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1. Introduction 
Biodiesel has become an important part of the world 

for production of fuels. Biodiesel is a biofuel that substitute for 

diesel, it becomes forefront for this ideology due to its 

advantages for environments, and the worlds not only face to 

the environment crisis but also face to devaluation of fossil 

fuels sources. This statement is supported by the statistics of 

biodiesel production in European Union is 22 million tons per 

year and 3.7 million tons per year in United States in  

2011(Nurfitri et al., 2013). Malaysia is in the developing 

progress of using biodiesel. Malaysia has started its initiations  

by introducing National. Biofuel Policy in 2006 and  

implementing biodiesel B5 in 2011. The utilization of  

 

 

 

 

 

waste/used edible oils and animal fat as raw materials is a 

significant idea, and there are many advantages for using waste 

feedstock for biodiesel production such as abundant supply, 

available in low price, and environmental benefits. Yahyaee et 

al. (2013) suggested that introducing biodiesel from the fish 

oil can perfectly replace about 5% of total diesel fuel 

consumption in the first step in transportation sector. There 

is no doubt for the need of more extensive research work to 

study the other economic issues related to biodiesel 

production from waste fish oil. 

The catalyst that is synthesized with the waste shells 
gives opportunity for renewable catalyst and at the same time 
recycles the waste created (Boro et al., 2012). The barnacle 

This paper reports studies in ultrasound-assisted heterogeneous solid catalyzed (CaO) 

synthesis of biodiesel from catfish (Pangasius) fat.  Ultrasonication provides a faster chemical 

reaction, and the rate enhancements, refereed by cavitation that causes the building- up of 

pressures and temperatures, as well as increased catalytic surface areas and improve mass 

transfer. This novel method offers significant advantages such as shorter reaction time and 

less energy consumption than the conventional method, efficient molar ratio of methanol to 

triglycerides and provides the mechanical energy for mixing. The required activation energy 

for initiating the transesterification reaction and so, it gives a higher yield by 

transesterification of oils into biodiesel. The optimized reaction conditions were as follows: 

methanol to oil molar ratio of 15:1; catalyst (B-CaO), 9 wt. %; reaction temperature, 65 ± 

2 °C; reaction time, 1 h at a working frequency of 42 kHz and the power supply of 100W. 

Highest conversion of 96.4 wt. % was achieved. 
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could be a potential source of CaO since they consist of >90% 
of CaCO3 and increasing the heating treatment will be 
transforming them into CaO. Several methods are used to 
produce biodiesel. Among them are dilution, direct use and 
blending, transesterification, pyrolysis, and micro emulsion. 
Among these major routes, transesterification is considered as 
the best for reducing engine complications and viscosity. 
Common conditions to carry out transesterification are batch 
process, ultrasonic methods, microwave methods and 
supercritical processes (Xie and Zhao, 2014). Biodiesel can be 
produced by the ultrasound method and conventional 

method. The use of ultrasound in transesterification reaction 
was also found to enhance the yield of methyl esters produced. 
Stavarche et al. (2005) concluded that low frequency 
ultrasound is an efficient, time saving and economically 
functional method that offers a lot of advantages over the 
classical procedure. The induced asymmetric cavitational 
bubbles collapse at the oil/alcohol boundary and enhance mass 
transfer between the phases thus accelerating the reaction. 

The transesterification of triglycerides by ultrasonic 

irradiation provides a possibility for producing cheap 

alternative fuels, which could reduce pollution and protect the 

environment. Ultrasound is a sound wave with a frequency 

higher than the upper audible limit of the human audibility 

range. Ultrasound frequencies range from ~20 kHz to l0 

MHz, with supplementary acoustic wavelengths in liquids of 

roughly 100-0.15 mm. The application of ultrasound towards 

chemical reactions and processes is called as sonochemistry. 

Ultrasound is very effective in solution as medium. The 

application of ultrasound, therefore, will contribute to a more 

homogeneous reaction mixture and facilitate dispersion of 

lipase through substrate media, reducing agglomeration so 

that the reaction rate does not decrease with the enhancement 

of lipase concentration (Liu et al., 2008). Nobel of converted 

Macauba oil into alcoholic esters using a commercial lipase as 

catalyst using ultrasound-assisted system had been proven 

while aiming the promising use of cost effective, non-edible 

oil, with very adequate field output, towards biodiesel 

production with an eco-friendly, green skill (Michelin et al., 

2015). Hindryawati and Maniam (2015) also proved that Na-

silica waste sponge as a source of low cost catalyst in the 

transesterification of waste cooking oil aided by ultrasound 

technique as an environmentally friendly and efficient 

transesterification.  The aim of this research is to investigate 

the potential of barnacle shell as heterogeneous catalyst in 

transesterification of catfish fat for producing biodiesel using 

ultrasonic methods. 

