

MOVING OBJECT DETECTION USING CELLULAR NEURAL NETWORK (CNN)

PREMA LATHA SUBRAMANIAM

This thesis is submitted as partial fulfillment of the requirements for the award of the

Bachelor Degree of Electrical Engineering (Control and Instrumentation)

Faculty of Electrical & Electronics Engineering

University Malaysia Pahang

NOVEMBER, 2008

MOVING OBJECT DETECTION USING CELLULAR NEURAL NETWORK (CNN)

PREMA LATHA SUBRAMANIAM

UNIVERSITY MALAYSIA PAHANG

“I hereby acknowledge that the scope and quality of this thesis is qualified for the award

of the Bachelor Degree of Electrical Engineering (Control and Instrumentation)”

Signature : ____________________________________

 Name : AMRAN BIN ABDUL HADI

 Date : 14 NOVEMBER 2008

 ii

“All the trademark and copyrights use herein are property of their respective owner.

References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature : ______________________________

Author : PREMA LATHA SUBRAMANIAM

Date : 15 NOVEMBER 2008

iii

Specially dedicated to

my beloved parents and best friends for their full support

and love throughout my journey of education.

iv

ACKNOWLEDGEMENT

I would like to thank my parents for their love, support and patience during the

year of my study. I also would like to take this opportunity to express my deepest

gratitude to my supervisor, En Amran bin Abdul Hadi for his patience and guidance in

preparing this paper. Special thanks to all my friends who have directly or indirectly

have contributed to my success in completing this thesis. Last but not least, I would like

to thank God for being within me.

v

ABSTRACT

 Detecting moving objects is a key component of an automatic visual surveillance

and tracking system. Previous motion-based moving object detection approaches often

use background subtraction and inter-frame difference or three-frame difference, which

are complicated and takes long time. In this paper, we proposed a simple and fast

method to detect a moving object using Cellular Neural Network. The main idea in

Cellular Neural Network is that connection is allowed between adjacent units only. This

paper comprises the implementation of the basic templates available in Cellular Neural

Network. The templates are programmed in MATLAB. There are few rules in Cellular

Neural Network that has to be implemented when programming the templates, such as

the state equation, output equation, boundary condition and also the initial value. These

templates are combined to create the most ideal algorithm to detect a moving object in

an image. A video of a bouncing ball is recorded using a static camera. The video then

are segmented into images using SC Video Developer. Ten images are selected to be

used in this project. The algorithm created is used to detect the ball in the images. This

paper also includes the use of Image Processing Toolbox in MATLAB. An analysis is

conducted by comparing the ball’s position in each image according to the time. This

analysis indicates whether the object has shifted position or moved in the images. The

efficiency of the result for this paper is 85%.

vi

ABSTRAK

Mengesan pergerakan objek ialah satu komponen yang penting dalam sistem

pengawasan automatik dan sistem pengesanan pergerakan. Kaedah pengesanan

pergerakan objek yang sedia ada sering menggunakan cara penyingkiran latar belakang

dan perbezaan antara lapisan di mana kaedah tersebut rumit dan mengambil masa yang

lama. Untuk projek ini, kaedah yang lebih mudah dan pantas dicadangkan untuk

mengesan pergerakan objek dengan menggunakan Cellular Neural Network. Sifat

Cellular Neural Network yang utama ialah kebolehan sel-sel bersebelahan atau setempat

berkomunikasi atau berinteraksi dengan sel-sel jiran. Projek ini mengaplikasikan model

klon asas yang terdapat di dalam Cellular Neural Network. Model klon tersebut

diprogramkan dengan menggunakan perisian MATLAB. Terdapat beberapa peraturan

yang harus diambil kira dan dipatuhi semasa membuat pemprograman untuk model klon

seperti persamaan keadaan, persamaan hasil, keadaan sempadan dan nilai awal. Model-

model klon yang dihasilkan digabungkan bersama untuk mencipta satu algoritma yang

sesuai untuk mengesan pergerakan objek di dalam imej. Satu rakaman video yang

menunjukkan pergerakan bola yang melantun direkodkan dengan menggunakan kamera

statik. Rakaman video ini kemudian disegmentasikan dengan menggunakan perisian SC

Video Developer. Sepuluh imej dipilih untuk digunakan dalam projek ini. Algoritma

yang dicipta digunakan untuk mengesan pergerakan bola dalam imej-imej tersebut.

Projek ini juga mengaplikasikan Image Processing Toolbox yang terdapat di dalam

perisian MATLAB. Analisis yang menunjukkan perbandingan kedudukan atau

koordinat bola di dalam imej-imej tersebut dihasilkan. Tahap ketepatan keputusan untuk

projek ini ialah 85%.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 Declaration ii

 Dedication iii

 Acknowledgement iv

 Abstract v

 Abstrak vi

 Table of content vii

 List of table xi

 List of figure xii

 List of appendix xiii

I INTRODUCTION

 1.1 Overview 1

 1.2 Objectives 2

 1.3 Scope 3

 1.4 Problem Statement 4

 1.5 Thesis outline 5

 viii

II LITERATURE REVIEW

 2.1 Cellular Neural Network 6

 2.2 Basic Notations and Definition 9

2.2.1 Standard CNN Architecture 9

2.2.2 Sphere of Influence of Cell 10

2.2.3 Regular and Boundary Cells 10

2.2.4 Standard CNN 10

 2.3 Applications 13

 2.4 Templates 16

2.4.1 Edge Detection Template 17

2.4.2 Convex Corner Detection Template 18

2.4.3 Logic NOT Template 19

2.4.4 Logic OR Template 20

2.4.5 Logic AND Template 21

2.5 Moving Object Detection 22

 III METHODOLOGY

 3.1 Overview of Cellular Neural Network for 24

 Moving Object Detection

3.2 Research Methodology 26

3.3 System Design 27

3.4 Step by step CNN simulation procedure

 in MATLAB 28

3.4.1 Image initialization 28

3.4.2 Changing pixel value 31

3.4.3 Initialization of Output Matrix 32

3.4.4 Computation of State Equation 33

ix

3.4.5 Display result 35

3.4.6 Calculation of Feedback Term and

Input Term in Function File 36

 3.5 Step by step image segmentation procedure

 in MATLAB 37

 IV RESULT AND DISCUSSION

 4.1 Discussion and Analysis 42

 4.2 Video Clip Segmentation 43

 4.3 Conversion of Image Types 45

4.3.1 RGB to Grayscale 45

4.3.2 Grayscale to Binary 46

 4.4 Result of Templates 47

 4.5.1 Edge Detection Template 47

4.5.2 Convex Corner Detection Template 48

4.5.3 Logic NOT Template 49

4.5.4 Logic OR Template 50

4.5.5 Logic AND Template 51

 4.5 Algorithm 52

 4.6 Result of Algorithm 53

 4.7 Object’s Coordinates 54

 4.8 Pixel Information 55

 V CONCLUSION AND FUTURE DEVELOPMENT

5.1 Conclusion 57

5.2 Future development 58

 5.3 Cost and Commercialization 59

 x

 REFERENCES 60

 APPENDICES A-G 62

 xi

LIST OF TABLE

TABLE NO TITLE PAGE

3.1 Standard File Extension for Images 26

3.2. Image Types Conversion Function 27

4.1 Object’s Coordinates 54

4.2 Pixel Information 55

 xii

LIST OF FIGURE

FIGURE NO TITLE PAGE

2.1 Standard CNN 5 X 5 Architecture 9

2.2 Standard Nonlinearity 11

3.1 Project Flowchart 26

3.2 System Design 27

3.3 Image Initialization 30

3.4 Changing Pixel Value 31

3.5 Initialization of Output Matrix 32

3.6 Computation of State Equation 34

3.7 Display result 35

3.8 Function File 36

3.9 Step 1 of Image Segmentation 38

3.10 Step 2 of Image Segmentation 39

3.11 Step 3 of Image Segmentation 40

3.12 Step 4 of Image Segmentation 41

4.1 Video Segmentation Images 43

4.2 Video Segmentation Images 44

4.3 RGB to Grayscale conversion result 45

4.4 Grayscale to Binary conversion result 46

4.5 Result of Edge Detection Template 47

4.6 Result of Convex Corner Template 48

4.7 Result of Logic Not Template 49

4.8 Result of Logic OR template 50

4.9 Result of Logic AND template 51

4.10 Algorithm 52

4.11 Results of Algorithm 53

 xiii

LIST OF APPENDICES

APPENDIX TITLE PAGE

 A Software programming for Edge Detection Template 62

 B Software programming for Convex Corner Detection 65

 Template

 C Software programming for Logic NOT Template 68

 D Software programming for Logic OR Template 71

 E Software programming for Logic AND Template 74

 F Software programming for Function File 77

 G Software programming for Image Segmentation 78

CHAPTER I

INTRODUCTION

1.1 Overview

Moving object detection is always an important task in this world of technology.

Moving object detection plays an important role in automatic visual surveillance,

tracking system and also to avoid collision.

 Cellular Neural Network was invented by Leon O. Chun and Lin Yang in

Berkeley in 1988. In Cellular Neural Network, the time is continuous and the interaction

values are real values. Each processing cell interacts or communicates with its nearest

neighbouring cells through a program or an algorithm. Cells are only connected within a

certain neighbourhood but not to the entire network, thus it is easy for extension without

readjusting the whole network. Due to this, Cellular Neural Network can be used in

applications such as high speed target recognition, real-time visual inspection of

manufacturing process and also any brain-like information processing tasks.

 This thesis implements the basic templates from Cellular Neural Network in

creating an algorithm using MATLAB as the programming platform. The process starts

by recoding a moving ball or bouncing ball video using stationary camera. Then, the

images are edited using Image Processing Toolbox in MATLAB. Templates are created

using MATLAB and then an ideal algorithm is selected to detect the moving object. An

analysis comparing the object previous and new position is done.

2

1.2 Objectives

The objectives of this program are:

i. To understand the concept of Cellular Neural Network and its application.

In this project, the concept of Cellular Neural Network must be understood in

order to apply it. The concept of Cellular Neural Network is its characteristic

and the way it works in certain condition. The characteristic of Cellular

Neural Network is elaborated in detail in the literature review. Cellular

Neural Network has a lot of applications and it can be used in most of electric

and electronic projects instead of the traditional methods used before.

ii. To detect a moving object captured by static camera using an algorithm

developed in Cellular Neural Network.

