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Abstract. This paper presents the identification of liquid slosh plant using the Hammerstein 

model based on modified Sine Cosine Algorithm (mSCA). A remote car that carries a  

container of liquid is considered as a liquid slosh experimental rig. In contrast to other research 
works, this paper considers a piece-wise affine function in a nonlinear function of the 

Hammerstein model, which is more generalized function. Moreover, a continuous-time transfer 

function is utilized in the Hammerstein model, which is more suitable to represent a real 

system. The mSCA method is used to tune both coefficients in the nonlinear function and the 

transfer function of the Hammerstein model such that the error between the identified output  

and the real experimental output is minimized. The effectiveness of the proposed framework is 

assessed in terms of the convergence curve response, output response, and the stability of the 

identified model through the pole-zero map. The results show that the mSCA based method is 

able to produce a Hammerstein model that yields identified output response closes to the real 

experimental slosh output with 82.12 % improvement of sum of quadratic error. 

 

 
1. Introduction 
Nowadays, liquid slosh inside a cargo always happens in many situations. For example, ships with 

liquid container carriers are at high risk of generating sloshing load during operation [1]. In the metal 

industries, high oscillation can spill molten metal that is dangerous to the operator [2]. Meanwhile, 
sloshing of fuel and other liquids in moving vehicles  may cause instability and undesired dynamics 

[3]. Hence, it is necessary to completely study the behavior of this residual slosh induced by the 

container motion. One may study the behavior of liquid slosh through developing the exact 

mathematical model of liquid slosh. So far, many researchers focus on the first principle approach to 
model the slosh behavior, while there are few literatures to discuss it from the perspective of nonlinear 

system identification approach. 

 

On the other hand, block oriented nonlinear system identification has become popular techniques to 

model a complex plant. The block oriented nonlinear model can be classified into three categories, 
which are Hammerstein model, Wiener model and Hammerstein Wiener model. In particular, 

Hammerstein model is a model that consists of a nonlinear function followed by linear dynamic sub- 

plant, while Wiener model consists of a linear dynamic sub-plant followed by nonlinear function, and 

finally, Hammerstein-Wiener model contains a linear dynamic sub-plant inserted between two or more 
nonlinear functions in series. Among these three block oriented models, Hammerstein model  is 

famous due to its simple model structure and it has been widely used for nonlinear system 

identification. Specifically, the Hammerstein model has been applied to model a real plant such as 
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Solid Oxide fuel cell [4], bidirectional DC motor [5], oxygen uptake estimation [6], stretch reflex 

dynamics [7], turn-table servo system [8], pneumatic muscle actuators [9], amplified piezoelectric 

actuators [10] and multi-axis piezoelectric micro positioning stages [11]. On the other hand, many 

tools have been utilized to identify the Hammerstein model. There are the iterative method [12]-[14], 
the subspace method [15]-[17], the least square method [18], the blind approach [19] and the 

parametric instrumental variables method [20]. Moreover, many also consider the optimization tools 

for Hammerstein model, such as Bacterial Foraging algorithm [21], Cuckoo search algorithm [22], 
Particle Swarm optimization [23] and Genetic algorithm [24]. 

 

Based on the above literature, several limitations are ineluctable in their works, which are: 
(i) Most of the Hammerstein models used in their study are based on discrete-time model, while 

many real plants can be easily represented in continuous-time model. 
(ii) Almost all the methods assume a known structure of nonlinear function, which consists of 

several basis functions. 
Though, our proposed work can solve a more general class of continuous-time Hammerstein model by 

assuming an unknown structure of nonlinear function. In particular, a piece-wise affine function is 

adopted with so many basis functions. Due to the introduction of the piece-wise affine function, a high 
dimensional design parameter tuning is considered in this study, which make the identification 

problem more complex. On the other hand, Sine Cosine Algorithm (SCA) [25] has become a top  

notch optimization algorithm which has solved various types of engineering problems [25]-[27]. To 
the best of our knowledge, there are still few works to discuss on the SCA for identification of 

Hammerstein model. Moreover, other recent optimization methods are quite complex as compared to 

SCA which may contribute to high computation time in obtaining the result. Thence, it motivates us to 

see the effectiveness of the SCA in modelling the liquid slosh plant from the real experimental data. 
Moreover, based on our preliminary works on this problem, the standard SCA is still not able to 

provide high accuracy of liquid slosh model. Therefore, it motivates us to modify the standard SCA 

algorithm such that a better accuracy of liquid slosh plant can be obtained. 

