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ABSTRACT 

 

This thesis describes the analysis of lower automobile suspension arm using 

stochastic design improvement technique. The suspension system is one of the most 

important components of vehicle, which directly affects the safety, performance, 

noise level and style of it. The objectives of this study are to characterise the 

dynamic behavior, to investigate the influencing factors of lower suspension arm 

using FEM incorporating design of experiment (DOE) and artificial neural network 

(ANN) approach and to analysis the lower suspension arm using robust design 

method. The structural three-dimensional solid modeling of lower arm was 

developed using the Solidworks computer-aided drawing software. The three-

dimensional solid model then imported to the MSC.PATRAN software and 

employed to generate meshes and defined material properties for the finite element 

modeling. The linear elastic analysis was performed using NASTRAN codes. The 

optimization of lower suspension arm were carried out using stochastic design 

improvement based on Monte Carlo approach, Response surface methodology 

(RSM) based on central composite design (CCD) and artificial intelligent technique 

based on radial basis function neural network (RBFNN). Tetrahedral element with 10 

nodes (TET10) and tetrahedral element with 4 nodes (TET4) mesh were used in the 

stress analysis. The modal analysis was performed with using Lanczos method to 

investigate the eigenvalue and mode shape. The highest von Mises stresses of TET10 

were selected for the robust design parameter. The development from the Stochastic 

Design Improvement (SDI), RSM and ANN are obtained. The design capability to 

endure highest load with lower predicted stress is identified through the SDI process. 

CCD used to predict and assess linear response Von Mises and Displacement on 

Lower arm systems models. On the other hand, RBFNN used to investigate linear 

response of lower arm. It can be seen that the robust design was capable to optimize 

the lower vehicle arm by using stochastic optimization and artificial intelligent 

techniques. The developed linear model based on SDI and CCD is statistically 

adequate and can be used to navigate the design space. A new parameter of material 

can be reconsidered in order to optimize the design. The results can significantly 

reduce the cost and time to market, improve product reliability and customer 

confidence. These results can be use as guideline before developing the prototype. 
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ABSTRAK 

 

Kajian thesis ini adalah untuk menganalisa suspensi lengan bawah sesebuah 

kenderaan menggunakan teknik rekabentuk stokastik. Sistem suspensi ini merupakan 

salah satu komponen terpenting bagi sebuah kenderaan, yang secara langsung 

mempengaruhi keselamatan, prestasi, tahap kebisingan dan gaya sesebuah 

kenderaan. Kajian ini bertujuan untuk mengklasifikasikan perilaku dinamik, untuk 

mengetahui faktor yang mempengaruhi suspensi lengan bawah sesebuah kenderaan 

dengan menggunakan teknik FEM dan menggabungkannya dengan teknik DOE dan 

ANN serta menganalisa menggunakan kaedah rekabentuk tahan lasak. Struktur tiga-

dimensi untuk suspensi lengan bawah dibangunkan dengan menggunakan perisian 

Solidworks. Model ini kemudiannya dimasukkan ke perisian MSC.PATRAN dan 

digunakan untuk menghasilkan jaringan serta menetapkan jenis bahan untuk 

pemodelan elemen terhingga. Kod Nastran di gunakan untuk menanalisa elastik 

linier. Proses pengoptimum suspensi lengan bawah dilakukan dengan menggunakan 

kaedah rekabentuk perbaikan berdasarkan pendekatan Monte Carlo, RSM, 

rekabentuk komposit berpusat (CCD) dan teknik RBFNN. Elemen tetrahedral dengan 

10 titik (TET10) dan 4 titik (TET4) yang digunakan dalam menganalisa tegangan. 

Kaedah Analisa “modal” dilakukan dengan menggunakan kaedah Lanczos untuk 

mengetahui nilai eigen dan bentuk mod. Nilai tertinggi untuk tegangan von Mises 

TET10 dipilih untuk parameter kaedah rekabentuk tahan lasak. Keputusan dari SDI, 

RSM dan ANN diperolehi dan kemampuan rekabentuk untuk menanggung beban 

tertinggi dengan tekanan dianggarkan lebih rendah dikenalpasti melalui proses SDI. 

CCD digunakan untuk menjangka dan menilai tindakbalas linier Von Mises dan 

perpindahan pada model yg digunakan. Manakala kaedah RBFNN digunakan untuk 

menganalisa tandakbalas linear suspensi tersebut. Rumusan dapat di buat bahawa 

rekabentuk tahan lasak mampu untuk mengoptimumkan suspensi lengan bawah 

kenderaan dengan menggunakan kaedah optimasi stokastik dan teknik kebijaksanaan 

tiruan. Model linier yang dibangunkan berdasarkan SDI dan CCD secara statistik 

adalah  mencukupi dan boleh digunakan untuk menavigasi ruangan rekabentuk. Satu 

parameter baru untuk bahan boleh dipertimbangkan untuk mengoptimumkan 

rekabentuk. Keputusan yang diperolehi dari kajian ini secara berkesan boleh 

mengurangkan kos dan masa ke pasaran dan meningkatkan kebolehpercayaan produk 

dan kepercayaan pelanggan. Keputusan ini boleh digunakan sebagai rujukan sebelum 

sesebuah prototaip dibina. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 BACKGROUND 

 

  The vehicle suspension system is responsible for driving comfort and safety as 

the suspension carries the vehicle-body and transmits all forces between body and road. 

Positively, in order influence these properties, semi-active or active components are 

introduced, which enable the suspension system to adapt to various driving conditions. 

From a design point of view, there are two main categories of disturbances on a vehicle 

namely the road and load disturbances. Road disturbances have the characteristics of 

large magnitude in low frequency (such as hills) and small magnitude in high frequency 

(such as road roughness). Load disturbances include the variation of loads induced by 

accelerating, braking and cornering. Therefore, a good suspension design is concerned 

with disturbance rejection from these disturbances to the outputs. A conventional 

suspension needs to be “soft” to insulate against road disturbances and “hard” to 

insulate against load disturbances. Consequently, the suspension design is an art of 

compromise between these two goals (Wang, 2001). 

 

 There is an increasing interest within the automotive industry in the ability to 

produce models that are strong, reliable and safe whilst also light in weight, economic 

and easy to produce. In automotive industry, aluminum alloy (AA) has limited usage 

due to their higher cost and less developed manufacturing process compared to steels. 

However, AA has the advantage of lower weight and therefore, has been used 

increasingly in automotive industries for the last 30 years, mainly as engine block, 

engine parts, brake components, steering components and suspension arms        

(Rahman et al., 2009). The increasing use of AA is due to the safety, environmental and 
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performance benefits that aluminum offers, as well as the improved fuel consumption 

because of light weight. That is why aluminum is the fastest growing material in the 

automobile industry.  Recently commercial finite element packages have been readily 

available and their utility has increased with the development of super computers. The 

finite element method (FEM) provides a relatively easy way to model the system. For 

this feature, the FEM has become an indispensable engineering tool in design processes 

of comments for automotive industry (Bath, 1996). Design of a robust suspension lower 

arm is crucial to the success of manufactured the car and requires that suspension 

components have to be well in aspects of both compactness and crashworthiness, which 

is defined as a measure of the whole vehicles. Its components structural ability to 

plastically deform and yet maintain a sufficient survival space for its occupants in 

crashes involving reasonable deceleration loads (Praya and Jamel, 2004). 

 

Stochastic design improvement (SDI) is a fast and efficient method for 

improving the performance of a system. It can be specifying the desired target behavior 

for a system and get multiple alternative solutions that satisfy the target. The suspension 

arm gets more attention by many researches like study dynamic analyses of the motor-

vehicle suspension system using the point-joint coordinate’s formulation                 

(Kim et al., 2002 and Zang et al., 2004). The mechanical system is replaced by an 

equivalent constrained system of particles and then the laws of particle dynamics are 

used to derive the equations of motion. Modeling and simulation are indispensable 

when dealing with complex engineering systems. It makes it possible to do an essential 

assessment before systems are developed. It can alleviate the need for expensive 

experiments and provide support in all stages of a project from conceptual design, 

through commissioning and operation.  

 

The most effective way to improve product quality and reliability is to integrate 

them in the design and manufacturing process. Response surface methodology (RSM) is 

a useful technique that can be integrated into the early stages of the development cycle. 

RSM is used to estimate the transfer functions at the optimal region. Hence Central 

Composite Design (CCD) approach was selected for the present study       

(Montgomery, 2005 and Wu and Hamad, 2000). Statistical design of experiments refers 
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to the process of planning the experiment so that the appropriate data can be analysed 

by statistical methods, resulting in valid and objective conclusions (Montgomery, 2005). 

 

Neural networks have been used in mechanical engineering problems since the 

early 1990's. The main areas of concentration have been control, identification, and 

damage detection. Radial basis function neural network (RBFNN) has increasingly 

attracted interest for engineering applications due to their advantages over traditional 

multilayer perceptions, namely faster convergence, smaller extrapolation errors, and 

higher reliability. In particularly, RBFNN has proven to very useful for many systems 

and applications (Erdman et al., 2001). 

 

1.2     PROBLEM STATEMENT 

 

The suspension arms are the essential elements in the vehicle as shown in 

Figure 1.1 (Milliken, 2002) conventionally these parts made of steel, which is a heavy 

metal then today try to use aluminum, a lighter metal, economic and easy to produce. 

Uncertainty propagation and quantification are a challenging problem in engineering. 

Indeed, the analyst often makes use of complex models in order to assess the reliability 

or to perform a robust design of industrial structures. The stochastic nature of the 

optimization arises from incorporating uncertainty into the procedure. The goal of 

stochastic optimization is to minimize the expectation of the sample performance as a 

function of the design parameters and the randomness in the system and concept 

stochastic optimization consists in combining deterministic optimization methods with 

uncertainty quantification techniques to measure the sensitivity and the variability of the 

response. Most applications of robust design have been concerned with static 

performance in mechanical engineering and process systems (Zang et al., 2004) whereas 

the objective of robust design is to optimize the mean and minimize the variability that 

results from uncertainty represented by noise factors and to test the effect of the 

variability in different experimental factors using statistical tools. A stochastic process 

is a probabilistic model of a system that evolves randomly in time and space. Another 

objective concerns the reliability-based optimization, i.e. the computation of the 

probability of a risk of failure (Lucor et al., 2007). In addition the main statement of the 

problem of this research expressed by bringing reality of simulation, improving the 
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design and essential to the move towards virtual product development using stochastic 

design technique and ANN because there is an increasing interest within the automotive 

industry in the ability to produce models that are strong, reliable and safe.  

  

 

 

Figure 1.1: Suspension system (Milliken, 2002) 

 

1.3     OBJECTIVES OF STUDY 

 

The objectives of this study are as follows: 

i. To assess the dynamic behavior of suspension arm. 

ii. To investigate the influencing factors of the lower suspension arm integrating 

finite element analysis results with RSM and ANN approach. 

iii. To analysis of the suspension arm using stochastic optimization. 
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1.4     SCOPES OF RESEARCH 

 

The scopes of this research are as follows:  

i. Structural modeling develops utilizing computer aided design codes. 

ii. Finite element modeling and analysis utilizing PATRAN/NASTRAN 

commercial software. 

iii. Dynamic analyses perform using modal analysis. 

iv. Develop the stochastic optimization model using stochastic design improvement 

based on modified Mote Carlo optimization.  

v. Investigate the influencing factors of the lower suspension arm utilize response 

surface methodology based on central composite design. 

vi. Investigate linear response by artificial intelligence technique using radial basis 

function neural network. 

 

1.5     ORGANIZATION OF THESIS 

 

This thesis has been prepared to give details on the facts, observations, 

arguments, and procedures in order to meet its objectives. Chapter 1 gives the brief 

background of a vehicle suspension, the problem statement, objectives and scope of the 

research. Chapter 2 presents the literature review of vehicle suspension arm, aluminum 

alloy, finite element method, and dynamic analysis. The most representative 

optimization methods are also discussed. Chapter 3 discusses the mechanical model 

description and introduced the methods of real eigenvalue extraction. The three 

techniques, stochastic design improvement, response surface methodology and radial 

basis function neural network are presented.  Chapter 4 addresses the geometry of 

control lower arm used for the FEA. The mesh generation and its convergence are also 

discussed. In addition, the validation of the finite element model is presented in this 

chapter. Linear static stress analysis, dynamic analysis, artificial intelligent method 

RBFNN has been presented. The conclusions of the present research are summarized 

and presented in Chapter 5. Suggestions and recommendations for the future work are 

also presented in this chapter. 



 

 

 

 

 

CHAPTER 2 

 

 

LITERATURE REVIEW  

 

 

2.1     INTRODUCTION   

 

This chapter will provide information of past research efforts related to a vehicle 

suspension system. Carry out a brief introduction on the types of suspensions and 

Background on important performance characteristics for suspensions will be presented. 

Introduced the finite element analysis and dynamic analysis, stochastic optimization, 

including stochastic design improvement, response surface methodology and artificial 

neural network are reviewed in this chapter with great details.  A review of other 

relevant research studies is also provided.  