 In this project, the main idea is to detect the moving object or the motion of

 an object. A static camera will capture or in another word, record a moving

 object. The moving object is then detected using Cellular Neural Network. In

 detail, an algorithm is developed using Cellular Neural Network templates

which can be used to detect a motion. This algorithm is actually a

combination of several templates available in Cellular Neural Network. This

templates and its application is explained in the literature review.

3

1.3 Scope

 i. An algorithm is developed based on templates in Cellular Neural Network

and simulates the programming in MATLAB to detect moving object.

 An algorithm is developed using the templates in Cellular Neural Network.

 This algorithm is applied through MATLAB to detect a moving object. The

 programming is done is MATLAB and by simulating the programming, the

 moving object will be detected.

ii. An analyze of the object’s positions in the images according to the time.

To make image segmentation and analyze the object’s position in each

images using MATLAB. The object is identified using coordinate system. A

comparison of the object’s previous and current coordinates will be done to

indicate the movement of the object in the images.

4

1.4 Problem Statement

 i. Moving object detection requires real time processing, which is fast, thus

Cellular Neural Network is excellent choice as it is a parallel paradigm which

provides fast processing.

 ii. Compared to existing method, such as spatio-temporal constraints, it takes

longer time to detect moving object and more complicated than Cellular

Neural Network.

5

1.5 Thesis Outline

 This thesis consists of five chapters. Chapter I cover on the introduction of the

project, objectives of project, scopes of project and also the problem statement. Chapter

II is mainly about the literature review done for this project. This chapter discusses the

Cellular Neural Network, its basic notation and definitions, application of Cellular

Neural Network in different areas, and also the main or basic templates in Cellular

Neural Network. Chapter III focuses on the methodology for the whole project and also

methodology on the Cellular Neural Network template programming architecture.

Chapter IV shows the results obtained from this project, analysis and also the discussion.

The last chapter, Chapter V consists of the conclusion of the project, recommendation

for further development and also cost and commercialization of this project.

CHAPTER II

LITERATURE REVIEW

2.1 Cellular Neural Network

 Cellular Neural Network is also known as Nonlinear Neural Network or CNNs.

The Cellular Neural Network was invented by Leon O. Chua and Lin Yang in Berkeley

in 1988. Cellular Neural Network is an array of analog dynamic processors or cells.

Cellular Neural Network host processors accept and generate analog signals. Other than

that, the interaction values are also real values. Moreover, the input of the Cellular

Neural Network array plays an important role as Cellular Neural Network becomes

rigorous framework for complex systems exhibiting emergent behavior and the various

forms of emergent computations.

 The Cellular Neural Network Universal Chip is a milestone in information

technology because it is the first operational, fully programmable industrial-size brain-

like stored-program dynamic array computer in the world. Each Cellular Neural

Network cell is interfaced with its nearest neighbours and this massively parallel focal-

array computer is capable of processing 3 trillion equivalent digital per operations per

second (in analog mode), a performance which can be matched only by supercomputers.

In terms of SPA (power, speed, area) measures, this Cellular Neural Network Universal

chip is far superior to any equivalent DSP implementation by at least three orders of

magnitude. The applications include high-speed track target recognition and tracking,

real-time visual inspection of manufacturing processes, intelligence vision capable of

7

recognizing context sensitive and moving scenes, as well as applications requiring real-

time fusing of multiple modalities, such as multispectral images involving visible,

infrared, long-wave infrared, and polarized lights [1].

 Cellular Neural Network is a parallel computing paradigm defined in discrete N-

dimensional spaces. Cellular Neural Network is an N-dimensional regular array of

elements or cells. A standard Cellular Neural Network architecture consists of an M x N

rectangular cells (C(i, j)) with Cartesian coordinates (i, j). The cell grid can be for

example, a planar array with rectangular, triangular or hexagonal geometry, a 2-D or 3-

D torus, a 3-D finite array, or a 3-D sequence of 2-D arrays. Cells are multiple input-

single output processors, all described by one or just some few parametric functional. A

cell is characterized by an internal state variable, sometimes not directly observable from

outside the cell itself. More than one connection network can be present, with different

neighbourhood sizes.

 Cellular Neural Network is a system of cells defined on a normalized space. In

the system, cell is the basic circuit unit containing linear and nonlinear circuit element,

which are linear capacitors, linear resistors, linear and nonlinear controlled sources and

independent sources. The main idea is that the connection is allowed between adjacent

units only. Any cell in the Cellular Neural Network is connected to only its neighbour

cells. But cells can affect each other indirectly. The propagation effects of the

continuous time dynamics of the Cellular Neural Network provides the interaction

between cells in space.

 A Cellular Neural Network dynamical system can operate both in continuous

(CT-CNN) or discrete time (DT-CNN). Cellular Neural Network data and parameters

are typically continuous values. Cellular Neural Network operate typically with more

than one iteration, they are recurrent networks. Cellular Neural Network main

characteristic is the locality of the connections between the units. In fact the main

8

difference between Cellular Neural Network and other Neural Networks paradigms is

the fact that information is directly exchanged just between neighbouring units. This

characteristic allows also obtaining global processing. Communications between non

directly (remote) connected units are obtained passing through other units.

 It is possible to consider the Cellular Neural Network paradigm as an evolution

of Cellular Automata paradigm. Moreover it has been demonstrated that Cellular Neural

Network paradigm is universal, being equivalent to the Turing Machine.

9

2.2 Basic Notations and Definition

2.2.1 Standard CNN architecture

 A standard CNN architecture consists of an M × N rectangular array of cells

(C(i, j)) with Cartesian coordinates (i, j), i = 1, 2,…M, j = 1, 2…N

 Corner cells

Figure 2.1: Standard CNN 5 X 5 Architecture

Row (i)

Column (j)

Boundary

cells

10

2.2.2 Sphere of Influence of Cell C(i, j)

 The sphere of influence, Sr(i, j), of the radius r of cell C(i, j) is defined to be the

set of all the neighbourhood cells satisfying the following property.

}|}||,max{||),({),(rjliklkCjiSr ≤−−=

 NlMk ≤≤≤≤ 1,1

where r is a positive integer

2.2.3 Regular and Boundary Cells

 A cell C(i, j) is called regular cell with respect to Sr(i, j) if and only if all

neighbourhood cells),(),(jiSrlkC ∈ exist. Otherwise, C(i, j) is called a boundary cell.

2.2.4 Standard CNN

 A class 1 M × N standard CNN is defined by M × N rectangular array of cells

C(i,j) located at side (i, j), i = 1, 2,…M, j = 1, 2…N. Each cell C(i, j) is defined

mathematically by:

Definition 1: State equation

 ijx& = xij− + ykllkji∑Α),;,(+ ∑Β ukllkji),;,(+ ijΖ

),(),(jiSrlkC ∈),(),(jiSrlkC ∈

11

where ,Rxij∈ ,Rykl∈ Rukl∈ and Rij∈Ζ are called state, output, input and threshold

of cell C(i, j) respectively.),;,(lkjiΑ and),;,(lkjiΒ are called the feedback.

Definition 2: Output equation

 |1|
2

1
)(+== xijxijfyij − |1|

2

1 −xij

This is called the standard nonlinearity.

Figure 2.2: Standard Nonlinearity

Definition 3: Boundary Conditions

 The boundary conditions are those specifying ykl and ukl for each cells

belonging to),(jiSr of edge cells but lying outside of M x N array.

xij

1

1

 yij

- 1

- 1

12

Definition 4: Initial state

),0(xij ,,...,1 Mi = Nj ,...,1=

13

2.3 Applications

 There are many applications of Cellular Neural Network especially in healthcare.

For example, Cellular Neural Network is used in clinical diagnosis known as Papnet.

Papnet is a commercial Cellular Neural Network based computer program for assisting

screening of Pap (cervical) smears. In this Pap smear test, cells taken from uterine

cervix are examined for signs of precancerous and cancerous changes. If detected early,

cervical cancer has an almost 100% chance of cure. The traditional method, which is

relying on human eyes to detect abnormal cells under microscope, has difficulty in

detecting cancer in early stage. Since a patient with a serious abnormality can have

fewer than a dozen abnormal cells among the 30,000 - 50,000 normal cells on her Pap

smear, it is very difficult to detect all cases of early cancer by this "needle-in-a-

haystack" search [2]. Using Cellular Neural Network results in more accurate screening

process thus, leading to an earlier and more effective detection of pre-cancerous cells in

the cervix.

 Other than that, Cellular Neural Network is also used in image analysis and

interpretation particularly in medicine. Pattern recognition is widely used to identify and

extract important features in radiographies, ECTs or MRIs. Filtering, segmentation and

edge detection techniques using Cellular Neural Network improves resolution in brain

tomographies, and also improves global frequency correction for the detection of

microcalcifications in mammograms. Furthermore, under healthcare, Cellular Neural

Network is also used in signal analysis and interpretation and drug development.

 Cellular Neural Network is also used in other applications beside healthcare. For

instance Cellular Neural Network is used in lip reading. The three main parts of the

system include a face tracker, lip modeling and speech processing. Automatic speech

14

reading is based on a robust lip image analysis. The analysis is based on truecolor video

images. The system allows for real-time tracking and storage of the lip region and

robust off-line lip model matching. A neural classifier detects visibility of teeth edges

and other attributes. At this stage of the approach, the edge closed lips is automatically

modeled if applicable is based on neural network’s decision.

 To achieve high flexibility during lip-model development, a model description

language has been defined and implemented. The language allows the definition of edge

models (in general) based on knots and edge functions. Inner model forces stabilize the

overall model shape. User defined image processing functions may be applied along the

model edges. These functions and the inner forces contribute to an overall energy

function. Adaptation of the model is done by gradient descent or simulated annealing

like algorithms.

 Another application of Cellular Neural Network is detecting and tracking of

moving targets. The moving target detection and track methods here are "track before

detect" methods. They correlate sensor data versus time and location, based on the

nature of actual tracks. Compared to conventional fixed matched filter techniques, these

methods have been shown to reduce false alarm rates by up to a factor of 1000 based on

simulated SBIRS data for very weak ICBM targets against cloud and nuclear

backgrounds, with photon, quantization, and thermal noise, and sensor jitter included.

 The methods are designed to overcome the weaknesses of other advanced track-

before-detect methods, such as 3+-D matched filtering, dynamic programming (DP), and

multi-hypothesis tracking (MHT). Loosely speaking, 3+-D matched filtering requires

too many filters in practice for long-term track correlation. DP cannot realistically

exploit the non-Markovian nature of real tracks, and strong targets mask out weak

targets, and MHT cannot support the low pre-detection thresholds required for very

15

weak targets in high clutter. They have developed and tested versions of the above (and

other) methods in their research, as well as Kalman-filter probabilistic data association

(KF/PDA) methods, which they use for post-detection tracking. Space-time-adaptive

methods are used to deal with correlated, non-stationary, non-Gaussian clutter, followed

by a multi-stage filter sequence and soft-thresholding units that combine current and

prior sensor data, plus feed back of prior outputs, to estimate the probability of target

presence.