 

Nomenclature and Abbreviation 

TGA Thermogravimetric analysis 

GC-MS Gas chromatography - mass spectrometry 

FTIR Fourier-transform infrared spectroscopy 

FESEM Field emission scanning electron microscopy  

FFA Free fatty acid 

DTA Differential thermal analysis 

XPD X-ray powder diffraction 

 

2. Materials and methods  

2.1 Materials 

The waste catfish fat collected from an eatery in 

Gambang, Malaysia. Waste marine shells (barnacle) were 

collected at Pantai Gelora beach Pahang, Malaysia. Malaysia 

and The chemicals purchased from Sigma–Aldrich company 

(Switzerland) include phenolphthalein (H_ = 8.2), 2, 4-

dinitroaniline (H_ = 15.0) and 4-nitroaniline (H_ = 18.4), 

methyl heptadecanoate as an internal standard GC grades 

(>99.1%). Methanol (anhydrous, ≥99.8%) and hexane 

(anhydrous, ≥99.8%) were purchased from Hamburg 

(Germany). 

2.2 Experimental 

The barnacle was cleaned using water to remove dirt 

and fibrous matters. Then the shell was dried in an oven at 

105°C, overnight (labeled as B-dried). The shell were then 

ground in a mortar and pestle to obtain the gross powder and 

further ground fine with a dry-mill blender and sieved through 

75µmmesh before being subjected to heat treatment in 

furnace at 900 °C. As for the catfish fat, the fat was cleaned to 

remove any visible proteins and other fibrous matters. Then it 

was left to dry at room temperature before the dried fat was 

transferred to an oven and was heated slowly in a petri dish 

from room temperature to a maximum temperature of 90 °C. 

The resultant oil (after constant weight) was then filtered 

through a filter paper before being stored in an amber bottle 

in the refrigerator.  The oil content was calculated using the 

following formula: 

Oil content (%) = 
M1

M0

 x 100 

Where M1 and M0 are the masses of the oil and fat in 

g, respectively. The acid value and acidity of the oil were 

determined following EN14104 standard. The determination 

was repeated three times. 
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2.3 Characterization of Catalyst 

The CaO was identified by X-ray diffraction (Rigaku) 

with Cu Kα as a source. FTIR (Perkin Elmer Spectrum 100) 

spectrophotometer was used to characterize the chemical 

structure of catalyst at 400– 4000 cm−1 range. The 

morphology of catalyst was observed by FESEM (JSM-7800F). 

The catalyst was examined using thermogravimetric analysis 

(TGA) using the Mettler Toledo TGA/DTA 851e instrument 

from 25 to 900 °C with 10 °C/min heating rate. 

 
2.4 Experimental set up 
 The ultrasonic reaction was performed using Branson 
(USA) ultrasonic bath (42 kHz) with the power dissipation 
100 W. The bath was filled with distilled water up to 1/ 3 of 
its volume. The temperature was controlled and maintained 
at desired level (±0.1 °C) by water circulating from a 
thermostated bath by means of a pump. A constituent of 10 
ml oil with desired amount of catalyst and methanol was 
immersed in an ultrasound water bath. The effect of catalyst 
amount (1–12 wt.%), reaction duration (1–5 h) and methanol 
to oil ratio (6:1-8:1) on the conversion of triglycerides to 
biodiesel were investigated, with the temperature 65 ± 2 °C. 
Then, to further separate the product (ME and glycerol) and 
the catalyst centrifugation at 4000 rpm for 5 min was 
performed. The excess methanol was evaporated before the 
chromatographic analysis. The reaction was carried out three 
times in order to reflect the precision and errors of the results.  

3. Results and discussion 

3.1 Oil and Catalyst Characterization 

The fat content in catfish is 5.6 ± 0.11 g/100 g which 
is similar with the found value of 6.23 g/100 g (Islam et al., 
2012) and also comparable with Muhamad and Mohamad. 
(2012) where, 6.23g/100g and the oil recovered from waste 
catfish oil is 69 ± 0.78 wt.% (on a wet weight basis). The acid 
value of the catfish oil is found to be at 3.85 ± 0.05 mgKOH/g 
(equivalent to 1.75% FFA as oleic acid). The density value of 
catfish oil is 913 ± 1.60 kg/m-3 @ 25 °C. Meanwhile, the 
viscosity value for catfish oil is at 65.5 ± 1.4 cP @ 40 °C. For 
the moisture content, the value of catfish oil is 0.22 ± 0.02%.  

