
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Pathfinding Algorithms in Game Development
To cite this article: Abdul Rafiq et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 769 012021

View the article online for updates and enhancements.

This content was downloaded from IP address 103.53.34.15 on 15/07/2020 at 05:45

https://doi.org/10.1088/1757-899X/769/1/012021

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

The 6th International Conference on Software Engineering & Computer Systems

IOP Conf. Series: Materials Science and Engineering 769 (2020) 012021

IOP Publishing

doi:10.1088/1757-899X/769/1/012021

1

Pathfinding Algorithms in Game Development

Abdul Rafiq1, Tuty Asmawaty Abdul Kadir2, Siti Normaziah Ihsan3

1,2,3 Soft Computing and Intelligent System Research Group (SPINT)

Faculty of Computing, College of Computing and Applied Sciences

Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia

 E-mail: tuty@ump.edu.my

Abstract. This review paper provides an overview of a pathfinding algorithm for game

development which focuses on the algorithms and their contribution to game development. The

algorithms were categorised based on their search performance. The aim of this paper is to

investigate and provide insights into pathfinding algorithms for game development in the last 10

years. We summarise all pathfinding algorithms and describe their result in terms of performance

(time and memory). The result of this paper is metaheuristic techniques have better performance

in terms of time and memory compared to heuristic techniques as a pathfinding algorithm.

1. Introduction

The rising global popularity of video games was the trigger to the increasing research interest in solving

many AI issues related to video games such as decision-making, movement, strategy, and pathfinding.

Commonly, pathfinding for a non-player character uses up a lot of CPU power and memory. This is a

problem that has attracted constant attention from researchers. Pathfinding depends on the game

environment where the obstacle may be static or dynamic. Video games mostly consist of three

components which are player character, non-player character and others. Player character and non-

player character are important roles in a video game. Player character is the main character controlled

by a user while non-player character or known as NPC is a game object not controlled by a player in a

video game [1]. Pathfinding is used for a non-player character (NPC) to find a path between the origin

point to the goal point.

The 6th International Conference on Software Engineering & Computer Systems

IOP Conf. Series: Materials Science and Engineering 769 (2020) 012021

IOP Publishing

doi:10.1088/1757-899X/769/1/012021

2

 Figure 1. Area of research

Figure 1 illustrates an AI model for a video game. The AI model splits into three sections: Movement,

Decision Making and Strategy. Decision-making refers to the character deciding what to do next.

Movement refers to the character being able to move anywhere. Strategy refers to group strategy

required to coordinate a team. The Movement and Decision-making sections contain algorithms that

work for player characters or non-player characters. Pathfinding is part of movement besides kinematic

movement and steering behaviours. The techniques or methods used to determine the path in the video

game are called the pathfinding algorithms. Common pathfinding algorithms were developed to solve

pathfinding problems such as Dijkstra [2], A* algorithm [3], genetic algorithms [4], and ant colony

optimisation [5]. There are two types of pathfinding for a non-player character in a video game. The

first is static pathfinding where the target node as the player does not move. The second is dynamic or

real-time pathfinding where the target node as the player moves freely and randomly.

2. Pathfinding in Games

Pathfinding is a plotting node to find the shortest or minimum path between two points, which is from

source to destination by a computer application. Pathfinding is a major component of many important

applications in the fields of video games, robotics [5], crowd simulation [6], and GPS [7]. This paper

focuses on pathfinding algorithms in video game development. Pathfinding algorithms are used for the

agent or non-player character to find a path between the origin point to the goal point. Pathfinding is

one of the requirements to create a realistic non-player character in a video game. A video game can be

fun and entertaining especially when the non-player character is realistic enough. However, the main

problem for a video game is the need for an optimal pathfinding for non-player characters. Garham has

supported this by stating that the common problem in a video game is to find suitable pathfinding for

agent movement. Pathfinding is implemented in any condition such as static, dynamic and real-time

environments. The techniques or methods used to determine the path in a video game are called

pathfinding algorithms. Pathfinding algorithms were developed to solve pathfinding problems such as

Dijkstra, A* algorithm, genetic algorithms, and ant colony optimisation. Pathfinding algorithms are used

to solve the shortest path problem and the optimal path. Usually, A* and Dijkstra’s algorithms are used

as a solution method to find the shortest path. Ant colony optimisation (ACO) and genetic algorithm are

used as a search technique to find the minimum cost path in a graph.

