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ABSTRACT 

 

An advanced electric drive controller for a high power starter-generator 

subsystem based on a series DC machine is presented. The machine is belt-coupled to a 

diesel engine in a series-parallel 2×2 HEV. The DC electric drive is developed for 

engine starting, generating and motoring. Computer simulations are performed for 

tuning the controller parameters, and for selecting proper inverter rating of the starter-

generator drive. The drive controller is implemented in hardware using Lab Instruments 

Drive Technology with algorithm software fixed point digital signal processor (DSP) 

and a high resolution current sensing board to achieve the best torque regulation at 

various load conditions. The DC starter-generator has been tested in both motoring 

(engine starting) and generating modes with the starter-generator mounted in the 

vehicle. 

For the propulsion motor drive, three phase induction motor driven by a three-

phase PWM inverter has been considered. The three phase induction motor drive cannot 

deliver high static and dynamic performance without the correct parameter values in the 

controller. Computer simulations showed the correct parameter variation effects on the 

performance of an induction motor drive used in an electric vehicle. A novel algorithm 

software  mode observer based induction motor controller with on-line parameter 

adaptation is then presented. Software in the-loop (SIL) and hardware-in-the-loop (HIL) 

simulations have been performed for  induction motor with electric vehicle load to 

verify the performance of the new algorithm as well as to tune the control parameters. 

For the HIL simulation, the controller was implemented in SIL based control hardware, 

and a electrical motor model was implemented in software. The new on-line parameter 

adaptation algorithm has been tested experimentally on three phase induction machine 

for a proof-of-concept demonstration. The developed algorithm for the three phase 

induction motor couple to dc motor provides fast convergence of parameters, rapid 

response characteristics of the drive, and accurate tracking of the control command for 

the three phase induction motor drive. These performance features are highly desirable 

for the propulsion motor in HEVs and EVs. 
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ABSTRAK 

Satu kenderaan elektrik hibrid (HEV)  motor aruhan tiga fasa pasangan untuk dc 

enjin dan pembakaran dalaman (IC) laluan enjin. Satu pengawal kenderaan yang 

penyeliaan menghasilkan perintah kawalan itu untuk subsistem dalam motor aruhan tiga 

fasa berdasarkan pemandu permintaan dan kelajuan kenderaan. Kecekapan bahan api 

dan pengeluaran daripada pembakaran dalaman (IC) enjin bergantung penggunaan 

subsistem dalam kedua-dua lorong-lorong penghantaran kuasa. Mejar subsistem dalam 

penghantaran kuasa elektrik laluan (EPTP) adakah jalan-jalan penggerak yang lari sama 

ada dalam menjana mod atau dalam memandu mod untuk proses aliran kuasa antara 

sumber dan roda-roda itu. Dalam penyelidikan ini, dua pemanduan bermotor maju 

subsistem dengan meningkat alat-alat kawalan telah direka bentuk dan dibangunkan 

untuk satu HEV motor aruhan tiga fasa pasangan untuk dc enjin. Dua subsistem adalah 

pemula penjana pacu elektrik dan pemanduan bermotor pendorongan. Sumbangan 

penyelidikan ini akan membolehkan penggunaan cekap HEV automotif. 

Satu pengawal pacu elektrik yang maju untuk kuasa tinggi pemula penjana 

subsistem didasarkan satu siri mesin DC dibentangkan. Mesin adalah tali pinggang 

digandingkan untuk enjin diesel dalam satu siri selari 2×2 HEV. Pacu elektrik DC 

dibangunkan untuk permulaan enjin, menjana dan memandu. Simulasi komputer 

dipersembahkan untuk menala pengawal parameter, dan untuk memilih sesuai 

penyongsang penarafan pemula penjana memandu. Pengawal pacuan dilaksanakan 

dalam perkakasan menggunakan LAB INSTRUMENTS DRIVE TECHNOLOGY 

activeasma titik tetap pemproses isyarat digital (DSP) dan satu arus peleraian tinggi 

lembaga penderiaan bagi mencapai kilas terbaik peraturan di syarat-syarat muatan 

pelbagai. DC pemula penjana telah diuji dalam kedua-dua memandu (permulaan enjin) 

dan menjana cara dengan pemula penjana dipelekap dalam kenderaan. 

Untuk pemanduan bermotor pendorongan, motor aruhan tiga fasa didorong oleh 

satu PWM tiga fasa penyongsang telah dipertimbangkan. induksi Tiga fasa pemanduan 

bermotor tidak boleh menyampaikan prestasi statik tinggi dan dinamik tanpa nilai-nilai 

parameter betul itu dalam pengawal. Simulasi komputer menunjukkan ubahan 

parameter itu kesan-kesan pada prestasi satu pemanduan bermotor induksi digunakan 

dalam satu kenderaan elektrik. Sebuah novel Lucas-Nuller Asma dan pctrain pemerhati 

mod pengawal motor aruhan berasas dengan penyesuaian parameter dalam talian 

kemudiannya dikemukakan. Perisian dalam itu gelung (SIL) dan perkakasan dalam itu 

gelung (HIL) simulasi-simulasi telah dipersembahkan untuk satu motor aruhan kuasa 

tinggi dengan beban kenderaan elektrik untuk mengesahkan prestasi Lucas yang baru 

mod Nuller pemerhati penyesuaian parameter berasas algoritma serta untuk menalakan 

kawalan parameter.  Untuk simulasi HIL, pengawal itu telah dilaksana dalam PLC 

berpangkalan perkakasan kawalan, dan satu model enjin yang maya telah dilaksana 

dalam perisian. Parameter dalam talian baru algoritma penyesuaian telah diuji secara 

eksperimen sedang tiga fasa mesin induksi untuk satu bukti bagi konsep demonstrasi.  