The evidence shows that the FFA lies in the range of 
below zero to above 2.0%. With below 0.5% FFA, the oil is 
regarded as high quality oil, whereas any value between 0.5-
2.0% and above 2.0% are the moderate and low quality oil, 
respectively. Accordingly, with the FFA of 1.75%, catfish oil 
can be classified as of moderate quality Low water content is 
also preferred (<0.5 wt. %) as the presence of water 
promotes the formation of FFA. As shown in Table 1, catfish 
oil contains 0.22 wt. % of water content which regulates a 
lower FFA. The common density range fats are between (600-
1000 kg/m3) and the catfish oils falls in the range with the 

value of 913 kg/m3. Similarly, the viscosity is in the 
acceptance range (<80 cP) whereas the value (65.5 cP) falls in 
agreement with the literature value.  

The composition for catfish oil was determining using 
gas chromatography- mass spectrometry (GC-MS). As 
tabulated in Table 1, palmitic acid was foremost with a 
previous report (Hemung et al., 2010). With about 53.2% of 
the fatty acid being of the saturated type, the remaining 35.7% 
of the content is accounted for unsaturated fatty acids and the 
rest 11.1% is for poly-unsaturated fatty acids. 

The effect of the temperature drying is shown in Figure 

3. The result indicated that drying at high temperature 
decreases the moisture content (dry basis). 
 
Table 1. Composition of Fatty Acid in Catfish Oil 
 

Fatty acid 
Composition (%) 

Present work 

Saturated  

Lauric (C12:0) 11.5 

Myristic (C14:0) 11.7 

Pentadecanoic (C15:0) 1.9 

Palmitic (C16:0) 28.1 

Subtotal 53.2 

Unsaturated  

Myristoleic (C14:1 n-5) 2.0 

Oleic (C18:1 n-9) 26.8 

Vacceneic (C18:1 n-7) 4.2 

Eicosenoic (C20:1 n-9) 2.7 

Subtotal 35.7 

Poly-unsaturated  

Linoleic (C18:2 n-6) 6.7 

alpha-linolenic (C18:3 n-3) 3.0 

Stearidonic (C18:4 n-3) 0.8 

Eicosadienoic (C20:2 n-6) 0.5 

Subtotal 11 

Total 100 

 
The uncalcined and calcined barnacle shell as catalysts 

was characterized by XRD (Rigaku) using Cu Kα 
diffractometer. The XRD pattern of Lab CaO (commercial) 
B-CaO at 900 °C, 700 °C, 500 °C and uncalcined catalysts are 
shown in Figure. 1. The patterns show, that when the 
calcination temperature is below 700 °C including the 
uncalcined catalyst, CaCO3 does exist. However, with the 
increase in activation temperature, CaCO3 completely 
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transforms to CaO evolving CO2. The transformation of 
CaCO3 to CaO occurs at 700 °C and above. Narrow and high 
intense peaks of the calcined catalyst define the well-
crystallized structure of the catalyst. The above finding is 
consistent with the study by Maniam et al. (2009) and Lim et 
al. (2015). 

 
The FTIR spectra of uncalcined and calcined (500, 700 

and 900 °C) barnacle are compared with Lab-CaO 
(commercial) and shown in Figure. 2. The weak band at 3642 
cm−1 is normally attributed to OH groups of Ca (OH)2. Also, 
the H-O-H bending mode of lattice water appears at 1600 
cm−1, and this band exists in all FTIR spectra. The stretching 
bands at 3150, 3034 and 2880 cm−1 are attributed to the O-
H groups from H2O molecules (Lin et al., 1995). Different 
views for uncalcined barnacle while they have major 
characteristic absorption peaks at 713, 875, and broad band at 
1420 cm-1 is the presence of asymmetric stretch, out of plane 
bend and in plane bend vibration modes for CO3

2- molecules. 
Subsequently, with the increasing calcination at 900 ºC, the 
decreasing band at 1432 cm-1 is detected due to the reduced 
functional group attached to carbonate ions on calcination. 
The bands at 2511 and 2874 cm-1 correspond to the harmonic 
vibration of C-O bonds. The Lab-CaO chemical patterns are 
presented, for comparison with calcined barnacle. Legodi et 
al. (2001) also reported carbonate bands are present at 1802, 
2511 and 2874 cm-1. 