The 6th International Conference on Software Engineering & Computer Systems

IOP Conf. Series: Materials Science and Engineering 769 (2020) 012021

IOP Publishing

doi:10.1088/1757-899X/769/1/012021

3

2.1 Heuristic techniques

Heuristic is used to solve the problem in a faster and efficient way by optimal solution, accuracy, and

precision [6]. Heuristic algorithms aim to find a good solution to a specific problem like pathfinding in

a reasonable amount of computation time but with no guarantee of efficiency. ‘Heuristic’ means to find

in Greek. Based on previous studies, many algorithms were developed to solve pathfinding problems

such as the A* algorithm, Dijkstra’s algorithm, and Depth First Search. The A* algorithm and Dijkstra’s

algorithm are the most popular techniques. All these techniques can be categorised as heuristics.

2.1.1 A* algorithms

The A* algorithm is one of the popular techniques used for pathfinding due to its accuracy and

performance. It is used to find the shortest path between two nodes. The A* algorithm has been applied

in several video game genres such as real-time strategy games [9], role-playing games [10], racing

games [11] and turn-based strategy games. The A* algorithm was introduced by Hart, Nilsson, and

Raphael in 1967 [12] to solve many problems, pathfinding in a video game being one of them. In the

Non-Player (NPC) context, pathfinding is used to guide between two node points in order to capture the

player character.

Figure 2. A* algorithm

The A* algorithm always tries to carry pathfinding by exploring the minimum value or lowest path to

give the best minimum solution. The A* algorithm implements a heuristic function to evaluate that

lowest path. The heuristic function allows the algorithm to quickly and accurately estimate the path. The

advantage of the A* algorithm is it is very easy to understand the flow and logic. Due to its simplicity,

the A* algorithm has always been chosen by programmers to solve pathfinding problems. This is

because the A* algorithm finds the minimum solution by finding the shortest path. A* uses a heuristic

function 𝑓(𝑛) to determine the node. The value of the function 𝑓(𝑛) is:

 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (1)

𝑔(𝑛) is the cost that is required to reach a target node from the starting node. 𝑔(𝑛) will calculate the cost so

far to reach the target node. ℎ(𝑛)stands for heuristic value, where estimate form node to target node. If the

grid has obstacles, 𝑓(𝑛) will estimate and pick the lowest cost to give a good result. The A* algorithm

becomes Dijkstra’s algorithm when ℎ(𝑛) is zero which is guaranteed to find the shortest path.

The 6th International Conference on Software Engineering & Computer Systems

IOP Conf. Series: Materials Science and Engineering 769 (2020) 012021

IOP Publishing

doi:10.1088/1757-899X/769/1/012021

4

2.1.2 Dijkstra’s algorithm

Dijkstra’s was introduced in 1970 by Holland as one of the best path algorithms [13]. Dijkstra’s

algorithm is a classic graph search algorithm which can find the shortest path between two points on the

graph. It has been applied in many areas such as network routing [14], public transportation [15], and

logistics [16]. Dijkstra’s algorithm was the only choice for a long time in pathfinding until the A*

algorithm became a popular method for pathfinding in video games [17]. We will discuss how Dijkstra’s

algorithm works as a pathfinding algorithm.