Algoritma maju menyediakan berpuasa penumpuan parameter, ciri-ciri respons cepat 

pacuan, dan penjejakan tepat bagi perintah kawalan untuk induksi tiga fasa pemanduan 

bermotor. Ciri-ciri perlakuan ini adalah amat elok untuk enjin pendorongan dalam 

HEVs dan EVs.     
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CHAPTER 1 

 

INTRODUCTION 

 

Nowadays the air pollution and economical issues are the major driving forces 

in  developing  electric  vehicles  (EVs).  Hybrid  electric  vehicle  (HEV)  is  one  of  

the  most  promising  alternatives to  a  conventional engine-powered vehicle by 

offering a clean, efficient and environmentally friendly urban transportation system 

(Abdalla, Abdelnassir,2005). However, how much the hybrid vehicle is better than the 

conventional one depends heavily on its control strategy.  

The most advanced control algorithms for a motor drive require a good 

knowledge of the machine analytical model. A motor drive cannot deliver good 

performance without having the correct machine parameters in the controller. Especially 

in HEV applications, incorrect machine parameters in the controller of the propulsion 

motor make a significant difference in vehicle performance. Therefore, the primary 

focus of this dissertation will be machine parameter estimation for efficient use of a 

propulsion motor (Ambroˇziˇc, et al., 2004). The control algorithm and motor drive 

selection for a high power starter/generator of an HEV will also be addressed in this 

research. 

In  Laboratory  TATIUC  the  already  developed digital signal processors 

(DSPs)  in  motor  control  applications  has  allowed  electrical machines to deliver 

their highest performance in terms of torque-speed characteristics and dynamic 

behaviour. Now complex control algorithms can be implemented, and these algorithms 

can be optimized considering efficiency and desired dynamic and static response 

(A.Aradadi, et al., 2007). The performance of a starter dc motor or main propulsion type 

subsystem in an electric or hybrid electric vehicle depends on the efficiency 

performance and robustness of the motor drives including the controller. In addition, the 

energy storage system of electric or hybrid electric vehicle must have sufficient capacity 
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to supply enough power and energy to the three phase electric motors couple dc motor 

of different subsystems so that the machines can operate at full capacity. 

1.1  HYBRID ELECTRIC VEHICLES 

A hybrid electric vehicle (HEV) combines at least two sources of propulsion, 

one of them being electric. Hybrid power production options include spark ignition 

engines, compression ignition direct engines, gas turbines, and fuel cells. The primary 

options for energy storage include batteries, ultra capacitors, and flywheels. 

Hybridization of the automotive attempts to combine the low emissions of electric 

automobiles with the extended range of gasoline engines (A.Aradadi, et al., 2004). A 

hybrid electric vehicle (HEV) decreases the fuel economy and increases the emissions 

of the system when compared to a vehicle functioning only on a gasoline engine. The 

greatest   benefit  of  the  gasoline  engine  is  the  high  energy  density  of   gasoline 

(A. Kocalmis, 2005), on the order of 12,000 Wh/kg, in contrast with the much lower 

energy density of batteries, on the order of 500 Wh/kg. This allows the much greater 

range of vehicles run on gasoline engines. The benefits of electric motors include high 

torque at low speeds, the absence of on-board emissions, and regenerative braking. 

Traditionally, there are two ways to configure the system, series or parallel. 

Hybrid electric vehicles attempt to combine the best of both conventionally 

powered internal combustion engine vehicles and electric vehicles. Hybrid electric 

vehicles can circumvent the range limitation of electric vehicles by using liquid fuels 

which over 100 times the energy density of current battery technology. Automobiles are 

an integral part of our everyday life (A. Farrokh Payam R. Yazdanpanah, 2006). 

Unfortunately, most automobiles use fossil fuels such as gasoline and diesel. 

Consequently, internal combustion (IC) engines release carbon monoxide, nitrogen 

oxides, carbon dioxide and hydrocarbons to the environment. The chemicals cause air 

pollution, acid rain, and build up of greenhouse gases in the atmosphere. 

Electric vehicles (EV) powered by alternative energy provide the means for 

clean, efficient and environmentally friendly transportation. In EVs, an electric motor is 



3 

 

the only propulsion unit, and power is supplied from a battery pack. Hybrid electric 

vehicles (HEV) that use both electric machines and an internal combustion (IC) engine 

for propulsion produce less emission as well as cause less air pollution than 

conventional automobiles (A. Tenconi, et al., 2004). The IC engine used in an HEV is, 

of course, downsized compared to an equivalent IC engine vehicle. Electric vehicles 

first came to the market in the middle of 19th century, even before gasoline powered 

vehicles (A. Arkkio, 2004). In the year 1900, 38% of the vehicles sold were electric 

powered. The invention of the starter motor for IC engines, improvement in engine 

technology, and availability of gasoline and inconvenience of battery charging 

challenged the existence of electric vehicles. However, during the last decade, 

motivated by concern over pollution and a future energy crisis, government and major 

automotive industries embarked on a number of initiatives to bring commercial EVs and 

HEVs into the market. 

The architecture  and  component  selection  of  Automotive  of an HEV 

depends  on  vehicle  architecture.  The  existing  architectures  for  HEVs  fall  under 

the  categories  of  series,  parallel  and  series-parallel  (A. Rahide, 2000).  In  series 

hybrid  vehicle  architecture,   the   IC   engine   acts as  a  prime  mover  to  drive  an 

(A. T. de Almeida,et al, 2002) electric generator, but never delivers power directly to 

the wheels. The electric generator provides power to the propulsion motor through an 

energy storage link. In parallel hybrid architecture, two energy sources provide 

propulsion power. A parallel hybrid automotive blends the power of the IC engine and 

the electric motor mechanically (A. T. de Almeida, et  al., 2001.) with both sources 

supplying power to the wheels in parallel. The series-parallel architecture is a mix of 

series and parallel hybrid automotive. Combining the advantages of series and parallel 

improves the performance and increases the fuel efficiency. 

