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Biodiesel is produced by transesterification of vegetable oils or animal fats with alcohols usually 

lower alcohols such as methanol and ethanol, in the presence of a catalyst. Most commercial 

biodiesel processes use homogenous base catalysts, as they result in a rapid reaction and over 95% 

conversion. However, homogenous base catalysts cannot be economically recovered, and 

necessitate a glycerol neutralisation step and place a greater load on a number of downstream 

separation steps. Replacing liquid homogeneous catalysts with solid heterogeneous catalysts is 

expected to yield a cleaner product and result in lower production costs, as the catalyst will not have 

to be continually replaced. Separation of heterogeneous catalysts can be easily achieved using 

filtration. In this work, the catalytic performances of seven strong base type 1 anionic polymeric 

resins (PA306s, PA308, HPA25, DIX2, DIX4 and DIX8) with the functional group of –N(CH3)3+, 

are compared against tetramethylammonium hydroxide (TMAOH) in the transesterification of 

triacetin. The transesterifications were performed in well-mixed isothermal batch reactors at 60oC, 

450rpm, with 6:1 methanol to triacetin molar ratio. Almost complete conversion was obtained when 

using TMAOH with concentration of 5.5 mmol/L, in less than 3 minutes. On reducing the 

concentration of TMAOH to 0.6875 mmol/L, the time taken to achieve nearly complete conversion 

was increased to 30 minutes. In comparison, about 90% conversion was achieved by the PA306s 

after 3 hours with the concentration of 5.5 mmol/L. Two of these resins, PA306s and PA308, gave 

above 95% conversion at 5.5 mmol/L after 6 hours reaction. No deactivation was observed on 

PA306s and A26 over five cycles. In addition, the residual activity studies showed that they did not 

leach. Although anionic polymeric resins are less active than the TMAOH, they have the potential 

to be developed and improved as heterogeneous catalysts for transesterification, as they are stable to 

leaching and maintain their conversion. 
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 INTRODUCTION  

 

Transesterification is the general term used to describe an important class of organic reactions in 

which an ester is transformed into another ester through an interchange of the alkoxy moiety. The reaction is 

also known as alcoholysis since it takes place by exchanging the alcohol groups and where the original ester 

reacts with an alcohol. In transesterification reactions, one mole of triglycerides in the vegetable oil or 

animal fat reacts with three moles of alcohol in the presence of a base or acid catalyst, producing three moles 

of the respective fatty acid alkyl esters and one mole of glycerol as a by-product [1]. Since transesterification 

is an equilibrium reaction, the alcohol to be exchanged is generally added in excess in order to achieve a high 

yield of the desired ester.  

Nearly all the processes use homogeneous base catalysts since they give conversion rates to biodiesel 

of over 95%. Even though reproduction of biodiesel using homogeneous base-catalysts involves a rapid 

process resulting in high conversion rates with minimal side reactions, it is still not very commercially 

competitive compared to petroleum diesel due the factors; i) the catalyst cannot be recovered; ii) the use of 

homogeneous catalyst necessitates the neutralization of glycerol at the end of the reaction; iii) there is limited 
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use of continuous processing methodologies; and iv) the processes involved are very sensitive to presence of 

water and free fatty acid [2]. Replacing liquid homogeneous catalysts with solid heterogeneous catalysts is 

expected to yield a product that does not require neutralization, leading to lower processing costs, because 

the catalyst will not have to be continually replaced.  

Several types of heterogeneous base catalysts have been developed for the transesterification of 

vegetable oils into biodiesel over the past few years. Among these, ion exchange resin with a quaternary 

ammonium functional group (QN+OH−) have been identified as an alternative to homogeneous base 

catalysts that suitable for transesterification in biodiesel production, due to their physical strength, as they are 

not easily degraded by oxidation or hydrolysis and the better conversion rates achieved [3,4]. In this present 

paper, a systematic study on the performance of seven commercial ion exchange resins was reported for the 

transesterification of triacetin with methanol. Their transesterification activity was compared at identical 

catalyst concentrations according to their active base sites. Their reusability and residual activity were 

screened to evaluate their activity and stability, respectively. Finally, their transesterification performance 

was measured against that of the homogeneous quaternary ammonium catalyst, tetramethyl ammonium 

hydroxide (TMAOH). In addition, tricetin is used as model triglyceride in this study, due to its structural 

simplicity, which makes the identification and quantification of reaction products easier. 