Figure 3. Dijkstra’s algorithm

Figure 3 shows a graph with five nodes (A, B, C, D, E) and seven paths. There are many possible paths

that will allow us to reach the E node from the A node. Dijkstra’s algorithm will help us find the shortest

path between the two nodes. From the starting node which is the A node, it visits the path with the

smallest value known as the distance. Once it has moved to the smallest node, it will check each of its

neighbouring nodes. For each neighbour node, they will calculate the distance from the starting node. If

the distance or current path is less than another path, it will update the shortest path.

Table 1. The path node
Node The path from a node Shortest path

A 0 -

B 7 & 5 5

C 3 3

D 5,9,11 5

E 9,14,15 & 13 9

Table 1 shows the shortest path from the A node to each node. There are two pathways from A to B and

the shortest path is 5. The only path from A to C has a value of 3. We want the shortest path from the A

to E nodes. After calculating all the possible paths, we finally find the shortest path by visiting all the

related nodes. The shortest distance from the A to E nodes is 9. Dijkstra’s algorithm is a simple searching

algorithm and easy to understand. It will explore each node to find the shortest path. The advantage of

Dijkstra’s algorithm is the coding is very easy to implement. Although Dijkstra’s algorithm is easy to

understand, it is not the best method to solve pathfinding problems.

The 6th International Conference on Software Engineering & Computer Systems

IOP Conf. Series: Materials Science and Engineering 769 (2020) 012021

IOP Publishing

doi:10.1088/1757-899X/769/1/012021

5

2.2 Meta-Heuristic techniques

Metaheuristics are general high-level strategies that combine lower-level techniques for exploration and

exploitation of the search space. Metaheuristic is a higher level heuristic. Generally, it performs better

than heuristic. Metaheuristics can reduce search time and look good enough to solve complex

pathfinding for a video game. Based on the study, metaheuristic algorithms such as genetic algorithm

and ant colony optimisation were used to solve the pathfinding problem in a video game. Metaheuristics

are based on some natural phenomenon. The most successful metaheuristic algorithms have been

inspired by natural systems. For example, ant colony optimisation (ACO) and the bee algorithm were

developed based on the behaviour of animals.

2.2.1 Genetic Algorithm

The genetic algorithm is one of the popular techniques used for searching in computer science. It was

used to find a heuristic solution for optimisation and search problems in a large area of space. The

genetic algorithm was introduced by John Holland [7]. It has been applied in many areas such as

biomimetic invention [8], automotive design [9], engineering design [9] and robotics [10]. The genetic

algorithm uses biological methods such as mutation and inheritance. GA converts the decision variables

of the search problem into strings. The strings act as candidate solutions and the search problem is

referred to as chromosomes. The alphabets act as genes and the values of genes are called alleles. For

example, a salesman has a travelling problem and the route represents chromosomes while the city is a

gene. In video games, the genetic algorithm has been applied as a pathfinding algorithm. The genetic

algorithm and best-first search were used to optimise the search for the path between two points [11].

The result shows that GA has a better performance on a map with obstacles compared to best-first search.

Other than that, the experiment to optimise pathfinding using a techniques genetic algorithm A*

algorithm. The result shows that RTP-GA has a better performance in term of searching time on maps

with obstacles compared to the A*algorithm [4]. Another result shows GAMMAs find paths quicker

than the A* algorithm in terms of time [10].

2.2.2 Ant Colony Optimisation

Ant Colony Optimisation (ACO) is a technique inspired by the behaviour of ants when navigating a path

from their nest to food sources. It was first described in 1997 by Gambardella Dorigo [12]. The Ant

Colony Optimisation (ACO) technique is based on the ants’ ability to find the shortest path between

their nest and food sources. Firstly, each of the ants starts moving randomly. Each member of the ant

colony tries to find a food source. After finding food, they will communicate with each other via

pheromone trails to navigate the shortest path. Pheromones are a type of chemical substance released

into the environment by ants. The connection line will be created as pathfinding between the starting

point (nest) to the target point (food).