 
The TGA/DTA result shows a major decomposition at 

560-770 °C for barnacle is 42% (Figure. 3). The 
decomposition may be attributed to the evolvement of CO2 
and the weight loss is matched with the stoichiometrically 
weight loss of CO2 to form CaO from CaCO3 (Eq. 1). Upon 
heating calcium carbonate, it undergoes a reaction where 
bound CO2 is released from the material and only calcium 
oxide remains after the experiment. Thermal analysis of 
mixed oxide in Figure 3 shows two main decomposition steps. 

 

CaCO3(s)     ⇄     CaO(s)  +   CO2(g) 
   (MW=100.09)     (MW=56.08)   (MW=44.01) 

∆H298=178 kJ/mol (Endothermic)………………. (Eq.1) 
 
FESEM micrographs of the Uncalcined and B-CaO 

(900 °C, 2 h). The uncalcined barnacles demonstrate bulk 
morphologies without a defined shape. In contrast, calcined 
B-CaO form regular-shaped particles, with the small particles 
cohesive in the structures. Thus, increasing the surface area of 
the catalyst with visible pores of defined shape and size. This 
result is consistent with previous work on different types of 
shells (Empikul et al., 2010) and shows similar morphology 
with the calcined bivalve clam shell (Maniam et al., 2015). 

 

 
 

• CaCO3             ­ CaO 

 
Figure 1. XRD Diffractograms of Barnacle Shell at Different 
Temperature 

Figure 2 FTIR Spectra for Barnacle Shell at Different 
Temperatures 

 
 
Figure 3. TGA/DTA Thermography for Uncalcined Barnacle 
Shell 
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Figure 4. FESEM images for (A) Uncalcined (B) B-CaO 
 

3.2 Effect of optimization conditions 

The molar ratio of methanol to oil is one of the 
important variables which affect transesterification reaction. 
As observed, five different molar ratios of MeOH: oil was 
tested; 6:1, 9:1, 12:1, 15:1 and 18:1. The ME content is 
increased as the MeOH: oil was raised from 2:1 to 6:1. Too 
much methanol could dilute the oil and as a result slows the 
reaction rate, which in turn, lowers conversions. In 
additional, a higher molar ratio of alcohol to oil increases the 
solubility of glycerol, and as a consequence, the separation of 
glycerol becomes more difficult and retards the forward 
reaction by promoting the backward equilibrium. Ultrasound 
radiation causes methanol to disperse into the oil, thus 
increasing the contact surface between reactants, 
consequently accelerating the reaction. The effect of 
cavitation created by ultrasound supplies sufficient energy into 
the immiscible medium and the continuous formations and 
collapsing of micro bubbles accelerate the miscibility of 
reactants in addition to chemical and mechanical effects. 

The amount of catalyst was varied in the range of 1-12 
wt. %. Transesterification was dependent on the amount of 
catalyst used. Increasing the catalyst from 1-6 wt. % increases 
methyl ester from 70-88 wt. %. The ME content reaches the 
highest value at the catalyst amount of 9 wt. %; due to the 
contact opportunity between catalyst and the reactants hence 
propels the reaction kinetics. Based on the oil weight, the 
amount of catalyst used in this work seems to be higher due to 
several reasons; part of the catalyst could be entrapped in the 
clay matrix; this portion of the catalyst may not have 
contributed to catalytic activity. The ultrasound used in this 
work can affect the catalyst reactivity, positively, by enhancing 
the mass transfer between clay-catalyst-reactants as well as 
promising the presence of kinetic energy in the reaction 
media. Dispersion due to ultrasound increases the surface area 
available to the reactants. As such, the use of ultrasound 
promotes the efficiency of acyl conversion in a shorter time. 

The effect of the reaction duration (0.5-2.5h) on the 
transesterification of catfish oil over barnacle shell. It is 
observed that with the increase in reaction time, the ME 
content increases progressively. It can be seen that at catalyst 
amount of 9 wt.%, the ME content increases steadily within 

the first 1 h and reached as high as 97 wt.%. Interestingly, for 
longer reaction duration (more than 1 h) the ME content 
decreases, due to the reverse reaction of transesterification, 
resulting in a loss of esters as well as causing more fatty acid 
to form soap. 

4. Conclusion 

In this work, catfish fat and barnacle shell as catalyst 
was successfully utilized as a low-cost feedstock to produce 
ME (biodiesel) via ultrasound aided transesterification. The 
highest ME content of 96.4 wt. % at 65 °C. Optimization of 
reaction parameters revealed that MeOH to oil molar ratio, 
15:1; catalyst, 9 wt. % and reaction duration 1 h as the optimal 
reaction conditions. The use of ultrasound undeniably assisted 
in achieving this significant result. Materials derived from 
waste sources, as used in this work, should be given a priority 
for a sustainable biodiesel production. 
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