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ABSTRAK

Aliran bendalir dan pemindahan haba merupakan faktor penting dalam proses industri,
pembuatan dan aplikasi kejuruteraan. Oleh sebab itu, adalah sangat perlu untuk
memodelkan sistem bagi meningkatkan proses aliran bendalir dan pemindahan haba di
mana kualiti akhir bagi sesuatu produk adalah bergantung kepada aliran kinematik serta
pemanasan dan penyejukan secara serentak. Walau bagaimanapun, permasalahan
matematik untuk aliran bendalir dan pemindahan haba terutamanya bagi geometri
berbentuk silinder bulat mengufuk adalah sangat rumit untuk diselesaikan disebabkan
wujudnya persamaan tak linear berpasangan. Bagi mendapatkan persamaan tepat, ia
memerlukan masa yang lama dan usaha yang banyak manakala untuk menyediakan alat
eksperimen pula memerlukan kos yang tinggi. Dalam kes ini, teknik berangka membuka
jalan dalam mendapatkan penyelesaian terbaik untuk menyelesaikan masalah. Oleh itu,
persamaan menakluk bagi aliran bendalir dan pemindahan haba beserta dengan syarat
sempadan diselesaikan secara berangka. Kebiasaannya apabila model aliran olakan
dilaksanakan, kebanyakan penyelidik menggunakan suhu dinding malar atau fluks haba
malar sebagai syarat sempadan. Walau bagaimanapun, syarat sempadan ini tidak cukup
lengkap untuk menggambarkan keadaaan proses pemanasan bagi sesetengah keadaan dalam
industri. Terdapat satu lagi jenis syarat sempadan yang telah diperkenalkan di mana
permukaan bawah silinder dipanaskan dengan olakan dan ini dikenali sebagai syarat
sempadan olakan. Dimotivasikan oleh syarat sempadan yang baharu ini, skema berangka
yang dibangunkan dalam kajian ini diharap dapat dijadikan sebagai teori rujukan kepada
penyelesaian tepat atau kepada kerja makmal di masa hadapan. Oleh itu, lima masalah
berbeza bagi aliran bendalir dan pemindahan haba telah dipertimbangkan dalam kajian ini
dengan mengambil kira syarat sempadan olakan sebagai pemanasan haba. Semua model
matematik ini kemudiannya diterbitkan bagi kes aliran olakan paksaan, bebas dan juga
campuran di atas silinder bulat mengufuk di dalam tiga jenis bendalir berbeza iaitu likat,
mikrokutub dan juga nanobendalir. Persamaan menakluk pembezaan separa parabola yang
menerangkan tentang aliran kemudiannya ditukar kepada penjelmaan ketakserupaan, dan
kemudiannya diselesaikan secara berangka menggunakan kaedah teknik pembezaan
terhingga yang stabil tanpa syarat dikenali sebagai kaedah kotak-Keller. Kod berangka
dalam bentuk atur cara komputer dibina menggunakan perisian MATLAB. Penyelesaian
berangka terdiri daripada profil halaju, suhu, isipadu pecahan nanozarah, geseran
permukaan, dan perubahan haba bagi nilai parameter yang berbeza untuk keadaan fizikal
bagi parameter olakan, olakan campuran, nombor Lewis, parameter poros dan juga nombor
Prandtl. Didapati, bagi kesemua masalah yang dipertimbangkan, profil halaju dan suhu
meningkat bagi peningkatan syarat sempadan olakan. Bagi kes nanobendalir, profil isipadu
pecahan nanozarah turut meningkat jika syarat sempadan olakan meningkat. Begitu juga
bagi setiap kenaikan parameter olakan, pekali geseran permukaan juga meningkat kecuali
bagi kes nanobendalir, di mana jika parameter olakan menurun, ia menunjukkan penurunan
bagi kedua-dua kes; Tiwari dan Das serta Buongiorno. Manakala, bagi pekali perubahan
haba dan Nusselt number, dapat diperhatikan bahawa kesan parameter olakan meningkat
secara signifikan. Kesimpulannya, dengan menggunakan syarat sempadan olakan terhadap
silinder bulat mengufuk, didapati bahawa trend yang diperoleh bagi kes sempadan olakan
adalah menyerupai kes suhu permukaan malar apabila nilai parameter sempadan olakan
γ → ∞.
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ABSTRACT

Fluid flow and heat transfer play a significant factor in industrial processes, manufacturing
and engineering applications. Therefore, a model is needed to enhance the process of fluid
flow and heat transfer, as the final products are heavily reliant upon the kinematics of the
flow and the simultaneous heating or cooling. However, the mathematical description of
fluid flow and heat transfer specifically in geometry of horizontal circular cylinder are quite
difficult to solve due to the nonlinearity existence and coupled equations. Indeed, obtaining
an analytical solution requires additional effort and time meanwhile to setup an experiment
is costly. In such a case, numerical methods provide means to solve the problem. Therefore,
the governing equation of fluid flow and heat transfer together with the boundary conditions
are solved numerically. Normally when modelling convection flow, many researchers
applied constant wall temperature or constant heat flux in the boundary conditions.
Nevertheless, these types of boundary conditions appear insufficient to adequately describe
the heating process for some cases. Another type of boundary condition; where convection
heats the bottom surface of the cylinder are applied in this study. This type of heating
process is called convective boundary condition. Motivated by this newly type of boundary
condition, the numerical scheme derived in this research is anticipated to provide a
theoretical reference to other analytical solution or for future experimental work. Five
different problems of fluid flow and heat transfer have been considered by incorporating
convective boundary conditions as thermal heating. Accordingly, these mathematical
models are then derived for steady laminar forced, free, and mixed convection boundary
layer flows over a horizontal circular cylinder immersed in three types of fluid namely
viscous, micropolar fluid and nanofluid. The governing parabolic partial differential
equations describing the flow are transformed using non-similar transformation, which is
then solved numerically using the unconditionally stable implicit finite difference scheme
known as the Keller-box method. The numerical codes in the form of computer
programmes are developed using MATLAB software. The numerical results obtained
consists of velocity, temperature, nanoparticle volume fraction profiles, skin friction and
heat transfer for various parameters of physical conditions such as convective, mixed
convection, Lewis number, porosity parameters, as well as Prandtl number. It was observed
that in all considered problems, the profiles of velocity and temperature profiles increase for
increased values of convective boundary conditions. In the case of nanofluids, the values of
nanoparticle volume fraction profile increases with with the increment on the values of
convective boundary condition. Correspondingly, as the value of convective parameter
increases, the skin friction coefficient increase as well except for nanofluid where the
convective parameter decreased in both cases; Tiwari and Das, and Buongiorno. However
for heat transfer coefficient and Nusselt number, it was observed that the effects of
convective parameter has increased significantly. In conclusion, by applying the convective
boundary condition over a horizontal circular cylinder, it is found that the trend of the
solutions obtained for the convective boundary condition case is similar to the constant wall
temperature case, especially when convective parameter γ → ∞.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

The modelling of convection flow phenomena has been investigated over past

decades resulting from the increased demand in industrial and manufacturing processes

such as cooling of an infinite metallic plate in a cooling bath, paper production and glass

blowing. The output and quality of the final product produced depend on the heat transfer

rate at the surface (Ishak, 2010). To achieve the desired outcome, it is essential to

understand the convection process, which can be performed by experimental work, adopting

a theoretical approach and by modelling the system mathematically. This study focusses on

the latter approach and mathematical model of the convection process requires specification

of the dependent variables of interest (velocity, temperature and pressure), the governing

equation of the problem, the initial and boundary conditions, the geometry of the surfaces,

the type of the fluids and the solution method of the resulting system of equations. In

considering these specifications, the desirable results will be achieved (Botte et al., 2000).

Convection by definition is the transfer of heat from one place to another by the

movement of fluids. Mathematically, the Navier-Stokes equations are the perfect equations

that can conceptualise the mathematical description of the fluid movement. The solution of

the Navier-Stokes equations is a flow velocity. Once the velocity has been determined, the

other variables of interest such as temperature, pressure and skin friction can be found.

Although the Navier-Stokes equations could adequately describe the motion of flow

mathematically, the equation itself is very complex and challenging to solve as it is elliptic.

The inability to solve the Navier-Stokes equations for flow problems has continue to hinder

researchers in calculating friction within a fluid. However, the breakthrough that provides a

solution for the previous problem was when the boundary layer theory concept was

introduced many years ago by Prandtl. The boundary layer equations simplifies the full

Navier-Stokes equations by dividing the flow into two regions. Indeed, this dramatically
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simplifies the equation without changing the physical sense and still acceptable to describe

the flow characteristics (Kasim, 2014). Details of this concept will be explained further in

Section 2.2.2.

Once the simplification process has been completed, the boundary layer equations

then need to be solved. Accordingly, there are two methods available: analytical and

numerical methods. Analytical method produces an exact solution, is continuous in the

independent variables and provide further insight into a system. Unfortunately however, the

focus of this study is on the geometry surface of a horizontal circular cylinder and involving

complex equations, which is where the numerical method is applied. Numerical methods

albeit very general, are appropriate for most models. Importantly, the accuracy of the

technique depends upon the system, complexity of the boundary conditions, and so forth.

The most common techniques used for modelling convection flow are the finite difference

method (FDM) and the finite element method (FEM). The numerical method used in this

study is the implicit finite difference method namely the Keller-box method. This method

has been found to be suitable for dealing with convective boundary layer flow problems

(Shu and Wilks, 1995). Another advantage of the Keller-box method is that the method is

unconditionally stable, and can solve problems in any order (Na, 1979; Mohamed, 2013).

Furthermore, the vast number of published papers on various flow problems has

successfully applied the Keller-box method in solving many flow problems. Also, many

books describing the Keller-box method can be found in publications by Na (1979) and by

Cebeci and Bradshaw (1988).

The primary focus of early research in convection flow has been concentrated

primarily on Newtonian fluid. Most low molecular weight substances such as inorganic salt,

water, ethyl alcohol, exhibit Newtonian flow characteristic i.e. constant temperature and

pressure, shear stress σ proportional to the rate of shear ξ . However many substances

especially of multi-phase nature (foams, emulsions and slurries) and polymeric melts do not

conform to the Newtonian postulate of linear relationship between σ and ξ in a simple

linear. Accordingly, these fluids are variously known as non-Newtonian, non-linear and

complex fluids. Therefore, another non-Newtonian fluid that shall be considered along with

viscous fluids in this study are micropolar fluids. Likewise, recent demand for small size

equipment has prompted researchers to develop fluids with high thermal conductivity.

Notably, research exploration leads to the discovery of the nanofluids; fluids that could

enhance thermal conductivity and improve heat transfer efficiency. The study on nanofluid

is also considered in this study.

Even though there have been many numerical studies and theoretical work

undertaken previously on the flow and heat transfer process, it seems that majority of these
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studies are limited in the case constant wall temperature (CWT) and constant heat flux

(CHF). Furthermore, the Newtonian heating (NH) condition initially used by Merkin (1994)

and later Aziz (2009) has incorporated another type of boundary condition known as

convective boundary conditions (CBC). The convective boundary condition can be

described as a situation where convection heats the bottom surface of the cylinder from a

hot fluid. Unlike constant wall temperature and constant heat flux, convective boundary

condition is more realistic to apply to the real situation since the heat coefficient value

changes as the wall temperature changing.

To date, there have been relatively limited number of published works on convective

heat transfer from heated bodies of higher complexity, such as horizontal circular cylinders.

Indeed, the geometrical shape of the cylinder creates non-uniformity in heat transfer around

the cylinder surface. With a better understanding and insight of the flow behaviour around

the cylinder, it is then possible to devise a method for heat transfer enhancement (Eiyad et al.,

2008). The horizontal circular cylinder was selected as an example for studying the effect of

the parameters especially the convective boundary condition due to the significant variation

in heat transfer rates around the cylinder surface in the tangential direction.

Therefore, this study proposes to formulate a mathematical model of the convection

flow and investigate if there is a significant effect of convective boundary conditions in five

different flow problems: forced, free and mixed convection flow over horizontal circular

cylinder in viscous, micropolar and nanofluids, respectively. Besides the convective

parameter, the influence of other governing parameters on the flow and heat transfer

characteristics is also considered including the physical quantity of interest. Throughout the

five problems, the effect of all parameters and physical quantities of interest in each

chapters are discussed. Physical quantities of interest such as heat transfer coefficient and

skin friction play a significant role in any practical situations. For instance, heat transfer

coefficients provide information regarding the rate of heat transfer from the body to fluid

and the type of material used in order to avoid body being exposed to high temperature.

Otherwise skin friction coefficient is also important for practical problems as it determines

the heating of the body due to the shear stress on the body and heat loss by friction.

Therefore, the nature of the flow and its separation from the body surface can be determined

as well by skin friction coefficients (Nazar, 2003). The flow becomes unstable and

rotational when it separates from the body. This phenomenon of separation is very crucial

for designing and building a plane.

It is worth mentioning at this point that a mathematical model of the five problems

has been derived for the case of convective boundary conditions. The simulated results of

a mathematical model are illustrated and the analysed data are given in the five different
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chapters corresponding to the five different problems . The contribution of this study will

serve as a reference for future research in experimental work and used as a comparison with

analytical results or theories.

1.2 Problem Statement

As mentioned earlier in the previous section, most of the published results in the

open literature are incorporated with constant wall temperature and constant heat flux as a

heating process at their boundary conditions. However, there are a relatively limited number

of published solutions that have been attempted for the convective boundary conditions

especially in the horizontal circular cylinder. Moreover the topics of convective boundary

conditions have not clearly developed yet. Accordingly, the present work is prepared as an

attempt to continue in developing the heating process of CBC, so that the research gap

between CWT, CHF and CBC can be narrowed.

Among the references, it is quite noticeable that minimal progress has been made in

CBC, but instead, attention on CBC is focussed more on simpler geometry such as stretching

sheet and vertical plate. Until now, there is not much investigation of CBC in the horizontal

circular cylinder to facilitate the effect of convective parameter of profile. Notwithstanding,

most researchers have focused more on CWT and CHF as it is easier to solve. However, the

effect of the CBC case cannot be ignored as many natural phenomena involve the changing

process of wall temperatures. Therefore, is it natural to ask the question, ”Is it possible for

us to extend the pioneering work of convection flow to investigate the effect of convective on

the velocity and temperature of the cylinder?”

The involvement of convective boundary condition as a heating process leads to the

complexity of creating the initial profile in MATLAB programming that can satisfy the

boundary condition asymptotically. The wall temperature or heat flux is no longer constant,

and therefore this factor contributes to the difficulties of the problem. Choosing the

appropriate initial profile is a challenging task yet is interesting to obtain the most accurate

result for the analysis.

Cylindrical shape bodies exhibit boundary layer separation. Boundary layer

separation occur when the flow is unstable and transition from laminar to turbulence flow.

Up to a certain point, singularities are encountered. The questions then start to arise, ”At

what point separation occur?”. By modifying the boundary conditions, it will influence the

separation point, convection process as well as the flow of the fluid. Hence, this study aims

to explore the following research questions:
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i) How are the mathematical models of viscous, micropolar and nanofluid problems with

the convective boundary conditions formulated?

ii) What are the effects of the convective boundary conditions parameter on the flow and heat

transfer characteristics over a horizontal circular cylinder, along with other parameters?

iii) Will the convective boundary conditions delay the separation process?

Question 1 is covered in Chapter 3, whereas Chapter 4 to Chapter 8 provides the answers to

Question 2. Discussion and explanation for Question 3 are given at the end of the Chapter 4

to Chapter 9.

1.3 Research Objectives

Based on the research questions posed before, the objectives of the present study are

to:

i) derive mathematical models for the proposed problems of boundary layer flows

ii) carry out mathematical formulation and analyses

iii) develop numerical algorithm and programming for computations in generating numerical

solutions

iv) analyse the effect of the convective parameter and other parameters on the heat transfer

characterisation

Five problems that are considered in this study are listed as the following:

i) Forced convection boundary layer flow over a horizontal circular cylinder in a viscous

fluid

ii) Free convection boundary layer flow over a horizontal circular cylinder in a micropolar

fluid

iii) Mixed convection boundary layer flow over a horizontal circular cylinder in a viscous

fluid

iv) Mixed convection boundary layer flow over a horizontal circular cylinder in a nanofluid:

Tiwari and Das Model
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v) Mixed convection boundary layer flow over a horizontal circular cylinder in a nanofluid:

Buongiorno Model.

1.4 Research Scope

The scope of this study is limited to a problem involving steady two-dimensional

forced, free and mixed convection boundary layer flows where the geometry of the surface

considered in this study is a horizontal circular cylinder, immersed in viscous, micropolar

and nanofluid with convective boundary conditions. Notably, this study examines the effect

of convective boundary conditions and other parameters on the flow and heat transfer. The

governing equations of the problems are then formulated using non-similar transformation

and solved numerically using the Keller-box method.

1.5 Significance of Research

The demand in many fields of applications such as engineering, physics and biology

contributes to an accelerating interest in the development of convection flow and heat

transfer. Earlier investigations have focused on the constant temperature, and only recently,

the case of convective boundary conditions has been highlighted. As a result, research on

boundary flow by incorporating convective boundary conditions is required as work in this

area is far less advanced. With the convective boundary conditions, the model is presumed

to obtain a realistic solution to practical problems.

On the other hand, the heat transfer characteristics improved by suspending the

nanoparticle. Thus, the study of nanofluid is important because nanofluid are widely used in

the heat exchanger, microchannel heat sink and many more. Compared to conventional

fluid, nanofluid has high specific area and more heat transfer surface between the particle

and fluids. Therefore, there is substantial need to investigate and identify other unique

applications for these fields.

Undoubtedly, the result or output from the numerical methods of the modelling of

convection flow is hoped to enhance the understanding of the fluid flow phenomenon and to

improve the development of related industries, for example in the manufacturing industries.

Besides that, the results obtained can be used for validation purposes in the future.

Furthermore, it is hoped that this study will facilitate researchers, engineers or other people

related to this specific field to explore this area more broadly.
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1.6 Overview of the Thesis

This thesis consists of nine chapters, including the introduction in Chapter 1,

presenting the problem statement, objectives, scope and research significance. Chapter 2

discusses on the literature review for the proposed problems. The literature review is

divided into several sections which discusses on the flow on a forced, free, mixed in

viscous, micropolar and nanofluids, respectively. In addition, brief introduction to the

research are included here.

In Chapter 3, the problem formulations and numerical method are presented and

discussed. A full discussion and details of the numerical method are also explained for

the case of mixed convection boundary flow in nanofluids using Buongiorno Model. The

procedure of the prescribed solution for the Keller-box method is given here. The entire

MATLAB program of the problem discussed in Chapter 3 is presented in Appendix A and

B.

The main body of the thesis is given in Chapter 4 to Chapter 8. In Chapter 4, 5 and 6

we discussed on the problem in forced convection in viscous fluid, free convection in

micropolar fluid, mixed convection in viscous fluid respectively. Chapters 7 and 8 prescribe

the problem on mixed convection boundary layer flow of a nanofluid fluid past a horizontal

circular cylinder considering two nanofluid models namely the Tiwari and Das and

Buongiorno. The full derivation of governing equations of Chapter 8 are presented in

Chapter 3.

Finally, Chapter 9 provides the overaching conclusions for the entire content and

work performed in the thesis. Additionally, some recommendations for future study based

on present solution also highlighted in this chapter. Further, the list of symbols used in

MATLAB system is provided in Appendix A and the solution procedures are given in

Appendix B. Appendix C to G provide detailed formulation of the five problems discussed

in the thesis and list of publications are shown in Appendix H.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The purpose of this chapter is to elaborate the literature review used in this study.

The literature review are divided into several sections which addresses basic concepts to

understand the theoretical framework for the method and also contains information from

previous studies, earliest investigations including the finding on the respective topic. The

basic concept of the research including the convective heat transfer; boundary layer theory;

type of fluids; and convective boundary conditions, as well as the numerical method namely

Keller-box method. As there are numerous papers devoted to the research on fluid flow, we

are going to present only a few of them, a cursory discussion of the quintessential

contribution of which is going to justify the re-examination of the subject in the present

research as well as the chosen framework.

2.2 Basic Concept of Flow and Heat Transfer

The effort to obtain a mathematical formulation of a fluid flow took shape during the

century following the publications of research by well known mathematicians. The next

subsection reviews the background materials required in this study. It provides an

introduction from the beginning of the mathematical formulation especially about flow and

heat transfer. It commences with heat transfer characteristics, the backbone of mathematical

modelling in a convection flow as given in the Subsection 2.2.1. The boundary layer part is

provided in Subsection 2.2.2 followed by a brief review of fluids.
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2.2.1 Convective Heat Transfer

Convection is the transfer of heat by the movement of fluid. The fluid movement

enhances heat transfer. Movement of fluids is very complex, making convection a difficult

subject. An everyday example of convection is the radiator, oceanic circulation, heat

exchangers, air conditioning and many more (Cebeci and Bradshaw, 1988).

Convection can be divided into two distinct types, free convection and forced

convection. Free convection occurs when fluid motion is caused by buoyancy forces that

resulted from density variation due to the difference in temperature in the fluid and in the

presence of body force such as gravity. When a less dense fluid is heated, the density

change causes the heated fluid to rise and replaced by cooler (dense) fluid without external

induced flow arising. Conversely, if the motion of the fluid arises from an external agent, for

instance, a fan, a blower, the wind, or the motion of a heated object itself, which imparts the

pressure to drive the flow, the process is termed forced convection. In any forced convection

situation, free convection is also present under the pressure of gravitational body forces.

The main difference between free and forced convection lies in the mechanism by which

the flow is generated.

In addition, there is another type of convection that exists when free convection and

forced convection mechanism act together to heat transfer. The process is called mixed

convection flow. The effect is noticeable in a situation where the forced fluid velocity is low

and the temperature difference is significant.

Internal and external flow can also be classified convection.The internal flow

describes a case when fluid is enclosed by a solid boundary such as pipes and channel.

Meanwhile, external flow occurs when a fluid extends without encountering a solid surface

such as a flat plate, cylinder and sphere. Therefore, this research focuses on the convection

that takes place at horizontal circular cylinder, the case of external flow.

The type of the flow also influences the convection process. A flow can be described

as laminar, turbulent or transitional in nature. Smooth flow with a particle of fluid moving

steadily in a smooth line parallel to the surface is called laminar flow. The velocity of the

laminar fluid is constant at any point. The opposite trend is observed for turbulence flow.

Turbulence flow is characterised by a choatic flow with particles moving unsteadily in an

unpredictable path. Turbulence flow occurs when the Reynolds number is high while laminar

flow is when the Reynolds number is low. The process of laminar becoming turbulent is

known as transitional flow.
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Apart from the flow type, other criteria that mainly contribute to convection is

determined by the thermal heating conditions, fluid properties, the roughness of surface i.e.

geometry and orientation. The first key to understanding heat transfer by convection is the

boundary layer.

2.2.2 Boundary Layer Theory

Boundary layer theory was first proposed by Ludwig Prandtl in 1904. Prandtl’s idea

describes a concept that would revolutionise the understanding and analysis of fluid

dynamics. The idea behind the concept is in the effect of friction which causes the fluid

immediately adjacent to the surface to stick to the surface i.e. no slip condition at the

surface and frictional effects are experienced only in a boundary layer, a thin region near the

surface (Anderson, 2005). Outside the boundary layer, the flow is essentially the inviscid

flow.

Referring to Figure 2.1, the velocity changes enormously over a very short distance

normal to the surface of a body immersed in a flow. This means that the boundary layer is

a region of a very large velocity gradient. According to Newton’s shear stress law which

states the shear stress is proportional to the velocity gradient, the local shear stress can be

very large within the boundary layer. This results in the skin friction drag force exerted on

the body is negligible, contrary to what some previous investigators believed.

Figure 2.1. Boundary layer region. Source: Acheson (1990)
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Prandtl simplifies the equations of fluid flow by dividing the flow field into two regions which

are stated as follows:

i) outer layer where it is far from any solid surface and the viscosity can be neglected, and

considered to be inviscid

ii) thin layer adjacent to a solid surface dominated by viscosity and creating the majority of

drag experienced by the boundary body. This thin layer where the friction effect cannot

be neglected is called the boundary layer

With the advent of Prandtl’s boundary layer concept, it soon became possible for the

simplification of the Navier Stokes equation. As a result, the boundary layer equations are

likened to Navier Stokes in that each system consists of coupled, nonlinear partial

differential equations. The major mathematical discovery however is that the boundary

layer equations exhibit an entirely different mathematical behaviour than the Navier-Stokes

equations. The Navier Stokes equations possessed elliptic behaviour where the complete

flow field must be solved simultaneously, in accord with the specific boundary conditions

defined along the entire boundary of the flow. On the contrary, the boundary layer equations

have parabolic behaviour, which affords tremendous analytical and computational

simplifications. The boundary layer equations can be solved in a few stages by marching

downstream from where the flow encounters a body, subject to specified inflow condition at

the encounter and specified boundary conditions at the outer edge of the boundary layer.

With these step by step solutions, the prediction can be made on skin friction, the location

of the flow separation and many more.

Prandtl’s idea allows closed form solution in both areas, significant simplification of

the full Navier-Stokes equations. The majority of the heat transfer to and from a body take

place within the boundary layer again allowing the equations to be simplified in the flow

field outside the boundary layer. Prandtl simplifying the equation by estimating the order of

magnitude of the various of terms in the conservation equations, and then derived the

so-called the boundary layer equations. The boundary layer approximation and analysis

order of magnitude by Prandtl can be seen in Chapter 3 Section 3.2.7.

Another astonishing result by Prandtl is flow separation. Flow separation is a case

when the boundary layer separates from the surface and trails downstream. A separated flow

region with some low energy flow froms in the wake behind the body, but essentially the

region is dead air. At the separation point, the fluid elements deep inside the boundary layer

have already had substantial portions of the kinetic energies dissipated by friction and so
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cannot work their way uphill in a region where the pressure is increasing. Hence the velocity

profile depleted near the surface. Beyond the separation point, the boundary layer simply

lifts off the surface. There are some case in this study that involved separation flow. The

phenomenon described above is shown in Figure 2.2.

Figure 2.2. Separation of boundary layer. Source : Acheson (1990)

2.2.3 Type of Fluids

As discussed in Section 2.2.1, the convective heat transfer coefficient depends on

some fluid properties such as thermal conductivity, specific heat capacity, velocity, viscosity

and other flow and temperature dependent properties. Besides that, surface geometry and

flow conditions also play a significant role in determining the convection coefficient. Thus,

the type of fluid influences the process of heat transfer. In the next subsection, the details of

Newtonian, non-Newtonian and nanofluid are provided.

2.2.3.1 Newtonian Fluid

A fluid that behaves accordingly to Newton’s law, which viscosity µ is independent of

the stress, is said to be Newtonian or known as viscous fluids. Air, water, oil, and electrolyte
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can be considered Newtonian. Due to this reason, extensive research has been devoted to

heat transfer in Newtonian (viscous) fluids.

Viscous fluids can be described as one which resists movement of an object through

the fluid. All fluids, liquid, gas or plasma have some measure of viscosity which can be

compared using mathematical formulas or direct measurement or movement. The type of

matter a fluid is made of is the main determiner of how viscous it is. In general, liquid

will become less viscous as their temperature rises, while gases become more viscous with

an increase in temperature. (Mohamed, 2013). Study of the viscous fluid is presented in

Chapter 4 and Chapter 6.

2.2.3.2 Non-Newtonian Fluid

In contrast, non-Newtonian fluid properties differ in many ways from those of

Newtonian. Most commonly, the viscosity of the non-Newtonian fluid is dependent on the

shear rate. Although the concept of viscosity is often used in fluid mechanics to characterise

the shear properties of the fluid, it can be inadequate to describe non-Newtonian fluids. The

development of the processing industry whose behaviour in shear cannot be characterised

by Newtonian relationship has made the research in non-Newtonian increasing. A number

of industrially important fluids exhibit a non-Newtonian fluid behaviour. Because of the

growing use of these non-Newtonian fluids, considerable efforts have been directed towards

understanding their friction and heat transfer characteristics. Amongst the various

non-Newtonian fluid models, micropolar is considered in Chapter 5 respectively.

The inadequacy of the classical Navier Stokes to describe rheologically complex

fluids such as liquid crystal, animal blood had led Na (1979) to study the boundary layer

flow of a micropolar fluid due to a stretching wall. Micropolar fluids are fluids with

microstructure. Theory of micropolar fluid was proposed by Eringen (1972). The theory of

micropolar fluids can be used to analyse the behaviour to exotic lubricant, liquid crystal,

colloidal suspensions or polymeric fluids, and animal blood. Physically, micropolar fluid

display the effects of rotary inertia and couple stress. As the fluids consist of randomly

oriented molecules, and as each volume element of the fluid has a translation as well as

rotation, the analysis of the physical problems in these fluids has revealed several

interesting phenomena, which are not found in the Newtonian fluid. Correspondingly, the

theory of micropolar fluids requires that one must add a transport equation representing the

principle of conservation of mass and momentum, and additional local constitutive

parameters are introduced. A detailed survey of microcontinuum fluid mechanics with

several applications in physiological fluid flows has been presented by Ariman et al. (1973).
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Interesting aspects of theory and applications of micropolar fluids are dealt in the books by

Eringen (1966) and Birkhauser (1999).

2.2.3.3 Nanofluid

In the fast growing technology industry globally, many high-tech industries like

microelectronics, manufacturing and transportation are facing a problems associated with

limiting the cooling efficiency of heat transfer fluids like water, ethylene glycol, lubricants

and oil. On the other hand, rapid cooling is also an essential requirement in food science

and technology. Hence, the enhancement of thermal properties of conventional fluids can be

improved by taking a dilute suspension of nanoparticles into conventional fluids. This

suspension which is called nanofluid is a relatively new class of fluids which consist of a

base fluid with nano-sized particles.

Figure 2.3. Physical model of nanofluids

The term of nanofluids was first introduced by Choi (1995). The nanofluid possesses

a significantly higher thermal conductivity and single phase heat transfer coefficients than

respective base fluids. In conventional case, the suspended particles are of micrometre or

even milimetre dimensions. This large dimension causes severe problems such as abrasion

and clogging. Hence, suspended large particles in fluids are hindering the thermal

14



conductivities in fluid. Therefore, the discovery of nanofluid has boosted the work in

improving thermal conductivity. Other major advantages of nanofluids are that the size of

nanoparticle is nanometre-sized, and can easily flow smoothly through the microchannel

(Khanafer et al., 2003), and therefore, improve thermal conductivity. Reducing and

enhancing the heat transfer capabilities will make nanofluid a smart fluid. Besides that

nanofluid is very stable due to the tiny size of the nanoelement with no additional problems.

The enhanced thermal behaviour of nanofluids could provide a basis for an enormous

innovation for heat transfer intensification, which is of major importance to many industrial

sectors including transportation, chemical and metallurgical sectors, power generation,

micro-manufacturing, thermal therapy for cancer treatment, as well as heating, cooling and

air-conditioning. Indeed, nanofluids are also important for the production of nanostructured

materials, for the engineering of complex fluids, as well as for cleaning oil from surfaces

due to their excellent wetting and spreading behaviour (Ding et al., 2007). However, the

thermal conductivity of the nanofluid is strongly dependent on the volume fraction

dimension, properties of the solid particle, shape and also the size of the particle (Eastman

et al., 1997; Xuan, 2000). Study on nanofluid is presented in Chapter 7 and 8.

2.2.4 Convective Boundary Conditions

Determining the boundary conditions at a surface exposed to a flowing fluid is one

of the major concerns for convection. Early studies revealed that in flow problems

incorporated either constant or prescribed wall temperature; or constant or prescribed

surface heat flux. However, more recent developments of the convection flow have

identified that another two heating processes have been used to specifying the

wall-to-ambient temperature distributions, namely Newtonian heating and the convective

boundary conditions.

Correspondingly, Newtonian heating is a case where the heat transfer rate from the

bounding surface with a finite heat capacity is proportional to the local surface temperature

usually termed conjugate convective flow. In contrast conjugate conditions are where heat is

supplied through a bounding surface of finite thickness and finite heat capacity. In this case,

the interface temperature is not known beforehand, but depends on the intrinsic properties of

the system, namely the thermal conductivity of the fluid and solid (Salleh et al., 2010a). In

other words, a situation where convection heats the bottom surface of the plate from a hot

fluid. It is well known in that in convection along a surface with a convective temperature

boundary condition the temperature will change along the surface.
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In many actual cases the heat transfer from the surface is proportional to the local

surface temperature (Hayat et al., 2017). In the boundary layer flow and heat transfer

analysis, constant wall temperature and constant heat flux are widely used. However there

are instances where the heat transfer is occuring at the surface relies on the wall

temperature, resulting mostly in heat exchangers. In this case, the convective boundary

condition is used to replace the the condition prescribed by the wall temperature or heat flux

(Mansur and Ishak, 2013).

Heat transfer problems for flow regarding the convective boundary condition were

investigated by Aziz (2009), where a similarity solution for the laminar thermal boundary

layer over a flat plate was studied. Furthermore, Aziz in his study, demonstrated that a

similarity solution is possible if the convective heat transfer of the plate is proportional to

x−1/2. The appearance of the paper simulated a large number of subsequent studies

concerning different boundary layer problems with convective boundary conditions. See for

example, Magyari (2011), Aziz and Khan (2012), Makinde and Aziz (2011), Alsaedi et al.

(2012), Ishak et al. (2011) and Mohamed (2013).

Notwithstanding, constant wall temperature and heat flux may be easy to formulate,

but it seems unrealistic to apply to real life applications. On the other hand, incorporating

the convective boundary condition in the governing system may add further difficulties and

challenging equations as the stabilities and inconsistency occurrences persist, but the results

obtained may be worth to the industrial applications, and likewise to bridge the thermal

heating process gap. An excellent review of the topics covering convective heat transfer

problems can be found in the books by Martynenko and Khramtsov (2005) and Bejan (2013).

It is worth mentioning at this juncture, the convective boundary condition changes

into constant wall temperature when the value of convective parameter is substantial. Since

the study of the convective boundary condition is still at its early stage, comparison against

available literature is limited, if existing at all. Therefore by choosing a big value of

convective parameters, a comparison can be undertaken with the existing and relevant

published research works.

2.3 Keller-box Method

The box scheme for the numerical solution of parabolic differential equations was

originally proposed by Keller (1970), namely Keller-box method. Keller-box method is

an efficient and accurate implicit numerical scheme devised specially for case of parabolic

differential equations. The method has few desirable characteristics that make it suitable
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and fit for the solution of all parabolic partial differential equations (Cebeci and Bradshaw,

1988). There are other desirable features which are not so apparent. Being implicit, the

method will be unconditionally stable.

The procedure of fourth - order accurate extension of Keller-box method is capable of

treating laminar or turbulent boundary layers up to separation point and includes transverse

curvature effects. The analysis has been coded and has been shown to provide solutions

comparable in accuracy to similar second order schemes but with fewer grid points and with

less computer time (Cimbala, 1979).

This method has been applied widely and it seems to be the most flexible of the

common methods. It has been tested extensively on laminar boundary layer flows and

turbulent boundary layer flow (Keller, 1970). It has also been shows by Keller and Cebeci

(1972) and Mucoglu and Chen (1988) that Keller-box method is to be much faster, easier to

program, more efficient and flexible to use.

The scheme is also applicable to various type of boundary flow problems, which are

the free and mixed convection flow. Na (1979) discussed the isothermal free convection over

a vertical plate using the Keller-box method. Kumari et al. (1987) considered the mixed

convection boundary flow over a sphere embedded in a saturated porous medium using this

numerical method. Next, Kumari et al. (1996) extended this method to solve the unsteady

free convection flow over a continous moving vertical surface.

The procedure includes an implicit finite difference scheme in conjuction with

newtons method for linearisation. Implementation of the box scheme will entail the solution

of linear systems of algebraic equations. We shall use the method of factorization of block

tridiagonal matrices recommended by Keller (1970) in the five problems consider in this

study.

2.4 Forced Convection Viscous Fluid

The first solution of the steady forced convection momentum was been described

initially by Blasius (1908) who determined the flow from the stagnation point by using series-

expansion. In 1940, Frössling (1940) then solved the thermal equation of this problem for

the case when the surface temperature of the cylinder is subjected to a constant temperature

(Schlichting, 1968). Apart from series expansion method, Merkin and Pop (1988) proposed

a numerical solution for the case when there is constant heat flux from the cylinder. The

numerical solutions obtained were then used to compare with the series expansion where
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it was determined that the Blasius expansion was better in estimating temperature profile,

whereas the Gortler-type expansion was better at estimating the velocity profile.

Nonetheless, research on forced convection has been extended where the flow and

thermal equations are solved simultaneously using various numerical methods. (Bharti

et al., 2007) presented in their paper two types of thermal conditions which are constant

temperature and uniform heat flux on the surface of the cylinder. Furthermore, they

investigated numerically the momentum and thermal energy equations using the finite

volume method. Indeed, they stated that uniform heat flux always shows the higher value of

the heat transfer coefficient than the constant wall temperature at the surface of the cylinder.

