SIMULATION MODELS TO OPTIMISE HYDROGEN FUELLED ENGINE PERFORMANCE

MOHAMMED KAMIL MOHAMMED

Thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy in Mechanical Engineering (Automotive)

Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG

2011

SUPERVISORS' DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy in Mechanical Engineering (Automotive).

Signature	
Name of Supervisor:	DR. ROSLI BIN ABU BAKAR
Position:	PROFESSOR
Date:	

Signature	
Name of Co-supervisor:	DR. MD. MUSTAFIZUR RAHMAN
Position:	ASSOCIATE PROFESSOR
Date:	

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries, which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature Name: MOHAMMED KAMIL MOHAMMED ID Number: PMA07004 Date: 17 April 2011

CONTENTS

	Page
SUPERVISORS' DECLARATION	ii
STUDENT'S DECLARATION	iii
ACKNOWLEDGEMENTS	v
ABSTRACT	vi
ABSTRAK	vii
CONTENTS	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
NOMENCLATURES	xvii
LIST OF ABBREVIATIONS	XXV

CHAPTER I INTRODUCTION

1.1	Introduction	
1.2	Hydrogen as a Fuel	2
	1.2.1 Hydrogen production1.2.2 Hydrogen storage and infrastructure1.2.3 Incentives toward hydrogen1.2.4 Barriers and challenges	2 3 4 5
1.3	Hydrogen Economy	6
1.4	Malaysian Hydrogen Energy Roadmap	6
1.5	Problem Statement	7
1.6	Objectives of the Study	8
1.7	Scope of The Study	9
1.8	Outline of The Thesis	9

CHAPTER II LITERATURE REVIEW

2.1	Introduction	11
2.2	Historical Milestones	11
2.3	Hydrogen Combustion Properties	
	2.3.1 Wide range of flammability2.3.2 Low ignition energy	13 14

	2.3.3	Small quenching gap	15
	2.3.4	High auto-ignition temperature	15
2.4	Hydro	gen Fuel Research Parties	15
	2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6	BMW car manufacturer research group, Germany MAN car manufacturer research, Germany Ford motor company research, USA Technical University of Graz, Austria Argonne and Sandia National Laboratories, USA University of Ghent, Belgium	16 16 17 17 18 18
2.5	Abnor	mal Combustion	19
	2.5.1	Pre-ignition and backfire	19
2.6	Hydro	gen Induction Mechanisms	20
	2.6.1 2.6.2	Port injection fuel systems Direct injection fuel systems	21 23
2.7	Equili	brium and Property Simulations	24
2.8	Hydrogen Engine Modelling		
	2.8.1 2.8.2 2.8.3	Heat transfer Friction Residual gas fraction	27 28 29
2.9	Hydro	gen as Dual and Blended Fuel	30
2.10	Conclu	usions	32

CHAPTER III METHODOLOGY

3.1	Introd	uction	33
3.2	Comp	osition and Property Model	34
	3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	Chemical equilibrium model Thermodynamic properties Hydrogen-air-residual gas mixture Adiabatic flame temperature Overview of HydEnPro	35 42 46 47 48
3.3	Modelling of Port Injection Hydrogen Fuelled Engine		50
	3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8	Definitions and classifications Model characterisation Model assumptions Governing equations Crankshaft drive model Charge changing model Heat transfer model Heat release	51 52 53 53 54 58 60 66

	3.3.9	Residual gas fraction	73
	3.3.10	Load operation modes	74
	3.3.11	Engine cycle processes	75
	3.3.12	Injector delivery rate	76
	3.3.13	Engine friction	78
	3.3.14	Engine performance characterisation	83
	3.3.15	Overview of HydEnMod	84
3.4	Injectio	on Characteristics of Hydrogen Fuelled Engine	85
	3.4.1	Direct injection hydrogen fuelled engine	85
	3.4.2	Common rail injection system	90
3.5	Perform	nance Modelling of Dual Fuel Engine	98
	3.5.1	Engine model setup	98
	3.5.2	Validation test set-up	104
3.6	Summa	ary	108

CHAPTER IV RESULTS AND DISCUSSION

4.1	Introduction		109
4.2	Calibra	ation And Validation	109
	4.2.1 4.2.2 4.2.3 4.2.4	Composition and properties Engine performance Injection models Dual fuel model	110 114 119 121
4.3	Predict	ions Of HydEnPro	125
	4.3.1 4.3.2 4.3.3	HydEnPro multi-choices Mole fraction Thermodynamic properties	125 126 128
4.4	Predictions Of HydEnMod		
	4.4.1 4.4.2 4.4.3 4.4.4 4.4.5	Heat transfer Sensitivity analysis using HydEnMod Heat release approaches Friction losses Engine performance parameters	132 133 143 146 150
4.5	Hydrog	gen Injection Systems	156
	4.5.1 4.5.2	Direct injection model for hydrogen fuelled engine Rail Injection model for hydrogen fuelled engine	156 168
4.6	Dual Fuels Operation		
	4.6.1 4.6.2	Hydrogen, gasoline and methane as pure fuels Hydrogen blends as fuels	175 181
4.7	Summa	ary	188

CHAPTER V CONCLUSIONS AND FUTURE WORK

5.1	Introduction	189
5.2	Summary of Findings	189
	5.2.1 Port injection model5.2.2 Property and composition model5.2.3 Dual fuel model5.2.4 Injection system models	189 190 190 191
5.3	Contributions of the Present work	192
5.4	Recommendations for Future Work	192

REFERENCES

APPENDICES

А	Coefficients for the HydEnPro Simulation Package 21		214
В	Numerical Methods in HydEnPro		217
	B.1 B.2	Newton-Raphson solution for the nonlinear set LU decomposition method	217 220
С	Derivations of Engine Sub-models		
	C.1 C.2 C.3 C.4 C.5	PIFL formula Residual gas fraction Intake end state Compression and expansion Combustion	222 225 227 228 229
D	Input	s and Parameters of HydEnPro and HydEnMod	231
E	List c	of Publications	234

194

LIST OF TABLES

Table	No.	Page
2.1	Hydrogen properties compared with methane and gasoline properties	13
3.1	Low temperature combustion products	38
3.2	Relationships between equilibrium variables	41
3.3	Gas constituents in H ₂ ICE	42
3.4	Molecular weights of the chemical constituents	45
3.5	Engine Models	55
3.6	Values of the constants in Woschni's correlation Eq. (3.65)	62
3.7	Standard enthalpies of formation for combustion chemical constituents	69
3.8	Typical test data for engine oil viscosity	80
3.9	Valve train designs	81
3.10	Constants for valvetrain friction in Eq. (3.124)	82
3.11	DI Engine specifications	87
3.12	Temperature of the main engine parts	89
3.13	Parameters used in the exhaust environment	90
3.14	Specifications of the Yamaha single cylinder PI engine	100
3.15	Conditions and constants in the port injection model	102
4.1	Specifications and operating conditions of the considered engines	115
4.2	Calibration parameters for premium matching	115
4.3	Engine parameters of literature (Ferguson and Kirkpatrick, 2001)	117
4.4	Comparison for the FMEP predictions between present study (HydEnMod) and previous study (Ferguson and Patrick, 2001)	118
4.5	Specifications of the engine of Mohammadi et al. (2007)	119
4.6	Calibration parameters setting for the dual fuel model	122
4.7	Key engine parameters used in friction model	147

LIST OF FIGURES

Figur	e No.	Page
1.1	Roadmap for the hydrogen energy for Malaysia	8
2.1	Flammability ranges of comparative fuels at atmospheric temperature	14
2.2	Minimum ignition energies in relation to ϕ at atmospheric pressure	14
3.1	The models of the present work	34
3.2	Structure of the composition and property model	35
3.3	Flow chart for T_{ad} calculation procedure	49
3.4	Kinematic of the crankshaft drive	56
3.5	Valve geometry	59
3.6	Various valvetrain designs	81
3.7	Intake system model	88
3.8	Powertrain model	89
3.9	Exhaust system model	90
3.10	CR Hydrogen injection System	91
3.11	Model setup for the hydrogen CRIS	92
3.12	Common rail configuration	93
3.13	Geometry of the flow-split	94
3.14	Yamaha FZ150i GT-POWER model	99
3.15	Pudding model	101
3.16	Schematic diagram of the engine	104
3.17	Test engine connected to the eddy current dynamometer	105
3.18	Schematic diagram of the Yamaha FZ150i modified cooling system	106
3.19	Test rig instrumentation	107

C_p for combustion products.	110
Variations in enthalpy of the chemical constituents	111
Variation of entropy of combustion products.	111
Variation of enthalpy of low temperature combustion products	112
Adiabatic flame temperature as a function of fuel/air equivalence ratio	113
Validation of the simulated pressure trace with Lee et al. (1995)	116
Validation of the simulated pressure trace with Verhelst and Sierens (2007)	116
Comparison between <i>FMEP</i> Components predictions of HydEnMod and Ferguson and Kirkpatrick (2001)	118
Models of the considered engines	120
Brake efficiency comparison between present model and previous experimental results (Mohammadi et al., 2007)	121
Volumetric efficiency comparison between present model and previous experimental results (Mohammadi et al., 2007)	121
Brake power comparison between present model and previous experimental results (Adlan and A-Aziz (2009)	122
Validation with the current experimental work	123
Validation of the dual and blended fuelled engine model	124
Mole fraction as a function of ϕ calculated from NASA and Chemkin	125
Mole fraction as a function of ϕ calculated by eqp_9 and eqp_4	126
Mole fractions of equilibrium products as a function of ϕ	127
Variations of (C_p/R) with temperature for combustion products	129

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

- 4.18Variations of (C_p/R) with temperature for combustion products1294.19Variations of enthalpy and entropy with temperature1304.20Variation of M, Cp and γ of burned gas with ϕ 1314.21Temperature, work and heat transfer variation with crank angle132
- 4.22 Pressure trends with different operating conditions 135