The 6th International Conference on Software Engineering & Computer Systems

IOP Conf. Series: Materials Science and Engineering 769 (2020) 012021

IOP Publishing

doi:10.1088/1757-899X/769/1/012021

6

Figure 4. Ant Colony Optimisation

Figure 4 shows that the main idea of Ant Colony Optimisation (ACO) is mimicking real ant behaviour.

In the first picture, each ant moves in a line from its nest to the food. In the middle picture, an obstacle

is placed in the line between their nests to the food. Each ant moves randomly left and right to avoid the

obstacle. The ants go around the obstacle and choose to turn right because it will reach the food quicker,

whereas by turning left it will take a longer time and path. Pheromones are a chemical substance released

into the environment by ants. Finally, the pheromones show a shorter and faster path around the obstacle.

The main objective of Ant Colony Optimisation (ACO) is as a search technique to find a minimum cost

path in a graph. Ant Colony Optimisation (ACO) is used in many applications in the fields of video

games [13], robotics [14], submarine [15] and so on. In the field of robotics, this paper proposes Ant

Colony Optimisation (ACO) to improve path planning for robots. Ant Colony Optimisation (ACO) is

applied in pathfinding for a robot to find an optimal path from a source point to a goal point while

avoiding any obstacles in the configuration space. Other than that, Ant Colony Optimisation (ACO) is

used for vehicles such as submarines. This paper is a study of a modified Ant Colony Optimisation

(ACO) technique to improve pathfinding for a submarine in the ocean [15]. The Ant Colony

Optimisation (ACO) technique has an advantage over the A* algorithm. The ant colony can adapt to

changes in real time. According to V. Selvi, the ant colony optimisation (ACO) technique can be used

in a dynamic application because it is able to adapt to changes such as new distances [16]. Due to its

advantage, many researchers have applied and improved the ant colony technique to solve a certain

complex environment.

3. Findings

Table 2 shows the summary of pathfinding algorithms used for game development. The papers are

selected from those published between 2007 and 2018. Only 10 papers are related to the study. The

summary is categorised into 5 sections; Year, Authors, Pathfinding Algorithms, Time, and Memory.

The 6th International Conference on Software Engineering & Computer Systems

IOP Conf. Series: Materials Science and Engineering 769 (2020) 012021

IOP Publishing

doi:10.1088/1757-899X/769/1/012021

7

Table 2. Summary of pathfinding algorithms

Year Authors
Pathfinding

Algorithms
Time Memory

2007 Leigh [17] Genetic algorithm,

A* algorithm

GAMMAs find paths quicker

than A* algorithm

-

2011 Machado

[4]

Genetic algorithm,

 A* algorithm

RTP-GA has a better

performance in term of

searching time on maps with

obstacles compared to

A*algorithm

-

2012 Santos [11] Genetic algorithm PPGA has a better

performance on the map with

obstacles compared to Best-

First Search

-

2012

Recio [18]
Ant Colony

Optimization (ACO)

 -

-

2016

Hunkeler

[5]
Ant Colony

Optimization (ACO),

Genetic algorithm

Ant Colony Optimization has

a better performance

compared to genetic

algorithm

-

2016

Zikky [2]

Dijkstra’s algorithm,

A* algorithm

A* algorithm better than

Dijkstra’s algorithm in

solving the shortest

pathfinding problem

-

2017

Firmansyah

[19]

A* and improved A*

algorithm

Improved A* get the fastest

path, efficient and short time

compared to basic A*

algorithm

-

2017

Primanita

[20]

Iterative Deepening

A* (IDA*),

A* algorithm

If the map is without any

obstacle IDA* better than A*

in terms of time usage but

IDA* worse than A* if the

map has obstacles.