 Cellular Neural Network is also used in real-time target identification based for

security application. The system localizes and tracks peoples' faces as they move

through a scene. It integrates the techniques such as motion detection, tracking people

based upon motion and tracking faces using an appearance model. Faces are tracked

robustly by integrating motion and model-based tracking. Cellular Neural Network is

also used in ATM network, noise reduction, finger print match, face recognition,

biomedical and word sporting.

 High speed detection and classification of the objects, symbols, and characters

with an acceptable error rate is a task which is always considered when new computing

architecture, suitable for image processing and pattern recognition. In Cellular Neural

Network concept, the research area of these is locally connected, regularly repeated

analog arrays have shown remarkable growth. Recently, based on the Cellular Neural

Network paradigm, a universal hardware architecture has been designed, called the

Cellular Neural Network Universal Machine. This new algorithmically programmable

analog array computer is an ideal environment for "dual computing" for example to

execute complex Cellular Neural Network analogic algorithms. In these algorithms,

analog operations which are controlled by various Cellular Neural Network templates

are combined with local logic on the cell level. Using this concept, complex decisions

can be made on images without reading out the Cellular Neural Network chip which

makes this method extremely time effective.

16

2.4 Templates

 Different role of the control and feedback matrices in Cellular Neural Network

templates is also applied to detect motion. In the past few years, several researchers also

attempted character recognition by incorporating the Cellular Neural Network concept.

T. Matsumoto presents some simple Cellular Neural Network templates for binary

image processing. Later, these templates (horizontal, vertical, diagonal CCD and

Shadow Detector) were used by Suzuki to introduce a new character recognition method

by Cellular Neural Network preprocessing and a back propagation classification. T.

Szirányi and J. Csicsvári completed the above mentioned templates by the Hole-Filler

one and used a novel type of CNND architecture. K. Nakayama and Y. Chigawa used

CNN for extracting line segment features (middle point, length and angle of the line

segment) and for character recognition combined it with modified self-organizing

feature mapping. Most of them turned out to be very efficient in recognition of distorted

and translated patterns.

 Each template has its own feedback, input synaptic, threshold values, boundary

conditions and initial states that need to be fulfilled to obtain the results. The input and

threshold are continuous functions of time according to the uniqueness theorem.

17

2.4.1 EDGE: Binary Edge Detection Template

 A = B = z =

Global Task

 Given : static binary image P

 Input : U(t) = P

 Initial state : X(0) = Arbitrary (in examples we choose xij(0) = 0)

 Boundary conditions : Fixed type, uij = 0, yij = 0 for all virtual cells, denoted by

 [U] = [Y] = [0]

 Output : Y(t) ⇒ Y(∞) = Binary image showing all edges of P in

 black

Remark

 The Edge CNN template is designed to work correctly for binary input images

only. If P is a gray-scale image, Y(∞) will be in general be gray-scale where black pixels

correspond to sharp edges, near-black pixels correspond to fuzzy edges, and near-white

pixels correspond to noise.

0 0 0

0 0 0

0 0 0

-1 -1 -1

-1 8 -1

-1 -1 -1

-1

18

2.4.2 CORNER: Convex Corner Detection Template

 A = B = z =

Global Task

 Given : static binary image P

 Input : U(t) = P

 Initial state : X(0) = 0

 Output : Y(t) ⇒ Y(∞) = Binary image, where black pixels

 correspond to convex corners in P (where, roughly

 speaking, a black pixel is a convex corner if it is a part of

 a convex corner boundary line of the input image).

0 0 0

0 2 0

0 0 0

-1 -1 -1

-1 8 -1

-1 -1 -1

-8.5

19

2.4.3 LOGNOT: Logic NOT and set complementation (Ρ→Ρ = P
c
) template

 A = B = z =

Global Task

 Given : static binary image P

 Input : U(t) = P

 Initial state : X(0) = 0

 Output : Y(t) ⇒ Y(∞) = Binary image where each pixel in P

 becomes white, and vice versa. In set-theoretic or logic

 notation: Y(∞) = P
c
= Ρ , where the bar denotes the

 “Complement” or “Negation” operator.

0 0 0

0 1 0

0 0 0

0 0 0

0 -2 0

0 0 0

0

20

2.4.4 LOGOR: Logic OR and set union ∪ (disjunction ∨) template

 A = B = z =

Global Task

 Given : two static binary image P1 and P2

 Input : U(t) = P1

 Initial state : X(0) = P2

 Output : Y(t) ⇒Y(∞) = Binary output of the logic operation OR

 between P1 and P2. In logic notation, Y(∞) = P1∨ P2 ,

 where ∨ denotes the “disjunction” operator. In

 set-theoretic, Y(∞) = P1∪ P2, where ∪ denotes the

 “set union” operator.

0 0 0

0 3 0

0 0 0

0 0 0

0 3 0

0 0 0

2

21

2.4.5 LOGAND: Logic AND and set intersection ∩ (conjunction ∧) template

 A = B = z =

Global Task

 Given : two static binary image P1 and P2

 Input : U(t) = P1

 Initial state : X(0) = P2

 Output : Y(t) ⇒Y(∞) = Binary output of the logic operation

 “AND” between P1 and P2. In logic notation,

 Y(∞) = P1∧P2, where ∧ denotes the “conjunction”

 operator. In set-theoretic notation, Y(∞) = P1∩P2, where

 ∩ denotes the “intersection” operator.

0 0 0

0 1.5 0

0 0 0

0 0 0

0 1.5 0

0 0 0

-1.5

22

2.5 Moving Object Detection

 Identifying moving object is a critical task in image and video segmentation,

which is used in many computer vision applications such as remote sensing, video

surveillance and traffic monitoring. In the research done, there are some common

methods used to detect a moving object. One of the popular methods is using spatio-

temporal constraints.

 In spatio-temporal constraints method, there are many steps to be done before we

can actually detect the object. Steps such as background removal or background

subtraction, colour analysis, image depth, and object’s shape analysis are necessary.

Spatio-temporal databases deal with objects that change their location or shape over time.

A typical example of spatio-temporal databases is moving objects in the D-dimensional

space. Moving objects learn about their own location via location detection devices,

such as GPS devices. Then, the objects report their locations to the server using the

underlying communication network, like the wireless networks. The server stores the

updates from the moving objects and keeps a history of the spatio-temporal coordinates

of each moving object. In addition, the server stores additional information to help

predict the future positions of moving objects. As can be seen above, the spatio-temporal

constraints method is very complicated as there are many steps involved.

 In recent years, using Cellular Neural Network in moving object detection has

gained much popularity. In the research done for moving object detection, there are

many ways to detect a moving object using Cellular Neural Network. The most

commonly used type of Cellular Neural Network is Delayed Cellular Neural Network

and Analogic Cellular Neural Network. Delayed Cellular Neural Network was first

introduced in 1993 where it involves 2-D images. Moving object detection is the most

appealing task in the field of image processing. In this Delayed Cellular Neural

23

Network, the study was focused on two parts, first is without considering motion and the

second part detection of moving object. Besides Cellular Neural Network, processing of

moving images requires the introduction of delay in the signals transmitted among the

cells. In the Delayed Cellular Neural Network, the delay τ is introduced in the state

equation.

 In the Analogic Cellular Neural Network, the ring-coding is used for detection of

moving object. An object can be described by drawing a few circles around a few initial

points called a central point (o) and integrating the grayness in the created rings (g1, g2,

g3) according to the formula where the object is placed in the (x,y) plane. This mapping

of a few real numbers leads to its rotation invariant description. But before applying the

ring-coding method, there are a few rules have to be clarified such as the maximum size

of object considered, the amount of rings needed for the description, and how to

calculate the inner and outer radius of individual rings.

 Relying on the templates and methods, a more complex Cellular Neural Network

can be created to detect the colour, size and rotation shape of the object. Furthermore,

the speed, direction and depth of the motion can also be classified.

CHAPTER III

METHODOLOGY

3.1 Overview of Cellular Neural Network for moving object detection

Detecting moving objects is a key component in automatic visual surveillance

and tracking system. Besides that, moving object detection is also used to avoid

collision. In the development of technology, moving object detection has become an

important task in many different areas of application.

 In this project, the most vital part is to develop the templates available in Cellular

Neural Network. Then, an algorithm created from these templates is designed to detect

the motion of an object, in this case, it is a bouncing ball. In order to create the

programming for the algorithm, there are several other processes to be learnt

beforehand. This includes the process of understanding the Cellular Neural Network and

its notations, basic knowledge of image processing and also basic programming

language, C or C++.

 The video of a bouncing ball is recorded using stationary camera, in this project a

digital camera is placed at certain point. Then, the video recorded is segmented into

images or frames using SC Video Developer. These images are then used as the input

for Cellular Neural Network templates. But before using it as an input, the images have

to be edited using the Image Processing Toolbox. The original images are big in size and

in Windows Bitmap (bmp) format.

25

The images are resized and changed to binary images as most of the input for

Cellular Neural Network templates are binary images. The images are resized because

the time taken to run the templates will be effected by the image size. Then some

Cellular Neural Network templates are created for experiment. These templates include

the Edge Detection Template, Convex Corner Detection Template, Logic NOT

Template, Logic OR Template and Logic AND Template. But only certain templates are

chosen to create the ideal algorithm. The Cellular Neural Network template are

programmed considering the initial state, boundary condition, pixel value, sphere of

influence, feedback synaptic, input synaptic and the threshold value.

Finally, the analysis is done by image segmentation. This image segmentation

here means the segmentation of the output images from the algorithm. The object or ball

in the image is identified using coordinate system to indicate any movement of the ball.

As the last step of analysis, pixel counting is done to clearly show the object in the

images. In this part, the pixel of the areas containing the object will be different when

compared to the image background.

 This chapter discusses the methodology of the project step by step from the

programming of templates until the image segmentation.