Next, Sumaily et al. (2012) in a separate study, applied high-order finite-element in solving

forced convection embedded in the porous medium. The study analyses forced convection

heat transfer from a circular cylinder by applying constant wall temperature as the thermal

boundary condition. Further, Soares et al. (2005) studied flow and heat transfer behaviour

of non-Newtonian fluids by incorporating the iterative Gauss-Seidel relaxation method.

They reported that kinematic condition is a major factor that influenced the power law index

and less by the type of thermal conditions. In a recent study on forced convection, Durgam

et al. (2017) and Sheikholeslami and Bhatti (2017) demonstrated the optimal distribution of

the heat source array under forced convection and nanofluid forced in the presence of a

magnetic field respectively. The numerical solution was executed using COMSOL as in the

former paper and the control volume based finite element method was used in the latter.

Equally important in the numerical approach, the analytical solution on forced

convection also available in the literature. Magyari and Keller (2001) provided the solution

for the problem of forced convection flow over plane or axisymmetric bodies of arbitrary

shapes and power-law surface temperature distribution analytically in porous medium.

Meanwhile, Mirgolbabaei et al. (2010) solved forced convection over a flat plate and

applying the Adomian Decomposition Method (ADM) with the series solution of the

nonlinear differential equations governing on the problem thereby developed. The ADM

combined with the Pade approximant to provide efficient alternative tools for solving

nonlinear models.

However, the literature on forced convection on the experimental work has not been

studied as extensively compared to the numerical methods. Some of the studies on the

mechanism behind the forced convection flow using experimental techniques may be found

in several papers by Sanitjai and Goldstein (2004), Mohammed and Salman (2007) and

Mahgoub (2013). The latter researcher investigated forced convection heat transfer over a

flat plate in a porous medium with air as the working fluid. The experiments have been

carried out for the Reynolds numbers ranging from 105 to 106 based on the test plate length
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under the condition of constant heat flux. Accordingly, it was found that higher heat transfer

coefficients were obtained with larger particle size and higher particle thermal conductivity.

On the other hand, Salleh et al. (2011) conducted a study on forced convection over a

horizontal circular cylinder with Newtonian heating boundary conditions. It was shown that

the flow problem is unaffected by the heat transfer due to the decoupling equations and there

are critical values in the parameters to achieve an acceptable solution for the temperature

profiles. The Newtonian heating conditions were introduced by Merkin (1994), and the

condition has also been used in many studies by investigators such as in Chaudhary and Jain

(2006), Salleh et al. (2009, 2011) and many more.

In addition, another type of boundary conditions which is convective boundary

condition has been investigated over a flat surface by Merkin and Pop (2011). The result

was obtained numerically based on the Crank-Nicolson method and the Newton-Raphson

iteration to finite difference equations that arise at each step space. Before that, Bharti et al.

(2007) had already solved the forced convection problem numerically using the finite

volume method. These researchers considered viscous fluids in their studies. However in

more recent research, Mohd Rohni et al. (2013) expanded the work and focused towards

nanofluid as this fluid gave promising results in increasing the thermal conductivities. These

authors incorporated constant wall temperature in their studies concluding that by

increasing the nanoparticles thereby leads to the increase in thermal conductivity.

Moreover, a most recent paper by Mabood et al. (2016) studied nanofluid in the forced

convection numerically considering convective boundary conditions as the thermal

conditions. Also, the experimental investigation by Vimala et al. (2016) in the forced

convection considered nanofluids as a base fluid as well.

Therefore, the above literature review demonstrates that even though a significant

work has been performed in the area of forced convection, the effect of the convective

parameter on heat transfer has not been investigated in detail. Accordingly, this research

aims to is examine the steady forced convection flow over a horizontal circular cylinder

with convective boundary conditions. Motivated by the studies of Merkin and Pop (2011)

and Salleh et al. (2011), problem in Chapter 4 follows closely the formulation of that

proposed by the latter. Next subtopic discussed the development of free convection in

micropolar fluids.

19



2.5 Free Convection Micropolar Fluid

Several of the earlier studies on free convection can be found in the articles written by

Willson (1969) and Peddieson and McNitt (1970). Indeed, Willson introduced the concept

of the boundary layer in the theory of micropolar fluids meanwhile Peddieson and McNitt

applied the micropolar theory to the problem of steady stagnation point flow, steady flow over

a semi infinite plate and impulsive flow past an infinite plate. Balaram and Sastri (1973) and

Maiti (1975) further studied convective heat transfer in a micropolar fluid through a vertical

channel and horizontal flat plate respectively. In the following year, Sastry and Maity (1976)

collaborated together on the problem of forced and free convection in a micropolar fluid in an

annulus of two vertical pipes. Notably, in the previous three studies mentioned, the boundary

layer concepts in convective flow are not considered.

Elliott (1970) investigated and pioneered work on free convection flow on a two

dimensional or axisymmetric body. However, it appears that Merkin (1976) was the first to

present the complete solution of this classical (Newtonian) fluid using the Blasius and

Gortler series expansion method along with the integral and finite difference scheme.

Nonetheless, over the years, many numerical techniques have been applied to solve the free

convection problem. Some of the methods include the Runge Kutta integration scheme with

the Newton Raphson shooting method by Hassanien (1997), McCormick’s technique Rebhi

et al. (2007), Runge-Kutta Fehlberg Yacob et al. (2011), and the finite element method

using the variational Ritz model by Takhar et al. (1998). Also, Elgazery and Elazem (2009)

studied the effect of thermal radiation and variable viscosity and thermal conductivity of

micropolar fluids using the Chebyshev finite difference method. The method proposed by

Elgazery and Elazem (2009) demonstrated that the variable viscosity and thermal

conductivity in the presence of thermal radiation had significant influences on the velocity,

the angular velocity and temperature profiles, shear stress, couple shear stress and the

Nusselt numbers.

Recently, Borrelli et al. (2013) solved MHD flow in micropolar fluids by using

numerical method. The numerical solutions are obtained using the MATLAB routine

BVP4C. Most recently, Abdallaoui et al. (2015) studied this numerically using the lattice

Boltzmann method where heating is maintained at a constant wall temperature. One

remarkable finding in their research is that fluid flow and heat transfer are profoundly

affected by the heating cylinder position. Later, Zhang et al. (2016) investigated

numerically a natural convection elliptic cylinder using the variational multiscale element

free Galerkin method.
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On the other hand, Kim and Lee (2003) performed several analytical studies on the

MHD oscillatory flow of a micropolar fluid over a vertical porous plate, and the effects of

non-zero values of micro-gyration vector on the velocity and temperature fields across the

boundary layer. Moreover, this was studied using small perturbation approximation.

Furthermore, the Homotopy Analysis method is noted to be among the most popular

analytical methods in solving flow problems and is frequently applied to obtain the

expression for velocity and microrotation profiles Sajid et al. (2009). Meanwhile, Deka

et al. (2017) studied one dimensional unsteady free convection past an vertical cylinder

under constant heat flux at the surface. The closed form solution obtains the Bessel function

& modified Bessel functions by Laplace transformation. Also, Abou-Ziyan et al. (2017)

investigated a short horizontal cylinder experimentally with a large Pr number under

constant heat flux for both Newtonian and non-Newtonian fluids where the results indicated

that the Newtonian fluid achieves a higher free convection heat transfer coefficient than the

non-Newtonian fluid.

The effect of the micropolar parameter in the unsteady mixed convection was

investigated by Gorla (1995). The findings by Bhargava and Takhar (2000), Mathur et al.

(1978) on the boundary flow immersed in micropolar fluid demonstrated that temperature

increases inside the boundary layer compared to the Newtonian flows. Likewise, Mansour

et al. (2000) studied the effects of heat and mass transfer on the magnetohydrodynamic flow

of micropolar fluid on a circular cylinder with uniform heat and mass flux. The results

indicated that micropolar fluids display a reduction in drag as well as heat transfer when

compared with Newtonian fluids. Accordingly, Kelson and Desseaux (2001) set self-similar

solutions for the boundary layer flow of micropolar fluids driven by a stretching sheet with

uniform suction or blowing through the surface. In a separate study, Ibrahim and Hassanien

(2001) obtained local similarity solutions for mixed convection boundary layer flow of a

micropolar fluid on horizontal flat plates with variable surface temperature. More recently,

Gibanov et al. (2016) studied convection in a trapezoidal cavity filled with a micropolar

fluid and (Hussanan et al., 2017) extended the convection flow in micropolar nanofluids

with oxide nanoparticles in water, kerosene and engine oil.

Research on free convection over flat plates in micropolar fluid has been carried out

by Jena and Mathur (1981). The authors studied free convection in the boundary layer flow

of a micropolar fluid past a non-isothermal vertical flat plate. Undoubtedly the study of the

free convection boundary layer over horizontal circular cylinder is not as extensive as the

boundary layer flow over a flat plate. Among the early investigations over a horizontal

circular or elliptic cross section are given by Bhattacharyya and Pop (1996) where they

studied free convection in a micropolar fluid. This work is an extension of the problem
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studied by Merkin (1977) in a viscous fluid. Hassanien and Gorla (1990) examined

combined forced and free convection in micropolar fluid over a horizontal cylinder. Next,

Amin and Riley (1990) analysed the problem over a heated horizontal plane and Merkin

(1976) considered free convection on the isothermal horizontal cylinder in a viscous fluid.

Free convection over a horizontal circular cylinder was likewise studied by Merkin and Pop

(1988) by incorporating constant heat flux in a viscous fluid. Notably, Nazar et al. (2002b)

extended the work of Merkin (1976) of the problem in a micropolar fluid with constant wall

temperature. Nazar et al. (2002a) then revisited the same problem applying the constant

wall heat flux. Recently, Salleh and Nazar (2010) investigated Newtonian heating in the

boundary condition, in this problem to study the effect of the convective parameter and

Mahfouz (2013) examined free convection within an eccentric annulus filled with

micropolar fluid and was solved using the spectral method and applied CWT.

Motivated by the studies conducted by Salleh and Nazar (2010), and Nazar et al.

(2002a,b), the present study in Chapter 5 consider the laminar free convection boundary

layer flow over a horizontal circular cylinder in a micropolar fluid.

2.6 Mixed Convection Viscous Fluid

Acrivos (1966) was first to theoretically proposed the problem of mixed convection

flow from general bodies in the existence of a boundary layer. Joshi and Sukhatme (1971)

solved the boundary layer of this problem using the series method in which the cases of

assisting and opposing flow considered by using the technique of Gill Runge-Kutta

integration technique along with the Shooting method. Conversely, Nakai and Okazaki

(1975) studied the mixed convection problem of a circular cylinder for the cases of both

small Grashof and Reynolds numbers.

Further, Sparrow and Lee (1976) studied mixed convection of a horizontal circular

cylinder subjected to constant wall temperature. However, these authors only considered

the opposing flow in their research studies. Then, Merkin (1977) extended the problem

discussed by latter, where a numerical solution to the boundary layer equations with Pr = 1

is obtained, and solved it based on the Crank - Nicolson method, using Newton - Raphson

method coupled with the Choleski decomposition technique. The solution was restricted to

the region preceding the point of boundary layer separation since boundary layer are not

valid beyond that point.

The study on mixed convection boundary layer flow over a stretching cylinder in a

porous medium was conducted by Mukhopadhyay (2012). The results were numerically
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obtained using Shooting method, where the skin-friction coefficient increased with an

increasing mixed convection parameter. Notably, the research on mixed convection in the

horizontal circular cylinder is not only limited to the case when fluid viscosity is constant,

but is also found in the case where the is variation in viscosity. For instance, Ahmad et al.

(2009) considered the problem of mixed convection with temperature dependent viscosity

and the obtained results indicated that the flow and thermal characteristics are significantly

influenced by the effect of temperature-dependent viscosity especially when the viscosity of

a fluid is sensitive to temperature variations. More recently, Malik et al. (2016) extended the

problem carried out by Ahmad et al. (2009) by investigating temperature dependent

viscosity and thermal conductivity. The authors have also indicated that the effect of

viscous dissipation is considered in the energy equation.

On the other hand, Roca and Pop (2013) performed stability analysis for the problem

of mixed convection flow past a vertical flat plate in the case of heat flux where they obtained

a dual solution to establish which of the solutions was stable; the stability analysis was

therefore required in this case. Other studies covering practical applications in engineering

heat transfer on this topic are those by Chin et al. (2007), Merkin and Pop (2002), Chen

(2000) and recently Danai et al. (2016). The more recent reference is given by Seshadri

and Munjam (2016) and Elsherbiny et al. (2017) where they designed a study to observe

convection across a horizontal square isothermal cylinder.

This problem has also been expanded to different geometries and extended in

several cases in viscoelastic, micropolar and the more recent development in nanofluids.

The problem of mixed convection flow of a micropolar fluid over a stretching sheet has

been solved by Takhar et al. (1998). Anwar et al. (2008) has also analysed the mixed

convection boundary layer flows in the viscoelastic fluid over a horizontal cylinder with a

constant temperature while Ishak et al. (2009) considered mixed convection in a micropolar

fluid and found that dual solutions exist in assisting flow. On the other hand, Ahmad et al.

(2012) reported that for the case of mixed convection in laminar film flow of a micropolar

fluids, a dual solution exists for the case of assisting flow and with no dual solutions for the

case of opposing flow. Recently, Tham et al. (2014) considered mixed convection flow from

a horizontal circular cylinder embedded in a porous medium and nanofluid using the model

proposed by Buongiorno. The authors discussed the influence of several parameters of

nanofluids and concluding that the parameters affected the flow and heat transfer

characteristics.

Various numerical techniques and methods have been adopted to solve the mixed

boundary flow problem. Mukhopadhyay and Mandal (2015) reported the effect of velocity

slip and thermal slip on magnetohydrodyamic by applying the Shooting method. On the
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other hand, Bhowmick et al. (2014) solved numerically non-Newtonian mixed problem by

applying the marching order implicit finite difference method with the double sweep

technique. For an analytical solution, the Homotopy analysis method has been widely used.

See for example Abbasi et al. (2016) and Waqas et al. (2016). Recently Samyuktha and

Ravindran (2015) examined the thermal radiation effect on mixed convection flow over a

vertical stretching sheet using CWT. More recently, Abbasi et al. (2016) and Altunkaya

et al. (2017) investigated the vertical parallel plate by using the pertubation series method

and CHF respectively.

Furthermore, Nazar et al. (2003, 2004) investigated the problem of mixed

convection in the horizontal circular cylinder for both heating conditions namely, constant

wall temperature and constant heat flux. In their papers, they explained how the governing

parameters affected the flow and heat transfer characteristics as well as the position of the

boundary layer separation. Following Nazar’s work, Salleh et al. (2010b) solved the same

problem by incorporating Newtonian heating in boundary conditions. Therefore, in the

present study in Chapter 6, the problem of mixed convection boundary layer flow over a

horizontal circular cylinder is considered by extending the work of Salleh et al. (2010b) by

changing the thermal heating from Newtonian to convective boundary conditions.

2.7 Mixed Convection Nanofluid : Tiwari and Das Model

Early investigation on nanofluid using the Tiwari and Das model in the horizontal

circular cylinder is presented by Eiyad et al. (2008) using the second order finite volume

scheme. Thanks to the advancement of numerical methods, most problems are solved via

the numerical approach and modelled by the nonlinear ordinary or partial differential

equations. In particular, Soleimani et al. (2012) conducted a numerical investigation on the

natural convection inside the semi-annulus cavity filled with a nanofluid using the Control

Volume based Finite Element Method (CVFEM). Moreover, Seyyedi et al. (2015) applied

the finite volume method numerically to analyse the natural convective heat transfer in an

annulus filled with a Cu/water nanofluid. Through finite volume as well, Nayak et al. (2015)

concluded that the heat transfer rate increases remarkably by the addition of nanoparticles.

Besides the finite volume and finite elements, some researchers have employed the

Lattice Boltzmann in solving the nanofluid Tiwari and Das problem. Among the

investigators using this method are Ashorynejad et al. (2013) and Rahmati et al. (2016).

These authors studied numerically the effect of magnetic field on natural convection in a
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horizontal cylindrical annulus and mixed convection in a double lid-driven cavity

respectively. Sheremet et al. (2015) conducted a similar study in the cavity

Interestingly, Dinarvand and Pop (2017) combined both methods; analytical and

numerical in solving the convection flow problem for a rotating down-pointing cone. A

general analytical method known as the Homotopy Analysis Method is proposed together

with the Keller-box method in this study. Before that, Hassani et al. (2011) previously

applied HAM in their research and found that their result in nanofluid over a stretching

sheet for the Nusselt number are contradicted with the result obtained by Khan and Pop

(2010).

The studies of nanofluid in the horizontal cylinder are less than those studies

associated with the stretching sheet. Indeed, major attention is given to the problem caused

by a stretching surface because of its immense potential as a technological tool in many

engineering applications. The effect of the parameters namely the Soret effect, the

inclination angle and the thermal radiation effect in nanofluids have recently been

investigated by RamReddy et al. (2013), Abu-Nada and Oztop (2009) and Das et al. (2015),

respectively. In addition, Bachok et al. (2012) studied the stagnation point flow over a

permeable stretching/shrinking sheet. Subsequently, these authors focused on Copper

nanoparticles diluted in a water based fluid. Furthermore, they concluded in their study that

the inclusion of nanoparticles into the base fluid produced an increase in the skin friction

coefficient and the local Nusselt number.

Also, Mabood et al. (2017) and Tham et al. (2012) investigated the effect of viscous

dissipation on unsteady mixed convection and steady mixed convection for a horizontal

cylinder using the Tiwari and Das model by considering the constant wall temperature,

respectively. Notwithstanding, constant heat flux has also been used in mixed convection in

the lid-driven square cavity with Cu-water nanofluid by Ismael et al. (2016).

The pioneering work of Aziz (2009) on convective boundary conditions stimulated a

vast number of subsequent papers concerning different boundary layer problems. See for

example, Yacob et al. (2011) who investigated the problem of stretching shrinking in

nanofluid numerically using the Runge-Kutta-Felbergh method with shooting techniques by

incorporating convective boundary conditions. Further, Hajmohammadi et al. (2015)

analysed nanofluid flow and heat transfer over a permeable flat plate using convective

boundary condition. More recently, Khan et al. (2016) investigated the rotating flow of

nanofluid induced by a convectively heated deformable surface using a combination of the

shooting approach with the fifth order Runge-Kutta method determining the velocity and

temperature distributions above the sheet.
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Although there are great number of studies conducted on different variations of

geometry, temperature and heat flux, limited work has been undertaken (perhaps only a

few) to investigate nanofluid using the Tiwari and Das model of a circular cylinder using

convective boundary conditions. Therefore, problem in Chapter 7 concentrates on

employing the convective boundary condition whereby three different nanoparticles namely

Cu, Al2O3 and TiO2 are diluted in water-based fluid to form a nanofluid. Indeed, particular

efforts is concentrated on the effects of the skin friction coefficient, the local Nusselt

number, flow field, temperature distribution, mixed convection and convective parameters.

To the author’s knowledge, little focus has been undertaken in studies highlighting the

boundary layer flow of nanofluid over a surface with convective boundary conditions.

2.8 Mixed Convection Nanofluid : Buongiorno Model

The other popular nanofluid model besides Tiwari and Das is Buongiorno. Based on

Buongiorno’s exploration on nanofluid, the study on the flow in porous medium filled with

nanofluid has garnered considerable interest and attention. Nield and Kuznetsov (2009)

pioneered the study of porous medium saturated in nanofluid by presenting the influence of

nanoparticle on natural convection past a vertical plate, using model in which Brownian

motion and thermophoresis are accounted for. This problem is initially extends from the

classical problem of porous medium studied by Cheng and Minkowycz (1977) while Nield

and Kuznetsov (2009, 2011) extended the Cheng-Minkowycz problem for natural

convective boundary layer flow in a porous medium saturated by a nanofluid. Moreover,

Nield and Kuznetsov (2009) analysed free convection boundary layer flow along a vertical

flat plate embedded in a porous medium and Nield and Kuznetsov (2011) investigated the

problem of thermal instability in a porous medium layer saturated by a nanofluid. In this

model, the Brownian motion and thermophoresis enter to produce their effects directly into

the equations expressing the conservation of energy and nanoparticles. Notably, this is so

the temperature and the particle density is coupled in a certain way, and that the results in

the thermal and concentration buoyancy effects being coupled in the same way.

In a series of papers, Kuznetsov and Nield (2010, 2011) further presented the natural

convective boundary layer flow of a porous medium filled by a nanofluid past a vertical

plate. The boundary layer flow over a moving semi-infinite plate in a flowing fluid is

investigated by Bachok et al. (2010). Khan and Aziz (2011) examined the double-diffusion

natural convection from a vertical plate embedded in a porous medium saturated with a

nanofluid. Recently, Tham et al. (2014) studied the steady mixed convection boundary layer
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flow of a circular cylinder in a nanofluid with a constant wall temperature. It is also worth

mentioning that in this chapter, the work of Tham et al. (2014) has been carefully examined.

Convection in fluid-saturated porous media has a remarkable impact upon some of

the applications in industry, such as heat removal from nuclear fuel debris, underground

disposal of radioactive waste material, storage of foodstuffs and exothermic and/or

endothermic chemical reactions and dissociating fluids in packed-bed reactors

(Mukhopadhyay, 2012). Since nanofluids are being used as coolants for the future, it is

therefore useful to conduct further studies involving nanofluid in porous media. A recently

published paper by Sakai et al. (2014), reviewed a macroscopic set of governing equations

for describing the heat transfer in nanofluid saturated porous media. Moreover, the

equations were derived using a volume averaging theory, and a numerical method for a

solution to the boundary value problem for the partial differential equations. At the same

time it is possible to transform these equations to Ordinary Differential Equations (ODE)

and to solve them using semi-analytical methods (Sheremet and Pop, 2015).

Most of the work in Buongiorno nanofluid were solved numerically due to the

ramification of governing equations in a nanofluid. However, several problems being solved

via analytical solutions. For instance, Hassani et al. (2011) investigated analytically

convection flow past a stretching sheet using HAM. The comparison has been made with

the numerical method presented earlier by Khan and Pop (2010) and the result is found to

be in excellent agreement. The extended HAM known as the Optimal Homotopy Analysis

Method (OHAM) has been applied recently by Nadeem et al. (2014) in the study which

deals with the Casson nanofluid in the presence of convective boundary conditions.

On the more recent development by Dhanai et al. (2016), they investigated

numerically mixed convection slip flow and heat transfer of uniformly conducting nanofluid

past an inclined cylinder under the influence of Brownian motion, thermophoresis and

viscous dissipation via the fourth order Runge Kutta Fehlberg (RKF) method with shooting

method. Meanwhile, Kefayati (2017) extended mixed convection non-Newtonian

nanofluids using the Buongiorno’s mathematical model in a cavity analysed by finite

difference Lattice Boltzmann method. Numerical simulation applying the finite volume

method using Buongiorno’s model has also been discussed by Garoosi et al. (2015).

Further studies on nanofluid are observed on a stretching sheet by Mansur and Ishak

(2013), Das et al. (2015) and Othman et al. (2017). The first two papers applied the

convective boundary condition and the latter incorporating constant wall temperature. In a

further study, Othman et al. (2017) and Moshizi et al. (2017) used CWT to investigate

mixed convection magnetohydrodynamic nanofluid inside microtubes. The authors were
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specifically interested in the effect of nanoparticle migration on fluid flow and heat transfer

characteristics, and examining the figure of merit of thermal performance. In contrast,

Ramzan et al. (2016) applied convective boundary conditions in investigating radiative flow

of second grade nanofluid.

Heat transfer under convective boundary conditions plays a vital role in the process.

Despite the considerable research previously undertaken and the enhancement efforts on

the development of heat transfer, only a few papers have highlighted convective boundary

conditions. A significant portion of the literature has focused on other geometries such as flat

plate and stretching sheet. Indeed, this form of thermal heating in complex geometry is very

important in processes involving high temperatures and in many engineering applications.

Therefore, assuming that the nanoparticles being suspended in a nanofluid, the convection

flow by implementing the convective boundary condition as thermal condition is further

studied in this thesis, extending the research by Tham et al. (2014) by applying convective

boundary conditions.

As a summary, the development of research in five different flow problems are listed

in the Table 2.1 to Table 2.5.
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Table 2.1. Development of forced convection in viscous fluid

Author Year Contribution
Blasius 1908 Solved the steady forced convection momentum at the

stagnation point using series-expansion

Frossling 1940 Solved the thermal equation for the case of when surface
temperature is subjected to constant wall temperature

Merkin and Pop 1988 Proposed numerical solution for the case when constant heat
flux is applied

Magyari and Keller 2001 Provide analytical solution for flow over axisymmetric
bodies of arbitrary shape

Sanitjai and Goldstein 2004 Obtain experimental result for the forced convection of the
horizontal cylinder

Soares et al 2005 Study flow and heat transfer behaviour of non-Newtonian
fluids using iterative Gauss Seidal relaxation method

Bharti et al. 2007 Investigated momentum and thermal equation of forced
convection using finite volume method for case constant
temperature and uniform heat flux

Mirgolbabaei et al. 2010 Apply analytical method namely Adomian Decomposition
method with the series solution on forced convection
over flat plate

Salleh et al. 2011 Derive a numerical study on forced convection
with Newtonian heating are applied as the thermal boundary
condition over horizontal circular cylinder with Keller-box
method

Merkin and Pop 2012 Construct numerical study based on Crank-Nicolson
method and Newton-Rhapson iteration with convective
boundary condition

Sumaily et al. 2012 Study high order finite element method in solving forced
convection in porous medium with constant wall temperature

Mabood et al. 2016 Extend the research in forced convection by using nanofluids
Tiwari and Das model with convective boundary condition

Durgam et al. 2017 Demonstrate the optimal distribution of heat source under
forced convection where the numerical solutions are
obtained via COMSOL
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Table 2.2. Development of free convection in micropolar fluid

Author Year Contribution
Eringen 1966 Proposed the theory of micropolar fluid

Willson 1969 Introduced the concept of boundary layer in the theory
of micropolar fluids

Peddieson and McNitt 1970 Apply the micropolar theory to the problem of steady flow
past an infinite plate

Elliot 1970 Pioneered in free convection flow on a two-dimensional or
or axisymmetric body

Merkin 1976 Present the complete solution of the Newtonian fluid using
the Blasius and Gortler series expansion over horizontal
circular cylinder with constant wall temperature

Merkin 1988 Study the same problem as in 1976, but using constant heat
flux as thermal heating

Bhattacharyya and Pop 1996 Extend the work of Merkin(1976) by considering
microplar fluid instead of Newtonian

Nazar et al. 2002 Revisit Merkin’s (1988) work of steady free convection
by considering microplar fluid

Rebhi et al. 2007 Investigate the unsteady free convection in microplar with
constant heat flux numerically using McCormick’s
technique

Sajid et al. 2009 Perform analytical study to obtain the expression for
velocity and microration profile using Homotopy Analysis
method

Salleh and Nazar 2010 Construct a study on free convection micropolar fluid by
considering Newtonian heating at the boundary conditions
via numerical approach using Keller-box method

Abdallaoui et al 2015 Provide numerical study of free convection using lattice
Boltzmann method where heating is maintained at
constant temperature

Abou-Ziyan et al 2017 Set up experiment under constant heat flux for free
convection micropolar for Newtonian and non-Newtonian
fluid
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Table 2.3. Development of mixed convection in viscous fluid

Author Year Contribution
Acrivos 1966 Proposed the problem of mixed convection from general

bodies in the existence of a boundary layer.

Joshi and Sukhatme 1971 Solve mixed convection using Gill Runge-Kutta with
shooting method

Nakai and Okazaki 1975 Study mixed convection using both small Grashof
and Reynolds number.

Sparrow and Lee 1976 Considered constant wall temperature for the problem of
mixed convection of horizontal circular cylinder and only
focus on opposing flow

Merkin 1977 Extend the work of Sparrow and Lee (1976) and solve based
on Crank-Nicolson using Newton-Raphson coupled with the
Choleski decomposition technique

Nazar et al. 2003 Investigate mixed convection in the horizontal circular
2004 cylinder for both heating conditions namely, constant

wall temperature and constant heat flux.

Anwar et al. 2008 Present the mixed convection problem with viscoelastic
fluid with constant temperature

Ishak et al. 2009 Formulate the mixed convection problem with micropolar
fluid with constant temperature

Ahmad et al 2009 Construct derivation of mixed convection with temperature
dependent viscosity

Salleh et al. 2010 Revisit Merkin’s (1988) work of steady free convection
by considering Newtonian heating

Roca and Pop 2013 Perform stability analysis and obtained dual solution
which can determine the stableness of the solution

Abbasi et al. 2016 Investigate the mixed convection over vertical plate by
using pertubation series method with constant heat flux

Malik et al. 2016 Extend the problem carried out by Ahmad et al. (2009)
by adding the effect of viscous dissipation in the
energy equation
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Table 2.4. Development of mixed convection: Tiwari and Das model

Author Year Contribution
Tiwari and Das 2007 Proposed the concept of heat transfer enhancement via the

solid volume fraction of different nanoparticle at the base
fluid.

Daungthongsuk 2007 Provide review on the convective transport in nanofluids

Eiyad et al. 2008 Pioneer researcher of mixed convection nanofluid and solved
numerically using the second order finite volume scheme

Yacob et al. 2011 Study problem of mixed in nanofluid past stretching sheet
and solution obtained via numerical approach namely Runge
Kutta Felbergh with shooting method

Hassani et al. 2011 Obtain an analytical solution via Homotopy analysis method
for case boundary layer flow filled with nanofluid

Bachok et al. 2012 Derive the unsteady case of flow and heat transfer problem
over a permeable stretching and shrinking sheet

Soleimani et al. 2012 Conducted numerical investigation inside semi annulus
cavity in nanofluid using control volume based finite
element

Tham et al. 2012 Present output of mixed convection over circular cylinder
applying Tiwari and Das model by considering
constant wall temperature

Ashorynejad et al. 2013 Perform analysis using Lattice Boltzmann method to check
the effect of magnetic field over a horizontal circular cylinder

Hajmohammadi et al. 2015 Analysed nanofluid flow and heat transfer over permeable
flat plate using convective boundary conditions

Khan et al. 2016 Study the rotating flow of nanofluids using numerical
approach via 5th order runge Kutta and shooting using
convective boundary conditions

Dinarvand and Pop 2017 Combined analytical and numerical approach in solving
problem rotating down pointing cone. Homotopy analysis
together with Keller-box is proposed in this study

Mabood et al. 2017 Investigate the effect of viscous dissipation on unsteady
mixed convection in nanofluid using Tiwari and Das
model
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Table 2.5. Development of mixed convection: Buongiorno model

Author Year Contribution
Buongiorno 2006 Conducted extensive study on convective transport

focusing on heat transfer enhancement observed during
convective situation.

Nield and Kuznetsov 2009 Pionereed the study of porous medium immersed in
nanofluid and present the effect of nanoparticle on free
convection problem past a vertical plate

Nield and Kuznetsov 2011 Extend the previous problem by investigating the thermal
instability in a porous medium

Khan and Aziz 2011 Examined double diffusion from vertical plate
embedded in porous medium immersed in nanofluid
Kutta Felbergh with shooting method

Mansur et al. 2013 Analysed flow and heat transfer nanofluid past stretching
& shrinking sheet with convective boundary conditions

Tham et al. 2014 Studied the steady mixed convection embedded in porous
medium by applying constant wall temperature as thermal
heating

Nadeem et al. 2014 Extended HAM known as Optimal homoptopy analysis
is applied in oblique flow of Casson fluid with
convective boundary conditions

Garoosi et al. 2015 Applied finite volume method in convection flow problem
using Buongiorno’s nanofluids model

Sheremet and Pop 2015 Investigate the convection problem in a porous horizontal
cylinder annulus with nanofluids and solve the governing
equations using semi-analytical method

Dhanai et al. 2016 Perform the numerical analysis on mixed convection slip
flow on uniformly conducting nanofluids past an inclined
cylinder via the fourth order Runge Kutta Felhbergh due
to velocity and thermal slip effects

Kefayati 2017 Extend non-Newtonian nanofluids in cavity by using finite
difference method namely lattice Boltzmann.

Othman et al. 2017 Investigate the effect of constant wall temperature in
the problem of mixed convection past a vertical stretching
surface in nanofluids
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CHAPTER 3

PROBLEM FORMULATIONS AND NUMERICAL METHODS

3.1 Introduction

The purpose of this chapter is to provide description of mathematical model used in

this study. Two essential elements in the mathematical model are the governing equation

and the numerical method. The derivation and formulation of governing equations from

basic fluid mechanic principles that consist of the continuity equation, momentum equation,

energy equation and nanoparticle volume fraction are discussed for a case of mixed

convection boundary layer flow in a nanofluid using Buongiorno’s model, where the finding

of the results and discussion can be found in Chapter 8. A detailed explanation of the

equations and process that governs the flow such as the non-dimensional equation,

approximations and transformation are highlighted in the Section 3.2.

Section 3.3 elaborates on the numerical method used which is the Keller-box

method. This method has been used extensively in solving boundary layer problems due to

the desirable features that thereby makes it appropriate for the solution of the parabolic

differential equation. The full procedures of the Keller-box method are presented in

Subsection 3.3.1 to 3.3.4. These procedures are required later in solving another four

convection flow problems presented in Chapters 4 to 8.

A further crucial element in modelling the convection flow are the boundary

conditions and initial profile. Therefore in Sections 3.4 and 3.5, the description of the

boundary condition and initial profile are provided.
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3.2 Problem Formulations

This section provides thorough derivation of the governing equations of the problem

that is presented in Chapter 8 starting from the conservation of mass, momentum, energy

and nanoparticle equation derived based on the principle of conservation law. Initially, the

governing equations are in elliptical form which consists of field equation embody the

conservation of the total mass, momentum, thermal energy and nanoparticles that given in

the following section (Buongiorno, 2006). The governing equation are then simplified into

a parabolic form by the analysis of the magnitude, non-dimensional variables and

non-similarity transformation as given in Section 3.2.7, 3.2.8 and 3.2.9, respectively.

3.2.1 Conservation of Mass

Generally, mass can be added or removed and can be changed into different types

of particles. However mass can neither be created or destroyed. In an isolated system, a

volume fixed or moving in a frame through which gas or liquid can flow is called control

volume V (t) and enclosing surface to control volume is known as control surface, S(t). The

conservation of mass can be written as follows (Darus, 1994)

DMt

Dt
= 0

where Mt =
∫

V (t)ρ dV is a total mass and ρ is the nanofluid density. Applying Reynolds

transport theorem on total mass, then

DMt

Dt
=
∫

V (t)

∂ρ

∂ t
dV +

∫
S(a)

ρV ·dS 3.1

Assume that there is no sources or sinks of mass within dV . Then DMt/Dt = the rate at

which mass enters or leaves through the surface dS. For nanofluid, ρV is considered as

ρV+ jp (Anwar, 2013). Equation (3.1) then becomes,

∫
V (t)

∂ρ

∂ t
dV +

∫
S(a)

(ρV+ jP) ·dS = 0 3.2
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Note that jp is the nanoparticle mass flux defined as

jp = jP,B + jP,T =−ρp

(
DB∇C− DT

∇T
T∞

)
3.3

where jP,B and jP,T are the mass fluxes due to Brownian and thermophoresis diffusion

respectively. Equation 3.2 shows that summation rate of change for mass in control volume

with net mass flow rate from the control surface is zero and Equation 3.2 is a continuity

equation in an integral form. The continuity equation in differential form can be derived by

transforming the surface integral which is the second term in Equation 3.2 to a volume

integral. By applying the Gauss divergence theorem, Equation 3.2 becomes

∫
V (a)

∂ρ

∂ t
dV +

∫
V (a)

∇ · (ρV+ jP) ·dV = 0 3.4

This expression must hold for every arbitrarily shaped volume, the only way that it can be

satisfied is if the integrand vanishes identically, or

∂ρ

∂ t
+∇ · (ρV+ jP) = 0 3.5

According to Buongiorno (2006), the nanofluid density ρ can be written as

ρ =Cρp +(1−C)ρb f 3.6

where ρb f is the density for the base fluid. Therefore,

∂ [Cρp +(1−C)ρb f ]

∂ t
+∇ · ([Cρp +(1−C)ρb f ]V+ jP) = 0 3.7

Equation 3.7 can be split into base fluid and nanoparticles term as follows:

∂ (1−C)ρb f

∂ t
+∇ · (1−C)ρb f V = 0 3.8

and

∂Cρp

∂ t
+∇ · (CρpV+ jP) = 0 3.9
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Equations 3.8 and 3.9 are the continuity equations for base fluid and nanoparticles,

respectively. In Equation 3.8, since the volume fraction nanoparticles is infinitely small,

then (1−C)ρb f ≈ p, therefore Equation 3.8 reduces to

∂ρ

∂ t
+∇.ρV = 0 3.10

For a steady incompressible flow, ρ is constant and flow is independent on time t, hence

∇.V = 0 3.11

Equation 3.11 is the continuity equation where V is the nanofluid velocity.