 

2.2     HISTORY OF VEHICLE SUSPENSION SYSTEMS   

 

Pioneering vehicle manufacturers were faced early on with the challenges of 

enhancing driver control and passenger comfort. The early 1900's, cars still rode on 

carriage springs as shown in Figure 2.1. Early drivers had bigger things to worry about 

than the quality of their ride like keeping their cars rolling over the rocks and ruts that 

often passed for roads. These early suspension designs found the front wheels attached 

to the axle using steering spindles and kingpins. This allowed the wheels to pivot while 

the axle remained stationary. Suspension systems have been widely applied to vehicles 

from the horse-drawn carriage with flexible leaf springs fixed in the four corners, to the 

modern automobile with complex control algorithms. The vehicle design typically 

represents a trade-off between performance and safety since durability especially of 

safety components is important.  This means that the design of the components must be 

adapted as accurately as possible to the operating conditions (AA, 2004). 
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The suspension systems basically consist of all the elements that provide the 

connection between the tires and vehicle body and are designed to meet the following 

requirements: (i) ride comfort, (ii) road-holding, and (iii) handling. As the tire revolves, 

the suspension system is in a dynamic state of balance, continuously compensating and 

adjusting for changing driving conditions. Today's suspension system is automotive 

engineering at its best. The components of the suspension system perform the following 

basic functions (SCC, 2011):  

i. Maintain correct vehicle ride height. 

ii. Reduce the effect of shock forces. 

iii. Maintain correct wheel alignment.  

iv. Support vehicle weight. 

v. Keep the tires in contact with the road.  

vi. Control the vehicle’s direction of travel.  

 

 

 

Figure 2.1: Overall car (Church, 1995) 

 

2.3     TYPES OF VEHICLE SUSPENSIONS SYSTEM 

 

Suspension systems from one key subsystem of an automobile that are used to 

isolate the occupants from shocks and vibrations induced due to road surface 

irregularities. It is also used as a wheel locating and guiding mechanism when the 

vehicle is in motion. 
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2.3.1 Front Suspensions  

 

Front suspensions are classified as dependent and independent suspensions. The 

most common dependent front suspension is the beam axle, which is used less and less 

in recent vehicles because of numerous disadvantages like large unsprung mass, 

packaging space, and considerable caster change. However, some off-road application 

vehicles tend use still to the beam axle dependent front suspension as they offer high 

articulation and high ground clearance.  

 

 The most common types of front independent suspensions are the double 

wishbone suspension and the Macpherson strut. The double wishbone suspension also 

known as the double A-arm suspension has parallel lower and upper lateral control 

arms. The main advantage of the double wishbone is that the camber can be adjusted 

easily by varying the length of the lateral upper control arm such that it has a negative 

camber in jounce. The coil spring and the shock absorber are combined into a single 

unit extending vertically making it more compact. Over the years, many types of 

independent front suspension have been tried. Many of them have been discarded for a 

variety of reasons, with only two basic concepts, the double wishbone and the 

McPherson strut, finding widespread success in many varying forms. 

 

The McPherson strut type suspension consists of a single lower wishbone arm 

which controls the lateral and longitudinal location of the wheel Figure 2.2. The 

McPherson suspension providing the suspension can be combined into one assembly 

and the disadvantage set as less favorable kinematic characteristics. The friction 

between piston rod and guide impairs the springing effect. Much space needed above 

the wheel for spring and strut, connection between the upper strut mount and frame 

unstiff and expensive,  clamping of a strut to steering knuckle very difficult for the axle 

loads of truck and expensive spare part (Fleuren, 2009). 
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Figure 2.2: McPherson suspension strut 

 

Double wishbone suspension type suspension consists of pairs of parallel arms 

can be arranged to control suspension geometry (Figure 2.3). Giancarlo and Lorenzo 

(2009) sighted of the initial design double wishbone suspension and concluded the 

independent double wishbone front suspension adopted in the automobile manufactures. 

Most advantages for double wishbone suspensions are space saving, attenuate of road 

noise, decreasing steering vibration and good kinematic possibilities. The disadvantage 

set as more space needed besides the frame in a lateral direction, king pin inclination 

high, and less favorable ratio of spring rate and damper rate. A few disadvantages of 

this type of suspension are that it requires sufficient vertical space and a strong top 

mount (Jack, 2005).  

 

 

 

 

 

 

 

 

 

Figure 2.3: Double wishbone suspension arm 

 

A multi link front suspension, a short upper link is attached to the chassis with a 

bracket, and the outer end of the upper link is connected to the third link (Figure 2.4). 

Lower arm 

Lower arm Upper arm 
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High-performance suspension systems are usually installed ion sport cars. In this case, 

the driver expects good kinematic possibilities, good ride and handling comfort, and 

small space needed in the vertical direction in wheel housing (Knowles, 2010). 

Disadvantage of this type are much space needed beside a frame in the lateral direction 

(especially for control rod), higher number of ball joints, bearings and links, increased 

unsprung masses, and expensive. 

 

 

 

Figure 2.4: Multi link suspension arm 

 

2.3.2 Rear Suspensions  

 

Similar to the front suspensions, rear suspensions too are of dependent and 

independent suspension types. Some of the commonly used dependent rear suspensions 

are the twist beam, leaf springs, live and dead axles. The main advantage of a twist 

beam is that it is inexpensive, compact and is suitable for small cars where package 

space is limited. Live rear axles uses longitudinal leaf spring to attach the axle to the 

vehicle chassis. Live rear axles are not used in small cars due to their high unsprung 

mass and are used mainly only on pickup trucks and SUV’s. Some of the independent 

type rear suspensions are the swing axles, semi trailing arms, wishbones, multi-link 

suspensions. Wishbones suspensions are similar to front wishbone suspensions. Multi-

link suspension is the most commonly used type of rear independent type suspension. 

Multi-link suspension has 3 or more lateral arms arranged in space. They have the 

greatest flexibility in modifying any suspension parameter to suit the required vehicle 

application.  

Lower arm 
Upper arm 
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2.4     ALUMINIUM ALLOYS IN AUTOMOTIVE DESIGN 

 

Using aluminium alloys in vehicles is not a new idea for instance featured an 

aluminium body. Since, the aluminium alloys have been limited in use due to their 

higher cost and less developed manufacturing processes compared to steel. Aluminium 

offers the advantage of lower weight. Therefore, Aluminum alloy used in high 

performance vehicles where the higher cost can be justified (Figure 2.5). Vehicle weight 

reduction becomes increasingly important in the past decades. The world has imposed 

some of the strictest standards on fuel efficiency and exhaust emissions          

(Homeister, 2001). The mounting problems of air pollution in larger cities during this 

period promoted emission legislations. The immediate response from the automotive 

industry was to reduce the size of passenger vehicles and discontinue the larger engine 

options (Johnson, 1997). 

 

 

 

Figure 2.5:  Suspension lower arm (Sigmund, 2006) 

 

Weight reduction influences the fuel economy directly, since less energy is 

needed for acceleration and indirectly, since a smaller engine is required in a lighter 
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vehicle. In order to reduce the vehicle weight, the automotive industry has seen a 

continuous increase in aluminium usage in the last 30 years mainly as cast engine 

blocks, engine parts and transmissions were significant weight savings can be achieved 

(Miller et al., 2000 and Dwigth, 1999). In the last decade, aluminium has also found use 

in structural applications in mass market vehicles, such as brake components, steering 

components and suspension control arms where safety is of great concern and 

traditional steel solutions used to dominate. Vehicles with an extensive use of 

aluminium such as in body structures and panels are still mainly found in the high-end 

market. It is paradoxical that the increased use of lightweight chassis designs. The 

average weight of cars has increased steadily since the mid 1980s. This is especially 

pronounced in USA, where the average weight for all 2006 models was 1878 kg, up 

from 1406 kg in 1987 and exceeding the 1975 average by 37 kg (LDA, 2009). 

 

Suspension components along with wheel rims and brake components are 

unsprung masses which make weight reduction important for ride quality and response 

as well as for reducing the total vehicle weight. The suspension arm material is typically 

used a 7079 aluminium alloy, which has good formability and corrosion resistance as 

well as high impact and fatigue strength. Good formability is important since it is 

produced by forging although stronger aluminium alloys exist. These are less suitable 

for forging operations and may also lack adequate corrosion resistance                   

(Staley and Lege, 1993). The 6061 alloy has been used for similar applications due to its 

better formability, albeit lower strength (Dwigth, 1999). Advances in manufacturing 

technologies have in the past decades established less formable, higher strength alloys 

as viable and light weight alternatives to steel in vehicle bodies and safety critical 

components (Carle and Blount, 1999 and Jensrud et al., 2006). 

 

2.5     FINITE ELEMENT AND ANALYSIS 

 

The finite element analysis (FEA) is a computational technique which is used to 

obtain approximate solutions of boundary value problems in engineering. In simple, a 

boundary value problem is a mathematical problem in which one or more dependent 

variables must satisfy a differential equation everywhere within a known domain of 

independent variables and satisfy specific conditions on the boundary of domain 
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(Hutton, 2004). FEM technology has been widely used in solving structural, 

mechanical, heat transfer, and fluid dynamics problems as well as problems of other 

disciplines. The advancement in computer technology enables us to solve an even larger 

system of equations, to formulate and assemble the discrete approximation and to 

display the results quickly and conveniently. The FEM provides a relatively easy way to 

model the system.  In FEM, a complex region defining a continuum is discrete into 

simple geometric shapes called finite elements. The material properties and the 

governing relationships are considering over these elements and express in terms of 

unknown values at the nodes. An assembly process, duly considering the loading and 

constraints results in a set of equations. Solution of these equations gives us 

approximate behaviour of the continuum (Chandrupatla and Belegundu, 1997). Since 

that time, FEM has spread to all engineering disciplines and is now used to determine 

the engineering response of complex systems such as vehicle occupant safety, fluid flow 

and magnetic fields. 

 

Conle and Mousseau (1991) used vehicle simulation and the finite element 

results for the chassis components using automotive proving ground load history results 

combined with the computational techniques. They concluded that the combination of 

the vehicle dynamics modeling and finite element analysis are the viable techniques for 

the design of the automotive components.  

 

A stress analysis activity depends on the function and maturity of the phase, an 

important benefit of performing stress analyses is the ability to determine design 

sensitivities and to conduct trade studies. Thus, effective optimization of the structure 

can be achieved, enhancing reliability while reducing cost and weight. Stress analysis is 

a very important step to find out suitable material and the best shape for part design. 

The stress analysis result gets the data of the strength and life of the part that have been 

design. Asadi et al. (2009) were carried out an experimental study for Tractor MF-285 

connecting rod by using finite element analysis. The maximum stresses in different 

parts of MF-285 connecting rod were determined. From the analysis, three parts were 

being considered of the stress distributions which are pinning end, rod and crank end. 

Finally, authors show good agreement between finite element analysis and the 

experimental equation method. 
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Afzal and Fatemi (2004) were used finite element to predict stresses and 

hotspots experienced by the connecting rod. From the resulting of stress contours, the 

state of stress as well as stress concentration factors can be obtained. 

 

Seo et al. (2007) were studied numerical integration design process to 

development of suspension parts by semi-solid die casting process. Authors predicted 

stress distribution for the lower suspension control arms from the strength analysis. The 

strength analyses were presented von Mises stress distributions and the strain 

distributions by using five ultimate load conditions and dynamic strength analyses were 

distributed. ADAMS/NASTRAN and ADAMS/FLEX are used to provide solutions to 

the stress loading equations for the shovel components (Frimpong and Li, 2007). It 

contains computationally efficient numerical simulation routines for executing realistic 

full-motion behavior of complex mechanical systems and provides quick analysis for 

multiple design variations toward an optimal design (Erdman et al., 2001). 

 

Srikantan et al. (2000) were discussed the vehicle durability and stress analysis 

using data from proving ground testing. The authors were discussed the differences 

between yield strength based durability analysis. The authors concentrated on the design 

of truck body structure and the loads from proving ground tests of similar vehicles are 

used in simulations to determine the stresses of the vehicle. The simulation used to 

calculate stress is MSC.NASTRAN. The results from a correlation study showed the 

analytical strains from FE analysis and proving ground tests correlated very well. 

 

Medepalli and Rao (2000) were discussed the prediction of road loads. The 

authors here used of computer simulations to predict road loads early in the design 

process, before a prototype vehicle is developed. The authors outline and validated a 

process for the prediction of road loads. The computer simulation used was created 

using ADAMS. The results obtained from the simulations were correlated to measured 

road loads. The results showed that the flexible body models correlated more closely to 

the measured road loads. The authors find out and measured loads were correlated very 

well. 
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One of the basic tasks in the dynamic analysis of the various constructions is to 

evaluate the displacements of the construction as the time dependent functions when the 

time varying loads are given. Before the equations of motion are defined one should 

assume that the system for which those equations are to be defined is linear or 

nonlinear. It is important to define the goal of the analysis prior to the formulation of the 

finite element model. The dynamic analysis process is shown in Figure 2.6. The natural 

frequencies and mode shapes of a structure provide enough information to make design 

decisions. Forced response is the next step in the dynamic evaluation process. The 

solution process reflects the nature of the applied dynamic loading. 

 

Dynamic behaviour is determined by the forces imposed on the vehicle from the 

tires, gravity and aerodynamics. In a real vehicle, the wheel loads are constantly 

changing. These loads may be in the longitudinal direction such as acceleration and 

braking forces in the lateral direction such as cornering forces and in the vertical 

direction. Dynamic response play a key role in automotive industries under different 

operating conditions for determining whether engine frequencies or tire excitations from 

the road surface adversely affect responses at other areas of a vehicle such as at the 

steering column or in the seats and to evaluate the effect of vibrations on the 

performance of consumer products and other high-tech electronic devices. 

