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ABSTRAK 

Beberapa dekad kebelakangan ini penyelidik telah menggunakan beberapa metodologi 

yang diilhamkan daripada masalah pengoptimuman yang kompleks. Kaedah carian 

berketentuan klasik diketahui sering terperangkap dalam minimum tempatan dan 

berprestasi kurang baik bagi masalah dimensi yang tinggi. Masalah lengkap-NP dianggap 

sebagai masalah pengoptimuman global yang umum; oleh itu, terdapat keperluan  sumber 

pengkomputeran yang terlalu tinggi untuk memastikan pengiraan jitu bagi minimum 

global. Metaheuristik ditakrifkan sebagai satu proses generasi lelaran yang memberi 

petunjuk kepada sesuatu heuristik bawahan melalui gabungan konsep pintar yang berbeza 

untuk meneroka dan mengeksploitasi  ruang  penyelesaian; mereka menggunakan strategi 

pembelajaran untuk menstrukturkan maklumat dalam usaha menubuhkan penyelesaian  

hampir-optimum yang efisien. Tiga masalah besar dihadapi ketika merancang 

metaheuristik; masalah pertama ialah mengimbangi penerokaan dengan keupayaan 

eksploitasi (yang  membawa kepada penumpuan pramatang atau memerangkap di dalam 

minimum  tempatan), manakala masalah kedua adalah pergantungan algoritma tersebut 

kepada parameter  mengawal, yang merupakan parameter dengan nilai-nilai optimum 

yang tidak diketahui. Masalah terakhir adalah keupayaan algoritma itu untuk 

menyelesaikan masalah skala-besar, yang kebanyakannya terdiri dari masalah dunia 

sebenar.  Dalam tesis ini, suatu metaheuristik baru yang diilhamkan oleh alam semula 

jadi yang dipanggil "Pengoptimum Orang Nomad (NPO)" telah direka. NPO diilhamkan 

oleh gaya hidup nomad.  Algoritma yang dicadangkan mensimulasikan tingkah laku 

nomad apabila mereka mencari sumber kehidupan (air atau padang ragut). Komponen 

asas algoritma tersebut terdiri daripada beberapa puak dan setiap puak mencari tempat 

yang terbaik (atau penyelesaian yang terbaik) berdasarkan kedudukan pemimpin mereka. 

Interaksi antara puak ini diilhamkan oleh konsep kumpulan (-kumpulan) orang yang 

dikuasai oleh pemimpin (-pemimpin) mereka. Para pemimpin puak secara berkala 

bertemu di dalam bilik untuk memilih pemimpin terbaik keseluruhan yang mempunyai 

kawalan ke atas semua pemimpin yang lain. "Pendekatan Bilik Mesyuarat (MRA)" ini 

memastikan keseimbangan antara keupayaan penerokaan dan eksploitasi NPO yang 

dicadangkan. NPO tersebut telah diuji dan dinilai berdasarkan enam puluh fungsi ujian 

tidak dikekang penanda aras. Tambahan lagi, kebolehskalaan NPO itu dinilai secara 

menyelesaikan lapan belas masalah berskala-besar.  Keputusan eksperimen mengesahkan 

bahawa NPO yang dicadangkan berprestasi lebih baik daripada beberapa metaheuristik 

baru-baru ini dari segi mencapai penyelesaian terbaik, kebolehskalaan, kerumitan masa, 

dan kadar penumpuan. NPO ini berjaya menyelesaikan 52 daripada 60 fungsi ujian 

bersaiz normal manakala 16 dari 18 masalah berskala-besar telah sama-sama 

diselesaikan.  Prestasi yang baik juga dicapai dengan NPO berkenaan dari segi hingar 

dan masalah maklumat yang terhad.  Suatu ujian Wilcoxon Signed-Rank  dilakukan untuk 

mengukur prestasi statistik pasangan bagi algoritma berkenaan  dan daripada keputusan, 

NPO merekodkan prestasi statistik yang lebih baik berbanding dengan algoritma penanda 

aras yang lain. Dengan tegas boleh dinyatakan bahawa, penilaian eksperimen dan statistik 

yang dilakukan dalam  kajian ini telah membuktikan keupayaan NPO yang dibangunkan 

ini untuk menyelesaikan  masalah pengoptimuman dunia-sebenar. 
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ABSTRACT 

Researchers have in the past few decades resorted to several methods that are inspired 

from complex optimization problems. The classical deterministic search methods are 

known to often get trapped in local minimum and do perform poorly on high dimensional 

problems. A metaheuristic is defined as an iterative generation process which guides a 

subordinate heuristic through a combination of different intelligent concepts for 

exploring and exploiting the solution space; they employ learning strategies to structure 

information in order to establish efficient near-optimal solutions. Three major problems 

are encountered when designing metaheuristics; the first problem is balancing 

exploration with exploitation capabilities (which leads to premature convergence or 

trapping in the local minima), while the second problem is the dependency of the 

algorithm on the controlling parameters, which are parameters with unknown optimal 

values. The final problem is the ability of the algorithm to solve large-scale problems, 

which mostly are the real world problems. In this thesis, a novel nature-inspired 

metaheuristic called “Nomadic People Optimizer (NPO)” was designed. The NPO is 

inspired by the lifestyle of the nomads. The proposed algorithm simulates the behavior 

of the nomads when they are searching for life sources (water or grazing fields). The 

basic component of the algorithm consists of several clans and each clan searches for the 

best place (or best solution) based on the position of their leader. The interaction between 

these clans is inspired by the concept of a group(s) of people controlled by their leader(s). 

The leaders of the clans periodically meet in a room to select an overall best leader who 

has control over all the other leaders. This “Meeting Room Approach (MRA)” ensures a 

balance between the exploration and exploitation capabilities of the proposed NPO. NPO 

provides two steps for exploitation part, while the exploration is performed using another 

step. The local search of NPO is implemented using a unique distribution formula, while 

the global search ability contains a levy flight equation which generates a step for moving 

the families towards the new positions.  The NPO was tested and evaluated based on sixty 

unconstrained benchmark test functions. Additionally, the scalability of the NPO was 

evaluated by solving eighteen large-scale problems. The experimental results confirmed 

that the proposed NPO performed better than some of the recent metaheuristics in terms 

of achieving the best solutions, scalability, time complexity, and convergence rate. The 

NPO successfully solved 52 out of 60 (86.6%) normal sized test functions while 16 out 

of 18 (88.8%) large-scale problems were equally solved.  Good performances were also 

achieved with the NPO with respect to noise and limited information problems. A 

Wilcoxon Signed-Rank Test was performed to measure the pair-wise statistical 

performances of the algorithms and from the results, NPO recorded a better statistical 

performance compared to the other benchmarking algorithms. Conclusively, the 

experimental and statistical evaluations performed in this study proved the capability of 

the developed NPO in solving real-world optimization problems. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Background 

One of the main areas of emphasis in industrial engineering is optimization. In 

optimization problems, one seeks to minimize or maximize some objective function’s 

value while simultaneously satisfying some set of specific constraints. Practically 

motivated optimization problems are usually so difficult and contain so many decision 

variables that solving them by hand is almost impossible in many cases. This fact 

encourages the use of computer-based algorithms to analyse optimization problems. For 

many problems, there are straight-forward and easy-to-understand algorithms that 

produce either optimal or near-optimal solutions. However, many of these algorithms can 

be so computationally intensive that using them would not be reasonable to obtain 

solutions in a reasonable, practically acceptable amount of time. 

 Optimization problems can be divided into two main classes: those in the class 

Deterministic Polynomial (𝑃) and those in the class Non-Deterministic Polynomial (𝑁𝑃). 

There are algorithms that are able to solve problems in class P optimally in an amount of 

time that is bounded by a polynomial function of the problem’s size. On the other hand, 

there are no known polynomial-time algorithms available to solve problems in class NP 

(i.e., non-polynomial). As producing effective solutions to class NP problems is 

important in practice, as many problems of practical interest are in class NP, these 

challenging problems have been the focus of much previous and current research. 

Optimization problems can be classified in general into two main classes, Continuous 

Problems and Discrete Problems based on the decision variables. .  



2 

Optimization processes involve a holistic search for the optimal response to a 

given problem, as encountered in different fields. New optimization algorithms are 

primarily developed for the establishment of optimal solutions to optimization problems 

in such a way that the given quantity is optimized based on a given set of constraints 

(Engelbrecht, 2007; Lynn and Suganthan, 2017).  

This definition, being a simple definition of optimization, conceals several 

complex issues such as a) different types of data may be combined in a given solution; 

(b) the search area may be restricted by nonlinear constraints; (c) the convolution of the 

solution space with several individual solutions, (d) the tendency of the features of the 

problem changing with time; and (e) the presence of conflicting objectives in the 

optimized quantity. These are some problems that portray the complexities that could be 

encountered by an optimization algorithm. 

When searching for a solution to a problem in a high-dimensional solution space, 

classical optimization algorithms may not suitably achieve accurate solutions due to the 

exponential increase in the search space with the problem size. It is, therefore, not feasible 

to solve high-dimensional search space optimization problems using exact techniques 

such as exhaustive search (Rashedi et al., 2009). Another problem of the classic 

optimization algorithms is their inability to find sufficient global optima (local optima 

stagnation). Furthermore, some of the classical optimization algorithms need search 

space derivation as well. It is, therefore, pertinent that these classical algorithms may not 

adequately solve real-world optimization problems (Beyer et al., 2014; Mousavirad and 

Ebrahimpour-Komleh, 2017). 

Metaheuristic algorithms are currently being used as the primary approach to 

achieving optimal solutions to real optimization issues (Boussaïd et al., 2013). These 

approaches mainly benefit from the stochastic operators which differentiates them from 

the deterministic algorithms (Bonabeau et al., 1999) which reliably establishes the 

solution to a given problem using similar starting points. This behavior, however, leads 

to entrapment in the local optima which is regarded as a major problem of the 

deterministic approach. Local optima stagnation refers to ability of an algorithm to find 

just the local solutions to a problem and consequently failing to find the true global 

solution (optimum). Since there are many local solutions to real problems, it may be 
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difficult to reliably establish the global optimum using deterministic algorithms (Gupta 

and Deep, 2018; Mirjalili, 2015).  