1.1.1  Series Configuration   

In a series configuration, the gasoline engine is connected via a generator to the 

electric motor, and only the electric motor provides power to the wheels. Torque 
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produced by the gasoline engine generates electric energy in the generator, which is 

stored in the battery for use by the motor. In this system, the gasoline engine often runs 

continually in its zone of highest efficiency or lowest emissions, eliminating transient 

operation of the engine (A. Emadi, et al., 2005.). Numerous types of control strategies 

are being employed with series configuration. The gasoline engine can be controlled to 

optimize either fuel consumption or emissions production(A . P. Walker, 2004). Design 

of the generator-motor system takes into consideration whether or not the car will be 

―charge-dependent‖ or ―self-sustaining‖( A. Simpson, 2006). A charge-dependent car 

relies on external electric input whereas a self-sustaining car does not. The charge-

dependent car, thus very similar to a pure electric vehicle, releases fewer emissions; but 

the self sustaining car demonstrates a longer running range. Of the two, the self-

sustaining car requires a generator of a larger capacity and the charge-dependent car 

requires a battery of a larger capacity. There are a number of other factors to be taken 

into  consideration   in  the  design  and  control of series   hybrid   electric    vehicles 

(A. Pesaran, 2006).  The  engine  does  not  have to run consistently throughout a 

driving  cycle;   thus,   the   number   of   times   that   an   engine   is   started   over   the  

cycle  is   an   important   variable   in   influencing   the   production   of    emissions 

(A. Rajagopalan, 2002; G. Washington , 2002).  Another factor is the relation of the 

battery‘s state-of-charge and the traction motor output to the input from the gasoline 

engine. In a ―thermostat‖ strategy, the gasoline engine runs at a single power level; it is 

started when the battery‘s state-of-charge reaches a designated minimum and stops 

when the state-of charge has reached an upper set point (A. M. Trzynadlowski, 2001). 

In  a ―power-follower‖ strategy,  the  gasoline  engine  follows  the  immediate  

demands of  the   motor   output,   and   the   battery‘s   state-of-charge   remains         

constant (A. Derdiyok, et al., 2002). Because this strategy matches the engine‘s torque 

to the motor torque second-by second, bypassing the need to store the torque in the 

batteries, battery losses are reduced, increasing fuel economy . 
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1.1.2  Parallel Configuration  

In a parallel configuration, either the gasoline engine or the electric motor, or 

both can supply torque directly to the wheels. As a general principle, the electric motor 

is used for starting and low vehicle speeds, and the gasoline engine provides the power 

for steady-state operation (A.A., E. Monmasson, et al., 2005). This configuration 

presents the designer with an even greater number of design options than the series 

configuration. Control and control strategy are thus very important. Control systems 

function primarily to match the drive train with the driving conditions. Some principles 

are common to most parallel control systems. For example, the gasoline engine is never 

allowed to idle. When the vehicle is stopped or when it is decelerating, the engine is 

shut off.   Only  the  electric  motor  provides  torque  for all slow-moving operations 

(A. Brooker, et al., 2002 ). A minimum vehicle speed is usually set to govern the 

entrance of the gasoline engine. Both the gasoline engine and the electric motor are used 

together for operations that demand high torque.  Regenerative  braking  is employed 

(A. K. Jain,2006;  S. Mathapati, 2006). A number of factors vary among designs. 

Designers must choose a minimum speed below which the gasoline engine is turned off. 

They also determine a minimum operating torque as a function of engine speed for the 

gasoline engine (A. Trentin, 2006; P. Zanchetta , 2006). If the torque required to meet 

the trace, which is the instantaneous torque demand on the vehicle, falls beneath this 

mark, the excess torque is used to drive the motor as a generator, recharging the 

batteries. A parallel-configured hybrid can run the gasoline engine in a number of ways; 

the gasoline engine can be used to meet the trace, it can be used only for steady-state 

operation, or there can be an intermediate control strategy. 

1.2  ELECTRIC MACHINES 

Electric machines demonstrate a number of features that are desirable for 

application to personal transportation. Electric motors have very high drive train 

efficiency, at least 90%. They also produce high torque at low speeds, a feature which 

has many applications in the varied driving conditions and needs for quick acceleration 
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of personal transportation (B. Ozpineci et, al., 2006). Electric machines can be 

categorized as DC and AC types. Prior to 1980s, DC motors were widely used in 

industries and in a number of prototype electric vehicles due to their developed 

technology and ease of control (Baumann B, et al., 2000 ). DC machines offer flexible 

torque speed control and wide speed range operation, which is desired for an HEV 

propulsion motor (Boulter, et al, 2004). DC machines are simple to control, but they 

have low power to weight ratio, low efficiency, and require brush and commutator 

maintenance. 

During the last three decades, AC machines have slowly replaced the DC 

machines due to the size and maintenance requirements of the latter. Recent electric and 

hybrid electric vehicles use AC machines both for propulsion and starter-generator 

applications. The types of AC machines used for these and other automotive 

applications  are  induction,  permanent  magnet  and  switched  reluctance  machines 

(B. Kou, 2005;  L. Li et, 2005). These AC machines will be discussed in the following 

paragraphs. 