 

Baek et al. (1993) were proposed an integrated computational durability analysis 

methodology. The multi-body dynamic simulation software (DADS) was used to 

calculate dynamic loads of a mechanical component that is modeled as a rigid body in 

the multi-body mechanical system. Finite element analysis with substructure techniques 

was used to produce accurate stress fields. The superposition principle was used to 

obtain the dynamic stress histories at the critical location. 
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Figure 2.6: Dynamic analysis process (Rahman, 2007) 

 

Kim et al. (2002) were studied a method for simulating vehicle dynamics loads 

however they include the durability estimation. For their multibody dynamic analysis, 

they use DADS and a flexible body model. For their dynamic stress analysis MSC 

NASTRAN was used. This study showed that the actual service environment could be 

simulated instead of using an accelerated testing environment. Since the durability 

results for the actual service environment can be obtained using a simulation, they can 

be determined early in the design process. Recently, the suspension arm get more 

attention by much research such as Attia (2002) study dynamic analysis of the double 

wishbone motor-vehicle suspension system using the point-joint coordinate’s 

formulation the mechanical system is replaced by an equivalent constrained system of 

particles and then the laws of particle dynamics are used to derive the equations of 

motion. 

 

Yuan (2004) was investigated an active and robust vibration control technique 

based on identified models. The technique was suitable for applications where modal 
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parameters, such as eigenfunctions or mass/stiffness coefficients are not available 

analytically. This optimization strategy moves the fundamental natural frequencies of a 

dynamically loaded component away from the maximum frequency of its forcing 

functions so that there is no resonance problem (Krishna, 1998; Krishna and Carifo, 

2000 and Ma et al., 1995). The inputs into such programs must include a complete 

description of the forces acting on the components through the dynamic modeling 

(Frimpong et al., 2005).  

 

Yim and Lee (1996) were proposed an integrated system for the dynamic stress 

of the vehicle components by developing a data structure that defines the vehicle system 

and interface programs which support multidisciplinary computer-aided simulation and 

design activities. They concluded that the combination of the dynamics modeling and 

finite element analysis is the practical techniques for the fatigue design of the 

automotive component. 

 

Gopalakrishnan and Agrawal (1993) carried out the durability analysis of full 

automotive body structures using an integrated procedure in which the dynamic 

simulation software ADAMS was used to generate loading histories. The inertia relief 

analysis of MSC NASTRAN was used to analyze the model and to obtain the 

displacements and stresses. Then, the Fatigue Life Analysis Procedure (FLAP) was used 

to analyze the durability for selected critical areas from the full model.  

 

The solution of the natural frequencies and normal modes requires a special 

reduced form of the equation of motion. The methods of eigenvalue extraction including 

transformation methods and tracking methods. In the transformation method, the 

eigenvalue equation is first transformed into a special form which eigenvalues may 

easily be extracted. In the tracking method, the eigenvalues are extracted one at a time 

using an iterative procedure. 

 

2.6     OPTIMIZATION TECHNIQUES  

 

In engineering design, the knowledge about a planned system is not at all 

complete. Often, a probabilistic quantification of the uncertainty arising from the 
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missing information is warranted in order incorporate efficiently to partial knowledge 

about the system and its environment into their respective models. In this framework, 

the design objective is typically related to the expected value of a system performance 

measure. This system design process is called stochastic system design and the 

associated design optimization problem stochastic optimization. Firstly, it is in a design 

lead to the best system performance in terms of a specified metric. It is therefore, 

desirable to optimize the performance measure over the space of design variables that 

define the set of acceptable designs. Secondly, the modeling uncertainty arises because 

of no mathematical model can capture perfectly the behavior of a real system and its 

environment. In practice, the designer chooses a model that adequately represents the 

behavior of the built system as well as its future excitation. However, there is always 

uncertainty about which values of the model parameters give the best representation of 

the constructed system and its environment. Thus the uncertainty parameter should be 

quantified. Furthermore, whatever model is chosen, there always be an uncertain 

prediction error between the model and system responses. For an efficient engineering 

design, all these uncertainties associated with the future excitation events as well as the 

modeling of the system must be explicitly accounted. 

 

Stochastic programming was introduced by Dantzig (1955) and many 

researchers (Ermoliev and Wets, 1988 and Mulvey et al., 1995). Extensions to 

stochastic integer programming appear in Schultz et al. (1998) and Takriti and 

Birge (2000). Applications of similar design approaches considering uncertainties have 

been presented in many areas including transportation engineering (Sakawa et al., 

2002); chemical engineering (Acevedo and Pitsikopoulos, 1988 and Gupta and 

Maranas, 2000); telecommunications (Laguna, 1998); energy scheduling           

(Morton, 1996); control design (Wang and Stengel, 2002); and finances (Kouwenberg 

and Zenios, 2001). The state-of-the-art review by Sahinidis (2004) provides details 

about the optimization methods that have been suggested for identifying the optimal 

design configuration in such design applications. Most of these methods take advantage 

of some special characteristics of the class of problems addressed. This feature often 

limits their applicability to other types of robust-to-uncertainties design problems. 
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It should be noted that even though the theoretical ideas for design considering 

modeling uncertainties were introduced many decades ago. The computational cost 

associated with this design methodology has reduced the range of applications 

considered because of the complex coupling between system modeling, stochastic 

analysis, and optimization. Often the formulation of stochastic design improvement is 

restricted by the available computational resources and the ability to perform the 

associated design optimization.  Complex systems have eventually dictated (i) use of 

mathematical models that do not adequately consider all characteristics of the true 

system behavior, (ii) adaptation of approximate techniques for evaluating their 

performance in a probabilistic setting. Recent advances in software and hardware 

computer technology have contributed to overcome many of these restrictions and the 

general concept of stochastic system design is rapidly spreading to new types of 

applications. 

 

In the current study, the focus is primarily on the design of structural and 

components. For this part, stochastic design improvement is usually related to the 

expected reliability of the components design, material, quantified in terms of the 

probability typically expressed in one of the following three forms: (i) optimization of 

the system reliability given deterministic constraints (May and Beck, 1998 and Au, 

2005); (ii) optimization of the cost of the structure given reliability constraints 

(Enevoldsen and Sorensen, 1994 and Vietor, 1997); or (iii) optimization of the expected 

life-cycle cost of the structure (Ang and Lee, 2001). Approaches have been suggested 

for transforming the latter problem to one of the former two. This is established by 

approximating the cost related to future damages to the structure in terms of its failure 

probability (Kong and Frangopol, 2003). 

 

2.6.1     Design of Experimental Technique   

 

Design of experiments (DOE) is a useful tool that used for exploring new 

processes gaining increased knowledge of the exiting processes and optimizing these 

processes to achieving a better performance (Rowlands and Antony, 2003).  The DOE 

was developed in the early 1920s by Sir Ronald Fisher and his co-worker focus on 

agricultural science. Design of experiment is not a favorite technique for many 
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engineers and manager in an organization due to the number of crunching involve a 

statistical number until they know the true potential of DOE for achieving breakthrough 

improvement in product quality and process efficiency in 1951 to late 1970.  

 

The most effective way to improve product quality and reliability is to integrate 

them in the design and manufacturing process. The DOE is a useful tool that can be 

integrated into the early stages of the development cycle. It has been successfully 

adopted by many industries including automotive, semiconductor, medical devices, 

chemical products, etc. The RSM is an important methodology used in developing new 

processes, optimizing their performance, improving the design and formulation of new 

products. It is often an important concurrent engineering tool in which product design, 

process development, quality, manufacturing engineering and the operations personnel 

often work together in a team environment to apply RSM. The dynamic and foremost 

important tools are design of experiment, wherein the relationship between responses of 

a process with its input decision variables is mapped to achieve the objective of 

maximization or minimization of the response properties (Raymond and Douglas, 

2002). Central composite design is far more efficient than running 3K factorial design 

with quantitative factors (Montgomery, 2005).  

 

In order understand properly a design of experiment, it is essential to have a 

good understanding of the whole process. A process is the transformation of inputs to 

outputs. In the context of manufacturing, input are factoring of process variable such as 

a people, material, method, environment, machine, procedure, etc. and output can be 

performance characteristic of the product. Sometimes, an output can also be referring to 

as a response. Suspension system can moreover, be treated like a system based on RSM 

technique. Figure 2.7 shows the outputs are performance characteristic, which is 

measuring to assess the process performance. The controlled and uncontrolled variables 

are responsible to variability in product performance. This is the fundamental strategy 

of robust design (Anthony, 2003). Different designs have been used for different 

experiment purposes. 
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Figure 2.7: Suspension system based on CCD 

 

2.6.2     Artificial Intelligent 

 

The purpose of artificial intelligent (AI) is to develop a robot that lives in the 

world with a computer for brain. Knowledge based systems (KBS) are different from 

traditional computer applications in multiple aspects. First, a KBS represents knowledge 

explicitly as a set of declarations which is referred to as the knowledge base. Traditional 

applications implement knowledge implicitly as procedures and therefore, can only 

apply it in a predetermined way. Furthermore, they are hard to maintain as an update of 

the information is reflected by the modification of a procedure. A KBS provides 

problem solving capability which is performed by an inferential engine. It is also able to 

justify its behavior by expressing the inferential steps that have led to a certain 

conclusion. An expert system (ES) has an intelligent behavior and is capable of 

performing tasks for which a specific competence or expertise is usually required. Most 

expert systems implement the model of a KBS with additional tools that enables it to 

solve specific tasks such as a medical diagnose. A completely general and flexible 

expert system has not yet been developed. Neural networks have been partly 

successfully used integrated into expert systems to automate common sense functions 

such as the identification of forms. A neural network implements the opposite of the 

intellectual model of a KBS. It is constructed with units called neurons, whose behavior 

Control factors: 
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is defined by mathematical and statistical functions. There are “input units”, “output 

units” and “hidden units” which are all connected to each other, building the network. 

They interact by sending and receiving signals over the connections which are assigned 

weights. Neural networks can and must be trained by practicing learning patterns. If the 

network’s output is incorrect, signals are sent back into the network until it “learned” 

the right answer. If a completely new input is fed into the network, it will try to find an 

already learned input pattern that is similar and will produce the learned output. This 

means that the neural network is capable of reasoning by analogy without having been 

programmed in a traditional way.  

 

One of the used artificial neural networks models is the well-known Multi-layer 

perceptron (MLP) (Haykin, 1998). The training process of MLP for pattern 

classification problems consists of two tasks. The first one is the selection of an 

appropriate architecture for the problem and the second is the adjustment of the 

connection weights of the network. The other technique RBFNN is defined in the 

literature as a kind of ANN that has radial activation functions on its intermediary layer. 

The function approximation problem has been tackled many times in the literature by 

using RBFNN. It is a robust and versatile computational method that can simulate the 

physical behaviour of suspension arm. The growth of neural networks has been heavily 

influenced by the RBFNN. The application of the RBF network can be found in pattern 

recognition (Musavi et al., 1992). The two most important parameters of RBFNN, the 

center and the covariance matrix, have been researched thoroughly. RBFNN models are 

the popular network architectures used in most of the research applications in medicine, 

engineering, mathematical modelling, etc. (De Alcantara et al., 2002 and Coccorese et 

al., 1994). The main areas of concentration have been control, identification and damage 

detection. The majority of research in this area uses the neural network and the results 

are mostly limited to computer simulations. A few successful experimental results in the 

area of vibration control have been published by Chen et al. (1992).                   

Szewczyk and Hajela (1993) used a neural network to solve a problem similar to the 

model updating problem. However, the finite element modeling is useful to analyze and 

optimize these structures (Gass et al., 1993).  
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Many researchers focus on linear and nonlinear response application, the most 

important work in terms of FEM program and integrating with artificial intelligence 

techniques. Abdullah, (2009) was developed RBFNN model for prediction of nonlinear 

response for paddle cantilever. The stress distributions and the vertical displacements of 

the designed cantilevers were simulated through ANSYS a nonlinear finite element 

program and the regression between the result of FEM and prediction by RBFNN model 

has shown the least error.  Two intelligent techniques had been used by (Wannas, 2008 

and Wannas and Abd, 2008). RBFNN and Support Vector Machine (SVM) on the 

uniformly loaded paddle, the simulation has been shows that SVM modeling better than 

RBFNN and the both techniques is fast, saving time and quite feasible. 

  

The primary goal of AI research is to increase the understanding of perceptual, 

reasoning, learning, linguistic and creative processes. This understanding is helpful in 

the design and construction of useful new tools in science, industry and culture, Just as 

the invention of the internal combustion engine and the development of machines result 

in unprecedented enhancement of the mobility of our species, the tools resulting from 

artificial intelligent research are already beginning to extend human intellectual and 

creative capabilities in ways that our predecessors could only dream about. 

Sophisticated understanding of the underlying mechanisms and the potential and limits 

of human as well as other forms of intelligence are also likely to shed new lights on the 

social, environmental and cultural problems of our time and aid the search for solutions. 

 

2.6.3     Stochastic Design Improvement 

 

Most applications of robust design have been concerned with static performance 

in mechanical engineering and process systems (Zang et al., 2004). Whereas the 

objective of robust design is to optimize the mean and minimize the variability that 

results from uncertainty represented by noise factors and to test the effect of the 

variability in different experimental factors using statistical tools. Bharatendra et al. 

(2004) were studied the robust design of an interior hard trim to improve occupant 

safety in a vehicle crash. They used orthogonal arrays and compound noise factors to 

cut down on the number of experimental runs originally needed to address all the 

control and noise factors of interest. To achieve a robust interior hard trim design, the 
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study used separate analyses to identify control factors affecting mean and variability. 