The metaheuristic algorithms may be classified using many criteria, and this may 

be illustrated by their classification based on their features with respect to their search 

path, memory usage, type of deployed neighborhood exploration, as well as the 

magnitude of the solutions carried from one iteration to the next. Based on the available 

literature, metaheuristics are basically grouped into population-based metaheuristics 

(PBMs) and single-solution based metaheuristics (SBMs). Generally, the SBMs are 

exploitative-oriented while the PBMs are more explorative-oriented. 

A metaheuristic approach can only successfully optimize a given problem if the 

right balance between exploration (diversification) and exploitation (intensification) is 

established. Exploitation is necessary for identifying the search parts that have quality 

solutions, and also important for the intensification of the search in the potential 

accumulated search spaces. The existing metaheuristic algorithms differ in the way they 

try to balance exploration with exploitation (Birattari et al., 2001; X. S. Yang et al., 2017).  

This work proposed a new nature-inspired framework, which is based on the 

movement of nomads when searching for the sources of food for their herd in the desert. 

The proposed algorithm, known as ‘Nomadic People Optimizer (NPO)’ is a multi-swarm 

metaheuristic which contains a novel cooperative approach that enhances the interaction 

between the swarms. The proposed multi-swarm approach, known as ‘Meeting Room 

Approach (MRA)’ enhances the ability of NPO to balance exploration with exploration.  

 

1.2 Problem Statement  

Several algorithms have been developed over the years for solving different 

optimization problems. Majority of these algorithms are dependent on the nonlinear and 

numerical linear programming approaches which requires extensive gradient information 

and often strive to enhance the solution around the starting point. The numerical-based 

optimization algorithms are useful in achieving the optimal global solution for ideal and 

simple models. However, various real-world engineering problems are complicated and 

difficult. In the presence of more than one local optimum in a given optimization problem, 
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the outcome may depend on selecting a starting point that will offer an optimal solution 

which may not represent the global best. Furthermore, an unstable gradient search may 

be achieved when the constraints and objective function have sharp or multiple peaks 

(Kallioras et al., 2018; Siddique and Adeli, 2015; Slowik and Kwasnicka, 2018). Due to 

the problems relating to the efficiency and accuracy of the current numerical methods, 

many studies have relied on the simulation and nature-inspired metaheuristics to solve 

most engineering optimization problems (X. S. Yang et al., 2016). 

In optimization, metaheuristics are a group of algorithmic frameworks that are 

inspired by natural phenomena. They establish optimal solutions to optimization 

problems via a synergistic combination of certain rules and degrees of randomness. As 

such, the metaheuristics can be applied in solving several optimization problems and still 

experience minute changes in their overall algorithmic framework. Metaheuristics can be 

effectively deployed in solving real-world optimization problems because they are simple 

to design (naturally inspired), and have less specificity and high problem-solving 

potential (Al-Dabbagh et al., 2018).  

The existing literature suggests the effectiveness of the metaheuristics in solving 

several design problems and points towards their ability to solve highly complex NP-hard 

problems searching (Akay and Karaboga, 2012; Črepinšek et al., 2013; Kashif et al., 

2018; Silberholz and Golden, 2010; X. S. Yang et al., 2017). However, there is still lack 

of studies focusing on large-scale multidimensional problems. 

Furthermore, tuning of control parameters can also a relevant issues as far as the 

existing metaheuristic is concerned.  To be specific, the tuning process can be 

painstakingly difficult even for a small dimension problem, let alone for dealing with 

large-scale multidimensional problems. Specifically, poor tuning of the control 

parameters leads to inefficient exploration and exploitation, hence, affecting the 

performance of the metaheuristic algorithm at hand. Therefore, a parameter-free 

metaheuristic is well desired in terms of reducing the complexity of parameter tuning, 

and can be used in different domains without any additional adaptive methods. 

To overcome the above mentioned drawbacks in the existing metaheuristics, a 

novel parameter-free multi-swarm metaheuristic is proposed in this thesis. The proposed 

algorithm with its unique structure has the ability to handle the large-scale problems.  
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1.3 Research Objectives 

The main aim of this thesis is to offer a new swarm-based solution for the 

optimization field in general, and metaheuristics in particular. The solution can be 

implemented for solving (large scale) different types of optimization problems. To 

achieve this aim, the objectives of this study are: 

i) To propose a novel parameter-free multi-swarm metaheuristic inspired by the 

movement of nomads when searching for the sources of food in the desert. The 

proposed algorithm, known as Nomadic People Optimizer (NPO) algorithm. 

ii) To implement NPO algorithm for solving the unconstrained global optimization 

problems.  

iii) To evaluate and test the performance of the NPO algorithm in terms of best solutions, 

balancing between exploration and exploitation, convergence analysis, scalability 

and time complexity on a combination of normal and large-scale unimodal and 

multimodal test functions. 

 

 

1.4 Research Scope 

This study mainly focuses on the development of an efficient swarm-based 

metaheuristic for solving global optimization problems. The proposed metaheuristic is a 

new nature-inspired algorithm that mimics the migration of nomads when searching for 

foods and water sources in the desert. In addition, it uses a novel multi-swarm approach 

for balancing its exploration and exploitation abilities. The proposed metaheuristic is 

validated based on 60 selected continuous test functions. Additionally, it is evaluated 

based on its ability to solve large-scale problems, as well as the convergence analysis. 

The comparison stage is done by benchmarking against five well-known swarm 

intelligence metaheuristics comprising of Particle Swarm Optimization (PSO), Artificial 

Bees Colony (ABC), Flower Pollination Algorithm (FPA), Grey Wolf Optimizer (GWO), 

and Firefly Algorithm (FA) respectively. Each metaheuristic was selected based three 

main characteristics, the source of inspiration, the type of the algorithm, and the structure 

of the algorithm. 



6 

1.5 Research Limitations  

The study does not cover other forms of optimization issues such as combinatorial 

problems. Furthermore, the evolution-based algorithms such Genetic Algorithms (GA) 

and Genetic Programming (GP), as well as the other single solution-based algorithms like 

Simulated Annealing (SA) and Tabu Search (TS) algorithms are not considered as well, 

because they are not swarm based metaheuristics. Additionally, the hyper-heuristic is not 

covered in this study due to two main reasons, first, it is a different approach consists of 

several heuristics for solving specific optimization problem. While the second reason is 

that the heuristics used in the hyper-heuristic model face the same challenges in the 

metaheuristics.  

 

1.6 Thesis Organization  

This thesis is presented in five chapters to facilitate easy reading and 

understanding. 

The current chapter provides an overview of the problem statement, the 

objectives, scope, and limitations of the study. 

Chapter two presents a theoretical background to the field of optimization. This 

chapter is divided into three main sections; the first sections provides a review of the 

optimization processes, its problems, components, and general structure. The second and 

third sections reviewed metaheuristics and nature-inspired algorithms. The state-of-the-

art in swarm intelligence metaheuristics was also reviewed in this chapter. 

Chapter three describes the overall methodology followed to achieve the research 

objectives. It is introduced in a general operational framework that contains all phases 

and steps needed to be conducted in this work. 

Chapter four explains the formulation of the proposed metaheuristic called 

“Nomadic People Optimizer (NPO)”. This chapter also presents a deep analysis of the 

NPO in terms of its exploration and exploitation. Additionally, the Meeting Room 

Approach (MRA) and the five operators of the NPO were also explained in this chapter. 
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Chapter five describes the performance of the NPO based on a combination of 

benchmarking test functions. This benchmarking test set contains 60 test functions which 

are classified into Unimodal-None Separable (U-N), Unimodal-Separable (U-S), 

Multimodal-None separable (M-N), and Multimodal-Separable (M-S). The chapter also 

illustrated the experimental settings. The final section of this chapter discusses the results 

of the NPO execution on the benchmarking test sets. 

The final chapter provides a summary of the research, as well as the conclusions 

drawn from the study. Suggestions for future works are also presented in this chapter.
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CHAPTER 2 

 

 

LITERATURE REVIEW  

2.1 Introduction 

There are several optimization problems in different fields. These problems can 

be discrete, linear, continuous, nonlinear, non-convex, or non-smooth in nature. Several 

conventional methods, such as gradient-based methods can be used to handle the 

continuously differentiable problems, but complex problems (like non-differentiable and 

non-convex problems) may not be solved efficiently with some conventional methods. 

Irrespective of the several existing methods for handling complex optimization problems, 

it is still difficult to achieve optimal results without investing much computational cost 

and effort.  

Researchers have continuously relied on natural phenomena for learning and 

designing novel metaheuristics. In the literature, many nature-inspired algorithms which 

are based on the natural selection and evolution of biological systems have been proposed. 

Despite proposing several algorithms for dealing with several optimization applications, 

there is still no single algorithm which can solve all optimization problems. This is the 

basis for the continued effort in the development of more efficient algorithms. 

In this chapter, a review of the relevant literature was carried out to explore the 

existing gaps to be filled in this work. The review started with the investigation of the 

optimization concept and tracing of the development of optimization algorithms. 

Furthermore, the various kinds of existing optimization algorithms in the literature were 

reviewed, followed by the examination of some common stochastic algorithms in terms of 

their strengths, weaknesses, and application. An exhaustive classification/taxonomy of the 

optimization algorithms concluded this chapter. An illustration of the review process carried 

out in this chapter is depicted in Figure 2.1. 