3.2.2 Conservation of Momentum

Fundamental physical principle namely Newton’s second law of motion is the

conservation of momentum with a total force Ft = MtAm where Ft is the combination of

surface forces Fs and body forces Fb while Am = dV
dt is the acceleration. Based on the

definitions, two relations are obtained:

Ft =
D(MtV)

Dt
3.12

and

Ft =
∫

S(a)
Fs dS+

∫
V (a)

Fb dV 3.13

Equation 3.12 can be written in integral form as

Ft =
D
Dt

∫
V (t)

ρVdV

Comparing Equations 3.12 and 3.13 and by applying the Reynolds transport theorem, the

following equation is obtained

∂

∂ t

∫
V (a)

ρVdV +
∫

S(a)
VρV ·dS =

∫
S(a)

FsdS+
∫

V (a)
FbdV 3.14
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The surface forces Fs are the forces acting on the surface of the control volume, It is a

combination of shear stress and normal stress. According to Darus (1994), Fs is ordinarily

denotes as Cauchy stress tensor τ̄ and defined by

τ̄ =


σxx τxy τxz

τyx σyy τyz

τzx τzy σzz


Therefore, the total surface forces can be written as

∫
S(a)

FsdS =
∫

S(a)
τ̄dS 3.15

Substituting Equation 3.15 into Equation 3.14, then applying the Gauss divergence theorem,

Equation 3.15 becomes

∂

∂ t

∫
V (a)

ρVdV +
∫

V (a)
∇ ·ρVV̄dV =

∫
V (a)

∇ · τ̄dV +
∫

V (a)
FbdV 3.16

Equation 3.16 is written in differential form as

∂ρV
∂ t

+∇ ·ρVV = ∇ · τ̄ +Fb 3.17

Expanding ∇ ·ρVV = ρV ·∇V+V∇ ·ρV and substitute into Equation 3.17, we obtained

ρ
∂V
∂ t

+ρV ·∇V+V(∇ ·ρV) = ∇ · τ̄ +Fb 3.18

Eliminate the first bracket which is continuity equation, the Equation 3.18 is reduced to

ρ
∂V
∂ t

+ρV ·∇V = ∇ · τ̄ +Fb 3.19

Referring to Anwar (2013), τ̄ is defined as

τ̄ =−p̄I+µA1 3.20
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where p̄ is the pressure, I is the identity tensor, µ is dynamic viscosity and A1 is the first

order Rivlin-Ericksen tensor which is given as

A1 = ∇V+(∇V)T 3.21

∇V and (∇V)T are the velocity gradient and its transpose, respectively which is defined in

matrices form as:

∇V =



∂ ū

∂ x̄

∂ ū

∂ ȳ

∂ ū

∂ z̄
∂ v̄

∂ x̄

∂ v̄

∂ ȳ

∂ v̄

∂ z̄
∂ w̄

∂ x̄

∂ w̄

∂ ȳ

∂ w̄

∂ z̄


3.22

Equation 3.19 is rewritten by substituting Equations 3.20 and 3.21

ρ
∂V
∂ t

+ρV ·∇V =−∇ p̄+µ∇ · [∇V+(∇V)T ]+Fb 3.23

Equation 3.23 shows a vector form equation for momentum. By deleting several terms, the

momentum equation of a steady form in x, y, and z can be written as

ρ

(
ū

∂ ū
∂ x̄

+ v̄
∂ ū
∂ ȳ

+w
∂ ū
∂ z̄

)
=−∂ p

∂x
+µ

(
∂ 2ū
∂x2 +

∂ ū
∂ ȳ2 +

∂ ū
∂ z̄2

)
+Fbx 3.24

ρ

(
ū

∂ v̄
∂ x̄

+ v̄
∂ v̄
∂ ȳ

+w
∂ v̄
∂ z̄

)
=−∂ p

∂x
+µ

(
∂ 2v̄
∂x2 +

∂ v̄
∂ ȳ2 +

∂ v̄
∂ z̄2

)
+Fby 3.25

ρ

(
ū

∂ w̄
∂ x̄

+ v̄
∂ w̄
∂ ȳ

+w
∂ w̄
∂ z̄

)
=−∂ p

∂x
+µ

(
∂ 2w̄
∂x2 +

∂ w̄
∂ ȳ2 +

∂ w̄
∂ z̄2

)
+Fbz 3.26

where Fbx, Fby and Fbz are the body forces or external forces in a direction of x,y and z,

respectively. In addition, based from the Equations 3.24 to 3.26, the vector of Equation 3.23

can be simplified as stated by Bejan (2013) for case porous medium saturated by a nanofluid

given by

ρ
∂V
∂ t

+ρV ·∇V =−∇p̄+µ∇
2V+

µ

K
V+ρg 3.27
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Then, we assume that the variation in density is neglected everywhere except in the

buoyancy term. Hence, the Boussinesq approximation is adopted in the buoyancy term and

is approximated by

ρg u
[
Cρp +(1−C)

{
ρ f [(1−β (T −T ∞))

}]
g 3.28

The nanofluid density ρ can be approximated by the base-fluid density ρ f when C is small

and Darcy velocity is related to V/ε . Substituting Equation 3.28 into 3.27 yields

ρ f

ε

∂V
∂ t

+
µ

K
V =−∇ p̄+

[
Cρp +(1−C)

{
ρ f [(1−β (T −T ∞))

}]
g 3.29

Unlike Boussinesq in which the density difference are being ignored, Oberbeck-Boussinesq

approximation assumed that fluid have a uniform density; density differences are

recognised only in those terms which drive the motion. In keeping with the

Oberbeck-Boussinesq approximation and an assumption that the nanoparticle concentration

is dilute, and with a suitable choice for the reference pressure, momentum Equation 3.29

can be linearized and written as

ρ f

ε

∂V
∂ t

+
∂ p̄
∂x

+
µ

K
V =

[
(ρp−ρ f∞)(C−C∞)+(1−C∞)ρ f∞β (T −T∞)

]
g 3.30

Elimination of p can be done from Equations 3.30 by cross-differentiation.

ρ f

ε

∂

∂y
∂V
∂ t

+
∂

∂y

(
∂ p̄
∂x

)
+

∂

∂y

(
µ

K
V
)
=

∂

∂y

([
(ρp−ρ f∞)(C−C∞)+(1−C∞)ρ f∞β (T −T∞)

]
g
)

3.31

ρ f

ε

∂

∂y
∂V
∂ t

+
∂

∂x

(
∂ p̄
∂y

)
+

µ

K

(
∂ ū
∂x

+
∂ v̄
∂y

)
=

[(
1−C∞

)
βρ f ∞

∂T
∂ ȳ

+
(
ρp−ρ f ∞

)∂C
∂ ȳ

]
g 3.32

where ∂ p/∂y and g are given as follows (Nield and Kuznetsov, 2011),

∂ p

∂y
= 0 and g = gsin

(
x
a

)
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Equation 3.32 reduces to

ρ f

ε

∂

∂y
∂V
∂ t

+
µ

K

(
∂ ū
∂x

+
∂ v̄
∂y

)
=

[(
1−C∞

)
βρ f ∞

∂T
∂ ȳ

+
(
ρp−ρ f ∞

)∂C
∂ ȳ

]
gsin

(
x
a

)
3.33

where ρ f ∞ is the density of the base fluid, µ and β are the viscosity and volume expansion

coefficient of the fluid, ρp is the density of the particles, ρ f is the density, K is the

permeability of the porous medium and g is the vector gravity.

3.2.3 Conservation of Energy

Conservation of energy derived based on the first law of thermodynamics. According

to the first law of thermodynamics

DEs

Dt
=

DQs

Dt
+

DWs

Dt
3.34

where DEs
Dt is rate of change in energy inside fluid, DQs

Dt is the neat flux into element and DWs
Dt

is the rate of work done on element due to body and surface forces element (Kasim, 2014).

From Equation 3.34,

DEs

Dt
=

D
Dt

∫
V (t)

ρetdV 3.35

where ρ is the fluid density, et is total energy defined as the combination of internal energy

due to random molecular motion eint and the kinetic energy due to translational motion of

the fluid element V 2

2

et = eint +
V 2

2
3.36

Next,
DQs

Dt
=−

∫
S(a)q ·dS+

∫
S(a) hpjp ·dS where

q =−km∇T +hpjp 3.37
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Further, DWs
Dt = D

Dt (Fs +Fb) where DFb
Dt =

∫
V (a)FbdV and DFs

Dt =
∫

S(a) τ̄ ·dS. Using definition

stated above, the energy equation for ordinary viscous fluid can be defined as

D
Dt

∫
V (t)

ρetdV =−
∫

S(s)
q ·dS+

∫
S(a)

hpjp ·dS+
∫

S(a)
τ̄ ·dS+

∫
V (a)

FbdV 3.38

Applying Reynolds transport theorem on the left hand side Equation 3.38 and obtained

∂

∂ t

∫
V (a)

ρetdV +
∫

S(a)
ρetdS =−

∫
S(a)

q ·dS+
∫

S(a)
hpjp ·dS+

∫
S(a)

τ̄ ·dS+
∫

V (a)
FbdV

3.39

According to Gauss divergence theorem, Equation 3.39 can be written in a convenient way

as

∫
V (a)

∂ (ρet)

∂ t
dV +

∫
V (a)

∇ ·ρetVdV =

−
∫

V (a)
∇ ·qdV +

∫
V (a)

hp∇ · jpdV +
∫

V (a)
∇ · τ̄dV +

∫
V (a)

FbdV

3.40

Since the integral is consistence in right and left, the integral function can be eliminated in

Equation 3.40 and simplified in differential form as

∂ (ρet)

∂ t
+∇ ·ρetV =−∇ ·q+hp∇ · jp +(∇ · τ̄ +Fb) 3.41

Noticed that ∇ ·ρetV = et∇ ·ρV+ρV ·∇et . Continuity expression can be eliminated and

Equation 3.41 is written as follow

ρ
∂et

∂ t
+ρV ·∇et =−∇ ·q+hp∇ · jp +(∇ · τ̄ +Fb) 3.42

The definition
Det

Dt
=

∂et

∂ t
+V ·∇et is applied in order to make this analysis easier to be

understood. Equation 3.42 is simplified as

ρ
Det

Dt
=−∇ ·q+hp∇ · jp +(∇ · τ̄ +Fb) 3.43
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Substituted the definition of q from Equation 3.37, then Equation 3.43 becomes

ρ
Det

Dt
=−∇ · (−km∇T +hpjp)+hp∇ · jp +(∇ · τ̄ +Fb) 3.44

Notice that ∇ · (hpjp) = hp∇ · jp + jp ·∇hp. Equation 3.44 is simplified as

ρ
Det

Dt
= ∇ · km∇T − jp ·∇hp +(∇ · τ̄ +Fb) 3.45

The term ∇hp is set equal to Cp∇T where Cp is the specific heat of nanoparticles, then using

Equation 3.3, Equation 3.45 becomes

ρ
Det

Dt
= ∇ · km∇T + ε(ρc)p[DB∇T .∇C+

DT

T∞

∇T .∇T ]+ (∇ · τ̄ +Fb) 3.46

Term on the right hand side of Equation 3.46 is written in the form as follow

∇ · km∇T = km

[
∂

∂x

(
∂T
∂ x̄

)
+

∂

∂y

(
∂T
∂ ȳ

)
+

∂

∂ z

(
∂T
∂ z̄

)]
3.47

Second term are define as

ε(ρc)p[DB∇T .∇C+
DT

T∞

∇T .∇T ] = ε(ρc)p

[
DB

(
∂C
∂x

∂T
∂ x̄

+
∂C
∂y

∂T
∂ ȳ

+
∂C
∂ z

∂T
∂ z̄

)
+

DT

T∞

(
∂T
∂x

∂T
∂ x̄

+
∂T
∂y

∂T
∂ ȳ

+
∂T
∂ z

∂T
∂ z̄

)] 3.48

Total work done on the moving fluid due to the surface and body forces are as follow

(∇ · τ̄ +Fb) =−
∂ ūp̄
∂x

+µ

[
ūσxx

∂ x̄
+

ūτyx

∂ ȳ
+

ūτzx

∂ z̄

]
− ∂ v̄ p̄

∂y
+µ

[
v̄τxy

∂ x̄
+

v̄σyy

∂ ȳ
+

v̄τzy

∂ z̄

]

− ∂ w̄p̄
∂ z

+µ

[
w̄τxz

∂ x̄
+

w̄σyz

∂ ȳ
+

w̄σzz

∂ z̄

]
+(Fbx +Fby +Fbz)

3.49

Next the term on the left hand side is expanded by Equation 3.36 and becomes

ρ
Det

Dt
= ρm

Deint

Dt
+ρ f

D
Dt

(
V 2

2

)
3.50
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According to Incropera et al. (2006) and Bejan (2013), in order to express the energy

equation in terms of temperature, it is tempting to replace the internal energy eint with the

product of specific heat at constant pressure of fluid cm and temperature T that is

Deint

Dt
= cm

∂T
∂ t

3.51

Substitute Equation 3.51 into Equation 3.50 yields

ρ
Det

Dt
=ρCp

(
∂T
∂ t

+u
∂T
∂ x̄

+ v
∂T
∂ ȳ

+w
∂T
∂ z̄

)
+ρ ū

(
u

∂u
∂ x̄

+ v
∂u
∂ ȳ

+w
∂u
∂ z̄

)

+ρ v̄
(

u
∂v
∂ x̄

+ v
∂v
∂ ȳ

+w
∂v
∂ z̄

)
+ρw̄

(
u

∂w
∂ x̄

+ v
∂w
∂ ȳ

+w
∂w
∂ z̄

) 3.52

Combine term that represent left and right

ρCp

(
∂T
∂ t

+u
∂T
∂ x̄

+ v
∂T
∂ ȳ

+w
∂T
∂ z̄

)
+ρ ū

(
u

∂u
∂ x̄

+ v
∂u
∂ ȳ

+w
∂u
∂ z̄

)

+ρ v̄
(

u
∂v
∂ x̄

+ v
∂v
∂ ȳ

+w
∂v
∂ z̄

)
+ρw̄

(
u

∂w
∂ x̄

+ v
∂w
∂ ȳ

+w
∂w
∂ z̄

)
=

km

[
∂

∂x

(
∂T
∂ x̄

)
+

∂

∂y

(
∂T
∂ ȳ

)
+

∂

∂ z

(
∂T
∂ z̄

)]
+ ε(ρc)p

[
DB

(
∂C
∂x

∂T
∂ x̄

+
∂C
∂y

∂T
∂ ȳ

+
∂C
∂ z

∂T
∂ z̄

)
+

DT

T∞

(
∂T
∂x

∂T
∂ x̄

+
∂T
∂y

∂T
∂ ȳ

+
∂T
∂ z

∂T
∂ z̄

)]

− ∂ ūp̄
∂x

+µ

[
ūσxx

∂ x̄
+

ūτyx

∂ ȳ
+

ūτzx

∂ z̄

]
− ∂ v̄ p̄

∂y
+µ

[
v̄τxy

∂ x̄
+

v̄σyy

∂ ȳ
+

v̄τzy

∂ z̄

]

− ∂ w̄p̄
∂ z

+µ

[
w̄τxz

∂ x̄
+

w̄σyz

∂ ȳ
+

w̄σzz

∂ z̄

]
+(Fbx +Fby +Fbz)

3.53
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Equation 3.53 can be expanded by using chain rule

ρCp

(
∂T
∂ t

+u
∂T
∂ x̄

+ v
∂T
∂ ȳ

+w
∂T
∂ z̄

)
+ρ ū

(
u

∂u
∂ x̄

+ v
∂u
∂ ȳ

+w
∂u
∂ z̄

)

+ρ v̄
(

u
∂v
∂ x̄

+ v
∂v
∂ ȳ

+w
∂v
∂ z̄

)
+ρw̄

(
u

∂w
∂ x̄

+ v
∂w
∂ ȳ

+w
∂w
∂ z̄

)
=

km
∂ 2T
∂x2 + k

∂ 2T
∂y2 + k

∂ 2T
∂ z2 + ε(ρc)p

[
DB

(
∂C
∂x

∂T
∂ x̄

+
∂C
∂y

∂T
∂ ȳ

+
∂C
∂ z

∂T
∂ z̄

)
+

DT

T∞

((
∂T
∂x

)2

+

(
∂T
∂y

2)
+

(
∂T
∂ z

2))]

− ū
∂ p̄
∂x
− p̄

∂ ū
∂x

+µ

[
ū

∂σxx

∂ x̄
+σxx

∂u
x̄

+u
∂τyx

∂ ȳ
+ τyx

∂ ū
∂ ȳ

+ ū
∂τzx

∂ z̄
+ τzx

∂ ū
∂ z̄

]
+Fbx

− v̄
∂ p̄
∂y
− p̄

∂ v̄
∂y

+µ

[
v̄

∂τxy

∂ x̄
+ τxy

∂ v̄
∂ x̄

+ v
∂σyx

∂ ȳ
+σyy

∂ v̄
∂ ȳ

+ v̄
∂τzy

∂ z̄
+ τzy

∂ v̄
∂ z̄

]
+Fby

− w̄
∂ p̄
∂ z
− p̄

∂ w̄
∂ z

+µ

[
w̄

∂τxz

∂ x̄
+ τxz

∂ w̄
∂ x̄

+w
∂τyz

∂ ȳ
+ τyz

∂ w̄
∂ ȳ

+ w̄
∂σzz

∂ z̄
+σzz

∂ w̄
∂ z̄

]
+Fbz

3.54

Equation 3.54 is rearranged as follow

ρCp

(
∂T
∂ t

+u
∂T
∂ x̄

+ v
∂T
∂ ȳ

+w
∂T
∂ z̄

)
+ρ ū

(
u

∂u
∂ x̄

+ v
∂u
∂ ȳ

+w
∂u
∂ z̄

)

+ρ v̄
(

u
∂v
∂ x̄

+ v
∂v
∂ ȳ

+w
∂v
∂ z̄

)
+ρw̄

(
u

∂w
∂ x̄

+ v
∂w
∂ ȳ

+w
∂w
∂ z̄

)
=

km
∂ 2T
∂x2 + k

∂ 2T
∂y2 + k

∂ 2T
∂ z2 − p̄

∂ ū
∂x

+

ε(ρc)p

[
DB

(
∂C
∂x

∂T
∂ x̄

+
∂C
∂y

∂T
∂ ȳ

+
∂C
∂ z

∂T
∂ z̄

)
+

DT

T∞

((
∂T
∂x

)2

+

(
∂T
∂y

2)
+

(
∂T
∂ z

2))]

− ū
∂ p̄
∂x

+µ

[
u
(

∂σxx

∂ x̄
+

∂τyx

∂ ȳ
+

τzx

∂ z̄

)
+σxx

∂u
∂ x̄

+ τyx
∂u
∂ ȳ

+ τzx
∂u
∂ z̄

]
+Fbx

− v̄
∂ p̄
∂y

+µ

[
v
(

∂τyy

∂ x̄
+

∂σyy

∂ ȳ
+

∂τzy

∂ z̄

)
+ τxy

∂v
∂ x̄

+σyy
∂v
∂ ȳ

+ τzy
∂ v̄
∂ z̄

]
+Fby

−w
∂ p̄
∂ z

+µ

[
w
(

∂τxz

∂ x̄
+

∂τyz

∂ ȳ
+

σzz

∂ z̄

)
+ τyz

∂w
∂ x̄

+ τyz
∂w
∂ ȳ

+σzz
∂w
∂ z̄

]
+Fbz

3.55
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The terms
∂u

∂x
+

∂v

∂y
+

∂w

∂ z
= 0 are continuity equation. Further, Equation 3.55 is a

combination of momentum and energy. Eliminating momentum, the energy equation is

expressed in

ρCp

(
∂T
∂ t

+u
∂T
∂ x̄

+ v
∂T
∂ ȳ

+w
∂T
∂ z̄

)
= km

∂ 2T
∂x2 + km

∂ 2T
∂y2 + km

∂ 2T
∂ z2

+ ε(ρc)p

[
DB

(
∂C
∂x

∂T
∂ x̄

+
∂C
∂y

∂T
∂ ȳ

+
∂C
∂ z

∂T
∂ z̄

)
+

DT

T∞

((
∂T
∂x

)2

+

(
∂T
∂y

2)
+

(
∂T
∂ z

2))]

+µ

[
σxx

∂u
∂ x̄

+ τyx
∂u
∂ ȳ

+ τzx
∂u
∂ z̄

+ τxy
∂v
∂ x̄

+σyy
∂v
∂ ȳ

+ τzy
∂ v̄
∂ z̄

+ τxz
∂w
∂ x̄

+ τyz
∂w
∂ ȳ

+σzz
∂w
∂ z̄

]
3.56

By referring to Rivlin-Ericksen tensor, τxy = τyx,τxz = τzx,τzy = τyz. Equation 3.56 can be

factorised as follow

ρCp

(
∂T
∂ t

+u
∂T
∂ x̄

+ v
∂T
∂ ȳ

+w
∂T
∂ z̄

)
= km

∂ 2T
∂x2 + km

∂ 2T
∂y2 + km

∂ 2T
∂ z2

+ ε(ρc)p

[
DB

(
∂C
∂x

∂T
∂ x̄

+
∂C
∂y

∂T
∂ ȳ

+
∂C
∂ z

∂T
∂ z̄

)
+

DT

T∞

((
∂T
∂x

)2

+

(
∂T
∂y

2)
+

(
∂T
∂ z

2))]

+µ

[
σxx

∂u
∂ x̄

+σyy
∂v
∂ ȳ

+σzz
∂w
∂ z̄

+ τyx

(
∂u
∂ ȳ

+
∂v
∂ x̄

)
+ τzx

(
∂u
∂ z̄

+ τxz
∂w
∂ x̄

)
+ τzy

(
∂ v̄
∂ z̄

+
∂w
∂ ȳ

)]
3.57

The vector form of energy equation for nanofluid can be espressed as (Buongiorno (2006))

(ρc)m
∂T
∂ t

+(ρc) f V.∇T = km∇
2T + ε(ρc)p[DB∇T .∇C+

DT

T∞

∇T .∇T ]+µω 3.58

where

(ρc)m
∂T
∂ t

+(ρc) f

(
ū

∂T
∂ x̄

+ v̄
∂T
∂y

)
= km

(
∂ 2T
∂x2 +

∂ 2T
∂y2

)
+

ε(ρc)p

[
DB

(
∂T
∂x

+
∂T
∂yx

)(
∂C
∂x

+
∂C
∂y

)
+

DT

T∞

)((
∂T
∂ x̄

)2

+

(
∂T
∂ ȳ

)2)] 3.59
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Rearrange 3.59, we obtained

(ρc)m

(ρc) f

∂T
∂ t

+ ū
∂T
∂ x̄

+ v̄
∂T
∂ ȳ

= αm

(
∂ 2T
∂ x̄2 +

∂ 2T
∂ ȳ2

)
+

τ

[
DB

(
∂T
∂ x̄

∂C
∂ x̄

+
∂T
∂ ȳ

∂C
∂ ȳ

)
+

(
DT

T∞

)((
∂T
∂ x̄

)2

+

(
∂T
∂ ȳ

)2)] 3.60

in which

αm =
km

(ρc) f
, τ =

ε(ρc)p

(ρc) f

where αm is the effective thermal diffusivity of the porous medium and τ = (ρc)p/(ρc) f

with (pc)p is the effective heat capacity of the nanoparticle material,(ρc)m is the effective

heat capacity, km is the effective thermal conductivity and (pc) f is the heat capacity of the

fluid.

3.2.4 Conservation of Nanoparticles

The conservation equation for nanoparticle volume fraction will be treated as a two-

component mixture base fluid and nanoparticles with several assumptions: incompressible

flow, no chemical reactions, negligible viscous dissipation, negligible radiative heat transfer

and negligible external forces is

∂C
∂ t

+V ·∇C =− 1
ρp

∇ · jp 3.61

Substitute jP from Equation 3.3 into Equation 3.61 yields

ρp
∂C
∂ t

+
ρp

ε
(V∇ ·C+C∇ ·V) = ρp∇ ·

[
DB∇C+

DT ∇T
T∞

]
3.62

Notice that continuity equation is ∇ ·V = 0 and ∇ ·∇ = ∇2, therefore the Equation 3.63 is

simplified to

∂C
∂ t

+
V
ε

∇ ·C = DB∇
2C+

DT ∇2T
T∞

3.63
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Substituting Equation 3.3 in Equation 3.61, we get

∂C
∂ t

+
V
ε
·∇C = ∇ ·

[
DB∇C+DT

∇T
T∞

]
3.64

In the case of porous medium, the nanoparticles equation is also known as the concentration

equation. The conservation equation in the vector form is given as follow

∂C
∂ t

+
1
ε

V.∇C = DB∇
2C+

DT

T∞

∇
2T 3.65

Therefore,

∂C
∂ t

+
1
ε

(
ū

∂C
∂ x̄

+ v̄
∂C
∂ ȳ

)
= DB

(
∂ 2C
∂ x̄2 +

∂ 2C
∂ ȳ2

)
+

(
DT

T∞

)[
∂ 2T
∂ x̄2 +

∂ 2T
∂ ȳ2

]
3.66

where V is the fluid filtration velocity, T is the temperature, C is nanoparticle volume

fraction, p is the pressure, ε is the porosity of the porous medium, DB is the Brownian

diffusion coefficient, DT is the thermophoretic diffusion coefficient of the nanoparticle

volume fraction, and ∇
2

is the Laplacian operator.

3.2.5 Governing Equations

A steady state flow is considered which defines the behaviour of the system

unchanging with time, meaning that the partial derivative with respect to time is zero.

Therefore, the steady state of two-dimensional governing dimensional Equations 3.11, 3.33,

3.60 and 3.66 can be written in the two dimensional Cartesian coordinate system as follows:

∂u
∂x

+
∂v
∂y

= 0 3.67

µ

K

(
∂ ū
∂x

+
∂ v̄
∂y

)
=

[(
1−C∞

)
βρ f ∞

∂T
∂ ȳ

+
(
ρp−ρ f ∞

)∂C
∂ ȳ

]
gsin

(
x
a

)
3.68
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ū
∂T
∂ x̄

+ v̄
∂T
∂ ȳ

= αm

(
∂ 2T
∂ x̄2 +

∂ 2T
∂ ȳ2

)
+ τ

[
DB

(
∂T
∂ x̄

∂C
∂ x̄

+
∂T
∂ ȳ

∂C
∂ ȳ

)
+(

DT

T∞

)((
∂T
∂ x̄

)2

+

(
∂T
∂ ȳ

)2)] 3.69

1
ε

(
ū

∂C
∂ x̄

+ v̄
∂C
∂ ȳ

)
= DB

(
∂ 2C
∂ x̄2 +

∂ 2C
∂ ȳ2

)
+

(
DT

T∞

)[
∂ 2T
∂ x̄2 +

∂ 2T
∂ ȳ2

]
3.70

3.2.6 Boundary Conditions

In order to solve the above equation, we need to specity boundary conditions. The

boundary conditions will either specify pressures or flow rates at two positions of the system.

The boundary condition on the velocity depend on the nature of the fluid flow and geometry

of the boundary wall. The mathematical form of the velocity boundary conditions can be

expressed as follow

v̄(x̄, ȳ) = 0, at ȳ = 0, 0≤ x̄≤ π

ū(x̄, ȳ)→ ūe(x̄), as ȳ→ ∞, 0≤ x̄≤ π

Convective boundary condition corresponds to the existence of convection heating at the

surface and is obtained from the surface energy balance. Therefore, we assume the bottom

surface of the cylinder is heated by convection from a hot fluid at temperature Tf which

provides a heat transfer coefficient h f . The heating conditions at the cylinder surface and far

into the hot fluid may be written as

−k
∂T
∂y

= h f (Tf −T ), at ȳ = 0, 0≤ x̄≤ π

T (x̄, ȳ)→ T̄∞ as ȳ→ ∞, 0≤ x̄≤ π

The relevant concentration boundary conditions associated with the physical problem under

discussion are

C(x̄, ȳ) =Cw at ȳ = 0, 0≤ x̄≤ π

C(x̄, ȳ)→C∞ as ȳ→ ∞, 0≤ x̄≤ π
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By combining the boundary condition for velocity, temperature and concentration, we obtain

v̄(x̄, ȳ) = 0, −k
∂T
∂y

= h f (Tf −T ), C(x̄, ȳ) =Cw at ȳ = 0, 0≤ x̄≤ π

ū(x̄, ȳ)→ ūe(x̄), T (x̄, ȳ)→ T̄∞, C(x̄, ȳ)→C∞ as ȳ→ ∞, 0≤ x̄≤ π

3.71

3.2.7 Boundary Layer Approximation

The dimensionless Equations 3.67 to 3.70 are also nonlinear partial differential

equations in an elliptic system. Therefore, by applying the boundary layer approximation,

the number of governing equations can be converted from elliptic to the parabolic system.

The parabolic partial differential equations can be solved much easier (Nazar, 2003). The

following assumptions are made to derive the boundary layer equations (Schlichting, 1968):

i) All the viscosity effect of flow field is restricted to the boundary layer, which is closed

to the surface. The viscosity effect is not important for the outer boundary layer, so that

flow can be determined by inviscid solution such as potential flow or Euler’s equations

ii) The boundary layer is assumed to be much less than the length of the surface. If δ is the

boundary layer thickness and L is the length of the surface, then δ/L�1, x = O(L) and

y = O(δ )

iii) The fluid has no slip condition at the surface when the velocity is zero (Acheson, 1990)

and the free flow conditions outside of the boundary layer given by u(x,0) = 0,v(x,0) =

0,u(x,∞) =U∞,v(x,∞) = 0, where u and v are the velocity components along x− and y−
axes, respectively and U∞ is the free stream velocity.

iv) At the boundary layer, u = O(U∞)

By referring to the assumption above, we write

x∼ L, y∼ δ , u∼U∞, T ∼ t, C ∼ c 3.72

where L is the length of the cylinder, δ is the boundary layer thickness, U∞ is free stream

velocity, c is the fractional nanoparticles and t is the temperature of fluid. The process

of analysis order of magnitude will be done for each of the conservation equation. For

50



continuity Equation 3.67,

∂u
∂x

+
∂v
∂y

= 0

By using analysis of magnitude, ∂u/∂x and ∂v/∂y is defined as U∞/L and v/δ . Note that

∂v/∂y should be in the same order with ∂u/∂x or in other word
(

∂u

∂x
6= 0
)

. Therefore, v is

given by

v∼ U∞δ

L

From the boundary layer approximation, second assumption stated that δ � L where δ is

very small compared to characteristic length L
(

δ

L
� 1

)
and velocity component in the

direction of fluid flow u is greater than the velocity component normal to the fluid flow (u�
v). Order of analysis magnitude coupled with the boundary layer approximation produced a

powerful tool for the simplification of equations where some negligible small terms may be

neglected from the full equation without affecting the accuracy of the solution.

Table 3.1. Analysis order of magnitude for momentum equation Buongiorno model of
nanofluids

Terms of Used Equations Simplified Magnitude Order δ ≤ L

equation 3.68 ×
δ

U∞

∂u
∂x

U∞

L
- δ

L � 1
∂u
∂x

can be negligible

∂u
∂y

U∞

δ
- O(1) remain unchanged

∂T
∂y

t
δ

t
U∞

remain unchanged

∂C
∂y

c
δ

c
U∞

remain unchanged

Table 3.1 illustrated the analysis order for momentum equation. Comparing the first

two terms, we see that the force in the x direction is negligible when compared to that in the

y direction. Therefore, the first term is neglected whereas the other three terms remained

unchanged

µ

K
∂u
∂y

=

[(
1−C∞

)
βρ f ∞

∂T
∂ ȳ
−
(
ρp−ρ f ∞

)∂C
∂ ȳ

]
gsin

(
x
a

)
3.73
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The analysis order of magnitude for energy equations are shown in Table 3.2. Several terms

have been ignored due to size of magnitude order which is much smaller when paired with

another. Therefore, the following terms will be neglected.

∂ 2T

∂x2
,

∂C

∂x

∂T

∂x
,

(
∂T

∂x

)2

Table 3.2. Analysis order of magnitude for energy equation Buongiorno model of nanofluids

Terms of Used Equation Simplified Magnitude Order δ ≤ L

equation 3.69 ×
L

U∞t

u
∂T
∂x

U∞

t
L

O(1) remain unchanged

v
∂T
∂y

U∞δ

L
t
δ

U∞t
L

O(1) remain unchanged

αm
∂ 2T

∂y2
αm

t
δ 2 αm

L
δ 2U∞

∂ 2T

∂y2
�

∂ 2T

∂x2

αm
∂ 2T

∂x2
αm

t
L2 αm

1
LU∞

∂ 2T

∂x2
can be negligible

τDB
∂C
∂x

∂T
∂x

τDB
c
L

t
L

τDB
c

LU∞

∂C
∂x

∂T
∂x

can be negligible

τDB
∂C
∂y

∂T
∂y

τDB
c
δ

t
δ

τDB
cL

δ 2U
∂C
∂y

∂T
∂y
�

∂C
∂x

∂T
∂x

DT

T∞

(
∂T
∂x

)2 DT

T∞

(
t
L

)2 DT

T∞

t
LU∞

(
∂T
∂x

)2

can be negligible

DT

T∞

(
∂T
∂y

)2 DT

T∞

(
t
δ

)2 DT

T∞

tL
δ 2U∞

(
∂T
∂y

)2

�
(

∂T
∂x

)2

Thus energy Equation 3.70 becomes

ū
∂T
∂ x̄

+ v̄
∂T
∂ ȳ

= αm
∂ 2T
∂ ȳ2 + τDB

∂T
∂ ȳ

∂C
∂ ȳ

+

(
DT

T∞

)(
∂T
∂ ȳ

)2

3.74
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Table 3.3. Analysis order of magnitude for nanoparticle volume fraction equation
Buongiorno model of nanofluids

Terms of Used Equation Simplified Magnitude Order δ � L

equation 3.70 ×
L

cU∞

u
∂C
∂x

U∞

c
L

O(1) remain unchanged

u
∂C
∂y

U∞δ

L
c
δ

U∞c
L

O(1) remain unchanged

DB
∂ 2C

∂x2
DB

c
L2 DB

1
LU∞

DB
∂ 2C
∂x2 can be negligible

DB
∂ 2C

∂y2
DB

c
δ 2 DB

L
δ 2U∞

∂ 2C

∂y2
�

∂ 2C

∂x2

DT

T∞

∂ 2T
∂x2

DT

T∞

t
L2

DT

T∞

t
LU∞c

∂ 2T

∂x2
can be negligible

DT

T∞

∂ 2T

∂y2

DT

T∞

t
δ 2

DT

T∞

Lt
δ 2U∞c

∂ 2T
∂y2 �

∂ 2T
∂x2

Further, an analysis order of magnitude for nanoparticle volume fraction equations is

shown in Table 3.3. Similar as energy equation, some of the terms in nanoparticle volume

fraction is negligible such as DB
∂ 2C

∂x2
and

DT

T∞

∂ 2T

∂x2 where

∂ 2C

∂y2

/
∂ 2C

∂x2
= O

(
L
δ

)2

≥ 1

Therefore new nanoparticle Equation 3.70 is given by

1
ε

(
ū

∂C
∂ x̄

+ v̄
∂C
∂ ȳ

)
= DB

∂ 2C
∂ ȳ2 +

(
DT

T∞

)
∂ 2T
∂ ȳ2 3.75
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3.2.8 Non-Dimensional Variables

Equations 3.73, 3.74 to 3.75 are in dimensional form. Notably, the dimensional form

involves a wide number of variables and different physical quantities thereby causing

difficulties when needing to solve the problem numerically. Although by introducing the

non-dimensional variables, the equations can be further simplified by reducing the number

of variables used therefore making the problem much easier to solve. Also,

non-dimensional variables can rescale the parameters so that all the quantities are of the

same order and the effects of numerical error are minimised when calculating the residual.