From a technical standpoint, the statistical process control (SPC) and statistical 

experimental design (SED) are two methods have been used as a robust design to 

improve quality and productivity (Sreeram, 1994). Figure 2.8 presents the goal of robust 

design to evaluate and find a suitable design of any modal. Robust design is a tool to 

evaluate and understand the behaviour of systems in the presence of uncertainty. The 

types of uncertainties that can be treated are: engineering tolerances (e.g. on thickness, 

stiffness, etc.), the material property scatter (e.g. yield stress), the load scatter 

(environmental forces, e.g. gusts, temperature, etc.) and scatter in boundary conditions. 

 

Stochastic design improvement technique is a very fast and efficient method for 

improving the performance of a system simulated with stochastic approach. The cost of 

SDI is independent of the number of stochastic variables. SDI does not optimize –it tries 

to take a system (the corresponding cloud of points) to a user-specified target location. 

This location represents acceptable (not optimal) performance and may be specified for 

as many outputs as desired. Target performance should not be specified for outputs that 

are correlated (dependent). Information on which outputs are independent (i.e. that can 

be used as targets in SDI) could be obtained from a previous stochastic simulation.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Robust concept 

 

The relevance of this methodology is that it allows finding the design variables 
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it is based on an iterative Monte Carlo simulation procedure. Therefore the substructure 

approach enables to speed up the analysis of a large amount of cases and at the same 

time to generate enough data for an evaluation of the new methodology. 

 

In the present work, the deals with the linear response of the dynamic behavior 

of lower arm located in the suspension part of a vehicle and which makes use of a new 

stochastic methodology, stochastic design improvement as implemented in the 

commercial code which can be coupled with specialized FEM codes for the 

deterministic structural part of the process. 

 

2.7     CONCLUSION  

 

The brief history of suspension system and review of other relevant research 

studies are covered. The fundamentals of finite element analysis and dynamic analysis 

are introduced in this chapter. Optimization techniques include response surface 

methodology, stochastic design improvement and artificial intelligent techniques are 

reviewed with great details. 



 

 

 

 

 

CHAPTER 3 

 

 

METHODOLOGY 

 

 

3.1     INTRODUCTION 

 

This chapter presents the mechanical model description and introduced the 

methods of real eigenvalue extraction.  Detailed insight on the finite element analysis 

techniques is also presented.  Propose the robustness analysis is explained. Finally, the 

potential neural network technique and the response surface methodology are also 

presented. 

 

3.2     STRUCTURAL MODEL DESCRIPTION 

 

Structural model vehicle suspension is a mechanism locating between the sprung 

mass (vehicle body) and the unsprung masses (wheels) of the vehicle. The suspension 

provides forces between these two masses of the vehicle according to certain state 

variables of the vehicle. A good car suspension system should have satisfactory road 

holding ability while still providing comfort when riding over bumps and holes in the 

road. When the vehicle is experiencing any road disturbance the vehicle body should 

not have large oscillations and the oscillations should dissipate quickly.  

 

The advantage of good kinematic possibilities, the low unsprung mass at 

moderate costs is a reason to select the double wishbone system as concept for an 

independent front suspension on a vehicle. The double wishbone suspension shows a 

spring made by the torsion bar, applied to the lower arm. This allows a limited upper 

arm and introduces limited values of stress in the upper parts. Therefore, the lower arm 

alone adopts most of the load. Different front suspension types exist on the market. 



27 

 

Nowadays, the commercial market asksh for more and better properties of the vehicle, 

which results in new front suspension designs. Most advantages for double wishbone 

suspensions are space saving, attenuate of road noise, decreasing steering vibration and 

good kinematic possibilities (Jack, 2005). For these advantages, lower wishbone 

suspension used for this study. A three-dimensional model of suspension arm was 

modeling utilizing Solid Works software as shown in Figure 3.1(a). The overall 

dimension is as shown in Figure 3.1(b). The length 341 mm selected for the model and 

240 mm, 32 mm have been set as width and high respectively. 

 

 

(a) Structural model 

 

 

(b) Overall dimensions 

Figure 3.1: Structural model and overall dimensions of suspension arm (Fanglin, 2007) 
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3.3     MATERIAL PROPERTIES  

 

A material property plays an important role in the result of finite element (FE) 

method. The material properties are one of the major inputs. The materials parameters 

required depend on the analysis methodology being used. The mechanical properties of 

7079-T6 aluminum alloy are shown in Table 3.1. AA7079-T6 has been chosen for the 

lower suspension arm due to their good workability, high resistance to corrosion and 

lightweight, economic and easy to produce (KM, 2011).  

 

Table 3.1: Mechanical properties of aluminum alloy 7079-T6 

 

Material Young’s 

Modulus (GPa) 

Poisson’s  

ratio 

Tensile strength  

(MPa) 

Yield strength 

(MPa) 

Aluminum alloy 

AA7079-T6 

70 0.33 540 450 

 

3.4     FINITE ELEMENT MODELING 

 

Finite element analysis (FEA) has been conducted both on individual 

components and on assemblies of connected components. Using the finite element 

models to predict the stress-strain results of the structures becomes more and more 

important in the modern mechanical industries, such as the aerospace and vehicle 

suspension arm. The traditional method for evaluating the structural properties of a 

product is to perform a series of dynamic tests on the prototypes of the product. The 

objective of the stress/strain analysis is to obtain the complete three dimensional stress 

and strain distributions at a potential failure site. Linear elastic analysis is the most 

common type of stress analysis pursued in automotive design and analysis. FE analysis 

used to calculate the stress distribution for an entire lower arm structure and provides an 

ideal predict to durability analysis.  

 

The modeling process is made up of four important steps: importing 3D 

representations in to FE Tools, Assigning Material Properties, Constraining the Model, 

and Loading the Model. The combined approach of modeling using Computer Aided 
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Design (CAD) and FE is found to be statistically adequate. The MSC.Nastran suite for 

finite element analysis is known for high performance, quality and ability to solve all 

kinds of challenging simulation.  

           

The stress histories calculated using the linear static analysis method and usually 

the most accurate used by members of the finite element community as a reference to 

evaluate the accuracy of the design. MSC.Nastran performs static and dynamic analysis 

and simulation on structure. Generate the mesh for the components and free meshing 

feature of the software employed since it has no geometry restrictions and it defined on 

complicated volumes. Tetrahedral meshing produce high quality meshing for boundary 

representation most of solids model imported from CAD systems. 

 

3.5     DYNAMIC MODEL OF SUSPENSION ARM 

  

Automotive suspension is a vibration system and always the mechanical 

vibration associated with the fluctuation of mechanical loads. The suspension system 

can offer both the reliability and versatility including passenger ride comfort with less 

power demand. Vibration can affect comfort, performance and the safety of people. 

These facts make it imperative that engineers understand the vibration behaviour of 

every mechanical component, machine, structure, and system. Natural frequency is the 

rate of energy interchange between the kinetic and the potential energies of a system 

during motion. As the mass pass through the static equilibrium position, the potential 

energy is zero (Dimarogonas, 1996). The natural frequency is expressed as Eq. (3.1) and 

Eq. (3.2). 

 

M

K
n                                                                           (3.1) 

 

where:  ωn is natural frequency 

  K is the stiffness of the suspension arm material. 

  M is mass of suspension arm 
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where:  Ks is the suspension stiffness 

  Mc  is the mass of the vehicle 

 

For the wheel natural frequency ωn, it is necessary to take into account Ks and Kt 

because of the wheel oscillates the suspension and tire springs. Although these two 

springs are on opposite side of the wheel mass, the mass would feel the same force 

when the two springs were in parallel on one side of the mass. In the other words, the 

two springs Ks and Kt are in parallel and their equivalent rate is their sum as Eq. (3.3). 
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(3.3) 

 

where:  Kt is tire deflection stiffness 

  mw is the unsprung mass 

 

The role of the vehicle suspension system is to support and isolate the vehicle 

body and payload from road disturbances, maintain the traction force between tires and 

road surface. Automobile suspension arm is two-degree of freedom system. The two-

degree of freedom suspension model is illustrated in Figure 3.2. Typical whole 

suspension system is also shown in Figure 3.3 (Milliken, 2002 and Milliken and 

Milliken, 2002). The suspension model can be defined by Eq. (3.4) and (3.5). In order to 

observe the suspension status, Eq. (3.4) and (3.5) can be re-written as a state-space in 

Eq. (3.6). 
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   where  z1 is the unsprung mass displacement 

 z2 is the  sprung mass displacement  

   ż1 is the unsprung mass velocity 

   ż2 is the sprung mass velocity       

g is the acceleration of gravity 

   q is the road disturbance 

   1z  is the unsprung mass acceleration  

   2z  is the sprung mass acceleration 

  [M] is the mass matrix 

  [K] is the stiffness matrix 

   [C] is the coefficient matrix 

 

 

Figure 3.2: Quarter car passive suspension arm 
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Figure 3.3: Suspension system 

 

The Lanczos method combines the best characteristics of both the tracking and 

transformation methods. Due to this the Lanczos method is the best method to use for 

most models. The Lanczos method overcomes the limitation and combines the best 

features of the other methods. It requires that the mass matrix be positive semi-definite 

and the stiffness be symmetric. It does not miss roots but has an efficiency of the 

tracking methods due to it only makes the calculations necessary to find the roots. This 

method computes accurate eigenvalues and eigenvectors. This method is the preferred 

method for most medium-to large-sized problems since it has a performance advantage 

over the other methods. The basic Lanczos recurrence is a transformation process to 

tridiagonal form (Lanczos, 1950). However, the Lanczos algorithm truncates the 

tridiagonalization process and provides approximations to the eigenpairs (eigenvalues 

and eigenvectors) of the original matrix. The block representation increases 

performance in general and reliability on problems with multiple roots. The matrices 

used in the Lanczos method are specially selected to allow the best possible formulation 

of the Lanczos iteration. 
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3.6     OPTIMIZATION TECHNIQUES 

 

Optimization has been applied to problems in finance for at least the last half 

century. An important distinguishing feature of problems in financial markets is that 

they are generally separable and well defined. The objective is usually to maximize 

profit or minimize risk, and the relevant variables are amenable to quantification, most 

of the times in monetary term. Stochastic optimization delivers new nominal values in 

the design variables that satisfy the targets. A stochastic process is a probabilistic model 

of a system that evolves randomly in time and space. Stochastic optimization consists in 

combining the deterministic optimization methods with uncertainty quantification 

techniques to measure the sensitivity and variability of the response. Optimization today 

is a basic research tool in all areas of engineering, medicine and sciences. The decision 

making tools based on optimization procedures are successfully applied in a 

manufacturing of practical problems. 

 

Optimization has been expanding in all directions at an astonishing rate during 

the last few decades. New algorithmic and theoretical techniques have been developed, 

the diffusion into other disciplines has proceeded at a rapid pace and the knowledge of 

all aspects of the field has grown even more profound (Floudas and Pardalos, 2002 and 

Abello et al., 2001).  

  

A slightly different strategy for robust design optimization is based on stochastic 

optimization. The stochastic nature of the optimization arises from incorporating 

uncertainty into the procedure, either as the parameter uncertainty through the noise 

factors. The earliest work on stochastic optimization can be traced back to the 1950s 

(Beale, 1955) and detailed information may be obtained from Birge and 

Louveaux (1997) and Kall and Wallace (1994). The objective of stochastic optimization 

is to minimize the expectation of the sample performance as a function of the design 

parameters and the randomness in the system. 
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3.6.1     Response Surface Methods 

 

Response surface methods are used to estimate the transfer functions at the 

optimal region. The estimated function is then used to optimize the responses. The 

quadratic model is the model used in RSM. Similar to the factorial design, linear 

regression and analysis of variance (ANOVA) are the tools for data analysis in RSM.  

Hence, central composite design (CCD) approach was selected for the present study. In 

light of this phase, two variables out of the four variables were selected for this phase. 

DOE is not only a collection of statistical techniques that enable an engineer to conduct 

better experiments and analyze data efficiently. In this section, general guidelines for 

planning efficient experiments are given. The seven-steps of procedure are presented in 

Figure 3.4 (Montgomery, 2005 and Wu and Hamad, 2000). The objectives of the 

experiment are clearly stated. It is helpful to prepare a list of specific problems that are 

to be addressed by the experiment. Responses are the experimental outcomes. An 

experiment may have multiple responses based on the stated objectives. The responses 

that have been chosen should be measurable. A factor is a variable that is going to be 

studied through the experiment in order to understand its effect on the responses. Once a 

factor has been selected, the value range of the factor that will be used in the experiment 

should be determined. Two or more values within the range need to be used. These 

values are referred to as levels or settings. Practical constraints of treatments are 

considered, especially when safety is involved. A cause and effect diagram capable 

utilized to help identify factors and determine factor levels. According to the objective 

of the experiments, the analysts select the number of factors, the number of level of 

factors and an appropriate design type. A design matrix used as a guide for the 

experiment. This matrix describes the experiment in terms of the actual values of factors 

and the test sequence of factor combinations. Engineering knowledge integrated into the 

analysis process. Once the data have been analyzed, practical conclusions and 

recommendations made. Graphical methods are often useful, particularly in presenting 

the results to others. Confirmation testing performed to validate the conclusion and 

recommendations.  
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 Figure 3.4: General guidelines for conducting DOE 

 

The above describe steps are the general guidelines for performing an 

experiment. A successful experiment requires knowledge of the factors, the ranges of 

these factors and the appropriate number of levels to be used. Generally, this 

information is not perfectly known before the experiment. Therefore, it is suggested to 

perform experiments iteratively and sequentially. It is usually a major mistake to design 

a single, large, comprehensive experiment at the start of a study. 

