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ABSTRAK 

Ramalan paras air adalah proses penting dalam pengurusan banjir, penentuan potensi 
aliran sungai, analisis aliran alam sekitar, pengurusan pertanian dan penjanaan kuasa 
hidro. Penyelidik telah berusaha sejak dua dekad yang lalu dalam mengeksploitasi evolusi 
keupayaan komputer bagi membangunkan sistem ramalan paras air yang berfokus pada 
ketepatan bagi mengurangkan kesan-kesan negatif yang disebabkan oleh perubahan 
jumlah air di sungai kepada masyarakat sekitar. Kajian mendapati bahawa Rangkaian 
Neural Buatan (ANN) yang diilhamkan oleh sistem saraf biologi telah berjaya dalam 
menyelesaikan beberapa masalah dan dianggap sebagai alat ramalan yang berpotensi. 
Salah satu aspek utama ANN yang memainkan peranan utama dalam kecekapannya 
adalah proses pembelajaran, telah menjadi tumpuan kebanyakan penyelidik dalam 
beberapa ketika. Ketika latihan rangkaian saraf, cabaran utama adalah ketidaklinearan 
dan set terbaik parameter bagi kawalan utama (pemberat dan pemberat sebelah). 
Walaupun terbukti kejayaan algoritma keturunan-kecerunan seperti ‘Backpropagation’ 
(BP) untuk latihan ANN, mereka masih mempunyai beberapa kelemahan seperti 
terperangkap dalam minima tempatan dan penumpuan lambat. Ini menjadikan Algoritma 
Kepintaran ‘Swarm’ (SI) alternatif yang boleh dipercayai untuk mengurangkan 
kelemahan ini. Kajian ini mencadangkan algoritma latihan baru berdasarkan algoritma 
metaheuristik ‘Swarm’ baru-baru ini yang dinamakan algoritma Pengoptimuman Buffalo 
Afrika (ABO). ABO telah berjaya menyelesaikan banyak masalah dalam pembaikan. 
Oleh itu, kajian ini menyiasat kecekapannya dalam latihan ‘Multilayer Perceptron Neural 
Networks’ (MLPNN) dan menyelesaikan masalah BP. Di samping itu, kajian iti 
menyiasat kesan bilangan neuron dalam lapisan tersembunyi, bilangan populasi kawanan, 
dan kriteria berhenti (lelaran) pada prestasi model. Set data aras air sungai dipilih bagi 
menguji algoritma yang dilatih IABO dan hasilnya disahkan dengan penanda aras prestasi 
algoritma pengoptimuman ‘Partikel Swarm’ (PSO) dan ‘Back-Propagatio’n (BP). Hasil 
menunjukkan keberkesanan algoritma terlatih IABO dalam menghindari minima 
tempatan, kelajuan konvergensi dan ketepatan berbanding algoritma penandaarasan (BP 
dan PSO). 

 

 

 

 

 

 

 



iv 

ABSTRACT 

Water is an essential requirement for human life and activities associated with industries 
and agriculture. An accurate forecasting model would be helpful in providing a warning 
of impending flood during the flooding time and assist in regulating reservoir outflows 
during the low flows. This reason motivated the researchers to exploit the evolution of 
machine learning to develop water level forecasting systems that were characterized by 
accuracy, simplicity and low cost. This development goal is to reduce the impact of water 
variation in river water levels. The machine learning applications, especially Feed 
forward neural network (FFNN) which inspired from the human biological nervous 
system have been successful in solving several complex problems. The FFNN training 
process which is an optimization task to find the optimal controlling parameters (weights 
and biases) is considered as the main issues in any model performance. Due to that, many 
algorithms employ different training algorithms to guide the network for providing an 
accurate result with less training and testing error. These algorithms have succeeded with 
different accuracy levels, but it is still suffering from some weaknesses. Weakness such 
as trapped in local minima, slow convergence and finding a good rate between 
exploitation and exploration of the search space. This research proposed a swarm 
intelligence training algorithm, Improved African Buffalo Optimization algorithm 
(IABO) based on the Metaheuristic method called the African Buffalo Optimization 
algorithm (ABO). ABO has been successful in solving many improvement problems. 
These successes motivate the development and investigation of its efficiency in training 
Feed Forward Neural Networks (FFNNs), for solving training process issues. 
Additionally, the study investigated the effect of neurons number in the hidden layer, the 
number of population swarm, and the stopping criteria (iterations) on the model’s 
performance. Water level data set was chosen to test the proposed IABO-trained 
algorithm. The results were verified by benchmarking with the performance of the 
Particle Swarm Optimization (PSO) and Backpropagation (BP) algorithms. The results 
demonstrated the superiority of the IABO-trained algorithm in avoiding local minima, 
convergence speed, and accuracy compared to the benchmarking (BP and PSO) 
algorithms in water level forecasting tasks. 
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