4.23	Temperature trends with different operating conditions	136
4.24	Cumulative work trends with different operating conditions	138
4.25	Cumulative heat transfer trends with different operating conditions	140
4.26	Cumulative heat release trends with different operating conditions	142
4.27	<i>p</i> - <i>V</i> diagrams at different compression ratios	144
4.28	Cumulative heat release during combustion process	145
4.29	Crankshaft friction behaviour with engine speed	146
4.30	Piston friction behaviour with engine speed	147
4.31	Valvetrain friction behaviour with engine speed	148
4.32	Pumping losses behaviour with engine speed	149
4.33	Engine friction components behaviour with engine speed	149
4.34	Contribution of friction components to total engine friction power	150
4.35	Variation of friction power with engine throttle for different engine speeds	150
4.36	Variation of power with engine speed	151
4.37	Variations of mean effective pressure with engine speed	151
4.38	Variations of efficiencies with engine speed	152
4.39	Variations of ISFC and BSFC with engine speed	153
4.40	Variations of power with fuel/air equivalence ratio	154
4.41	Variations of IMEP, BMEP and FMEP with equivalence ratio	154
4.42	Variations of specific fuel consumption	155
4.43	Variations of efficiencies with equivalence ratio	155
4.44	Variation of <i>BMEP</i> with AFR at different engine speeds	157
4.45	Variation of brake thermal efficiency with AFR at different engine speeds	158

4.46 Variation of *BSFC* with AFR at different engine speeds 159 4.47 Variation of maximum cylinder temperature with AFR at various 160 engine speeds 161 4.48 Variations of volumetric efficiency with engine speed for various AFR 4.49 Variations of power output with engine speed for various AFR 162 4.50 Variations of *ISFC* with IT for various AFR 163 4.51 Variations of *ISFC* with IT at different AFR 164 4.52 Variations of power output with IT for various AFR 165 4.53 Variations of indicated efficiency with IT for different engine speeds 166 4.54 Variations of *ISFC* with IT for various engine speeds 167 4.55 Variation of power with IT for various engine speeds 168 4.56 Trends of common rail system parameters with engine speed 170 4.57 171 Wave propagation mechanism 4.58 Trends of common rail system parameters with hole diameter 174 4.59 Trends of BMEP with fuel/air equivalence ratio and engine speed 176 4.60 Trends of brake power with fuel/air equivalence ratio and engine 178 speed 4.61 Trends of peak cylinder pressure with equivalence ratio and engine 180 speed 4.62 Trends of peak cylinder temperature with equivalence ratio and speed 182 4.63 BMEP variations with engine speed and fuel/air equivalence ratio 183 4.64 Brake power variations with engine speed and fuel/air equivalence 185 ratio 4.65 Peak cylinder pressure vs. engine speed and equivalence ratio 186 4.66 Peak cylinder temperature vs. engine speed and equivalence ratio 187

NOMENCLATURES

List of Symbols

Symbol	Description	Unit
а	Crank radius	m
Α	Combustion chamber surface area	m^2
$a_{1-}a_{7}$	The coefficients of NASA and Chemkin Polynomials	-
A_1 and A_1	Constants in Karim's correlation for combustion duration	-
A_3 and A_4	Constants in Karim's correlation for flame development angle	-
a _{An}	Constant in Annand's correlation	-
A _C	Valve curtain reference area	m^2
A _{ch}	Cylinder head surface area	m^2
A _{cf}	The constant part of the FMEP in Chen-Flynn friction model	bar
A_E	Valve throat effective area	m^2
AFR	Air/fuel ratio	-
A _i , B _i , C _i , D _i , E _i	Coefficients for calculating the chemical equilibrium constant	-
AFR _s	Stoichiometric air/fuel ratio	-
A_n	The total injector nozzle hole area	m^2
A_{pc}	Piston crown surface area	m^2
A_R	Valve throat reference area	m^2
a_s	Molar hydrogen air/fuel ratio	-
a_W	Adjustable factor in Wiebe's function	-
В	Cylinder bore	m
B _{cf}	Peak cylinder pressure dependent factor in Chen-Flynn friction model	-
BMEP	Brake mean effective pressure	kPa
BSFC	Brake specific fuel consumption	g/kW-h
С′	Calibration factor in Karim's correlation for combustion	-
С″	Calibration factor in Karim's correlation for flame development angle	-

xviii

Symbol	Description	Unit
C_1 and C_2	Constants in Woschni's correlation	-
<i>C</i> ₂ *	Corrected coefficient for the constant C_2 in Woschni's correlation proposed by (Kolesa, 1987) and Schwarz (1993)	-
C _c	Calibration parameter in the Bargende's correlation	-
C _{cf}	\bar{S}_p dependent term in Chen-Flynn friction model	bar/(m/sec)
C_D	Discharge coefficient	-
$C_{D,i}$	Injector discharge coefficient	-
C_{ff}	Coefficient for the cam flat follower in friction model	kPa-mm
C _{oh}	Coefficient for oscillating hydrodynamic in friction model	(KPa-mm- min/rev) ^{1/2}
Com	Coefficient for oscillating mixed friction in friction model	kPa
C_p	Specific heat at constant pressure	
C _{rf}	Coefficient for the cam roller follower in friction model	(kPa-mm- min/rev)
C_V	Specific heat at constant pressure	kJ/kg-K
D	Diameter of the sphere which has the same volume as the cylinder in Bargende's correlation	m
D_b	Bearing diameter	m
D_m	Mean valve seat diameter	m
D_p	Port diameter	m
D_s	Valve stem diameter	m
D_{v}	Valve diameter	m
е	Total specific energy	kJ/kg
E _{sys}	Total energy of the thermodynamic system	kJ
e _t	Tolerance	-
FAR	Fuel/air ratio	-
FAR _s	Stoichiometric fuel/air ratio	-
FMEP	Friction mean effective pressure	kPa
G	Gibbs free energy	kJ
h	Specific enthalpy	kJ/kg
Н	Enthalpy	kJ

Symbol	Description	Unit
h_c	Heat transfer coefficient	W/m ² -K
h _{clr}	Clearance height	m
h _i	Specific enthalpy of in- flowing gases	kJ/kg
h_o	Specific enthalpy of out-flowing gases	kJ/kg
H_p	Products enthalpy	kJ
H_r	Reactants enthalpy	kJ
IMEP	Indicated mean effective pressure	kPa
ISFC	Indicated specific fuel consumption	g/kW-h
k	The turbulent kinetic energy	m^2/s^2
K	Constant in friction model	-
K _c	Thermal conductivity	W/m-K
K_p	Equilibrium constant	-
l	Connecting rod length	m
L	Piston stroke	m
L _b	Bearing length	m
L _c	Length scale in Nusselt number	m
LHV	Lower heating value	MJ/kg
l_I	Length scale in the $k - \varepsilon$ turbulence model	m
l_v	Valve lift	m
т	Mass	kg
М	Molecular weight	kg/kmol
ṁ	Mass flow rate	kg/s
\dot{m}_a	Air mass flow rate	kg/s
\dot{m}_{act}	Actual mass flow rate	kg/s
MEP	Mean effective pressure	kPa
m_{f}	Fuel mass	kg
\dot{m}_f	Fuel mass flow rate	kg/s
MFB	Mass fraction burned	-
m _i	Mass flow entering the cylinder	kg/s

Symbol	Description	Unit
m_o	Mass flow out of the cylinder	kg/s
m_{rg}	Mass of the residual gas	m
m_{sys}	Net mass flow for the cylinder	kg/s
m _{tot}	Total mass in the cylinder	m
\dot{m}_{theo}	Theoretical mass flow rate	kg/s
m_W	Wiebe form parameter	-
n	Polytropic index	-
Ν	Engine speed	rpm
n_b	Number of bearing	-
n _c	Number of cylinders	-
n _i	Number of moles of the chemical constituents	mole
N_m	Total number of moles	mole
N_p	Engine maximum speed	rpm
Nu	Nusselt number	-
n_v	Number of valves	-
р	Pressure	kPa
p_0	Total mixture pressure	kPa
p_a	Pressure after valve restriction in the direction of flow	kPa
p_{atm}	Atmospheric pressure	kPa
p_b	Pressure before valve restriction in the direction of flow	kPa
P_b	Brake power	kW
p_{comb}	Pressure at the beginning of the combustion process	kPa
p_e	Exhaust pressure	kPa
P_f	Friction power	kW
p_i	Constituent partial pressure	kPa
P _i	Indicated power	kW
p _{in,man}	Intake manifold pressure	kPa
p_m	Motored cylinder pressure	kPa
p_{max}	Maximum cylinder pressure	kPa

Symbol	Description	Unit
p_r	Reference pressure for Woschni's correlation	kPa
Pr	Prandtl number	-
Q_{cf}	\bar{S}_p^2 dependent term in Chen-Flynn friction model	bar/(m/s ²)
$Q_{conv,total}$	Fraction of the total energy converted by combustion process	-
$Q_{f,total}$	Total energy released from combustion	kJ
Q_w	Heat transfer	kJ
R	Gas constant	kJ/kg-K
r _e	Exhaust valve diameter/bore ratio	-
Re	Reynolds number	-
r _i	Intake valve diameter/bore ratio	-
<i></i> Ĩ	Universal gas constant	J/kmole-K
S	Specific entropy	kJ/kg-K
S	Entropy	kJ/kg
s ^o	Specific entropy when the partial pressure of the constituent equals the mixture pressure.	kJ/kg-K
S_p	Instantaneous piston speed	m/s
\bar{S}_p	Mean piston speed	m/s
S _{re}	Summation of squares of residuals in the NLSR	-
t	Time	S
Т	Temperature	K
T _{gas}	Cylinder gases temperature	K
T_0	Reference point temperature	K
T_A	Ambient temperature	K
T _{ad}	Adiabatic flame temperature	K
T _b	Temperature before valve restriction in the direction of flow	K
T _{bu}	The temperatures of the burned zone	K
T _e	Exhaust temperature	K
T _i	Intake charge temperature	K
T_m	In-cylinder average temperature, used in Bargende's correlation	K