 

3.6.2     Radial Basis Function Neural Network Technique 

 

Radial basis function neural network have increasingly attracted interest for 

engineering applications due to their advantages over traditional multilayer perceptrons 

namely faster convergence, smaller extrapolation errors and higher reliability. Over the 

last few years, more sophisticated types of neurons and activation functions have been 

Clarify and state objective 

Draw conclusions and make 

recommendations 

Choose responses 

Choose factors and levels 

Choose experimental design 

Perform the experiment 

Analyze the FE result 
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introduced in order to solve different sorts of practical problems (Kumar, 2005). In 

particularly, RBFNN have proved very useful for many systems and applications. One 

of the used artificial neural networks models is the well-known MLP. The training 

process of MLP for pattern classification problems consists of two tasks, the first one is 

the selection of an appropriate architecture for the problem and the second is the 

adjustment of the connection weights of the network. The major difference between 

RBF networks and back propagation networks (that is, multi layer perceptron trained by 

back propagation algorithm) is the behavior of the single hidden layer. Rather than 

using the sigmoidal or S-shaped activation function as in back propagation, the hidden 

units in RBF networks use a Gaussian or some other basis kernel function. Each hidden 

unit acts as a locally tuned processor that computes a score for the match between the 

input vector and its connection weights or centers. In effect, the basis units are highly 

specialized pattern detectors. The weights connecting the basis units to the outputs are 

used to take linear combinations of the hidden units to product the final classification. 

The idea of RBFNN derives from the theory of function approximation are as follows: 

 

i. The hidden nodes implement a set of radial basis functions  

ii. The training is very fast. 

iii. The networks are very good at interpolation. 

 

 Structure of RBF Networks 

 

RBFNN was used in the context of neural networks as linear and nonlinear 

function estimators and indicated their interpolation capabilities by Broomhead and 

Lowe (1988). Hartman et al. (1990); Park and Sandberg (1991, 1993) were proved that 

RBFNN are capable of approximating any function with arbitrary accuracy. As a 

popular model in the community of artificial neural networks, RBFNN has attracted 

intense researching interests (Sandro, 2006). The neural network is a mapping between 

its inputs and outputs based on a number of known sample input-output pairs. In 

general, the more samples available to train the network, the more accurate the 

representation of the real mapping will be. These samples are obtained by solving the 

direct problem. The structure of an RBFNN networks in its most basic form involves 

three entirely different layers as shown in Figure 3.5. The first input layer feeds data to a 
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hidden intermediate layer. The hidden layer processes the data and transports it to the 

output layer.  

 

 

 

Figure 3.5: Radial basis function neural networks 

                                                                                                                      

Only the tap weights between the hidden layer and the output layer are modified 

during training. Each hidden layer neuron represents a basis function of the output space 

with respect to a particular center in the input space. The activation function chosen is 

commonly a Gaussian kernel. This kernel is centered at the point in the input space 

specified by the weight vector. Radial basis function networks are used commonly in 

function approximation and series prediction (Pandya, 1995). The input layer is made 

up of source nodes (sensory units) whose number is equal to the dimension of the input 

vector (u) 

 

Network Training 

 

One of the advantages in the RBFNN use is the training speed, taking into 

account that this process involves, usually, two distinct stages: an unsupervised training 

and a supervised training. In the unsupervised training, the centers are created for the 

intermediary layer. Commonly, this stage employs means algorithm (Sandro, 2006). In 

supervised training, a linear method is employed to minimize the established error 

measure.  However, it is important to note that the RBFNN performance measure is 
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intrinsically linked to the intermediary layer determination. A characteristic feature of 

radial function is that its response decreases or increases monotonically with distance 

from a central point named as center of the radial function (Simon, 2002). These 

neurons are so called radial basis activation function. Various methods have been used 

to train RBF networks (Kumar, 2005; Kurban and Besdok, 2009). Approach first uses 

K-means clustering to find cluster centers which are then used as the centers for the 

RBF functions. However, K-means clustering is a computationally intensive procedure 

and it often does not generate the optimal number of centers. Another approach is to use 

a random subset of the training points as the centers. Training of the RBFNN in general 

can be divided into two stages that are training in the hidden layer followed by training 

in the output layer. Training in the hidden layer is unsupervised and it involves 

determination of the centers and spread of the Gaussian functions of the hidden nodes 

utilizing an appropriate clustering algorithm. On the other hand, training in the output 

layer uses a supervised method like the least mean square (LMS) algorithm. The centers 

of the Gaussian functions are determined with the K-means clustering algorithm and the 

spreads are calculated using the second order nearest neighbor heuristic. The weights 

between the hidden and output layers are determined by minimizing the square error of 

the network output with the LMS algorithm 

  

  Hidden layer 

 

The second layer is the hidden layer which is composed of nonlinear units that 

are connected directly to all of the nodes in the input layer. It is of high enough 

dimensions which serves a different purpose from that in a multilayer perceptron. Each 

hidden unit takes its input from all the nodes at the components of the input layer and 

the hidden units contain a basis function, which has the parameters center and width. 

The center of the basis function for a node i at the hidden layer is a vector ci whose size 

is the as the input vector u and there is normally a different center for each unit in the 

network. 

 

First, the radial distance di, between the input vector (u) and the center of the basis 

function (ci) is computed for each unit i in the hidden layer as Eq. (3.7) 
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ii cud                                                                   (3.7) 

 

where   di is the radial distance 

  u is the input vector  

  ci is the center of the basis function 

  ║ is Euclidean norm 

 

The output (hi) of each hidden unit i is then computed by applying the basis function G 

to this distance as Eq. (3.8) 

 

),( iii dGh                                                           (3.8) 

   

where   σi is corresponding to the variance 

  h is hidden layer 

  G is the basis function 

 

Output layer 

 

The transformation from the input space to the hidden unit space is nonlinear, 

whereas the transformation to the hidden unit space to the output space is linear. The j
th 

output is computed as Eq. (3.9) 
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where  w is weight matrix 

 

Let y = xj be a given function of u. The function can be written in terms of the given 

basis functions as Eq. (3.10) 

 

)(
10 i

l

i ijj cuGwwy   
     j=1, 2… M                               (3.10) 

 



40 

 

u is the n-dimensional vector of input signal, c  is a constant vector in the same direction 

while ║ is Euclidean norm in the n-dimensional space and Practically xj shows how 

close vector u is to vector c  in n-dimensional space. The choice of ║ and c plays a 

critical role in the training algorithm and stability of the neural network system. There 

are no theoretical guidelines found for choosing these constants so they are chosen on 

heuristic grounds by experimental or trial and error techniques. In the summary the 

mathematical model of the RBF network can be expressed as Eq. (3.11)               

(Chiang et al., 2009). 

 
 





































2

2

1

1

111 1

.ˆ

iiji

j

cu

cu

WW

WW

y










                                        (3.11) 

 

RBF can be optimized with adjusting the weights and center vectors by 

iteratively computing the partials and performing the following updates               

(Kurban and Beşdok, 2009), the algorithm can be implemented to minimize the error 

after defining the error function has been written as Eq. (3.12). 

 




 2)( yyEr
                                                     (3.12) 

 

where   Er is the error RBF 

ŷ is the desired output 

 

3.6.3     Robust Design 

 

The robust design technique is very important to develop a better product for the 

automotive industry such as lower suspension arm. Rakesh et al. (2002) were using 

robust design method for developing and minimizing variability of products and 

processes in order to improve their quality and reliability for the spindle motor. The 

method of robust design using to make sure that a light weight, low cost and better 

safety component can be made at the final give us a better performance and market 

value in the automotive industry. Robust design performs stochastic simulation using 

modified Monte Carlo method that provides approximate solutions to problems 

expressed mathematically. Using random numbers and trial and error, it repeatedly 
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calculates the equations to arrive at a solution. Robust design provides the means to 

quickly sort through indicate the variables that have the most significant correlations, 

and therefore most impact the product’s performance. Correlation is a concept different 

from of sensitivity in that collective changes in variable values are considered. 

Correlation between two variables expresses the strength of the relationship between 

these variables by taking into account the scatter in all the other variables in a system. It 

is possible to compute correlations between any pair of variables (input-output, output-

output, etc.). Knowledge of the correlations in a system is equivalent to the 

understanding of how that system works. 

 

The general approach of robust optimization is to optimize against the worst 

instance that might arise due to data uncertainty by using a minimum-maximum 

objective. The resulting solution from the robust counterpart problem is insensitive to 

the data uncertainty as it is the one that minimizes the worst case and therefore is 

“immunized” against this uncertainty. The robust optimization methodology assumes 

the uncertain parameters belong to a bounded uncertainty set. Clearly the size of the 

uncertainty set influences the deviation from optimality of the robust solution        

(Diaz, 2010). Robust Design uses two metrics for measuring the correlation between 

variables:  

i. Pearson’s correlation coefficient (or linear correlation coefficient) 

ii. The Spearman rank coefficient (or non-linear correlation coefficient) 

 

Pearson’s correlation coefficient measures the linear correlation between 

variables. For two stochastic variables, x and y, their Pearson, or linear correlation is 

expressed as Eq. (3.13) 
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where  r is linear correlation coefficient 

   u mean value 

  x, y is stochastic variables  



42 

 

The values of the Pearson correlation range from –1 to 1. A value close to either 

1 or –1 indicates a strong linear correlation. Values close to zero indicate the variables 

are uncorrelated. The Spearman rank correlation compensates for this, and is a more 

reliable means for determining if a significant relationship exists between stochastic 

variables. The computation of the Spearman’s rank correlation is done by ranking the 

variables from highest to lowest assigning ranks from 1 to N.   The variable value is 

then replaced with its corresponding rank. The Spearman rank correlation coefficient 

(rs), is then computed as the linear correlation coefficient between the ranks (Ri) of the 

xis  and the ranks (Si)  of the yis, the (rs) is expressed as Eq. (3.14). 
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As with the Pearson correlation, the values of the Spearman coefficient range 

from –1 to 1. A value close to either 1 or –1 indicates a strong correlation. The 

Spearman ranking is used to create pie charts to show the relative influence of 

tolerances in input variables on the scatter (quality) in a particular functionality (output). 

A target output behavior is selected from the output available in FEM. The values of the 

design variables in this first set of 15 runs scatter around the nominal values for those 

variables contained in the input FEM. Another set of 15 runs is performed using the 

result from the first set of runs that is closest to the target value as the new nominal 

value. Stochastic design improvement surpasses classical optimization techniques in 

terms of performance and computational cost. The required inputs for the SDI analysis 

process are shown in Figure 3.6. 

 

The three input information are descriptions of the material properties, loading 

histories and geometry. Figure 3.7 shows the flows of steps that are perform in the SDI 

for the lower arm suspension design. The FE modeling and analysis are discussed in this 

chapter.  
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Figure 3.6: Schematic diagram of the SDI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Flow chart of steps in SDI 
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3.7     CONCLUSION  

  

The mechanical properties of suspension lower arm, finite element method and 

real eigenvalue extraction are presented in this chapter. The three techniques including 

the radial basis function neural network, stochastic design improvement and response 

surface method were also covered. The finite element modeling and analysis of lower 

arm and the dynamic characteristics of the lower suspension arm will be discussed in 

next chapter. 

 



 

 

 

 

 

CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

 

 

4.1     INTRODUCTION 

 

This chapter discusses the geometry of lower arm used for the FEA.  The mesh 

generation and its convergence are also presented. In addition, the validation of the 

finite element model will be presented and details of the FEA addressed in this chapter. 

The linear elastic finite element stress analysis method is performed. The frequency 

response analysis for the loading conditions is presented. A new approach to investigate 

the influencing factors of the lower suspension arm by integrating finite element 

analysis results with the central composite design approach and radial basis function 

neural network techniques has been presented. The stochastic optimization method 

including SDI will be presented. 

 

4.2     FINITE ELEMENT MODELING AND ANALYSIS 

 

The suspension arms are important parts in a vehicle. It provides ride comfort to 

the driver by isolating irregular vibrations from a road surface effectively and secures 

the maneuverability. The three dimensional structure model of suspension arm was 

developed using solidworks software. A 10 node tetrahedral element (TET10) was used 

for the solid mesh. Sensitivity analysis was performed to determine the optimum 

element size. Stress analyses considering the ultimate load condition applied to the parts 

during the driving were performed. The stress analysis was performed with NASTRAN 

commercial software. The mesh global length of 5.3 mm was considered and the force 

(x =-549.7N, y =12218.3N, z =845.9N) was applied one end of the bushing that 

connected to the tire (Figure 4.1). The other two bushing that connected to the body of 
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the vehicle are constraints. These loads are based on Seo et al. (2007). The three 

dimensional finite element model, loading and constraints of suspension arm are shown 

in Figure 4.1. 

 

 

 

(a) Three-dimensional FE model   

 

 

 

(b) Loading and constraints 

 

Figure 4.1: Three-dimensional FE model and (loading and constraints) 

Constraints 

Load 
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4.2.1     Meshing Technique  

 

Mesh generation is one of the most critical aspects of engineering simulation 

and selecting the right techniques of meshing are based on the geometry, model 

topology, analysis objectives and engineering judgment. Tetrahedral meshing produce 

high quality meshing for boundary representation of a solids model. Three-dimensional 

linear tetrahedron elements with 10 nodes (TET10) and tetrahedral elements with 4 

nodes (TET4) are used for the initial analysis (Figure 4.2). Convergence of stress and 

strain energy was considered as the criteria to select the mesh size. Too much 

refinement at the critical points would result in extremely lengthy analysis time and was 

therefore, avoided. The finite element model was using TET4 and TET10 types of 

elements are shown in Figure 4.2. Figure 4.3 represents von Mises stress contour for 

TET4 and TET0 elements. It is to analyze the influence for TET10 mesh at highest 

levels von Mises stress than TET4 mesh of various mesh global length. The result 

shows that the TET10 mesh predicted higher von Mises stresses than that the TET4 

mesh. Whereas, TET10 maximum von Mises stress 561 MPa appeared on the model 

and 116 MPa maximum von Mises stress occurred for TET4 (Figure 4.3). 