 

 MATERIALS AND METHODS  

 

Determination of Ester Content in Triacetin  

 

The method used was modified from [1]. The instrument used was a Hewlett-Packard 5890 Series II 

gas chromatograph equipped with a flame ionisation detector (FID) and autosampler. The column was a 

Varian CP-Wax 52 CB capillary column (Varian, USA) 30 m in length, with an internal diameter of 0.32 

mm, and film thickness of 0.25 μm. The carrier gas was helium. Data were acquired and processed using the 

Clarity chromatography station (Data Apex) for Windows software. The split flow was measured at 18.5 

mL/min with a bubble flow meter.  

The reaction samples were diluted with 2-propanol at the ratio of 1:2.2 (v/v) reaction mixture to 2-

propanol. The toluene used as an internal standard, had been diluted in 2-propanol at the ratio of 1:16 (v/v). 1 

μL of this mixture was injected into the column using the autosampler. The oven temperature was held at 

50oC for 4 minutes, and then increased at the rate of 30oC/min to 180oC, and kept there for 2 minutes before 

again being increased at the rate of 30oC/min to 210oC and held there for 15 minutes. The total running time 

was nearly 30 minutes per injection. The injector and detector were maintained at 255ºC and 280ºC, 

respectively. 

 

Transesterification of Triacetin  

 

Several catalysts were sourced from different manufacturers. These included the homogeneous 

catalyst, tetramethyl ammonium hydroxide or TMAOH (Sigma-Aldrich, UK) and seven heterogeneous 

catalysts: AmberliteTM A26 (Rohm and Haas, USA); DiaionTM PA306s, DiaionTM PA308 and HPA25 

from the Mitsubishi Chemical Corporation (Japan); and DowexTM 1X2, 1X4 and 1X8 from the Dow 

Chemical Company (USA).  

In order to have same amount of quaternary ammonium between the homogeneous and heterogeneous 

catalysts, the catalyst used was based on the catalyst active sites instead of catalyst weight. All of the 

heterogeneous catalysts were subjected to CHN analysis to determine their site density before use.  

The 500 mL batch reactor (Ken Kimble Ltd., UK) used in this study was designed to avoid any mass transfer 

limitation. The reactor was heated by a water jacket connected to a heater-circulator. The reactor was fitted 

with a condenser and a sampling port to allow small aliquots to be withdrawn for analysis.  

90 mL of reagent grade methanol (Fisher Scientific, UK) was added to the batch reactor and mixed 

with 70 mL of triacetin, 99 wt. % (Sigma-Aldrich, UK). The molar ratio of methanol to triacetin was 
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maintained at 6:1 (mol/mol). The reaction mixture was then heated to 60oC in a water bath. Once at the 

desired temperature, transesterification was initiated by charging the catalyst, and the reaction mixture was 

mixed with an overhead stirrer. 

1 mL samples were taken initially and then at specified time intervals, filtered and stored for analysis. 

Quenching of the heterogeneous catalyst was achieved by filtration. The homogeneous catalyst TMAOH was 

quenched using acetic acid. Transesterification was carried out for two and six hours with the homogeneous 

and heterogeneous catalyst, respectively. The reaction products were then analysed by gas chromatography. 

The transesterification experiments were repeated in order to determine standard deviations, which were on 

average ±3%, based on triacetin conversion. 

 

Reusability and Residual Activity Studies  

 

1 mL samples were taken initially and stored. Then, the reaction mixture was heated to 60oC in a water 

bath. Once at 60oC, transesterification was initiated by charging with 5.5 mmol active sites of a catalyst. The 

catalysts were mixed with an overhead stirrer at 450 rpm, and transesterification was carried out for an hour. 

The reaction mixture was then filtered to separate the reaction mixture in liquid form from the solid catalyst.  