Therefore, the following non-dimensional variable are introduced:

x =
x
a
, y =

Pe1/2y
a

, u =
u

U∞

, v =
Pe1/2v

U∞

,

θ =
T −T∞

Tf −T∞

, φ =
C−C∞

Cw−C∞

3.76

where Pe = U∞a/αm is the Peclet number. By using the expression in Equation 3.76 into

Equations 3.73, 3.74 to 3.75, we obtain

∂u
∂x

+
∂v
∂y

= 0 3.77

∂u
∂y

=

(
∂θ

∂y
−Nr

∂φ

∂y

)
λ sinx 3.78

u
∂θ

∂x
+ v

∂θ

∂y
=

∂ 2θ

∂y2 +Nb
∂θ

∂y
∂φ

∂y
+Nt

(
∂θ

∂y

)2

3.79

Le
(

u
∂φ

∂x
+ v

∂φ

∂y

)
=

∂ 2φ

∂y2 +

(
Nt

Nb

)
∂ 2θ

∂y2 3.80

where ue(x) = sinx. Here λ is the constant mixed convection parameter, Le is the Lewis

number, Nr is the buoyancy ratio parameter, Nb is the Brownian motion parameter and Nt is

the thermophoresis parameter which are defined as
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λ =
Ra
Pe

, Le =
αm

εDb
, Nr =

(ρp−ρ f∞)(Cw−C∞)

βρ f∞(1−C∞)(Tf −T∞)

Nb =
τDB(Cw−C∞)

αm
, Nt =

τDT (Tf −T∞)

αmT∞

3.81

The modified Rayleigh number for porous medium filled by nanofluid is

Ra = (1−C∞)gKρ f∞β (Tf −T∞)/(µαm) (Tham et al., 2014).

For case of boundary condition, the conditions for this problem is assumed to be

i) The velocity of external flow (inviscid flow) is ue(x), where x is the coordinate

measured along the surface of cylinder starting from the lower stagnation point and y is

the coordinate measured in the direction normal to the surface of the cylinder.

ii) The uniform temperature and the uniform nanoparticle volume fraction of the surface of

the cylinder are Tf and Cw while the ambient values are Tf and C∞ where Tf > Tw.

iii) The nanofluid particle on the boundary is passively rather the actively controlled. The

fractional nanoparticles in the boundary layer approach to free stream fractional

nanoparticles C→C∞.

Therefore, by substituting the non-dimensional variable into boundary conditions, Equation

3.71 becomes

v(x,y) = 0, θ
′(x,y) =−γ(1−θ(x,y)), φ(x,y) = 1 at y = 0, 0≤ x≤ π

u(x,y)→ ue(x), θ(x,y)→ 0, φ(x,y)→ 0 as y→ ∞, 0≤ x≤ π

3.82

It is worth mentioning here that Equations 3.77 to 3.80 are now the non-dimension equations.

3.2.9 Non-Similar Transformation

In this section, non-similar transformation variables are used to reduce the parabolic

nonlinear partial differential equation to an ordinary differential equation. This method

reduces several independent variables to single variable. The dimensionless variable as

proposed by Merkin (1977) is given as follows:

ψ = x f (x,y), θ = θ(x,y), φ = φ(x,y) 3.83
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where ψ is the stream function defined as u = ∂ψ/∂y and v =−∂ψ/∂x. Substituting these

variables into Equations 3.78, 3.79 and 3.80, the following boundary layer equations for the

problem under consideration in dimensionless form are obtained:

∂ f
∂y

= [1+(θ −Nrφ)λ ]
sinx

x
3.84

∂ 2θ

∂y2 + f
∂θ

∂y
+Nb

∂θ

∂y
∂φ

∂y
+Nt

(
∂θ

∂y

)2

= x
(

∂ f
∂y

∂θ

∂x
− ∂ f

∂x
∂θ

∂y

)
3.85

∂ 2φ

∂y2 +Le f
∂φ

∂y
+

Nb
Nt

∂ 2θ

∂y2 = xLe
(

∂ f
∂y

∂φ

∂x
− ∂ f

∂x
∂φ

∂y

)
3.86

with the boundary conditions

f (x,y) = 0, θ
′(x,y) =−γ(1−θ(x,y)), φ(x,y) = 1 at y = 0, 0≤ x≤ π

θ(x,y)→ 0, φ(x,y)→ 0 as y→ ∞, 0≤ x≤ π

3.87

Since most of the nanofluids examined to date have focused on constant wall temperature

and constant heat flux, interest at this moment is mainly in the effect of convective boundary

conditions. Also we are interested in the case where it is heat transfer (rather than mass

transfer) that is driving the flow.

The boundary layer equations described in Equations 3.84 to 3.86 subject to boundary

conditions 3.87 are solved numerically using the implicit finite difference method known

as the Keller-box method. The following section provides insight regarding the numerical

procedure in solving these nonlinear partial differential equations, while the complete result

is discussed further in Chapter 8.

3.3 Keller-box Scheme

All the flow problems presented in this thesis are solved numerically using the Keller-

box method. Keller (1970) first proposed this method and it is found to be efficient and most

suitable to solve convective boundary layer problems. The Keller-box method described in
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this study is explained clearly by Na (1979) and Cebeci and Bradshaw (1988). Indeed the

Keller-box method is implicit finite different method.

Generally, there are four steps in Keller-box method which will be explained in

detail in the next subsection. Firstly, the equations are reduced to first order equation. Then,

equation are written into finite difference forms. These equations are nonlinear. Newton’s

method is proposed to linearized the nonlinear equations and finally, the solutions are

obtained using the block elimination techniques, by employing a block tridiagonal

factorization scheme on the coefficient matrix of the finite difference equations for all y at

given x.

3.3.1 First Order System

The first procedure of Keller-box method for problem presented in Chapter 8 are

written here as a system of first order equations. For this reason, new dependent variables

are introduced,

f ′ = u, u′ = v, s′ = t, p′ = q 3.88

where prime denote differentiation with respect to y. Applying above equations into

Equations 3.84 to 3.86, first order equation is obtained as given below:

f ′ =
[
1+(s−Nr · p)λ

]sinx
x

3.89

t ′+ f t +Nb · tq+Nt · (t)2 = x
(

u
∂ s
∂x
− t

∂ f
∂x

)
3.90

q′+Le f q+
Nt
Nb

t ′ = xLe
(

u
∂ p
∂x
−q

∂ f
∂x

)
3.91

the boundary conditions 3.87 becomes

f (x,y) = 0, t(x,y) =−γ(1− s(x,y)), p(x,y) = 1 at y = 0, 0≤ x≤ π

s(x,y)→ 0, p(x,y)→ 0 as y→ ∞, 0≤ x≤ π

3.92

57



3.3.2 Finite Difference Method

Once the equations has been transform to first order system, the following procedure

is discretization. Discretization concerns the process of transferring continous function into

discrete counterparts, making it suitable for numerical evaluation. For the discretization of

Equations 3.89 to 3.91, and 3.92, a finite difference method was employed. The net rectangle

considered in the x− y plane is shown in Figure 3.1, and the net points are denoted by

Figure 3.1. Net rectangle for difference approximation

x0 = 0, xn = xn−1 + kn, n = 1,2, ...,N

y0 = 0, y j = y j−1 +h j, n = 1,2, ...,J yJ ≡ y∞

where kn is the ∇x− spacing and h j is the ∇y− spacing. Here n and j are the sequence

numbers that indicate the coordinate location. The notation ()n
j for points and quantities

midway between net points and for any net function are given by

()n
j−1/2 =

1
2
[()n

j +
()n

j−1

]
,

()n−1/2
j =

1
2
[()n

j +
()n−1

j

]
3.93

The derivatives in the x− and y− direction are replaced by finite difference. Generally we

have

∂ ()

∂x
=

()n− ()n−1

kn
,

∂ ()

∂y
=

() j− () j−1

h j
3.94
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by using central differences. Hence, the following are obtained

f n
j − f n

j−1

h j
=

un
j +un

j−1

2
= un

j−1/2 3.95

un
j −un

j−1

h j
=

vn
j + vn

j−1

2
= vn

j−1/2 3.96

sn
j − sn

j−1

h j
=

tn
j + tn

j−1

2
= tn

j−1/2 3.97

pn
j − pn

j−1

h j
=

qn
j +qn

j−1

2
= qn

j−1/2 3.98

Following P1P2P3P4, we obtain the following equations

1
2
(Ln

1 +Ln−1
1 ) = 0 3.99

1
2
(Ln

2 +Ln−1
2 ) = xn− 1

2

(
un− 1

2
sn− sn−1

kn
− tn− 1

2
f n− f n−1

kn

)
3.100

1
2
(Ln

3 +Ln−1
3 ) = Le · xn− 1

2

(
un− 1

2
pn− pn−1

kn
−qn− 1

2
f n− f n−1

kn

)
3.101

Rearranging these equations

( f ′)n−
[
1+(sn−Nr · pn)λ

]
β =−Ln−1

1 3.102

59



(t ′)n +( f t)n +Nb · (tq)n +(t2)n ·Nt−α(us)n−αun−1sn +αsn−1un+

α( f t)n +αtn−1 f n−α f n−1tn =
[
−L2−α(us)+α( f t)

]n−1 3.103

(q′)n +Le( f q)n +
Nt
Nb

(t ′)n−σ(up)n +σ pn−1un−σun−1 pn +σ( f q)n

+σqn−1 f n−σ f n−1qn =
[
−L3−σ(up)+σ( f q)

]n−1 3.104

where the abbreviation is

α =
xn−1/2

kn
3.105

β =
sin(xn−1/2)

xn−1/2 3.106

σ = Le
sin(xn−1/2)

xn−1/2 3.107

Ln−1
1 = ( f ′)n−1−β

[
1+(s−Nr · p)λ

]n−1 3.108

Ln−1
2 = [(t ′)+( f t)+(tq)Nb+Nt · (t2)]n−1 3.109

Ln−1
3 = [(q′)+Le( f q)+

Nt
Nb

(t ′)]n−1 3.110
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Next, we center Equations 3.102 to 3.104 at the point (xn−1/2,y j−1/2) by using

f n
j − f n

j−1

h j
−
[
1+(sn

j−1/2−Nr · pn
j−1/2)λ

]
β =−Ln−1

1 3.111

tn
j − tn

j−1

h j
+ f n

j−1/2tn
j−1/2 +Nb · tn

j−1/2qn
j−1/2 +(t2)n

j−1/2 ·Nt−αun
j−1/2sn

j−1/2

−αun−1
j−1/2sn

j−1/2 +αsn−1
j−1/2un

j−1/2 +α f n
j−1/2tn

j−1/2 +αtn−1
j−1/2 f n

j−1/2

−α f n−1
j−1/2tn

j−1/2 =
[
−L2−αu j−1/2s j−1/2 +α f j−1/2t j−1/2

]n−1

3.112

qn
j −qn

j−1

h j
+Le f n

j−1/2qn
j−1/2 +

Nt
Nb

tn
j − tn

j−1

h j
−σun

j−1/2 pn
j−1/2 +σ pn−1

j−1/2un
j−1/2

−σun−1
j−1/2 pn

j−1/2 +σ f n
j−1/2qn

j−1/2 +σqn−1
j−1/2 f n

j−1/2−σ f n−1
j−1/2qn

j−1/2

=
[
−L3−σu j−1/2 p j−1/2 +σ f j−1/2q j−1/2

]n−1

3.113

where

(L1)
n−1
j−1/2 =

(
f j− f j−1

h j

)n−1

−β
[
1+(s j−1/2−Nr · p j−1/2)λ

]n−1 3.114

(L2)
n−1
j−1/2 =

[
t j− t j−1

h j
+ f j−1/2t j−1/2 + t j−1/2q j−1/2Nb+Nt · (t2) j−1/2

]n−1

3.115

(L3)
n−1
j−1/2 =

[
q j−q j−1

h j
+Le f j−1/2q j−1/2 +

Nt
Nb

t j− t j−1

h j

]n−1

3.116

At x = xn, the boundary conditions (3.92) become

f n
0 = 0, tn

0 =−γ(1− sn
0), pn

0 = 1, sn
J = 0, pn

J = 0 3.117

61



3.3.3 Newton’s Method

Equations 3.111 to 3.113 are nonlinear equations, Newtons method is proposed to

linearized the nonlinear equations. Suppose f n−1
j , un−1

j , vn−1
j , sn−1

j , tn−1
j , pn−1

j , qn−1
j are

known for 0 ≤ j ≤ J then Equations 3.111 to 3.113 form a system of equations for the

solution of the unknown variables ( f n
j ,u

n
j ,v

n
j ,s

n
j , t

n
j , pn

j ,q
n
j), j = 0,1, ...,J. For simplification

the unknown variable ( f n
j ,u

n
j ,v

n
j ,s

n
j , t

n
j , pn

j ,q
n
j) is written as ( f j,u j,v j,s j, t j, p j,q j). By using

f j− f j−1−
h j

2
(u j +u j−1) = 0 3.118

u j−u j−1−
h j

2
(v j + v j−1) = 0 3.119

s j− s j−1−
h j

2
(t j + t j−1) = 0 3.120

p j− p j−1−
h j

2
(q j +q j−1) = 0 3.121

f j− f j−1−h j
[
1+(

s j + s j−1

2
)−Nr · (

p j + p j−1

2
)λ
]
β = (R1)

n−1
j−1/2 3.122

t j− t j−1 +
h j

4
( f j + f j−1)(t j + t j−1)+

h j

4
Nb · (t j + t j−1)(q j +q j−1)

+
h j

4
(t j + t j−1)

2 ·Nt−
h j

4
α(u j +u j−1)(s j + s j−1)−

h j

2
αun−1

j−1/2(s j + s j−1)

+
h j

2
αsn−1

j−1/2(u j +u j−1)+
h j

4
α( f j + f j−1)(t j + t j−1)+

h j

2
αtn−1

j−1/2( f j + f j−1)

−
h j

2
α f n−1

j−1/2(t j + t j−1) = (R2)
n−1
j−1/2

3.123
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q j−q j−1 +
h j

4
Le( f j + f j−1)(q j +q j−1)+

Nt
Nb

(t j− t j−1)−
h j

4
σ(u j +u j−1)(p j + p j−1)

+
h j

2
σ pn−1

j−1/2(u j +u j−1)−
h j

2
σun−1

j−1/2(p j + p j−1)+
h j

4
σ( f j + f j−1)(q j +q j−1)

+
h j

2
σqn−1

j−1/2( f j + f j−1)−
h j

2
σ f n−1

j−1/2(q j +q j−1) = (R3)
n−1
j−1/2

3.124

where

(R1)
n−1
j−1/2 = −h j

{
f j + f j−1

h j
−β

[
1+(s j−1/2−Nr · p j−1/2)λ

]}n−1

3.125

(R2)
n−1
j−1/2 = −h j

[
t j + t j−1

h j
+ f j−1/2t j−1/2 +Nbt j−1/2q j−1/2 +(t2) j−1/2Nt

]n−1

3.126

(R3)
n−1
j−1/2 = −h j

[
q j +q j−1

h j
+Le f j−1/2q j−1/2 +

Nt
Nb

(
t j + t j−1

h j

)]n−1

3.127

(R1)
n−1
j−1/2, (R2)

n−1
j−1/2 and (R3)

n−1
j−1/2 involve known quantities if we assume that the solution

is known on x = xn−1. To solve the nonlinear Equations 3.122 to 3.124 by using Newton’s

method, we introduces

f (i+1)
j = f (i)j +δ f (i)j , u(i+1)

j = u(i)j +δu(i)j

s(i+1)
j = s(i)j +δ s(i)j , t(i+1)

j = t(i)j +δ t(i)j

p(i+1)
j = p(i)j +δ p(i)j , q(i+1)

j = q(i)j +δq(i)j

3.128

The iteration is substitute into Equations 3.118 to 3.124

( f (i)j +δ f (i)j )− ( f (i)j−1 +δ f (i)j−1)−
h j

2
(u(i)j +δu(i)j +u(i)j−1 +δu(i)j−1) = 0 3.129

(u(i)j +δu(i)j )− (u(i)j−1 +δu(i)j−1)−
h j

2
(v(i)j +δv(i)j + v(i)j−1 +δv(i)j−1) = 0 3.130
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(s(i)j +δ s(i)j )− (s(i)j−1 +δ s(i)j−1)−
h j

2
(t(i)j +δ t(i)j + t(i)j−1 +δ t(i)j−1) = 0 3.131

(p(i)j +δ p(i)j )− (p(i)j−1 +δ p(i)j−1)−
h j

2
(q(i)j +δq(i)j +q(i)j−1 +δq(i)j−1) = 0 3.132

( f (i)j +δ f (i)j )− ( f (i)j−1 +δ f (i)j−1)−h j

[
1+

1
2
{
(s(i)j +δ s(i)j )+(s(i)j−1)+δ s(i)j−1)

}
−Nr · 1

2
{
(p(i)j +δ p(i)j )+(p(i)j−1 +δ p(i)j )

}
)λ

]
β = (R1)

n−1
j−1/2

3.133

(t(i)j +δ t(i)j )− (t(i)j−1 +δ t(i)j−1)+
h j

4
[
( f (i)j +δ f (i)j )+( f (i)j−1 +δ f (i)j−1)

][
(t(i)j +δ t(i)j )

+(t(i)j−1 +δ t(i)j−1)
]
+

h j

4
Nb ·

[
(t(i)j +δ t(i)j )+(t(i)j−1 +δ t(i)j−1)

][
(q(i)j +δq(i)j )+(q(i)j−1 +δq(i)j−1)

]
+

h j

4
[
(t(i)j +δ t(i)j )+(t(i)j−1 +δ t(i)j−1)

]2 ·Nt−
h j

4
α
[
(u(i)j +δu(i)j )+(u(i)j−1 +δu(i)j−1)

]
[
(s(i)j +δ s(i)j )+(s(i)j−1 +δ s(i)j−1)

]
−

h j

2
αun−1

j−1/2

[
(s(i)j +δ s(i)j )+(s(i)j−1 +δ s(i)j−1)

]
+

h j

2
αsn−1

j−1/2

[
(u(i)j +δu(i)j )+(u(i)j−1 +δu(i)j−1)

]
+

h j

4
α
[
( f (i)j +δ f (i)j )+( f (i)j−1 +δ f (i)j−1)

]
[
(t(i)j +δ t(i)j )+(t(i)j−1 +δ t(i)j−1)

]
+

h j

2
αtn−1

j−1/2

[
( f (i)j +δ f (i)j )+( f (i)j−1 +δ f (i)j−1)

]
−

h j

2
α f n−1

j−1/2

[
(t(i)j +δ t(i)j )+(t(i)j−1 +δ t(i)j−1)

]
= (R2)

n−1
j−1/2

3.134
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(q(i)j +δq(i)j )− (q(i)j−1 +δq(i)j−1)+
h j

4
Le
[
( f (i)j +δ f (i)j )− ( f (i)j−1 +δ f (i)j−1)

][
(q(i)j +δq(i)j )

− (q(i)j−1 +δq(i)j−1)
]
+

Nt
Nb

[
(t(i)j +δ t(i)j )− (t(i)j−1−δ t(i)j−1)

]
−

h j

4
σ
[
(u(i)j +δu(i)j )− (u(i)j−1

+δu(i)j−1)
][
(p(i)j +δ p(i)j )− (p(i)j−1 +δ p(i)j−1)

]
+

h j

2
σ pn−1

j−1/2

[
(u(i)j +δu(i)j )− (u(i)j−1

+δu(i)j−1)
]
−

h j

2
σun−1

j−1/2

[
(p(i)j +δ p(i)j )− (p(i)j−1 +δ p(i)j−1)

]
+

h j

4
σ
[
( f (i)j

+δ f (i)j )− ( f (i)j−1 +δ f (i)j−1)
][
(q(i)j +δq(i)j )− (q(i)j−1 +δq(i)j−1)

]
+

h j

2
σqn−1

j−1/2[
( f (i)j +δ f (i)j )− ( f (i)j−1 +δ f (i)j−1)

]
−

h j

2
σ f n−1

j−1/2

[
(q(i)j +δq(i)j )− (q(i)j−1

+δq(i)j−1)
]
= (R3)

n−1
j−1/2

3.135

For simplicity, the superscript i are neglected. After a few steps of algebraic operation and

ignoring the higher order terms for δ f i
j,δui

j,δvi
j,δ si

j,δ t i
j,δ pi

j,δqi
j the system of the

equations can be written as below

δ f j−δ f j−1−
1
2

h j(δu j +δu j−1) = (r1) j−1/2 3.136

δ s j−δ s j−1−
1
2

h j(δ t j +δ t j−1) = (r2) j−1/2 3.137

δ p j−δ p j−1−
1
2

h j(δq j +δq j−1) = (r3) j−1/2 3.138

(a1) jδ f j +(a2) jδ f j−1 +(a3)sδ s j +(a4) jδ s j−1

+(a5) jδ p j +(a6) jδ p j−1 = (r4) j−1/2

3.139
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(b1) jδ t j +(b2) jδ t j−1 +(b3) jδ f j +(b4) jδ f j−1+

(b5) jδq j +(b6) jδq j−1 +(b7) jδu j+

(b8) jδu j−1 +(b9) jδ s j +(b10) jδ s j−1 = (r5) j−1/2

3.140

(c1) jδq j +(c2) jδq j−1 +(c3) jδ f j +(c4) jδ f j−1+

(c5) jδ t j +(c6) jδ t j−1 +(c7) jδu j +(c8) jδu j−1

+(c9) jδ p j +(c10) jδ p j−1 = (r6) j−1/2

3.141

where the coefficient for Equation 3.139 is

(a1) j = 1

(a2) j =−1

(a3) j =−
1
2

h jβλ

(a4) j = (a3) j

(a5) j =
1
2

h jNrβλ

(a6) j = (a5) j

3.142

meanwhile the coefficient for Equation 3.140 is

(b1) j = 1+
h j

2
(
(1+α) f j−1/2 +Nbq j−1/2 +(t j−1/2)

2Nt−α f n−1
j−1/2

)
(b2) j = (b1) j−2

(b3) j =
h j

2
(
(1+α)t j−1/2 +αtn−1

j−1/2

)
(b4) j = (b3) j

(b5) j =
h j

2
(
Nbt j−1/2)

(b6) j = (b5) j

(b7) j =
h j

2
(
−αs j−1/2 +αsn−1

j−1/2

)
(b8) j = (b7) j

(b9) j =
h j

2
(
−αu j−1/2−αun−1

j−1/2

)
(b10) = (b9) j

3.143
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whereas the coefficient for Equation 3.141 is

(c1) j = 1+
h j

2
Le
(
(1+α) f j−1/2−α f n−1

j−1/2

)
(c2) j = (c1) j−2

(c3) j =
h j

2
Le
(
(1+α)q j−1/2 +αqn−1

j−1/2

)
(c4) j = (c3) j

(c5) j =
Nt

Nb

(c6) j =−
Nt

Nb

(c7) j =
h j

2
Le
(
− p j−1/2 +α pn−1

j−1/2

)
(c8) j = (c7) j

(c9) j =
h j

2
Le
(
−αu j−1/2−αun−1

j−1/2

)
(c10) = (c9) j

3.144

Expressions of r j

(r1) j−1/2 = f j−1− f j +h ju j−1/2

(r2) j−1/2 =s j−1− s j +h jt j−1/2

(r3) j−1/2 =p j−1− p j +h jq j−1/2

(r4) j−1/2 =R1n−1
j−1/2 + f j−1− f j +h jβ +h jβλ s j−1/2−h jNrβλ p j−1/2

(r5) j−1/2 =R2n−1
j−1/2 + t j−1− t j−h j

[
(1+α) f j−1/2t j−1/2−Nbq j−1/2t j−1/2

−Nt(t j−1/2)
2 +αu j−1/2s j−1/2−αsn−1

j−1/2u j−1/2

+αun−1
j−1/2s j−1/2)+α( f n−1

j−1/2t j−1/2)−αtn−1
j−1/2 f j−1/2

]
(r6) j−1/2 =R3n−1

j−1/2 +q j−1−q j−h jLe
[
(1+α) f j−1/2q j−1/2 +

Nt

Nb
(t j− t j−1)

α(u j−1/2 p j−1/2−α pn−1
j−1/2u j−1/2 +αun−1

j−1/2 p j−1/2

+α f n−1
j−1/2q j−1/2−αqn−1

j−1/2 f j−1/2
]

3.145
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The system of 3.136 to 3.141 is completed with the boundary conditions 3.117. According

to Cebeci and Bradshaw (1988), Equation 3.117 can be satisfied exactly with no iteration.

Therefore, to maintain these correct values, we take

δ f0 = 0, δ t0 = 0, δ p0 = 0, δ sJ = 0, δ pJ = 0. 3.146

3.3.4 Block Elimination Technique

The linearised difference equation can be solved by using block elimination

techniques (Na, 1979). It is because of the system consists of three diagonal block structure.

Normally, the three diagonal block structure consists of variable or constants.

However for Keller-box method, the approach is different because it consists of block

matrices. In order to solve the linearised difference Equations 3.136 to 3.141 by using the

block elimination technique, the elements of block matrices from Equations 3.142 to 3.144

must be defined by considering three different cases which is when j = 1,

j = 2, ..., j = J−1 and j = J.

When j = 1 the linearised difference Equations 3.136 to 3.141 become

δ f1−δ f0−
1
2

h1(δu1 +δu0) = (r1)1−(1/2)

δ s1−δ s0−
1
2

h1(δ t1 +δ t0) = (r2)1−(1/2)

δ p1−δ p0−
1
2

h1(δq1 +δq0) = (r3)1−(1/2)

(a1)1δ f1 +(a2)1δ f0 +(a3)1δ s1 +(a4)1δ s0

+(a5)1δ p1 +(a6)1δ p0 = (r4)1−(1/2)

(b1)1δ t1 +(b2)1δ t0 +(b3)1δ f1 +(b4)1δ f0

+(b5)1δq1 +(b6)1δq0 +(b7)1δu1 +(b8)1δu0

+(b9)1δ s1 +(b10)1δ s0 = (r5)1−(1/2)
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(c1)1δq1 +(c2)1δq0 +(c3)1δ f1 +(c4)1δ f0

+(c5)δ t1 +(c6)1δ t0 +(c7)1δu1 +(c8)1δu0

+(c9)1δ p1 +(c10)1δ p0 = (r6)1−(1/2)

The corresponding matrix form is



−h j
2 0 0 1 0 0

0 −1 0 0 −h j
2 0

0 0 −h j
2 0 0 −h j

2

0 (a4) 0 (a1) 0 0

(b8) (b10) (b6) (b3) (b1) (b5)

(c8) 0 (c2) (c3) (c5) (c1)





δu0

δ s0

δq0

δ f1

δ t1
δq1



+



−h j
2 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 (a3) (a5) 0 0 0

(b7) (b9) 0 0 0 0

(c7) 0 (c9) 0 0 0





δu1

δ s1

δ p1

δ f2

δ t2
δq2


=



(r1)1−1/2

(r2)1−1/2

(r3)1−1/2

(r4)1−1/2

(r5)1−1/2

(r6)1−1/2


For the value of j = 1, we have [A1][δ1]+ [C1][δ2] = [r1].

When j = 2, ..., j = J, the linearised difference equations become

δ fJ−1−δ fJ−2−
1
2

hJ−1(δuJ−1 +δuJ−2) = (r1)(J−1)−1/2

δ sJ−1−δ sJ−2−
1
2

hJ−1(δ tJ−1 +δ tJ−2) = (r2)(J−1)−1/2

δ pJ−1−δ pJ−2−
1
2

hJ−1(δqJ−1 +δqJ−2) = (r3)(J−1)−1/2

(a1)J−1δ fJ−1 +(a2)J−1δ sJ−2 +(a3)J−1δ fJ−1 +(a4)J−1δ sJ−2

+(a5)J−1δ pJ−1 +(a6)J−1δ pJ−2 = (r4)(J−1)−1/2
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(b1)J−1δ tJ−1 +(b2)J−1δ tJ−2 +(b3)J−1δ fJ−1 +(b4)J−1δ fJ−2 +(b5)J−1δqJ−1

+(b6)J−1δqJ−2 +(b7)J−1δuJ−1 +(b8)J−1δuJ−2

+(b9)J−1δ sJ−1 +(b10)J−1δ sJ−2 = (r5)(J−1)−1/2

(c1)J−1δqJ−1 +(c2)J−1δqJ−2 +(c3)J−1δ fJ−1 +(c4)J−1δ fJ−2 +(c5)J−1δ tJ−1

+(c6)J−1δ tJ−2 +(c7)J−1δuJ−1 +(c8)J−1δuJ−2

+(c9)J−1δ pJ−1 +(c10)J−1δ pJ−2 = (r6)(J−1)−1/2

The corresponding matrix form is



0 0 0 −1 0 0

0 0 0 0 −h j
2 0

0 0 0 0 0 −h j
2

0 0 0 (a2) 0 0

0 0 0 (b4) (b2) (b6)

0 0 0 (c4) (c6) (c2)





δuJ−3

δ sJ−3

δ pJ−3

δ fJ−2

δ tJ−2

δqJ−2



+



−h j
2 0 0 1 0 0

0 −1 0 0 −h j
2 0

0 0 −1 0 0 −h j
2

0 (a4) (a6) (a1) 0 0

(b8) (b10) 0 (b3) (b1) (b5)

(c8) 0 (c10) (c3) (c5) (c1)





δuJ−2

δ sJ−2

δ pJ−2

δ fJ−1

δ tJ−1

δqJ−1



+



−h j
2 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 (a3) (a5) 0 0 0

(b7) (b9) 0 0 0 0

(c7) 0 (c9) 0 0 0





δuJ−1

δ sJ−1

δ pJ−1

δ fJ

δ tJ
δqJ


=



(r1)(J−1)−1/2

(r2)(J−1)−1/2

(r3)(J−1)−1/2

(r4)(J−1)−1/2

(r5)(J−1)−1/2

(r6)(J−1)−1/2


Hence for j = 2, ..., j = J, we can written as

[B j][δ j−1]+ [A j][δ j−1]+ [C j][δ j+1] = [r j]
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Finally when j = J, the linear system becomes

δ fJ−δ fJ−1−
1
2

hJ(δuJ +δuJ−1) = (r1)J−1/2

δ sJ−δ sJ−1−
1
2

hJ(δ tJ +δ tJ−1) = (r2)J−1/2

δ pJ−δ pJ−1−
1
2

hJ(δqJ +δqJ−1) = (r3)J−1/2

(a1)Jδ fJ +(a2)Jδ fJ−1 +(a3)Jδ sJ +(a4)Jδ sJ−1

+(a5)JδqJ +(a6)JδqJ−1 = (r4)J−1/2

(b1)Jδ tJ +(b2)Jδ tJ−1 +(b3)Jδ fJ +(b4)Jδ fJ−1 +(b5)JδqJ

+(b6)JδqJ−1 +(b7)JδuJ +(b8)JδuJ−1

+(b9)Jδ sJ +(b10)Jδ sJ−1 = (r5)J−1/2

(c1)JδqJ +(c2)JδqJ−1 +(c3)Jδ fJ +(c4)Jδ fJ−1 +(c5)Jδ tJ

+(c6)Jδ tJ−1 +(c7)JδuJ +(c8)JδuJ−1

+(c9)Jδ pJ +(c10)Jδ pJ−1 = (r6)J−1/2
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Subjected to the boundary conditions Equation 3.117, the suitable matrices can be form as



0 0 0 −1 0 0

0 0 0 0 −h j
2 0

0 0 0 0 0 −h j
2

0 0 0 (a2) 0 0

0 0 0 (b4) (b2) (b6)

0 0 0 (c4) (c6) (c2)





δuJ−2

δ sJ−2

δ pJ−2

δ fJ−1

δ tJ−1

δqJ−1



+



−h j
2 0 0 1 0 0

0 −1 0 0 −h j
2 0

0 0 −1 0 0 −h j
2

0 (a4) (a6) (a1) 0 0

(b8) (b10) 0 (b3) (b1) (b5)

(c8) 0 (c10) (c3) (c5) (c1)





δuJ−1

δ sJ−1

δ pJ−1

δ fJ

δ tJ
δqJ


=



(r1)J−1/2

(r2)J−1/2

(r3)J−1/2

(r4)J−1/2

(r5)J−1/2

(r6)J−1/2


Hence, for j = J it can be written as

[B j][δ j−1]+ [AJ][δJ] = [rJ]

Therefore

j = 1 : [A1][δ1]+ [C1][δ2] = [r1]

j = 2 : [B2][δ1]+ [A2][δ2]+ [C2][δ3] = [r2]

j = 3 : [B3][δ2]+ [A3][δ3]+ [C3][δ4] = [r3]
...

j = J−1 : [BJ−1][δJ−2]+ [AJ−1][δJ−1]+ [CJ−1][δJ] = [rJ−1]

j = J : [BJ][δJ−1]+ [AJ][δJ] = [rJ]

Generally in matrix form, the above system can be simplified as

Aδ = r 3.147
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with

A =



[A1] [C1]

[B2] [A2] [C2]
. . .
. . .

[BJ−1] [AJ−1] [CJ−1][
B j
] [

A j
]


,δ =



[δ1]

[δ2]
...
...

[δJ−1]

[δJ]


and

r =



[r1]

[r2]
...
...

[rJ−1]

[rJ]


The elements of the matrices are

[A1] =



−h j
2 0 0 1 0 0

0 −1 0 0 −h j
2 0

0 0 −h j
2 0 0 −h j

2

0 (a4) 0 (a1) 0 0

(b8) (b10) (b6) (b3) (b1) (b5)

(c8) 0 (c2) (c3) (c5) (c1)


3.148

[
Aj
]
=



−h j
2 0 0 1 0 0

0 −1 0 0 −h j
2 0

0 0 −1 0 0 −h j
2

0 (a4) (a6) (a1) 0 0

(b8) (b10) 0 (b3) (b1) (b5)

(c8) 0 (c10) (c3) (c5) (c1)


3.149
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[
Bj
]
=



0 0 0 −1 0 0

0 0 0 0 −h j
2 0

0 0 0 0 0 −h j
2

0 0 0 (a2) 0 0

0 0 0 (b4) (b2) (b6)

0 0 0 (c4) (c6) (c2)


3.150

[
Cj
]
=



−h j
2 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 (a3) (a5) 0 0 0

(b7) (b9) 0 0 0 0

(c7) 0 (c9) 0 0 0


3.151

[δ1] =



δu0

δ s0

δq0

δ f1

δ t1
δq1


,
[
δj
]
=



δu j−1

δ s j−1

δ p j−1

δ f j

δ t j

δq j


3.152

and

[
rj
]
=



(r1) j−(1/2)

(r2) j−(1/2)

(r3) j−(1/2)

(r4) j−(1/2)

(r5) j−(1/2)

(r6) j−(1/2)


3.153

The coefficient matrix A is known as tridiagonal matrix due to the fact that all elements of A
are zero except those on the three main diagonals. To solve Equation 3.147, according to the

block elimination method as described by Na (1979), we assume that A is nonsingular and
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we seek a factorization of the form

A = LU 3.154

where

L =



[α1]

[B2] [α2]

[B3] [α3]
. . .

[BJ−1] [αJ−1][
B j
] [

α j
]


and

U =



[I] [Γ1]

[I] [Γ2]

[I] [Γ3]
. . .

[I] [ΓJ−1]

[I]



[I] is the identity matrix of order 6 and [αi] and [Γi] are 6× 6 matrices whose elements are

determined by the following equations:

[α1] = [A1], [A1][Γ1] = [C1] 3.155

and

[α j] = [A j]− [Bi][|Γ j−1], j = 2,3, . . . ,J

[α j][Γ j] = [C j], j = 2,3, . . . ,J−1
3.156

By substituting into Equation 3.147, we get

LUδ = r 3.157
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If we define

Uδ = W 3.158

Hence, equation becomes

LW = r 3.159

where

r =



[W1]

[W2]
...
...

[WJ−1]

[WJ]


and [WJ] are 6×1 column matrices. The elements W can be solved from Equation 3.159.

[α1][W1] = [r1] 3.160

[α j][Wj] = [r j]− [B j][Wj−1], j = 2≤ j ≤ J 3.161

The step in which [WJ], [αJ] and [ΓJ] are calculated is usually referred to as the forward

sweep. Once the elements of W are found, Equation 3.158 then gives the solution in the

so-called backward sweep, in which the elements are obtained by the following relations:

[δJ] = [WJ] 3.162

[δ j] = [Wj]− [Γ j][δ j+1], 1≤ j ≤ J−1 3.163

Since the elements of δ are found, Equations 3.136 to 3.141 then can be used to find (i+1)

iterates for Equation 3.128.

These calculations are repeated until some convergence criterion is satisfied. In the

laminar boundary layer calculations, the wall shear stress parameter is commonly used as

convergence criterion (Cebeci and Bradshaw, 1988). This is probably because in boundary

layer calculations, the greatest errors usually occurr in the wall shear stress parameter.

76



Therefore, the wall shear stress parameter is used as convergence criterion in this study.

Calculations are stopped when

|δv(i)0 |< ε1 3.164

where ε1 is a small prescribed value. The convergence criterion required that the maximum

absolute error between two successive iterations be ε1 = 10−5, which gives the precise values

until four decimal places, as suggested by Cebeci and Bradshaw (1988).