If the map is without

any obstacle, IDA*

better than A* in

terms of CPU

memory

2018 Sabri [3] A* algorithm,

Bee algorithm

A* algorithm faster than Bee

in a simple map

Bee better than A* in

a complex map

2018 Sazaki [21] Hybrid A*

Algorithms

Hybrid A* get better results

compared to A* algorithm on

an empty track

Hybrid A* get better

results compared to

A* algorithm on an

empty track

The 6th International Conference on Software Engineering & Computer Systems

IOP Conf. Series: Materials Science and Engineering 769 (2020) 012021

IOP Publishing

doi:10.1088/1757-899X/769/1/012021

8

4. Results

In this section we summarise and conclude all the pathfinding algorithms such as the A* algorithm,

Dijkstra’s algorithm, Genetic algorithm, and Ant Colony Optimisation used for game development. We

start with the common pathfinding algorithms used for game development. Then, we summarise and

conclude the result based on the performance of time and memory.

Figure 5. Result of Pathfinding Algorithms

The bar graph illustrates the pathfinding algorithms (Dijkstra’s algorithm, A* algorithm, Genetic

Algorithm, Ant Colony Optimisation, and Others) used for game development from 2010 until 2018.

Overall, The A* algorithm is the most popular technique applied to pathfinding in game development.

Both Dijkstra’s algorithm and Best First Search (Others) are lesser used techniques applied on

pathfinding for game development. Furthermore, metaheuristic techniques such as genetic algorithm

and ant colony optimisation have seen a constant increase in usage as pathfinding algorithms from 2010-

2019.

In terms of heuristic, the A* algorithm is the most commonly used technique for pathfinding compared

to others such as Dijkstra's algorithm and best-first search. The advantage of the A* algorithm is its flow

and logic are very easy to understand. Furthermore, the A* algorithm uses a heuristic function which

allows the algorithm to quickly and accurately estimate a path. Due to its advantages, the A* algorithm

has always been chosen by game programmers as the pathfinding algorithm in game development.

There are many available metaheuristic techniques, but we have found that the genetic algorithm and

ant colony optimisation are most commonly used in pathfinding for games. Both algorithms are

compared with the A* algorithm. Based on the study, both algorithms perform better than the A*

algorithm in terms of time and memory usage. Metaheuristic is a higher level heuristic and generally

performs better.

4.1 Time

In this section, we gathered all the pathfinding algorithms based on the result of time. The papers are

selected from those published between 2007 and 2018. Only nine papers are related to the study. All the

pathfinding algorithms were used for game development. We summarise and conclude the pathfinding

algorithms in terms of time performance.

The 6th International Conference on Software Engineering & Computer Systems

IOP Conf. Series: Materials Science and Engineering 769 (2020) 012021

IOP Publishing

doi:10.1088/1757-899X/769/1/012021

9

Table 3. Result of time

Years Authors Result (Time)

2007 [17] GA better than A*

2011 [4] GA better than A*

2012 [11] GA better than First Search

2016 [5] ACO better than GA

2016 [2] A* better than Dijkstra

2017 [19] Improved A* better than A*

2017 [20] IDA* better than A*

2018 [3] A* better than Bee (in the simple map)

2018 [21] Hybrid A* better than A*

Table 3 shows the results of pathfinding algorithms used for game development based on the

performance of time. For heuristic techniques, the A* algorithm is faster than Dijkstra for calculating

and searching a path [2]. However, a few researchers improved the A* algorithm. In 2017, Firmansyah

[19], Primanita [20] and Sazaki [21] improved the A* algorithm and the result was much better than the

basic A* algorithm. Overall, for heuristic techniques, the A* algorithm has a good result compared to

others, but it can be bettered by the improved A* algorithm.

Metaheuristic techniques are better than heuristic techniques. From the results in Table 4, the Genetic

algorithm is faster than the A* algorithm [17], [4]. The Genetic algorithm is also better than another

heuristic technique like Best First Search [11]. Metaheuristic is a higher level of heuristic. Generally, it

performs better than heuristic. In 2016, the experiment by Hunkeler showed that Ant Colony

Optimisation is faster than the Genetic Algorithm [5]. Overall, we can conclude that metaheuristic

techniques such as GA, ACO can be a pathfinding algorithm and the results show that they are better

than heuristic techniques.