9 

Chapter Two

MetaheuristicsOptimization Problems

Exploration and 
Exploitation No Free Lunch Theorem

Classification & 
Challenges 

Nature-Inspired Algorithms 

Swarm Intelligence State of Arts

Gap Analysis

E
xp

lo
it

a
ti

o
n

 

L
a

rg
e

-S
ca

le
 P

ro
b

le
m

s

C
o

n
tr

o
ll
in

g
 P

a
ra

m
e
te

rs

E
xp

lo
ra

ti
o

n
 -

 

 

Figure 2.1 Main concepts covered in Chapter Two
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2.2 Optimization Problems  

These are problems which while seeking to either minimize or maximize the 

mathematical function of several variables with respect to certain constraints, form a 

unique class of problems. Several problems (theoretical and real-world) can be modeled 

in this general framework. Generally, the structure of mathematical models (or 

mathematical programming model) can be represented thus(Koziel and Yang, 2011; 

Mirjalili, 2016; Weise et al., 2009): 

𝑀𝑎𝑥 𝑜𝑟 𝑀𝑖𝑛 𝑓𝑖(𝑥),                 (𝑖 = 1, 2, 3, … ,𝑀) 2.1 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ℎ𝑗(𝑥) = 0, (𝑗 = 1, 2, 3, … , 𝐽), 2.2 

                        𝑔𝑘(𝑥)  ≤ 0, (𝑘 = 1, 2, 3, … , 𝐾) 2.3 

 

where 𝑥 represents the decision variables, and 𝑓𝑖(𝑥), ℎ𝑗(𝑥),  and 𝑔𝑘(𝑥) are functions of 

the design vector: 

𝒙 =    ( 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛)
𝑇 2.4 

 

 Therefore, each optimization problem is composed of the following(Engelbrecht, 2007; Talbi, 

2009):  

 An objective function (OF): The OF is a representation of the quantity that needs to 

be optimized (i.e., the exact quantity that needs minimization or maximization). 

Sometimes, the objective function of most problems, especially constraint-satisfaction 

problems (CSP), are not defined, rather, the major objective finding a solution that will 

satisfy a set of given constraints.  

 A set of unknown variables: These variables have an influence on the value of the 

OF. Let 𝑥 represent the unknowns (also called the independent variables), then, 𝑓(𝑥) 

depicts the quality of the solution 𝑥.  

 A set of constraints: These constraints restrict the values to be assigned to the 

unknowns. In most problems, the boundary constraints which limits the range of values 

for each variable are defined. The constraints can be more complex and exclude certain 

sets of solutions from being regarded as solutions. Figure 2.2 shows the architecture 

of an optimization problem.  

 



11 

Objective Function Constraints 

Input

Output

Variables Boundaries 

Best Variables Feasibility 

E
n

vi
ro

n
m

en
ta

l 
C

o
n

d
it

io
n

s

 

Figure 2.2 The architecture of an optimization problem 

  

The number of variables which influences the objective function is one of the 

main components in any optimization problem. Optimizations problems which have only 

one variable to be optimized are called univariate problems, but when there are more than 

one optimizable variables, they are called multivariate problems. The multivariate 

problems are of two types; the first type has a fixed number of variables, while the second 

type has a non-fixed number of variables. Most studies in the literature have focused on 

optimization problems with about 50 or less number of variables, and when compared to 

real-world problems, the observed dimensionality is significantly low. Meanwhile, the 

existence and scalability of any algorithm that can be directly used in large-scale problems 

are yet to be verified. It is recommended to test optimization problems with about 50 to 

thousands of variables.  

Problem solutions established by using optimization algorithms are classified 

based on their quality. These solutions can be classified as either local or global optima. 

The best set of solutions achieved are called the global optima (or minimum), as shown 

in Figure 2.3 for a minimization problem. Some problems sometimes may present more 

than one global optima.  
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2.3 Metaheuristics  

Optimization is a universal concept which has found application in several fields. 

Optimization techniques are used to intelligently solve problems by opting for the 

optimum from a pool of available sources. Metaheuristics have been commonly used in 

the field of optimization compared to other methods due to the simplicity and robustness 

of their outcome when used in several fields. Several studies have been conducted in the 

area of metaheuristics, including the introduction of novel methods, performance 

evaluations and applications (Abdel-Basset et al., 2018; Hussain et al., 2018; Mortazavi 

et al., 2018). Meanwhile, it is still believed that the field of metaheuristics is yet to mature 

compared to mathematics, physics, or chemistry (Sörensen et al., 2018). With time, 

several studies are anticipated on the issues facing metaheuristic computing. 

Metaheuristics provide solutions to optimization problems by searching for the 

best approach to a given problem (Gendreau and Potvin, 2018). This solution search can 

be executed using several agents which actually form a pool of emerging solutions during 

multiple iterations based on a set of mathematical principles or equations. The iterations 

are constantly executed until a solution that meets most of the set criteria is found. This 

optimum solution is considered as the best achieved solution, and such a system is said 
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to have converged (Yang and Deb, 2014). On the contrary, heuristic methods attain near-

optimal solutions with less computation time, but they mostly depend on the problem.  

The term “meta” in metaheuristics signifies the superiority of metaheuristics to 

the heuristics. The metaheuristics have recorded great application success and are likely 

to offer solutions at affordable computational costs. Classical metaheuristics can be 

hybridized with good heuristics to achieve better results for most real-world issues. To 

establish a theoretical basis for metaheuristics, it is necessary to analyse the basic 

metaheuristic computing terms with adaptive intelligent behaviours. The following 

definitions have been provided by Wang (2010) to serve this purpose:  

Definition 1. Heuristics are problem-solving approaches that employs trial and error 

method to find the solution to problems. 

Definition 2. Metaheuristics are higher-level heuristics which deploys a more general 

approach when solving optimization problems. 

Definition 3. Metaheuristic computing refers to an aspect of adaptive computing that 

involves the application of general heuristic principles in addressing a range of 

computational tasks.  

Based on these definitions, metaheuristics can be defined as depicted in the 

following mathematical formulation (Wang 2010): 

Definition 4 A metaheuristic (MH) can be represented as: 

𝑀𝐻 = (𝑂, 𝐴, 𝑅𝐶 , 𝑅𝑖, 𝑅𝑜) 2.5 

 

where 𝑂  represents a set of metaheuristic approaches, A represents a set of generic 

algorithms; 𝑅𝐶 = 𝑂 × 𝐴 represents a collection of internal relations; 𝑅𝑖  ⊆  𝐴′  × 𝐴,  𝐴′ 

denotes a collection of input relations; 𝐶′ represents a collection of external concepts; and 

c is the environment concept. 𝑅𝑖 = 𝐴′  ×  𝐴 may conveniently be represented as 𝑅𝑖 =

𝐶′  × 𝑐. 𝑅𝑂  ⊆ 𝑐 × 𝐶′ represents a collection of output relations.  

Apart from the mentioned concepts, several key factors also need to be 

considered, such as diversification or exploration, local versus global minima, 

intensification or exploitation, neighbourhood search, avoiding local minima, 
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evolutionary computing, local versus global search, as well as swarm intelligence. 

Additionally, there are other basic metaheuristics strategies such as exploration-

exploitation balancing, searching for a potential or promising neighbour, avoiding 

efficient or inappropriate neighbours, and keeping from searching unpromising 

neighbours.  

 

2.3.1 Exploration and Exploitation  

Metaheuristics are considered as an efficient approach to achieving acceptable 

solutions to a complex problem through trial and error in a reasonable computational time. 

The limit of the solution search depends on the complexity of the problem to be addressed, 

but the aim is to find the best solution within an acceptable time frame. It is not certain 

that a given approach can yield the best solutions; it also not known whether a chosen 

algorithm will work even though the basic components that might make it work may be 

known. The aim is to have an efficient and reliable algorithm which can give quality 

solutions at any time. it is expected that among the obtained quality solutions, some may 

be near optimal even though there is often no assurance for such optimality (Abdel-Basset 

et al., 2018; X. S. Yang, 2013; X. S. Yang et al., 2016).  

However, most typical metaheuristics can have global convergence, and as such, 

can find the global optimum within a few numbers of iterations. Therefore, metaheuristics 

are perfectly suited for solving global optimization problems. The Cuckoo search, for 

instance, uses both search (with good convergence) and randomization techniques (with 

highly efficient Levy flights) (Yang and Deb, 2009a). For metaheuristics to be efficient, 

they must have specialized attributes, and one of such attributes is an ability to find new 

solutions which can improve either the existing or previous solutions. It must also 

establish global optimum in the related search areas. Furthermore, it must be able to 

escape local optima and shouldn’t be trapped in a local mode. Achieving such efficiency 

requires a proper combination of the necessary parameters under appropriate conditions; 

often, it requires a proper exploration-exploitation balancing. Meanwhile, this 

exploration-exploitation balancing is an optimization issue that is yet to be resolved 

(Yang, 2010b; Yang et al., 2017).  
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In the modern metaheuristics, an important component is exploration or 

diversification. It is often used by randomization and makes an algorithm able to escape 

local optimum in order to explore globally (Blum and Roli, 2003; Yang, 2010). 

Randomization can as well be deployed for a local search around the ‘current best’ if 

steps are locally restricted to the region. Randomization can search the solution space on 

a global scale only when the steps are large. The performance of any metaheuristic can 

be controlled by fine-tuning the right amount of its randomness and balancing its global 

and local searches. Randomization techniques are simple methods when using Gaussian 

or uniform distributions, but can be more complex when used in Monte Carlo simulations. 

When used from Brownian random walks to Levy flights, they are more elaborate (Yang 

and Deb, 2009a). Levy flights have been theoretically suggested to be the best search 

approach for revising targets, while intermittent search approach is best for non-revisiting 

targets (Bénichou et al., 2006, 2011). 

Exploitation or intensification refers to the use of the established local search 

knowledge and solutions so that new search efforts will be channelled on the 

neighbourhood or local regions where the optimal solution can be located. However, this 

local optimum may certainly not be the global optimum. Exploitation strives to utilize 

strong local search information such as the mode shape (like convexity), the gradients, 

and the search history. A classic technique is the acclaimed Hill-climbing technique 

which intensively uses local gradients or derivatives. 

