Dynamic model of the end effector 
The dynamic model of the actuator is expressed by the following relationship [23]: 

 RFXm �
��

 (4) 

Where: m is the mass matrix and
��

X is the acceleration vector of the end-effector.
� 	TRzRyRxR FFFF �  : is the resultant force of the all tensions applied to the cables. 
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4.1.1. The dynamic comportment of the motor. The dynamic comportment of the motor can expressed 
by the following equation according to structure pulley as illustrated in figure 2. 
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Figure 2. Structure pulley. 
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We consider that all the rays of the pulley are the same, ri = r(i=1.2...4), �
T

i ),....( 21 ��� is the vector 
of the torques applied by the motors. t(t1,t2,…ti)T  is the vector of tension cables. � is the angle of 
rotation of the pulley. So: 

 )(1 ���

��� ��� CJ
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t  (8) 

Where Li0 are the initial lengths of the cables: 222
0 )()()( AizAiyAixLi ���  

So,  

 










�

�






�

�

�

�
�

�










�

�






�

�

�

ii LL

LL
LL

r
Xi

X
X

0

220

110

2

1

1

)(

)(
)(

��
�

�
�

�  (9) 

i=1,.. ,4 

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�








�

�





�

�














�

�








�

�

��
��
��
��
��

��
�
�

� �

�
�

z
y
x

r
x

x
�

�

)cos()sin()sin()cos()sin(
)sin()sin()cos()cos()cos(
)sin()sin()cos()cos()cos(
)sin()sin()cos()cos()cos(
)sin()sin()cos()cos()cos(

1

55555

44444

33333

22222

11111

���
���
���
���
���

��  (10) 

by subtracting successively (10) with respect to time, we get: 
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Substituting (11) we obtain: 
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Finally, the set of equations of the dynamic model can be expressed in a standard form for robotic 
systems (13): 
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5. Control law and architecture 
This section presents our control architecture and the low-level control has been ensured by means of 
the implementation of a Proportional and Derivative (PD) controller based on the overall system 
Cartesian dynamics equations of motion (Equation 16). Williams, Gallina and Vadia [24] in his paper 
on the PD controller gains are determined the error using a MatLab programmed simulation to achieve 
reasonable performance for the trajectories. The establishment of the control law along X,Y and along 
Z is: 
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The control architecture as shown in figure 3 was made up of three different parts: the PD controller, 
the tension calculation and pulley angle � to determine the cable lengths Li. 

Figure 3. Control architecture. 

6.  Simulation results 
In this part, we present the simulation of the response for 3D cables-based robot with 4 cables, for 
dynamic equation, which has a non-linear equation system, for this purpose, we use a Runge Kutta 
method as a numeric solution. Runge and Kutta developed the following formulae [25]: 

 y(x1) �y0+ (k1 + 2k2 + 2k3 + k4)/6, (18) 

 k1 = hfo, , fo � f(x0, y0) (19) 

 k2 = hf (x0 + h/2, yo + k1/2) (20) 
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 k3= hf(x0 + h/2, y0 + k2/2) (21) 

 k4 = hf(x0 + h, y0 + k3) (22) 

Then, we implement a Cartesian PD controller in this dynamic equation for reduce the tracking error 
(e = Xdesired – Xactual). The parameters for the dynamics equations of motion (15) for the 5 and 8 cables 
are: point mass m = 0.01 kg; rotational shaft/pulley inertias Ji (i = 1,…,4) = 0.0008 kgm2; shaft rotational 
viscous damping coefficients Ci (i = 1,.., 4)  = 0.01 Nms and ri = r = 1cm (for all i = 1,…, 4 or 8 )  and  
a the side of square basis and the cubic is Lb = 0.6580 m and the  values of coefficient for different 
trajectories are Kp=25000 , Kd=1850, So we put the reference of our system in the centre of the 
workspace (0,0,0). Figure 4 until figure 7 shows a graphical user interface of implementation the point-
to-point command i.e the user of this interface can enter the coordinates of any point into the workspace. 
When clicked on the plot, the end effector displaced directly to this point with a high precision, and also, 
this interface can initialization the case of this robot (figure 7),  these technique based on inverse 
geometric model. 

 
Figure 4. Plot the displacement the end effector to position one. 

 
Figure 5. Plot the displacement the end effector to position two. 
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Figure 6. Plot the displacement the end effector to position tree. 

 
Figure 7. Meter the end effector on initial position. 

For illustrating the role of our control, we use another interface graphic command according to the 
colours of the objects. When, we have clicked on colour object, the end effector move and displace to 
this object in workspace. Figure 8, 9, 10 and 11 show how to control the end effector based on the colour 
objects, and also, this interface can draw the trajectory of end effector, that do for different tests (figure 
12), this technique based on the kinematic and dynamic model for this robot. The results of different 
tests carried that, this PD control give a better performance in most operation conditions. 
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Figure 8. Displacement the end effector according to the green colour. 

 
Figure 9. Displacement the end effector according to the yellow colour. 

 
Figure 10. Displacement the end effector according to the blue colour. 
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Figure 11. Initialization the parameters of position of end effector. 

 
Figure 12. The trajectory of end effector for different tests. 

For more illustrate the role of our control, we simulate the continuance trajectories, figure 13 and 14 
show that, how the real path follows the desired path for the ellipse and circular trajectories. The ellipse 
trajectories in Fig. 13 shows that the desired and actual path is almost agreed with each other. The actual 
path is in good agreement with the desired path. This shows the simulation and the control is very good 
results. Similar results found in figure 14 for the circular trajectories. Compare both circular path for 
actual and desired are almost identical movement. 
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Figure 13. Plot the desired path and actual for ellipse trajectory. 

 
Figure 14. Plot the desired path and actual for circular trajectory. 

As seen in the different tests of the point to point command and the tests for displacement the end 
effector according the colour objects and also the tests of follow predefined trajectories for actual and 
desired paths, we found that, the PD controller do a high role and efficacy of the precision for 3D cable 
base robots. 

7. Conclusion 
This paper presented a simulation results for different tests of a novel 3D cable base robot with four 
cables, this last, we have developed a user interface graphic with a simulation program to control the 
displacement of end effector based on point to point command, according to the colour of the objects 
and also, we have presented some results for continuance trajectories. The simulation results have 
demonstrated the effectiveness and feasibility of the proposed control and suitable for improving the 
performance response. 
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