26

3.2 Research Methodology

Figure 3.1: Project flowchart

Start

Capturing motion & developing using

SC Video Decompiler

Programming the templates

 Compare

 output with

theory

 Design algorithm

Decide a suitable

algorithm

 Analysis

End

YES

YES

 NO

 NO

 Conclusion

27

3.3 System Design

Figure 3.2: System Design

Start

Read image

 Change image properties

Change image pixel value

 Calculate state equation

 Display output equation result

 Image segmentation

 Display object’s coordinate

 Display pixel information

End

28

3.4 Step by step CNN simulation procedure in MATLAB

3.4.1 Image Initialization

Firstly, the M and N represents the size of array of the image. The size of the

image can be determined by using the command [M, N] = size (X), where it returns the

size of matrix X in separate variables M and N. The M and N for this image has been

reduced by 2 to obey the boundary conditions in the Cellular Neural Network.

 Next, the feedback synaptic (A), input synaptic (B) and threshold (z) as given in

the templates are initialized. Next, the image used is read by MATLAB. The image is

read using the imread command. The example syntax is;

A = imread(‘filename.fmt’)

Note that the text string fmt specify the format of the file by its standard file extension,

For example, specify 'jpeg' for Joint Photographic Experts Group images.

 The table below is the list of commonly used images and its standard file

extensions.

Format Name Description Standard File Extension

BMP Windows Bitmap .bmp

GIF Graphics Interchange Format .gif

JPEG Joint Photographic Experts Group .jpg / .jpeg

PNG Portable Network Graphics .png

TIFF Tagged Image File Format .tif / .tiff

Table 3.1: Standard File Extension for Images

29

The image is then converted from matrix to grayscale image by using the

mat2gray command. Then the image is converted to binary image using im2bw

command.

The following table lists all the image type conversion functions in Image

Processing Toolbox.

Function Description

dither Use dithering to convert a grayscale image to a binary image

or to convert a truecolor image to an indexed image

gray2ind Convert a grayscale image to an indexed image

grayslice Convert a grayscale image to an indexed image by using

multilevel thresholding

im2bw Convert a grayscale image, indexed image, or truecolor image,

to a binary image, based on a luminance threshold

ind2gray Convert an indexed image to a grayscale image

ind2rgb Convert an indexed image to a truecolor image

mat2gray Convert a data matrix to a grayscale image, by scaling the data

rgb2gray Convert a truecolor image to a grayscale image

rgb2ind Convert a truecolor image to an indexed image

Table 3.2: Image Type Conversion Functions

30

 Finally the image is converted to double precision. The example syntax;

 double(x)

Note that it returns the double-precision value for x. If x is already a double-precision

array, double has no effect.

 %=== ===================
 %*********************PARAMETER DECLARATIONS****** *******************
 %*** *******************

 clear all ; % Clear variables and functions from memory
 clc; % Clear command window

 %------------------------Constant Declarations---- -------------------

 M=254; % No. of rows in the CNN structure
 N=254; % No. of columns in the CNN structure

 %--------------------------CNN template parameters -------------------

 A=[0 0 0; 0 1 0; 0 0 0]; % Feedback Operator
 B=[0 0 0; 0 -2 0; 0 0 0]; % Input Synaptic Operator
 z=[0]; % Threshold Value
 X=zeros(256,256); %CNN template initial state parameters

 %=== ====================
 %*********************READ AND PREPARE DATA******* ********************
 %*** ********************

 READ_IMAGE=imread('pic4.jpeg'); % Read image from graphics file and
 % map between 0 an d 255

 INST_IMAGE=mat2gray(READ_IMAGE); % Convert matrix to intensity image
 % (map between 0 a nd 1)

 BIN_IMAGE=im2bw(INST_IMAGE); % Convert image to binary image by
 % thresholding map to either 0 or 1

 U1=double(BIN_IMAGE); % Convert to double precision

Figure 3.3: Image Initialization

31

3.4.2 Changing pixel value

For this part, the if and else command is used for loop control. In this part of the

coding, it checks one by one row and column for the pixel. If the pixel is ‘1’, it remains

the same but if the pixel is ‘0’, it is changed to ‘-1’ according to Cellular Neural

Network rule for binary images.

 Nested if statements must each be paired with a matching end. The general form

of statement using if, else and else if;

 if expression1

 statements1

 elseif expression2

 statements2

 else

 statements3

 end

 [ROWS COLUMNS]=size(U1); % Size of array, returns the two-element
 % row vector

 for row=1:ROWS;
 for col=1:COLUMNS;
 TEMP = U1(row,col);
 if (TEMP == 1);
 U(row,col)= 1;
 elseif (TEMP == 0);
 U(row,col)= -1; % Local Rule
 else
 U(row,col)= U1(row,col);
 end
 end
 end

Figure 3.4: Changing pixel value

32

3.4.3: Initialization of Output Matrix

 This step initializes the output matrix Y which is later calculated using the output

from state equation. The output equation is;

 |1|
2

1 += xijyij − |1|
2

1 −xij

where

 %== ==================
 %****************COMPUTATION OF INITIAL OUTOUT MA TRIX**************
 %** ******************

 for i=1:M+2;
 for j=1:N+2;
 Y(i,j)=0.5*abs(X(i,j)+1)-0.5*abs(X(i,j)-1); %Output Equation
 end
 end

Figure 3.5: Initialization of Output Matrix

33

3.4.4: Computation of State Equation

 The step 1 is to compute the sphere of influence radius. Here the size A is the

size of the feedback synaptic. In this part, we can either write it as size (A) or size (B) as

B is the input synaptic.

 The step 2 is the summation of all terms, which is the equation of state equation.

The coding here is linked to a function file, normfun.m. The function file will be

explained later in this chapter. According to the state equation;

 ijx& = xij− + ykllkji∑Α),;,(+ ∑Β ukllkji),;,(+ ijΖ

),(),(jiSrlkC ∈),(),(jiSrlkC ∈

As can be seen above, the state equation is actually the summation of state term,

feedback synaptic, input synaptic and also the threshold.

 Step 3 actually solves the state equation by using the dsolve command. This

command is used because the state equation is a differential equation. The example

syntax;

 r = dsolve('equation, 'condition','v')

Note that it solves ordinary differential equation using v as the independent variable or

in this case, the initial condition. The initial condition is given for each template.

 Step 4 is the calculation of output equation after the state equation is solved. In

this part, the result from state equation, X2 is used to calculate the output equation.

34

 %== ==================
 %***************COMPUTATION OF STATE EQUATION**** ******************
 %** ******************

 %-STEP1--------Computation of the radius of spher e of influence----

 [r1,c1] = size(A);
 r = fix(r1/2);

 for i=1+r:M+r;
 for j=1+r:N+r;

 %-STEP2---------Computation of the ALL SUMMATION TERM--------------

 S = normfun(r,i,j,A,B,Y,U);

 X1 = X(i,j); % STATE TERM
 F1 = S(1,1); % FEEDBACK TERM
 I1 = S(1,2); % INPUT TERM
 Z1 = z; % THRESOLD TERM

 %-STEP3---------Computation of the STATE EQUATION -----------------

 % Solution of the given state equation by using d solve function is
 % computed as "X2 = dsolve('DX = -X + F1 +I1 - Z1 ', 'X(0)= 0')"
 % which gives X2= F1+I1-Z1+exp(-t)*(-F1-I1+Z1)as output

 t = 20;

 X2= F1+I1-Z1+exp(-t)*(-F1-I1+Z1); % STATE Equation

 %-STEP4---------UPDATION of the OUTPUT EQUATION-- ------------------

 Y(i,j)=0.5*abs(X2+1)-0.5*abs(X2-1); % OUTPUT Equation

 end
 end

Figure 3.6: Computation of State Equation

35

3.4.5 Display result

This part is display the result of the output equation. Since the output is an

image, the command imshow is used.

 %== ==================
 %*************************DISPLAY RESULTS******** ******************
 %** ******************

 imshow(Y); % displays image Y

 %== ==================
 %***************************THE END************** ******************
 %** ******************

Figure 3.7: Display result

36

3.4.7 Calculation of Feedback Term and Input Term in Function File

 This file is a function file, normfun.m which is linked to the main file. Only one

function file is used for all the templates since function file consist of only the feedback

synaptic and input synaptic which are the same for all templates. In this part of coding,

the feedback synaptic and input synaptic is calculated. Since rik ≤− || , so k = i –r and

i + r. Same goes for rjl ≤− || , l = j-r, j + r according to mathematics.

S = [FEED_TERM INPT_TERM] links back to Step 2 in Figure 3.6 where

S(1,1) indicates the feedback synaptic and S(1,2) indicates the input synaptic.

 function S = normfun(r,i,j,A,B,Y,U);

 FEED_TERM = 0;
 for k=i-r:i+r;
 for l=j-r:j+r;
 FEED_TERM = FEED_TERM + A(k-i+2,l-j+2)*Y(k ,l); % FEEDBACK TERM
 end
 end

 INPT_TERM = 0;
 for k=i-r:i+r;
 for l=j-r:j+r;
 INPT_TERM = INPT_TERM+ B(k-i+2,l-j+2)*U(k, l); % INPUT TERM
 end
 end

 S = [FEED_TERM INPT_TERM];

Figure 3.8: Function File

37

3.5 Step by step image segmentation procedure in MATLAB

Step 1: Image initialization

After the algorithm is successfully designed, the next step is analysis. This part

of analysis includes the image segmentation and pixel information. In the image

segmentation, the image is divided by 4 X 4. This step is crucial to determine the

coordinate of the object in each image.

 Step 1 is the image initialization where the image is read and changed back into

binary. As earlier we have change the pixel values of the image in the template coding,

here we have to change back to the original pixel value so that it is easier for further

image processing.

 The command edge specifies the Prewitt method. This command is used to find

the edges of the object in the images. The example syntax;

 BW = edge(I,'prewitt')

Note that the Prewitt method finds edges using the Prewitt approximation to the

derivative. It returns edges at those points where the gradient of I is maximum.

 The command strel divide the image horizontally and vertically. The example

syntax;

se2 = strel('line',10,45)

Note that the ‘line ’ means straight line, ‘10’ indicates the amount of lines and ‘45’

indicates the degree on the line.

 Next is to dilate the object using imdilate command where it dilates the

grayscale and binary . The command imdilate is normally followed by the strel

command. The example syntax;

 38

IM2 = imdilate(IM, SE)

Note that the IM is the image and SE is returned by strel function.

The last part of step 1 is to fill the object in the images by using the imfill

command. The example syntax is;

BW2 = imfill(BW,'holes')

Note that this command fills the holes in the binary image BW.