Symbol	Description	Unit
T_r	Reference temperature for Woschni's correlation	Κ
T_{sp}	Temperature at the spark discharge time	Κ
T_{ub}	Temperatures of the unburned zone	Κ
T_w	Cylinder wall temperature	Κ
и	Specific internal energy	kJ/kg
U	Internal energy	kJ
v	Characteristic velocity in Reynolds number	m/s
V	Volume	m ³
V _c	Clearance volume	m ³
V _{comb}	Volume at the beginning of the combustion process	m ³
V _d	Cylinder displacement volume	m ³
v_f	Velocity of hydrogen through nozzle	m/s
V _r	Reference volume for Woschni's correlation	m ³
V _{sp}	Volume at the time of spark discharge	m ³
V _{spc}	Specific volume	m ³ /kg
W	Average cylinder gas velocity	m/s
W	Work	kJ
W_b	Brake work per cycle	kJ
W _i	Indicated work per cycle	kJ
W _{p,max}	Maximum injector pulse width	deg
W _S	Valve seat width	m
x	Mass fraction of the constituents	-
x_{rg}	Residual gas mass fraction	-
у	Mole fraction of the constituents	-
y_{rg}	Residual gas mole fraction	-
Ζ	Distance between the crank axis and the piston pin axis	m

Greek Symbols

Symbol	Description	Unit
$\Delta \theta_b$	Rapid burn angle	deg
$\Delta heta_d$	Flame development angle	deg
Δp_n	Pressure drop across the injector nozzle	kPa
η_{C}	Combustion efficiency	-
η_{ch}	Charge efficiency	-
η_m	Mechanical efficiency	-
η_{thb}	Brake thermal efficiency	-
η_{thi}	Indicated thermal efficiency	-
$\eta_{v,p}$	Volumetric efficiency calculated at the highest speed and WOT operation condition	-
η_{v}	Volumetric efficiency	-
$ heta_{EOC}$	Crankshaft position at combustion End	deg
$ heta_{SOC}$	Crankshaft position at combustion start	deg
$ heta_{sp}$	Crankshaft position at spark timing	deg
μ_0	Reference viscosity	cSt
$ ho_{a,i}$	Inlet air density	kg/m ³
$ ho_f$	Fuel density	kg/m ³
$ ho_v$	Density used to calculate the volumetric efficiency $\eta_{v,p}$	kg/m ³
$ au_w$	Wall shear stress	N/m ²
ϕ_l	Lean operation limit for fuel/air equivalence ratio	-
ϕ_{min}	Fuel/air equivalence ratio for minimum combustion duration	-
ϕ_r	Rich operation limit for fuel/air equivalence ratio	-
~	Superscript denotes that the property is calculated on molar basis	-
Δ	Combustion term in Bargende's correlation	-
$\Delta ilde{h}^0_f$	Standard enthalpy of formation	MJ/kmole

Symbol	Description	Unit
ΔG^0	Standard state Gibbs function change	kJ
$\Delta \theta_{CD,min}$	Minimum combustion duration	deg
$\Delta \theta_{CD}$	Combustion duration	deg
$\Delta \theta_{d,min}$	Minimum flame development angle	deg
П	Pressure ratio over the valve restriction	-
Ψ	Valve flow function	-
β	Valve seat angle	rad
γ	Specific heat ratio	-
Е	Turbulence energy dissipation rate	m^2/s^3
θ	Crankshaft angle	deg
λ	Air/fuel relative ratio	-
μ	Dynamic viscosity	Pa.s
ρ	Density	kg/m ³
ω	Angular velocity	rad/s
ϵ	Compression ratio	-
ϕ	Fuel/air equivalence ratio	-

LIST OF ABBREVIATIONS

1D	One dimensional
AFR	Air fuel ratio
BPI	Borderline for pre-ignition
BSFC	Brake specific fuel consumption
CAE	Computer added engineering
CFR	Cooperative Fuel Research
CR	Common rail
CRIS	Common Rail Injection System
DI	Direct Injection
DIH ₂ ICE	Direct Injection Hydrogen Fuelled Internal Combustion engine
DOCS	Double Overhead Camshaft
ECU	Electronic control unit
EGR	Exhaust gas recirculation
EIA	Energy Information Administration
EOC	End Of Combustion
EU 5	European emission standards until 2008/2009
FAR	Fuel air ratio
FMEFcs	Crankshaft friction mean effective pressure
FMEFgasL	Friction mean effective pressure in the reciprocating components due to gas pressure loading
FMEFpl	Pumping losses friction mean effective pressure
FMEFrecip	Friction mean effective pressure in the reciprocating components without gas pressure loading
FMEP	Friction mean effective pressure
FMEP	Brake mean effective pressure
FMEPaux	Auxiliary components friction mean effective pressure
FMEPvt	Valvetrain friction mean effective pressure
H ₂ ICE	Hydrogen fuelled internal combustion engine
H_2R	Hydrogen record car

HTFL	Heat transfer first law approach
IC	Internal Combustion
ICE	Internal Combustion Engine
IEA	International Energy Agency
IMEP	Indicated mean effective pressure
IPHE	International Partnership for the Hydrogen Economy
ISFC	Indicated specific fuel consumption
IT	Injection Timing
LHV	Lower Heating Value
LLSR	Linear Least Squares Regression
MAP	Manifold absolute pressure
MBT	Minimum advance for best torque
MEP	Mean effective pressure
MOSTI	Ministry of Science, Technology and Innovation Malaysia
NBS	National Bureau of Standards
NLSR	Nonlinear Least Squares Regression
NO _x	Nitric oxides emissions
ОН	Hydroxide
PI	Port Injection
PIFL	Polytropic index first law approach
PIH ₂ ICE	Port Injection Hydrogen Fuelled Internal Combustion engine
PLIF	Planar Laser Induced Fluorescence
R&D	Research and Development
RM	Ringgit Malaysia
SFC	Specific fuel consumption
SOC	Start of combustion
SOCS	Single overhead camshaft
ST	Spark timing
TDC	Top dead centre
TLEV	Transitional low emission vehicles

USDUnited States DollarUVUltravioletVV engine or Vee engine.VCSVillars-Cruise-Smith equilibrium codeWOTWide open throttle

ABSTRACT

Hydrogen is a strong candidate as an alternative fuel and energy carrier which could address answers to environmental pollution, emissions and geo-political tensions. This thesis aims to develop modeling codes for rapid simulation and optimisation for hydrogen fuelled engines (H₂ICE). A composition and property model is developed for calculating the composition and thermodynamic properties of the multi-components gases in the H₂ICE. The framework of this model encapsulates all possible situations from gases that are modelled on a molecular level to gases that are modelled as fresh air with some residuals. A one-dimensional model for a port injection H₂ICE is also developed. This model uses a single-zone approach and simulates the different physical phenomena in the intake, compression, combustion and expansion processes. Previous models for heat transfer and heat release are introduced for hydrogen applications after proposing suitable modifications and calibrating factors. In addition, computational models are developed to investigate and optimise injection characteristics in direct injection H₂ICEs as well as common rail port injection fuelling system. Following this, a one dimensional model is developed for an engine with dual pure fuels and blended fuels. The considered fuels are hydrogen, gasoline, methane, gasoline-hydrogen blends and methane-hydrogen blends. These models have been calibrated and validated against experimental works and the findings of previous studies. The results have showed the accuracy of the composition and property code and that it is a very useful tool for H₂ICE simulations. Less than 0.3% deviation has been noticed for the entire considered range of temperature and equivalence ratio (ϕ). In addition, the port injection code has highlighted that spark timing as a very important contributor among the different parameters and how an optimisation for these contributors can enhance the performance. A calibration factor of 2.183 has been proved to give accurate results for the new heat transfer correlation. Besides, the deviation in the results of the heat release model was 2.3% in the worst case. From the injection models, it was shown that optimizing the injection parameters, in particular injection timing, are very crucial factors for engine performance and proper operation for the feeding system. The performance of H₂ICE in comparison with engines use other fuels was investigated using the dual fuel model. Hydrogen fuel showed its superiority in the lean conditions ($\phi < 0.4$). Furthermore, the penalty and benefits from hydrogen enrichment were clarified. It was shown that adding small controllable mass factions of hydrogen (< 10%) to gasoline enhances the burning velocity and combustion process in the low speed range. However, a small reduction in the output power (< 6%) was documented. Adding hydrogen to methane showed greater advantages due to the extremely low burning velocity of methane. It can be recognized that the developed simulation codes are powerful tools for the H₂ICE community. With these models, experiments can be supplemented and supported by fast calculations.

ABSTRAK

Hidrogen ialah calon terbaik sebagai bahan bakar alternatif dan pembawa tenaga yang dapat menyelesaikan permasalahan pencemaran alam sekitar, emisi dan ketegangan geo-politik. Thesis ini menumpukan kepada pembangunan model untuk simulasi pantas dan optimisasi enjin dengan bahan bakar hidrogen. Sebuah model komposisi dan ciri telah dibangunkan untuk menyelesaikan pengiraan komposisi dan ciri termodinamik bagi pelbagai komposisi gas di dalam enjin hydrogen. Rangka kerja model ini meliputi pelbagai kemungkinan keadaan gas yang dimodelkan pada tahap molekul sehingga kepada pemodelan gas yang mengandungi udara segar dan sedikit gas baki. Model satu dimensi untuk enjin hidrogen bersuntikan pancarongga juga telah dibangunkan. Pendekatan satu dimensi telah digunakan untuk mensimulasi beberapa fenomena fizikal yang berbeza semasa proses masukan, mampatan, pembakaran dan pengembangan.