3.4 Initial Conditions

The numerical methodology was coded in MATLAB. To verify its validity, a

comparison with selective data from the published literature was conducted. In the

numerical calculation, the suitable step size and boundary layer thickness should be

determined. Accordingly, appropriate values must be defined so that the numerical results

for the quantities discussed are not affected by boundary layer thickness, y∞ and step size of

boundary layer, ∆y. The computation can be initiated by determining the value concerning

the velocity and temperature profile. The non suitable values of the boundary layer

thickness which are too large or small may not fulfil the boundary conditions . In this study,

it is found that the boundary layer thickness y∞ from 1 to 4 is considered suitable to provide

accurate numerical results depending on the problem involved.

Usually, the step size is sufficient to provide accurate numerical results (Nazar,

2003). However, the appropriate value of the step size must not affect the converged results

appreciably. For example, the value of the skin friction coefficient must be free from the

value of the step size chosen. Indeed, values too small may cause increased waiting time in

calculation while a large values of cause minimal time in the calculation, but may produce

inaccurate results (Ishak et al., 2009).

The boundary layer thickness y∞ is almost constant for the case of the laminar

boundary layer flows. Once the proper value of y∞ has been obtained, a reasonable choice

of net spacing should be determined. Usually a step size ∆y = 0.01 to 0.04 is adequate to

provide an accurate numerical result (Nazar, 2003). Meanwhile, the step size ∆x can be

arbitrary as it does not affect the converged result appreciably.
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3.5 Initial Profile

The initial profiles are necessary for performing the numerical computations in

MATLAB. To proceed with the numerical computation, it is necessary to make an initial

guess or assumption for the function and in the boundary layer flow. The inital guess is

undertakan by adopting a trial and error approach. There are several possibilities in the

selection of initial guess, but it must obey and satisfy the boundary conditions stated 3.92.

The initial guess and assumption can commence with velocity, temperature

distribution and concentration distribution. It is because u,s and p have both boundary

conditions at y = 0 and y∞. When the initial guess of u,s and p have been defined, the other

function f ,v, t and q can be obtained using differentiation and integration.

u =
d f
dy

=
y

y∞

sinx
x

(
3
2
− 1

2

(
y

y∞

)2
)

3.165

s = θ = y∞

(
y

y∞

)2

− y 3.166

and

p = φ = 1− y
y∞

3.167

respectively. Integrate Equation 3.165 with respect to y produce

f =
∫ 0

y∞

udy =
1
4

y∞

sinx
x

(
y

y∞

)2
(

3− 1
2

(
y

y∞

)2
)

3.168

On the other hand, differentiate Equations 3.165 and 3.167 with respect to y produce

v =
du
dy

=
3

2y∞

sinx
x

(
1−
(

y
y∞

)2
)

3.169
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q =
d p
dy

=
−1
y∞

3.170

and for case s′, following the convective boundary condition

t =
ds
dy

= θ
′ =−γ (1−θ) 3.171

The complete coding using MATLAB is provided in the Appendix B. Notably, the

complete numerical procedure is described here for the problem discussed in this chapter

which is the problem of mixed convection boundary layer flow over a horizontal circular

cylinder, as further presented in Chapter 8. From the numerical results, it is found that the

Keller-box method is considered to be the most suitable to provide accurate results to solve

the convection in an incompressible viscous fluid problem, because it can solve problem of

any order (Gruyter., 2014). Hence, there is inequiveably no doubt of the accuracy in applying

the Keller-box method to solve the problems presented in Chapter 4 to Chapter 8

Figure 3.2 below shows the general flow diagram for the computations of Keller-box

method for problems discussed in this thesis.
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Figure 3.2. Flow diagram for Keller-box method
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Figure 3.3. Flow chart of the solution procedure
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CHAPTER 4

FORCED CONVECTION BOUNDARY LAYER FLOW OVER A HORIZONTAL
CIRCULAR CYLINDER IN A VISCOUS FLUID

4.1 Introduction

Forced convection as been described in first chapter is a mechanism in which the

motion of the fluid comes from an external sources such as fan, pump, blower and so forth.

Applications for forced convection include systems that operate at extremely high

temperatures for example transporting molten metal or liquefied plastic. Normally, forced

convection is used to increase the rate of exchange. In any forced convection situation, free

convection effects are also present under the presence of gravitational body forces (Nazar,

2003). In this chapter, the problem of forced convection over a horizontal circular cylinder

are demonstrated.

Forced convection over a horizontal circular cylinder is a classical problem in

boundary layer theory and heat transfer. The study of this problem have gained

considerable attention due to its application in physical, geophysical and industrial fields.

However, while often applied in applications, the study of forced convection appear less as

compared to the study of free and mixed convection (Sumaily et al., 2012).

In the next section, we provides a succinct description of the governing equations

and the boundary conditions for the forced convection over horizontal circular cylinder. This

is followed by a presentation and discussion of the numerical results in Section 4.3, which

include the variations of the skin friction coefficient and the heat transfer coefficient with

the effects of the Pr number, conjugate and mixed parameter on the flow and heat transfer.

Finally, Section 4.4 provides the concluding remarks about the finding of this problem.
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4.2 Mathematical Formulation

The problem under consideration in this study is regarding the steadily forced

convection boundary layer flow and heat transfer of a viscous and an incompressible fluid

of free stream velocity U∞ and ambient temperature T∞ moving over a horizontal circular

cylinder. The bottom of the cylinder is heated by convection from the hot fluid at

temperature Tf which yields a heat transfer coefficient h f . The physical model and

coordinate system of this problem is shown in Figure 4.1.

x

Hot fluid

a

,

Tf , h

x

f

a

T ,∞ U, ∞

Figure 4.1. Physical model and coordinate system

The assumption has been made that the buoyancy forces and the viscous dissipation effects

are neglected. The continuity equation has been given in Equation 3.67, whereas

momentum and energy equations describing the flow can be written as (Salleh et al., 2011),

u
∂u
∂x

+ v
∂u
∂y

= ue
due

dx
+ν

∂ 2u

∂y2
4.1

u
∂T
∂x

+ v
∂T
∂y

= α
∂ 2T

∂y2
4.2
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subject to the boundary conditions

u = v = 0, −k
∂T
∂y

= h f (Tf −T ) at y = 0

u→ ue, T → T∞ as y→ ∞

4.3

where ue = 2U∞ sin(x/a) , (u,v) are the velocity components along the (x,y) axes, T is the

local temperature, Tf is the temperature of the hot fluid, ν is the kinematic viscosity, k is the

thermal conductivity, α is the thermal diffusivity and h f is the heat transfer parameter for

convective boundary condition. By introducing the following non-dimensional variables:

x = x/a, y = Re1/2(y/a), u = u/U∞, v = Re1/2(v/U∞)

ue = ue/U∞, θ =
T −T∞

Tf −T∞

. 4.4

where Re = U∞a/ν is the Reynold number. Therefore, substituting Equation 4.4 into

Equations 4.1 to 4.3, the following differential equations are found

u
∂u
∂x

+ v
∂u
∂y

= ue
∂ue

∂x
+

∂ 2u
∂y2 4.5

u
∂θ

∂x
+ v

∂θ

∂y
=

1
Pr

∂ 2θ

∂y2 4.6

Boundary conditions become

u = v = 0,
∂θ

∂y
=−γ(1−θ) at y = 0

u→ ue, θ → 0 as y→ ∞

4.7

where ue = 2sinx, Pr is the Prandtl number and γ is the convective parameter defined as

follow

Pr =
ν

α
, γ =

h f

k
aRe−1/2 4.8
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To solve Equations 4.5 to 4.6 subjected to the boundary conditions 4.7, and by introducing

ψ as

ψ = x f (x,y), θ = θ(x,y) 4.9

where ψ is the stream function which is defined as u = ∂ψ/∂y and v = −∂ψ/∂x. Using

variables 4.9, Equations 4.5 and 4.6 then become

∂ 3 f
∂y3 + f

∂ 2 f
∂y2 −

(
∂ f
∂y

)2

+4
sinxcosx

x
= x
(

∂ f
∂y

∂ 2 f
∂x∂y

− ∂ f
∂x

∂ 2 f
∂y2

)
4.10

1
Pr

∂ 2θ

∂y2 + f
∂θ

∂y
= x
(

∂ f
∂y

∂θ

∂x
− ∂ f

∂x
∂θ

∂y

)
4.11

while the boundary conditions become

f =
∂ f
∂y

= 0,
∂θ

∂y
=−γ(1−θ) at y = 0

∂ f
∂y
→ 2

sinx
x

, θ → 0 as y→ ∞

4.12

Near the lower stagnation point of the cylinder x≈ 0, Equations 4.10 and 4.11 reduce to the

following ordinary differential equations

f ′′′+ f f ′′− ( f ′)2 +4 = 0 4.13

1
Pr

θ
′′+ f θ

′ = 0 4.14

where the prime denotes differentiation with respect to y and the boundary conditions are

f (0) = f ′(0) = 0, θ
′(0) =−γ(1−θ(0)) at y = 0

f ′(y)→ 2, θ(y)→ 0 as y→ ∞

4.15
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In practical applications, the physical quantities of interest are the skin friction coefficient,

C f and the heat transfer coefficient Qw(x) which can be written in non-dimensional form as

Re1/2C f = x
∂ 2 f
∂y2 , Re1/2Qw =−∂θ

∂y
=−γ(1−θ) 4.16

where

τw = µ
∂u
∂y

, qw =−k
∂T
∂y

4.17

C f = τw/(ρU2
∞) is the skin friction coefficient with Qw = aqw/(k(Tf −T )) and ρ is the fluid

density. Detailed formulation can be accessed in Appendix C.

4.3 Results and Discussion

The problem is given by Equations 4.10 and 4.11 with boundary conditions 4.12

were solved numerically using the Keller-box method for the case of the convective

boundary conditions. Three parameters were considered, namely the Prandtl number Pr, the

convective parameter γ and the coordinate along the surface of the cylinder, x. The

solutions are heavily reliant upon these parameters. In the numerical solution, the starting

point was a consideration of the solution at the lower stagnation point of the cylinder i.e.

x ≈ 0 and proceeded round the cylinder up to the separation point denoted as xs. Therefore,

the solution for the local skin friction coefficient and heat transfer coefficient lies between

0 < x < xs. Outside this value, the solution became unstable and encountered singularity in

the numerical solutions. Therefore from the numerical solution, estimation of the separation

of the cylinder occured at the point, xs = 1.85 (104.50◦) which is in good agreement with

the results reported by Zukauskas and Ziugzda (1985), Khan et al. (2004) and Kaprawi and

Santoso (2012).

Table 4.1 provides the values of the reduced skin friction coefficient
∂ 2 f

∂y2(x,0) at

some position x when γ = 1.0. To validate the implementation, results from this code were

compared to previously published numerical results at the lower stagnation points x ≈ 0

given by Salleh et al. (2009) and Ahmad et al. (2005). These researchers solved the similar

problem under discussion, but they used different types of thermal heating process. Ahmad

et al. (2005) investigate the case when constant heat flux is applied, whereas Salleh et al.

(2009) using Newtonian heating. Both investigators used Keller-box method to solve the
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problems. Eventhough the thermal boundary conditions are different, the momentum

equation remained the same. This is due to the fact that decoupled boundary layer equation

where the momentum and energy equations are independent from one and another. Change

values in the thermal condition are only reflect to energy equations. Therefore, there is only

a unique value the reduced skin friction
∂ 2 f

∂y2(x,0) = 3.4866 for all cases of CHF, NH and

CBC. The comparisons between these results are found to be in a good agreement.

Table 4.1. Values of the reduced skin friction coefficient at some positions x when γ = 1.0

Present Result Ahmad et al. (2005) Salleh et al. (2009)

x x◦ ∂ 2 f
∂ 2y (x,0) f ′′(0) f ′′(0)

0.0 0 3.4866 3.4919 3.4864
0.2 11.46 3.4302 - -
0.4 22.92 3.2692 - -
0.6 34.38 3.0117 - -
0.8 45.84 2.6710 - -
1.0 57.30 2.2637 - -
1.2 68.75 2.8085 - -
1.4 80.21 1.3239 - -
1.6 91.67 0.8218 - -
1.8 101.13 0.2688 - -

Table 4.2. Values of the heat transfer coefficient Qw when Pr = 1.0

x γ

0.05 0.10 0.20 0.30
0.0 0.0471 0.0889 0.1549 0.1786

0.2 0.0510 0.1049 0.2257 0.3702

0.4 0.0517 0.1079 0.2390 0.4037

0.6 0.0520 0.1092 0.2448 0.4185

0.8 0.0522 0.1098 0.2474 0.4253

1.0 0.0522 0.1099 0.2481 0.4272

1.2 0.0522 0.1097 0.2471 0.4249

1.4 0.0522 0.1091 0.2444 0.4183

1.6 0.0517 0.1078 0.2391 0.4052

1.8 0.0509 0.1044 0.2249 0.3710

The values of the local heat transfer coefficient, Qw for various values of the

convective parameter are presented in Table 4.2, starting with γ = 0.05 up to γ = 0.30. It

can be observed from these tables that the values of Qw increase to the maximum value
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when it reaches a certain point of x. After the maximum points, the values of Qw start to

decrease at the rear part of the cylinder.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

 x

 C
f (

x,
0)

 

 

Present result
Salleh et  al. (2011)

Figure 4.2. Variation of the local skin friction coefficient C f (x,0)

The local skin friction coefficients, C f are illustrated in Figure 4.2 for the present

results and those reported by Salleh et al. (2011). There is no skin friction at the stagnation

point (Mabood et al., 2016). The graph is almost symmetric and the point of maximum

occurs at 0.96. The increase in the shear stress is caused by the deformation of the velocity

profile in the boundary layer, a higher velocity gradient at the wall, and a thicker boundary

layer (Kaprawi and Santoso, 2012).

Figure 4.3 shows the value of the local heat transfer coefficient for various values of

Pr. As Pr increases, the heat transfer coefficient also increases. However, at the lower

stagnation point x≈ 0, the value increases drastically before it becoming relatively constant

and decrease at separation points. A similar trend is observed when γ increases as illustrates

in Figure 4.4. Indeed, heat transfer coefficients increase with the increase of γ i.e.

convective parameter helps in increasing the surface temperature. Figure 4.5 displays the

velocity profiles near the lower stagnation points of the cylinder, x ≈ 0. Regarding this

figure, a unique graph of
∂ f

∂y
(x,0) is found for all values of Pr number and convective

parameter γ due to the decoupled Equations 4.10 and 4.11.
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Figure 4.3. Variation of the local heat transfer coefficient for various value of Pr

Figure 4.4. Variation of the local heat transfer coefficient for various value of γ
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Figure 4.5. Velocity profiles f ′(y) near the lower stagnation point of the cylinder, x≈ 0
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Figure 4.6. Temperature profiles θ(y) near the lower stagnation point of the cylinder,
x≈ 0 when γ = 0.1
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Figure 4.7. Temperature profiles θ(y) near the lower stagnation point of the cylinder,
x≈ 0 when Pr = 1.0
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Figure 4.8. Variation of the wall temperature θ(x,0) at the lower stagnation point of the
cylinder x≈ 0 with Pr when γ = 0.5 and 1.0.
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Figure 4.9. Variation of the wall temperature θ(x,0) at the lower stagnation point of the
cylinder x≈ 0 with convective parameter γ when Pr= 0.72,1.0 and 7.0

Figures 4.6 shows the temperature profiles at the stagnation point of the cylinder

for various values of Pr. The temperature profile decreases when the Prandtl number Pr

increases. This is due to the fact that for small values of Prandtl number Pr(� 1), the

fluid is highly conductive. Physically, if Pr increases, the thermal diffusivity decreases and

this phenomenon leads to the decreasing manner of energy transfer ability that reduces the

thermal boundary layer (Mohamed, 2013).

On the other hand, in 4.7 temperature profile increases as the convective parameter

increases. Furthermore, the parameter γ at any location is proportional to heat transfer

coefficient associated with the hot fluid h f . Therefore, as γ increase, the hot fluid resistance

increases and consequently the surface temperature increases (Aziz, 2009). From Figure

4.8, the variation of wall temperature is graphically plotted, θw(x,0) with γ = 0.5 and 1.0.

To achieve an acceptable solution, Pr must be greater than some critical value, say Prc

depending on γ . As Pr approaches the critical value, θ(0) becomes large and the value of

Prc = 0.1713 and 1.9252 when γ = 0.5 and 1.0 respectively.

Variation value of the wall temperature, θ(0) for different values of γ when Pr =

0.72,1.0 and 7.0 are shown in Figure 4.9. Also in this case, to obtain an acceptable solution,

γ must be less than some critical value, say γc depending on Pr. From the graph above, the

critical value of γc is 0.7091, 0.8068 and 1.6750 when Pr = 0.72, 1.0 and 7.0, respectively.
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4.4 Conclusions

The results presented in this chapter provide a better understanding regarding the

influences of the presence of the convective parameter and Prandtl number Pr, on the rates of

heat transfer and the hydrodynamic and thermal behaviour around a heated circular cylinder

mounted in a horizontal channel. Though not surprising, the results demonstrate that the

presence of the convective parameter increases the heat transfer as expected.

The separation of the cylinder for forced convection occur when position of x = 1.85

of cylinder where it diminishes and we have shown how convective parameter, γ and the

Prandtl number affects the flow and heat transfer characteristics as well as the position of the

boundary layer separation point, xs . Therefore, we conclude that:

i) the unique valued exists for the skin friction coefficient due to the decoupled boundary

condition i.e. the flow is independent of the temperature and the maximum skin friction

takes place when x = 0.96 (55◦)

ii) the heat transfer increases with the increase of γ as the convective parameter aids in

increasing the surface temperature

iii) an increase in the value of Pr leads to a decrease in the temperature profiles. However,

the rise in γ increases the temperature profile

iv) to achieve a physically acceptable solution, Pr must be greater or equal to Prc depending

on γ , whereas γ must be less than or equal to γc depending on Pr. Outside this value, the

singularity occurs and the solution becomes unstable
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CHAPTER 5

FREE CONVECTION BOUNDARY LAYER FLOW OVER A HORIZONTAL
CIRCULAR CYLINDER IN A MICROPOLAR FLUID

5.1 Introduction

This chapter demonstrates on a problem of free convection immersed in the

micropolar fluids. Eringen (1966) was the first who proposed the theory of micropolar

fluids where the structure and microrotation of fluid elements give rise to the microscopic

effect. Later Eringen (1972) incorporated the thermal effects in generalizing the theory of

micropolar fluid. Eringen’s discovery led to the major advancement in fluid flow whereby

micropolar fluid takes account into the rotation of fluid particles using an independent

kinematic vector called the microrotation vector.

Accordingly, this model consider the biological fluids in thin vessels, polymeric

suspensions, slurries, and colloidal fluids. Due to the vast applications, numerous problems

regarding the solutions of flow of a micropolar fluid have been investigated by researchers.

The historical development of the free convection flow in a micropolar fluid has already

presented in Chapter 2.

In the next section, we provides a succinct description of the governing equations and

the boundary conditions for the free convection over horizontal circular cylinder immersed in

micropolar fluid. This is followed by a presentation and discussion of the numerical results in

Section 5.3, which include the variations of the skin friction coefficient and the heat transfer

coefficient with the effects of the Pr number, convective and material parameter on the flow

and heat transfer. Finally, Section 5.4 provides the concluding remarks about the finding of

this problem.
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5.2 Mathematical Formulation

Steady free convection boundary layer flow and heat transfer of a viscous and an

incompressible micropolar fluid of free stream velocity, and ambient temperature, over a

horizontal circular cylinder of the radius, are next examined. Under the Boussinesq and

boundary layer approximations, the basic equations are (Nazar et al., 2002b; Salleh and

Nazar, 2010),

ρ

(
u

∂u
∂x

+ v
∂u
∂y

)
= (µ +κ)

∂ 2u

∂y2
+ρgβ (T −T∞)sin

(
x
a

)
+κ

∂H
∂y

5.1

ū
∂T
∂x

+ v
∂T
∂y

= α
∂ 2T

∂y2
5.2

ρJ
(

u
∂H
∂x

+ v
∂H
∂y

)
=−κ

(
2H̄ +

∂u
∂y

)
+χ

∂ 2H

∂y2
5.3

The physical model and coordinate system of this problem is shown in Figure 5.1.

x

Hot fluid

a

,
U∞T

Tf , h

x

∞

f

a

g

Figure 5.1. Physical model and coordinate system
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Assuming the spin gradient velocity is given by χ = (µ +(κ/2))J. The boundary

conditions for the flow and thermal field are

u = v = 0, −k
∂T
∂y

= h f (Tf −T ), H =−n
∂u
∂y

at y = 0

u→ 0, T → T∞, H→ 0 as y→ ∞

5.4

where u and v are the velocity components along x and y respectively, ρ is the fluid density,

ν is the kinematic viscosity, κ is the vortex viscosity, g is the gravitational acceleration, β is

the thermal expansion coefficient, T is the fluid temperature in the boundary layer, H is the

angular velocity of the micropolar fluid, α is the thermal diffusivity, µ is the viscosity, and

J is the microinertia per unit mass. The bottom surface of cylinder is heated by convection

from hot fluid of temperature Tf which provides heat transfer coefficient h f . Further, k is the

thermal conductivity and Tf > T∞.

Therefore to solve Equations 5.1 to 5.4, the following non-dimensional variables are

defined as

x = x/a, y = Gr1/4(y/a), u =

(
a
ν

)
Gr−1/2u

v =
(

a
ν

)
Gr−1/4v, θ =

T −T∞

Tf −T∞

, H =

(
a2

ν

)
Gr−3/4H

5.5

where Gr is Grashof number which is given as

Gr =
gβ (Tf −T∞)a3

ν2 5.6

Substituting Equation 5.5 into Equations 5.1 to 5.4, the following boundary layer

equations for the problem under consideration are given by

u
∂u
∂x

+ v
∂u
∂y

= (1+K)
∂ 2u
∂y2 +θ sinx+K

∂H
∂y

5.7

u
∂H
∂x

+ v
∂H
∂y

=

(
1+

K
2

)
∂ 2H
∂y2 −K

(
2H +

∂u
∂y

)
5.8
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u
∂θ

∂x
+ v

∂θ

∂y
=

1
Pr

∂ 2θ

∂y2 5.9

where the material or micropolar parameter K is defined as K = κ/µ , and κ , µ are the vortex

viscosity and viscosity, respectively. The boundary conditions become:

u = v = 0,
∂θ

∂y
=−γ(1−θ), H =−1

2
∂u
∂y

at y = 0

u→ 0, θ → 0, H→ 0 as y→ ∞

5.10

To solve Equations 5.7 to 5.9, subjected to the boundary conditions 5.10, we introduce the

following variables

ψ = x f (x,y), θ = θ(x,y), H = xG(x,y) 5.11

where ψ is the stream function defined as u = ∂ψ/∂y and v = −∂ψ/∂x. Thus, Equations

5.7 to 5.9 becomes

(1+K)
∂ 3 f
∂y3 + f

∂ 2 f
∂y2 −

(
∂ f
∂y

)2

+
sinx

x
θ +K

∂G
∂y

= x
(

∂ f
∂y

∂ 2 f
∂x∂y

− ∂ f
∂x

∂ 2 f
∂y2

)
5.12

(
1+

K
2

)
∂ 2G
∂y2 + f

∂G
∂y
−
(

∂ f
∂y

)
G−K

(
2G+

∂ 2F
∂y2

)
= x
(

∂ f
∂y

∂G
∂x
− ∂ f

∂x
∂G
∂y

)
5.13

1
Pr

∂ 2θ

∂y2 + f
∂θ

∂y
= x
(

∂ f
∂y

∂θ

∂x
− ∂ f

∂x
∂θ

∂y

)
5.14

subject to the boundary conditions

f =
∂ f
∂y

= 0,
∂θ

∂y
=−γ(1−θ), G =−1

2
∂ 2 f
∂y2 at y = 0

∂ f
∂y
→ 0, θ → 0, G→ 0 as y→ ∞

5.15
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It can be seen that near the lower stagnation point of the cylinder, x ≈ 0 , Equations 5.12 to

5.14 reduce to the following ordinary differential equations,

(1+K) f ′′′+ f f ′′− ( f ′)2 +θ +KG′ = 0 5.16

(
1+ K

2

)
G′′+ f G′− ( f ′)G−K(2G+ f ′′) = 0 5.17

1
Pr θ ′′+ f θ ′ = 0 5.18

and the boundary conditions 5.15 become

f (0) = f ′(0) = 0, θ
′(0) =−γ(1−θ(0)), G(0) =−1

2
f ′′(0) at y = 0

f ′(y)→ 0, θ(y)→ 0, G(y)→ 0 as y→ ∞

5.19

where primes denote differentiation with respect to y. Indeed, in practical applications,

quantities such as surface heat flux and skin friction are very important. But, for free

convection problems, the former is more important than the latter. The following equation

provides both the skin friction coefficient C f and the heat flux Qw as

C f =
Gr−3/4a2

µν
τw, Qw =

aGr−1/4

k f (Tf −T∞)
qw 5.20

where τw is the skin friction coefficient or the shear stress at the surface of the cylinder, qw

is the heat flux from the surface of the cylinder respectively, which are given by

τ̄w = µ

(
∂ ū
∂ ȳ

)
ȳ=0

, q̄w =−k f

(
∂T
∂ ȳ

)
ȳ=0

5.21

Using Equations 5.5 and 5.11, the dimensionless quantities C f and Qw are obtained as

Gr1/4C f =

(
1+

K
2

)
x

∂ 2 f
∂y2 , Qw =−∂θ

∂y
=−γ(1−θ) 5.22

Detailed formulation can be accessed in Appendix D.
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5.3 Results and Discussion

Equations 5.12 to 5.14 with boundary conditions 5.15 were solved numerically using

the same techniques as presented in Chapter 3. The numerical solution starts at the lower

stagnation point of the cylinder, i.e. x ≈ 0 and proceeds round the cylinder until the upper

stagnation point, (x= 180◦). In this study, the results are also focused on the case at the lower

stagnation point of the cylinder, and therefore Equations 5.17 to 5.18 are solved subject to

boundary conditions 5.19. Representative results for the velocity and temperature profiles

for the local heat transfer and the skin friction coefficient are obtained for various values of

the convective parameter γ , material parameter K and at a different position of x. The values

of material parameter considered in this problem are K = 0 (Newtonian fluid), K = 1,2 and

3 for micropolar fluid.

To verify the accuracy of the present method, the present results are compared with

those reported by Bhattacharyya and Pop (1996) as shown in Table 5.1. Bhattacharyya and

Pop (1996) studied free convection from cylinders of elliptic cross-section in micropolar

fluids using numerical approach. It is found that the values of Nusselt number for the

previous published results with the presents results when convective parameter reduces to

convective parameter i.e γ → ∞ (CWT) are found to be in good agreement. Therefore, the

result presented here is considered to be accurate.

Table 5.1. Comparison for the local Nusselt number Nu for the Newtonian case when γ→∞

(CWT).

x
−θ ′(0)

Bhattacharyya and Pop (1996) Present Result
0 0.4213 0.4214

0.4 0.4183 0.4183

0.8 0.4093 0.4093

1.2 0.3942 0.3942

1.6 0.3725 0.3726

2.0 0.3440 0.3440

2.4 0.3066 0.3069

2.8 0.2568 0.2575

π 0.1963 0.1939
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Figure 5.2. Variation of skin friction coefficient C f for Pr = 7, K = 1 and various values of γ
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Figure 5.3. Variation of heat transfer coefficient Qw for Pr = 7, K = 1 and various values of
γ
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Figures 5.2 and 5.3 illustrate the behavior of the local skin friction coefficient and

local heat transfer for various values of convective parameter γ . Indeed, from these figures,

it can be seen that there is no significant difference in the value of the heat transfer coefficient

for the different position of x. This is possibly because the value of γ is small, and the effect

of the heat transfer is not significant. However as γ increases, the heat transfer coefficient is

increased. Notably, a similar pattern was observed in the case of the skin friction coefficient.

Figures 5.4 and 5.5 depict the behaviour of the local skin friction coefficient and local

heat transfer for various values of the material parameter K. The skin friction coefficient

increases as the value of K increases whereas the opposite pattern is observed for the heat

transfer coefficient. The increasing values of C f increase with the parameter K due to the

factor of x(1+K/2)). Consequently, an increase in the value of K implies a higher vortex

viscosity of fluids and this resulting the higher values of local skin friction coefficients.

The corresponding variation of the skin friction coefficient C f and heat transfer Qw

for various values of the Prandtl number are illustrated in Figures 5.6 and 5.7. From

observing these figures, the values of the skin friction coefficient decrease with the increase

of Pr, while those of the heat transfer increase with the increase of Pr for the fixed value of

K.

Also, the temperature and velocity profiles, and angular velocity for some of the

values of parameter K are displayed in Figures 5.8, 5.9 and 5.10. Noticeably, as K increases,

the temperature profile increases, while the velocity and angular velocity decrease when K

is increased.

The effects of the Prandtl number on velocity, temperature, and the angular velocity

at the lower stagnation point are demonstrated in Figures 5.11, 5.12 and 5.13. The influence

of the Prandtl number is similar to that in classical problem of the constant wall temperature

case.

The effects of the convective parameter on velocity, temperature, and angular

velocity at the lower stagnation point are presented in Figures 5.14, 5.15 through 5.16. It

can be observed that the velocity becomes thinner as the convective parameter increases

(Pantokratoras, 2014).

Note that for the case of free convection, the numerical solution demonstrates that

the boundary layer reaches the top of the cylinder (x = π) without separating. Therefore, the

boundary layer on each side of the cylinder must collide at (x = π) and leave the surface to

form a thin buoyant plume above the cylinder.
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Figure 5.4. Variation of skin friction coefficient C f for Pr = 7, γ = 0.1 and various values of
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Figure 5.8. Velocity profile f ′(y) for various values of K when Pr = 7.0 and γ = 0.1
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Figure 5.9. Temperature profile θ(y) for various values of K when Pr = 7.0 and γ = 0.1
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Figure 5.11. Velocity profiles f ′(y) for various values of Pr when γ = 0.1 and K = 1
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Figure 5.12. Temperature profiles θ(y) for various values of Pr when γ = 0.1 and K = 1
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Figure 5.16. Angular velocity profiles G(y) for various values of γ when Pr = 7.0 and K = 1

5.4 Conclusions

In this chapter, the problem of the free convection boundary layer of a horizontal

circular cylinder immersed in a micropolar fluid with convective boundary condition was

numerically studied. Notwithstanding, to determine how the convective parameter γ as well

as the material parameter K and Prandtl number affect the flow and heat transfer

characteristic. For the comparative result, the results were compared with the results

obtained with Bhattacharyya and Pop (1996) for the case when γ → ∞. The results were

illustrated graphically and from the obtained results, the following conclusions are

presented:

i) an increase in γ and K illustrate the increment in the C f . However the increase in Pr

shows the decrease in C f

ii) an increase in the γ and the Pr number leads to heat transfer enhancement Qw.

Conversely, the different result are obtained with an increase of K.
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iii) an increase in the K parameter from 0 to 2 leads to decrease in velocity and the angular

velocity profile. On the other hand, the temperature profile θ(y) increases with an

increase of parameter K.

iv) as the Prandtl number increases, the velocity f ′(y) and the temperature profile θ(y)

decrease. The thermal boundary layer thickness decreases as the Pr increases. Therefore

the resistance to heat transfer is reduced.

v) the increased value of γ leads to the increase in the velocity and the temperature profile.

For the case angular velocity G(y), increasing γ decreases G(y) initially, however after

y = 1.6, the result changes in opposite way
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CHAPTER 6

MIXED CONVECTION BOUNDARY LAYER FLOW OVER A HORIZONTAL
CIRCULAR CYLINDER IN A VISCOUS FLUID

6.1 Introduction

The previous two chapters have considered both free and forced convection. In this

chapter, attention is focussed on the problem of mixed convection over a horizontal circular

cylinder under a convective boundary condition. Mixed convection describes the situation

when the effect of the buoyancy force in forced convection, or the effect of forced flow in

free convection becomes significant.

Mixed convection heat transfer exists when natural convection currents are in the

same order of magnitude as the forced flow velocities (Dawood et al., 2015). Indeed, mixed

convection flow from a horizontal circular cylinder constitutes an important heat transfer

problem from the standpoint of engineering applications and numerical analysis (Nazar,

2003). Mixed convection boundary layer flow from general bodies in viscous fluid has been

considered by numerous researchers as listed in the following paragraph. Over the past

decade, the study on mixed convection over a horizontal cylinder has progressed

tremendously due to the demand in industrial manufacturing processes, geothermal power

generation, the dispersion of pollutants, drilling operations and more.

In the next section, we provides a succinct description of the governing equations

and the boundary conditions for the mixed convection over horizontal circular cylinder. This

is followed by a presentation and discussion of the numerical results in Section 6.3, which

include the variations of the skin friction coefficient and the heat transfer coefficient with

the effects of the Pr number, conjugate and mixed parameter on the flow and heat transfer.

Finally, Section 6.4 provides the concluding remarks about the finding of this problem
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6.2 Mathematical Formulation

Next, we consider the problem of mixed convection flow of a viscous and

incompressible fluid impinges to a horizontal circular cylinder with radius a, where the

bottom surface of the cylinder heated by convection from hot fluid. The coordinates x̄ and ȳ

are measured along the surface of the cylinder, starting with the lower stagnation point and

normal to it, respectively. It is assumed that the free stream velocity is in the form of U∞

and ambient temperature T∞. In addition, Boussinesq equations and boundary layer

approximation are proved to be valid in this problem. Under these assumptions, the steady

mixed convection boundary layer flow are given as follow

(
u

∂u
∂x

+ v
∂u
∂y

)
= ρue

∂ue

∂x
+ν

∂ 2u

∂y2
+ρgβ (T −T∞)sin

(
x
a

)
6.1

u
∂T
∂x

+ v
∂T
∂y

= α
∂ 2T

∂y2
6.2

where u and v are the velocity components along the x and y respectively, ρ is the fluid

density, g is the gravitational acceleration, β is the thermal expansion coefficient, T is the

fluid temperature in the boundary layer, α is the thermal diffusivity, ν is the kinematic

viscosity and free stream velocity ūe for the boundary layer equations is given by

ue =U∞ sin
(

x̄
a

)
6.3

The boundary conditions for the flow and thermal fields are as Equation 4.3

In order to solve Equations 6.1 to 6.3, we introduce the following non-dimensional

variables defined as

x = x/a, y = Re1/2(y/a), u = u/U∞, ue = ue/U∞

v = Re1/2(v/U∞) θ =
T −T∞

Tf −T∞

6.4

111



Substituting Equation 6.4 into Equations 6.1 to 6.3, we obtain the following boundary layer

equations for the problem under consideration

u
∂u
∂x

+ v
∂u
∂y

= ue
∂ue

∂x
+

∂ 2u
∂y2 +λθ sinx 6.5

u
∂θ

∂x
+ v

∂θ

∂y
=

1
Pr

∂ 2θ

∂y2 6.6

The transformed boundary conditions are as Equationn 4.7. Here λ is the constant mixed

convection parameter which are defined as

λ =
Gr
Re2 , Gr =

gβ (Tf −T∞)a3

v2 6.7

It is worth mentioning that (i) λ > 0 for the assisting flow, (ii) λ < 0 for the opposing

flow and (iii) λ = 0 for forced convection. Further, we introduce the following similarity

transformation (Anwar et al., 2008; Salleh et al., 2010b),

ψ = x f (x,y), θ = θ(x,y) 6.8

where f is the dimensionless stream function, θ is the dimensionless temperature, and ψ is

the stream function defined as usual. Using stream function, we get the resulting transformed

equations

∂ 3 f
∂y3 + f

∂ 2 f
∂y2 −

(
∂ f
∂y

)2

+(cosx+λθ)
sinx

x
= x
(

∂ f
∂y

∂ 2 f
∂x∂y

− ∂ f
∂x

∂ 2 f
∂y2

)
6.9

1
Pr

∂ 2θ

∂y2 + f
∂θ

∂y
= x
(

∂ f
∂y

∂θ

∂x
− ∂ f

∂x
∂θ

∂y

)
6.10

the boundary conditions 4.7 become
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f =
∂ f
∂y

= 0,
∂θ

∂y
=−γ(1−θ) at y = 0

∂ f
∂y
→ sinx

x
, θ → 0 as y→ ∞

6.11

At the lower stagnation points of the cylinder x ≈ 0 , Equations 6.9 to 6.10 reduce to the

following ordinary differential equations:

f ′′′+ f f ′′− ( f ′)2 +1+λθ = 0 6.12

1

Pr
θ ′′+ f θ ′ = 0 6.13

while the boundary conditions (6.11) become

f (0) = f ′(0) = 0, θ
′(0) =−γ(1−θ(0)) at y = 0

f ′(y)→ 1, θ(y)→ 0 as y→ ∞

6.14

Again similar to the previous chapter, the quantities of practical interest are the skin friction

coefficients, which are defined in nondimensional form as

C f = Re1/2 τw

ρU2
∞

, Qw = Re−1/2 aqw

k(Tf −T∞)
6.15

where k is the thermal conductivity of the fluid and qw and τw are the skin friction and heat

transfer coefficient respectively given by

τw =

(
µ

∂ ū
∂ ȳ

)
ȳ=0

, qw =−k
(

∂T
∂ ȳ

)
ȳ=0

6.16

Using non-dimensional variables Equation 6.4 and the transformation 6.8, we obtain

C f = x
∂ 2 f
∂y2 , Qw =−∂θ

∂y
=−γ(1−θ) 6.17

Detailed formulation can be accessed in Appendix E.
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6.3 Results and Discussion

Equations 6.9 to 6.10 subject to the boundary conditions 6.11 were solved

numerically. Only case of the assisting flow (λ > 0) is considered. The numerical solutions

begin at the lower stagnation point of the cylinder ≈ 0 and proceed round the cylinder up to

the separation point. For this case, it is important to note that the separation occurs at

(x = 2
3π) while those presented by Nazar (2003) for the case of constant wall temperature

reach up to (x = π). Representative results for the skin friction coefficient C f , heat transfer

coefficient Qw are obtained at the different positions 0 < x < 120◦ and for the various values

of mixed convection parameter λ , the Prandtl number Pr, and the convective parameter γ .