 %==========================Initialization======== ==================

 clear all ;
 clc;

 %== ==================

 I = imread('r55.jpg'); %read the image
 I1 = im2bw(I); %convert image to binary image
 I2 = double(I1); %convert to double precision
 BW1 = edge(I2, 'prewitt'); %find edges in intensity image

 se90 = strel('line' , 3, 90);
 se0 = strel('line' , 3, 0);

 I3 = imdilate(BW1, [se90 se0]);

 I4 = imfill(I3, 'holes');

 imshow(I4); %displays the intensity image

 %== ==================

Figure 3.9: Step 1 of Image Segmentation

39

Step 2: Setting the rows and columns

 Step 2 divides the row and column. In this project, since we are doing image

segmentation 4 X 4, the rows and columns are divided by 4.

 [ROWS COLUMNS]=size(I4); % Size of array

 R1 = ((1*ROWS)/4);
 C1 = ((1*COLUMNS)/4);
 R2 = ((2*ROWS)/4);
 C2 = ((2*COLUMNS)/4);
 R3 = ((3*ROWS)/4);
 C3 = ((3*COLUMNS)/4);
 R4 = ((4*ROWS)/4);
 C4 = ((4*COLUMNS)/4);

Figure 3.10: Step 2 of Image Segmentation

Step 3: Detect Object and Display Coordinate

Step 3 detects the object in the image. The concept here is to detect the white

pixel or ‘1’ pixel because the object is white in colour while the background of the

image is black in colour. This coding checks the pixel row by row and column by

column. Since we have divided the image 4 X 4, we could generate 16 coordinates

starting from RICI until R4C4.

The coding is same for all the coordinates, with the difference of the coordinate

itself. For example, to run the detection for row 1 column 1, RICI, the coding has to be

written;

for R=1:R1;

 for C=1:C1;

40

So for row 3 column 2, R3C2, the coding will be;

for R=R2:R3;

 for C=C1:C2;

Note that the limit for row and column has changed. The same goes for all the 16

coordinates.

The display command will display the coordinate of the object if it is detected in

the particular coordinate.

 %============================R1C1================ =================

 DONE = 0; % initialize the value of DONE
 for R=1:R1; % for all rows one by one
 for C=1:C1; % for all columns one by one
 PIXEL = I4(R,C); % select the pixel value of either one or
 % zero at each location of row and column
 if (PIXEL == 1 && DONE == 0); % compare the pixel value with
 % 1, to det ect the presence
 % the ball
 display('PIXEL:R1C1'); % to display the result
 DONE = 1; % DONE is set to exit the loop
 end
 end
 end

Figure 3.11: Step 3 of Image Segmentation

41

Step 4: Calculate and Display White Pixel

Step 4 is to calculate the amount of white pixel in each coordinate. The concept

is nearly the same as image segmentation where it checks row by row and column by

column. The COUNT coding will count only the white pixel and using command below

to display the amount of white pixel;

disp(sprintf('%d total white pixel' ,COUNT));

 %==============================R1C1=============== ================

 COUNT = 0; % initialize the value of COUNT
 for R=1:R1; % for all rows one by one
 for C=1:C1; % for all columns one by one
 PIXEL = I4(R,C); % select the pixel value at row or column
 if (PIXEL == 1); % to detect the presence of white pixel
 COUNT = COUNT + 1; % to calculate the white pixel
 end
 end
 end

disp(sprintf('%d total white pixel' ,COUNT)); % to display the amount
 % of w hite pixel

Figure 3.12: Step 4 of Image Segmentation

CHAPTER IV

RESULT AND DISCUSSION

4.1 Discussion and Analysis

 Both the objectives and scopes in this project have been successfully achieved.

This chapter discusses all the results obtained in this project which includes the video

segmentation, result of image editing, and result from the templates, the designed

algorithm, the object’s coordinates and also the pixel information.

43

4.2 Video Clip Segmentation

(a) (b)

 (c) (d)

Figure 4.1: Video segmentation images

a) Frame 11 b) Frame 21

 c) Frame 31 d) Frame 41

44

(e) (f)

 (g) (h)

 (i) (j)

Figure 4.2: Video Image Segmentation

e) Frame 51 f) Frame 61 g) Frame 71

 h) Frame 81 i) Frame 91 j) Frame 101

 45

4.3 Conversion of Image Types

4.3.1 RGB to Grayscale

I = imread ('frame41.jpeg');

J = rgb2gray (I);

figure, imshow (I), figure, imshow (J);

Truecolor image

Grayscale image

Figure 4.3: RGB to Grayscale conversion result

Comment: The output image shows a grayscale version of the truecolor image. As can

been seen above, the output image is exactly the same as the input image with the

difference of colour only.

46

4.3.2 Grayscale to Binary

I = imread ('framegray.jpeg');

level = graythresh (I);

BW = im2bw (I, level);

imshow (BW)

Grayscale image

Binary image

Figure 4.4: Grayscale to Binary conversion result

Comment: The conversion of the image from grayscale to binary shows that the output

binary image is not 100% exact to the input grayscale image. This is because other than

the object, the image shows the difference of light in the background. As can be seen in

the grayscale image, the lower part of the image is more bright compared to the upper

part of the image.

47

4.4 Result of Templates

There are five templates analyzed in this project before creating the algorithm.

The algorithm was created based on the result of each template.

4.4.1 Edge Detection Template

The images below are the input and also the result of edge detection template

simulated by MATLAB.

Input

Output

Figure 4.5: Result of Edge Detection Template

Comment: The result of this template shows quite precised edge detection, as the object

has been clearly detected. But then, there is also some minor side effects as the template

also detected the difference of light in the image.

48

4.4.2 Convex Corner Detection Template

The images below are the input and the result of corner detection template

simulated by MATLAB

Input

Output

Figure 4.6: Result of Convex Corner Template

Comment: The result of this template shows the corner detection in this image. As can

be seen, there are two circles in the output image, the smaller circle being the object and

the bigger circle being the effect of light. However, this template is not suitable as

because in this project it is supposed to detect only the object and not it’s surrounding as

well.

49

4.4.3 Logic Not Template

The images below are the input and the result of logic not template simulated by

MATLAB.

Input

Output

Figure 4.7: Result of Logic Not Template

Comment: This template shows the output image in black colour and the object in white.

It shows very clearly the object in the output image but like the other templates outputs,

it also has some minor effects due to the effects of light in the original images.

50

4.4.4 Logic OR Template

The images below are the inputs and the result of Logic OR template simulated

by MATLAB.

 Input 1

 Input 2

 Output

Figure 4.8: Result of Logic OR Template

Comment: The template combined both objects in each images. It clearly shows both the

object but like all other templates, it also shows the light of surrounding in the output.

51

4.4.5 Logic AND Template

The images below are the inputs and the result of Logic AND template simulated

by MATLAB.

 Input 1

Input 2

 Output

Figure 4.9: Result of Logic AND Template

Comment: This template will only combine contents that overlap each other in both

images. Since the objects have different position in both images, the output does not

show the object but only the light effects, hence it is not suitable for this project.

52

4.5 Algorithm

 After much research, the best combination of templates is shown below.

 Figure 4.10: Algorithm

Comment: The output image of the algorithm shows the objects in white colour with a

black background. Some very minor light effects can be seen as well.

Logic OR

Logic NOT

53

4.6 Result of Algorithm

 In the Logic OR template, two images are combined, for example, frame 11 and

frame 21 are combined to produce only one output image. The next step is to use the

result from Logic OR as the input for Logic NOT. The diagram below shows all the

images from frame 11 until frame 101 as the result of the algorithm.

 Image 1: Frame 11 &21 Image 2: Frame 31 & 41 Image 3: Frame 51 & 61

 Image 4: Frame 71 & 81 Image 5: Frame 91 & 101

 Figure 4.11: Results of Algorithm

54

4.7 Object’s Coordinates

The table below show the object’s coordinate in each on the images. The 1
st

second represent the frame 11, the 2
nd
 second represent frame 21 and so on. The table

shows the object’s previous position and current position according to the time.

TIME PREVIOUS POSITION CURRENT POSITION

1 second - R2C3

2 second R2C3 R2C1

3 second R2C1 R3C2

4 second R3C3 R3C3

5 second R3C3 R3C3

6 second R3C3 R4C3

7 second R4C3 R4C3

8 second R4C3 R4C4

9 second R4C4 R4C4

10 second R4C4 R4C4

Table 4.1: Object’s Coordinates

55

4.8 Pixel Information

The table below shows the white pixel information at each of the coordinate.

The coding has been done to detect white pixel in the coordinate. Hence, if the object is

in a particular coordinate, it displays the amount of white pixel as the object is in white

colour and display ‘0’ if no object. The minor light effect in the algorithm output images

have to be eliminated so that the coding will only detect the object and not the

background as well.

 IMAGE 1 IMGAE 2 IMAGE 3 IMAGE 4 IMAGE 5

R1C1 0 0 0 0 0

R1C2 0 0 0 0 0

R1C3 0 0 0 0 0

R1C4 0 0 0 0 0

R2C1 0 0 0 0 0

R2C2 0 0 0 0 0

R2C3 79 0 0 0 0

R2C4 0 0 0 0 0

R3C1 0 0 0 0 0

R3C2 0 129 0 0 0

R3C3 137 149 161 0 0

R3C4 0 0 0 0 0

R4C1 0 0 0 0 0

R4C2 0 0 0 0 0

R4C3 0 0 180 200 0

R4C4 0 0 0 187 402

 Table 4.2: Pixel Information

56

Comment: The pixel information table shows all the pixel reading of 5 images. As can

be seen, for Image 1, the white pixel is read at coordinates R2C3 and R3C3. For Image

2, the coordinates are at R2C2 and R3C3 while for Image 3 the objects are at R3C3 and

R4C3. In Image 4, the objects or balls are found at coordinates R4C3 and R4C4. Finally

in Image 5, the coordinate is at R4C4. Image 5 only gives one coordinate because both

the balls are too near to each other thus, due to the effect of image segmentation, only

one coordinate is read. Besides that, we can also see that in Image 5, the value of white

pixel, 402 is the highest compared to other positions. This is because that particular

coordinate reads the white pixel of two balls instead of one ball like all the other

coordinates.

CHAPTER V

CONCLUSION AND FUTURE DEVELOPMENT

5.1 Conclusion

This project consists of two parts; developing the Cellular Neural Network

templates and the analysis of the output image from the algorithm. This project focuses

on the software or the programming of the templates using MATLAB as the

programming platform.

 Generally, this project has achieved all its objectives and scopes but the

efficiency of this project is about 85 %. This is because original images were not used in

the project, instead the images have been edited to smaller size, where it is not

reasonable in real world application. The other reason is the analysis of the image was

not 100% accurate as there were some problems in image segmentation.