 

2.3.2 Classification and Challenges of Metaheuristics 

2.3.2.1 Classification of Metaheuristics 

There are different ways to classify metaheuristics (as shown in Figure 2.4) based 

on the characteristics used to differentiate them (J. Shi and Zhang, 2018; Siddique and 

Adeli, 2015; Slowik and Kwasnicka, 2018; Talbi, 2009; Yang, 2014). They include:  

 Based on searching behaviour: Metaheuristic can be classified into local or global 

metaheuristics based on their searching behaviour. Local search metaheuristics do not 

necessarily find the global optimum as the usually converge toward a local optimum. 

Such algorithms are usually deterministic and cannot escape local optima. A common 
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example of local search algorithms is the Simple Hill Climbing algorithm. Contrarily, 

efforts are always toward finding a robust global best for any problem, although such 

global best is not always possible to be established. The local search algorithms are 

not suitable for global optimization; thus, global search algorithms are employed for 

global optimization. Most times, modern metaheuristics are intended for global 

optimization but they are not always efficient.  

 Based on solution: Metaheuristics can be classified based on the number of solutions 

that interacted when trying to find the optimal solution. The single-based solution, also 

called trajectory methods, manipulate a single solution. Population-based methods 

iterate and manipulate a whole family of solutions. Single-based solution 

metaheuristics (e.g. Tabu search and Simulated annealing) are intensification oriented, 

while population-based (e.g. Particle Swarm Optimization, and Firefly Algorithm) 

focus more on search space exploration.  

 Based on inspiration: Metaheuristics are also classified based on their original source 

of inspiration. Most metaheuristics are typically inspired by natural occurrences which 

are exploited by these algorithmic approaches in order to provide an efficient solution 

to optimization problems. Some of the nature-inspired algorithms (NIAs) are Particle 

Swarm Optimization algorithm, Genetic algorithm, Ant Colony optimization 

algorithm, and Simulated Annealing algorithm. The non-nature-inspired algorithms 

(NNIAs) include Tabu Search, Scatter Search, Iterated Local Search, and Grasp 

algorithms. These NNIAs are inspired by the consideration of the efficient solution 

they offer for optimization problems.  

 Based on objective: Metaheuristics can be classified into single objective (SOM) and 

multi-objective metaheuristics (MOM) based on the number of conditions or 

objectives they tend to solve. The SOM mainly aims to find the best solution which 

represents the minimum or maximum value of a single objective function that 

converged all other objectives into one. These metaheuristics are useful tools that 

provide decision makers with information on the nature of the problem, but they 

usually do not offer a set of alternative solutions which trade different objectives 

against each other. Contrarily, MOM with conflicting objectives cannot offer a single 

optimal solution as these conflicting objectives interact to provide a set of 
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compromised solutions. These solutions are largely referred to as trade-off, non-

inferior, non-dominated, or Pareto-optimal solutions. 

 Based on memory: Another attribute of metaheuristics is their ability to use previous 

search experiences (memory) to influence the future search direction. Memory-Less 

algorithms (e.g. simulated annealing) use only the information of the current state of 

search, while most of the other metaheuristics use some or all information gathered 

during the iterative process.   

Metaheuristics

Memory Based

Memory Less

Searching Behavior 

Solutions BasedInspiration Based

Objectives Based

Memory 

Multi-Objective

Single-Objective

Single-solution 

Population-based

Local Search

Global search

Nature-Inspired Non Nature Inspired 
 

Figure 2.4 Classification of metaheuristics 

 

2.3.2.2 Challenges of Metaheuristics  

Metaheuristics are attracting much research interests, as manifested in the yearly 

emergence of new algorithms, and new techniques being explored (Fister et al., 2013; 

Yang, 2010, 2010b, 2011). However, there are several challenges facing the designing of 

metaheuristics, such as:  

 Premature Convergence  

Optimization algorithms which fail to reach new solutions or keep generating 

solutions from a relatively small subset of the solution space are said to have converged. 
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Global optimization algorithms must converge at some points with time, but a major 

problem of the global optimizers is that it is not often possible to determine the position 

of the current best solution (whether in the local or global optimum) and thus if the 

achieved convergence is acceptable. Hence, it is usually not clear whether to stop the 

optimization process, focus on fine-tuning the current optimum or examine other regions 

of the solution space. This is further complicated if there are multiple (local) optimal, i.e. 

if the problem is multimodal (Figure 2.5).  
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Figure 2.5 Premature convergence 

 

Mathematical functions are said to be multimodal if they have multiple minima 

or maxima (Andrei, 2008; Jamil et al., 2013). However, objective functions 𝑓 are said to 

be multimodal if they have multiple (local or global) optima. This depends on the 

definition of the term “optimum” with respect to the existing optimization problem. A 

metaheuristic is said to have prematurely converged to a local optimum if can no longer 

explore the other regions of the solution space, and there is no other region may yield a 

better solution to the current one (Ursem, 2003; Weise et al., 2009) . Figure 2.5 illustrates 

a premature convergence of metaheuristics.  
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 Balancing Exploration and Exploitation  

As earlier mentioned, exploitation and exploration are two key components for 

any metaheuristic algorithm. Metaheuristics converge so quickly in the presence of too 

much intensification. This can lead to a local optimum or a wrong solution to a given 

problem. Furthermore, it can reduce the chances of establishing the true global best. 

Contrarily, too much diversification can increase the chance of finding the true global 

best, although it may slow the process with a significantly lower convergence rate. 

Therefore, a balance must be ensured between these two components (exploitation and 

exploration). Furthermore, it is not just enough to focus on only exploitation and 

exploration, there is also a need to select the best solutions using use a proper criterion. 

A common criterion used is the survival of the fittest. This implies a continuous updating 

of the current found best. Additionally, certain elitism is usually used to ensure the 

retention of the best solutions and its passage to the subsequent generations (Blum and 

Roli, 2003; Črepinšek et al., 2013; Holland, 1975; Yang, Deb, and He, 2013; Yang et al., 

2017). 

Effective algorithms usually have a mechanism of properly balancing exploitation 

and exploration. It should be noted that the Naıve 50:50 balance is not optimal (Yang, 

2011), and more studies are needed in this area of metaheuristics. 

 Randomization Techniques 

To further analyze metaheuristics in detail, emphasis can be laid on the type of 

randomness employed by an algorithm. For instance, in a deterministic algorithm, the 

simplest and efficient method is the introduction of a random starting point. A good 

example is the well-known Hill-Climbing with a random restart. It is a simple and 

efficient strategy, and in most cases, easy to implement. Randomness can be efficiently 

introduced into an algorithm by incorporation into different algorithmic components. 

Various probability distribution such as uniform, Levy, or Gaussian distributions can be 

deployed for randomization (Agarwal and Mehta, 2014; Talbi, 2009; Yang, 2011). 

Randomization, in essence, is an important component of global search algorithms. 

Obviously, it still remains an open question that what is the best way to provide sufficient 

randomness without slowing down the convergence of an algorithm(Yang et al., 2017).  
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 Tuning of Algorithm-Dependent Parameters 

The parameters of most metaheuristics are algorithm-dependent, and the 

performance of these algorithms depends on the appropriate setting of the values of these 

algorithm-dependent parameters. A challenging factor in setting these values has always 

been the selection of the right parameter values to be used in these algorithms, and how 

to tune these parameters to ensure a maximum algorithmic performance. In optimization 

studies, parameter tuning in itself is a tough task, but based on the existing literature, there 

are two major ways of parameters tuning. One approach is to run an algorithm with some 

trial values of the key parameters, and the aim of the test runs is to get good settings of 

these parameters. These parameters are then fixed for more extensive test runs involving 

a similar type of problem or larger problems. 

The second approach is the use of an established and tested algorithm to tune the 

parameters of other new algorithms. Then, an important issue arises; if algorithm A (or 

tool A) was used to tune algorithm B, what tool or algorithm should be used to tune 

algorithm A? Let’s say algorithm C should be used to tune algorithm A, then, what tool 

should be used to tune algorithm C? In fact, these key issues are still currently being 

researched (Eiben and Smit, 2011; Yang et al., 2017; Yang, Deb, Loomes, et al., 2013), 

but it should be more appropriate to design parameter-free metaheuristics.  

 Necessity for Large-Scale and Real-World Applications  

Metaheuristic computations are very successful in solving many practical 

problems. However, the size of these problems in terms of number of design variables is 

relatively small or moderate. In the current literature, studies have focused on design 

problems with about a dozen of variables or at most about a hundred. It is rare to see 

studies with several hundreds of variables. In contrast, it is routine in linear programming 

to solve design problems with half a million to several millions of design variables. 

Therefore, it remains a huge challenge for SI-based algorithms to be applied to real-world 

large-scale problems. Accompanying this challenge is the methodology issue. Nobody is 

sure if the same methods that work well for small problems can be directly applied to 

large-scale problems. Apart from the differences in size, there may be other issues such 

as memory capacity, computational efficiency, and computing resources needing special 

care. If it is not possible to extend the existing methods to deal with large-scale problems 
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effectively, often not, then what are the options? After all, real-world problems are 

typically nonlinear and are often large-scaled (Agarwal and Mehta, 2014; Caraffini et al., 

2017; Yang et al., 2017). Further and detailed studies are highly needed in this area. 

 

2.3.3 No Free Lunch Theorem 

It is most likely that no optimization algorithm can be efficient and effective on 

all problems. There are specialized algorithms for specific problems; likewise, there are 

generalized methods which are outperformed by the specialized algorithms, but can 

achieve acceptable results in several kinds of problems. Wolpert and Macready have 

proposed the ‘No Free Lunch Theorem (NFL)’  (Wolpert and Macready, 1997) for search 

and optimization algorithms. For a given problem 𝜙, the conditional probability for an 

algorithm 𝑎𝑙𝑔  to find global optima 𝑔𝑏𝑒𝑠𝑡  with iteration time 𝑖𝑡𝑟  is set as 

𝑃(𝑔𝑏𝑒𝑠𝑡 |𝜙, 𝑖𝑡𝑟, 𝑎𝑙𝑔). The NFL proves that the sum of all conditional probabilities over 

all possible problems on finite domain is always identical for all optimization algorithms. 