 
This paper presents the identification of liquid slosh plant using the Hammerstein model based on 

modified SCA (mSCA) method in [26]. A remote car that carrying a container of liquid is considered 

as the liquid slosh experimental rig. The mSCA method is used to tune both coefficients in the 

nonlinear function and transfer function of the Hammerstein model such that the error between the 
identified output and the real experimental output is minimized. The effectiveness of the proposed 

framework is assessed in terms of the convergence curve response, output response,  and the stability 

of the identified model through the pole zero map. 
 

2. Liquid Slosh Experimental Rig 
In this study, a mobile liquid slosh plant is considered to replicate real situation of a moving container 

carrying liquid, as shown in figure 1. In particular, a remote control car is used to carry a small tank 
filled with liquid. The tank is also equipped with four plastic wheels so that it can move smoothly as 

shown in figure 1(a). Moreover, three accelerometer sensors (ADXL335) that are floated on the 

surface of liquid are used to measure liquid oscillation as shown in figure 1(b). For simplicity of our 

study, the liquid slosh data from only one of the sensor is recorded and only z-axis output data is 
considered. Figure 2 shows a general schematic diagram of liquid slosh experimental rig. In particular, 

an Arduino UNO is used as a data acquisition platform to process the input and output data. Here, we 

generate a voltage from the Arduino UNO to the remote car and concurrently the Arduino UNO also 
will acquire the slosh data from the accelerometer. Both the input and output data can be monitored 

and analysed from the personal computer using the LabVIEW software. In order to identify the model 

of liquid slosh, the remote car is required to move to a certain distance and suddenly stop to generate a 

liquid oscillation or slosh inside the tank. Thence, we apply the input voltage as shown in figure 3 to 
move the remote car. Concurrently, the liquid slosh data is recorded as shown in figure 4. These two 

data are then used to develop the Hammerstein model based SCA, which is discussed in the next 

section. 
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(b) 

Figure 1.Liquid slosh experimental rig 
 

 

 

Figure 2. Schematic diagram of liquid slosh experimental rig 
 

Figure 3. Input voltage applied to the remote car 
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Figure 4. Output slosh from the accelerometer 

 
 

3. Identification of Liquid Slosh using Hammerstein based modified SCA 
In this section, the proposed modified Sine Cosine Algorithm (mSCA) for identification of liquid slosh 

plant in Section 2 based on Hammerstein model is presented. Firstly, a problem formulation to identify 
the liquid slosh plant is explained. Then, it is shown on how to apply the mSCA method to identify the 

liquid slosh based on Hammerstein model. 
 

Figure 5 shows a complete block diagram to identify the liquid slosh model in Section 2. The proposed 
Hammerstein model consists of nonlinear function h(u) followed by the transfer function G(s). The 

nonlinear function is a piece-wise affine function given by 

 

 c0   m1 (u  d0 ) if d0   u  d1 , 
 

c   m  (u  d ) if d    u  d , 

h(u)  
 1 2 1 1 2 

 




c 1   m  (u  d 1 )    if d 1    u  d  , 

 

(1) 

 
and the transfer function G(s) is given by 

 

B(s)  sm  b sm1  b 
G(s)  m1  0 . 

A(s) a  s
m  
 a s

m1 
 a 

m m1 0 

 

(2) 

 

In (1), the symbol mi  (ci   ci1 ) /(di  di1 )(i  1, 2,..., ) are the segment slope with connecting 

input and output points as di (i  0,1,..., ) and ci (i  0,1,..., ) , respectively. For simplicity of 

notation, let d = [d0, d1, …, dσ]
T
 and c = [c0, c1, …, cσ]

T
. Note that the total number of input or output 

points  are σ  +1. The input  of the real liquid slosh plant  and the identified  model is  defined by  u(t), 

while the output of the real liquid slosh plant and the identified model are denoted by  y(t)  and  ~y (t) , 

respectively. Thence, the expression of the identified output can be written as 
 

~y (t)  G(s)h(u(t)) (3) 
 

Moreover, several assumptions are adopted in this work, which are: 

(i) The order of the polynomial A(s) and B(s) are assumed to be known. 
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(ii) The nonlinear function h(u(t)) is one-to-one map to the input u(t) and the values of 

di (i 1, 2,..., ) are pre-determined according to the response of input u(t). 