1.2.1  Induction Machines  

The stator is identical to a stator of a synchronous machine: three phases, P 

poles, sinusoidal mmf and flux distribution, and synchronous speed. In induction 

motors, the stator carries the field (C. Lascu, et al., 2004). The rotor is much different; 

in induction motors, the rotor is an iron cylinder with large embedded conductors, 

which are shorted to allow the free flow of current. The stator flux induces the ac 

current in the  each the rotor conductors, and an ac voltage is induced in the rotor to 

drive the currents. The currents in the conductor produce a magnetic. 

Induction machine  technology  is  a  mature  technology  with extensive 

research  and  development  activities  over  the past  100 years.  Recent development in 

digital  signal    processor   and   advanced vector   control algorithm    allow controlling 

an  induction  machine  like  a  DC  machine without  the  maintenance  requirements 

(C. Gherasim,  J. Van den Keybus, 2004). Induction motors are considered as 
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workhorses of the industry because of their low cost, robustness and reliability. 

Induction machines are used in electric and hybrid electric vehicle applications because 

they are rugged, lower-cost, operate over wide speed range, and are capable of operating 

at high speed (C. D. Rakopoulos, 2004). The size of the induction machine is smaller 

than that of a separately excited DC machine for similar power rating. The induction 

machine  is  the  most mature technology among  the  commutator  fewer   motor  

drives. There are two types of induction machines: squirrel cage and wound rotor 

(CASADEI, D, et al., 2001). In squirrel cage machines, the rotor winding consists of 

short-circuited copper or aluminium bars with ends welded to copper rings known as 

end rings. In wound rotor induction machines, the rotor windings are brought to the 

outside with the help of slip rings so that the rotor resistance can be varied by adding 

external resistance. Squirrel cage induction machines are of greater interest for 

industries as well as for EVs and HEVs.  Instant high  power and  high  torque 

capability of induction machine have made it an attractive   candidate  for the  

propulsion  system of EV  and  HEV.  The   three-phase   stator   windings    in    an  

induction   machine are displaced  by   120°  (electrical)  in   space   along   the   stator    

circumference(Choi, Tayoung Gabriel, 2008; C. Lascu, et al., 2000). If three-phase 

voltages are applied to the stator, the stator magnetic field will cut the rotor conductors, 

and will induce voltages in the rotor bars (Casadei., et al, 2002). The induced voltages 

will cause rotor currents to flow in the rotor circuit, since the rotor is short-circuited. 

The rotor current will interact with the air gap field to produce torque. As a result the 

rotor will start rotating in the direction of the rotating field. The difference between the 

rotor speed and the stator flux synchronous speed is the slip speed by which the rotor is 

slipping from the stator magnetic.  

1.2.2  Machines used for starter/generators     

Electric machines are classified according to the mechanism of establishing the 

rotating field in the stator and the rotor. Rotating stator fields in electrical machines are 

generated using electrical excitation (Chan C, Chau K, 2001). In addition, a field at the 
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rotor must also be created, i.e. the rotor has to be magnetically oriented in order to make 

it spin. Different solutions exist to produce the rotor field: 

  The rotor‘s field can be induced from the stator, because of the rotor‘s structure 

(as in the induction machine) 

  The rotor can be electrically excited so that it would create a magnetic field 

with a constant orientation (as in the synchronous machine) 

   The shape of the rotor can induce reluctance variations in the stator  (as in the 

switched reluctance machine) 

  The rotor can be permanently magnetized with permanent magnets (as in the 

PM machines). 

The conventional induction and synchronous machines have certain 

disadvantages: in the case of synchronous machines, the need for an electric source to 

energize the rotor leads to a less efficient system. In addition, electrical losses will occur 

if mechanical connectors, such as rings and brushes, are used to provide the rotor with 

the DC excitation (C. Gherasim, J. Van den Keybus, 2004). These elements will also 

suffer from mechanical aging, which makes them less reliable. As for induction 

machines, part of the current in the stator must serve to magnetize the rotor, and 

therefore does not contribute to the production of torque, which will reduce the 

efficiency (Chen, Qi,  2007). One criterion of good operation is the smoothness of the 

rotation of the rotor; the switched reluctance motor is prone to high torque ripple, which 

makes it a bad candidate for applications that require smooth operation. The motors 

with permanent magnets are the most efficient because they don‘t require an external 

field excitation (Choi, Tayoung Gabriel, 2008). In this category of motors, two main 

motors emerge: the Permanent Magnet Synchronous Machine (PMSM) and the 

Permanent Magnet Brushless Direct Current machine (PM-BLDC). PMSMs have been 

sinusoidal back-EMF, while PM-BLDC machines have trapezoidal back-EMF. 

One of the machines mentioned can be used for the starter/generator application 

(C. Lascu, et al., 2000 ). The researchers in  selected an induction machine for a three-
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phase 4kW starter/generator for the ease of manufacture and cost. The induction motors 

have good efficiency and smooth torque, and have been widely studied and used, which 

gives them an advantage(CRC press Taylor & Francis Group, 2005). However, the rotor 

losses and the cooling of the rotor are a concern for the induction machine. 

Switched reluctance machines are attractive because of their simple design, and 

fault-tolerance capability in the face of switch failures. However, their study and 

development are still in an early stage and their use in current industrial applications is 

still limited. Finally, PM machines are attractive because these machines have the great 

advantage of having the highest efficiency ( D.Anderson and Judi Anderson, 2005). The 

cost is an impediment due to the use of expensive permanent magnets. The permanent 

magnets are also vulnerable to elevated temperatures. 