Beberapa model terdahulu bagi pembebasan dan pemindahan haba telah digunakan untuk aplikasi hidrogen setelah mengambilkira beberapa pengubahsuaian dan faktor kalibrasi. Tambahan lagi, model berkomputer juga telah dibangunkan untuk menyiasat dan mengoptimumkan ciri suntikan bagi suntikan terus dan suntikan pancarongga enjin pembakaran dalam dengan bahan bakar hidrogen. Seterusnya, model satu dimensi juga telah dibangunkan bagi enjin yang menggunakan bahan bakar duaan dan bahan bakar campuran. Bahan api yang dikaji adalah hidrogen, petrol, metana, campuran petrolhidrogen, dan juga campuran metana-hidrogen. Model ini telah dikalibrasi dan disahkan dengan menggunakan data eksperimen dan penemuan daripada kajian yang terdahulu. Keputusan menunjukkan ketepatan hasil pengiraan program komposisi dan ciri yang terdahulu dan membuktikan kebergunaannya untuk simulasi enjin pembakaran dalam hydrogen. Jurang pengiraan adalah kurang daripada 0.5% bagi kesemua julat suhu dan nisbah kesetaraan yang diambilkira. Sebagai tambahan, bagi suntikan pancarongga, keputusan telah menunjukkan bahawa pemasaan pencucuhan adalah factor terpenting yang menyumbang kepada penambahbaikan prestasi enjin berbanding beberapa parameter lain dan bagaimana parameter ini dioptimumkan. Faktor kalibrasi sebanyak 2.183 membuktikan kemampuan korelasi pemindahan haba mampu memberikan hasil pengiraan yang tepat. Selain daripada itu, jurang perbandingan terbesar sebanyak 2.3% telah dikenalpasti bagi model pelepasan haba. Daripada model suntikan, telah ditunjukkan bahawa proses optimisasi parameter suntikan, khususnya pemasaan suntikan sangat penting bagi prestasi enjin dan pengoperasian system campuran enjin vang lebih baik. Prestasi enjin hidrogen telah dibandingkan dengan enjin yang menggunakan bahan bakar berbeza dengan menggunakan model bahan bakar duaan. Enjin hidrogen telah menunjukkan kelebihannya yang ketara untuk operasi campuran rendah dimana nilai nisbah kesetaraannya adalah kurang dari 0.4. Sebagai tambahan, kelemahan dan kelebihan daripada pengayaan hidrogen telah berjaya dinyatakan secara jelas. Terbukti bahawa penambahan sejumlah amaun pecahan jisim hydrogen (kurang dari 10%) kepada petrol mampu meningkatkan prestasi halaju nyalaan dan proses pembakaran semasa julat halaju enjin yang rendah. Walau bagaimanapun, sedikit pengurangan daripada keluaran enjin (kurang dari 6%) telah dikenalpsti. Penambahan hidrogen kepada metana telah memberikan penambahbaikan yang lebih ketara akibat daripada halaju nyalaan asli metana yang sangat rendah. Secara umumnya, dapat dinyatakan bahawa model yang telah dibangunkan adalah alat bantu yang sangat berguna untuk komuniti kajian enjin pembakaran dalam hydrogen. Dengan menggunakan model ini, eksperimentasi dapat diperbaiki dan dibantu dengan suatu kaedah pengiraan yang pantas.

REFERENCES

- Abdel-Aal, H.K., Sadik, M., Bassyouni, M. and Shalabi, M. 2005. A new approach to utilize Hydrogen as a safe fuel. *International Journal of Hydrogen Energy*. 30(13-14): 1511-1514.
- Adgulkar, D.D., Deshpande, N.V., Thombre, S.B. and Chopde, I.K. 2008. 3D CFD simulations of hydrogen fuelled spark ignition engine. ASME Spring Engine Technology Conference, Chicago, Illinois, USA. Paper no. ICES2008-1649.
- Adlan, M. and A-Aziz, A. 2009. An experimental investigation of hydrogen combustion in a direct injection spark ignition natural gas engine. *SAE Technical Paper No.* 2009-01-1499.
- AFTP, 2007. http://www.depcik.com/eduprograms/aftp.htm. (Accessed 16 May 2009).
- Akansu, S.O., Dulger, A. and Kahraman, N. 2004. Internal combustion engines fueled by natural gas-hydrogen mixtures. *International Journal of Hydrogen Energy*. 29(14):1527–1539.
- Al-Baghdadi, M.A. 2004. Effect of compression ratio, equivalence ratio and engine speed on the performance and emission characteristics of a spark ignition engine using hydrogen as a fuel. Renewable Energy. 29(15): 2245-2260.
- Al-Baghdadi, M.A. and Al-Janabi, H.A. 2003. A prediction study of a spark ignition supercharged hydrogen engine. *Energy Conversion and Management.* 44(19): 3143-3150.
- Alkidas, A.C. and Myers J.P. 1982. Transient heat-flux measurements in the combustion chamber of a spark-ignition engine. *ASME Journal of Heat Transfer*. **104**(1): 62–67.
- Annand, W.J. 1963. Heat transfer in the cylinders of reciprocating internal combustion engines. *Proceedings of Institution of Mechanical Engineers*. **177**(36): 973–990.
- Attar, A.A. and Karim, GA. 2003. Knock rating of gaseous fuels. *Journal of Engineering for Gas Turbines and Power, ASME*. **125**(1): 41-47.

Auld, B. A. 1973. *Acoustic fields and waves in solids*. New York : John Wiley and Sons.

- Badr, O.N. and Karim, G.A. 1996. An investigation of the lean operational limits of gas fueled spark ignition engines. *Transactions of ASME, Journal of Energy Resources Technology*. 188(2): 159-163.
- Balat, M. 2008. Potential importance of hydrogen as a future solution to environmental and transportation problems. *International Journal of Hydrogen Energy*. **33** (15): 4013-4029.

- Ball, M. and Wietschel, M. 2009. The future of hydrogen opportunities and challenges. *International Journal of Hydrogen Energy*. **34**(2): 615-627.
- Bargende, M. 1991. A correlation equation for calculating the heat transfer losses in high pressure spark ignition engines. PhD Thesis. Technical University Darmstadt, Germany.
- Basshuysen, R. and Schäfer, F. 2006. *Modern engine technologies: from A to Z*. Pennsylvania: SAE International.
- Bauer, C.G. and Forest, T.W. 2001. Effect of hydrogen addition on the performance of methane-fueled vehicles. Part II: driving cycle simulations. *International Journal of Hydrogen Energy*. 26(1): 71-90.
- Beers, K.j. 2007. Numerical methods for chemical engineering: application in MATLAB. New York: Cambridge University Press.
- Berckmüller, M., Rottengruber, H., Eder, A., Brehm, N., Elsässer, G. and Müller-Alander, G. 2003. Potentials of a charged SI-hydrogen engine. *SAE Technical Paper No. 2003-01-3210.*
- Bhushan, B. 2002. Introduction to tribology. New York: John Wiley and Sons.
- Blair, G.P. 1999. *Design and simulation of four-stroke engines*. Warrendale, Pa.: Society of Automotive Engineers, Inc. (SAE).
- Boretti, A. and Watson H. 2009. Numerical study of a turbocharged, jet ignited, cryogenic, port injected, hydrogen engine. *SAE Technical Paper No. 2009-01-1425*.
- Boretti, A.A. 2010. Vehicle driving cycle performance of the spark-less di-ji hydrogen engine. *International Journal of Hydrogen Energy*. **35**(10): 4702-4714
- Boretti, A.A., Brear, M.J. and Watson, H.C. 2007. Experimental and numerical study of a hydrogen fuelled I.C. engine fitted with the hydrogen assisted jet ignition system. *Sixteenthth Australasian Fluid Mechanics Conference*, Crown Plaza, Gold Coast, Australia, 2-7 December.
- Borman, G.L. and Ragland, K. 1998. *Combustion engineering*. Boston: WCB McGraw-Hill.
- Bossel, U. 2004. The hydrogen "illusion". *Cogeneration and onsite power production*. **5**: 55-59.
- Bromberg, L. 2005. In-cylinder laminar flame propagation speed: effect of hydrogen and hydrogen rich gas addition. MIT Plasma Science and Fusion Center technical report No. PSFC/JA-05-21.

- Brunt, M.F. and Rai, H. 1998. The calculation of heat release energy from engine cylinder pressure data. *SAE Technical Paper No.* 981052.
- Catania, A.E., Ferrari, A., Manno, M. and Spessa, E. 2008. Experimental investigation of dynamics effects on multiple-injection common rail system performance. *Journal of Engineering for Gas Turbines and Power, ASME*. **130**(3): 032806 (13 pages).
- Cecil, W. 1822. On the application of hydrogen gas to produce a moving power in machinery. *Trans Cambridge Philosophical Society*. **1**: 217–40.
- Cengel, Y.A. and Boles, M.A. 2008. *Thermodynamics: an engineering approach*. Sixth ed. New York: McGraw-Hill Higher Education.
- Ceper, B.A., Akansu, S.O. and Kahraman, N. 2009. Investigation of cylinder pressure for H2/CH4 mixtures at different loads. *International Journal of Hydrogen Energy.* 34 (11): 528–539.
- Chapra, S.T. 2008. Applied numerical methods with MATLAB: for engineers and scientists. Second ed. Singapore: McGraw-Hill.
- Chen, S.K. and Flynn, P.F. 1965. Development of a single cylinder compression ignition research engine. *SAE Technical Paper No. 650733*.
- CPG (Comp Performance Group), 2009. http://www.compcams.com. (Accessed 4 October 2009).
- Cox, J.D., Wagman, D.d. and Medvedev, V.A. 1989. CODATA Key Values for Thermodynamics. New York: Hemisphere Publishing Corp.
- Crabtree, G., Dresselhaus, M. and Buchanan, M. 2004. The hydrogen economy. *Physics Today*. **57**(12): 39-44.
- Cruise, D. R. 1964. Notes on the rapid computation of chemical equilibria. *The Journal* of *Physical Chemistry*. **68**(12): 3797-3802.
- D'Errico, G., Onorati, A. and Ellgas, S. 2008. 1D Thermo-fluid dynamic modelling of an SI single-cylinder H2 engine with cryogenic port injection. *International Journal of Hydrogen Energy*. **33**(20): 5829–5841.
- D'Errico, G., Onorati, A., Ellgas, S. and Obieglo A. 2006. Thermo-fluid dynamic simulation of a S.I. single-cylinder H2 engine and comparison with experimental data. ASME Spring Engine Technology Conference, Aachen, Germany. Paper no. ICES2003-1311.
- Daniels, C.F. 1998. The comparison of mass fraction burned obtained from the cylinder pressure signal and spark plug ion signal. *SAE Technical Paper No. 980140*.