The average performance over all given problems is independent of the applied algorithm. 

That is, for two optimizers 𝑎𝑙𝑔1 and 𝑎𝑙𝑔2:  

∑𝑃(𝑔𝑏𝑒𝑠𝑡 | 𝜙, 𝑖𝑡𝑟, 𝑎𝑙𝑔1
∀𝜙

) =  ∑𝑃(𝑔𝑏𝑒𝑠𝑡 | 𝜙, 𝑖𝑡𝑟, 𝑎𝑙𝑔2
∀𝜙

)  2.6 

For 𝑎𝑙𝑔1 to outperform 𝑎𝑙𝑔2 in one optimization problem, 𝑎𝑙𝑔1 must be inferior 

in another problem. Figure 2.6 shows a crude sketch of NFL theorem. It is impossible for 

any method to always outperform non-repeating random walks (Weise, 2009). 

Algorithms can only achieve good results in certain types of problems. 



22 

 

Figure 2.6 The 'No Free Lunch Theorem' (Engelbrecht, 2007) 

 

2.4 Nature-Inspired Algorithms 

The nature-inspired algorithms (NIAs) comprise of a branch of metaheuristics 

where most of its algorithms are nature-inspired. The maximum sources of inspiration 

have always been from chemistry, biology, or physics, but nature has been the main 

source of inspiration. Hence, most of the new algorithms are often called nature-inspired 

algorithms. Most of these nature-inspired frameworks are based on some observed 

behavior of biological systems. Consequently, a large portion of the nature-inspired 

algorithms are biologically or bio-inspired (Fister et al., 2013; Koziel and Yang, 2011). 

A special class of swarm-intelligence-based algorithms has been developed 

among the bio-inspired algorithms; thus, some bio-inspired algorithms can now be 

referred to as swarm intelligence-based algorithms. Some of the swarm-intelligence-

based algorithms are Cuckoo search, Bat algorithm, and Artificial Bee Colony (Yang and 

Deb, 2009b; Yang, 2010; Karaboga, 2005; Karaboga and Basturk, 2007). Some 

algorithms have been based on inspiration from physical and chemical systems, such as 

Simulated Annealing, Central Force Optimizer, and Gravitational Search algorithm 

(Kirkpatrick et al., 1983; Formato, 2014; Yadav et al., 2016). Some algorithms are even 

music-inspired, like Harmony search (Zong et al., 2001). The currently existing 

intelligent algorithms have been categorized into four: bio-inspired (but not SI-based), 

swarm intelligence (SI)-based, physics/chemistry-based, social evolution based,  and 

others (Koziel and Yang, 2011). 
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2.4.1 Swarm Intelligence  

Swarm Intelligence (SI) is an intelligent, innovative, distributed system for 

handling optimization problems. They are developed based on inspirations from 

biological systems such as flocking, herding or swarming behaviours. The conventional 

computing paradigms have shown difficulty in optimizing real-world problems. The real-

world problems are often characterized by incomplete noisy data or multimodality as a 

result of their inflexible architecture. Natural systems have been explored over time to 

handle optimization problems. These natural systems usually contain numerous simple 

elements which works collectively to produce complex emergent behaviours. The natural 

computing frameworks can be utilized in situations where the traditional computing 

frameworks have failed. Swarm intelligence (SI) belongs to one of such natural 

computing paradigms. 

Over the years, biologists have shown a great interest in studying the collective 

behaviour of social animals such as fishes, insects, birds, and mammals. The French 

biologist Pierre-Paul Grasse provided the first ever theoretical explanation of the 

collective behavior of social animals. In 1984, Grasse reported the collective behavior of 

African termites. The first flocking model was developed in 1987 by Craig Reynolds as 

a bio-inspired computational model for the simulation of the animation of a flock of 

entities called Boid (Reynolds, 1987). Collective patterns and decision making was 

presented by Deneubourg and Goss (1989). In 1991, the food foraging of ants and the 

shortest route to their food sources were studied by Deneubourg et al. (1991). Swarm 

intelligence was first introduced by Beni and Wang (1991) in the field of cellular robotic 

systems. In 1992, Marco Dorigo introduced the Ant Colony Optimization (ACO) 

algorithm as a heuristic that was inspired by the behaviour of ant when searching for food 

(Dorigo, 1992). Later, the PSO was developed based on the social flocking behaviour of 

birds by Eberhart and Kennedy (1995).  

Swarm Intelligence (SI) is a growing research field in the natural computing 

paradigm. It deals with systems (natural and artificial) made up of many simple 

individuals. Each of the components is coordinated using self-organization and 

decentralized control. SI is the outcome of collective behaviours of simple individuals 

that interact with each other and with their environment. They can solve complex, 

discontinuous, multimodal, non-differentiable, and distributed optimization problems. It 
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serves as an alternative approach towards designing systems that are either impossible or 

near impossible by conventional optimization algorithms. A typical SI algorithm has the 

following properties: 

 They are made up of several simple relatively homogeneous individuals.  

 These individuals interact based on simple behavioural principles.  

 These individuals directly exchange information among themselves or via the 

environment.  

 The overall system behaviour results from the individual interaction of these 

individuals with each other and with their immediate environment.  

 Individuals have the division of labour and distributed task allocation system among 

them.  

 The individuals act in a coordinated manner in the absence of a coordinator or an 

external controller.  

 Each individual has a stochastic behaviour that depends on its local perception of the 

neighbourhood.  

Because of these properties, SI has maintained a prominent presence in 

computational research. The generalized pseudocode of swarm intelligence-based 

metaheuristics is depicted in Figure 2.7.  

 

Swarm Intelligence Based Algorithm  

1. Define Objective Function 𝑓(𝑥) 

2. Initialize the structural and controlling parameters   

3. Initialize the positions for all individuals randomly  

4. Evaluate the fitness values for all individuals  

5. Repeat  

6.           Update Controlling parameters  

7.           Update the positions of the individuals  

8.           Rank the individuals  

9.           Get the global best solution “𝑔𝑏𝑒𝑠𝑡” 

10. While 𝑆𝑡𝑜𝑝𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is not satisfied  

Figure 2.7 The generalized pseudocode of SI-based algorithms 
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2.4.2 State of the Art in NIAs and SI 

Evidently, several attempts have been made towards the designing of 

metaheuristics. In the last two decades precisely, several swarm intelligence algorithms 

were designed, and most of these intelligence algorithms focused on optimization.  

The bio-inspired algorithms are algorithms which were designed based on the 

intelligent behaviour of groups of animals, or insects. Many algorithms currently 

available in the literature are in this category. Some of the bio-inspired algorithms are the 

Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) algorithms. 

Efforts are still currently being made towards the development of more animal-inspired 

algorithms. In this section, a review of the most common animal-inspired metaheuristics 

(ACO, PSO, Artificial Bee Colony (ABC), Firefly Algorithm (FA), Bacterial Foraging 

Optimization (BFO), Cuckoo Search Algorithm (CSA), Bat Algorithm (BA), Fish Swarm 

Optimization (FSO), African Buffalo Algorithm (ABO), and Grey Wolf Optimizer 

(GWO) will be carried out.  

In recent times, ACO is a common technique for solving combinatorial 

optimization problems. ACO was introduced by M. Dorigo in the early 1990s (Colorni et 

al., 1991; Dorigo et al., 1996; Socha and Dorigo, 2008) as a search technique inspired by 

the swarm intelligence of ant colonies using pheromone as a chemical messenger. When 

searching for food, ants initially explore the area surrounding their nest in a random 

manner. While exploring, the moving ants leave a pheromone trail on the ground. This 

pheromone evaporates with time later serve as a guide for the ants probably based on the 

pheromone concentrations on the explored paths. Such an indirect communication 

strategy enables the ants to explore the shortest route to the food source or to their nest. 

PSO was developed by Eberhart and Kennedy as a is a swarm intelligence 

technique which was based on the social behaviour of birds (flocking) and fishes 

(schooling) (Eberhart and Kennedy, 1995; Kennedy and Eberhart, 1995). For every 

swarm, movements are made with variable velocities to locations with better experiences 

or food compared to the previous explored locations. In the PSO, there is no explicit 

selection function and this is compensated using leaders as a guide during search. The 

location of every particle is considered as a possible solution in the search space, and a 

solution update is often accomplished by updating the position of a particle. PSO uses 
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real-number randomness and global communication among the swarm particles rather 

than using crossover or mutation. PSO has been proven as an effective optimization 

algorithm, especially in a large search space. Generally, the updating of a particle requires 

the updating of two properties, which are the velocity and the location of the particle. 

The Artificial Bee Colony (ABC) which was developed by Karaboga (2005) and 

Dervis Karaboga & Basturk (2007), was inspired by the natural behaviour of bees in their 

colonies. In the bee colony, there are three bee groups and bees belonging to each group 

play a different role. The employed (forager) bees are responsible for the current food 

source, they have all the information (such as the direction and distance from the nest, the 

profitability) regarding the particular food source and share the information based on the 

profitability of the food source. The onlooker (observer) bees utilize the information 

shared by the employed foragers to establish a food source in the nest. The scout bees are 

responsible for discovering new sources of food to be exploited. Information regarding 

the quality of food sources is shared among the bees in the dancing area; food sources 

with more profitability receive more information, and based on this information, the 

onlookers can decide on the next source of food to be explored. Randomization is carried 

out by the scout and employed bees mainly by mutation. 

The BFO approach is of the view that animals forage for nutrients in a way that 

the time spent on foraging is equivalent to the energy gained from the task per unit time. 