In (D.Anderson and Judi Anderson, 2005), another type of permanent magnet 

electric motor, known as a double-stator electric machine, is used to develop a 

starter/generator application. The interest of this research was to develop a motor drive 

that would be compact, have a high starting torque and a wide speed range when 

operated as a generator. The general idea is to have, from the centre of the motor to the 

outside, first a stator, then the rotor, and finally the second stator. The rotor is made of 

permanent magnets, while the stators have windings (D.Casadei and G.Serra, 2002). A 

finite element analysis was conducted, and prototypes were built; they showed 

improvements over the level and the shape of the voltage generated by this special kind 

of motor. The best improvements were made possible by adjusting the pitch 

displacement of the two stators (D.A.  Staton, et al., 2005). The latter factor was also 

considered in order to obtain attractive values of average torque and torque ripple. The 

electric machine chosen for the Akron hybrid vehicle starter/generator is a PM-BLDC 

machine. The selection was based on both the availability of a 20kW PM BLDC 

machine and the technical  advantage  of  this  machine  for the  intended  application 

(E. Semail, X.Kestelyn, 2004). The review of PM Brushless Machines and their control 

will be presented in this chapter. 
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1.2.3  Switched reluctance machines     

Switched reluctance (SR) machines are also gaining attention in HEV 

applications. They are inexpensive, reliable, have high fault tolerance, and weigh less 

than other machines of comparable power outputs (Eun-Chul Shin, et al., 2003). High 

torque-inertia ratio is an advantage for the SR machines. The SR motor is a doubly 

salient and singly excited reluctance machine with independent phase windings on the 

stator (E. Nordlund, 2005). The stator winding is comprised of a set of concentrated 

winding coils. The rotor structure is very simple without any windings or magnets, and 

is made of magnetic steel laminations. Two major problems associated with SR 

machines are the acoustic noise and significant torque ripples . 

The SR machine is excited by a sequence of current pulses applied to each 

phase, and the energized phases cause the rotor to rotate in the motoring mode. The SR 

machine operates on the principle of varying reluctance (E. Nordlund, 2005). The 

reluctance is  minimum  (inductance is maximum)  when stator and rotor poles are in 

the  aligned  position,  and  maximum  when  the   poles  are  unaligned.  A  stator  

phase is  energized  when  the  reluctance   for   the   respective   phase  is  maximum 

(E. C. Lovelace, T. M. Jahns, et al., 2004 ). The adjacent rotor pole-pair gets attracted 

toward the energized stator to minimize the reluctance of the magnetic path. When the 

reluctance is minimized, the next stator phase is energized. As a result, torque is 

developed in the direction of rotation. 

1.3  RESEARCH MOTIVATION 

The increased complexity of vehicle control and vital data communication in a 

HEV require a careful and thorough testing of the vehicle controller and its coordination 

with various subsystems.   Testing   of   a   vehicle  controller in a HEV is essential 

before   it   is used to run a real vehicle  based  on  both  economic and safety grounds 

(Faiz J, et al., 2003). A Hardware-in-Loop (HIL) simulation platform enables on-the-

bench testing of a vehicle controller to be employed in a HEV.   
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 A HIL simulation setup provides the necessary bridge between offline 

simulations and real time implementation of a vehicle controller. Most  of  the  research 

work   done   earlier   demonstrates   many  offline  studies  done  on  a  vehicle  model 

(Fang Lin Luo, Hock Guan Yeo, 2000). The path between the offline simulations and 

real world implementation needs many factors to be considered. In a HIL simulation 

setup, offline simulations are modified to run in real time, and the hurdles in real time 

implementation of a HEV controller can be seen earlier in the design process. The 

importance and utility of this technology motivated the development a HIL setup to be 

used for HEV controller testing University of Akron. Arkon model  is a HEV design 

competition with headline sponsorship from General Motors (GM), and the United 

States Department of Energy (USDOE) (F, 2001;  Faiz J, Sharifian M.B.B, 2001). The 

primary objective was to reengineer a GM Chevrolet Equinox into a fuel efficient, 

environment friendly HEV while maintaining the performance of a stock vehicle. 

 

1.4   RESEARCH OBJECTIVES 

The primary objective of this research is to develop advanced control s for the 

motor drive, theInduction motor couples to dc motor.  To know and Record the data 

parameter trategy of the Transient or steady state system.  And how to collect data in  

steady state  condition , the data parameter are torque, mechanical power, armature 

voltage, armature current, apparent power ,active power , reactive power, slip , power 

factor and efficiency  vs speed . For data transient system are torque, speed, power, 

current vs time.  And shows the wiring diagram of  induction motor and how to collect 

data in  transient condition,  for the first time experiment use only Induction motor and 

the second time experiment  use Induction motor coupled  to DC motor. The following 

research objectives are set forth: 

The simulation is used  testing the maximum driving range at a constant speed 

35 mph(mile per hour) for Conventional  Hybrid System compare  to the 

Proposed HEV. 
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The simulation is used testing the maximum driving range at Up-hill grade-

ability for Conventional HEV(only induction motor) compare  Proposed 

HEV(Induction motor coupled dc motor) . 

The simulation is used for testing the maximum driving range at Down-hill 

grade-ability for  Conventional HEV(only induction motor) compare  Proposed 

HEV(Induction motor coupled dc motor). 

Development of a new observer based on-line parameter estimation algorithm 

for induction motor couple dc motor drive drives, which is simple, easy to 

implement and able to overcome the difficulties of existing methods. 

 

1.5  RESEARCH CONTRIBUTIONS     

The primary objective of this dissertation is to investigate and  fine control 

solutions to derivability problems that arise due to the intrinsic characteristics of hybrid- 

electric vehicle  cars and the control strategies that manage them. In accordance with 

this objective, the first contribution of this research is the development and experimental 

validation of an through-the-road parallel HEV model with the purpose of predicting 

low-to-mid frequency vehicle dynamic behavior that has the impact on longitudinal 

drivability (Feng Chai et, al., 2005). Throughout the course of this thesis, simplified 

versions of this model are used for the design of control algorithms. 