Furthermore, to assure the accuracy of the present method, a comparison of the

results have been made with those of Eckert (1942) and Anwar et al. (2008). Eckert (1942)

investigated the heat transfer around bodies meanwhile Anwar et al. (2008) studied mixed

convection over viscoelastic fluid over horizontal circular cylinder. Both consider constant

wall temperature at the boundary and solve the problem using a combination of series and

numerical method. Also, for limiting cases (γ → ∞), constant wall temperature results were

attained when large values of γ were applied in the boundary conditions. The results in

Table 6.1 manifest that the numerical results obtained by the present author were found to

be almost compatible to a reasonable degree with the result of Eckert (1942) and Anwar

et al. (2008).

Table 6.1. Comparison results for the heat transfer coefficient with Pr = 1 , λ =−1,0,1 and
γ → ∞

λ Eckert (1942) Anwar et al. (2008). Present results

Series Keller-box Keller-box
−1 - 0.5095 0.5072

0 0.5700 0.5706 0.5704

1 - 0.6156 0.6153

The variation of C f and Qw is illustrated in Figures 6.1 through 6.6. As shown in

Figure 6.1, the value of C f is higher for small Prandtl numbers while the different pattern is

observed in the case of Qw as displayed in Figure 6.2. Furthermore, the graph of C f and Qw

at different positions of x and various values of convective parameter γ can be seen in Figure

6.3 and 6.4. Indeed, it is shown that the value of C f decreases as γ increases and the value of

Qw increases as γ increases. For the heated cylinder (λ > 0), the values of C f are higher for
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the high value of λ as seen in Figure 6.5. Conversely in Figure 6.6, increasing λ leads to the

decrease in Qw.
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Figure 6.1. Variation of skin friction coefficient C f for λ = 1, γ = 0.1 and various values of
Pr

Figures 6.7 and 6.8 display the effect of convective parameter γ on the velocity and

temperature profiles. It is observed that increasing γ leads to the increase of the temperature

and velocity profiles. This is because, as γ increases, the convective heat transfer from the hot

fluid on the surface of the cylinder to the cold side increase therefore, leading to an increase

in both the velocity and the temperature profiles.

Figures 6.9 and 6.10 illustrate the effects of the Pr number on the velocity and

temperature profiles respectively. The velocity and temperature decrease as Pr increases.

The physical meaning behind this has been explained earlier in Chapter 4.

Figures 6.11 and 6.12 present the behaviour of the velocity and temperature profiles

with a change in the values of mixed convection parameters λ . From these figures, it is

evident that the velocity profile increases but the temperature profile decreases as λ increases.

This is because when λ increases, the convection cooling effect increases and hence the fluid

flow accelerates. Therefore the temperature reduces. Also, for high λ number, there exists

an overshoot of the velocity profile from the free stream velocity. Finally, it is observed from

the profiles in Figures 6.7 through to 6.12 that they satisfy the far field boundary conditions

asymptotically, which support the numerical result obtained.
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Figure 6.2. Variation of heat transfer coefficient Qw for λ = 1, γ = 0.1 and various values of
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Figure 6.3. Variation of the skin friction coefficient C f for λ = 1, Pr= 7.0 and various values
of γ
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Figure 6.4. Variation of the heat transfer coefficient Qw for λ = 1, Pr = 7.0 and various
values of γ
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Figure 6.5. Variation of the skin friction coefficient C f for Pr = 7.0, γ = 0.1 and various
values of λ
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Figure 6.6. Variation of the heat transfer coefficient Qw for Pr = 7.0, γ = 0.1 and various
values of λ
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Figure 6.7. Velocity profiles f ′(y) for various values of γ when Pr = 7 and λ = 1.0
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Figure 6.8. Temperature profiles θ(y) for various values of γ when Pr = 7 and λ = 1.0
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Figure 6.9. Velocity profiles f ′(y) for various values of Pr when γ = 0.1 and λ = 1.0
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Figure 6.10. Temperature profiles θ(y) for various values of Pr when γ = 0.1 and λ = 1.0
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Figure 6.11. Velocity profiles f ′(y) for various values of λ when Pr= 7.0 and γ = 0.1
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Figure 6.12. Temperature profiles θ(y) for various values of λ when Pr = 7.0 and γ = 1.0

6.4 Conclusions

The mixed convection boundary layer on a horizontal circular cylinder was

considered where there was a convective boundary condition relating the surface

temperature to the surface heat flux. By taking specific forms for the outer flow and surface

heat transfer parameter, it reduced the problem to a system of non-similarity equations.

Apart from the convective parameter γ , the problem involved two other parameters: the

Prandtl number Pr and the mixed convection parameter λ . Besides that, we also looked into

the effects of the skin friction coefficient and the heat transfer coefficient on the flow and

heat transfer characteristics. Numerical results for the velocity and temperature profiles

were reported in figurative form. Therefore, from this study, the following conclusions can

be drawn:

i) skin friction coefficient C f is higher for small Prandtl number and convective parameter,

however as the mixed convection λ increases, C f is increases

ii) heat transfer coefficient Qw shows an increase for the increase value of Prandtl number

and convective parameter, and opposite trend is observed when λ increase
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iii) the temperature profile θ(y) increases when the convective parameter γ increases, and

different patterns are observed for the increase in the Pr number and the mixed convection

parameter λ .

iv) as the value of the convective parameter γ and mixed convection parameter λ increase,

the velocity profile increases, while the increase in Pr number led to a decrease in the

velocity profile.

v) unlike the case of constant wall temperature where there is no separation as the flow can

reach up to the top at the cylinder (x = π), in this case, the separation occur earlier at(
x = 2

3π
)
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CHAPTER 7

MIXED CONVECTION BOUNDARY LAYER FLOW OVER A HORIZONTAL
CIRCULAR CYLINDER IN A NANOFLUID: TIWARI AND DAS MODEL

7.1 Introduction

In this chapter, the problem associated with the mixed convection boundary layer

flow over the horizontal circular cylinder immersed in nanofluid is considered and discussed.

Early research on the mixed convection in a viscous fluid has previously been discussed in

Chapter 5. Therefore this chapter will focus on the development of the mixed convection

immersed in a nanofluid.

Conventional fluids such as oil, ethylene glycol mixture, and water are attributed

with low thermal conductivity and thus resulting in the limitation to enhance the

performance of many engineering devices. Due to this drawback, there is a strong need

among researchers to develop advanced heat transfer fluids producing higher conductivities

and consequently improve the thermal characteristics. An innovative method of improving

the thermal conductivities of a fluid is to suspend metallic nanoparticles within the fluid

(Tiwari and Das, 2007). The thermal conductivities of fluids with suspended particle are

expected to be higher than those of common fluids.

The process of suspended metallic, non-metallic or polymeric nano-sized particle in

a fluid is called nanofluids. The procedure of preparing the suspended particle of nanofluid

is given in the paper by Xuan (2000) where they highlight that thermal conductivity of

nanofluid remarkably increases with the volume fraction of the particle.

Two successful models for convective transport in nanofluids are found in the

literature namely the Tiwari and Das, and Buongiorno model. Tiwari and Das focus on heat

transfer enhancement via the solid volume fraction of different nanoparticles and base fluid.

On the other hand, Buongiorno proposed that the nanoparticle absolute velocity can be

viewed as the sum of base fluid velocity and relative velocity (slip velocity) which
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addresses the important aspect of the Brownian motion, and thermophoresis parameters.

There are many excellent reviews on convective transport in nanofluids have been reported

by Daungthongsuk and Wongwises (2007) and Sheikholeslami and Ganji (2016). In this

chapter, the model of nanofluid proposed by Tiwari and Das is applied as the model which

notably has been successfully used in many of the research journals.

In the next section, we provides a succinct description of the governing equations

and the boundary conditions for the mixed convection boundary layer over cylinder in

nanofluids using Tiwari and Das model. This is followed by a presentation and discussion

of the numerical results in Section 7.3, which include the effects of the governing parameter

on the heat and flow. Finally, Section 7.4 provides the concluding remarks about the

findings of the problem.

7.2 Mathematical Formulation

Consider the steady two-dimensional mixed convection flow of a nanofluid past a

circular cylinder of radius a and wall temperature Tw. It is assumed that the free stream

velocity is in the form of ūe(x̄) and the ambient temperature is T∞. The coordinates x and y

are measured along the surface of the cylinder, starting with the lower stagnation point and

normal to it, respectively.

The basic steady mixed convection boundary layer flow for a nanofluid in Cartesian

coordinates are (Tiwari and Das, 2007),

u
∂u
∂x

+ v
∂u
∂y

=− 1
ρn f

∂ p
∂x

+
µn f

ρn f

∂ 2u

∂y2
+

φρsβs +(1−φ)ρ f β f

ρn f

g(T −T∞)sin
(

x
a

) 7.1

u
∂T
∂x

+ v
∂T
∂y

= αn f

(
∂ 2T
∂x2 +

∂ 2T

∂y2

)
7.2

The boundary conditions for the flow and thermal field are same as Equation 4.3. Here u

and v are the velocity components along the x and y axes respectively, T is the fluid

temperature, p̄ is the fluid pressure, β f is the thermal coefficient expansion of the fluid

fraction, βs is the thermal expansion coefficient of solid fraction, αn f is the thermal
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diffusivity of the nanofluid, ρn f is the density of the nanofluid, ρ f is the density of the fluid

fraction, ρs is the density of the solid fraction, µ f is the viscosity of the fluid fraction and

µn f is the viscosity of the nanofluid, which are given by Oztop and Abu-Nada (2008). The

bottom surface of cylinder is heated by convection from hot fluid of temperature Tf which

provides heat transfer coefficient h f . Further, k is the thermal conductivity and Tf > T∞.

In order to solve Equations 7.1 to 7.2, we introduce the following non-dimensional

variables defined as

x = x/a, y = Re1/2(y/a), u = u/U∞, v = Re1/2(v/U∞)

θ =
T −T∞

Tf −T∞

, p =
p− p∞

ρn f U2
∞

7.3

where ν f is the kinematic viscosity of the fluid. Substituting these variables into Equations

7.1 to 7.2 and making use of the boundary layer approximation, namely that Re → ∞, we

obtain the following boundary layer equations for the problem under consideration in

dimensionless form:

u
∂u
∂x

+ v
∂u
∂y

=−∂ p
∂x

+
µn f

ρn f ν f

∂ 2u
∂y2 +

φρs(βs/β f )+(1−φ)ρ f

ρn f

λθ sinx 7.4

u
∂θ

∂x
+ v

∂θ

∂y
=

1
Pr

αn f

α f

∂ 2θ

∂y2 7.5

The boundary conditions become 4.7. From Equation 7.4 that p = p(x), we have

−∂ p
∂y

= ue
∂ue

∂x
7.6

Therefore we have to solve the following boundary layer

u
∂u
∂x

+ v
∂u
∂y

= ue
∂ue

∂x
+

1
(1−φ)2.5[1−φ +(φρs/ρ f )]

∂ 2u
∂y2

+

[
φρs

(1−φ)ρ f +φρs

(
βs

β f

)
+

(1−φ)ρ f

φρs +(1−φ)ρ f

]
λ sinx

7.7
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u
∂θ

∂x
+ v

∂θ

∂y
=

1
Pr

kn f /k f

(1−φ)+(φ(ρCp)s/(ρCp) f

∂ 2θ

∂y2 7.8

where kn f is effective thermal conductivity of the nanofluids, k f is the thermal conductivity

of the fluid, ks is the thermal conductivity of the solid, (ρCp)n f is the heat capacity of the

nanofluid, φ is the nanoparticles volume fraction or solid volume fraction of the nanofluid

defined as

αn f =
kn f

(ρCp)n f

, ρn f = (1−φ)ρ f +φρs, µn f =
µ f

(1−φ)2.5

(ρCp)n f = (1−φ)(ρCp) f +φ(ρCp)s,
kn f

k f
=

(ks +2k f )−2φ(k f − ks)

(ks +2k f )+φ(k f − ks)

7.9

with the boundary conditions 4.7. The solution of Equations 7.7 to 7.8 are in the form of

ψ = x f (x,y), θ = θ(x,y) 7.10

where ψ is the stream function. By substituting Equation 7.10 into Equations 7.7 and 7.8,

and taking account that ue(x) = sinx, we obtain:

1
(1−φ)2.5[1−φ +(φρs/ρ f )]

∂ 3 f
∂y3 + f

∂ 2 f
∂y2 −

(
∂ 2 f
∂y2

)2
+

sinxcosx
x

+

[
φρs

(1−φ)ρ f +φρs

(
βs

β f

)
+

(1−φ)ρ f

φρs +(1−φ)ρ f

]
λθ sinx

x

= x
(

∂ f
∂y

∂ 2 f
∂x∂y

− ∂ f
∂x

∂ 2 f
∂y2

)
7.11

1
Pr

kn f /k f

(1−φ)+(φ(ρCp)s/(ρCp) f

∂ 2θ

∂y2 + f
∂θ

∂x
= x
(

∂ f
∂y

∂θ

∂x
− ∂ f

∂x
∂θ

∂y

)
7.12
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along with boundary conditions Equation 6.11. Near the lower stagnation point of the

cylinder x≈ 0, Equations 7.11 and 7.12 reduce to the ordinary differential equations:

1

(1−φ)2.5
[
1−φ +(φρs/ρ f )

] f ′′′+ f f ′′− ( f ′)2 +1

+

[
φρs

(1−φ)ρ f +φρs

(
βs

β f

)
+

(1−φ)ρ f

φρs +(1−φ)ρ f

]
λθ = 0

7.13

1
Pr

kn f /k f

(1−φ)+φ(ρCp)s/(ρCp) f
θ
′′+ f θ

′ = 0 7.14

and the boundary conditions becomes as Equation 6.14. It is worth to mention here that

when (φ = 0) this is the case for regular fluid and Equations (7.13) and (7.14) reduced to

those derived by Merkin (1977). Meanwhile, for the case when γ → ∞ this case reduced to

constant wall temperature as solved by Tham et al. (2012).

Therefore, the primary objective of this study is to estimate the skin friction

coefficient C f , and the Nusselt number Nux. Importantly, these parameters characterise the

surface drag and the wall heat, respectively. The physical quantities of interest in this case

are the skin friction coefficient C f and the Nusselt number Nux which are defined as

C f =
τw

ρ fU2
∞

, Nu =
aqw

k f (Tf −T∞)
7.15

where τw is the skin friction coefficient or the shear stress at the surface of the cylinder and

qw is the heat flux from the surface of the cylinder, which are given by

τw = µn f

(
∂u
∂y

)
, qw =−kn f

(
∂T
∂y

)
7.16

Substituting Equations 7.3 and 7.10 into Equations 7.16 and 7.17, we get

Re1/2
x C f =

1
(1−φ)2.5 x

∂ 2y
∂y2 (x,0), Re−1/2

x Nu =−
kn f

k f

∂θ

∂y
(x,0) 7.17

Detailed formulation can be accessed in Appendix F.
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7.3 Results and Discussion

The partial differential Equations 7.11 and 7.12 with corresponding boundary

conditions 6.11 were solved numerically using an efficient implicit difference scheme. The

numerical investigation of the boundary problem has been carried out for the following

parameters : the solid volume fraction parameter (φ = 0.0 to 0.2), the mixed conjugate

parameter (λ = −1.0 to 5.0), the convective parameter (γ = 0 to 0.3), and the Prandtl

number Pr = 6.2 (water-base fluid). Three different types of nanoparticles, namely Al2O3,

Cu, and TiO2 (with water as their base fluid) have been considered in this study as these

nanoparticles are well known and have been excessively used in many experimental works.

Representative results for the skin friction coefficient Re1/2
x C f and the local Nusselt number

Re−1/2
x Nu, have been obtained for the following range of the nanoparticle volume fraction

φ = 0 (regular fluids) at different positions x with a different number of parameters.

Notably, this study reduces those of a viscous or regular fluid when φ = 0. Data is applied to

the thermophysical properties of the the fluid and nanoparticles as listed in Table 7.1 (Oztop

and Abu-Nada, 2008) to compute each case of nanofluid.

Table 7.1. Thermophysical properties of fluid and nanoparticles

Physical properties Fluid phase Cu Al2O3 TiO2

Cp(J/kgK) 4179 3.85 765 686.2
ρ(kg/m3) 997.1 8933 3970 4250
k(W/mK) 0.613 400 40 8.9538

βx10−5(1/K) 21 167 0.85 0.9

The solution process starts at x ≈ 0 where the Equations 7.11 and 7.12 are solved

moving forward to reach the solutions. Based on the computation, the separation point for

this case is limited at (x = 120◦). Indeed, this result differs when applying the constant

wall temperature where the separation process can reach up to (x = 180◦). Therefore, the

separation process occurs faster when the convective boundary condition is applied. The

present models have been validated successfully against the works of Merkin (1977) and

Tham et al. (2012) for problem of mixed convection over horizontal circular cylinder at

γ → ∞ (CWT) as shown in Table 7.2. In the report by Merkin (1977), two series solutions

are obtained, one of which is valid near the leading edge of the cylinder and the other is valid

asymptotically. The comparison indicates that the previous results and the current ones are

found to be in good agreement. Therefore, the present numerical result obtained is found to

be reliable and accurate.
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Table 7.2. Values of local Nusselt number, Re−1/2
x Nu for φ = 0.0, Pr = 1 γ→∞, and various

values of λ

λ Merkin (1977) Tham et al. (2012) Present result

Series Keller-box Keller-box
0.0 0.5705 0.5705 0.5700

0.5 0.5943 0.5945 0.5938

1.0 0.6156 0.6156 0.6148

2.0 0.6497 0.6515 0.6510

5.0 0.7315 0.7315 0.7302

Figures 7.1 to 7.3 demonstrate the skin friction coefficient Re1/2
x C f and Figures 7.4

to 7.6 demonstrate the local Nusselt number Re−1/2
x Nu of each nanoparticle with the

nanoparticle volume fraction φ = 0.0,0.1 and 0.2 respectively. Naturally for each and all

three nanoparticles cases, the skin friction coefficient increases with the increment of φ .

The similar pattern is observed for the local Nusselt number Re−1/2
x Nu where the increases

in φ increases the local Nusselt number. However, both the skin friction and the local

Nusselt number decrease as λ increases.
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Figure 7.1. Comparison of the skin friction coefficient Re1/2
x C f using Cu nanoparticles with

φ = 0,0.1,0.2, γ = 0.1, Pr= 6.2 and various values of λ
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Figure 7.7 and 7.9 illustrate the velocity profiles, f ′ and meanwhile Figure 7.10 and

7.12 display the temperature profile θ(y) at the lower stagnation point of the cylinder x ≈ 0

of the each nanoparticles (Cu, Al2O3 and TiO2) respectively with φ = 0.0,0.1 and 0.2 . For

each and all three nanoparticles, the velocity layer thickness increases with the increment of

λ . Also, the thermal boundary layer thickness increases as λ increases.

On the other hand, Figure 7.13 displays the skin friction coefficient Re1/2
x C f and

Figure 7.14 illustrates the local Nusselt number Re−1/2
x Nu of each nanoparticle for various

values of the convective parameter γ . Indeed, these figures show that for each nanoparticles

cases, the skin friction coefficient Re1/2
x C f decreases with the increment of γ . The different

situation occurs for the local Nusselt number Re−1/2
x Nu as it increases with the increment

of γ . Increasing γ leads to an increase in the velocity and temperature profile as seen in

Figures 7.15 and 7.16. This is because as γ increases, the convective heat transfer from the

hot nanofluid side on the surface of the cylinder to the cold nanofluid side increases, thereby

leading to an increase in both the velocity and temperature gradient. From all the velocity

and temperature profiles, it is also observed that the profiles satisfy the far field boundary

conditions asymptotically, as such, this supports the validity of the numerical result obtained.
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Figure 7.2. Comparison of the skin friction coefficient Re1/2
x C f using Al2O3 nanoparticles

with φ = 0,0.1,0.2, γ = 0.1, Pr = 6.2 and various values of λ
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Figure 7.3. Comparison of the skin friction coefficient Re1/2
x C f using TiO2 nanoparticles

with φ = 0,0.1,0.2, γ = 0.1, Pr = 6.2 and various values of λ
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Figure 7.4. Comparison of the local Nusselt number Re−1/2
x Nu using Cu nanoparticles with
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Figure 7.5. Comparison of the local Nusselt number Re−1/2
x Nu using Al2O3 nanoparticles

with φ = 0,0.1,0.2, γ = 0.1, Pr = 6.2 and various values of λ
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Figure 7.6. Comparison of the local Nusselt number Re−1/2
x Nu using TiO2 nanoparticles

with φ = 0,0.1,0.2, γ = 0.1, Pr = 6.2 and various values of λ
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Figure 7.7. Velocity profiles f ′(y) using Cu nanoparticles with γ = 0.1, Pr = 6.2,
φ = 0,0.1,0,2 and various values of λ
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Figure 7.8. Velocity profiles f ′(y) using Al2O3 nanoparticles with γ = 0.1, Pr = 6.2,
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Figure 7.9. Velocity profiles f ′(y) using TiO2 nanoparticles with γ = 0.1, Pr= 6.2,
φ = 0,0.1,0.2 and various values of λ
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Figure 7.10. Temperature profiles θ(y) using Cu nanoparticles with γ = 0.1, Pr= 6.2,
φ = 0,0.1,0.2 and various values of λ
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Figure 7.11. Temperature profiles θ(y) using Al2O3 nanoparticles with γ = 0.1,, Pr= 6.2,
φ = 0,0.1,0.2 and various values of λ
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Figure 7.12. Temperature profiles θ(y) using TiO2 nanoparticles with γ = 0.1,, Pr= 6.2,
φ = 0,0.1,0.2 and various values of λ
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Figure 7.13. Comparison of the skin friction coefficient Re1/2
x C f with φ = 0.1, λ = 1, Pr=
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Figure 7.14. Comparison of the local Nusselt number Re−1/2
x Nu with φ = 0.1, λ = 1, Pr=

6.2 and various values of γ
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Figure 7.15. Velocity profiles f ′(y) using various nanoparticles with Pr= 6.2, φ = 0.1, λ = 1
and various values of γ
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Figure 7.16. Temperature profiles θ(y) using using various nanoparticles with Pr= 6.2, φ =
0, 0.1 and 0.2, λ = 1 and various values of γ
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7.4 Conclusions

In this chapter, the problem of mixed convection boundary layer flow over an

isothermal horizontal circular cylinder immersed in a nanofluid is studied. The effects of

mixed convection parameter λ , the type of nanoparticles (Al2O3, Cu, TiO2), the convective

parameter γ and the nanoparticle volume fraction φ on the flow and heat transfer

characteristics, have been investigated. The governing non-similar boundary layer

equations were solved numerically using the Keller-box method. Therefore, based on the

results the following conclusions are presented:

i) an increase in the value of mixed convection parameter λ led to the reduction of the value

of both the skin friction coefficient Re1/2
x C f and the local Nusselt number Re−1/2

x Nu

ii) an increase in the value of nanoparticle volume fraction φ led to the increment of both

the skin friction coefficient Re1/2
x C f and the local Nusselt number Re−1/2

x Nu.

iii) an increase in the value of the convective parameter γ led to the increment of the local

Nusselt number Re−1/2
x Nu. However a different pattern is observed for both the skin

friction coefficient Re1/2
x C f

iv) nanoparticle Cu has a higher value of the local Nusselt number Re−1/2
x Nu, as well as the

skin friction coefficient Re1/2
x C f compared to nanoparticles TiO2 and Al2O3.

v) the increasing value of the mixed convection parameter λ is found to increase the velocity

profile f ′(y) for all three nanoparticles. Conversely for all nanoparticles, the temperature

profile θ(y) decrease as λ increases.

vi) an increase in the value of the convective parameter γ led to the increment of both the

velocity f ′(y) and temperature profile θ(y).
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CHAPTER 8

MIXED CONVECTION BOUNDARY LAYER FLOW OVER A HORIZONTAL
CIRCULAR CYLINDER IN A NANOFLUID: BUONGIORNO MODEL

8.1 Introduction

The influence of thermal conductivities in many fields of applications such as in

producing energy electronic and transportation sectors have contributed towards an

ever-accelerating interest in the development of nanofluids. As a result, various models for

solving the nanofluid problem have developed. In this chapter, the leading and notorius

nanofluid model is demonstrated besides the Tiwari and Das (2007) which is Buongiorno’s

model proposed by Buongiorno (2006).

Indeed, Buongiorno conducted an extensive study of convective transport in

nanofluids, focusing more on the heat transfer enhancement observed during convective

situations. Buongiorno refuted the ideas of several other authors concerning the abnormal

increase seen in the dispersion of suspended nanoparticles. From this study, the effect of the

significant agent for heat transfer such as suspension, particle rotation, the dispersion,

however is too small to explain the observed enhancement. Also, the marked improvement

cannot be explained by turbulence as turbulence is not affected by the presence of

nanoparticles. Furthermore, Buongiorno claimed that a satisfactory explanation for the

abnormal increase of the thermal conductivity and viscosity is still to be found. Buongiorno

went further to suggest a new model based on the mechanics of nanoparticles/base-fluid

relative velocity. Moreover, he took the absolute velocity of nanoparticles to be the total

sum of the base fluid velocity and relative velocity, which he called a slip velocity.

Buongiorno’s model consists of seven slip mechanisms; brownian diffusion,

thermophoresis, inertia, diffusiophoresis, gravity settling, Magnus effect and fluid drainage.

Subsequently, he concluded that in the absence of turbulent effects, brownian diffusion and

thermophoresis dominate. Based on these two effects, Buongiorno derived the conservation

equations.
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In the next section, we provides a succinct description of the governing equations and

the boundary conditions for the mixed convection boundary layer over horizontal circular

cylinder in a nanofluid using the Buongiorno-Darcy model. This is followed by presenting

and discussion of the numerical results in Section 8.3, which include the variations of the

skin friction coefficient and, heat flux and mass flux as well as the velocity, temperature and

nanoparticle volume fraction profile. Finally, Section 8.4 provides the concluding remarks

about the finding of this problem.

8.2 Mathematical Formulation

Consider the steady mixed convection boundary layer flow past a heated horizontal

circular cylinder embedded in a porous medium filled by water-based nanofluid for the

present problem. It is assumed that hot temperature from the bottom of surface and the

uniform nanoparticle volume fraction of the surface of the cylinder are Tf and Cw,

respectively, while the ambient values, attained as y tends to infinity are T∞, and C∞, where

Tf > T∞ for a heated cylinder (assisting flow) and Tf < T∞ for a cooled cylinder (opposing

flow) and, Cw >C∞. The physical model and coordinate system is shown in Figure 8.1.

x

Hot fluid

a

,y η

,
U∞ T

Tf , h

x

∞

f

a

,

g

Figure 8.1. Physical model and coordinate system

It is also assumed that the velocity of the external flow (inviscid flow) is ūe(x̄),

where x is the coordinate measured along the surface of the cylinder starting from the lower
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stagnation point and y is the coordinate measured in the direction normal to the surface of

the cylinder. It is assumed that there are homogeneity and local thermal equilibrium in the

porous medium. Further, it is assumed that the Oberbeck-Boussinesq approximation takes

place and that the nanoparticle concentration is dilute. Under these assumptions, the

governing equations are based on the models proposed by Buongiorno (2006), Tham et al.

(2014) are given in details in Chapter 3. To conserve space and avoid any form of

repetition, see Equations 3.84 to 3.86 in Chapter 3.

The corresponding equations for the case of a regular (base) fluid (Nb=Nt =Nr = 0)

for the mixed convection problem about the horizontal cylinder described by the following

equations base fluid when

∂ f
∂y

= (1+θλ )
sinx

x
8.1

∂ 2θ

∂y2 + f
∂θ

∂y
= x
(

∂ f
∂y

∂θ

∂x
− ∂ f

∂x
∂θ

∂y

)
8.2

f (x,0) = 0, θ(x,0) = 1, θ(x,∞) = 0 8.3

Near the lower stagnation point, x ≈ 0, Equations 3.84 to 3.86 for the case of mixed

convection reduce to the following ordinary differential equations

f ′ = 1+(θ −Nrφ)λ 8.4

θ ′′+ f θ ′+Nbθ ′φ ′+Ntθ ′′ = 0 8.5

φ ′′+Le f φ ′+
Nt

Nb
θ ′′ = 0 8.6

subjected to boundary conditions

f (0) = 0, θ
′(0) =−γ(1−θ(0)), φ(0) = 1 at y = 0

θ(y)→ 0, φ(y)→ 0 as y→ ∞

8.7
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where the term for porous medium filled by nanofluid is modified in Rayleigh number Ra is

Ra = (1−C∞)gKρ f∞β (Tf −T∞)/(µαm) in term of λ =
Ra

Pe
.

The quantity of interest in this study are the skin friction C f , Nusselt number Nu and the

Sherwood number Sh which are defined as

C f =
τw

ρU2
∞

, Nu =
aqw

k f (Tf −T∞)
, Sh =

aqm

DB(Cw−C∞)
8.8

where τw is the skin friction coefficient or the shear stress at the surface of the cylinder, qw

and qm is the heat and mass flux from the surface of the cylinder respectively, which are

given by

τ̄w = µ

(
∂ ū
∂ ȳ

)
ȳ=0

, q̄w =−k f

(
∂T
∂ ȳ

)
ȳ=0

, q̄m =−DB

(
∂C
∂ ȳ

)
ȳ=0

8.9

Using Equations 3.12 and 3.27, the dimensionless quantities C f , Nu and Sh are obtained as

Pe1/2

Pr
C f = x

∂ 2 f
∂y2 , Pe−1/2Nu =−∂ f

∂y
, Pe−1/2Sh =−∂φ

∂y
8.10

Detailed formulation can be accessed in Appendix G.

8.3 Results and Discussion

The partial differential Equations 3.84 to 3.86 with corresponding boundary

conditions 3.87 were solved numerically. The numerical investigation of the boundary

problem has been carried out for different values of parameters; Lewis number Le,

Brownian number Nb, thermophoresis parameter Nt, buoyancy ratio parameter Nr,

convective parameter γ and at some streamwise positions x.

The dimensionless skin friction C f , the dimensionless heat flux Nu, the dimensionless

mass flux Sh, the velocity profiles f ′(y), the temperature profiles θ(y) and the nanoparticles

volume fraction profiles φ(y) have been obtained. It appears that the values of the parameters

considered usually exist in geophysical and engineering applications (Nield and Kuznetsov,

2009). The choice of Lewis number range is made on the basis of scale analysis, as described

in Section 9.2.1 of Bejan (2013). Also, as observed from Nield and Kuznetsov (2009), since
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most nanofluids examined to date incorporating large values of the Lewis number, the interest

here is mainly in the case of Le≥1.

For validation purposes, given there is presently no experimental data available in

the literature for the present problem, possibly due to the difficulties in considering all the

factors, the problem is solved for limiting case when γ → ∞,. Accordingly, this is where

the thermal heating becomes a case of constant wall temperature. The results are compared

for the values of heat transfer coefficient −θ(0) with those reported by Cheng (1982) and

Tham et al. (2014) as shown in Table 8.1. Cheng (1982) and Tham et al. (2014) perform a

numerical investigation on mixed convection about a horizontal cylinder in a fluid-saturated

porous medium for case of constant wall temperature. Cheng (1982) solved the problem by

integrated numerically using Runge-Kutta method with a systematic guessing of θ ′(0) by

the shooting technique. On the other hand, Tham et al. (2014) implement finite difference

method using Keller-box method which is the same as the current study. The comparison

between these results is found to be excellent, based on the obtained numerical result.

Table 8.1. Values of the heat coefficient −θ ′(0) in viscous fluid

λ
−θ ′(0)

Cheng (1982) Tham et al. (2014) Present result
Runge-Kutta Keller-box Keller-box

0.0 0.7980 0.7979 0.7973
0.5 0.9157 0.9156 0.9146
1.0 1.0192 1.0191 1.0178
2.0 1.1988 1.1987 1.1968

Table 8.2 illustrate the effect of mixed convection parameter λ on the skin friction

C f , Nusselt Nu, Sherwood number Sh. In this thesis, only case λ > 0 ( heated cylinder) are

considered. Increasing λ increases the buoyancy effect in a mixed convection flow which

finally leads to the acceleration of the fluid flow. This yield an enhancement in the local

skin friction coefficient and the reduction in the local Nusselt and Sherwood number.

Furthermore, from observing Table 8.2, near the lower stagnation point x ≈ 0, C f is

minimum while Nu and Sh are maximum at this point, respectively.

The aim therefore is to observe the influence of the convective parameter γ as well

as other parameters such as Le, λ , Nb and Nt on the heat and mass flow characteristics.

Also the results are presented graphically for the effect of the above parameters. Figures 8.2

to 8.7 present the effects of the convective parameter γ on the skin friction coefficient C f ,

local Nusselt number Nu, and local Sherwood number Sh, velocity f ′, temperature θ and

the nanoparticle volume fraction φ , respectively. Indeed, it can be observed that increasing
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γ leads to the increase in the local Nusselt number. However, a different pattern is found

for the local skin friction coefficient and local Sherwood number. Both the skin friction and

Sherwood number show opposite behaviour with an increasing value of γ .

The influence of γ on the temperature profile θ(y) is demonstrated in Figure 8.6.

From the figure, the thermal boundary layer increases as γ increases which are due to the

convective heat transfer from the hot fluid side on the surface of the cylinder to the cold

nanofluid side increasing, therefore leading to an increase in the temperature gradients. As γ

increases, the convective heating increases (i.e.γ → ∞) . In fact, the high γ produces strong

surface convection and subsequently supplies more heat to the cylinder’s surface. This results

in the temperature difference between the surface and nanofluid intensifies. As a result, the

figures illustrate the increasing value of γ , therefore leading to an increase in the velocity,

temperature profile and nanoparticle volume fraction profile.