Foraging strategies comprise of the approaches towards food sourcing, handling, and 

ingestion. Foraging animals act based on the limitations presented either by its own 

physiology (such as sensing and cognitive capabilities) or the environment (such as the 

number of prey, the risk from predators, and the physical characteristics of the search 

space). This idea led to the development of this approach as an optimization method 

(Passino, 2002).  

FSO is an optimization approach based on the swarm behaviour of fishes when 

searching for food. The following fish behaviours can be considered when searching for 

food: random behaviour – this is when fishes search randomly for either food or a 

companion; searching behaviour – this is when fishes discover regions with more foods; 

swarming behaviour – this is when fishes naturally swarm to avert danger; chasing 

behaviour – this is when fishes dangle to the location of a new source of food; leaping 
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behaviour – this is when fishes are stagnated in a region and there is a need to search for 

food in other regions (Li et al., 2002). 

The FA is an optimization algorithm that is based on the behavior and light 

flashing patterns of tropical fireflies. It is an easy, simple, and flexible algorithm to use. 

Ideally, it operates based on the rules that i) there is no sex variation among the fireflies 

(unisex), firefly are attracted to each other irrespective of their sex; ii) the brightness of 

the emitted light determines the attractiveness of a firefly (both parameters decrease as 

the distance between the fireflies increase, and in the absence of any brighter firefly, the 

swarm will be moving randomly); iii) the brightness of the light emitted by a firefly is a 

function of the objective function (Yang, 2010; Yang, 2009). 

BA was proposed by Yang in 2010 as a swarm-based metaheuristic algorithm 

which was inspired by echolocation, a type of sonar that guides the flying and hunting 

behavior of bats. Bats can move effortlessly in complete darkness, and can distinguish 

different types of insects in complete darkness (Yang, 2010a). The rules of BA are: All 

bats sense their location and distance via echolocation and the echolocation of a bat is 

considered as a possible solution to an optimization problem. Bats randomly fly at 

velocities with different frequencies based on their position (from a minimum 𝑓𝑚𝑖𝑛 to a 

maximum frequency𝑓𝑚𝑎𝑥) or based on their wavelength λ and loudness A to search for 

prey. They bats can automatically adjust their rate of pulse emission r or the wavelength 

(or frequency) of their emitted pulses based on their proximity to their target. Loudness 

can vary from a large positive value 𝐴0 to a minimum constant value𝑓𝑚𝑖𝑛. 

CS is a recently proposed metaheuristic algorithm (Yang & Deb, 2009) which was 

inspired by the reproduction behavior of cuckoos. Cuckoos basically lay their eggs in the 

nests of other birds (may or may not be the same species). These eggs are either destroyed 

by the host bird or abandoned (together with the nest) when it realized it is not its own 

eggs. This behavior resulted in cuckoos laying eggs that resemble those of the host birds 

(Fister et al., 2014). In an effort to apply this behavior as an optimization tool, three rules 

were considered by the authors: i) each cuckoo can lay only one egg which is dumped in 

a random nest; this egg represents a set of solution; ii) a portion of the nests that contains 

the best eggs (best solutions) will be represented in the next generation; iii) there is a fixed 

number of nests, and there is a chance of the host bird discovering an alien egg and if this 
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happens, the egg can either be discarded or the whole nest will be abandoned, resulting 

in the building of a new nest in a new location. 

ABO algorithm is a simulation of the movement and herd management structure 

of the African buffalos as they move around the African deserts, savannah, and forests in 

search of lush grazing lands(Azrag et al., 2017; Odili et al., 2015). The African buffalos 

manage their large herds of, sometimes, up to 1200 using two major sounds: /waaa/ asking 

the buffalos to further explore the landscape and /maaa/ sounds that require the buffalos 

to further exploit their immediate environments for possible solutions.  

The Grey Wolf Optimizer (GWO) is a swarm-intelligence algorithm inspired from 

the hierarchical leadership and natural hunting behavior of Grey wolves (Mirjalili et al., 

2014). The Grey wolves are regarded as apex predators with an average size of 5–12 

wolves per group. In the GWO hierarchy, the most dominant member of a group is 

designated 𝑎𝑙𝑝ℎ𝑎 while the subordinates are designated 𝑏𝑒𝑡𝑎 and 𝑑𝑒𝑙𝑡𝑎. This helps to 

control the rest of the wolves designated 𝑜𝑚𝑒𝑔𝑎 in the hierarchy. The mathematical 

representation of the grey wolves hunting mechanism consists of tracking, chasing, and 

approaching a prey; pursuing, encircling, and harassing the prey to a standstill; and then, 

attacking the prey. 

These are the recent and upcoming class of optimization algorithms which are 

based on the concept of simulating and mimicking social human learning behaviours (or 

social evolution). The concept of social algorithms was first introduced by Reynolds & 

Sverdlik, (1994) based on the principle that the evolution of individuals through cultural 

evolution is faster than biological or genetic evolution alone. Humans can quickly 

improve their intelligence by adapting to mannerisms and behaviours via observing or 

imitating others. The human ability to cooperate and co-exist as a group adds to their 

collective intelligence. This has been the basis for most studies on the formalization of 

the recent socio-inspired algorithms such as Society and Civilization Optimization 

algorithm (SCO), League Championship algorithm (LCA), Social Emotional 

Optimization algorithm (SEOA), Anarchic Society Optimization algorithm (ASO), 

Imperialist Competitive algorithm (ICA), Teaching–learning-based optimization 

(TLBO), Cultural Evolution algorithm (CEA), Election Campaign Optimization 

algorithm (ECO), Cohort Intelligence (CI), Election Algorithm, Social learning 

optimization (SLO), Social Group Optimization (SGO), ), Soccer League Competition 
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Algorithm (SLC),  Ideology Algorithm (IA), and Socio evolutional & learning 

optimization algorithm (SELO). 

The human ability to mutually interact is fundamental and prevalent in all human 

and insect societies. Humans can adapt and improve faster through social interactions 

than through biological evolution solely based on genetic inheritance. This is the basis 

for the optimization algorithm proposed by Ray & Liew (2003) which utilizes the intra 

and intersociety interactions within a society and the civilization model to solve single 

objective optimization problems. In this algorithm, a society is represented by a collection 

of points in the parametric space, while civilization is represented by a set of all such 

societies at any time.  

The ICA was first proposed by Atashpaz-Gargari & Lucas (2007) for the 

simulation of the socio-political behaviours witnessed across imperialist nations which 

compete to assert dominance over weaker colonies or empires. This imperialist 

competition finally results in improving the strength and power of the imperialists whilst 

gradually collapsing the weaker empires, and finally leading to a state of convergence. 

The LCA which was established by Husseinzadeh Kashan (2014) and Kashan (2009) was 

formulated based on the competition between teams competing in league matches. 

Artificial teams (representing solutions) weekly compete (representing iterations) based 

on a league schedule. A stronger team (probably with a higher fitness value) gradually 

wins the competition at the end of the playing season (stopping condition). 

 SEOA is a swarm based socio-inspired metaheuristic which simulates a virtual 

being who based on his emotional conviction, wishes to achieve a higher societal status 

(Xu et al., 2010). His current behaviour is determined by an emotional index while the 

society determines the status of this current behaviour (better or worse), thus, affecting 

the value of this emotion index (parameter). Lv et al. (2010) introduced ECO algorithm 

which was inspired by the mannerisms of political candidates during an election 

campaign. They inspire the voters to vote for candidates with a better prestige (better 

function value). At the end, a stronger candidate receives the maximum number of votes. 

The ASO algorithm is another optimization algorithm which was inspired by the human 

greedy and disorderly behaviour when trying to achieve their goals (Ahmadi-Javid, 

2011). People can behave disorderly just to find better solutions in the solution space. 
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TLBO is an optimization method that is inspired by the teacher’s influence on the 

learning outcome of their students. There are two aspects of the methodology - the 

teacher’s phase and the learner’s phase. The learners gain more knowledge (improve 

solution quality) by tapping from the teacher’s knowledge or through interacting with 

their peers (Rao et al., 2011; Rao, Savsani, & Vakharia, 2012). Kuo and Lin proposed a 

framework for Cultural Evolution Algorithm (CEA) in 2013. They stated that a species 

can learn or evolve either through group consensus, innovative learning, self-

improvement, or individual learning. The authors have stated the mathematical model for 

these learning modes. (Kuo and Lin, 2013).  

SLC is inspired from the competitive behaviour among teams and players in 

soccer league matches and has been effectively used to solve discrete and continuous 

optimization problems (Moosavian and Kasaee Roodsari, 2014). The Election Algorithm 

is another algorithm which mimics an election scenario, comprising of electoral parties, 

the voters and the candidates (Emami and Derakhshan, 2015).  

CI is a socio-inspired metaheuristic which mimics the self-learning behaviour 

shown by candidates in a group (the candidates cooperate and compete with each other 

to achieve individual goals) (Kulkarni et al., 2016). SLO is an optimization approach 

based on the different levels of human evolvement (genetic evolution and cultural 

evolution). Cultural evolution is believed to influence genetic evolution in future 

generations, and this influence helps to accelerate human intelligence. SGO is a recent 

algorithm which was inspired by the human behaviour when trying to collectively solve 

a complex task (Satapathy and Naik, 2016). This mannerism of being influenced by better 

behaviours and person, coupled with necessary modifications, helps to address complex 

problems.  

Another innovative algorithm IA (Huan et al., 2017) is inspired from the idea how 

certain beliefs become the guide for individuals in a society to achieve their goals. IA 

elicits this idea through a political scenario where individuals follow their political 

ideologies and compete with members of their political party as well as with leaders of 

other political parties in their will to excel. Recently, SELO algorithm has been proposed, 

inspired by the social learning behaviour of humans organized as families in a societal 

setup. It is the social tendency of humans to adapt to mannerisms and behaviours of other 

individuals through observation. SELO mimics the socio-evolution and learning of 
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parents and children constituting a family. Individuals organized as family groups 

(parents and children) interact with one another and other distinct families to attain some 

individual goals (Kumar et al., 2017). 