- Das, L. 1996. Hydrogen-oxygen reaction mechanism and its implication to hydrogen engine combustion. *International Journal of Hydrogen Energy*. **21**(8): 703-715.
- Das, L.M. 1990. Fuel induction techniques for a hydrogen operated engine. *International Journal of Hydrogen Energy*. **15**(11): 833-842.
- Das, L.M., Gulati, R. and Gupta, P.K. 2000a. Performance evaluation of a hydrogen fueled spark ignition engine using electronically controlled solenoid-actuated injection system. *International Journal of Hydrogen Energy*. 25(6): 569-579.
- Das, L.M., Rohit, G. and Gupta, P.K. 2000b. A comparative evaluation of the performance characteristics of a spark ignition engine using hydrogen and compressed natural gas as alternative fuels. *International Journal of Hydrogen Energy.* 25 (8):783–93.
- Davidson, D., Fairlie, M. and Stuart A. 1986. Development of a hydrogen-fuelled farm tractor. *International Journal of Hydrogen Energy*. **11**(1): 39–42.
- Doolan, C. and Boyce, R. 2008. A quasi-one-dimensional mixing and combustion code for optimization and design studies. 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 28 April - 1 May, Dayton, Ohio. Paper no. AIAA 2008-2603
- Douglas, R., Kee, R.J. and Carberry, B.P. 1997. Analysis of in-cylinder pressure data in two-stroke engines. *SAE Technical Paper No.* 972792.
- Dresselhaus, M., Crabtree, G. and Buchanan, M. Eds. 2003. Basic research needs for the hydrogen economy. Office of Basic Energy Sciences, Department of Energy, Washington, DC. www.sc.doe.gov/bes/reports/abstracts.html#NHE (Accessed 11 April 2010).
- Drew, A.W. 1998. *Manual on hydrocarbon analysis*. Sixth ed. Baltimore: ASTM Manual Series.
- DYNETEK, 2010. <u>http://www.dynetek.com/</u>. (Accessed on 11 April 2010).
- Eichlseder, H., Wallner, T., Freymann, R. and Ringler, J. 2003. The potential of hydrogen internal combustion engines in a future mobility scenario. *SAE Technical Paper No. 2003-01-2267*.
- El-Mahallawy, F. and Habik, S. 2002. *Fundamentals and technology of combustion*. Oxford: Elsevier Science Ltd.
- EIA (Energy Information Administration). 2009. Malaysia Energy Analysis Brief. http://www.eia.doe.gov/emeu/cabs/Malaysia/Full.html (Accessed 18 April 2010).
- Eriksson, L. 1999. Spark advance modeling and control. PhD Thesis. Linkoping University, Sweden.

- Eriksson, L. and Andersson, I. 2002. An analytic model for cylinder pressure in a four stroke SI engine. *SAE Technical Paper No. 2002-01-0371*.
- Erren, R. and Campbell, W. 1933. Hydrogen: a commercial fuel for internal combustion engines and other purposes. *The Institute of Fuel*. **29**: 277–290.
- Fagelson, J.J., McLean, W.J. and de Boer, P. 1978. Performance and NO_x emissions of spark-ignited combustion engines using alternative fuels – quasi one dimensional modeling in hydrogen fueled engines. *Combustion Science and Technology*. **18**(1): 47–57.
- Ferguson, C.R. and Kirkpatrick, A.T. 2001. *Internal combustion engine: applied thermodynamic*. Second ed. New York: John Wiley and Sons, Inc.
- Fiene, J., Braithwaite, T., Boehm, R. and Baghzouz, Y. 2002. Development of a hydrogen engine for a hybrid electric bus. *SAE Technical Paper No. 2002-01-1085*.
- Ganesan, V. 2003. Internal combustion engines. Second ed. New Delhi: Tata Mc-Graw Hill.
- Ganesh, R.H., Subramanian, V., Balasubramanian, V., Mallikarjuna, J.M., Ramesh, A. and Sharma, R.P. 2008. Hydrogen fueled spark ignition engine with electronically controlled manifold injection: an experimental study. *Renewable Energy*. 33(6): 1324-1333.
- Ganippa, L., Andersson, A. and Chomiak, J. 2000. Transient measurements of discharge coefficients of diesel nozzles. *SAE Technical Paper No.* 2000-01-2788.
- Gaseq, 2005. http://www.c.morley.ukgateway.net/ (Accessed 27 July 2008).
- Glassman, I. 1987. Combustion. Orlando, FL: Academic Press, Inc.
- Goenka, P., Paranjpe, R. and Jeng, Y. 1992. FLARE : an integrated software package for friction & lubrication analysis of automotive engines Part I : overview & applications. *SAE Technical Paper No.* 920487.
- Gordon, S. and McBride, B.J. 1976. Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and chapman-jouguet detonations. NASA SP-273.
- Grau, J.H., Garcia, J.M, Garcia, J.P., Robles, A.V. and Pastor, R.R. 2002. Modelling methodology of a spark-ignition engine and experimental validation part I: single-zone combustion model. *SAE Technical Papers*. No. 2002-01-2193.
- Green, R.K. and Glasson, N.D. 1992. High-pressure hydrogen injection for internal combustion engines. *International Journal of Hydrogen Energy*. **17**(11): 895–901.

- Guo, L.S., Lu, H.B. and Li, J.D. 1999. A hydrogen injection system with solenoid valves for a four cylinder hydrogen-fuelled engine. *International Journal of Hydrogen Energy*. 24(4): 377-382.
- Hallmannsegger, M. and Fickel H. 2004. The mixture formation process of an internal combustion engine for zero CO2-emission vehicles fueled with cryogenic hydrogen. *IFP International Conference*, Rueil-Malmaison, France.
- Halmari, J.J. 2005. Computer simulation of a hydrogen fueled internal combustion engine. M.Sc. Thesis. Mechanical engineering department. Texas Technical University, USA.
- Hamai, T. and Kai, S. 1990. Development of a friction prediction model for high performance engines. Society of Tribologists and Lubrication Engineers. 47(7): 567-573.
- Haugen, D.M., Szumski, B. and Cothran, H. 2006. *Hydrogen*. New York: Thomson Gale, a part of The Thomson Corporation.
- He, X. 2001. Development and validation of a hybrid electric vehicle with hydrogen internal combustion engine. Ph.D. Thesis. Texas Technical University, USA.
- Heffel, J.W. 2003. NOx emission reduction in a hydrogen fueled internal combustion engine at 3000 rpm using exhaust gas recirculation. *International Journal of Hydrogen Energy.* 28(11): 1258-1292.
- Heller, K. and Ellgas, S. 2006. Optimization of a hydrogen internal combustion engine with cryogenic mixture formation. *First International Symposium on Hydrogen Internal Combustion Engines*, Graz University of Technology, Austria. 49-58.
- Heywood, J.B. 1988. Internal combustion engine fundamentals. New York: McGraw-Hill.
- Hohenberg, G.F. 1979. Advanced approaches for heat transfer calculations. SAE *Technical Paper No. 790825*.
- Homan, H.S., De Boer, P.C. and McLean, W.J. 1983. The effect of fuel injection on NOx emissions and undesirable combustion for hydrogen-fuelled piston engines. *International Journal of Hydrogen Energy*. 8(2):131–146.
- Hong, S.W, Shin Y.S., Song, J.H. and Chang S.H. 2003. Performance test of the quenching meshes for hydrogen control. *Journal of Nuclear Science and* Technology. 40(10): 814–819.
- Hu, E., Huang, Z., Liu, B., Zheng, J. and Gu, X. 2009. Experimental study on combustion characteristics of a spark-ignition engine fueled with natural gashydrogen blends combining with EGR. *International Journal of Hydrogen Energy.* 34(19): 1035-1044.

- Huang, B., Hu, E., Huang, Z., Zheng, J., Liu, B. and Jiang, D. 2009. Cycle-by-cycle variations in a spark ignition engine fueled with natural gas-hydrogen blends combined with EGR. *International Journal of Hydrogen Energy*. 34(19): 8405-8414.
- Huang, Z.H., Wang, J.H., Liu, B., Zeng, K., Yu, J.R. and Jiang, D.M. 2006. Combustion characteristics of a direct-injection engine fueled with natural gas-hydrogen mixtures. *Energy and Fuels*. 20(2):540–546.
- Huber, K. 1990. The transient heat transfer in high speed direct injection diesel engines. PhD Thesis. Technical university München, Germany.
- Huber, K., Woschni, G. and Zeilinger, K. 1990. Investigations on heat transfer in internal combustion engines under low load and motoring conditions. *Proceedings of the 23rd FISITA Congress*, Turin, Italy. Paper 905018.
- IEA (International Energy Agency)). 2004. *Energy technology: facing the climate challenge*. Report No. IEA/CERT(2004)01/ADD2.
- Ingard, U.K. 1988. *Fundamentals of waves and oscillations*. Cambridge: Cambridge University Press.
- IPHE (International Partnership for the Hydrogen Economy). 2006. Terms of reference for the international partnership for the hydrogen economy. SC-031-06.
- Jamal, Y. and Wyszynski, M.L. 1994. On-board generation of hydrogen-rich fuels. *International Journal of Hydrogen Energy*. **19**(7):557–572.
- Ji, C. and Wang, S. 2010. Experimental study on combustion and emissions performance of a hybrid hydrogen–gasoline engine at lean burn limits. *International Journal of Hydrogen Energy*. **35**(3): 1453–1462.
- Jorach, R., Enderle, C. and Decker, R. 1997. Development of a low-NOx truck hydrogen engine with high specific power output. *International Journal of Hydrogen Energy*. **22**(4): 423–427.
- Kabat, D.M. and Heffel, J.W. 2002. Durability implications of neat hydrogen under sonic flow conditions on pulse-width modulated injectors. *International Journal* of Hydrogen Energy. 27(10): 1093-1102.
- Kahraman, N., Ceper, B., Akansu, S.O. and Aydin, K. 2009. Investigation of combustion characteristics and emissions in a spark-ignition engine fueled with natural gas-hydrogen blends. *International Journal of Hydrogen Energy*. 34 (2): 1026–1034.
- Kaiser, S.A and White, C.M. 2008. PIV and PLIF to evaluate mixture formation in a direct injection hydrogen-fueled engine. *SAE Technical Paper No. 2008-01-1034*.