In the residual activity measurement, 1 mL of the liquid reaction mixture was taken and stored. Then, the rest 

of the liquid reaction mixture was added to the three-necked round-bottomed flask and transesterification 

was performed for another four hours without the catalyst.  

In the reusability measurement, the solid catalyst filtrate from the previous experiment was added to a 

new reaction mixture containing 45 mL of reagent-grade methanol and 35 mL of triacetin. The experiment 

was then run for an hour before the catalyst was filtered and a new reaction mixture introduced. The 

experiment was repeated for four cycles. 

 

Catalyst Characterization  

 

1. Elemental (CHN) Analysis. Elemental analysis (CHN) was performed in order to identify the 

nitrogen content in the quaternary ammonium (QN+OH-) catalyst beads. This represented the functional 

group of this catalyst, as it was the only nitrogen-containing component. Active site density was then 

calculated based on nitrogen content. This was measured using a Carlo Erba 1108 elemental analyser, 

controlled with CE Eager 200 software. 

 

2. NMR Analysis. The stability of the heterogeneous catalyst is a crucial parameter in this study. In 

order to identify whether or not any leached occurred, the catalyst resin was tested with 1H Nuclear Magnetic 

Resonance (NMR). The NMR samples were prepared using 0.137g of solid, suspended in 1.4 mL of 

deuterated methanol (CD3OD) and then heated at 60oC overnight under a nitrogen atmosphere. The solvent 

was then filtered from the solid. Then, the filtrate was subjected to a 1H NMR, which was run on a JEOL 

Lambda 500 spectrometer operating at 500.16 MHz. 32 scans were acquired with a relaxation delay of 2s. 1H 

chemical shifts quoted relative to tetramethysilane. 

 

 RESULTS AND DISCUSSION  

 

Evaluation of Heterogeneous Quaternary Ammonium IERs  

 

The physicochemical properties of the seven selected heterogeneous quaternary ammonium ion 

exchange resins (IERs) are summarized in Table 1 below. From the table, it can be observed that D1X8 has 

the highest site density of 3.87 mmol active sites. This active base site density was estimated by measuring 



Malaysian International Conference on Trends in Bioprocess Engineering (MICOTriBE) 2012 
 

CE-405-4 
 

nitrogen content in the CHN analysis. It was assumed that every nitrogen in a quaternary ammonium 

functional group represents an active base site.  

 The triacetin conversion versus time for the transesterification of triacetin using various IERs is 

shown in Figure 1 below. Among the catalysts tested, the order of reactivity was: D1X2 > PA306s > PA308 

> D1X4 > D1X8 > A26 > HPA25. It can be observed that the catalytic activity of the IERs decreased with 

increase in the crosslinking density. HPA25 has the highest crosslinking at 25% and produced the lowest 

triacetin conversion. In contrast, D1X2 with the lowest crosslinking at 2%, resulted in the highest triacetin 

conversion. In addition, more than 95% triacetin conversion was obtained using D1X2 after 30 minutes, and 

the reaction was nearly complete after 2h. It can also be observed that D1X2 demonstrated a higher initial 

reaction rate compared to the other IERs. Overall, more than 90% of triacetin conversion was obtained for all 

the IERs after 6h transesterification, except for HPA25. 

 

Table 1: Physicochemical properties of the fresh IER catalysts 

 

 
a 
Information obtained from the manufacturer  

b
 Based on the elementary analysis of the fresh catalyst after washing and drying  

c
 Evaluated according to ASTM D2187 [9]  

d
 Evaluated using the graduated cylinder method according to ASTM D1895 [10]  

 

 
 

Figure 1 Triacetin Conversion of Different IERs. 

 

These results were consistent with those results obtained by [4] who compared four anion exchange 

resins, PA306, PA306s, PA308, and HPA25, in the transesterification of triolein. From their experimental 
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work, PA306, PA306s, and PA308, which have the lowest crosslinking densities, produced higher triolein 

conversion compared to HPA25. They concluded that crosslinking density has significant effect on 

transesterification. 