4.2 Memory

In this section we gather all the pathfinding algorithms based on the result of memory. The papers are

selected from those published between 2017 and 2018. Only three papers are related to the study. All

the pathfinding algorithms were used for game development. We summarise and conclude the

pathfinding algorithms in terms of memory usage performance in this section.

Table 4. Result of memory

Year Author Result(Memory)

2017 [20] IDA* better than A* on an empty map

2018 [3] Bee algorithm better than A* on a complex map

2018 [21] Hybrid A* gets better results compared to A* algorithm on an

empty track

Table 4 shows the results of pathfinding algorithms used for game development based on the

performance of memory usage. Three of 10 papers investigated the performance of pathfinding

algorithms in terms of memory. For heuristic techniques, the improved A* algorithms like IDA* [10]

and Hybrid A* [31] have better results compared to the basic A* algorithm. From the result, we can

conclude that improving the algorithm results in reduced memory usage. For a complex map,

metaheuristic techniques are very good compared to heuristic techniques. For example, the Bee

algorithm shows a better result in a complex map compared to the A* algorithm [2]. Overall, we can

The 6th International Conference on Software Engineering & Computer Systems

IOP Conf. Series: Materials Science and Engineering 769 (2020) 012021

IOP Publishing

doi:10.1088/1757-899X/769/1/012021

10

conclude that metaheuristic techniques such as the Bee algorithm can be a pathfinding algorithm and

the result shows that it is better than heuristic techniques like the A* algorithm.

5. Summary and Future Trend

This paper provided a brief description of the common pathfinding algorithms (A* algorithm, Dijkstra’s

algorithm, Genetic algorithm, and Ant Colony) used for game development. In this review paper, we

summarised all the pathfinding algorithms and described the result based on their performance in terms

of time taken and memory usage. Based on the result, we found that the A* algorithms are the most

popular techniques among the other techniques. The improved A* algorithm gets the fastest path and

shortest time. However, it takes too much memory to calculate the path in a dynamic environment.

Overall, metaheuristic techniques have better performance in terms of time and memory compared to

heuristic techniques. In the future, we need good pathfinding algorithms that work for new technology

such as Virtual Reality (VR), Augmented Reality (AR), and Hologram.

Acknowledgements

The authors would like to thank Universiti Malaysia Pahang (UMP). This work is supported by

Universiti Malaysia Pahang (UMP) and funded by Ministry Education Malaysia under FRGS Grant

FRGS/1/2016/ICT01/UMP/02/2 and Master Research Scheme (MRS).

References

[1] C. Foudil, D. Noureddine, C. Sanza, and Y. Duthen, “Path Finding and Collision Avoidance in

Crowd Simulation,” J. Comput. Inf. Technol., vol. 17, no. 3, p. 217, 2009.

[2] M. Zikky, “Review of A* (A Star) Navigation Mesh Pathfinding as the Alternative of Artificial

Intelligent for Ghosts Agent on the Pacman Game,” Emit. Int. J. Eng. Technol., vol. 4, no. 1,

pp. 141–149, 2016.

[3] A. N. Sabri, N. H. M. Radzi, and A. A. Samah, “A study on Bee algorithm and A∗ algorithm

for pathfinding in games,” ISCAIE 2018 - 2018 IEEE Symp. Comput. Appl. Ind. Electron., pp.

224–229, 2018.

[4] A. F. D. V. Machado et al., “Real time pathfinding with genetic algorithm,” Brazilian Symp.

Games Digit. Entertain. SBGAMES, pp. 215–221, 2011.

[5] I. Hunkeler, F. Schar, R. Dornberger, and T. Hanne, “FairGhosts - Ant colony controlled

ghosts for Ms. Pac-Man,” 2016 IEEE Congr. Evol. Comput. CEC 2016, pp. 4214–4220, 2016.

[6] L. A. Wolsey, “Heuristic Algorithms,” Integer Program., no. January, p. 17, 1998.