Next, let ts be a sampling time for the real experimental input and output data (u(t), y(t)) (t = 0, ts, 2ts, 
…, Nts). Then, in order to accurately identify the liquid slosh model, the following objective function 
in (4) is adopted in this study: 

N E(G, h)  y(ts )-
~y(ts )2 

 
 0 

 

(4) 

 
Note that the objective function in (4) is based on the sum of quadratic error, which has been widely 
used in many literature [28]-[29]. Finally, our problem formulation can be described as follows. 

 
Problem 1. Based on the given real experimental data (u(t), y(t)) in figure 1, find the nonlinear 

function h(u) and the transfer function G(s) such that the objective function in (4) is minimized. 

 
 

Figure 5. Block diagram of Hammerstein model based mSCA 

 

Furthermore, it is shown on how to apply the SCA in solving Problem 1. For simplicity, let the design 

parameter of Problem 1 is defined as x  b0 b1  bm1 a0 a1  am c0  cσ 
T , where 

the elements of the design parameter are the coefficients of both the nonlinear function and the transfer 

function of the continuous-time Hammerstein model. In SCA framework, let xi (i 1,2,..., M ) be the 

design parameter of each agent i for M total number of agents. Then, consider xij ( j  1, 2,..., D) be 

the j-th element of the vector xi (i 1,2,..., M ) , where D is the size of the design parameter. Thence, by 

adopting objective function in (4), a minimization problem is expressed as 

 
arg min E(x i (k)) 

xi (1), xi (2),... 
(5) 

 
for iterations k = 1, 2, …, until maximum iteration kmax. Finally, the procedure of the mSCA in solving 

Problem 1 is shown as follows: 
 

Step 1: Determine the total number of agents M and the maximum iteration kmax. Set k = 0 and 
initialize the design parameter xi (0)(i  1,2,..., M ) according to the upper bound xup and lower bound 

xlow values of the design parameter. 
 

Step 2: Calculate the objective function in (4) for each search agent i. 
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Step 3: Update the values of the best design parameter P based on the generated objective function in 

Step 2. 
 

Step 4: For each agent, update the design parameter using the following equation: 

 
 xij (k)  Pj  

 r sin(r )  r P   x  (k) if r  0.5, 
 1 2 3   j ij 4 

xij (k  1)   x (k 
2
 P

 
  ij 

) j  
 r cos(r  )   r P   x  (k) if r  0.5, 

 2 
1 2 3    j ij  4 

 

(6) 

 
where 

  
α 

γ
 

r1    2

1   

   k    
  

 kmax   



 

 

(7) 

 

for maximum iteration kmax. In (7), the symbols α and γ are the positive constant values that are 
introduced to regulate the portion of exploration and exploitation during the tuning process. Note that 
r2, r3 and r4 are random values that are generated independently and uniformly in the ranges [0, 2π], [0, 

2] and [0, 1], respectively. The detailed justification on the selection of the coefficients r1, r2, r3 and r4 

are clearly explained in [26]-[27]. In (6), the symbol Pj(j = 1, 2, ..., n) is denoted as the best current 
design parameter in j-th element of P that is kept during tuning process. 

 

Step 5: After the maximum iteration is achieved, record the best design parameter P and obtained the 
continuous-time Hammerstein model in figure 1. Otherwise, repeat Step 2. 

 

4. Results and Analysis 

In this section, the effectiveness of the modified SCA based method for identifying the liquid slosh 
system using continuous-time Hammerstein model is demonstrated. In particular, the convergence 

curve response of the objective function in (4), the pole-zero mapping of linear function and the plot of 

nonlinear function, will be presented and analyzed in this study. 
 