Table 8.2. Values of the dimensionless skin friction, heat flux and mass flux for various
values of λ

(Pe1/2/Pr)C f Pe−1/2Nu Pe−1/2Sh

x\λ 1 2 5 1 2 5 1 2 5

0 0 .0000 0 .0000 0 .0000 0.1466 0.1444 0.1380 1.0234 0.9599 0.8022

0.2 0.0499 0.0683 0.1168 0.1819 0.1681 0.1401 0.8663 0.6799 0.5155

0.4 0.0879 0.126 0.2243 0.1875 0.1698 0.1402 0.8264 0.6631 0.5109

0.6 0.118 0.1738 0.3213 0.1893 0.1699 0.1401 0.7966 0.6474 0.5078

0.8 0.1369 0.2107 0.4014 0.1898 0.1694 0.1398 0.7613 0.6325 0.5034

1.0 0.1463 0.2319 0.4604 0.1893 0.1684 0.1394 0.7265 0.6124 0.4976

1.2 0.1435 0.2364 0.4948 0.1881 0.1671 0.1388 0.6842 0.5880 0.4899

1.4 0.1301 0.2246 0.5020 0.1862 0.1654 0.1380 0.6364 0.5589 0.4798

1.6 0.1080 0.1973 0.4814 0.1836 0.1633 0.137 0.5833 0.5241 0.4667

1.8 0.0796 0.1566 0.4337 0.1804 0.1608 0.1358 0.5243 0.4823 0.4497

2.0 0.0482 0.1078 0.3586 0.1765 0.1576 0.1341 0.4590 0.4338 0.4260

2.2 0.0177 0.0573 0.2631 0.1718 0.1538 0.1320 0.3874 0.3785 0.3941

2.4 -0.0076 0.0119 0.1598 0.1660 0.1489 0.1291 0.3095 0.3155 0.3527

2.6 -0.0236 -0.0214 0.0625 0.1583 0.1426 0.1250 0.2252 0.2436 0.2986

2.8 -0.027 -0.0358 -0.0110 0.1475 0.1335 0.1190 0.1340 0.1599 0.2248

3.0 -0.0158 -0.025 -0.0356 0.1286 0.1174 0.1074 0.0338 0.0577 0.1138

π -0.0024 -0.0042 -0.0092 0.0946 0.0881 0.0843 -0.0287 -0.0198 -0.0024
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Figure 8.2. Variation of the dimensionless skin friction coefficient (Pe1/2/Pr)C f for Le = 2,
γ = 0.05,0.1,0.2, , Nb = 0.5, Nr = 0.5, Nt = 0.5 and λ = 1
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Figure 8.3. Variation of the dimensionless heat flux Pe−1/2Nu for Le = 2, γ = 0.05,0.1,0.2,
Nb = 0.5, Nr = 0.5, Nt = 0.5 and λ = 1
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Figure 8.4. Variation of the dimensionless mass flux Pe−1/2Sh for Le = 2, γ = 0.05,0.1,0.2,
Nb = 0.5, Nr = 0.5, Nt = 0.5 and λ = 1
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Figure 8.5. Velocity profile f ′(y) for various values of γ for Le = 2, Nb = 0.5, Nr = 0.5,
Nt = 0.5 and λ = 1
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Figure 8.6. Temperature profile θ(y) for various values of γ for Le = 2, Nb = 0.5, Nr = 0.5,
Nt = 0.5 and λ = 1
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Figure 8.7. Nanoparticle volume fraction profile φ(y) for various values of γ for Le = 2,
Nb = 0.5, Nr = 0.5, Nt = 0.5 and λ = 1
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Figure 8.8. Variation of the dimensionless skin friction coefficient (Pe1/2/Pr)C f for λ = 1,
Le = 2,6,10, Nb = 0.5, Nr = 0.5, Nb = 0.5 and γ = 0.1
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Figure 8.9. Variation of the dimensionless heat flux Pe−1/2Nu for λ = 1, Le = 2,6,10, Nb =
0.5, Nr = 0.5, Nt = 0.5 and γ = 0.1
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Figure 8.10. Variation of the dimensionless mass flux Pe−1/2Sh for λ = 1, Le = 2,6,10,
Nb = 0.5, Nr = 0.5, Nt = 0.5 and γ = 0.1

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

 y

 f′  (
y)

 

 

Le = 2
Le = 6
Le = 10

Figure 8.11. Velocity profile f ′(y) for various values of Le for Nb = 0.5, Nr = 0.5,
Nt = 0.5, λ = 1 and γ = 0.1
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Figure 8.12. Temperature profile θ(y) for various values of Le for Nb = 0.5, Nr = 0.5, Nt =
0.5, λ = 1 and γ = 0.1
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Figure 8.13. Nanoparticles volume fraction profile φ(y) for various values of Le for
Nb = 0.5, Nr = 0.5, Nt = 0.5, λ = 1 and γ = 0.1
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Figure 8.14. Variation of the dimensionless skin friction coefficient (Pe1/2/Pr)C f for Le= 2,
Nb = 0.1,0.3,0,5, Nr = 0.5, Nt = 0.1,0.3,0.5, λ = 1 and γ = 0.1
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Figure 8.15. Variation of the dimensionless heat flux Pe−1/2Nu for Le = 2, Nb = 0.1,
0.3,0,5, Nr = 0.5, Nt = 0.1,0.3,0.5, λ = 1 and γ = 0.1
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Figure 8.16. Variation of the dimensionless mass flux Pe−1/2Sh for Le = 2, Nb =
0.1,0.3,0,5, Nr = 0.5, Nt = 0.1,0.3,0.5, λ = 1 and γ = 0.1
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Figure 8.17. Velocity profile f ′(y) for various values of Nb and Nt for Nr = 0.5, Le = 2,
λ = 1 and γ = 0.1
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Figure 8.18. Temperature profile θ(y) for various values of Nb and Nt for Nr = 0.5,
Le = 2, λ = 1 and γ = 0.1

Figures 8.8 to 8.13 illustrate the behaviour of the skin friction coefficients C f , the

local Nusselt number Nu, the local Sherwood number Sh, velocity f ′, temperature θ , and the

nanoparticle volume fraction with changes in the values of the Lewis number Le. Increasing

the values of Le produces increases in both the skin friction coefficient and the Sherwood

number. However, the Nusselt number shows a decrease in the increase in the Le number.

From the definition of the skin friction coefficient c f ∝ τw/(ρU2
∞), the density of the fluid

decreases as the values of Le increase. Thus, the value of the skin friction coefficient is

proportional to the increase of Le. From the Figures 8.12 and 8.13, it is also noticeable that

the thickness of the thermal and the mass fraction boundary layers decrease with increasing

values of Le. This is due to the increase in the Lewis number which tends to increase the

buoyancy-induced flow along the surface at the expense of the reduced concentration and its

boundary layer thickness (Tham et al., 2014).

The corresponding variation of the skin friction, the Nusselt and Sherwood number

for some of the values of Brownian motion parameter Nb and thermophoresis parameter Nt

are also presented in Figure 8.14 to 8.16. It is shown in the Figure 8.15 where Nu decreases

with the increase in the parameters Nb and Nt which corresponds to an increase in the thermal

boundary layer thickness. A further reason for such phenomena occurring is that when the

higher values of Nb and Nt are subsequently higher in the volume of nanoparticles migrating
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away from the vicinity of the wall, this in turn reduces the rate of heat transfer. Conversely,

for the case of Nb, different patterns were observed in the local skin friction coefficient and

the Sherwood number. It is therefore evident from the figures that both the skin friction

coefficient C f and the Sherwood number Sh increase with the increase in the parameters Nb,

but decreases in the parameter of Nt.

The effects of Nb and Nt on the velocity f ′, temperature and nanoparticles volume

fraction are shown in Figures 8.17 to 8.18. Increasing the Brownian motion Nb produces an

increase in the velocity and temperature profile with a slight decrease in the volume fraction

profiles. This possibly occurs because for the small particles, the Brownian motion is

strong, and the parameter Nb will have high values. On the other hand, in case of a large

particle, Brownian motion does exert a significant effect on both the temperature and

volume fraction.In addition, a positive Nb indicates a cold surface, whereas a negative Nb

corresponds to a hot surface. Increasing the thermophoresis parameter Nt leads to increases

in the volume fraction profiles. However, a different pattern is observed for the velocity and

temperature profile.

8.4 Conclusions

The mixed convection boundary layer over a horizontal circular cylinder embedded

in porous medium saturated by a nanofluid with Darcy model and Boungiorno equation

model is studied considering the convective boundary condition . Based on Buongiorno’s

theory, the effects of Brownian motion and thermophoresis are included for the nanofluids.

Besides convective parameter γ , we looked into the effects of the Lewis number Le,

Brownian number Nb, and thermophoresis parameter Nt on the flow and heat transfer

characteristic. Therefore, from the results, the following conclusions are presented:

i) the dimensionless skin friction coefficient C f increased when the value of the Lewis

number Le, mixed convection parameter λ , and Brownian number Nb increased.

However, C f demonstrated the opposite pattern for the convective parameter γ and

thermophoresis parameter Nt.

ii) the Nusselt number Nu decreased when the value of the Le, λ , Nb, Nt increased. On the

other hand, as γ increases, Nu also increases.

iii) the Sherwood number Sh increased when the value of the Le and Nb increased; but not

for the case of γ , λ and Nt .
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iv) an increase in the convective parameter γ leads towards the increase in both of velocity

and temperature profile with a slight decrease in the nanoparticle volume fraction profile.

v) velocity and temperature profile increase when the Le increases, and different patterns

are observed for the nanoparticle volume fractions profile.

vi) an increase in the mixed convection parameter λ leads to the increase in both the

temperature profile and the nanoparticle volume fraction profile and a decrease in the

velocity .

vii) increasing the Brownian motion Nb produces an increase in the velocity and temperature

profile. However, the converse result is observed in the nanoparticle volume fractions

profile.

viii) as the thermophoresis Nt increases, there is a noticeable decrease in the velocity and

temperature profile. However, different behaviour is seen in nanoparticle volume

fractions profile.
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CHAPTER 9

CONCLUSIONS

9.1 Summary of Research

This thesis was conducted to obtain the numerical solution of convection flow when

the new heating condition namely the convective boundary condition is applied. Therefore,

this research aims to formulate the mathematical model of convection flow and to examine

the convective effect as well as the effects of other paramaters in five separate flow problems.

Motivated by the previous studies of CWT, CHF and more recently NH on the flow problem,

this has driven the authors of this study to investigate the behaviour of CBC in simulating

the solution regarding skin friction coefficient, velocity, temperature and other parameters.

To the best of the author’s knowlegde, the mathematical model applying CWT and CHF has

been fully developed for various geometries. However, CBC is yet to be established and

there are very limited number of studies of CBC especially involving the horizontal cylinder.

Notwithstanding, this study is expected to be an incremental step towards the determining

the effect of CBC in the convection flow problem. The results in this research will bridge the

existing void that exists between the evolvement of the heating condition of CWT, CHF, NH

and lastly CBC.

The introductory chapter which is Chapter 1 presented the research background

including the problem statement, objectives and scope of research, methodology, the

significance of the study and outline of the thesis. The basic concept of the convection and

theory were presented in Chapter 2 to provide a further understanding of the flow and heat

transfer problem. In addition, literature review for the problem under discussion were also

demonstrated in this chapter.

The governing equations are in the system of PDE, therefore the numerical technique

known as the Keller-box method was executed in this research for all five problems stated.

The Keller-box method is established method and are found to be efficient and suitable to

solve all flow problem. The detailed of Keller-box procedure are thoroughly discussed in
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Chapter 3 for the specific problem of mixed convection boundary layer flow in nanofluids.

The Keller-box algebraic computation is performed in MATLAB, and numerical scheme

of Keller box for CBC is developed. The MATLAB code is additionally provided herein

Appendix B.

The thesis consists of nine chapters with the main research were contributed in

Chapter 4 to Chapter 8. Chapter 4 presented the analysis on the problem of steady forced

convection boundary layer flow past over a horizontal circular cylinder in viscous fluid. The

comparison on numerical results of skin friction coefficient concurs very well with those

reported previously. The numerical results for the skin friction heat transfer coefficient and

are presented in tabular form from the lower stagnation point, x ≈ 0 up to case when

x = 101◦. It is noticed that in this problem, the unique valued exists for the skin friction

coefficient due to the decoupled boundary condition. In addition, to achieve a physically

acceptable solution, Pr must be greater or equal to Prc depending on γ , whereas γ must be

less than or equal to γc depending on Pr. Outside this value, the singularity occurs and the

solution becomes unstable.

The solution for the problem of free convection boundary layer flow in micropolar

fluid is discussed in Chapter 5. With the increase in values of material parameter K, the

values of velocity distribution and angular velocity profiles also increase, while the values

of temperature profile decrease. Moreover, convective parameter γ and material parameter

number had significant effects on the fluid flow characteristics in terms of values skin friction

and heat transfer coefficient as well as for temperature profile.

In Chapter 6, the problem of mixed convection flow in viscous fluid is presented. It

is observed that increasing convective parameter leads to the increase of the temperature and

velocity profiles. Further, it is shown in the figure that the value of skin friction coefficient

decreases as γ increases and the value of heat transfer coefficient increases as γ increases.

The results on the increment of mixed convection parameter λ for this problem shows that

the value of skin friction, heat transfer coefficient and velocity profile is increased as well.

The study on nanofluids has been given in Chapter 7 and 8. Chapter 7 focus on

the mixed convection in nanofluid using Tiwari and Das model. Three different types of

nanoparticles, namely Al2O3, Cu, and TiO2 have been considered in this study. Finding

shows that nanoparticle Cu has a higher value of the local Nusselt number Re−1/2
x Nu, as

well as the skin friction coefficient Re1/2
x C f compared to nanoparticles TiO2 and Al2O3.

Besides that, an increase in the value of the convective parameter led to the increment of

the local Nusselt number. However a different pattern is observed for both the skin friction

coefficient.
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The other nanofluids model known as Buongiorno has also been covered in this study.

Chapter 8 provides an analysis on the problem of mixed convection boundary layer flow in

nanofluid by using Buongiorno model. Two important mechanism in Buongiorno model is

Brownian motion and thermophoresis. It is noticed that increasing the Brownian motion Nb

produces an increase in the velocity and temperature profile. However, the converse result

is observed in the nanoparticle volume fractions profile. In additions, as the thermophoresis

Nt increases, there is a noticeable decrease in the velocity and temperature profile. However,

different behaviour is seen in nanoparticle volume fractions profile.

The cylinder exhibit boundary layer separation; the case where the boundary layer

separate from the cylinder surface and the flow become unstable. If the flow can succesfully

reach the upper cylinder i.e x = 180◦, then no separation occur. Therefore, by incorporating

CBC in the boundary conditions in the five problem under discussion, we found that for

the problem of free convection in micropolar Chapter 5 and mixed convection in nanofluid

using Buongiorno in Chapter 8, the numerical solutions start from the lower stagnation point

(x≈ 0) and proceeds round the cylinder until upper stagnation point (x= 180◦) of the circular

cylinder. However for case forced convection in viscous fluid Chapter 4, the estimation of

separation of the cylinder occured at x = 104.50◦. In addition, in Chapter 6 for problem

of mixed convection of viscous fluid and Chapter 7 problem of nanofluid Tiwari and Das

model, the flow can reach up to x = 120◦. Beyond this point, the boundary layer simply lift

off the cylinder surface.

From the research findings, naturally incorporating CBC in a mathematical model of

convection flow produces a different result in the separation process, velocity, temperature,

skin friction and so forth. Since different industries require different heating processes,

presumably CBC will provide a better result when the heat transfer at the surface relies on

the wall temperature instead of being continually constant. Therefore, using CBC possibly

offers more significant impact on producing better output in heat transfer flow. Thus, from

the findings of this thesis, the following contributions are hereby presented:

(i) The research gaps about CWT, CHF, NH and CBC become closer when the

mathematical model of convective flow using CBC is developed especially over the

horizontal circular cylinder. Most of the CBC focus on the stretching sheet and plate,

and research on the circular cylinder is extremely limited in the literature.

(ii) Most researchers have considered constant wall temperature or constant heat flux to

model the system due to its simplicity. This research is expected to be relevant to

broad range of applications since CBC appears to be a more realistics system to apply

since not all situations can be considered as constant. Therefore, real phenomena can
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be described through developing a mathematical model regarding convective boundary

condition and can thus be solved via the numerical method.

(iii) Moreover, the findings in this study have provided a platform that hopefully can

facilitate further research and study to explore this area in another geometries and

other types of fluids.

9.2 Suggestion for Future Research

Indeed, the implementation of CBC in the boundary condition is not as

straightforward as compared to CWT and CHF. As observed in the figures and tables in

Chapter 4 to Chapter 8, only small values of convective parameter are used. For the of case

γ ≥ 1, singularities were encountered from the result in the numerical scheme. Until now,

this problem remains unsolved, even many approaches introduced in the initial profile in

MATLAB. Therefore this research is not complete and there are possibly numerous

approaches that could be adopted to improve research in this area. Further, there are some

interesting research studies as yet not carried out regarding the problem of boundary layer

flow. The problems presented in this thesis concentrate on the horizontal circular cylinder

only. Therefore, this problem could be extended based on the following suggestions;

i) Examine the new types of boundary conditions; mixed thermal Newtonian heating.

ii) Incorporate other effects like chemical reaction, radiation and Soret/ Dufour which are

also important in industrial applications.

iii) Investigate other types of geometries such as microtubes or rotating down-pointing cone.

iv) Consider further types of non-Newtonian fluids. For instance Maxwell, Walter’s,

Burger’s fluid and others.

v) Extend the value of convective parameter γ in CBC so that more accurate results are

discovered.

Undoubtedly, the suggested future work that highlighted here is not an easy task to be

explored. The most challenging aspect in extending the boundary flow problem by

regarding convective boundary conditions is to develop a suitable initial profile to suit or fit

the boundary condition perfectly for small number of convective parameters, γ up to a vast

number, so that the case of CWT would be recovered. If the initial profile can be

successfully discovered, then the remaining parts will be much easier to determine.

159



Therefore, as a sequel to this thesis, it is hoped that the impasse in finding the initial profile

of convective boundary condition can be solved entirely and other suggested area could be

taken into account into the problems.
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APPENDIX A

LIST OF SYMBOLS IN MATLAB PROGRAM

MATLAB Keller-box

np, nx J, N

x, delx x,∆x

eta, etainf, deleta y, y∞, ∆y

f, u, v, s, t, p, q f , f ′, f ′′,θ ,θ ′, φ , φ ′

cfb, cub, csb f n−1
j−1/2, un−1

j−1/2, sn−1
j−1/2

ctb,cpb, cqb tn−1
j−1/2, pn−1

j−1/2, qn−1
j−1/2

cfsb, cftb, cfqb f n−1
j−1/2 sn−1

j−1/2, f n−1
j−1/2 tn−1

j−1/2, f n−1
j−1/2 qn−1

j−1/2

cqtb, cusb,cupb, cttb qn−1
j−1/2 tn−1

j−1/2, un−1
j−1/2 sn−1

j−1/2, un−1
j−1/2 pn−1

j−1/2, (tn−1
j−1/2)

2

cderfb, cdertb, cderqb ( f n−1
j − f n−1

j−1 )h
−1
j , (tn−1

j − tn−1
j−1 )h

−1
j , (qn−1

j −qn−1
j−1)h

−1
j

fb, ub, sb, tb,pb, qb f j−1/2, u j−1/2, s j−1/2, t j−1/2, p j−1/2,q j−1/2

fsb, ftb, fqb f j−1/2 s j−1/2, f j−1/2 t j−1/2, f j−1/2 q j−1/2

usb, upb, qtb s j−1/2 s j−1/2, u j−1/2 p j−1/2, q j−1/2 t j−1/2

derfb, dertb,derqb ( f j− f j−1)h−1
j , (t j− t j−1)h−1

j , (q j−q j−1)h−1
j

a1 to a6 (a1) j to (a6) j

b1 to b10 (b1) j to (b10) j

c1 to c10 (c1) j to (c10) j

r1 to r6 (r1) j to (r6) j

R1, R2, R3 (R1)
n−1
j−1/2, (R2)

n−1
j−1/2, (R3)

n−1
j−1/2

a, b, c [A j], [B j], [C j]

alfa, gamma [α j], [Γ j]

ww, rr, dell [Wj], [r j], [δ j]

delf, delu, dels, delt,delp, δ f , δu, δ s, δ t, δ p
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APPENDIX B

MATLAB PROGRAM

## Mixed Convection Boundary Layer Flow Over a Horizontal

## Circular Cylinder Porous Medium in a Nanofluid: Buongiorno Model

## Convective Boundary Condition (CBC)

## Method: Keller-Box Method

## Refer page 55 (Chapter 3)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Darcy’s Model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The answer displayed in the result sheet will be started from

% number 1 instead of 0

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%p

clear all;

for Le = [2 6]

blt = 4; % Input boundary layer thickness

xend = 3.1; % Input endpoint of x = 3.142

delx = 0.01; % Input stepsize for x

deleta = 0.1; % Input stepsize for boundary thickness

ge = 1; % Input mixed parameter

Le = 2; % Input Lewis Number = 2, 4, 6, 10, 50

Nb = 0.5; % Input Brownian Number = 0.5, 1.0, 1.5, 2.0

Nr = 0.1; % Input Buoyancy Ratio Parameter = 0.5, 1.0, 1.5, 2.0

Nt = 0.5; % Input Thermophoresis parameter = 0.5, 1.0, 1.5, 2.0

fs = 0.1; % Input convective parameter

% Equation 3.144

if ( Nt == 0 && Nb == 0 )

divide = 0;

else

divide = Nt/Nb;

end

% To generate the initial value for velocity and temperature profiles

x(1) = 0.0;

xx(1) = 0.0;

M(1) = 1.0;
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% Equation 3.94

nx = ( xend / delx ) + 1;

np = ( blt / deleta ) + 1;

for i = 2:nx

x(i) = x(i-1) + delx;

xx(i) = x(i) / (x(i) - x(i-1));

M(i) = sin(x(i)) / x(i);

end

for i = 1:nx

dbstop if warning

stop = 1.0;

k = 1;

eselon = 0.00001;

while stop > eselon

eta(1,1) = 0.0;

for j = 2:np

eta(j,1) = eta(j-1,1) + deleta;

end

% Equations 3.165 to 3.171 - To generate initial value of velocity and temperature profiles :

etau15 = 1 / eta(np,1);

for j = 1:np

deta(j,k) = deleta;

etab = eta(j,1) / eta(np,1);

etab1 = etab^2;

eqs = (1 + (1 - Nr) * ge) * M(i);

eqsa = 0.5 * eta(np,1) * (M(i) - eqs);

eqsb = eta(np,1) * eqs;

if i == 1

f(j,1,i) = 0.25 * eta(np,1) * M(i) *etab1 * (3 - 0.5 * etab1);

u(j,1,i) = etab * M(i) * (1.5 - 0.5 * etab1);

v(j,1,i) = 1.5 * etau15 * M(i) * (1 - etab1);

s(j,1,i) = eta(np,1)*etab1 - eta(np,1) * etab;

t(j,1,i) = -fs * (1 - s(j,1,i));

p(j,1,i) = 1 - etab;
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q(j,1,i) = -1 * etau15;

else

% from shift profile

f(j,1,i) = ff(j);

u(j,1,i) = uu(j);

s(j,1,i) = ss(j);

t(j,1,i) = tt(j);

p(j,1,i) = pp(j);

q(j,1,i) = qq(j);

end

end

% To define the coefficients of the linearized equations momentum and energy

for j = 2:np

% Previous station

if i == 1

cfb(j,i) = 0.0;

cub(j,i) = 0.0;

csb(j,i) = 0.0;

ctb(j,i) = 0.0;

cpb(j,i) = 0.0;

cqb(j,i) = 0.0;

cfsb(j,i) = cfb(j,i) * csb(j,i);

cqtb(j,i) = cqb(j,i) * ctb(j,i);

cttb(j,i) = ctb(j,i) * ctb(j,i);

cusb(j,i) = cub(j,i) * csb(j,i);

cftb(j,i) = cfb(j,i) * ctb(j,i);

cfqb(j,i) = cfb(j,i) * cqb(j,i);

cupb(j,i) = cub(j,i) * cpb(j,i);

cderfb(j,i) = 0.0;

cdertb(j,i) = 0.0;

cderqb(j,i) = 0.0;

else

cfb(j,i) = ffb(j);

cub(j,i) = uub(j);

csb(j,i) = ssb(j);

ctb(j,i) = ttb(j);

cpb(j,i) = ppb(j);

cqb(j,i) = qqb(j);

cfsb(j,i) = cfb(j,i) * csb(j,i);

cqtb(j,i) = cqb(j,i) * ctb(j,i);
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cttb(j,i) = ctb(j,i) * ctb(j,i);

cusb(j,i) = cub(j,i) * csb(j,i);

cftb(j,i) = cfb(j,i) * ctb(j,i);

cfqb(j,i) = cfb(j,i) * cqb(j,i);

cupb(j,i) = cub(j,i) * cpb(j,i);

cderfb(j,i) = dderfb(j);

cdertb(j,i) = ddertb(j);

cderqb(j,i) = dderqb(j);

end

% Equations 3.95 to 3.98 - Present station (centered-difference derivatives)

fb(j,k,i) = 0.5 * ( f(j,k,i) + f(j-1,k,i) );

ub(j,k,i) = 0.5 * ( u(j,k,i) + u(j-1,k,i) );

sb(j,k,i) = 0.5 * ( s(j,k,i) + s(j-1,k,i) );

tb(j,k,i) = 0.5 * ( t(j,k,i) + t(j-1,k,i) );

pb(j,k,i) = 0.5 * ( p(j,k,i) + p(j-1,k,i) );

qb(j,k,i) = 0.5 * ( q(j,k,i) + q(j-1,k,i) );

fsb(j,k,i) = fb(j,k,i) * sb(j,k,i);

qtb(j,k,i) = qb(j,k,i) * tb(j,k,i);

ttb(j,k,i) = tb(j,k,i) * tb(j,k,i);

usb(j,k,i) = ub(j,k,i) * sb(j,k,i);

ftb(j,k,i) = fb(j,k,i) * tb(j,k,i);

fqb(j,k,i) = fb(j,k,i) * qb(j,k,i);

upb(j,k,i) = ub(j,k,i) * pb(j,k,i);

derfb(j,k,i) = ( f(j,k,i) - f(j-1,k,i) ) / deta(j,k);

dertb(j,k,i) = ( t(j,k,i) - t(j-1,k,i) ) / deta(j,k);

derqb(j,k,i) = ( q(j,k,i) - q(j-1,k,i) ) / deta(j,k);

% Equation 3.142 - Coefficients of the difference momentum equation

a1(j,k) = 1;

a2(j,k) = -1;

a3(j,k) = -0.5 * deta(j,k) * ge * M(i);

a4(j,k) = a3(j,k);

a5(j,k) = 0.5 * deta(j,k) * Nr * ge * M(i);

a6(j,k) = a5(j,k);

% Equation 3.143 - Coefficients of the difference energy equation

b1(j,k) = 1 + (1 + xx(i)) * 0.5 * deta(j,k) * fb(j,k,i) ...

+ 0.5 * Nb * deta(j,k) * qb(j,k,i)...

+ 0.5 * Nt * deta(j,k) * tb(j,k,i)...

+ 0.5 * Nt * deta(j,k) * tb(j,k,i)...

- 0.5 * xx(i) * deta(j,k) * cfb(j,i);

b2(j,k) = -2 + b1(j,k);
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b3(j,k) = (1 + xx(i)) * 0.5 * deta(j,k) * tb(j,k,i) ...

+ 0.5 * xx(i) * deta(j,k) * ctb(j,i);

b4(j,k) = b3(j,k);

b5(j,k) = 0.5 * Nb * deta(j,k) * tb(j,k,i);

b6(j,k) = b5(j,k);

b7(j,k) = - 0.5 * xx(i) * deta(j,k) * sb(j,k,i) + 0.5 * xx(i) * deta(j,k) * csb(j,i);

b8(j,k) = b7(j,k);

b9(j,k) = - 0.5 * xx(i) * deta(j,k) * ub(j,k,i) - 0.5 * xx(i) * deta(j,k) * cub(j,i);

b10(j,k) = b9(j,k);

% Equation 3.144 - Coefficients of the difference concentration equation

c1(j,k) = 1 + (1 + xx(i)) * 0.5 * deta(j,k) * Le * fb(j,k,i) ...

- 0.5 * xx(i) * deta(j,k) * Le * cfb(j,i);

c2(j,k) = - 2 + c1(j,k);

c3(j,k) = (1 + xx(i)) * 0.5 * deta(j,k) * Le * qb(j,k,i) ...

+ 0.5 * xx(i) * deta(j,k) * Le * cqb(j,i);

c4(j,k) = c3(j,k);

c5(j,k) = divide;

c6(j,k) = - 1 * (divide);

c7(j,k) = - 0.5 * xx(i) * deta(j,k) * Le * pb(j,k,i)...

+ 0.5 * xx(i) * deta(j,k) * Le * cpb(j,i);

c8(j,k) = c7(j,k);

c9(j,k) = - 0.5 * deta(j,k) * xx(i) * Le * ub(j,k,i)...

- 0.5 * xx(i) * deta(j,k) * Le * cub(j,i);

c10(j,k) = c9(j,k);

% Equations 3.125 to 3.127- Expressions of Rj

R1 = deta(j,k) * (- cderfb(j,i)) + deta(j,k) * M(i) +deta(j,k) * csb(j,i) * ge * M(i) ;

R2 = deta(j,k) * (- cdertb(j,i)) - deta(j,k) * cftb(j,i) -deta(j,k) * Nb

* cqtb(j,i) - deta(j,k) * Nt * cttb(j,i) - deta(j,k) * xx(i) *

cusb(j,i) + deta(j,k) * xx(i) * cftb(j,i);Le * deta(j,k) *

xx(i) * cfqb(j,i);

R3 = deta(j,k) * (- cderqb(j,i)) - deta(j,k) * Le * cfqb(j,i) -

deta(j,k) * cdertb(j,i) * (divide)-Le * deta(j,k) *

xx(i) * cupb(j,i) + - deta(j,k) * Nr * cpb(j,i) * ge * M(i);

% Equation 3.145 - Expressions of rj-1/2

r1(j,k) = f(j-1,k,i) - f(j,k,i) + ( deta(j,k) * ub(j,k,i) );

r2(j,k) = s(j-1,k,i) - s(j,k,i) + ( deta(j,k) * tb(j,k,i) );

r3(j,k) = p(j-1,k,i) - p(j,k,i) + ( deta(j,k) * qb(j,k,i) );
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if i == 1

r4(j,k) = R1 - f(j,k,i) + f(j-1,k,i) + deta(j,k) * ge * M(i) * sb(j,k,i) ...

- deta(j,k) * Nr * ge * M(i) * pb(j,k,i);

else

r4(j,k) = R1 - f(j,k,i) + f(j-1,k,i)+ M(i) * deta(j,k) + deta(j,k) * ...

ge * M(i) * sb(j,k,i) - deta(j,k) * Nr * ge * M(i) * pb(j,k,i);

end

r5(j,k) = R2 - t(j,k,i) + t(j-1,k,i)- (1 + xx(i)) * deta(j,k) * ftb(j,k,i)...

- deta(j,k) * Nb * qtb(j,k,i) - deta(j,k) * Nt * ttb(j,k,i)...

+ xx(i) * deta(j,k) * usb(j,k,i)- xx(i) * deta(j,k) * ub(j,k,i)...

* csb(j,i)+ xx(i) * deta(j,k) * sb(j,k,i) * cub(j,i)+ xx(i) *...

deta(j,k) * tb(j,k,i) * cfb(j,i)- xx(i) * deta(j,k) * fb(j,k,i) * ctb(j,i);

r6(j,k) = R3 - q(j,k,i) + q(j-1,k,i) - (1 + xx(i)) * Le * deta(j,k) * fqb(j,k,i) ...

- (divide) * (t(j,k,i) - t(j-1,k,i))+ Le * xx(i) * deta(j,k) * upb(j,k,i) ...

- Le * xx(i) * deta(j,k) * ub(j,k,i) * cpb(j,i) + Le * xx(i) * deta(j,k)...

* pb(j,k,i) * cub(j,i) + Le * xx(i) * deta(j,k) * qb(j,k,i) * cfb(j,i) ...

- Le * xx(i) * deta(j,k) * fb(j,k,i) * cqb(j,i);

end

% Obtain the elements of the matrices

% Equation 3.148

a{2,k} = [ -0.5*deta(2,k) 0 0 1 0 0; 0 -1 0 0 -0.5*deta(2,k) 0; ...

0 0 -0.5*deta(2,k) 0 0 -0.5*deta(2,k); 0 a4(2,k) 0 a1(2,k) 0 0 ; ...

b8(2,k) b10(2,k) b6(2,k) b3(2,k) b1(2,k) b5(2,k); ...

c8(2,k) 0 c2(2,k) c3(2,k) c5(2,k) c1(2,k)];

% Equation 3.149

for j = 3:np

a{j,k} = [ -0.5*deta(j,k) 0 0 1 0 0;0 -1 0 0 -0.5*deta(j,k) 0; ...

0 0 -1 0 0 -0.5*deta(j,k); 0 a4(j,k) a6(j,k) a1(j,k) 0 0; ...

b8(j,k) b10(j,k) 0 b3(j,k) b1(j,k) b5(j,k); ...

c8(j,k) 0 c10(j,k) c3(j,k) c5(j,k) c1(j,k)];

% Equation 3.150

b{j,k} = [ 0 0 0 -1 0 0; 0 0 0 0 -0.5*deta(j,k) 0; ...

0 0 0 0 0 -0.5*deta(j,k); 0 0 0 a2(j,k) 0 0; ...

0 0 0 b4(j,k) b2(j,k) b6(j,k);0 0 0 c4(j,k) c6(j,k) c2(j,k)];

end
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% Equation 3.151

for j = 2:np

c{j,k} = [ -0.5*deta(j,k) 0 0 0 0 0; 0 1 0 0 0 0; ...

0 0 1 0 0 0; 0 a3(j,k) a5(j,k) 0 0 0; ...

b7(j,k) b9(j,k) 0 0 0 0; c7(j,k) 0 c9(j,k) 0 0 0];

end

% The recursion formulas : forward sweep

alfa{2,k} = a{2,k};

gamma{2,k} = inv(alfa{2,k}) * c{2,k};

% Equation 3.156

for j = 3:np

alfa{j,k} = a{j,k} - ( b{j,k} * gamma{j-1,k});

gamma{j,k} = inv(alfa{j,k}) * c{j,k};

end

% Equation 3.153

for j = 2:np

rr{j,k} = [ r1(j,k); r2(j,k); r3(j,k); r4(j,k); r5(j,k); r6(j,k)];

end

% Equation 3.160

ww{2,k} = inv(alfa{2,k}) * rr{2,k};

% Equation 3.161

for j = 3:np

ww{j,k} = inv(alfa{j,k}) * (rr{j,k} - (b{j,k} * ww{j-1,k}));

end

% backward sweep

delf(1,k) = 0.0;

delt(1,k) = 0.0;

delp(1,k) = 0.0;

delu(np,k) = 0.0;

dels(np,k) = 0.0;

delp(np,k) = 0.0;

dell{np,k} = ww{np,k};
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% Equation 3.163

for j = np-1:-1:2

dell{j,k} = ww{j,k} - (gamma{j,k} * dell{j+1,k});

end

% Equation 3.152

delu(1,k) = dell{2,k}(1,1);

dels(1,k) = dell{2,k}(2,1);

delq(1,k) = dell{2,k}(3,1);

delf(2,k) = dell{2,k}(4,1);

delt(2,k) = dell{2,k}(5,1);

delq(2,k) = dell{2,k}(6,1);

for j = np:-1:3

delu(j-1,k) = dell{j,k}(1,1);

dels(j-1,k) = dell{j,k}(2,1);

delp(j-1,k) = dell{j,k}(3,1);

delf(j,k) = dell{j,k}(4,1);

delt(j,k) = dell{j,k}(5,1);

delq(j,k) = dell{j,k}(6,1);

end

% Equation 3.128 - Newton’s method

for j = 1:np

f(j,k+1,i) = f(j,k,i) + delf(j,k);

u(j,k+1,i) = u(j,k,i) + delu(j,k);

s(j,k+1,i) = s(j,k,i) + dels(j,k);

t(j,k+1,i) = t(j,k,i) + delt(j,k);

p(j,k+1,i) = p(j,k,i) + delp(j,k);

q(j,k+1,i) = q(j,k,i) + delq(j,k);

end

% Check for convergence of the iterations

stop = abs(dels(1,k));

kmax(i) = k;

k = k+1;

end

% Shift profile

for j = 1:np

ff(j) = f(j,k,i);

uu(j) = u(j,k,i);
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ss(j) = s(j,k,i);

tt(j) = t(j,k,i);

pp(j) = p(j,k,i);

qq(j) = q(j,k,i);

end

for j = 1:np

ffb(j) = fb(j,kmax(i),i);

uub(j) = ub(j,kmax(i),i);

ssb(j) = sb(j,kmax(i),i);

ttb(j) = tb(j,kmax(i),i);

ppb(j) = pb(j,kmax(i),i);

qqb(j) = qb(j,kmax(i),i);

dderfb(j) = derfb(j,kmax(i),i);

ddertb(j) = dertb(j,kmax(i),i);

dderqb(j) = derqb(j,kmax(i),i);

end

Nu(i) = -1.0 * t(1,kmax(i),i);

Sh(i) = - 1.0 * q(1,kmax(i),i);

Cf(i) = (t(1,kmax(i),i) - (Nr*q(1,kmax(i),i))) * ge * x(i) * M(i);

%Cf(i) = x(i) * v(1,kmax(i),i);

end

figure(1)% plot dimensionless skin friction

plot(x, Cf,’--’,’LineWidth’,1, ’LineSmoothing’,’on’);

% create MANUAL legend STARTS

% hold on

% p1 = plot(0, 0,’-’, ’linewidth’,2);

% p2 = plot(0, 0,’--’, ’linewidth’,2);

% LegendSetting = legend([p1 p2], ’{\it {Nr} = 0.1}’,’{\it {Nr} = 0.5}’,

% ’Location’, ’NorthEast’);

% set(LegendSetting, ’FontName’,’Times New Roman’, ’FontSize’,12)

% hold off

xlabel(’{\it x}’,’Fontname’, ’Times New Roman’,’FontSize’,18)

ylabel(’{ \it ({Pe_x^{1/2}/Pr})C_f}’,’Fontname’, ’Times New Roman’,’FontSize’,18)

%xlim([0 3.5])

hold all;

figure(2) % plot velocity profile

plot(eta, u(:,kmax(1),1),’--’,’LineWidth’,1, ’LineSmoothing’,’on’);

% create MANUAL legend STARTS

% hold on

% p1 = plot(0, 0,’-’, ’linewidth’,2);

% p2 = plot(0, 0,’--’, ’linewidth’,2);
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% p3 = plot(0, 0,’-.’, ’linewidth’,2);

% LegendSetting = legend([p1 p2 p3], ’{\it {Nr} = 0.1}’,’{\it {Nr} = 0.3}’,

% ’Location’, ’NorthEast’);

% set(LegendSetting, ’FontName’,’Times New Roman’, ’FontSize’,12)

% hold off

xlabel(’{\it y}’,’Fontname’, ’Times New Roman’,’FontSize’,18)

ylabel( ’{\it f\prime (y)}’,’Fontname’, ’Times New Roman’,’FontSize’,18)

xlim([0 blt])

hold all;
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APPENDIX C

FORMULATION OF FORCED CONVECTION IN VISCOUS FLUID
(CHAPTER 4, PAGE 83)

Basic dimensional boundary layer equations are

∂u
∂x

+
∂v
∂y

= 0 C1

u
∂u
∂x

+ v
∂u
∂y

= ue
due

dx
+ν

∂ 2u

∂y2
C2

u
∂T
∂x

+ v
∂T
∂y

= α
∂ 2T

∂y2
C3

subject to boundary conditions

u = v = 0, −k
∂T
∂y

= h f (Tf −T ) at y = 0

u→ ue, T → T∞ as y→ ∞ C4

By introducing non-dimensionalised using the following variables

x = x/a, y = Re1/2(y/a), u = u/U∞, v = Re1/2(v/U∞)

ue = ue/U∞, θ =
T −T∞

Tf −T∞

C5

Substituting C5 into continuity, momentum and energy equations, the differential equation

are found as follows:

Continuity equation

∂u
∂x

+
∂v
∂y

= 0
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∂ (uU∞)

∂ (xa)
+

∂ (vU∞Re−1/2)

∂ (yaRe−1/2)
= 0 C6

U∞

a

[
∂u
∂x

+
∂v
∂y

]
= 0

∂u
∂x

+
∂v
∂y

= 0

Momentum equation

u
∂u
∂x

+ v
∂u
∂y

= ue
∂ue

∂x
+ν

∂ 2u

∂y2

uU∞

∂ (uU∞)

∂ (xa)
+ vU∞Re−1/2 ∂ (uU∞)

∂ (yaRe−1/2)
= ueU∞

∂ (ueU∞)

∂ (xa)
+ν

∂ 2(uU∞)

∂ (yaRe−1/2)2

U2
∞

a

(
u

∂u
∂x

+v
∂u
∂y

)
=

U2
∞

a
ue

∂ue

∂x
+

vU∞

a
Re

∂ 2u
∂y2 C7

u
∂u
∂x

+v
∂u
∂y

= ue
∂ue

∂x
+

ν

aU∞

Re
∂ 2u
∂y2

u
∂u
∂x

+v
∂u
∂y

= ue
∂ue

∂x
+

∂ 2u
∂y2

where Reynold number is given by Re =U∞a/ν .