The second contribution is made in the area of HEV control design. Despite the 

presence of considerable research effort on fuel economy optimization, these works 

rarely consider the derivability effects of the actions taken by the energy management 

controllers (G.-J. Su, et al., 2006 ). This thesis attempts to address this limitation.  One 

of the findings of this research is the importance and difficulty of maintaining good 

derivability in a HEV that uses a multi-mode control architecture because of the need 

for proper utilization of the engine start-stop and couple function. This observation 

motivated the study in the area of control of systems with mode-switching induced 

transients (G.-J. Su and J. S. Hsu, 2004 ). The beginnings of a mathematical approach 
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are presented to address the problem of achieving seamless mode transitions in a special 

class of switched dynamical systems. The proposed framework is applied to a HEV 

drive line control problem during the transition from electric only to hybrid mode. 

The third contribution is simulation programs are used to present the results 

since no road test  results  are  available  for  a  hybrid vehicle.  There  also  has  been 

no   research   on   computer   simulations   as   they   are   applied  in  this thesis 

(Głowacz Z, ZdrojewskiA, 2005). However, the results of these simulations may give 

an approximate idea about the performance of the Induction motor couple to dc motor 

in  the hybrid vehicle (Głowacz Z, 2000). The idea may be applied if any manufacturer 

is interested in producing this hybrid vehicle in the future. 

The interface mimics the in-vehicle communications. A schematic 

representation of a HIL simulation platform is given in Figure 1.1. The RTS may 

consist of a single node or many nodes based on the complexity of the vehicle model. 

The vehicle subsystems like ICE,  Electrical Motor  and generator can run on different 

nodes communicating on a CAN network (G. Buja and M. Kazmierkowski, 2004). The 

nodes are interfaced to an Electronic Control Unit (ECU). The ECU may be a 

production ECU. 

 

Figure 1.1: Concept of Hardware in Loop Simulation 
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In this work , the capability of using a single modeling and simulation tool 

(Matlab/Simulink) from the design stage to a prototyping stage is demonstrated. The 

Matlab/Simulink models of HEV obtained using Car Systems Analysis Toolkit (CSAT) 

is presented. CSAT is vehicle modeling and simulation software provided by the 

TATIUC Labs. 

In a HEV, the operation of the propulsion system and other subsystems is 

controlled by a vehicle control strategy. A basic vehicle control strategy has been 

developed and added to the existing control libraries in CSAT for future development 

and testing. The model of a HEV controller is checked by running a Software-in-Loop 

(SIL) simulation to validate the initial sizing of the components, and also to ensure that 

the vehicle performance is satisfactory (G. Escobar, et al., 2003). The vehicle controller 

is further tested in real time on the HIL simulation setup, and it is demonstrated that the 

HEV meets initial design requirements. The HIL simulation setup built is scalable and 

can be easily upgraded depending on the requirements of the real time simulation. This 

is not like the earlier systems where it was customized for a particular application or a 

project (GRABOWSKI, P. Z. et al., 2000). The real time code obtained from a vehicle 

model in Matlab/Simulink is run on a RedHawk Real Time Operating System (RTOS) 

provided by Concurrent Computer Corporation. The various tools for real time 

simulation of the vehicle model are presented and explained (Honda, et al., 1998). 

Versatility  of  the  HIL  simulation  setup  is  demonstrated  by  real  time  simulation  

of  a  vehicular  subsystem   (Electric Motor Drive).  The    intricacies   and  the  

changes in  the   offline   model   when   implemented   in   real   time   are   

demonstrated  (H. Samsul Bachri M, 2007). To  demonstrate  the  scalability  of the  

HIL setup,   additional   computation   nodes were   included,    and   the   setup   was  

used to   demonstrate     distributed    simulation     of   a vehicle   and   its   subsystems 

(Hamid A.Toliyat and Huangsheng XU, 2000). The HIL simulation setup can be used 

effectively in future years and tied up into the ongoing automotive research at The 

University of Malaysia Pahang a turn key system. 
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1.6  SCOPE OF THE THESIS. 

The objective of this thesis is to investigate on the development of an advanced 

induction motor couple to dc motor based HEV system. Important issues related to 

modeling, design and control of an HEV system will be presented, including: 

 Wide speed range field oriented control of an induction motor couple to dc motor;  

Modeling and design of a power circuit of HEV; 

 High current power HEV circuit design example, discussing issues such as power 

module integration, filtering components and safety operation management. 

1.7  THESIS ORGANIZATION 

The dissertation introduction addressed the research trends in the area of motor 

drives for HEVs. A brief description of the hybrid electric vehicle drive automotive 

followed by a presentation of different electric machines that are used in HEV power 

automotive subsystems was presented. The research motivation and objectives were 

then explained in detail. 

Chapter two describes the architecture, components selection and sizing of the 

motor drive subsystems for the electric power transmission path, and highlights the 

issues with these subsystems that have motivated this research. 

Chapter three presents the mathematical model for Series Parallel HEV, drive 

structure, and modelling of an advanced induction motor couple to dc motor drives that 

have been selected for the HEV under consideration. A literature review on existing 

parameter estimation methods to improve the performance of propulsion motor drive 

system is also presented. 

Chapter four is presented the simulation Results, that employed control strategy 

method such a parallel hybrid electric control strategy. The simulation results cover IM 

couple to DCM average SUV and  Full Size SUV. 