This thesis focuses on only five well-known nature inspired metaheuristics, they 

are PSO, ABC, FPA, GWO, and FA. These metaheuristics are selected based on their 

main characteristics such as randomization techniques, the source of inspiration, the type 

of the algorithm, and the structure of the algorithm as summarized in Table 2.1. 

Meanwhile, Table 2.2 summarizes them in terms of exploration, exploitation, and their 

drawbacks. These algorithms will be used for comparison in chapter four.
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Table 2.1 Metaheuristics and their characteristics 

Alg. Randomization Source of Inspiration  Structure Global Best  Evolution 

PSO 
Uniform 

Distribution 

Based on the social behaviour 

of birds (flocking) and fishes 

 The particles attracted to each other based on 

the velocity equation.  

 Each particle represent a local best solution, 

while there is only one global best solution.  

𝑔* Swarming towards 𝑔* 

ABC 
Uniform 

Distribution 

It is inspired by the behavior 

of honey bees when   seeking 

a quality food source 

 The swarm consists of three types of bees, 

employee, onlooker, and scout.  

 Employee represent the local search, while the 

scout represent the global search.  

𝑔* 

Information exchange 

during the process of 

honey collection  

FA 
Gaussian 

Distribution 

It is based on the behaviour 

and light flashing patterns of 

tropical fireflies 

 The fireflies are attracted towards the brightest 

firefly based on its intensity.  

 It is an intrinsic multiple swarm system 

because the initial swarm can automatically 

subdivide into multiple swarms, due to the fact 

that local attraction is stronger than long 

distance attractions.  

Brightest Attraction 

GWO 
Uniform 

Distribution 

It simulates the leadership 

hierarchy and hunting 

mechanism of gray wolves in 

nature. 

 It follows the pack hierarchy for organizing the 

different roles in the wolves pack.  

 The swarm is divided into four groups (Alpha, 

Beta, Delta, and Omega).  

Alpha (𝛼) 
Leadership grading and 

hunting  

FPA 

Uniform 

Distribution & 

Levy Flight 

Flower pollination process is 

associated with the transfer of 

pollen by using pollinators 

such as insects, birds, bats, 

 It is a population based algorithm, produces the 

optimal reproduction of plants by surviving the 

fittest flowers in the flowering plants.  

 Based on reproduction process via pollination.  

𝑔* 
Constancy and 

Similarity  
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Table 2.2 Exploration, exploitation, and drawbacks of five metaheuristics 

Alg. Exploration Exploitation Drawbacks References 

PSO Velocity update of particles. 

Update the particle positions 

towards the global best 

particle.  

 It can be easily trapped in the local optimum 

in high-dimensional space.  

 Its convergence rate is low during iterations. 

 It has three controlling parameters, 𝑐1, 𝑐2, 𝑤. 

(El-Shorbagy and Hassanien, 

2018; Mirjalili and Hashim, 

2010; Mirjalili et al., 2012; Y. 

Zhang and Wu, 2011) 

ABC Random search of scout. 

Neighbourhood search is 

performed by employed and 

onlooker bees. 

 It converges slowly in the process of 

searching and easily suffers from 

premature. 

 The value of 𝑙𝑖𝑚𝑖𝑡  affect the exploration 

process.  

(Hala M. Alshamlan et al., 

2015; Hala Mohammed 

Alshamlan, 2018; Karaboga et 

al., 2014) 

FA 
Random move of the best 

firefly. 

Firefly movement according 

to attractiveness. 

 It has two controlling parameters, 𝑎 𝑎𝑛𝑑 𝛾 

need to be tuned. 

 Computational time is high due to too many 

attractions. 

(Gandomi et al., 2013; H. 

Wang et al., 2017; Yaseen et 

al., 2017; L. Zhang et al., 2017) 

GWO 

Tracking the prey, also the 

value of 𝐶 influences on the 

exploration which represents 

the weight of the prey in 

defining the distance. 

The Grey wolves conclude the 

hunt by attacking the prey when 

it ceases to move. It allows the 

position of its search agents to be 

updated based on the location of 

the alpha, beta, and delta; and 

attack towards the prey.  

 It faces the problem of premature 

convergence due to the problem of 

stagnation of wolf pack in local optima. 

 Low capability to handle the difficulties of a 

multimodal search landscape, as it seems 

that all 𝑎, 𝛽, and 𝛿 tend to converge to the 

same solution.  

(Gupta and Deep, 2018; Heidari 

and Pahlavani, 2017) 

FPA 

The ability of the pollinators to 

travel long distances make it 

possible for the algorithm 

escape local optimum and 

subsequently explore a wider 

solution space. 

Flower consistency ensures the 

selection of the same flower 

species and thus, ensures a 

speedy convergence. 

 It consists of three controlling parameters, 

𝑝, 𝛾, 𝑎𝑛𝑑 𝜆. 
 It has the problem of slow convergence, low 

precision and easy to fall into a local 

optimum. 

(Benkercha et al., 2017; 

Chakraborty et al., 2015; 

Salgotra and Singh, 2017; X. S. 

Yang, Deb, and He, 2013) 
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2.5 Gap Analysis  

Optimization is a process of minimizing or maximizing the objective function of 

an optimization problem by finding the best values for its variables. Optimization is 

applicable in every aspect of life, ranging from engineering, computer science, finance 

applications to decision making. Optimization is paramount in almost all engineering and 

industrial application, from minimizing energy cost and consumption to maximizing 

output, profit, efficiency, and performance (Aydilek, 2018; Koziel and Yang, 2011; 

Kumar et al., 2017). 

Most optimization engineering and industrial problems, under stringent 

constraint, are highly nonlinear and thus, often NP-hard. It is difficult to find optimal 

solutions to such problems, if not impossible. Optimization problems are problems that 

require the determination of a set of unknown variables {𝑥} in order to satisfy the number 

of constraint functions and to minimize the objective function 𝑓(𝑥) . Optimization 

processes aim to establish the values of these variables to ensure the maximization or 

minimizing of the objective function (Luke, 2013; Saka et al., 2013).  

A complete search algorithm searches the solution space for all the possible 

values to be assigned to the variables, but their major drawback that they require much 

time. on the other hand, incomplete search methods search the solution space in either a 

systematic or non-systematic manner (Barták et al., 2010). Metaheuristic techniques have 

over the years become popular due to several advantages such as their flexibility, local 

optima avoidance, and gradient-free mechanism. These advantages rely on the ability of 

metaheuristics to consider and handle optimization problems by only considering the 

inputs and outputs. This implies that metaheuristics consider an optimization problem as 

a black box. Hence, it is not necessary to calculate search space derivative, and this 

accounts for their suitability for solving a range of optimization problems. 

 Metaheuristics benefit from random operators since they belong to the class of 

stochastic optimization techniques. This enhances their ability to escape local solutions 

when handling real problems that may usually contain relatively large local optima. These 

advantages have made metaheuristics suitable for application in different science and 

industrial fields (Mirjalili et al., 2017; Siddique and Adeli, 2015; Slowik and Kwasnicka, 

2018). 
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It is evident from the literature that several popular and efficient optimization 

algorithms have been developed and will keep being developed. However, concurring to 

the ‘no free lunch optimization theorem’ (Köppen et al., 2001; Wolpert and Macready, 

1997), no single optimization algorithm can suite all optimization problems, meaning that 

there is no universal algorithm/method that can be perfectly used to solve all optimization 

problems. A class of algorithms will perform better than others when applied to defined 

problems with specific objective functions.  

A major problem now is how to identify specialized optimization algorithms 

which will offer better performances in specialized scenarios. Thus, it can be said that the 

development of new optimization algorithms will always be paramount as it will provide 

a ground for the development of newer prospective algorithms which could suite specific 

classes of optimization problems. These new algorithms may also perform better than 

most of the existing algorithms when solving specific optimization problems (Ho and 

Pepyne, 2002; Slowik and Kwasnicka, 2018).  

Several metaheuristic-related issues have been addressed in this chapter. First, all 

metaheuristics have two main components (exploration and exploitation) which exerts an 

effect on the search space. Finding the optimal balancing of these components especially 

involving large scale multidimensional problem is still a difficult endeavour. Second, 

most metaheuristics contain one or more control parameters that enhance their ability to 

search for best solutions. However, the optimal values for these parameters are difficult 

to be determined; hence, there is a need to design new parameters-free metaheuristics 

(Slowik and Kwasnicka, 2018;  Yang et al., 2016).  

In this study, two nature-inspired solutions are proposed to overcome the above-

mentioned problems. The first solution is a new multi-swarm cooperative scheme for 

balancing the exploration and exploitation of metaheuristics called “Meeting Room 

Approach (MRA)”. This is inspired by the human interaction when finding solutions to 

life problems. The second solution is a parameter-free nature-inspired metaheuristic 

called “nomadic people optimizer (NPO)”. This optimizer simulates the life of nomads 

when searching for food sources in the desert. The main rules of the proposed algorithms 

are inspired from the life of Bedouins. The NPO consists of several clans or swarms 

which communicates via the proposed MRA. Both solutions will be further explained in 

the next chapter.  
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2.6 Summary  

The success or failure of metaheuristic algorithms depends on its ability to 

establish good balancing between exploration and exploitation. A poor balance between 

exploration and exploitation may result in weak optimization, which may cause the 

algorithm to be trapped in local optima, stagnant or leap over optimal solution. The 

metaheuristics which have been developed in the literature contain one or more 

controlling parameters to enhance the balancing between these two main components. 

Finding the optimal values for these parameters is nearly impossible, therefore, a 

parameter-free metaheuristic will be better in terms of complexity, and can be used in 

different domains without any additional adaptive methods. 

The number of decision variables has a great effect on the searching algorithms. 