 The segmentation has been tailored for the set of images used this project, which

means if another set of images were used, the image segmentation would have not given

an accurate result. This is because when doing the images segmentation, we have to be

careful not to divide or split the object into two. Each object supposed to have only one

coordinate but sometimes two objects are so close that it end up being read as one

coordinate or one object gives two coordinates because the object was split during

segmentation.

58

5.2 Future Development

Since there is always a room for improvement in any matter, so does this project.

Although we have managed to create a fully functional template, this project still has the

capacity for further improvement.

 For improvement, instead of using video segmentation images, we can directly

use the video of moving object as the input for the templates. As real time image

processing becoming very popular nowadays, I suggest than an interface between a

computer and camera itself is made. The coding has to be improved as well if the video

is used as input for the templates, where ukl will be a function of time instead of being

constant.

 Besides that, the image segmentation can be improved also. A more detailed

segmentation can be done in order to get a very precise coordinate for the objects in the

images. Hence the analysis will be more perfect and accurate. Other than that, more

samplings or frames of video segmentation images can be used for a more accurate

result of moving object detection.

59

5.3 Costing and Commercialization

 The cost for this project only includes a laptop or personal computer, a digital

camera and related software like SC Video Developer and MATLAB. In terms of cash

spent, it is only needed to buy the license for the software used.

 In term of commercialization, current condition of this project is not yet suitable

for market. It can be improved and updated for commercialization purposes. The target

customer will be in security industries like bank, company or any building that needs

security system.

60

 REFERENCES

1. Leon O. Chua and Tamas Roska, (2000). Cellular Neural Network and Visual

Computing: Foundation and applications. Berkeley-Budapest, May 2000.

2. Application of Cellular Neural Network in Healthcare

 URL: http:www.openclinic/org/doc/int/neuratnetworks011

 Access date: March 20, 2007

3. Image Processing Toolbox 5 User’s Guide

 URL: http://www.mathworks.com

 Access date: March 30, 2007

4. Chapter 2: Cellular Paradigms Theory and Simulation

 URL: www.worldscibooks.com

 Access date: April 15, 2007

5. Cellular Neural Network

 URL: http://lab.analogic/stzaki.hu/cnnintro/html

 Access Date: September 17, 2007

6 Solving ODEs in MATLAB

 URL: http://coweb.cc.gatech.edu/process/198

 Access date: April 19, 2008

7. Mariofanna G. Milanova, Adel Elmaghraby, Stuart Rubin “Cellular Neural

 Networks for Segmentation of Image Sequence”, University of Louisville,

 USA, 1999.

61

8. Shih Fu-Chang & Di Zhong ,“Moving Object Segmentation and Tracking

 Using Spatio” ISCAS'97, Hong Kong, June 9-12, 1997.

9. J. C. Choi, S.-W. Lee, and S.-D. Kim, “Spatio-temporal video segmentation

using a joint similarity measure,” IEEE Trans. Circuits Syst. Video Technol., vol.

7, pp. 279–286, Apr. 1997.

10. Osman N. Uan and Lokman Auyrman, “Moving Object Detection Using

Delayed-Cellular Neural Network”, Istanbul University Electrical Engineering

Department, 1997.

11. Eryanie Binti Kaimi, ‘Cellular Neural Network Algorithm For Car Plate

Recognition”, Faculty of Electrical & Electronics Engineering, University

Malaysia Pahang, November 2007.

62

APPENDIX A

Software programming for Edge Detection Template

%== ===================
%*********************PARAMETER DECLARATIONS******* *******************
%** *******************

clear all ; % Clear variables and functions from memory
clc; % Clear command window

%------------------------Constant Declarations----- --------------------

M=254; % No. of rows in the CNN structure
N=254; % No. of columns in the CNN structure

%-------------------------CNN template parameters-- --------------------

A=[0 0 0; 0 0 0; 0 0 0]; % Feedback Operator
B=[-1 -1 -1; -1 8 -1; -1 -1 -1]; % Input Synaptic Operator
Z=[-1]; % Threshold Value
X=zeros(256,256); %CNN template initial state parameters

%== ====================
%*********************READ AND PREPARE DATA******** ********************
%** ********************

READ_IMAGE=imread('pic4.jpeg'); % Read image from graphics file and map
 % between 0 and 255

INST_IMAGE=mat2gray(READ_IMAGE); % Convert matrix to intensity image
 % (map between 0 a nd 1)

BIN_IMAGE=im2bw(INST_IMAGE,0.4); % Convert image to binary image by
 % thresholding map to either 0 or 1

U1=double(BIN_IMAGE); % Convert to double precision

[ROWS COLUMNS]=size(U1); % Size of array, returns the two-element row
 % vector

for row=1:ROWS;
 for col=1:COLUMNS;
 TEMP = U1(row,col);
 if (TEMP == 1);
 U(row,col)= 1;
 elseif (TEMP == 0);

63

 U(row,col)= -1; % Local Rule
 else
 U(row,col)= U1(row,col);
 end
 end
end

%== ====================
%*****************COMPUTATION OF INITIAL OUTOUT MAT RIX*****************
%** ********************

for i=1:M+2;
 for j=1:N+2;
 Y(i,j)=0.5*abs(X(i,j)+1)-0.5*abs(X(i,j)-1); % Output Equation
 end
end

%== ====================
%*****************COMPUTATION OF STATE EQUATION**** ********************
%** ********************

%-STEP1----------Computation of the radius of spher e of influence------

[r1,c1] = size(A);
r = fix(r1/2);

for i=1+r:M+r;
 for j=1+r:N+r;

%-STEP2-----------Computation of the ALL SUMMATION TERM----------------

 S = normfun(r,i,j,A,B,Y,U);

 X1 = X(i,j); % STATE TERM
 F1 = S(1,1); % FEEDBACK TERM
 I1 = S(1,2); % INPUT TERM
 Z1 = Z; % THRESOLD TERM

%-STEP3-----------Computation of the STATE EQUATION -------------------

% Solution of the given state equation by using dso lve function is
% computed as "X2 = dsolve('DX = -X + F1 +I1 - Z1', 'X(0)= 0')"
% which gives X2= F1+I1-Z1+exp(-t)*(-F1-I1+Z1)as ou tput

 t = 20;

 X2= F1+I1-Z1+exp(-t)*(-F1-I1+Z1); % STATE Equation

64

%-STEP4-----------UPDATION of the OUTPUT EQUATION-- --------------------

 Y(i,j)=0.5*abs(X2+1)-0.5*abs(X2-1); % OUTPUT Equation

 end
end

%== ====================
%*************************DISPLAY RESULTS********** ********************
%** ********************

imshow(Y); % displays image Y

%== ====================
%***************************THE END**************** ********************
%** ********************

65

APPENDIX B

Software programming for Convex Corner Detection Template

%== ===================
%*********************PARAMETER DECLARATIONS******* *******************
%** *******************

clear all ; % Clear variables and functions from memory
clc; % Clear command window

%------------------------Constant Declarations----- --------------------

M=254; % No. of rows in the CNN structure
N=254; % No. of columns in the CNN structure

%-------------------------CNN template parameters-- --------------------

A=[0 0 0; 0 2 0; 0 0 0]; % Feedback Operator
B=[-1 -1 -1; -1 8 -1; -1 -1 -1]; % Input Synaptic Operator
Z=[-8.5]; % Threshold Value
X=zeros(256,256); %CNN template initial state parameters

%== ====================
%*********************READ AND PREPARE DATA******** ********************
%** ********************

READ_IMAGE=imread('pic4.jpeg'); % Read image from graphics file and map
 % between 0 and 255

INST_IMAGE=mat2gray(READ_IMAGE); % Convert matrix to intensity image
 % (map between 0 a nd 1)

BIN_IMAGE=im2bw(INST_IMAGE,0.75); % Convert image to binary image by
 % thresholding map to either 0 or 1

U1=double(BIN_IMAGE); % Convert to double precision

[ROWS COLUMNS]=size(U1); % Size of array, returns the two-element row
 % vector

for row=1:ROWS;
 for col=1:COLUMNS;
 TEMP = U1(row,col);
 if (TEMP == 1);
 U(row,col)= 1;
 elseif (TEMP == 0);

66

 U(row,col)= -1; % Local Rule
 else
 U(row,col)= U1(row,col);
 end
 end
end

%== ====================
%*****************COMPUTATION OF INITIAL OUTOUT MAT RIX*****************
%** ********************

for i=1:M+2;
 for j=1:N+2;
 Y(i,j)=0.5*abs(X(i,j)+1)-0.5*abs(X(i,j)-1); % Output Equation
 end
end

%== ====================
%*****************COMPUTATION OF STATE EQUATION**** ********************
%** ********************

%-STEP1----------Computation of the radius of spher e of influence------

[r1,c1] = size(A);
r = fix(r1/2);

for i=1+r:M+r;
 for j=1+r:N+r;

%-STEP2-----------Computation of the ALL SUMMATION TERM----------------

 S = normfun(r,i,j,A,B,Y,U);

 X1 = X(i,j); % STATE TERM
 F1 = S(1,1); % FEEDBACK TERM
 I1 = S(1,2); % INPUT TERM
 Z1 = Z; % THRESOLD TERM

%-STEP3-----------Computation of the STATE EQUATION -------------------

% Solution of the given state equation by using dso lve function is
% computed as "X2 = dsolve('DX = -X + F1 +I1 - Z1', 'X(0)= 0')"
% which gives X2= F1+I1-Z1+exp(-t)*(-F1-I1+Z1)as ou tput

 t = 20;

 X2= F1+I1-Z1+exp(-t)*(-F1-I1+Z1); % STATE Equation

67

%-STEP4-----------UPDATION of the OUTPUT EQUATION-- --------------------

 Y(i,j)=0.5*abs(X2+1)-0.5*abs(X2-1); % OUTPUT Equation

 end
end

%== ====================
%*************************DISPLAY RESULTS********** ********************
%** ********************

imshow(Y); % displays image Y

%== ====================
%***************************THE END**************** ********************
%** ********************

68

APPENDIX C

Software programming for Logic NOT Template

%== ===================
%*********************PARAMETER DECLARATIONS******* *******************
%** *******************

clear all ; % Clear variables and functions from memory
clc; % Clear command window

%------------------------Constant Declarations----- --------------------

M=254; % No. of rows in the CNN structure
N=254; % No. of columns in the CNN structure

%--------------------------CNN template parameters- -------------------

A=[0 0 0; 0 1 0; 0 0 0]; % Feedback Operator
B=[0 0 0; 0 -2 0; 0 0 0]; % Input Synaptic Operator
Z=[0]; % Threshold Value
X=zeros(256,256); %CNN template initial state parameters