- Karim G.A. and Al-Himyary T.J. 1988. A diagnostic two-zone combustion model for spark ignition engines based on pressure-time data. *SAE Technical Paper No.* 880199.
- Karim G.A., Gao J., and Attar A. 1995. A predictive approach to spark ignition engine performance fueled with common gaseous fuels and their mixtures. *Proceeding* of the 17th Annual Fall Technical Conference of the ASME Internal Combustion Engine Division. 25(2): pp. 59-64.
- Karim, G.A. and Klat, S.R. 1966. Knock and autoignition characteristics of some gaseous fuels and their mixtures. *Journal of the Institute of Fuel*. **39**: 109-119.
- Kato, T., Kubota, M., Kobayashi, N. and Suzuoki, Y. 2005. Effective utilization of byproduct oxygen from electrolysis hydrogen production. *Energy*. **30**(14): 2580.
- Kee, R.J., Rupley, F.M. and Miller, J.A. 1991. *The Chemkin Thermodynamic Data Base*. Sandia Report. SAND87-8215B.
- Kiesgen, G., Klüting, M., Bock, C. and Fischer, H. 2006. The new 12-cylinder hydrogen engine in the 7 series: the H2 ICE age has begun. *SAE Technical Paper No. 2006-01-0431*.
- Kim, Y.Y., Lee, J.T. and Caton, J.A. 2006. The development of a dual-Injection hydrogen-fueled engine with high power and high efficiency. *Journal of Engineering for Gas Turbines and Power, ASME.* **128**(1): 203-212.
- King, R.O. and Rand, M. 1955. The hydrogen engine. *Canadian Journal of Technology*. **33** (2): 445–469.
- Kinsler, L.E. 1967. *Fundamentals of acoustics*. Second edition. New York: John Wiley and Sons.
- Kirchweger, W., Haslacher, R., Hallmannsegger, M. and Gerke, U. 2006. Applications of the LIF-method for the diagnostics of the combustion process of gas-ICengines. *Thirteenth International Symposium on Applications of Laser Techniques to Fluid Mechanics*, Lisbon Portugal.
- Klein-Douwel, R., Frijters, P., Seykens, X., Somers, L. and Baert, R. 2009. Gas density and rail pressure effects on diesel spray growth from a heavy-duty common rail injector. *Energy and Fuel.* 23(4): 1832–1842.
- Knop, V., Benkenida, A., Jay, S. and Colin, O. 2008. Modeling of combustion and nitrogen oxide formation in hydrogen-fuelled internal combustion engines within a 3D CFD code. *International Journal of Hydrogen Energy*. 33(19): 5083–97.

- Knorr, H., Held, W., Prümm, W. and Rüdiger H. 1996. The MAN hydrogen propulsion system for city buses. *Eleventh World Hydrogen Energy Conference*, Stuttgart, Germany. 1611–1620.
- Kolesa, K. 1987. Influence of high wall temperature on the operation characteristics and in particular on the transient heat transfer in direct injection diesel engines. PhD thesis. Technical university München, Germany.
- Kornbluth, K., McCaffrey, Z. and Erickson, P. 2009. Incorporating in-cylinder pressure data to predict NOx emissions from spark-ignition engines fueled with landfill gas/hydrogen mixtures. *International Journal of Hydrogen Energy*. 34 (22) 9248-9257.
- Kornbluth, K., Greenwood, J., McCaffrey, Z., Vernon, D. and Erickson, P. 2010. Extension of the lean limit through hydrogen enrichment of a LFG-fueled sparkignition engine and emissions reduction. *International Journal of Hydrogen Energy*. 35 (3) 1412-1419.
- Kovac, G., Wimmer, A., Hallmannsegger, M. and Obieglo, A. 2005. Mixture formation and combustion in a hydrogen engine – a challenge for the numerical simulation. *International Congress on Engine Combustion Processes – Current Problems and Modern Techniques*, Munich, Germany.
- Krieger, R. and Borman, G. 1966. The computation of the apparent heat release for internal combustion engines. ASME proceedings of Diesel Gas Power, Paper No. 66-WA/DPG-4.
- Kumar, R.H. and Antony, A.J. 2008. Progressive combustion in SI-engines: experimental investigation on influence of combustion related parameters. *Academy Proceedings in Engineering Sciences (Sadhana)*. **33**(6): 821-834.
- Kumar, R.H. and Antony, A.J. 2009. New empirical correlations for simulating the influence of compression ratio on ignition delay and overall combustion duration in SI engines. *Proceedings of the World Congress on Engineering*, Vol. II, July 1 - 3, London, U.K.
- Kuo, K.K., 2005. *Principles of combustion*. Second Ed. New York: John Wiley and Sons, Inc.
- Lanz, A. 2001. Hydrogen fuel cell engines, Module 3: Hydrogen use in internal combustion engines. College of the Desert, Revision 0.
- Larsen, H., Feidenhans'l, R. and Petersen, S. 2004. *Hydrogen and its competitors*. Report prepared for Risø National Laboratory. Risø National Report 3.
- Larsen, J.F. and Wallace, J.S. 1997. Comparison of emissions and efficiency of a turbocharged lean-burn natural gas and hythane-fueled engine. *Journal of Engineering for Gas Turbines and Power*. **218**(1): 218–226.

- Lee, J.T., Kim, Y.Y. and Caton, J.A. 2002. The development of a dual injection hydrogen fueled engine with high power and high efficiency. *Proceedings of The 2002 Fall Technical conference of the ASEM internal combustion engine division*. p. 323–333.
- Lee, S.J., Yi, H.S. and Kim, E.S. 1995. Combustion characteristics of intake port injection type hydrogen fueled engine. *International Journal of Hydrogen Energy*. 20(4): 317-322.
- Li, H. and Karim, G.A. 2006. Hydrogen fueled spark-ignition engines predictive and experimental performance. *Transactions of the ASME*. **128**(1): 230-236.
- Liu, J.P., Kleeberg, L., Tomazic, D., Ciaravino, J. and Amer, A. 2006. A model for online monitoring of in-cylinder residual gas fraction (RGF) and mass flow rate in gasoline engines. SAE Technical Paper No. 2006-01-0656.
- Lumley, J.L. 1999. Engines: an introduction. New York: Cambridge University Press.
- Ma, j., Su, Y., Zhou, Y. and Zhang, z. 2003. Simulation and prediction on the performance of a vehicle's hydrogen engine. *International Journal of Hydrogen Energy.* 28(1): 77-83.
- Ma, F., He, Y., Deng, J., Jiang, L., Naeve, N., Wang, M. and Chen, R. 2011. Idle characteristics of a hydrogen fueled SI engine. *International Journal of Hydrogen Energy*. 36(7): 4454-4460.
- Mang, T. and Dresel, W. 2001. Lubricants and lubrication. Grünstadt: Wiley-VCH.
- MMD (Malaysian Meteorological Department). 2010. http://www.met.gov.my/index.php?option=com_weatheropenseas&Itemid=1153. (Accessed in 9 May 2010).
- Martel B. 2000. Chemical risk analysis: a practical handbook. UK: Taylor and Francis.
- Mendera, K.Z., Spyra, A. and Smmereka, M. 2002. Mass fraction burned analysis. *Journal of KONES Internal Combustion Engines*. **3**(4): 193-210.
- Merker, G.P., Schwarz, C., Stiesch, G. and Otto, F. 2006. *Simulating combustion: simulation combustion and pollutants for engine-development*. Berlin: Springer.
- Messner, D., Wimmer, A., Gerke, U. and Gerbig, F. 2006. Application and validation of the 3D CFD method for a hydrogen fueled IC engine with internal mixture formation. *SAE Technical Paper No.* 2006-01-0448.
- Midilli, A. and Dincer, I. 2008. Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption. *International Journal of Hydrogen Energy*. **33**(16):4209-4233.

- Mladek, M. and Onder, C.H. 2000. A model for the estimation of inducted air mass and residual gas fraction using cylinder pressure measurements. *SAE Technical Paper No. 2000-01-0958*.
- Mohammadi, A., M. Shioji, Y. Nakai, W. Ishikura and E. Tabo, 2007. Performance and combustion characteristics of a direct injection SI hydrogen engine. *International Journal of Hydrogen Energy*. **32**(2): 296-304.
- Mohammed, S., Baharom, M. and Aziz, R. 2011. Analysis of engine characteristics and emissions fueled by in-situ mixing of small amount of hydrogen in CNG. *International Journal of Hydrogen Energy*. 36(6): 4029-4037.
- Moran, M.J. and Shapiro, H.N. 2008. *Fundamentals of engineering thermodynamics*. Sixth ed. New York: John Wiley and Sons, Inc.
- Mueller, M. and Pfeiffer, J. 2003. Method of estimating residual exhaust gas concentration in a variable cam phase engine. U.S. Patent 6,550,451.
- Munson, B., Young, D., Okiishi, T. and Huebsch, W. 2010. Fundamentals of Fluid Mechanics. Sixth ed. Asia: John Wiley and Sons, Inc.
- Muppala, S., Nakahara, M., Aluri, N., Kido, H., Wen, J. and Papalexandris, M. 2009. Experimental and analytical investigation of the turbulent burning velocity of two-component fuel mixturesof hydrogen, methane and propane. *International Journal of Hydrogen Energy*. 34(22): 9258-9265.
- Nakada, M. 1994. Trends in engine technology and tribology. *Tribology International*. **27**(1): 3-8.
- National bureau of Standards (NBS). 1971. JANAF *Thermochemical Tables*. NSRDS-NBS37.
- Nevers, N. 2002. *Physical and chemical equilibrium for chemical engineers*. New York: John Wiley and Sons, Inc.
- NHA (The National Hydrogen Association). 2008. *The History of Hydrogen*. Fact Sheet Series. Fact sheet 1.
- Nieuwstadt, M.J., Kolmanovsky, I.V., Brehob, D. and Haghgooie, M. 2000. Heat release regressions for GDI engines. *SAE Technical Papers*. No. 2000-01-0956.
- Ogden, M. 2002. Available hydrogen technologies can dramatically reduce pollution and greenhouse gas emissions. But the switch to hydrogen fuel will require strong political will. *Physics Today*. **55**(4): 69-75.
- Olavson, L., Baker, N., Lynch, F. and Meija, L. 1984. Hydrogen fuel for underground mining machinery. *SAE Technical Paper No.* 840233.