 

Variation of maximum principal stresses and displacement against the global 

mesh length are shown in Figure 4.4 and Figure 4.5 respectively. It can be seen that 

TET10 gives the higher stress and displacement throughout the global mesh length. As 

shown in Figure 4.3, there is quite a difference between the two elements, but the TET4 

mesh is still capable of identifying critical areas. The TET10 mesh is presumed to 

represent a more accurate solution since TET4 meshes are known to be dreadfully stiff 

(Felippa 2001). Both meshes have some distorted elements cause an error to the 

modeling in areas of elevated stress. In the design stage, these areas should be remeshed 

and further refined to check for solution convergence. Further analysis is confined to the 

region with the highest von Mises stresses using the TET10 mesh. The TET4 simulation 

is compared to the same simulation using the TET10 mesh. Figure 4.3 shows that the 

TET10 mesh predicts higher von Mises stresses than the TET4 mesh. Specifically, the 

TET10 mesh predicts the maximum von Mises stress of 561 MPa whereas TET4 

predicts 116 MPa. 
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(a) TET4 (46464 elements and 11319 nodes) 

 

 

 

(b) TET10 (46469 elements and 76035 nodes) 

 

Figure 4.2: Finite element model was using TET4 and TET10 elements 
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(a) TET4 

 

 

 

(b) TET10 

 

Figure 4.3: von Mises stresses contours  
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  Figure 4.4: Variation of maximum principal stress for different element types 
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Figure 4.5: Variation of maximum displacement for different element type 
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4.2.2     Identification of Mesh Convergence 

 

The finite element modeling and analysis were carried out using MSC.PATRAN 

and MSC.NASTRAN finite element analysis codes respectively. The geometry model 

consists of lower suspension arm, modeled with 10 nodes tetrahedral elements over the 

model volume. The model consists of a total of 76035 nodes and 46469 elements. 

 

The convergence of the stress was considered as the main criteria to select the 

mesh type. The finite element mesh was generated using TET10 for various meshes 

global length 6.7 mm (33532 elements), 6.6 mm (34253 elements),   6.1 mm (36353 

element), 5.7 mm (39545 elements), and 5.3mm (46469 elements). It can be seen that 

the smaller the mesh size capture the higher predicted stresses (Figure 4.6). It is also 

observed that mesh size of 5.3 mm (46469 elements) has obtained the maximum 

stresses, which is almost flattering in nature. The maximum stress obtained of 561, 574 

and 577 MPa for von Mises stress, Tresca and Maximum principal stress method 

respectively. Figure 4.7 shows the predicted results of stresses at the critical location of 

the suspension arm. The maximum principal stress method occurred highest stresses 

through the global length range. Thus TET10 and maximum principal stress method are 

selected for linear static and dynamic analyses of the suspension arm.  
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Figure 4.6: Maximum stresses versus mesh size at critical location for TET10 of lower 

suspension arm to check mesh convergence 



52 

 

4.2.3     Linear Static Analysis 

 

The stress histories calculated using the linear static analysis method are usually 

the most accurate and commonly used. The linear static stress analysis was performed 

utilizing MSC NASTRAN to determine the stresses and strains result from the finite 

element model. The material models utilized of elastic and isotropic material. The 

convergence of the finite element model of the structure was tested for two types of 

elements, including TET4 and TET10 and 5 different mesh sizes. The maximum 

principal stresses distributions of the suspension arm for the linear static stress analysis 

is shown in Figure 4.7. From the results, the maximum principal stresses of 577 MPa 

was obtained at node 151. 

 

 

 

Figure 4.7: Stresses versus mesh size at critical location for TET10 to check mesh 

convergence 

 

4.2.4     Dynamic Analysis of Lower Suspension Arm 

  

Dynamic analysis is focused on the eigen-frequencies and mode shapes. From a 

physical point of view, an initial excitation of an undamped system causes to vibrate 

Maximum principal 

stress 577 MPa at 

critical location is 

151 node. 
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and the system response is a combination of eigenmodes, where each eigenmode 

oscillates at its associated eigen-frequency. Modal analysis is usually used to determine 

the natural frequencies and mode shapes of a component. It can be used as the starting 

point for dynamic analysis. The finite element analysis usually used several mode 

extraction methods. The Lanczos mode extraction method is used in this study  

(Rahman et al., 2007). Lanczos is the recommended method for the medium to large 

models. In addition to its reliability and efficiency, the Lanczos method supports sparse 

matrix methods that significantly increase computational speed and reduce the storage 

space. This method computes precisely the eigenvalues and eigenvectors. The number 

of modes was extracted and used to obtain the suspension arm stress histories, which is 

the most important factor in this analysis (Table 4.1). 

 

Table 4.1: Natural frequency of lower arm 

 

 

 

Using Lanczos method to obtain the first 10 modes of the suspension arm, which 

are presented in Table 4.1 and the shape of the mode are shown in Figure 4.8. It can be 

seen that the working frequency (80Hz) is far away from the natural frequency    

(205.26 Hz) of the first mode. The maximum displacement from the model analysis is 

presented in Table 4.2. 

 

No. of Mode  Natural Frequency (hz) 

1 205.26 

2 879.23 

3 997.58 

4 1900.1 

5 1948.5 

6 2349.2 

7 2524 

8 3079.3 

9 3619.4 

10 4187.4 
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(a) Mode 1, 205.26 Hz   (b) Mode 2, 879.23 Hz 

 

(c) Mode 3, 997.58 Hz   (d) Mode 4, 1900.1 Hz 

 

(e) Mode 5, 1948.5 Hz   (f) Mode 6, 2349.2 Hz 

 

Figure 4.8: Mode contour and mode shape 
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(g) Mode 7, 2524 Hz    (h) Mode 8, 3079.3 Hz 

 

(i) Mode 9, 3619.4 Hz       (j) Mode 10, 4187.4 Hz 

 

Figure 4.8: Continued 

 

Table 4.2: Maximum displacements from modal analysis 

 

Mode 

No 

x-axis displacement  

(μm) 

y-axis displacement 

(μm) 

z-axis displacement 

(μm) 

1 5.9362769 1.1423386 66.325012 

2 9.1471920 18.259533 58.596310 

3 18.282864 24.353616 65.195534 

4 10.549701 18.638037 10.567502 

5 8.2864723 44.226292 10.115671 

6 20.041723 20.648651 98.877060 

7 20.919615 36.880108 62.914886 

8 12.581594 34.364082 122.16453 

9 35.766823 21.469292 116.34058 

10 45.454102 14.030432 34.420017 
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4.3     OPTIMIZATION TECHNIQUES   

 

4.3.1     Response Surface Methodology 

 

Suspension system produces unwanted outputs namely squeal for a set of input 

parameters. The present study was aimed to develop the input-output relationships for 

prediction of lower suspension arm response. In order to arrive at the most influential 

variables and its effects a phase strategy were proposed. RSM based on CCD was 

utilized to develop a linear model for prediction of lower arm response. RSM are used 

to estimate the transfer functions at the optimal region. Hence CCD approach was 

selected for the present study (Montgomery, 2005 and Wu and Hamad, 2000). The use 

of statistical design of experiment (DOE) techniques combined with FEA provides the 

engineering community with valuable tools for forecasting the behavior of a system or 

process. Aluminum alloys (AA7079-T6) are selected as suspension arm materials. The 

finite element analysis was performed utilizing the finite element analysis code. The 

finite element model is correlated with design of experiments modal test. Tetrahedral 10 

nodes are used for constructing the finite element model. The convergence analysis has 

been carried out for selecting the optimum mesh size and global edge length. The linear 

static analysis is considered for stress analyses with applied ultimate load conditions to 

the parts during the driving. Table 4.3 shows the five ultimate load conditions of the 

lower arm. In light of the screening experiments, a decision was taken to study the 

effects of the top four factors namely the mesh size and load of directions. The variables 

and their levels are listed in Table 4.4. The strength analysis results under the five 

ultimate load conditions and each constraint were presented with the strain distributions 

are shown in Figure 4.9. 
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                                (a)   Case 1                                                  (b) Case 2 

 

                           (c)    Case 3                                                    (d) Case 4 

 

(e) Case 5 

 

Figure 4.9: XY-directional strain distribution for various cases. 
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Table 4.3: Load conditions of lower arm 

 

Case Conditions Load (N) 

X Y Z 

1 Pothole brake limit load −5688.2 −4801.2 −60.4 

2 Oblique kerb limit load 9579.7 2382.1 238.3 

3 Pothole corner limit load −1107.0 1108.3 197.6 

4 Lateral kerb strike limit load −549.7 12218.3 845.9 

5 Ultimate vertical limit load −573.7 −3408.9 -66.7 

 

Table 4.4: Coded levels of variable and actual values for CCD 

 

Factor   Level 

Coded Uncoded Units Low Center  High 

A Mesh size  5 6 7 

B Load X N -5688.2 7633.95 9579.7 

C Load Y N -4801.2 8509.75 12218.3 

D Load Z N -66.7 456.3 845.9 

 

The analysis of variance (ANOVA) results are presented in Table 4.5. It can be 

seen that the model F-value of 8.29 implies the model is significant. There is only a 

0.80% chance that a model could occur due to noise. Values of probability less than 

0.0500 indicates model terms are significant. The significance model factors (C, AC, 

AD, BC and CD) are indicated in the Table 4.5. Values greater than 0.1000 indicate the 

model terms are not significant. Moreover, the design showed in significant lack of fit 

(F-value =3.83), which is desirable related to the pure error and this means there is a 

11.78 % chance that lake of fit could have occurred due to noise. A mathematical 

prediction model has been developed based on the most influencing factors, and the 

validation simulation analysis proved its adequacy. The result aimed towards prediction 

of optimal lower arm design through the various factors of the suspension arm 

geometrical construction.  
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The response equation for von Mises and displacement in the coded form are 

developed based on the response surface method. The mathematical equation von Mises 

and displacement can be expressed in Eq. (4.1) and Eq. (4.2) respectively. The positive 

sign in front of the terms indicates the synergistic effect while the negative sign 

indicates the antagonistic effect. 

 

Table 4.5: Analysis of variance (ANOVA) results 

 

Source DF Sum of Square F value Prob > F 

Model 14 7546000 8.29 0.0080 *      significant 

Mesh size, A 1 50 0.00076 0.9788 

Load x, B 1 53464.50  0.82 0.3996 

Load y, C 1 1322000 20.32 0.0041* 

Load z, D 1 840.50  0.013 0.9132 

AB 1 149000 2.29 0.181 

AC 1 747300 11.49 0.0147* 

AD 1 419600 6.45 0.0441* 

BC 1 713400 10.97 0.0162* 

BD 1 149900 2.30 0.1798 

CD 1 696800 10.71 0.0170* 

A
2
 1 10928.93 0.17 0.6961 

B
2
 1 261500 4.02 0.0918 

C
2
 1 364900 5.61 0.0556 

D
2
 1 2768.26 0.043 0.8434 

Residual Error 6 390300   

Lack-of-Fit 2 256400 3.83 0.1178     not significant 

Pure Error 4 134000   

*p < 0.05indicate the term is significant 

 

 

(4.1) 

 

2222 93.3207.37807.32043.6512.295

12.30663.29813.51262.305

12.3055.206.3635.163596.296

DCBACD

BDBCADAC

ABDCBAMisesvon
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CDBDBCADACAB

DCBAntDisplaceme

009.0013.0009.0015.0009.0011.0

0012.00077.0007.000004.0012.0




                   (4.2) 

 

where   A is mesh size  

  B is load in X direction 

  C is load in Y direction 

  D is load in Z direction 

 

Figure 4.10 presents the surface plot of von Mises stress with various load 

combinations. Figure 4.10 (a) shows that von Mises stress decreases with reduction of 

mesh size as well as increases of load X.  It is observed Figure 4.10 (b) that, as the load 

Y increased the von Mises reduces on the other hand as the mesh size in combination 

decreasing. It is also noted that the near significance of A and C interaction. Figure 4.10 

(c) shows that, as the mesh size is closer with decreases Load Z increased the von Mises 

and interaction of A and D confirms its significance on von Mises. Figure 4.10 (d) is 

observed that von Mises stress have significant interaction with load X and Y 

combinations. Figure 4.10 (e) shows that von Mises stress decreases with increases of 

load X in combination with Load D and interaction of B and D confirms that it is not 

significance on the von Mises output. Figure 4.10 (f) observed that increase in the load 

Z reduces the von Mises and it is much influence in C and D interaction. 

 

Figure 4.11 presents the surface plot of displacement with various load 

combinations. Figure 4.11 (a) observed that decreased mesh size with increase load Z 

reduced the displacement. Surface plot of A and B interaction confirms its significance 

on the output. It is observed from the Figure 4.11 (b) that, increase in the mesh size in 

combination with increased load C reduces the displacement. Surface plot of A and C 

interaction confirms it’s not significance on the output. From the Figure 4.11 (c) and 

4.11 (e) it is observed that decrease in the mesh size with increase load Z increased the 

displacement and decrease load X with increase load Z increased displacement.     