%== ====================
%*********************READ AND PREPARE DATA******** ********************
%** ********************

READ_IMAGE=imread('pic4.jpeg'); % Read image from graphics file and map
 % between 0 and 255

INST_IMAGE=mat2gray(READ_IMAGE); % Convert matrix to intensity image
 % (map between 0 a nd 1)

BIN_IMAGE=im2bw(INST_IMAGE); % Convert image to binary image by
 % thresholding map to either 0 or 1

U1=double(BIN_IMAGE); % Convert to double precision

[ROWS COLUMNS]=size(U1); % Size of array, returns the two-element row
 % vector

for row=1:ROWS;
 for col=1:COLUMNS;
 TEMP = U1(row,col);
 if (TEMP == 1);
 U(row,col)= 1;
 elseif (TEMP == 0);

69

 U(row,col)= -1; % Local Rule
 else
 U(row,col)= U1(row,col);
 end
 end
end

%== ====================
%*****************COMPUTATION OF INITIAL OUTOUT MAT RIX*****************
%** ********************

for i=1:M+2;
 for j=1:N+2;
 Y(i,j)=0.5*abs(X(i,j)+1)-0.5*abs(X(i,j)-1); % Output Equation
 end
end

%== ====================
%*****************COMPUTATION OF STATE EQUATION**** ********************
%** ********************

%-STEP1----------Computation of the radius of spher e of influence------

[r1,c1] = size(A);
r = fix(r1/2);

for i=1+r:M+r;
 for j=1+r:N+r;

%-STEP2-----------Computation of the ALL SUMMATION TERM----------------

 S = normfun(r,i,j,A,B,Y,U);

 X1 = X(i,j); % STATE TERM
 F1 = S(1,1); % FEEDBACK TERM
 I1 = S(1,2); % INPUT TERM
 Z1 = Z; % THRESOLD TERM

%-STEP3-----------Computation of the STATE EQUATION -------------------

% Solution of the given state equation by using dso lve function is
% computed as "X2 = dsolve('DX = -X + F1 +I1 - Z1', 'X(0)= 0')"
% which gives X2= F1+I1-Z1+exp(-t)*(-F1-I1+Z1)as ou tput

 t = 20;

 X2= F1+I1-Z1+exp(-t)*(-F1-I1+Z1); % STATE Equation

70

%-STEP4-----------UPDATION of the OUTPUT EQUATION-- --------------------

 Y(i,j)=0.5*abs(X2+1)-0.5*abs(X2-1); % OUTPUT Equation

 end
end

%== ====================
%*************************DISPLAY RESULTS********** ********************
%** ********************

figure(1):imshow(U1); % displays image U1
figure(2):imshow(Y); % displays image Y

%== ====================
%***************************THE END**************** ********************
%** ********************

71

APPENDIX D

Software programming for Logic OR Template

%== ===================
%*********************PARAMETER DECLARATIONS******* *******************
%** *******************

clear all ; % Clear variables and functions from memory
clc; % Clear command window

%------------------------Constant Declarations----- --------------------

M=254; % No. of rows in the CNN structure
N=254; % No. of columns in the CNN structure

%-------------------CNN template parameters-------- --------------------

A=[0 0 0; 0 3 0; 0 0 0]; % Feedback Operator
B=[0 0 0; 0 3 0; 0 0 0]; % Input Synaptic Operator
Z=2; % Threshold Value
X=zeros(256,256); %CNN template initial state parameters

%== ====================
%*********************READ AND PREPARE DATA******** ********************
%** ********************

%--------------------------read image1------------- --------------------

READ_IMAGE1=imread('pic3.jpeg'); % Read image from graphics file and
 % map between 0 an d 255

INST_IMAGE1=mat2gray(READ_IMAGE1); % Convert matrix to intensity image
 % (map between 0 and 1)

BIN_IMAGE1=im2bw(INST_IMAGE1,0.4); % Convert image to binary image by
 % thresholding map to either 0 or 1

U1=double(BIN_IMAGE1); % Convert to double precision

%--------------------------read image2------------- --------------------

READ_IMAGE2=imread('pic4.jpeg'); % Read image from graphics file and
 % map between 0 an d 255

72

INST_IMAGE2=mat2gray(READ_IMAGE2); % Convert matrix to intensity image
 % (map between 0 and 1)

BIN_IMAGE2=im2bw(INST_IMAGE2,0.4); %Convert image to binary image by
 % thresholding m ap to either 0 or 1

X1=double(BIN_IMAGE2); % Convert to double precision

[ROWS COLUMNS]=size(X1); % Size of array, returns the two-element row
 % vector

for row=1:ROWS;
 for col=1:COLUMNS;
 if (X1(row,col)== 0 | U1(row,col)==0)
 X(row,col)=-1;
 U(row,col)=-1;
 else
 X(row,col)=1;
 U(row,col)=1;
 end
 end
end

%== ====================
%*****************COMPUTATION OF INITIAL OUTOUT MAT RIX*****************
%** ********************

for i=1:M+2;
 for j=1:N+2;
 Y(i,j)=0.5*abs(X(i,j)+1)-0.5*abs(X(i,j)-1); % Output Equation
 end
end

%== ====================
%*****************COMPUTATION OF STATE EQUATION**** ********************
%** ********************

%-STEP1----------Computation of the radius of spher e of influence------

[r1,c1] = size(A);
r = fix(r1/2);

for i=1+r:M+r;
 for j=1+r:N+r;

73

%-STEP2-----------Computation of the ALL SUMMATION TERM----------------

 S = normfun(r,i,j,A,B,Y,U);

 X1 = X(i,j); % STATE TERM
 F1 = S(1,1); % FEEDBACK TERM
 I1 = S(1,2); % INPUT TERM
 Z1 = Z; % THRESOLD TERM
%-STEP3-----------Computation of the STATE EQUATION -------------------

% Solution of the given state equation by using dso lve function is
% computed as "X2 = dsolve('DX = -X + F1 +I1 - Z1', 'X(0)= 0')"
% which gives X2= F1+I1-Z1+exp(-t)*(-F1-I1+Z1)as ou tput

 t = 20;

 X2= F1+I1-Z1+exp(-t)*(-F1-I1+Z1); % STATE Equation

%-STEP4-----------UPDATION of the OUTPUT EQUATION-- --------------------

 Y(i,j)=0.5*abs(X2+1)-0.5*abs(X2-1); % OUTPUT Equation

 end
end

%== ====================
%*************************DISPLAY RESULTS********** ********************
%** ********************

imshow(Y); % displays image Y

%== ====================
%***************************THE END**************** ********************
%** ********************

74

APPENDIX E

Software programming for Logic AND Template

%== ===================
%*********************PARAMETER DECLARATIONS******* *******************
%** *******************

clear all ; % Clear variables and functions from memory
clc; % Clear command window

%------------------------Constant Declarations----- --------------------

M=254; % No. of rows in the CNN structure
N=254; % No. of columns in the CNN structure

%-------------------CNN template parameters-------- --------------------

A=[0 0 0; 0 1.5 0; 0 0 0]; % Feedback Operator
B=[0 0 0; 0 1.5 0; 0 0 0]; % Input Synaptic Operator
Z=-1.5; % Threshold Value
X=zeros(256,256); %CNN template initial state parameters

%== ====================
%*********************READ AND PREPARE DATA******** ********************
%** ********************

%---------------------------read image1------------ --------------------

READ_IMAGE1=imread('pic1.png'); % Read image from graphics file and map
 % between 0 and 255

INST_IMAGE1=mat2gray(READ_IMAGE1); % Convert matrix to intensity image
 % (map between 0 and 1)

BIN_IMAGE1=im2bw(INST_IMAGE1); % Convert image to binary image by
 % thresholding map to either 0 or 1

U0=double(BIN_IMAGE1); % Convert to double precision

%----------------------------read image2----------- --------------------

READ_IMAGE2=imread('pic2.png'); % Read image from graphics file and map
 % between 0 and 255

75

INST_IMAGE2=mat2gray(READ_IMAGE2); % Convert matrix to intensity image
 %(map between 0 and 1)

BIN_IMAGE2=im2bw(INST_IMAGE2); % Convert image to binary image by
 % thresholding map t o either 0 or 1

X1=double(BIN_IMAGE2); % Convert to double precision

[ROWS COLUMNS]=size(X1); % Size of array, returns the two-element row
 % vector

for row=1:ROWS;
 for col=1:COLUMNS;
 if (X1(row,col)== 0 & U0(row,col)==0)
 X(row,col)=-1;
 U(row,col)=-1;
 else
 X(row,col)=1;
 U(row,col)=1;
 end
 end
end

%== ====================
%*****************COMPUTATION OF INITIAL OUTOUT MAT RIX*****************
%** ********************

for i=1:M+2;
 for j=1:N+2;
 Y(i,j)=0.5*abs(X(i,j)+1)-0.5*abs(X(i,j)-1); % Output Equation
 end
end

%== ====================
%*****************COMPUTATION OF STATE EQUATION**** ********************
%** ********************

%-STEP1----------Computation of the radius of spher e of influence------

[r1,c1] = size(A);
r = fix(r1/2);

for i=1+r:M+r;
 for j=1+r:N+r;

76

%-STEP2-----------Computation of the ALL SUMMATION TERM----------------

 S = normfun(r,i,j,A,B,Y,U);

 X1 = X(i,j); % STATE TERM
 F1 = S(1,1); % FEEDBACK TERM
 I1 = S(1,2); % INPUT TERM
 Z1 = Z; % THRESOLD TERM

%-STEP3-----------Computation of the STATE EQUATION -------------------

% Solution of the given state equation by using dso lve function is
% computed as "X2 = dsolve('DX = -X + F1 +I1 - Z1', 'X(0)= 0')"
% which gives X2= F1+I1-Z1+exp(-t)*(-F1-I1+Z1)as ou tput

 t = 20;

 X2= F1+I1-Z1+exp(-t)*(-F1-I1+Z1); % STATE Equation

%-STEP4-----------UPDATION of the OUTPUT EQUATION-- --------------------

 Y(i,j)=0.5*abs(X2+1)-0.5*abs(X2-1); % OUTPUT Equation

 end
end

%== ====================
%*************************DISPLAY RESULTS********** ********************
%** ********************

imshow(Y); % displays image Y

%== ====================
%***************************THE END**************** ********************
%** ********************

77

APPENDIX F

Software programming for Function File (All Templates)

function S = normfun(r,i,j,A,B,Y,U);

FEED_TERM = 0;
for k=i-r:i+r;
 for l=j-r:j+r;
 FEED_TERM = FEED_TERM + A(k-i+2,l-j+2)*Y(k,l) ; % FEEDBACK TERM
 end
end

INPT_TERM = 0;
for k=i-r:i+r;
 for l=j-r:j+r;
 INPT_TERM = INPT_TERM+ B(k-i+2,l-j+2)*U(k,l); % INPUT TERM
 end
end

S = [FEED_TERM INPT_TERM];

78

APPENDIX G

Software programming for image segmentation

%==========================Design Description====== ====================

% Implementation of Image Segmentation to detect th e objects and to
% count the pixel. The entire image is divided into 4X4 parts
% vertically and horizontally.