- Olikara, C. and Borman, G.L. 1975. A computer program for calculating properties of equilibrium combustion products with some applications to IC engines. *SAE Technical Paper No.* 750468.
- Ono, R., Nifuku, M., Fujiwara, S., Horiguchi, S. and Oda, T. 2007. Minimum ignition energy of hydrogen–air mixture: effects of humidity and spark duration. *Journal of Electrostatics*. **65**(2): 87–93.
- Ozcan, H. 2010. Hydrogen enrichment effects on the second law analysis of a lean burn natural gas engine. *International Journal of Hydrogen Energy*. **35** (3) 1443-52.
- Padiyar, S. 1985. Properties of hydrogen. In: *Proceedings of summer school of hydrogen energy*, IIT Madras, Chennai, India.
- Paranjpe, R. and Cusenza, A. 1992. FLARE : an integrated software package for friction & lubrication analysis of automotive engines - Part II : experimental validation. SAE Technical Paper No. 920488.
- Park, C., Kim, C., Choi, Y., Won, S. and Moriyoshi, Y. 2011a. The influences of hydrogen on the performance and emission characteristics of a heavy duty natural gas engine. *International Journal of Hydrogen Energy*. 36(5) 3739-3745.
- Park, J., Cha, H., Song, S. and Chun, K. 2011b. A numerical study of a methane-fueled gas engine generator with addition of hydrogen using cycle simulation and DOE method. *International Journal of Hydrogen Energy*. 36(8) 5153-5162.
- Patton, K.J., Nitschke, R.G., and Heywood, J.B. 1989. Development and evaluation of a performance and efficiency model for spark-ignition engines. *SAE Technical Paper No. 890836*.
- Perini, F., Paltrinieri, F. and Mattarelli, E. 2010. A quasi-dimensional combustion model for performance and emissions of SI engines running on hydrogenmethane blends. *International Journal of Hydrogen* Energy. 35(10): 4687-4701.
- Perry R.H., Green, D.W. 1997. Perry's chemical engineers' handbook. New York: McGraw-Hill.
- Petkov, T., Veziroglu, T. and Sheffield, J.W. 1989. An outlook of hydrogen as an automotive fuel. *International Journal of Hydrogen Energy*. **14**(7): 449–474.
- Polasek, M., Macek, J., Takats, M. and Vitek, O. 2002. Application of advanced simulation methods and their combination with experiments to modeling of hydrogen fueled engine emission potentials. SAE Technical Paper No. 2002-01-0373.
- Potter, A., Durcarme, J., Gerstain, M., and Lefebvre, A. 1960. *Progress in combustion and fuel technology. Flame quenching*. Vol. 1. New York: Pergamon Press.

- Prabhu-Kumar, G.P., Nagalingam, B. and Gopalakrishnan, K.V. 1985. Theoretical studies of a spark-ignited supercharged hydrogen engine. *International Journal of Hydrogen Energy*. **10**(6): 389–397.
- Prümm, W. 2006. Hydrogen engines for city busses the MAN engines H2866/H2876. First International Symposium on Hydrogen Internal Combustion Engines, Graz University of Technology, Austria.
- Pulkrabek, W.W. 2003. *Engineering fundamentals of the internal combustion engine*. Second ed. New Jersey: Prentice Hall.
- Rajput, R. 2005. Internal combustion Engines. New Delhi: Laxmi Publications.
- Rankin, D.D. 2008. Lean combustion: technology and control. San Diego: Elsevier.
- Rao, S.S. 2002. *Applied numerical methods for engineers and scientists*. New Jersey: Prentice Hall Inc.
- Rassweiler, G.M. and Withrow, L. 1938. Motion pictures of engine flames correlated with pressure cards. *SAE Transactions*. **42**: 185-204. (Reprinted SAE 800131, 1980).
- Ray, A.K. and Gupta S.K. 2004. *Mathematical methods in chemical and environmental engineering*. Second ed. Singapore: Thomson.
- Ren, J.Y., Qin, W., Egolfopoulos, F.N. and Tsotsis, T.T. 2001. Strain-rate effects on hydrogen-enhanced lean premixed combustion. Combustion and Flame. 124(4): 717–20.
- Ricardo, H.R. 1924. Further notes on fuel research. *International Automobile Engineers*. **18**(1924): 327–341.
- Ricci, M., Bellaby, P. and Flynn R. 2008. What do we know about public perceptions and acceptance of hydrogen? A critical review and new case study evidence. *International Journal of Hydrogen Energy*. **33**(21): 5868-5880.
- Ringler, J., Gerbig, F., Eichlseder, H. and Wallner, T. 2004. Insights into the development of a hydrogen combustion process with internal mixture formation. *Proceedings of the Sixth International Symposium on Internal Combustion Diagnostics*, Baden Baden Germany.
- Rottengrüber, H., Berckmuller, M., Elsasser, G., Brehm, N. and Schwarz, C. 2004. Operation strategies for hydrogen engines with high power density and high efficiency. *Fifteenth Annual U.S. Hydrogen Conference*, Los Angeles, California.
- Ruscic, B., Pinzon, R.E., Morton, M.L., Srinivasan, N.K., Su, M., Sutherland, J.W. and Michael, J.V. 2006. Active thermochemical tables: Accurate enthalpy of

formation of hydroperoxyl radical, HO₂. *The Journal of Physical Chemistry A*. **110**(21): 6592-6601.

- Safari, H., Jazayeri, S. and Ebrahimi, R. 2009. Potentials of NOx emission reduction methods in SI hydrogen engines: simulation study. *International Journal of Hydrogen Energy*. 34(2): 1015–1025.
- Saidi, H. 2005. Report on hydrogen activities in Malaysia. Hydrogen Workshop for APEC Economies – Focus on the Eastern Hemisphere, Honolulu, Hawaii. 16 May.
- Salimi, F., Shamekhi, A.H. and Pourkhesalian, A. 2009. Role of mixture richness, spark and valve timing in hydrogen-fuelled engine performance and emission. *International Journal of Hydrogen Energy*. **34**(9): 3922-3929.
- Sandoval, D. and Heywood, J.B. 2003. An improved friction model for spark-ignition. *SAE Technical Paper No. 2003-01-0725*.
- Saravanan, N. and Nagrajan, G. 2009. Performance and emission study in manifold hydrogen injection with diesel as an ignition source for different start of injection. *Renewable Energy*. 34(1): 328-334.
- Saravanan, N., Nagarajan, G., Dhanasekaran, C. and Kalaiselvan. 2007. Experimental investigation of hydrogen port fuel injection in DI diesel engine. *International Journal of Hydrogen Energy*. **32**(16): 4071-4080.
- Satyapal, S., Petrovic, J., Read, C., Thomas, G. and Ordaza, G. 2007. The U.S. Department of Energy's national hydrogen storage project: progress towards meeting hydrogen-powered vehicle requirements. *Catalysis Today*. **120**(3-4): 246-256.
- Schroeder, V. and Holtappels, K. 2005. Explosion characteristics of hydrogen-air and hydrogen-oxygen mixtures at elevated pressures. *International Conference on Hydrogen Safety*, Pisa, Italy. Paper No. 120001.
- Schubert, C., Wimmer, A. and Chmela, F. 2005. Advanced heat transfer model for IC engines. *SAE Technical Paper No. 2005-01-0695*.
- Schwarz, C. 1993. *Simulation of transient operation of charged diesel engine*. PhD Thesis. Technical university München, Germany.
- Schwarz, F. and Spicher, U. 2003. Determination of residual gas fraction in IC engines. *SAE Technical Paper* No. 2003-01-3148.
- Sellnau, M., Kunz, T., Burkhard, J. and Sinnamon, J. 2006. 2-Step valve actuation: system optimization and integration on an SI engine. *SAE Technical Paper No.* 2006-01-0040.

- Shaw, B.T. and Hedrick, J.K. 2002. Cold-start engine combustion modeling to control hydrocarbon emissions. *Proceedings of the 15th Triennial World Congress of IFAC* (The International Federation for automatic Control). Barcelona, Spain, 21-26 July.
- Shioji, M., Kitazaki, M., Mohammadi, A., Kawasaki, S. and Eguchi, S. 2004a. Knock characteristics and performance in an SI engine with hydrogen and natural-gas blended fuels. *SAE Technical Paper No. 2004-01-1929*.
- Shioji, M., Kawanabe, H. and Taguchi, Y., and Tsunooka, T. 2004b. CFD simulation for the combustion process in hydrogen engines. *Fifteenth World Hydrogen Energy Conference*, Yokohama, Japan.
- Shrestha, B.S. and Karim, G.A. 1999a. A predictive model for gas fueled spark ignition engine applications. *SAE Technical Paper No. 1999-01-3482*.
- Shrestha, B.S. and Karim, G.A. 1999b. Hydrogen as an additive to methane for spark ignition engine applications. *International Journal of Hydrogen Energy*. 24 (6): 577–86.
- Shudo, T. 2007. Improving thermal efficiency by reducing cooling losses in hydrogen combustion engines. *International journal of Hydrogen Energy*. **32**(17): 4285-4293.
- Shudo, T. and Nabetani, S. 2001. Analysis of degree of constant volume and cooling loss in a hydrogen fuelled SI engine. *SAE Technical Paper No. 2001-01-3561*.
- Shudo, T., Nabetani, S. and Nakajima, Y. 2001. Analysis of the degree of constant volume and cooling loss in a spark ignition engine fuelled with hydrogen. *International Journal of Engine Research*. **12**(1): 81–92.
- Shudo, T. and Suzuki H. 2002a. New heat transfer equation applicable to hydrogenfuelled engines. ASME Fall Technical Conference. New Orleans, Louisiana. Paper no. ICEF2002-515.
- Shudo, T. and Suzuki H. 2002b. Applicability of heat transfer equations to hydrogen combustion. *JSAE Review*. **23**(3): 303-308.
- Shudo, T., Cheng, W.K., Kuninaga, T. and Hasegawa, T. 2003. Reduction of cooling loss in hydrogen combustion by direct injection stratified charge. SAE Technical Paper No. 2003-01-3094.
- Sierens, R. and Verhelst, S. 2003. Influence of the injection parameters on the efficiency and power output of a hydrogen fueled engine. *Journal of Engineering for Gas Turbines and Power, ASME*. **125**(2): 444-450.
- Sinnamon, J.F. and Sellnau, M.C. 2008. A new technique for residual gas estimation and modeling in engines. *SAE Technical Paper No. 2008-01-0093*.