Energy equation

u
∂T
∂x

+ v
∂T
∂y

= α
∂ 2T

∂y2

uU∞

∂ (θ(Tf −T∞)+T∞)

∂ (xa)
+ vU∞Re−1/2 ∂ (θ(Tf −T∞)+T∞)

∂ (yaRe−1/2)
= α

∂ 2(θ(Tf −T∞)+T∞)

∂ (yaRe−1/2)2

uU∞

a
(Tf −T∞)

(
u

∂θ

∂x
+ v

∂θ

∂y

)
=

α

a2 Re(Tf −T∞)
∂ 2θ

∂y2 C8
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u
∂θ

∂x
+ v

∂θ

∂y
=

α

aU∞

Re
∂ 2θ

∂y2

u
∂θ

∂x
+ v

∂θ

∂y
=

1
Pr

∂ 2θ

∂y2

Boundary conditions

u = v = 0, −k
∂θ

∂y
=−γ(1−θ) at y = 0

u→ ue, θ → 0 as y→ ∞ C9

To solve continuity, momentum, energy equations subject to boundary conditions, the

following assumption has been made

ψ = x f (x,y), θ = θ(x,y) C10

Using variables in C10, continuity equation is identically satisfied. The momentum

equation becomes

u
∂u
∂x

+v
∂u
∂y

= ue
∂ue

∂x
+

∂ 2u
∂y2

x
∂ f
∂y

(
∂ f
∂y

+ x
∂ 2 f

∂x∂y

)
+

(
− f − x

∂ f
∂x

)
x

∂ 2 f
∂y2 = 2sinx

∂ (2sinx)
∂y

+ x
∂ 3 f
∂y3

x
∂ 3 f
∂y3 + f x

∂ 2 f
∂y2 − x

(
∂ f
∂y

)2

+4sinxcosx = x2
(

∂ f
∂y

∂ 2 f
∂x∂y

− ∂ f
∂x

∂ 2 f
∂y2

)
C11

∂ 3 f
∂y3 + f

∂ 2 f
∂y2 −

(
∂ f
∂y

)2

+4sinxcosx = x
(

∂ f
∂y

∂ 2 f
∂x∂y

− ∂ f
∂x

∂ 2 f
∂y2

)
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Energy equation becomes

u
∂θ

∂x
+ v

∂θ

∂y
=

1
Pr

∂ 2θ

∂y2

x
∂ f
∂y

∂θ

∂x
+

(
− f − x

∂ f
∂x

)
∂θ

∂y
=

1
Pr

∂ 2θ

∂y2 C12

1
Pr

∂ 2θ

∂y2 + f
∂θ

∂y
= x
(

∂ f
∂y

∂θ

∂x
− ∂ f

∂x
∂θ

∂y

)

and the boundary are

f =
∂ f
∂y

= 0,
∂θ

∂y
=−γ(1−θ) at y = 0

∂ f
∂y
→ 2

sinx
x

, θ → 0 as y→ ∞ C13
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APPENDIX D

FORMULATION OF FREE CONVECTION IN MICROPOLAR FLUID
(CHAPTER 5, PAGE 95)

Basic dimensional boundary layer equations are

∂u
∂x

+
∂v
∂y

= 0 D1

ρ

(
u

∂u
∂x

+ v
∂u
∂y

)
= (µ +κ)

∂ 2u
∂y2 +ρgβ (T −T∞)sin(

x
a
)+κ

∂H
∂y

D2

u
∂T
∂x

+ v
∂T
∂y

= α
∂ 2T

∂y2
D3

ρJ
(

u
∂H
∂x

+ v
∂H
∂y

)
=−κ

(
2H +

∂u
∂y

)
+χ

∂ 2H
y2 D4

subject to boundary conditions

u = v = 0, −k
∂T
∂y

= h f (Tf −T ), H =−n
∂u
∂y

at y = 0

u→ 0, T → T∞, H→ 0 as y→ ∞ D5

By introducing non-dimensionalised using the following variables

x = x/a, y = Gr1/4(y/a), u =

(
a
ν

)
Gr−1/2u

v =
(

a
ν

)
Gr−1/4v, θ =

T −T∞

Tf −T∞

, H =

(
a2

ν

)
Gr−3/4H D6

Substituting D6 into continuity, momentum and energy equations, the differential equation

are found as follows:
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Continuity equation

∂u
∂x

+
∂v
∂y

= 0

∂

(uν

a
Gr1/2

)
∂ (xa)

+

∂

(uν

a
Gr1/4

)
∂ (yaGr−1/4)

= 0

νGr1/2

a2

(
∂u
∂x

+
∂v
∂y

)
= 0 D7

∂u
∂x

+
∂v
∂y

= 0

Momentum equation

ρ

(
u

∂u
∂x

+ v
∂u
∂y

)
= (µ +κ)

∂ 2u
∂y2 +ρgβ (T −T∞)sin(

x
a
)+κ

∂H
∂y

ρ

[
uv
a

Gr1/2

(uν

a
Gr1/2

)
∂ (xa)

+
uv
a

Gr1/4

(
uν

a
Gr1/2

)
∂ (yaGr−1/4)

]

= (µ +κ)

∂ 2
uν

a
Gr1/2

)
∂ (yaGr−1/4)2

+ρgβ (T −T∞)sin
(

xa
a

)
+κ

∂

(vH

a2 Gr3/4
)

∂ (yaGr−1/4)
D8a

ρ
ν2

a3 Gr
(

u
∂u
∂x

+ v
∂u
∂y

)
=

ν

a3 Gr(µ +κ)
∂ 2u
∂y2 +ρgβ (T −T∞)sin(x)+κGr

ν

a3
∂H
∂y

u
∂u
∂x

+ v
∂u
∂y

=

(
µ +κ

ρν

)
∂ 2u
∂y2 +

gβa3

ν2Gr
(T −T∞)sin(x)+

κ

ρν

∂H
∂y

where Gr = gβ (Tf −T∞)a3/ν2, K = κ/µ and ρ = µ/ν . Substituting Gr, K, and ρ into

D8a, we obtain
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u
∂u
∂x

+ v
∂u
∂y

=
µ

ρν

∂ 2u
∂y2 +

κ

ρν

∂ 2u
∂y2 +

gβa3

ν2Gr
(T −T∞)sin(x)+

κ

ρν

∂H
∂y

u
∂u
∂x

+ v
∂u
∂y

=
∂ 2u
∂y2 +K

∂ 2u
∂y2 +

T −T∞

Tf −T∞

sinx+K
∂H
∂y

D8b

u
∂u
∂x

+ v
∂u
∂y

= (1+K)
∂ 2u
∂y2 +θ sinx+K

∂H
∂y

Energy equation

u
∂T
∂x

+ v
∂T
∂y

= α
∂ 2T
∂y2

uv
a

Gr1/2 ∂ (θ(Tf −T∞)+T∞)

∂ (xa)
+

uv
a

Gr1/4 (θ(Tf −T∞)+T∞)

∂ (yaGr−1/4)
= α

∂ 2(θ(Tf −T∞)+T∞)

∂ (yaGr−1/4)2

νGr1/2

a2 (Tf −T∞)

(
u

∂θ

∂x
+v

∂θ

∂y

)
=

αGr1/2

a2 (Tf −T∞)
∂ 2θ

∂y2 D9

u
∂θ

∂x
+ v

∂θ

∂y
=

α

ν

∂ 2θ

∂y2

u
∂θ

∂x
+ v

∂θ

∂y
=

1
Pr

∂ 2θ

∂y2

Micropolar equation

ρJ
(

u
∂H
∂x

+ v
∂H
∂y

)
=−κ

(
2H̄ +

∂u
∂y

)
+χ

∂ 2H

∂y2

ρJ

[
uv
a

Gr1/2
∂

(HνGr3/4

a2

)
∂ (xa)

+
vν

a
Gr1/4

∂

(HνGr3/4

a2

)
∂ (yaGr−1/4)

]
D10a

=−κ

[
2
(

HνGr3/4

a2

)
+

∂

(uv

a
Gr1/2

)
(yaGr−1/4)

]
+χ

∂ 2
(HνGr3/4

a2

)
∂ (yaGr−1/4)2
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ρJ
ν2Gr5/4

a4

(
u

∂H
∂y

+ v
∂H
∂y

)
=−κ

νGr3/4

a2

(
2H +

∂u
∂y

)
+χ

Gr5/4ν

a4
∂ 2H
∂y2

u
∂H
∂x

+ v
∂H
∂y

=− κa2

ρJνGr1/2

(
2H +

∂u
∂y

)
+

χ

ρJν

∂ 2H
∂y2

u
∂H
∂x

+ v
∂H
∂y

=− κ

ρν

[
2H +

∂u
∂y

]
+

(µ +κ/2)
ρν

∂ 2H
∂y2 D10b

u
∂H
∂x

+ v
∂H
∂y

=−K
[

2H +
∂u
∂y

]
+

(
1+

K
2

)
∂ 2H
∂y2

Boundary conditions

u = v = 0, −k
∂θ

∂y
=−γ(1−θ), H =−1

2
∂u
∂y

at y = 0

u→ 0, θ → 0, H→ 0 as y→ ∞ D11

To solve the governing equation subject to boundary conditions, the following assumption

has been made

ψ = x f (x,y), θ = θ(x,y) N = xG(x,y) D12

Using variables in D12, continuity equation is identically satisfied. The momentum

equation becomes

u
∂u
∂x

+ v
∂u
∂y

= (1+K)
∂ 2u
∂y2 +θ sinx+K

∂H
∂y

x
∂ f
∂y

(
∂ f
∂y

+ x
∂ 2 f

∂x∂y

)
+

(
− f − x

∂ f
∂x

)
+ x

∂ 2 f
∂y2 = (1+K)x

∂ 3 f
∂y3 +θ sinx+K

(
x

∂G
∂y

)

(1+K)x
∂ 3 f
∂y3 +θ sinx+Kx

(
∂G
∂y

)
+ f x

∂ 2 f
∂y2

− x
(

∂ f
∂y

)2

= x2
(

∂ f
∂y

∂ 2 f
∂x∂y

− ∂ f
∂x

∂ 2 f
∂y2

)
D13

(1+K)
∂ 3 f
∂y3 +

θ sinx
x

+K
(

∂G
∂y

)
+ f

∂ 2 f
∂y2 −

(
∂ f
∂y

)2

= x
(

∂ f
∂y

∂ 2 f
∂x∂y

− ∂ f
∂x

∂ 2 f
∂y2

)
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Meanwhile for micropolar equation, we obtain

ρJ
(

u
∂H
∂x

+ v
∂H
∂y

)
=−κ

(
2H̄ +

∂u
∂y

)
+χ

∂ 2H

∂y2

x
∂ f
∂y

(
G+ x

∂G
∂x

)
+

(
− f − x

∂ f
∂x

)
x

∂G
∂y

=

(
1+

K
2

)
∂ 2G
∂y2 −K

(
2xG+ x

∂ 2 f
∂y2

)
(

1+
K
2

)
x

∂ 2G
∂y2 −Kx

(
2G+

∂ 2 f
∂y2

)
−Gx

∂ f
∂y

+ f x
∂G
∂y

= x2
(

∂ f
∂y

∂G
∂y
− ∂ f

∂x
∂G
∂y

)
D14

(
1+

K
2

)
∂ 2G
∂y2 −K

(
2G+

∂ 2 f
∂y2

)
−G

∂ f
∂y

+ f
∂G
∂y

= x
(

∂ f
∂y

∂G
∂y
− ∂ f

∂x
∂G
∂y

)

Energy equation becomes

u
∂θ

∂x
+ v

∂θ

∂y
=

1
Pr

∂ 2θ

∂y2

x
∂ f
∂y

x
∂θ

∂x
+

(
− f − x

∂ f
∂x

)
∂θ

∂y
=

1
Pr

∂ 2θ

∂y2 D15

1
Pr

∂ 2θ

∂y2 + f
∂θ

∂y
= x
(

∂ f
∂y

∂θ

∂x
− ∂ f

∂x
∂θ

∂y

)

and the boundary are

f =
∂ f
∂y

= 0,
∂θ

∂y
=−γ(1−θ) G =−1

2
∂ 2 f
∂y2 at y = 0

∂ f
∂y
→ 0, θ → 0 G→ 0 as y→ D16
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APPENDIX E

FORMULATION OF MIXED CONVECTION IN VISCOUS FLUID
(CHAPTER 6, PAGE 111)

Basic dimensional boundary layer equations are

∂u
∂x

+
∂v
∂y

= 0 E1

u
∂u
∂x

+ v
∂u
∂y

= ue
due

dx
+ν

∂ 2u

∂y2
+gβ (T −T∞)sin

(
x
a

)
E2

u
∂T
∂x

+ v
∂T
∂y

= α
∂ 2T

∂y2
E3

subject to boundary conditions

u = v = 0, −k
∂T
∂y

= h f (Tf −T ) at y = 0

u→ ue, T → T∞ as y→ ∞ E4

By introducing non-dimensionalised using the following variables

x = x/a, y = Re1/2(y/a), u = u/U∞, v = Re1/2(v/U∞)

ue = ue/U∞, θ =
T f −T∞

Tw−T∞

E5

Substituting E5 into continuity, momentum and energy equations, the differential equation

are found as follows:

Continuity equation

∂u
∂x

+
∂v
∂y

= 0

∂ (uU∞)

∂ (xa)
+

∂ (vU∞Re−1/2)

∂ (yaRe−1/2)
= 0 E6a
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U∞

a

(
∂u
∂x

+
∂v
∂y

)
= 0

∂u
∂x

+
∂v
∂y

= 0 E6b

Momentum equation

u
∂u
∂x

+ v
∂u
∂y

= ue
∂ue

∂x
+ν

∂ 2u

∂y2
+gβ (T −T∞)sin

(
x
a

)

uU∞

∂ (uU∞)

∂ (xa)
+ vU∞Re−1/2 ∂ (uU∞)

∂ (yaRe−1/2)
= ueU∞

∂ (ueU∞)

∂ (xa)

+ν
∂ 2(uU∞)

∂ (yaRe−1/2)2
+gβ (T −T∞)sin

(
xa
a

)
U2

∞

a

(
u

∂u
∂x

+v
∂u
∂y

)
=

U2
∞

a
ue

∂ue

∂x
+

vU∞

a
Re

∂ 2u
∂y2 +gβ (T −T∞)sin E7

u
∂u
∂x

+v
∂u
∂y

= ue
∂ue

∂x
+

ν

aU∞

Re
∂ 2u
∂y2 +

gaβ (T −T∞)sinx
U2

∞

u
∂u
∂x

+v
∂u
∂y

= ue
∂ue

∂x
+

∂ 2u
∂y2 +λθ sinx

where lambda is given by λ = Gr/Re2.

Energy equation

u
∂T
∂x

+ v
∂T
∂y

= α
∂ 2T

∂y2

uU∞

∂ (θ(Tf −T∞)+T∞)

∂ (xa)
+ vU∞Re−1/2 ∂ (θ(Tf −T∞)+T∞)

∂ (yaRe−1/2)
= α

∂ 2(θ(Tf −T∞)+T∞)

∂ (yaRe−1/2)2

uU∞

a
(Tf −T∞)

(
u

∂θ

∂x
+ v

∂θ

∂y

)
=

α

a2 Re(Tf −T∞)
∂ 2θ

∂y2 E8a
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u
∂θ

∂x
+ v

∂θ

∂y
=

α

aU∞

Re
∂ 2θ

∂y2

u
∂θ

∂x
+ v

∂θ

∂y
=

1
Pr

∂ 2θ

∂y2 E8b

Boundary conditions

u = v = 0, −k
∂θ

∂y
=−γ(1−θ) at y = 0

u→ ue, θ → 0 as y→ ∞ E9

To solve continuity, momentum, energy equations subject to boundary conditions, the

following assumption has been made

ψ = x f (x,y), θ = θ(x,y) E10

Using variables in E10, continuity equation is identically satisfied. The momentum

equation becomes

u
∂u
∂x

+ v
∂u
∂y

= ue
∂ue

∂x
+

∂ 2u
∂y2 +λθ sinx

x
∂ f
∂y

(
∂ f
∂y

+ x
∂ 2 f

∂x∂y

)
+

(
− f − x

∂ f
∂x

)
x

∂ 2 f
∂y2 = sinx

∂ (sinx)
∂y

+ x
∂ 3 f
∂y3 +λθ sinx

x
∂ 3 f
∂y3 + f x

∂ 2 f
∂y2 − x

(
∂ f
∂y

)2

+ sinxcosx+λθ sinx = x2
(

∂ f
∂y

∂ 2 f
∂x∂y

− ∂ f
∂x

∂ 2 f
∂y2

)
E11

∂ 3 f
∂y3 + f

∂ 2 f
∂y2 −

(
∂ f
∂y

)2

+(cosx+λθ)
sinx

x
= x
(

∂ f
∂y

∂ 2 f
∂x∂y

− ∂ f
∂x

∂ 2 f
∂y2

)

where ue = sinx.
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Energy equation becomes

u
∂θ

∂x
+ v

∂θ

∂y
=

1
Pr

∂ 2θ

∂y2

x
∂ f
∂y

∂θ

∂x
+

(
− f − x

∂ f
∂x

)
∂θ

∂y
=

1
Pr

∂ 2θ

∂y2 E12

1
Pr

∂ 2θ

∂y2 + f
∂θ

∂y
= x
(

∂ f
∂y

∂θ

∂x
− ∂ f

∂x
∂θ

∂y

)

and the boundary condition

f =
∂ f
∂y

= 0,
∂θ

∂y
=−γ(1−θ) at y = 0

∂ f
∂y
→ sinx

x
, θ → 0 as y→ ∞ E13
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APPENDIX F

FORMULATION OF MIXED CONVECTION IN NANOFLUID: TIWARI AND DAS
MODEL (CHAPTER 7, PAGE 124)

Basic dimensional boundary layer equations are

∂u
∂x

+
∂v
∂y

= 0 F1

u
∂u
∂x

+ v
∂u
∂y

=− 1
ρn f

∂ p
∂x

+
µn f

ρn f

∂ 2u

∂y2
+

φρsβs +(1−φ)ρ f β f

ρn f

g(T −T∞)sin
(

x
a

)
F2

u
∂T
∂x

+ v
∂T
∂y

= α
∂ 2T

∂y2
F3

subject to boundary conditions

u = v = 0, −k
∂T
∂y

= h f (Tf −T ) at y = 0

u→ u, T → T∞ as y→ ∞ F4

By introducing non-dimensionalised using the following variables

x = x/a, y = Re1/2(y/a), u = u/U∞, v = Re1/2(v/U∞)

θ =
T −T∞

Tf −T∞

, p =
p− p∞

ρn f U2
∞

F5

Substituting F5 into continuity, momentum and energy equations, the differential equation

are found as follows:

Continuity equation

∂u
∂x

+
∂v
∂y

= 0

∂ (uU∞)

∂ (xa)
+

∂ (vU∞Re−1/2)

∂ (yaRe−1/2)
= 0 F6a
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U∞

a

(
∂u
∂x

+
∂v
∂y

)
= 0

∂u
∂x

+
∂v
∂y

= 0 F6b

Momentum equation

u
∂u
∂x

+ v
∂u
∂y

=− 1
ρn f

∂ p
∂x

+
µn f

ρn f

∂ 2u

∂y2
+

φρsβs +(1−φ)ρ f β f

ρn f

g(T −T∞)sin
(

x
a

)

uU∞

∂ (uU∞)

∂ (xa)
+ vU∞Re−1/2 ∂ (uU∞)

∂ (yaRe−1/2)
=− 1

ρn f

∂ (ρn fU2
∞ p+ p∞)

∂ (xa)

+
µn f

ρn f

∂ 2(uU∞)

∂ (yaRe−1/2)2
+

φρsβs +(1−φ)ρ f β f

ρn f

gβ (T −T∞)sin
(

xa
a

)
U2

∞

a

(
u

∂u
∂x

+
∂u
∂y

)
=−U2

∞

a
∂ p
∂x

+
µn f

ρn f

U2
∞

a
Re

∂ 2u
∂y2

+
φρsβs +(1−φ)ρ f β f

ρn f

gβ (T −T∞)sin
(

xa
a

)
F7

u
∂u
∂x

+ v
∂u
∂y

=−∂ p
∂x

+
1

aU∞

µn f

ρn f
Re

∂ 2u
∂y2 +

(
φρsβs +(1−φ)ρ f β f

ρn f

)
gaβ (T −T∞)sinx

U2
∞

u
∂u
∂x

+ v
∂u
∂y

=−∂ p
∂x

+
µn f

ρn f ν f

∂ 2u
∂y2 +

φρs(βs/β f )+(1−φ)ρ f

ρn f

λθ sinx

Energy equation

u
∂T
∂x

+ v
∂T
∂y

=
1
Pr

αn f

α f

∂ 2T

∂y2

uU∞

∂ (θ(Tf −T∞)+T∞)

∂ (xa)
+ vU∞Re−1/2 ∂ (θ(Tf −T∞)+T∞)

∂ (yaRe−1/2)
=

1
Pr

αn f

α f

∂ 2(θ(Tf −T∞)+T∞)

∂ (yaRe−1/2)2

U∞

a
(Tf −T∞)

(
u

∂θ

∂x
+ v

∂θ

∂y

)
=

1
Pr

αn f

α f

Re
a2 (Tf −T∞)

∂ 2θ

∂y2 F8a
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u
∂θ

∂x
+ v

∂θ

∂y
=

1
Pr

αn f

α f

Re
aU∞

∂ 2θ

∂y2

u
∂θ

∂x
+ v

∂θ

∂y
=

1
Pr

αn f

α f

∂ 2θ

∂y2 F8b

Boundary conditions

u = v = 0, −k
∂θ

∂y
=−γ(1−θ) at y = 0

u→ 0, θ → 0 as y→ ∞ F9

To solve continuity, momentum, energy equations subject to boundary conditions, the

following assumption has been made

ψ = x f (x,y), θ = θ(x,y) F10

Using variables in F10, continuity equation is identically satisfied. The momentum equation

becomes

u
∂u
∂x

+ v
∂u
∂y

=−∂ p
∂x

+
µn f

ρn f ν f

∂ 2u
∂y2 +

φρs(βs/β f )+(1−φ)ρ f

ρn f

λθ sinx

u
∂u
∂x

+ v
∂u
∂y

= ue
∂ue

∂x
+

µn f

ρn f ν f

∂ 2u
∂y2 +

φρs(βs/β f )+(1−φ)ρ f

ρn f

λθ sinx

x
∂ f
∂y

(
∂ f
∂y

+ x
∂ 2 f

∂x∂y

)
+

(
− f − x

∂ f
∂x

)
x

∂ 2 f
∂y2 = sinx

∂ (sinx)
∂y

+
1

(1−φ)2.5[1−φ +(φρs/ρ f )]
x

∂ 3 f
∂y3 +

φρs(βs/β f )+(1−φ)ρ f

ρn f

λθ sinx F11

1
(1−φ)2.5[1−φ +(φρs/ρ f )]

∂ 3 f
∂y3 +

φρs(βs/β f )+(1−φ)ρ f

ρn f

λθ sinx

+ f
∂ 2 f
∂y2 −

(
∂ f
∂y

)2

+
sinxcosx

x
= x
(

∂ f
∂y

∂ 2 f
∂x∂y

− ∂ f
∂x

∂ 2 f
∂y2

)
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Energy equation becomes

u
∂θ

∂x
+ v

∂θ

∂y
=

1
Pr

αn f

α f

∂ 2θ

∂y2

x
∂ f
∂y

∂θ

∂x
+

(
− f − x

∂ f
∂x

)
∂θ

∂y
=

1
Pr

kn f

(ρCp) f

1
α f

∂ 2θ

∂y2 F12

x
∂ f
∂y

∂θ

∂x
+

(
− f − x

∂ f
∂x

)
∂θ

∂y
=

1
Pr

(ρ)Cp

k f

kn f

(1−φ)+(φ(ρCp)s/(ρCp) f

∂ 2θ

∂y2

1
Pr

kn f /k f

(1−φ)+(φ(ρCp)s/(ρCp) f

∂ 2θ

∂y2 + f
∂θ

∂x
= x
(

∂ f
∂y

∂θ

∂x
− ∂ f

∂x
∂θ

∂y

)

and the boundary condition

f =
∂ f
∂y

= 0,
∂θ

∂y
=−γ(1−θ) at y = 0

∂ f
∂y
→ sinx

x
, θ → 0 as y→ ∞ F13
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APPENDIX G

FORMULATION OF MIXED CONVECTION IN NANOFLUID: BUONGIORNO
MODEL (CHAPTER 8, PAGE 141)

Basic dimensional boundary layer equations are

∂u
∂x

+
∂v
∂y

= 0 G1

µ

K
∂u
∂y

=

[(
1−C∞

)
βρ f ∞

∂T
∂ ȳ
−
(
ρp−ρ f ∞

)∂C
∂ ȳ

]
gsin

(
x
a

)
G2

u
∂T
∂x

+ v
∂T
∂y

= αm
∂ 2T

∂y2
+ τ

[
DB

∂T
∂ ȳ

∂C
∂ ȳ

+

(
DT

T∞

)(
∂T
∂ ȳ

)2]
G3

1
ε

(
ū

∂C
∂ x̄

+ v̄
∂C
∂ ȳ

)
= DB

∂ 2C
∂ ȳ2 +

(
DT

T∞

)
∂ 2T
∂ ȳ2 G4

subject to boundary conditions

v̄(x̄, ȳ) = 0, −k
∂T
∂y

= h f (Tf −T ), C(x̄, ȳ) =Cw at ȳ = 0, 0≤ x̄≤ π

ū(x̄, ȳ)→ ūe(x̄), T (x̄, ȳ)→ T̄∞, C(x̄, ȳ)→C∞ as ȳ→ ∞, 0≤ x̄≤ π G5

By introducing non-dimensionalised using the following variables

x =
x
a
, y =

Pe1/2y
a

, u =
u

U∞

, v =
Pe1/2v

U∞

θ =
T −T∞

Tf −T∞

, φ =
C−C∞

Cw−C∞

G6

Substituting G6 into continuity, momentum,energy equations and nanoparticle volume

fraction equations, the differential equation are found as follows:
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Continuity equation

∂u
∂x

+
∂v
∂y

= 0

∂ (uU∞)

∂ (xa)
+

∂ (vU∞Re−1/2)

∂ (yaRe−1/2)
= 0

U∞

a

(
∂u
∂x

+
∂v
∂y

)
= 0 G7

∂u
∂x

+
∂v
∂y

= 0

Momentum equation

µ

K
∂u
∂y

=

[(
1−C∞

)
βρ f ∞

∂T
∂ ȳ
−
(
ρp−ρ f ∞

)∂C
∂ ȳ

]
gsin

(
x
a

)
µ

K
∂ (uU∞)

∂ (yaPe−1/2)
= β (1−C∞)ρ∞

∂ (θ(Tf −T∞)+T∞)

∂ (yaPe−1/2)
gsin

xa
a

− (ρp−ρ f ∞)
∂ (φ(Cw−C∞)+C∞)

∂ (yaPe−1/2)
gsin

(
xa
a

)

Pe1/2 µU∞

Ka
∂u
∂y

=
β (1−C∞)(Tf −T∞)ρ f ∞

a
Pe1/2 ∂θ

∂y
gsinx

−
(ρp−ρ f ∞)(Cw−C∞)

a
Pe1/2 ∂φ

∂y
gsinx G8

∂u
∂y

=
Kaβ (1−C∞)(Tf −T∞)ρ f ∞

µU∞

∂θ

∂y
gsinx

−
(ρp−ρ f ∞)(Cw−C∞)K

µU∞

∂φ

∂y
gsinx

∂u
∂y

= λ
∂θ

∂y
sinx−λNr

∂φ

∂y
sinx

∂u
∂y

=

(
∂θ

∂y
−Nr

∂φ

∂y

)
λ sinx
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Energy equation

u
∂T
∂x

+ v
∂T
∂y

= αm
∂ 2T

∂y2
+ τ

[
DB

∂T
∂ ȳ

∂C
∂ ȳ

+

(
DT

T∞

)(
∂T
∂ ȳ

)2]

uU∞

∂ (θ(Tf −T∞)+T∞)

∂ (xa)
+ vU∞Pe−1/2 ∂ (θ(Tf −T∞)+T∞)

∂ (yaPe−1/2)
= αm

∂ 2(θ(Tf −T∞)+T∞)

∂ (yaPe−1/2)2

+ τ

[
DB

∂ (θ(Tf −T∞)+T∞)

∂ (yaPe−1/2)

∂ (φ(Cw−C∞)+C∞)

∂ (yaPe−1/2)
+

DT

T∞

(
∂ (φ(Cw−C∞)+C∞)

∂ (yaPe−1/2)

)2]

uU∞(Tf −T∞)

(
u

∂θ

∂x
+ v

∂θ

∂y

)
=

αm

a2 Pe(Tf −T∞)
∂ 2θ

∂y2 + G9

τ
(Tf −T∞)

a2 Pe
[

DB(Cw−C∞)
∂θ

∂y
∂φ

∂y
+

DT

T∞

(Tf −T∞)

(
∂θ

∂y

)2]

u
∂θ

∂x
+ v

∂θ

∂y
=

αm

aU∞

Pe(Tf −T∞)
∂ 2θ

∂y2 +
τ

aU∞

Pe
[

DB(Cw−C∞)
∂θ

∂y
∂φ

∂y
+

DT

T∞

(Tf −T∞)

(
∂θ

∂y

)2]

u
∂θ

∂x
+ v

∂θ

∂y
=

∂ 2θ

∂y2 +Nb
∂θ

∂y
∂φ

∂y
+Nt

(
∂θ

∂y

)2

Nanoparticle volume fraction equation

1
ε

(
ū

∂C
∂ x̄

+ v̄
∂C
∂ ȳ

)
= DB

∂ 2C
∂ ȳ2 +

(
DT

T∞

)
∂ 2T
∂ ȳ2

1
ε

(
uU∞

∂ (φ(Cw−C∞)+C∞)

∂ (xa)
+ vU∞Pe−1/2 ∂ (φ(Cw−C∞)+C∞)

∂ (yaPe−1/2)

)

= DB
∂ 2(φ(Cw−C∞)+C∞)

∂ (yaPe−1/2)2
+

DT

T∞

∂ 2(θ(Tf −T∞)+T∞)

∂ (yaPe−1/2)2

1
ε

uU∞

a
(Cw−C∞)

(
u

∂φ

∂x
+ v

∂φ

∂y

)
= DB(Cw−C∞)Pe

∂ 2θ

∂y2 +
DT

T∞

(Tf −T∞)
∂ 2θ

∂y2 G10

1
ε

aU∞

DBPe

(
u

∂φ

∂x
+ v

∂φ

∂y

)
=

∂ 2θ

∂y2 +
DT

DB

Tf −T∞

T∞(Cw−C∞)

∂ 2θ

∂y2

Le
(

u
∂φ

∂x
+ v

∂φ

∂y

)
=

∂ 2θ

∂y2 +
Nt
Nb

∂ 2θ

∂y2
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Boundary conditions

v(x,y) = 0, θ
′(x,y) =−γ(1−θ(x,y)), φ(x,y) = 1 at y = 0, 0≤ x≤ π

u(x,y)→ ue(x), θ(x,y)→ 0, φ(x,y)→ 0 as y→ ∞, 0≤ x≤ π G11

To solve governing equations subject to boundary conditions, the following assumption has

been made

ψ = x f (x,y), θ = θ(x,y), φ = φ(x,y) G12

Using variables in G12, continuity equation is identically satisfied. Integrating G8 and

using the boundary conditions G11, we obtain the following for momentum equation

∫
∂u =

∫ ((
∂θ

∂y
−Nr

∂φ

∂y

)
λ sinx

)
∂y

u = (θ −Nrφ)λ sinx+ c

u = (θ −Nrφ)λ sinx+ sinx G13

u =

(
1+(θ −Nrφ)λ

)
sinx

Substituting variables G12 into G13 yields

x
∂ f
∂y

=

(
1+(θ −Nrφ)λ

)
sinx

∂ f
∂y

=

(
1+(θ −Nrφ)λ

)
sinx

x
G14
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Energy equation becomes

u
∂θ

∂x
+ v

∂θ

∂y
=

∂ 2θ

∂y2 +Nb
∂θ

∂y
∂φ

∂y
+Nt

(
∂θ

∂y

)2

x
∂ f
∂y

∂θ

∂x
+

(
− f − x

∂ f
∂x

)
∂θ

∂y
=

∂ 2θ

∂y2 +Nb
∂θ

∂y
∂φ

∂y
+Nt

(
∂θ

∂y

)2

G15

∂ 2θ

∂y2 +Nb
∂θ

∂y
∂φ

∂y
+Nt

(
∂θ

∂y

)2

+ f
∂θ

∂x
= x
(

∂ f
∂y

∂θ

∂x
− ∂ f

∂x
∂θ

∂y

)

Nanoparticle volume fraction yields

Le
(

u
∂φ

∂x
+ v

∂φ

∂y

)
=

∂ 2θ

∂y2 +
Nt
Nb

∂ 2θ

∂y2

Le
(

x
∂ f
∂y

∂φ

∂x
+

(
− f − x

∂ f
∂x

)
∂φ

∂y

)
=

∂ 2θ

∂y2 +
Nt
Nb

∂ 2θ

∂y2 G16

∂ 2θ

∂y2 +
Nt
Nb

∂ 2θ

∂y2 +Le f
∂φ

∂y
= xLe

(
∂ f
∂y

∂φ

∂x
− ∂ f

∂x
∂φ

∂y

)

and the boundary condition

f (x,y) = 0, θ
′(x,y) =−γ(1−θ(x,y)), φ(x,y) = 1 at y = 0, 0≤ x≤ π

θ(x,y)→ 0, φ(x,y)→ 0 as y→ ∞, 0≤ x≤ π G17
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