%===========================Initialization========= ====================

clear all ;
clc;

%== ====================

I = imread('r55.jpg'); %read the image
I1 = im2bw(I); %convert image to binary image
I2 = double(I1); %convert to double precision
BW1 = edge(I2, 'prewitt'); %find edges in intensity image

se90 = strel('line' , 3, 90);
se0 = strel('line' , 3, 0);

I3 = imdilate(BW1, [se90 se0]);

I4 = imfill(I3, 'holes');

imshow(I4); %displays the intensity image

%== ====================

[ROWS COLUMNS]=size(I4); % Size of array

R1 = ((1*ROWS)/4);
C1 = ((1*COLUMNS)/4);
R2 = ((2*ROWS)/4);
C2 = ((2*COLUMNS)/4);
R3 = ((3*ROWS)/4);
C3 = ((3*COLUMNS)/4);
R4 = ((4*ROWS)/4);
C4 = ((4*COLUMNS)/4);

79

%====================================R1C1========== ====================

DONE = 0; % initialize the value of DONE
for R=1:R1; % for all rows one by one

 for C=1:C1; % for all columns one by one
 PIXEL = I4(R,C); % select the pixel value of either one or zero
 % at each location of row and column
 if (PIXEL == 1 && DONE == 0); % compare the pixel value with 1,
 % to detect the presence the ball
 display('PIXEL:R1C1'); % to display the result
 DONE = 1; % DONE is set to exit the loop
 end
 end
end

COUNT = 0; % initialize the value of COUNT
for R=1:R1; % for all rows one by one
 for C=1:C1; % for all columns one by one
 PIXEL = I4(R,C); % select the pixel value at row or column
 if (PIXEL == 1); % to detect the presence of white pixel
 COUNT = COUNT + 1; % to calculate the white pixel
 end
 end
end

disp(sprintf('%d total pixel' ,COUNT)); % to display the amount of
 % white pixel

%====================================R1C2========== ====================

DONE = 0;
for R=1:R1;
 for C=C1:C2;
 PIXEL = I4(R,C);
 if (PIXEL == 1 && DONE == 0);
 display('PIXEL:R1C2');
 DONE = 1;
 end
 end
end

COUNT = 0;
for R=1:R1;
 for C=C1:C2;
 PIXEL = I4(R,C);
 if (PIXEL == 1);
 COUNT = COUNT + 1;
 end
 end
end

disp(sprintf('%d total pixel' ,COUNT));

80

%====================================R1C3========== ====================

DONE = 0;
for R=1:R1;
 for C=C2:C3;
 PIXEL = I4(R,C);
 if (PIXEL == 1 && DONE == 0);
 display('PIXEL:R1C3');
 DONE = 1;
 end
 end
end

COUNT = 0;
for R=1:R1;
 for C=C2:C3;
 PIXEL = I4(R,C);
 if (PIXEL == 1);
 COUNT = COUNT + 1;
 end
 end
end

disp(sprintf('%d total pixel' ,COUNT));

%====================================R1C4========== ====================

DONE = 0;
for R=1:R1;
 for C=C3:C4;
 PIXEL = I4(R,C);
 if (PIXEL == 1 && DONE == 0);
 display('PIXEL:R1C4');
 DONE = 1;
 end
 end
end

COUNT = 0;
for R=1:R1;
 for C=C3:C4;
 PIXEL = I4(R,C);
 if (PIXEL == 1);
 COUNT = COUNT + 1;
 end
 end
end

disp(sprintf('%d total pixel' ,COUNT));

81

%====================================R2C1========== ====================

DONE = 0;
for R=R1:R2;
 for C=1:C1;
 PIXEL = I4(R,C);
 if (PIXEL == 1 && DONE == 0);
 display('PIXEL:R2C1');
 DONE = 1;
 end
 end
end
COUNT = 0;
for R=R1:R2;
 for C=1:C1;
 PIXEL = I4(R,C);
 if (PIXEL == 1);
 COUNT = COUNT + 1;
 end
 end
end

disp(sprintf('%d total pixel' ,COUNT));

%====================================R2C2========== ====================

DONE = 0;
for R=R1:R2;
 for C=C1:C2;
 PIXEL = I4(R,C);
 if (PIXEL == 1 && DONE == 0);
 display('PIXEL:R2C2');
 DONE = 1;
 end
 end
end

COUNT = 0;
for R=R1:R2;
 for C=C1:C2;
 PIXEL = I4(R,C);
 if (PIXEL == 1);
 COUNT = COUNT + 1;
 end
 end
end

disp(sprintf('%d total pixel' ,COUNT));

82

%====================================R2C3========== ====================

DONE = 0;
for R=R1:R2;
 for C=C2:C3;
 PIXEL = I4(R,C);
 if (PIXEL == 1 && DONE == 0);
 display('PIXEL:R2C3');
 DONE = 1;
 end
 end
end

COUNT = 0;
for R=R1:R2;
 for C=C2:C3;
 PIXEL = I4(R,C);
 if (PIXEL == 1);
 COUNT = COUNT + 1;
 end
 end
end

disp(sprintf('%d total pixel' ,COUNT));

%====================================R2C4========== ====================

DONE = 0;
for R=R1:R2;
 for C=C3:C4;
 PIXEL = I4(R,C);
 if (PIXEL == 1 && DONE == 0);
 display('PIXEL:R2C4');
 DONE = 1;
 end
 end
end

COUNT = 0;
for R=R1:R2;
 for C=C3:C4;
 PIXEL = I4(R,C);
 if (PIXEL == 1);
 COUNT = COUNT + 1;
 end
 end
end

disp(sprintf('%d total pixel' ,COUNT));

83

%====================================R3C1========== ====================

DONE = 0;
for R=R2:R3;
 for C=1:C1;
 PIXEL = I4(R,C);
 if (PIXEL == 1 && DONE == 0);
 display('PIXEL:R3C1');
 DONE = 1;
 end
 end
end

COUNT = 0;
for R=R2:R3;
 for C=1:C1;
 PIXEL = I4(R,C);
 if (PIXEL == 1);
 COUNT = COUNT + 1;
 end
 end
end

disp(sprintf('%d total pixel' ,COUNT));

%====================================R3C2========== ====================

DONE = 0;
for R=R2:R3;
 for C=C1:C2;
 PIXEL = I4(R,C);
 if (PIXEL == 1 && DONE == 0);
 display('PIXEL:R3C2');
 DONE = 1;
 end
 end
end

COUNT = 0;
for R=R2:R3;
 for C=C1:C2;
 PIXEL = I4(R,C);
 if (PIXEL == 1);
 COUNT = COUNT + 1;
 end
 end
end

disp(sprintf('%d total pixel' ,COUNT));

84

%====================================R3C3========== ====================

DONE = 0;
for R=R2:R3;
 for C=C2:C3;
 PIXEL = I4(R,C);
 if (PIXEL == 1 && DONE == 0);
 display('PIXEL:R3C3');
 DONE = 1;
 end
 end
end

COUNT = 0;
for R=R2:R3;
 for C=C2:C3;
 PIXEL = I4(R,C);
 if (PIXEL == 1);
 COUNT = COUNT + 1;
 end
 end
end

disp(sprintf('%d total pixel' ,COUNT));

%====================================R3C4========== ====================

DONE = 0;
for R=R2:R3;
 for C=C3:C4;
 PIXEL = I4(R,C);
 if (PIXEL == 1 && DONE == 0);
 display('PIXEL:R3C4');
 DONE = 1;
 end
 end
end

COUNT = 0;
for R=R2:R3;
 for C=C3:C4;
 PIXEL = I4(R,C);
 if (PIXEL == 1);
 COUNT = COUNT + 1;
 end
 end
end

disp(sprintf('%d total pixel' ,COUNT));

85

%====================================R4C1========== ====================

DONE = 0;
for R=R3:R4;
 for C=1:C1;
 PIXEL = I4(R,C);
 if (PIXEL == 1 && DONE == 0);
 display('PIXEL:R4C1');
 DONE = 1;
 end
 end
end

COUNT = 0;
for R=R3:R4;
 for C=1:C1;
 PIXEL = I4(R,C);
 if (PIXEL == 1);
 COUNT = COUNT + 1;
 end
 end
end

disp(sprintf('%d total pixel' ,COUNT));

%====================================R4C2========== ====================

DONE = 0;
for R=R3:R4;
 for C=C1:C2;
 PIXEL = I4(R,C);
 if (PIXEL == 1 && DONE == 0);
 display('PIXEL:R4C2');
 DONE = 1;
 end
 end
end

COUNT = 0;
for R=R3:R4;
 for C=C1:C2;
 PIXEL = I4(R,C);
 if (PIXEL == 1);
 COUNT = COUNT + 1;
 end
 end
end

disp(sprintf('%d total pixel' ,COUNT));

86

%====================================R4C3========== ====================

DONE = 0;
for R=R3:R4;
 for C=C2:C3;
 PIXEL = I4(R,C);
 if (PIXEL == 1 && DONE == 0);
 display('PIXEL:R4C3');
 DONE = 1;
 end
 end
end

COUNT = 0;
for R=R3:R4;
 for C=C2:C3;
 PIXEL = I4(R,C);
 if (PIXEL == 1);
 COUNT = COUNT + 1;
 end
 end
end

disp(sprintf('%d total pixel' ,COUNT));

%====================================R4C4========== ====================

DONE = 0;
for R=R3:R4;
 for C=C3:C4;
 PIXEL = I4(R,C);
 if (PIXEL == 1 && DONE == 0);
 display('PIXEL:R4C4');
 DONE = 1;
 end
 end
end

COUNT = 0;
for R=R3:R4;
 for C=C3:C4;
 PIXEL = I4(R,C);
 if (PIXEL == 1);
 COUNT = COUNT + 1;
 end
 end
end

disp(sprintf('%d total pixel' ,COUNT));

%** ********************
%====================================DONE==============================
%** ********************