- Smith, J.M., Van Ness, H.C. and Abbott, M.M. 2005. *Introduction to chemical engineering thermodynamics*. Seventh ed. New York: McGraw-Hill.
- Smith, J.R. and Aceves, S.M. 1997. Hybrid and conventional hydrogen engine vehicles that meet EZEV emissions. *SAE Technical Paper No.* 970290.
- Smith, W. R. and Missen, R.W. 1968. Calculating complex chemical equilibria by an improved reaction-adjustment method. *Canadian Journal of Chemical Engineering*. 46(4): 263-272.
- Sopena, C., Dieguez, P., Sainz, D., Urroz, J., Guelbenzu, E. and Gandı'a, L. 2010. Conversion of a commercial spark ignition engine to run on hydrogen: Performance comparison using hydrogen and gasoline. *International Journal of Hydrogen Energy*. **35**(3): 1420-1429.
- Sopian, K. 2008. Development of the hydrogen energy roadmap and current status on R&D for Malaysia. *ISESCO Science and Technology Vision*. **4**(5): 12-15.
- Sorab, J., Korcek, S., McCollum, C. and Schriewer, K. 1998. Sequence VIB engine test for evaluation of fuel efficiency of engine oils - Part II. stage selection and time factor determination. *SAE Technical Paper No.* 982624.
- Soyhan, H., Yasar, H., Walmsley, H., Head, B., Kalghatgi, G. and Sorusbay, C. 2009. Evaluation of heat transfer correlations for HCCI engine modeling. *Applied Thermal Engineering*. 29(2-3):541-549.
- Stephens-Romero, S. and Samuelsen, G. 2009. Demonstration of a novel assessment methodology for hydrogen infrastructure deployment. *International Journal of Hydrogen Energy*. 34(2): 628-641.
- Stockhausen, W.F., Natkin, R.J., Kabat, D.M., Reams, L., Tang, X. and Hashemi S. 2002. Ford P2000 hydrogen engine design and vehicle development program. SAE Technical Paper No. 2002-01-0240.
- Streeter, V., K. Wylie, K. and Bedford, E. 1998. *Fluid mechanics*. Ninth ed., New York: McGraw-Hill.
- Suwanchotchoung, N. 2003. *Performance of a spark ignition dual-fueled engine using split-injection timing*. Ph.D. Thesis. Mechanical engineering department. Vanderbilt University, Germany.
- Swain, M.R., Swain, M.N. and Adt, R.R. 1988. Considerations in the design of an inexpensive hydrogen-fueled engine. *SAE Technical Paper No. 881630*.
- Szwaja, S., Bhandary, K.R. and Naber, J.D. 2007. Comparisons of hydrogen and gasoline combustion knock in a spark ignition engine. *International Journal of Hydrogen Energy*. **32**(18): 5076-5087.

- Takats, M., Macek, J., Polasek, M., Kovar, Z., Beroun, S. and Schloz C. 1998. Hydrogen fueled reciprocating engine as an automotive prime mover. *Fisita World Automotive Congress*, Paris, France. Paper No. F98T/P693.
- Tang, X., Kabat, D.M., Natkin, R.J., Stockhausen, W.F. and Heffel, J. 2002. Ford P2000 hydrogen engine dynamometer development. SAE Technical Paper No. 2002-01-0242.
- The National Hydrogen Association. *The history of hydrogen*. Fact sheet series. http://www.HydrogenAssociation.org (Accessed 15 June 2008).
- Thurnheer, T., Soltic, P. and Eggenschwiler, P. 2009. S.I. engine fuelled with gasoline, methane and methane/hydrogen blends: Heat release and loss analysis. *International Journal of Hydrogen Energy*. **34**(5): 2494-2503.
- Tseng, P., Lee, J. and Friley, P. 2005. Hydrogen economy: opportunities and challenges. *Energy*. **30**(14): 2703-2720.
- Turns, S.R. 2000. *An introduction to combustion: concepts and applications*. Second ed. Boston: McGraw-Hill.
- Turns, S.R. 2006. *Thermal sciences: an integrated approach*. New York: Cambridge University Press.
- U.S. Department of Energy, Hydrogen analysis resource center, 2010. http://hydrogen.pnl.gov/cocoon/morf/hydrogen (Accessed 05 April 2010).
- Uhrig, R.E. and Capehart, B.L. 2007. *Encyclopedia of energy engineering and technology*. London: Taylor & Francis Group.
- Varde, K.S. and Frame, G.A. 1985. Development of a high-pressure hydrogen injection for SI engine and results of engine behavior. *International Journal of Hydrogen Energy*. **10**(11):743–748.
- Verhelst, S. and Wallner, T. 2009. Hydrogen-fueled internal combustion engines. *Progress in Energy and Combustion Science*. **35**(6): 490-527.
- Verhelst, S. 2005. A study of the combustion in hydrogen-fuelled internal combustion engines. Ph.D. Thesis. Mechanical engineering department. Ghent University, Belgium.
- Verhelst, S. and Sheppard, C.G. 2009. Multi-zone thermodynamic modeling of sparkignition engine combustion-an overview. *Energy conversion and Management*. 50(5): 1326-1335.
- Verhelst, S. and Sierens, R. 2001a. Aspects concerning the optimization of a hydrogen fueled engine. *International Journal of Hydrogen Energy*. 26(9):981–985.

- Verhelst, S. and Sierens, R. 2001b. Hydrogen engine-specific properties. *International Journal of Hydrogen Energy*. 26(9): 377-382.
- Verhelst, S. and Sierens, R. 2003. A laminar burning velocity correlation for hydrogen/air mixtures valid at spark-ignition engine conditions. ASME Spring Engine Technology Conference, Salzburg, Austria. Paper no. ICES2003–555.
- Verhelst, S. and Sierens, R. 2007. A quasi-dimensional model for the power cycle of hydrogen fuelled ICE. *International Journal of Hydrogen Energy*. **32**(15): 3545-3554.
- Verhelst, S., Maesschalck, P., Rombaut, N. and Sierens, R. 2009. Increasing the power output of hydrogen internal combustion engines by means of supercharging and exhaust gas recirculation. *International Journal of Hydrogen Energy*. 34(10): 4406–12.
- Verhelst, S., Sierrens, R. and Verstraeten, A. 2006. A critical review of experimental research on hydrogen fueled spark ignition engines. SAE Technical Paper No. 2006-01-0430.
- Veziroglue, T. 1998. Dawn of the hydrogen age. *International Journal of* Hydrogen Energy. **23**(12): 1077-1078.
- Villars, D.S. 1959. A method of successive approximations for computing combustion equilibria on high speed digital computers. *The Journal of Physical Chemistry*. 63(4): 521-525.
- Wakayama, N., Morimoto, K., Kashiwagi, A. and Saito, T. 2006. Development of hydrogen rotary engine vehicle. *Sixteenth World Hydrogen Energy Conference*, Lyon, France.
- Wallner, T., Ciatti, S., Stockhausen, W. and Boyer, B. 2006. Endoscopic investigations in a hydrogen internal combustion engine. *First International Symposium on Hydrogen Internal Combustion Engines*, Graz University of Technology, Austria.
- Wan Daud, W.R. 2006. Hydrogen economy: perspective from Malaysia. International Seminar on the Hydrogen Economy for Sustainable Development, Reykjavik, Iceland. 28-29 December.
- Wang, S., Ji, C. and Zhang, B. 2011. Starting a spark-ignited engine with the gasolinehydrogen mixture. *International Journal of* Hydrogen Energy. **36**(7): 4461-4468.
- Watson, H.C. and Milkins, E.F. 1978. Some problems and benefits from the hydrogenfuelled spark Ignition Engine. *SAE Technical Paper* No. 789212.

Weber, M. and Perrin, J. 2008. Hydrogen technology. Berlin: Springer.

- Wei, S.W., Kim Y.Y., Kim H.J. and Lee J.T. 2001. A study on transient heat transfer coefficient of in cylinder gas in the hydrogen fueled engine. Sixth Korea-Japan Joint Symposium on Hydrogen Energy. October 17- 19.
- Welch, A., Younkins, M., Mumford, D., Munshi, S., Holbery, J., Boyer, B. and Jung, H. 2008. Challenges in developing hydrogen direct injection technology for internal combustion engines. SAE Technical Paper No. 2008-01-2379.
- White, C. 2006. A Technical review of hydrogen-fuelled internal combustion engines. *California Air Resources Board ZEV Technology Symposium*, Cal/EPA Headquarters, Sacramento, CA.
- White, C.M., Steeper, R.R. and Lutz, A.E. 2006. The hydrogen-fueled internal combustion engine: a technical review. *International Journal of Hydrogen Energy*. **31**(10):1292–1305.
- Wiebe, I.I. 1970. Rate of combustion and working cycle in Engines. VEB Verlag Technik, Berlin.
- Wimmer, A., Chmela, F., Dimitrov, D., Eichlseder, H. and Messner, D. 2006. Prediction of heat release for hydrogen IC engines with port injection. *First International Symposium on Hydrogen Internal Combustion Engines*, Graz University of Technology, Austria.
- Woschni, G. 1967. A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. *SAE Technical Paper No.* 670931.
- Woschni, G. and Fieger, J. 1979. Determination of local heat transfer coefficients at the piston of a high speed diesel engine by evaluation of measured temperature distribution. *SAE Technical Paper No.* 790834.
- Woschni, G., Spindler, W. and Kolesa, K. 1987. Heat insulation of combustion chamber walls: a measure to decrease fuel consumption of IC engines. SAE Technical Paper No. 870339.
- Yasar, H., Soyhan, H.S., Walmsley, H., Head, B. and Sorusbay, C. 2008. Double-Wiebe function: an approach for single-zone HCCI engine modeling. *Applied Thermal Engineering*. 28(11-12), pp. 1284-1290.
- Yi, H.S., Min, K. and Kim, E.S. 2000. The optimized mixture formation for hydrogen fuelled. *International Journal of Hydrogen Energy*. 25(2): 685-690.
- Yoo, S.J. and Kim, E.S. 1993. A study of in-cylinder heat transfer characteristics of a spark ignition engine. *SAE Technical Paper No. 931981*.
- Yüksel, F. and Ceviz, M.A. 2003. Thermal balance of a four stroke SI engine operating on hydrogen as a supplementary fuel. *Energy*. **28** (11): 1069–80.

- Zabetakis, M.G. 1965. *Flammability characteristics of combustible gases and vapors*. U.S. Bureau of Mines, bulletin 627.
- Zanardelli, V. 2006. The Design, development, validation and delivery of the Ford H₂ ICE E450 shuttle bus product. *First International Symposium on Hydrogen Internal Combustion Engines*, Graz University of Technology, Austria.