Based on the experimental setup in Section 2, the input response u(t) as shown in figure 3 is applied to 

the liquid slosh plant, and the output response y(t) is recorded as shown in figure 4. Here, the input and 

output data are sampled at ts = 0.02 s for N = 450. In this study, the structure of G(s) is selected as 

follows: 
B(s) s3  b s 2  b s  b 

G(s)  2 1 0 . 
A(s) a s 

4 
 a s

3 
 a s 

2 
 a s  a 

4 3 2 1 0 

 

(8) 

 
after performing several preliminary testing on the given data (u(t), y(t)). The fourth order system is 

used by considering a cascade of 2
nd

 order system for both dc motor of remote car and the slosh 
dynamic. Meanwhile, the input points for piece-wise affine function of h(u(t)) are given by d = [0, 0.2, 

0.4, 0.6, 0.8, 1, 2, 3, 4, 5]
T
. The selection of vector d is obtained after several preliminary experiments. 

The design parameter  x  R
18  with its corresponding transfer function and nonlinear function is shown 

in Table 1. Next, the mSCA algorithm is applied to tune the design parameter with initial values of 

design parameter are randomly selected between the upper bound xup and lower bound xlow as shown  
in Table 1. Note that the values xup and xlow are obtained after performing several preliminary 

experiments. Here, we choose the number of agents M = 40, maximum iterations kmax = 5000, the 
values α = 0.03 and γ = 0.9. 

 

Figure 6 shows the response of the objective function convergence with the value of E(G,h) = 0.1477 

at kmax = 5000 with 82.12 % of objective function improvement to produce the best design parameter P 
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as shown in the final column of Table 1. It shows that the mSCA based method is able to minimize the 

objective function in (4) and produce a quite close output response  y(t)  as compared to the real output 
~y (t) , which can be clearly seen in figure 7. Note that the identified output response tends to yield high 

oscillation when input is injected to the system and it start to attenuate when the input is zero, which is 

quite similar to the response of real experimental output. 
 

In the real experimental setup, we can say that the liquid slosh system is stable since the liquid slosh 

output is reduced gradually as  t   .  In order  to validate our  model regarding the stability,  we use 

the pole-zero map of the identified transfer function G(s) as shown in figure 8. From the pole-zero 
map, all the poles are located at the left hand side of y-axis. In particular, the obtained values of poles 

0.0515±j14.2755,  0.9167  and  3.1230,  while  the  obtained  values  of  zeros  are  34.4282  and 

0.2859±j0.4780. On the other hand, we also can observe the feature of nonlinear function by plotting 
the obtained piece-wise function as depicted in figure 9. Note that our nonlinear function is not 

restricted to any form of nonlinear function (i.e., quadratic), which is more generalized and provide 

more flexibility of searching a justifiable function. 

 

Table 1.Design parameter of liquid slosh plant 

x Coefficients xlow xup P 

x1 b2 5 35 
x2 b1 5 35 19.9949 

x3 b0 5 35 
x4 a4 5 35 2.2643 

x5 a3 2200 1 9.3801 

x5 a2 2200 1 468.8715 
x7 a1 2200 1 1864.7569 

x8 a0 2200 1 1321.0211 

x9 c0 5 5 
x10 c1 5 5 0.5736 

x11 c2 5 5 1.2831 
x12 c3 5 5 3.3464 

x13 c4 5 5 

x14 c5 5 5 4.2235 
x15 c6 5 5 1.3499 

x16 c7 5 5 2.6970 
x17 c8 5 5 3.5508 

x18 c9 5 5 
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Figure 6. Convergence curve response 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
Figure 7. Response of the identified output ~y (t) 

 
and real output 

 
y(t) 
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Figure 8. Pole-zero map of transfer function G(s) 

 

Figure 9. Resultant of piece-wise affine function h(u) 
 

5. Conclusion 
In this paper, an identification of liquid slosh plant using continuous-time Hammer-stein model based 

on modified Sine Cosine Algorithm (mSCA) has been presented. The results demonstrated that the 
proposed generic Hammerstein model based on mSCA has a good potential in identifying the real 

liquid slosh behavior. In particular, it is shown that the proposed method is able to produce a quite 

close identified output with real liquid slosh output. Moreover, the resultant linear model has been 
proved to be stable based on the pole-zero map. It is also shown that the used of piecewise-affine 

function gives more flexibility for the mSCA to search more generic nonlinear function. In the future, 

our work can be extended to various types of nonlinear function such as continuous-time Wiener and 

Hammerstein-Wiener. 
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