Figure 4.11 (d) shows displacement reduced with increase load X combination with 

increase load Y. Surface plot of B and C interaction confirms its significance on the 

output. It is observed Figure 4.11 (f) that, as the load Y is closer with decreases load Z 
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reduced the displacement. Surface plot of C and D interaction confirms its significance 

on the output. 

 

The R
2
 analysis result is tabulated in Table 4.6. The Predict R-Squared of 6.5308 

is in reasonable agreement with the Adjusted R-Squared of 0.8361. Adequate Precision 

measures the signal to noise ratio. A ratio greater than 4 is desirable; Model’s ratio of 

13.303 indicates an adequate signal. In fact, when the value of correlation coefficient R 

is close to 1, it means the response correlation FEA result and predicted values are good 

agreements with each other. Predicted residual sum of squares (PRESS) is a measure of 

how model fits each point in the design then the model estimate and calculate the 

residual. 

 

Table 4.6:  R
2
 analysis results 

 

Parameter Value Parameter Value 

Std. Dev. 255.06 R-Squared 0.9508 

Mean 582.57 Adj R-Squared 0.8361 

C.V.% 43.78 Pred R-Squared 6.5308 

PRESS 5.977E+007 Adeq Precision 13.303 

 

Table 4.7 lists the comparison between predicted versus FEA results. A total 

number of twenty one trials were conducted and a set of data was collected as per the 

structure of CCD of experiments and the table occurred the predicted responses from 

RSM shows good agreement with actual results also shows the deviation percentage and 

residual by response surface method versus the run number. Randomization provides 

insurance against autocorrelation and trends. 
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Table 4.7: Comparison between predicted versus FEA results 

 

Run A 

(N) 

B 

(N) 

C 

(N) 

D 

(N) 

  FEA    

 results 

(MPa) 

Predicted 

RSM by 

DOE 

(MPa) 

Residuals % 

Deviation  

1 5 -5688.20 -4801.20 -66.70 3180 3094 85.91 0.03 

2 6 1945.75 3708.55 389.60 501 568.14 -67.14 13.4 

3 7 1945.75 3708.55 389.60 726 640.09 85.91 11.83 

4 7 -5688.20 12218.30 845.90 531 598.14 -67.14 12.6 

5 6 1945.75 3708.55 845.90 422 489.14 -67.14 15.9 

6 6 1945.75 3708.55 -389.60 672 586.09 85.91 12.7 

7 6 1945.75 3708.55 -66.70 807 721.09 85.91 10.6 

8 6 1945.75 3708.55 -389.60 410 477.14 -67.14 16.3 

9 7 9579.70 -4801.20 -66.70 199 236.53 -37.53 18.6 

10 7 -5688.20 -4801.20 845.90 189 226.53 -37.53 19.5 

11 5 9579.70 12218.30 845.90 743 780.53 -37.53 4.9 

12 7 9579.70 12218.30 -66.70 416 453.53 -37.53 8.89 

13 6 1945.75 12218.30 389.60 580 311.43 268.57 46 

14 6 1945.75 3708.55 389.60 695 1038.63 -343.63 49 

15 6 1945.75 -4801.20 389.60 206 243.53 -37.53 17.9 

16 6 1945.75 3708.55 389.60 247 284.53 -37.53 14.9 

17 5 9579.70 -4801.20 845.90 542 500.24 245.04 7.7 

18 5 1945.75 3708.55 389.60 188 296.96 -108.96 57 

19 6 9579.70 3708.55 389.60 219 296.96 -77.96 35 

20 6 -5688.20 3708.55 389.60 542 515.05 245.04 4.98 

21 5 -5688.20 12218.30 -66.70 219 296.96 -77.96 35 

% of deviation = [(actual value – predicted value)/ actual value] × 100% 
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(a) von Mises vs. A, B                              (b) von Mises vs. A, C 

 

 
 

(c)  von Mises vs. A, D                               (d) von Mises vs. B, C 

 

 
 

(e) von Mises vs. B, D                                (f) von Mises vs. C, D 

 

Figure 4.10: 3D Surface plots for the response of von Mises against load and mesh size 
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(a) Displacement for loading A and B     (b) Displacement for loading A and C 

 

 
 

(c) Displacement for loading A and D      (d) Displacement for loading B and C 

 

 
 

(e) Displacement for loading B and D      (f) Displacement for loading C and D 

 

Figure 4.11: 3D Surface plots for the response of displacement against load and mesh 

size  
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Figure 4.12 shows the normal probability plot of residuals. It shows that there is 

no abnormality in the methodology adopted (R
2
 =0.9508). The statistical analysis shows 

that, the developed linear model based on central composite design is statistically 

adequate and can be used to navigate the design space. 

 

 

 

Figure 4.12: Normal probability plot of residuals 

 

Figure 4.13 shows the predicted versus actual plot how the model predicts over 

the range of data.  The best fit line plot (Figure 4.13) of the 21 points (Table 4.7) is 

found to be close to the ideal line (Y = X). The predicted responses show the good 

agreement with actual results. The scatter shows the bowling scores can be predicted 

very precisely. The graphical presentation of predicted versus FEA results is presents in 

Figure 4.14. The average absolute residuals were found to be 194.978 and actual results 

varied between 268.57 and -343.63 from predicted responses. Distinct patterns 

indicating autocorrelation. 
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 Figure 4.13: The best fit line plot 
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Figure 4.14:  Predicted versus actual simulation 

 

Figure 4.15 shows the residuals versus the run number. Randomization provides 

insurance against autocorrelation and trends. This indicates that designed model space 

can be navigated for prediction. Figure 4.16 shows the percentage of the deviation plot 

of FEA results. The average absolute percentage deviation is found to be 19.65. 
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However, predicted responses varied between -57 and 46. This indicates that designed 

model space can be navigated for prediction. 

 

 

 

Figure 4.15: Residuals versus Run 
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Figure 4.16: Percentage deviation of FEA results 
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The use of statistical design of experiment techniques combined with FEA 

provides the engineering community with valuable tools for forecasting the behavior of 

a system or process. A new approach to investigate the influencing factors of the lower 

suspension arm by integrating finite element analysis results with the central composite 

design approach has been presented. This combined approach is useful in the design 

stage of the suspension arm. The combined approach of modeling lower suspension arm 

using FEM and RSM is found to be statistically adequate through verification trials. 

 

4.3.2     Artificial Neural Network  

 

Neural network investigated and presented influences of the artificial intelligent 

on the response suspension lower arm. The finite element analysis and RBFNN 

technique are used to predict the response of suspension arm. Finite element techniques 

have been used as a tool to model the suspension arm in conjugation with RBFNN 

modeling. Figure 4.17 shows the model of RBFNN approach for stress analysis. In the 

present study, inputs are selected as load and mesh size. The NN outputs have been 

termed as the maximum displacement, maximum principal stress, von Mises and 

Tresca. Figure 4.18 and 4.19 show the comparison between the FEM and RBFNN result 

for displacement and stress respectively. Table 4.8 shows the output from FEM and the 

RBFNN and the Error of RBFNN with respect to FEM method is presented in Table 4.9 

 

 

 

 

 

 

 

 

 

 

Figure 4.17: Model of RBFNN approach for stress analysis 
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Figure 4.18: FEM and RBFNN displacement 

 

 

 

Figure 4.19: FEM and RBFNN maximum principal stress 
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Table 4.8: Output from FEM and RBFNN techniques 

 

  FEM    RBFNN   

Mesh 

Size 

(mm) 

Disp. 

×10
-3

 

(mm) 

max. 

principal 

stress 

(MPa) 

Tresca 

(Mpa) 

Von 

Mises 

(MPa) 

Disp. 

×10
-3

 

(mm) 

max. 

principal 

stress 

(MPa) 

Tresca 

(MPa) 

Von 

Mises 

(MPa) 

5.3 7.53 577 574 561 7.55 574.6 572.8 560.8 

5.5* ----- ----- ----- ----- 7.532 579.7 565.7 554.0 

5.7 7.35 575 553 544 7.47 580.2 555.6 544.4 

5.9* ----- ----- ----- ----- 7.382 576.2 544.2 533.5 

6.1 7.23 572 535 523 7.27 568.2 533 522.9 

6.4* ----- ----- ----- ----- 7.124 550.8 519.9 510.3 

6.6 7.04 539 515 506 7.03 537 514.6 505.2 

6.7 7.01 528 512 503 6.99 530.6 513 503.7 

 

Table 4.9: Error RBFNN 

 

Mesh size Displacement (µm) Error in percentage  

 based on FEM  Max. principal 

stress 

Tresca von Mises 

5.3 0.02 2.4 1.2 0.2 

5.7 0.12 5.2 2.6 0.4 

6.1 0.04 3.8 2 0.1 

6.6 0.01 1.6 0.4 0.8 

6.7 0.02 2.6 1 0.7 

 

This study includes investigating influences of the artificial intelligent on the 

response suspension lower arm by using RBFNN to predict dynamic analysis. Figure 

4.20 shows the model of RBFNN for dynamic analysis. NN inputs are selected as load 

and natural frequency. The NN outputs have been termed as the maximum displacement 

in the direction x (T1), maximum displacement in the direction y (T2) and maximum 

displacement in the direction z (T3). Comparison results between FEM and RBFNN 

technique are tabulated in Table 4.10. It can be seen that the RBFNN technique was 

found to be highly effective with least error and Table 4.10 in identification of stress 
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and dynamic-displacement of suspension arm (Abdullah, 2009; Wannas and Abd, 2008; 

Wannas, 2008).  

 

By comparing the results from Table 4.8 and 4.10 (asterisk  value) it can be 

observed the efficiency of NN very successively used for the enhanced navigational 

performance, error reduction and time required predicting the stress-displacement  and 

dynamic-displacement response of suspension arm with few workloads of processing    

( test and training).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20: Model of RBFNN approach for suspension arm 

 

This approach found to be highly effective in identification of linear response of 

suspension arm and it has been used of more realistic linear and nonlinear problems in 

order to obtained quickly solutions and with few workloads of processing. Finally, this 

technique shows highly effective depends upon its accuracy, speed and memory 

requirements in identification of stress-displacement of suspension arm.  
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Table 4.10: Output from dynamic analysis and RBFNN techniques 

 

Mode 

No 

Natural 

Frequency 

(hz) 

Dynamic analysis (FEM) RBFNN 

T1(μm) T2(μm) T3(μm) T1 

(μm) 

T2 

(μm) 

T3  

(μm) 

1 205.26 5.9362769 1.1423386 66.325012 5.94 1.14 66.33 

 500* ----- ----- ----- 3.58 14.51 54.60 

2 879.23 9.1471920 18.259533 58.59631 9.15 18.26 58.6 

3 997.58 18.282864 24.353616 65.195534 18.28 24.35 65.2 

 1500* ----- ----- ----- 3.58 14.54 54.57 

4 1900.1 10.549701 18.638037 10.567502 10.55 18.64 10.57 

5 1948.5 8.2864723 44.226292 10.115671 8.29 44.23 10.12 

6 2349.2 20.041723 20.648651 98.877060 20.04 20.65 98.88 

7 2524* 20.919615 36.880108 62.914886 20.92 36.88 62.91 

 2800* ----- ----- ----- 3.70 14.74 54.89 

8 3079.3 12.581594 34.364082 122.16453 12.58 34.36 122.16 

9 3619.4 35.766823 21.469292 116.34058 35.77 21.47 116.34 

 3800* ----- ----- ----- 6.94 15.27 61.01 

10 4187.4 45.454102 14.030432 34.420017 45.45 14.03 34.42 

 

Comparison between RBFNN and RSM Techniques 

 

After determining the surface response method equations of all the response 

variables and also neural network program, the prediction by both techniques was 

compared. Table 4.11 lists the comparison between predicted versus FEA results. The 

predicted responses show the good agreement with actual FEA results. Figure 4.21(a, b) 

shows the stress-displacement comparison between the predicted values for RSM, 

RBFNN and FEA result. All the three methods are in closely agreement with each 

other; Figure 4.22 shows the deviation percentage by neural network and response 

surface method. Figure 4.23 shows the residuals by neural network and response surface 

method versus the run number. Randomization provides insurance against 

autocorrelation and trends. From these Figures (4.21, 4.22, 4.23) clearly the response 

surface method is quite close to the prediction value of the neural network. Neural 

network predicted more accurate compared with RSM. The error for both techniques 



73 

 

can be accepted and the model of the response surface method indicates that designed 

model space can be navigated for prediction.  