 

 

 

 

 

Table 2: Turn Over Frequency of the IERs 

 

 
 

The turnover frequency (TOF) was calculated to evaluate the IER catalysts based on their reaction 

rate per active site. Turnover frequency is a more quantitative method of comparing catalysts and is based 

here on the estimated number of base active sites [1]. TOF is defined as the number of catalytic cycles per 

unit time, which depends on many parameters including the form of the catalyst, temperature, pressure, and 

concentration [5]. In the present work, TOF was calculated using initial reaction rate data for rates of 

conversion of triacetin below 10%, and their values are reported in Table 3.2. It can be observed from that 

HPA25 had the lowest TOF, followed by A26. The TOF value for A26 at 0.009 s-1 was slightly lower than 

that obtained by [3], which was 0.011 s-1. In contrast, D1X2 had the highest TOF at 0.081 s-1. It was 

suggested by [3] that higher DVB crosslinking has restricted the accessibility to the location of active sites 

since some reactive groups are buried inside the microspheres, remaining unapproachable for large reactant 

molecules. 

 

Reusability and Residual Activity of Ion Exchange Resins  

 

From the results of the reusability study shown in Figure 2 below, it is clear that only PA306s and 

A26 maintained their activity. Moreover, the triacetin conversion remained at 70% for PA306s, while for 

A26, it stayed at approximately 55% over 5 cycles. A significant drop in activity was identified for D1X2, 

where triacetin conversion decreased from 96% to 72% after the first cycle. The D1X2 catalyst then retained 

their levels of activity over the next two cycles, before further decreasing to 62% in the fourth cycle.  

In contrast, there were steady declines in activity per cycle for PA308 and D1X4. D1X8 also 

exhibited a substantial decrease in activity, especially over the first three cycles. It was proposed by [4] that 

the reduction in transesterification activity is due to the neutralization of the active sites by fatty acid 

molecules. 
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Figure 2 Reusability of Different IERs in the Transesterification of Triacetin 

Table 3: Progress of Transesterification After Removal of IERs 

 

 
 

In order to identify whether the reduction in activity was due to the leaching of the active species, all 

of the IERs were subjected to the residual activity study. The results are tabulated in Table 3 above. It can be 

observed that, surprisingly, triacetin conversion was found in the residual reaction mixtures of each of the 

DowexTM IERs, signalling leaching of the active sites. The highest triacetin conversion was 1.35 ± 0.13 %, 

for D1X8. In contrast, triacetin conversion of 0.6 ± 0.10 % was detected after 4h transesterification using 

D1X4. No changes in triacetin conversion were found for A26, PA306s, PA308, and HPA25, implying that 

these four IERs are very stable. Overall, it can be observed in Table 3.3 that there were only small variations 

in the triacetin conversion and methyl acetate yield, where these values were less than 1.5%.  

In general, it is proposed that the reduction in the transesterification activity could be due to three 

factors: firstly, neutralization of active sites as described by [4]; secondly, the deactivation of the catalyst by 

glycerol sticking to the resin polymers; and thirdly, the leaching of the base active sites, particularly in 

D1X2, D1X4 and D1X8, which can be seen in Table 3. However, it can be clearly observed that the 

significant drop in activity of D1X2 in the first cycle as shown in Figure 2, did not match the level of 

triacetin conversion found in the residual activity test in Table 3.  

Consequently, to test if the active species leached into the reaction mixture, all of the fresh catalysts 

were suspended in 1.4 ml of deuterated methanol (CD3OD) and heated at 60oC overnight under a nitrogen 

atmosphere. The solvent was filtered from the solid catalyst, and tested with 1H Nuclear Magnetic Resonance 

(NMR). The resulting specta for D1X2 and A26 are displayed in Figure 3, showing that no proton peak are 

presents in the range 2.1 to 2.3 ppm, which corresponds to trimethylamine [6].  
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Figure 3 1H NMR Spectrums for D1X2 (above) and A26 (bottom) 

Evaluation of Tetramethylammonium Hydroxide (TMAOH)  

 