[7] J. Car, “An Introduction to Genetic Algorithms.,” Artif. Life, vol. 3, no. 1, pp. 63–65, 2014.

[8] A. Cenys, D. Gibavicius, N. Goranin, and L. Marozas, “Genetic algorithm based palm

recognition method for biometric authentication systems,” Elektron. ir Elektrotechnika, vol. 19,

no. 2, pp. 69–74, 2013.

[9] H. Yu and N. Yu, “Application of Genetic Algorithms To Vehicle Suspension Design,” pp. 1–

9, 2003.

[10] T. W. Manikas, K. Ashenayi, and R. L. Wainwright, “Genetic algorithms for autonomous robot

navigation,” IEEE Instrum. Meas. Mag., vol. 10, no. 6, pp. 26–31, 2007.

[11] U. O. Santos, A. F. V Machado, and E. W. G. Clua, “Pathfinding Based on Pattern Detection

Using Genetic Algorithms,” XI Brazilian Symp. Games Digit. Entertain., pp. 64–72, 2012.

[12] M. Dorigo and C. Blum, “Ant colony optimization theory: A survey,” Theor. Comput. Sci., vol.

344, no. 2–3, pp. 243–278, 2005.

[13] I. Sabuncu, “Work-In-Progress: Solving Sudoku Puzzles Using Hybrid Ant Colony

Optimization Algorithm,” 2015 1st Int. Conf. Ind. Networks Intell. Syst., pp. 181–184, 2015.

[14] H. Wang, Z. Wang, L. Yu, X. Wang, and C. Liu, “Ant Colony Optimization with Improved

The 6th International Conference on Software Engineering & Computer Systems

IOP Conf. Series: Materials Science and Engineering 769 (2020) 012021

IOP Publishing

doi:10.1088/1757-899X/769/1/012021

11

Potential Field Heuristic for Robot Path Planning,” Chinese Control Conf. CCC, vol. 2018-

July, pp. 5317–5321, 2018.

[15] Y. Shan, “Study on submarine path planning based on modified ant colony optimization

algorithm,” Proc. 2018 IEEE Int. Conf. Mechatronics Autom. ICMA 2018, pp. 288–292, 2018.

[16] Vs. DrRUmarani Lecturer and A. professor, “Comparative Analysis of Ant Colony and Particle

Swarm Optimization Techniques,” Int. J. Comput. Appl., vol. 5, no. 4, pp. 975–8887, 2010.

[17] R. Leigh, S. J. Louis, and C. Miles, “Using a genetic algorithm to explore A*-like pathfinding

algorithms,” Proc. 2007 IEEE Symp. Comput. Intell. Games, CIG 2007, pp. 72–79, 2007.

[18] G. Recio, E. Martin, C. Estebanez, and Y. Saez, “AntBot: Ant colonies for video games,” IEEE

Trans. Comput. Intell. AI Games, vol. 4, no. 4, pp. 295–308, 2012.

[19] E. R. Firmansyah, S. U. Masruroh, and F. Fahrianto, “Comparative analysis Of A∗ and basic

theta∗ algorithm in android-based pathfmding games,” Proc. - 6th Int. Conf. Inf. Commun.

Technol. Muslim World, ICT4M 2016, pp. 275–280, 2017.

[20] A. Primanita, R. Effendi, and W. Hidayat, “Comparison of A∗ and Iterative Deepening A∗

algorithms for non-player character in Role Playing Game,” ICECOS 2017 - Proceeding 2017

Int. Conf. Electr. Eng. Comput. Sci. Sustain. Cult. Herit. Towar. Smart Environ. Better Futur.,

pp. 202–205, 2017.

[21] Y. Sazaki, A. Primanita, and M. Syahroyni, “Pathfinding car racing game using dynamic

pathfinding algorithm and algorithm A∗,” Proc. - ICWT 2017 3rd Int. Conf. Wirel. Telemat.

2017, vol. 2017-July, pp. 164–169, 2018.