 

Table 4.11: RSM and RBFNN techniques prediction stress-strain for suspension arm 

 
        Stress        Displacement 

No  A B C D  FEA 

results 

Predicted 

by RSM 

Predicted 

by 

RBFNN 

FEA 

results 

Predicted by 

RSM  

Predicted 

by 

RBFNN 

1 5 -5688 -4801 -66 3180 3094 3170 0.085 0.078 0.084 

2 6 1945 3708 389 501 566 510 0.00991 0.006282 0.009 

3 7 1945 3708 389 726 637 712 0.013 0.005199 0.0125 

4 7 -5688 12218 845 531 590 540 0.00276 0.00417 0.0028 

5 6 1945 3708 845 422 489 433 0.012 0.008672 0.0119 

6 6 1945 3708 -389 672 595 666 0.00581 0.00459 0.005 

7 6 1945 3708 -66 807 721 820 0.00347 0.003931 0.003 

8 6 1945 3708 -389 410 477 395 0.00524 0.001612 0.0053 

9 7 9579 -4801 -66 199 236 190 0.00158 0.003 0.0015 

10 7 -5688 -4801 845 189 225 199 0.0015 0.002 0.0014 

11 5 9579 12218 845 743 781 755 0.021 0.019 0.022 

12 7 9579 12218 -66 416 450 402 0.00725 0.004597 0.007 

13 6 1945 12218 389 580 311 567 0.014 0.003925 0.0139 

14 6 1945 3708 389 695 1038 708 0.014 0.019 0.0139 

15 6 1945 -4801 389 206 234 214 0.00258 0.0010 0.0025 

16 6 1945 3708 389 247 284 233 0.00504 0.0013 0.005 

17 5 9579 -4801 845 542 500 521 0.014 0.012 0.0139 

18 5 1945 3708 389 188 296 205 0.00156 0.0021 0.0015 

19 6 9579 3708 389 219 296 240 0.00513 0.0012 0.0052 

20 6 -5688 3708 389 542 520 530 0.014 0.0042 0.015 

21 5 -5688 12218 -66 219 295 230 0.00513 0.0012 0.0052 
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(b) Displacement value 

 

Figure 4.21:  Comparison of RSM models and RBFNN against experimental values 

(FEA) 
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(a) Stress percentage deviation 
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(b) Displacement percentage deviation 

 

Figure 4.22: Percentage deviation by neural network and response surface method 
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(a) Stress residual  
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(b) Displacement residual 

 

Figure 4.23: Residual by neural network and response surface method 

 

 

Statistical techniques together with good engineering knowledge usually lead to 

sound conclusions. The response surface method and neural network have been proven 

to be a successful technique to perform the trend analysis of lower suspension arm, 
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statistically adequate and can be used to navigate the design space. Radial basis function 

neural network has very attractive properties and can be used for the enhanced 

navigational performance and error reduction of the effort and time required to 

determine the stress-displacement response of lower suspension. By applying central 

composite design while designing the suspension system, corrective and iterative design 

steps can be initiated and implemented for betterment of component design. Both RSM 

and neural network models reveal that power requirement is the most significant design 

variable in determining the stress-strain response as compared to other parameters. With 

the model equations obtained, a designer can subsequently select the best combination 

of design variables for achieving optimum lower suspension arm. Continued research in 

this direction can bring about more comprehensive and appropriate guide lines for 

designers and able to solve many problems that have mathematical and time difficulties. 

 

4.3.3     Robust Design using SDI 

 

A stochastic simulation generates multiple scenarios of a model by repeatedly 

sampling values from the probability distributions for the uncertain variables. 

Sometimes, very small changes in apparently insignificant variables can lead to 

collapse. Figure 4.24 shows the decision map (DM) which enabling to easily explore 

and gain a quick understanding on how different variables influence the functioning of 

the lower suspension arm and displaying the significant variables and correlations. 

However, DM shows concentrate an effort of the variables consisting of 4 inputs (load, 

modulus of elasticity, Poisson ratio, and density) on the lower suspension arm are 

significant. This means that only these inputs influence the outputs significantly. 
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Figure 4.24: Decision map 

 

The relative influence of tolerances in input variables on the scatter in a 

particular functionality (output) can be obtained. It can be seen from Figure 4.25 that the 

relative importance of all the variables. The pie chart shows that the load has the largest 

influence on the stress value followed by the Poisson ratio, density and modulus of 

elasticity respectively. The specific results of the influence of the variables can be seen 

in the ant hill scatter plots as shown in Figure 4.26-4.27. In fact, the correlation between 

stress and modulus of elasticity is not clear while similar relation confirms between 

stress and Poisson ratio. 

 

Figure 4.26 shows ant hill scatter for stress against materials. It can be seen that 

there is less interaction (correlation) between them. This confirms the pie chart result 

that the Poisson ratio is a less factor in the stress value. Linear and non-linear 

correlation between them are obtained negative (linear cor. = -0.077 and non-linear cor. 

= -0.055).  
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Figure 4.25: Influence factors to the stress value 

 

 

Figure 4.26: Ant hill scatter plot for stress versus material  

 

Figure 4.27 shows the Ant hill correlation between the maximum principal stress 

and von Mises stress versus load scale factor. It can be seen that the stress and load 

scale factor are strongly correlation between them (linear cor. = 0.998, non-linear = 

0.997 for maximum principal stress and linear cor. = 0.991, non-linear = 0.988 for von 

Mises stress). It is to be more dominant that’s confirming the result in the pie chart 

Figure 4.25. 

Scale factor F: 84.54% 

Material Nu: 6.56% 

Material Rho: 6.30% 

Material E: 2.60% 
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(a) Max. principal stress 

 

 

 

(b) von Mises stress  

Figure 4.27: Ant hill scatter plot for stress versus load scale factor 
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These Ants Hill plots confirm the results from the variable ranking pie chart and 

convey much about the correlation between the variables that there is a positive 

correlation for the force magnitude and max principal stress in the model structure. As 

expected, the stress increases as the force increases. Essentially no correlation is seen 

between Poisson ratio and the max principal stress in the model structure. Conclude to 

obtain of stochastic simulation to reduce the complexity in modeling reality by 

addresses uncertainty and variation that establishes credibility in modeling and 

simulation, focuses on robustness instead of optimization through no assumptions of 

continuity and takes all inputs into account instead of needing initial assumptions. 

 

Stochastic design improvement is one of the tools to achieve the design 

improvement with the influence of tolerances. The goal is to minimize the effect of the 

stress on the model by varying the material of suspension arm. The stochastic design 

improvement process is very efficient to improve a system design. Typically, 5 

iterations are sufficient for reasonable targets and variables that can be controlled and 

specified are used as design variables. The optimization processes for the design has 

been set to minimize stress on the lower suspension arm as the objective function and 

the design variables are set as the modulus of elasticity, Poisson ratio, density  and load. 

von Mises stress   (561 MPa) and maximum principal stress (577 MPa) are selected as 

constraints of the lower arm. The results of SDI show that there are multiple samples 

from the ant hill scatter plot that give the value of the parameter to use in the 

optimization process. The outcome from the SDI had been selected and it is listed in 

Table 4.12. 

 

Figure 4.28 shows that the lower arm design has a higher capability to stand 

higher factor force as 118.9 (x, y, z factor load) with the maximum principal stress 

(556.2 MPa) acted on the lower arm while max von Mises 506.7 MPa. Finally, the 

realized in the optimized design of the lower suspension arm. The ants hill plots  

(Figure 4.28) confirm that is a positive correlation for the force magnitude and max 

principal stress in the model structure also confirms force magnitude has the strong 

linear correlation with the max principal stress and von Mises stress of the structure, 

i.e., as the force increases so does the stress. 
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Table 4.12: Design parameter before and after SDI 

 

Design parameter  FEM SDI 

Modulus of Elasticity (E) 70 GPa 70.656 GPa 

Density (Rho) 2.74 g/cc 3.143 g/cc 

Poisson Ratio (Nu) 0.33 0.3483 

Scale factor force  112.36 118.9 

Predict stress on the model (max Principal ) 577 MPa 556.2 MPa 

Predict stress on the model (max von Mises) 561 MPa 506.7 MPa 

 

A sensitivity analysis of an opportune set of design variables on the function. 

The considered design variables involved in the sensitivity analysis have been chosen, 

besides the material of the lower suspension arm, to be the mechanical properties of the 

three materials constituting the main components of the substructure (modulus of 

elasticity, Poisson ratio, density, load, von Mises stress, and maximum principal stress). 

It is possible to appreciate the relationship existing between the chosen design variables 

and the function by considering the scatter plots between them. From these scatter plots, 

clearly while the relationship existing between the load and the stress and the objective 

variable is quite linear. The results from the sensitivity analysis are also reported quite 

evident that the design variables which influence the objective one are the load of lower 

arm. 
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(a) Max. principal stress 

 

 

 

(b) von Mises stress 

Figure 4.28: Ant hill scatter plot for stress versus load scale factor using SDI 
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In conclusion, the classical simulations based on nominal values of the input 

variables are not exhaustive of the phenomenon in the case of improving the design and 

can bring to incorrect interpretations of the dynamic behaviour of the examined 

structure. On the contrary, by using an SDI approach, it is possible to have a better 

understanding of the influence of each input variable on the structural dynamic 

behaviour and to assign the most appropriate nominal values in order to have results as 

near as possible to the target values, also in the presence of their natural variability.  

 

4.4     CONCLUSION  

 

The finite element modeling and analysis of lower arm has been presented. The 

dynamic characteristics of the lower suspension arm were discussed. The artificial 

intelligent technique based on RBFNN has been presented and shown very attractive 

properties such as localization, functional approximation, interpolation, and cluster 

modeling. A new approach to investigate the influencing factors of the lower suspension 

arm by integrating finite element analysis results with the central composite design 

approach has been presented. This combined approach is useful in the design stage of 

the suspension arm. The combined approach of modeling lower suspension arm using 

FEM and RSM is found to be statistically adequate through verification trials.  On the 

other hand, the modelization and simulation with SDI method is the efficient and 

timesaving tool to design the mechanical components and system. It is far more 

economical than the traditional experimental method which is more consuming in 

material, cost and time. The technique is very flexible and their many parameters enable 

us imitate closely to real life condition and make accurate predictions based on the set. 

 

 



 

 

 

 

 

CHAPTER 5 

 

 

CONCLUSIONS AND RECOMMENDATION 

 

 

5.1     INTRODUCTION 

 

This work has been addressed using robust design method for develop and 

minimizing variability of lower suspension arm and processes in order to improve their 

quality and reliability for the vehicle. This chapter summarizes the important finding 

from the work carried out in this research. It also includes some suggestions for the 

further work in each of the areas covered during this research. 

 

5.2     SUMMARY OF FINDINGS 

 

The aim of this thesis was to identify the critical locations and to provide lower 

control part capable of enduring more loads with lower predict stress and able to 

designer accomplish stress reduction and shape development with the advanced method. 

Continued research in this direction can bring about more comprehensive and 

appropriate guide lines for designers. 

 

The finite element model is computational intensive due to the complicated 

operation on very large matrices. Mesh generation is one of the most critical aspects of 

engineering simulation and selecting the right techniques of meshing are based on the 

geometry, model topology, analysis objectives and engineering judgment. The concept 

of the FE model validation has been defined in this thesis. The convergence of the stress 

was considered as the main criteria to select the mesh type. The finite element mesh was 

generated using TET10 for various meshes global length.  
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The response surface method has been proven to be a successful technique to 

perform the trend analysis of lower suspension arm, statistically adequate and can be 

used to navigate the design space. In order to arrive at the most influential variables and 

its effects a phase strategy, RSM aimed to develop the input-output relationships for 

prediction of lower suspension arm response. By applying central composite design, 

while designing a suspension system, corrective and iterative design steps can be 

initiated and implemented for betterment of component design. RSM is used to estimate 

the transfer functions at the optimal region. The use of statistical design of experiment 

techniques combined with FEA provides the engineering community with valuable 

tools for forecasting the behavior of a system or process. The DOE investigated the 

influencing factors of the lower suspension arm by integrating finite element analysis 

results with the central composite design approach. The combined approach of 

modeling Lower suspension Arm using FEM and DOE is found to be statistically 

adequate through verification trials. 

 

  Neural network investigated and presented influences of the artificial intelligent 

on the response suspension lower arm. Evaluated stress analysis for aluminum 

automobile part with the advanced method. The RBFNN found to be highly effective in 

identification linear response of suspension arm, and it has been used of more realistic 

linear and nonlinear problems in order to get quickly solutions. The finite element 

analysis and RBFNN techniques are used to predict the response of suspension arm. 

Finally, this technique shows highly effective depends upon its accuracy, speed and 

memory requirements in identification of stress-displacement of suspension arm. 

Therefore, the RBFNN can be very successively used for the enhanced navigational 

performance and error reduction of the effort and time required to determine the stress-

displacement response of lower suspension arm. 

 

A stochastic simulation generates multiple scenarios of a model by repeatedly 

sampling values from the probability distributions for the uncertain variables. Stochastic 

design improvement achieved the design improvement with the influence of tolerances. 

The simulation and modelization software with SDI method enabled us to optimize the 

shape of the lower arm with respect to the stress constrains in order to endure more 

stress on the part. SDI is a fast and efficient technique to improving the performance of 
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suspension arm so that it’s most probable behavior coincides with specified target 

values. 

 

5.3     CONTRIBUTION OF THE STUDY 

 

i. Design of experiment (DOE) with combination neural network (NN) reveal power 

requirement to determine, achieve and gave a simple solution compatible for better 

assess linear response of lower suspension arm. 

ii. Stochastic design improvement (SDI) method provide lower control part capable of 

enduring more loads with lower predict stress also the technique endow with 

enhance performance of lower suspension arm. 

iii. This study is presented how robust design technique could be applied in the design 

stage of the product optimum process to maximize product reliability. 

 

5.4 RECOMMENDATIONS FOR FUTURE RESEARCH 

 

It is recommended that the methods discuss to herein be extended into the more 

contemporary areas of FE capability, the need for close interaction between the CAE 

analyst and the designer has been highlighted. All the parameter of optimization that has 

been obtained from this research should be tested of the prototype components of the 

lower suspension arm then making as a range and guidelines during the experimental 

works of modifying and optimizing the control lower arm suspension, this seriously 

improve the reliability and confidence of the user. 
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