Chapter five describes the experiment laboratory and analysis calculation of 

three phase induction motor couple to dc motor, including software-in-the-loop 
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simulation results in experiment method of the induction Motor drive couple to dc 

motor in HEV Itis. presented. 

Chapter six concludes and future work this thesis,  and presents future research 

topics related to the Couple induction motor to dc motor in application subsystems of an 

HEV/EV
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CHAPTER 2   

 

BACKGROUND 

 

This chapter briefly describes the various HEV architectures and introduces the 

series parallel 2x2 HEV and electric power transmission part. The propulsion power in a 

hybrid electric vehicle (HEV) comes from one or more traction electric motors and an 

internal combustion engine. The propulsion power is transmitted to wheels through 

either the mechanical power transmission path (MPTP) or the electric power 

transmission path (EPTP), or the combination of the two (Harry L. Husted, 2003). The 

stages in the development process of a vehicle control system, Software-in-Loop 

simulation and Hardware-in-Loop simulation are explained. The advantages of using 

Hardware-in-Loop (HIL) simulation for vehicle controller testing are described as well.   

2.1 ELECTRIC POWER TRANSMISSION PATH   

2.1.1. Electrical Components   

The advancements in conventional vehicles provide some improvement in a 

vehicle performance and fuel economy, but long term benefits in terms of reducing the 

dependency on oil and the emissions from ICE vehicles cannot be achieved without a 

more drastic change. An interim technology and solution for this are a hybrid electric 

vehicle (HEV). Figure 2.1 shows the electrical components in the Automotive of the 

series-parallel hybrid electric vehicle. One electric machine (labeled as ―Generator‖) is 

coupled with the engine and can be operated as a generator as well as a motor.  

 During generation, the power through the generator can be used to charge the 

energy storage using a bidirectional inverter, or to deliver energy directly to the 

propulsion motor through the DC bus. The generator can also be operated as a motor 

during engine starting and torque boosting (Idris, et al., 2000). The energy storage 

system will absorb or deliver power depending on the system state of charge and 

driving conditions. The propulsion motor can also capture regenerative energy during 

vehicle braking.  
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Figure 2.1: Electrical Components of a Series-Parallel Hybrid Electric Vehicle  

The fuel efficiency and the run-time of the IC engine in a hybrid electric vehicle 

depend on the efficient use of the electrical components. The components need to be 

selected with a suitable torque-speed operating envelope that will deliver the desired 

vehicle performance (I. J. Albert, et al., 2004). The physical size of the components is 

also critical, since they need to be properly packaged and mounted within the vehicle.  

2.1.2  Electric machines for HEV  

The starter-generator and propulsion motor in the EPTP uses high power electric 

machines. These electric machines need to have the motoring and generating capability, 

high power density, high efficiency, and high starting torque over a wide speed range to 

meet performance specifications (I. Arise., et al, 2004). Any one of the three machine 

drives, induction, PM or SR, can meet the requirements of a starter-generator and 

propulsion system when designed accordingly. The selection depends on the subtle 

features of the machines and their power, electronic drives and the availability in the 

desired time-frame.  

The plot of an electric machine torque-speed characteristic is shown in Figure 

2.2. The motor delivers rated torque (Tr) up to the rated speed or base speed? Base 

where the motor reaches its rated power condition. In the constant power region, the 

motor can operate at speeds higher than the rated condition but the delivered torque 

decreases (I. Husain, 2003). The natural characteristics' region can be used to extend the 

operating region of certain motors. The power electronics based motor drive enables 
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electric motor operation at any point within the envelope. In HEV applications, 

transmission gears are used to match the higher speed of the electric motor with the 

lower speed of the wheels.  

 

Figure 2.2: Electric Motor Torque-Speed Envelope  

2.1.3  Internal Combution Engines.  

Four-stroke gasoline/patrol engines and diesel engines are both used in HEV 

applications. The selection of an IC engine for an HEV application is based on 

maximum power and torque output, brake specific fuel consumption, emissions, 

efficiency and driving performance (J. Habibi, S. Vaez-Zadeh, 2005). The engine is 

sized to supply efficient power to overcome the road load comprised of aerodynamic 

drag, rolling resistance and roadway grade during the charge sustaining mode of 

operation.  

The ignition in gasoline engines is initiated by a spark plug, whereas diesel 

engines   require   only  compression  of  fuel to start combustion.  Compression  

ignition   engines   with turbocharger operate more efficiently than spark ignition 

engines  because  of  higher  compression   ratio   and high combustion  temperature 

(J.E. Naranjo, et al., 2004 ). Turbocharging and supercharging to increase the power 

output of the compression ignition engines allowing further size and weight reduction 

(J. Marshaus, 2004). Moreover, diesel engines use less fuel when idling.  

The cranking  torque and speed of the IC engine define the size of the starter 

motor. The starting torque of the engine depends on the compression ratio. The diesel 

engines   have   compression   ratios   of   14:1 to 23:1,   whereas   the  gasoline  engines 

used   in   conventional   vehicles     have   compression     ratios   of  7.5:1 to 
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10.5:1(Jin-Qiang Yang, Jin Huang, 2004). Because of the high compression ratio, the 

diesel engine requires more starting torque compared to a gasoline engine of the same 

size. Diesel engines with sizes ranging from 1 6L. to 2L require starting torque from 

80Nm to 100Nm at speeds of 800rpm to 1200rpm (Jia-Qiang Yang, Jin Huang, 2005).  

2.2  HEV ARCHITECTURES  

There are several HEV architectures, each with its distinct design and operating 

characteristics. HEVs usually fall into one of the following categories like Series HEV, 

Parallel HEV, Split HEV, and Series-Parallel 2x2 HEV, based on the arrangement and 

operation of the propulsion systems in the vehicle.  