The performance of homogeneous tetramethylammonium hydroxide (TMAOH) at different 

concentrations is shown in Figure 4 below. It can be observed that the reaction rate increases with 

concentration of TMAOH. It can also be observed that using the 5.5 mmol/L of TMAOH, an almost 

complete conversion of triacetin was obtained in less than 3 minutes. Figure 4 also clearly shows that the 

reaction rate with TMAOH dropped significantly at lower concentrations, and triacetin conversion exceeded 

90% only after 60 minutes when using 0.344 mmol/L of TMAOH. In addition, it can be seen that dissimilar 

trend was obtained on the plot of 0.344 mmol/L, which assumed as a result of mass transfer resistance. The 

results shown in Figure 4 agree well with those of [3], who achieved 52% and 90% triacetin conversions 

using 0.03 mmol/L of NaOH after just 2 and 15 minutes, respectively. Overall, the reaction rate using 

TMAOH was very high when compared to those of the heterogeneous IERs shown in Figure 1.  

The only record in the literature of transesterification performed with TMAOH was a study by [7], 

who used rapeseed oil at a molar ratio of methanol to oil of 8:1 (mol:mol) at 65oC. Here, transesterification 

was almost complete by 15 minutes when a high concentration of TMAOH of approximately 33.0 mmol/L 

was used. It should be noted that transesterification using homogeneous catalysts proceeds by the formation 

of the methoxide ion as the active species. Base-catalyzed transesterification is an addition-elimination 

reaction involving nucleophilic attack by the methoxide anion on a carbon atom of the carbonyl groups 

ofacyglycerols, resulting in the elimination of the oxygen atom attached to the ‘glycerol backbone’ of the 

triglyceride molecule and the formation of a methyl ester [8]. Since the methoxide anion is formed by the 

reaction of methanol with hydroxide ions (OH-), then the concentration of methoxide increases with that of 

OH- from TMAOH when it is added to the reaction mixture. This results in an increase in triacetin 

conversion, as illustrated in Figure 4. 

 



Malaysian International Conference on Trends in Bioprocess Engineering (MICOTriBE) 2012 
 

CE-405-8 
 

 
 

Figure 4 Transesterification of Triacetin at Different Concentration of TMAOH 

 

 CONCLUSION 
 

The evaluation of the performance of the heterogeneous quaternary ammonium catalyst in the 

transesterification of triacetin was conducted using seven types of ion exchange resin (IER). The comparison 

between IERs was made in terms of the concentration of active base sites. This value was measured via CHN 

analysis, by assessing the nitrogen content, assuming that every nitrogen atom represented an active base site 

in a quaternary ammonium functional group. It was found that the order of reactivity of the IERs was: D1X2 

> PA306s > PA308 > D1X4 > D1X8 > A26 > HPA25. It was also found that triacetin conversion decreased 

with increasing crosslinking density with the highest crosslinking at 25%, HPA25 obtained a lower triacetin 

conversion when compared to D1X2 with the lowest crosslinking at 2%.  

In assessing reusability and stability, it was found that only PA306s and A26 were able to maintain 

their activity after the fifth cycle. A significant drop in activity was identified for D1X2, with triacetin 

conversion reduced from 96% to 72% after just one cycle. Triacetin conversion was found in the residual 

reaction mixtures after transesterification for each of the DowexTM IERs. The highest triacetin conversion 

was 1.35 ± 0.13 %, with D1X8. However, the NMR spectra showed that no proton peak corresponds to 

trimethylamine presents in the range 2.1 to 2.3 ppm. No changes in triacetin conversions of the residual 

activity were found for A26, PA306s, PA308, and HPA25, implying that these four IERs were very stable.  

It is suggested that the reduction in transesterification activity could be due to three factors: 

neutralization of active sites; catalyst deactivation by glycerol sticking to the resin polymers; and leaching of 

the base active sites, particularly for D1X2, D1X4 and D1X8, although this could not be detected by NMR 

analysis. 

Experiments testing the performance of homogeneous tetramethylammonium hydroxide (TMAOH) 

indicated its reaction rate was much faster when compared to those of the heterogeneous IERs at the same 

concentration, but slower than NaOH. An almost complete triacetin conversion was obtained using 5.5 

mmol/L of TMAOH after less than 3 minutes. 
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