2.2.1  Series Hybrid Architecture  

Series HEV is the simplest HEV architectures. Series' hybrid architectures 

employ an ICE coupled to a generator, which supplies electric power to an onboard 

energy storage device such as a battery and to an EM that serves as the propulsion 

system.  

 

Figure 2.3: Series HEV Architecture 

 

The EM drives the wheels through a differential (DIFF).A schematic 

representation of a series HEV is given in Figure 2.3. For simplicity gear coupling 

associated between the ICE and generator (GEN) is not shown. By controlling the GEN 

operating point, the ICE is operated in its most efficient operating range (J.Pedra,2004 ). 

In a series HEV there is no mechanical transmission and the performance characteristics 
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are governed by the EM and energy storage assembly. The generator is also used as a 

starter to start the ICE.  

2.2.2  Parallel Hybrid Architecture.  

Parallel hybrid architectures use a single electric machine, which draws current 

from an energy storage device to provide mechanical assistance to the ICE. The parallel 

systems are best suited to low-power vehicles where the EM and the ICE are operated 

together to enhance the overall performance (Jae Sub Ko, 2006). The simplest is the one 

in which the EM and ICE are on the same shaft. The Honda Insight and Honda Civic 

Hybrid are examples of production HEVs with similar parallel architectures.  

  

Figure 2.4: Parallel Pre-transmission HEV Architecture.  

 

  

Figure 2.5: Parallel Post-Transmission HEV Architecture  
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There are three variations of a parallel HEV based on the position of the EM in 

the drive machines. In parallel pre-transmission HEV the EM is coupled to the ICE 

shaft before the transmission and in a parallel post-transmission HEV, the EM is 

coupled to the ICE shaft after the transmission (TX) (Jussi Puranen,  2006). The layouts 

of the parallel pre-transmission HEV and post transmission HEV are given in Figure 2.4 

and Figure 2.5 respectively.  

A variant  of the parallel HEV is the parallel 2x2 where the ICE shaft is 

separated from the EM. The ICE drives the front axle and the EM drives the rear axle 

(James Larminie, et al., 2003). A small starter motor is mounted on the ICE shaft for 

starting purposes. A schematic is shown in Figure 2.6. The rear drive motor is capable 

of regenerating. This is also called parallel ‗through the road‘ architecture.  

  

Figure 2.6 : Parallel 2x2 HEV Architecture 

2.2.3  Split Hybrid Architecture  

The power split configuration is a blend of series and parallel designs. The split 

architecture uses a planetary gear set in which the ICE drives the planet carrier gear (C). 

The ring gear (R) is coupled to a Motor/Generator (MG) and to a differential, and the 
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sun gear (S) is coupled to a Starter/Alternator (SA). The power split provides a 

mechanical   path   from   the ICE   to   the   vehicle‘s   wheels. In addition, the 

planetary  gear   set   allows the effective gear ratio between the ICE and the output 

shaft to be continuously varied, similar to a Continuously Variable Transmission (CVT) 

(J. Anderson, and C. D. Anderson,  2005). This gives the flexibility of operating the ICE 

independent of vehicle speed. A schematic layout of a HEV with split architecture is 

given in Figure 2.7. The drawback of this architecture is the complex control involved.  

  

Figure 2.7: Split HEV Architecture  

2.2.4  Series - Parallel 2x2 HEV Architecture  

To blend the features of controlling the ICE operating point seen in a series 

architecture and excellent performance seen in a parallel architecture a unique 

architecture named series-parallel 2x2 was introduced(J. Gonder and T. Markel, 2007). 

The series-parallel 2x2 architecture gives an additional degree of freedom in operating 

the ICE. A correctly sized electric machine operating as a generator coupled to the ICE 

improves fuel economy ratings over the parallel 2x2 by operating the ICE in an optimal 

efficiency zone (J.M. Miller, 2004). A schematic layout of the series-parallel 2x2 

architecture used in the Akron Challenge X HEV is given in Figure 2.8. This 

architecture is relatively more complicated, involving an additional mechanical link 

when compared to a series' hybrid HEV, and also an additional generator coupled to the 

ICE shaft compared to a parallel 2x2 HEV. More information on the various HEV 

architectures can be obtained in (J. Gonder and A. Simpson, 2007)  .  
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Figure 2.8: The University of Akron HEV Architecture Model.  

2.3 VEHICLE CONTROLLER: DEVELOPMENT AND TESTING  

Before installed in a vehicle, the vehicle controller is developed and tested using 

two classes of configurations namely SIL configurations and HIL configurations. This 

section explains the various steps that can be carried out in each of these configurations. 

This also gives an overview of how the HIL setup built is tied into the development 

process (Jeon S, et al., 2001).  

2.3.1 Software-in-Loop Configurations  

In these configurations, the controller and the plant are modeled and simulated 

using software at a graphical level or code level, to evaluate the performance of a 

vehicle (a controller and chosen powertrain) (Johnson V, et al., 2000). The most 

straightforward type of Software-in-Loop simulation is depicted in Figure 2.9. In this 

set up, known as Model-in-Loop (MIL) Simulation, offline simulations of the HEV 

(plant and controller) are run on a single  computational node.  The  simulations   may 

be   done on a non-real time platform like Windows XP (Microsoft) or GNU Linux 

(Free Software Foundation) ( J. Cross, P. Viarouge, 2002 ). Every subsystem in the 

vehicle model is programmed using the same software. The software coding may be 

accomplished using graphical tools like Simulink. Typically, a MIL simulation does not 

involve any real time code.  