The problems with only one decision variable are called univariate optimization 

problems, while the problems with more than one decision variable are called 

multivariate problems. Large-scale optimization problems are multivariate problems with 

a large number of decision variables, they main contain hundreds or thousands of 

variables. Most studies in the literature have focused on optimization problems with about 

50 or less number of variables, and when compared to real-world problems, the observed 

dimensionality is significantly low. Meanwhile, the existence and scalability of any 

algorithm that can be directly used in large-scale problems are yet to be verified. It is 

recommended to test optimization problems with about 50 to thousands of variables. 

This chapter presented the theoretical background of optimization in general, and 

metaheuristics in particular. The chapter also reviewed nature-inspired metaheuristics 

and most of the recent optimization algorithms. Finally, the issues in the field of 

optimization were analysed. In the next chapter, the proposed metaheuristic will be 

detailed, starting with its inspiration to the provision of its mathematical model.  
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CHAPTER 3 

 

 

 RESEARCH METHODOLOGY  

3.1 Introduction  

One of the hot existing research fields in computer science is the developing of 

algorithms or metaheuristics for solving the optimization problems. Nature has been 

widely been used as a source for developing optimization algorithms, these type of 

algorithms are called “Nature-Inspired Algorithms (NIAs)”. A mammoth number of 

NAIs have been proposed in the literature, most of them are inspired from biological 

systems such as flocking, herding or swarming behaviours. The conventional computing 

paradigms have shown difficulty in optimizing real-world problems.  

The real-world problems are often characterized by incomplete noisy data or 

multimodality as a result of their inflexible architecture. Natural systems have been 

explored over time to handle optimization problems. These natural systems usually 

contain numerous simple elements which works collectively to produce complex 

emergent behaviours. The natural computing frameworks can be utilized in situations 

where the traditional computing frameworks have failed. Swarm intelligence (SI) belongs 

to one of such natural computing paradigms. 

This remainder of this chapter describes the research methodology used to 

develop the proposed algorithm in solving normal and large-scale optimization problems. 

Section 3.2 offers an elaborated detail of research methodology adopted. Section 3.3 

illustrates the benchmarks for testing and validation of the proposed algorithm.  Then, 

section 3.4summarizes and concludes the chapter. 
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3.2 Research Methodology  

The activities carried out in this study are grouped into three stages, which are the 

background and literature review stage, methodology stage, and benchmarking and 

analysis stage. Figure 3.1 shows these stages. 

Identifying Problem Statement 

Large-scale problems

Benchmark 
Problems

Evaluation

Large-Scale 
Problems

Results and Discussion 

Analysis Discussion

NPO

Illustration

Model

Methodology 

Optimization 

Metaheuristics Nature-Inspired 
Algorithms

Literature Review

Review Problems & Algorithms

Challenges, No Free-Lunch Review the exiting NIAs & SIs

Gap Analysis

Balancing between Xpl & Xpt

Controlling Parameters

 

Figure 3.1 Research processes 

 

3.2.1 Literature Review 

In this stage, the current effort in the field of optimization was analyzed. The 

literature survey specifically focused on understanding the basics of metaheuristics and 

simultaneously identifying the strengths and drawbacks of the existing work in order to 
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establish a focused research problem. This stages ends with identifying the gap, and 

determining the main issues faced by recent metaheuristics.  

 

3.2.2 Methodology  

This study mainly focuses on the development of an efficient swarm-based 

metaheuristic for solving global optimization problems. The proposed metaheuristic is a 

new nature-inspired algorithm that mimics the migration of nomads when searching for 

foods and water sources in the desert. In addition, it uses a novel multi-swarm approach 

for balancing its exploration and exploitation abilities. This stage involves the inspiration, 

modeling, design, and implementation of the new algorithm “Nomadic People Optimizer 

(NPO)” metaheuristic. The algorithm consists of five main steps; it is started by the 

initiation step and ended with the “periodical meeting” (to be detailed in the concept of 

the proposed multi-swarm approach).  

 

3.2.3 Results and Discussion  

The developed NPO was evaluated at this stage in two sets of experiments. In the 

first set of experiments, the overall performance of the NPO and the benchmarking 

algorithms was evaluated over a fixed number of iterations. Having completed a given 

number of iterations, the algorithms were also evaluated based on the achieved best 

fitness and mean values for each benchmarked function. The number of iterations 

employed in this study was fixed at 1000. In the second set of experiments, the algorithms 

were evaluated in terms of their convergence behaviour. In this case, the algorithms were 

run on various numbers of iterations and the achieved mean fitness values were 

established. Hence, their convergence behaviour was obtained based on the number of 

iterations. The proposed NPO algorithm was applied on a new combination of 

benchmarked functions, while its performance was compared to those of five renowned 

algorithms (PSO2011, ABC, GWO, FPA, and FFA). 
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3.3 Benchmark Functions  

It is mandatory that the performance of any newly developed algorithm should be 

benchmarked and validated against that of other existing algorithms using a good set of 

test functions. Most researchers prefer to test the performance of their algorithms on a 

large test set, especially when optimization functions are involved. However, the 

effectiveness of one algorithm over others cannot solely depend on its ability to solve 

problems that are either too specialized or without diverse features. The evaluation of an 

algorithm demands the identification of the kind of problems that it had a better 

performance compared to others. This will help in determining the type of problems that 

the algorithm can be used to solve. This can only be achieved by using a test suite that is 

large enough to embrace a range of problems such as unimodal, multimodal, separable, 

non-separable, and multi-dimensional problems (Jamil et al., 2013; Qu et al., 2016).  

This present study focuses on the test function benchmarks and their diverse 

features such as modality and separability. A function is multimodal if it has more than 

one local optimum, and are used to test the ability of an algorithm to escape being trapped 

in any local minima. If an algorithm is built with a poorly constructed exploration 

process, it cannot effectively search the function landscape, and this could result in having 

the algorithm stuck at local minima. The most difficult class of problems for most 

algorithms is the multi-modal functions with many local minima. The difficulty of 

different benchmark functions is expressed in terms of their reparability. Because each 

variable of a function in separable functions is independent of the other variables, they 

are generally easily solved compared to their inseparable counterpart.  

To evaluate the performance of the NPO, 60 test functions were carefully selected 

in this study from several references (Andrei, 2008; Jamil et al., 2013). These test 

functions were divided into four groups (Unimodal Non-Separable (U-N) with 14 tests, 

Unimodal Separable (U-S) with 11 tests, Multimodal Non-Separable (M-N) with 26 tests, 

and Multimodal Separable (M-S) with 9 tests). We strongly recommend using this set of 

test functions by future researchers. Table 3.1 shows the general information about these 

tests, while the functions are given in Appendix A.  
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Table 3.1 Benchmark Test Functions used for evaluation 

𝒇𝒏 Name Type D LB-UB Optimal 𝒇𝒏 Name Type D UB-LB Optimal 

1 Ackley No.2 U-N 2 -32, 32 -200 31 Cross-In-Tray M-N 2 -10 , 10 -2.0626 

2 Beale U-N 2 -4.5,4.5 0 32 Drop wave M-N 2 -5.12,5.12 -1 

3 Brown U-N 30 -1 , 4 0 33 Egg Holder M-N 2 -512,512 -959.64 

4 Easom U-N 2 -10,10 -1 34 Griewank M-N 30 -600,600 0 

5 Leon U-N 2 -1.2,1.2 0 35 GoldStein-Price M-N 2 -2 , 2 3 

6 Matyas U-N 2 -10, 10 0 36 Hartman 3 M-N 3 0 , 1 -3.86278 

7 Powell U-N 24 -4,5 0 37 Hartman 6 M-N 6 0 , 1 -3.3223 

8 Schaffer No.1 U-N 2 -100,100 0 38 Holder-Table M-N 2 -10 , 10 -19.2085 

9 Schaffer No.2 U-N 2 -100,100 0 39 Keane M-N 2 -10 , 10 -0.67368 

10 Schaffer No.3 U-N 2 -100,100 0.001567 40 Levy No.13 M-N 2 -10,10 0 

11 Schaffer No.4 U-N 2 -100,100 0.29258 41 Penalized M-N 30 -50 , 50 0 

12 Trid 6 U-N 6 -36,36 -50 42 Penalized No.2 M-N 30 -50 , 50 0 

13 Trid 10 U-N 10 -100,100 -210 43 Perm M-N 4 -4 , 4 0 

14 Zakharov U-N 30 -5 , 10 0 44 Powersum M-N 4 0 , 4 0 

15 Powell Sum U-S 30 -1 , 1 0 45 Price No.1 M-N 2 -500,500 0 

16 Quartic U-S 30 -1.28,1.28 0 46 Price No.2 M-N 2 -10 , 10 0.9 

17 Schwefel 2.20 U-S 30 -100,100 0 47 Price No.3 M-N 2 -500 , 500 0 

18 Schwefel2.21 U-S 30 -100,100 0 48 Price No.4 M-N 2 -500 , 500 0 

19 Schwefel2.22 U-S 30 -100,100 0 49 Shubert M-N 2 -10 , 10 -186.7309 

20 Schwefel2.23 U-S 30 -10 , 10 0 50 Shubert No.3 M-N 2 -10 , 10 -29.6733 

21 Sphere U-S 30 -100,100 0 51 Shubert No.4 M-N 2 -10 , 10 -25.7408 

22 Step U-S 30 -100,100 0 52 Alpine No.1 M-S 30 -10 , 10 0 

23 Step No.2 U-S 30 -100,100 0 53 BohachevskyN.1 M-S 2 -100,100 0 

24 Stepint U-S 5 -5.12,5.12 0 54 Booth M-S 2 -10 , 10 0 

25 Sumsquares U-S 30 -10 , 10 0 55 Branin M-S 2 -5 , 5 0.39789 

26 Ackley M-N 30 -32 , 32 0 56 Egg Crate M-S 2 -5 , 5 0 

27 Bird M-N 2 −2𝜋, 2𝜋 -106.7645 57 Michalewicz 2 M-S 2 0 , 𝜋 -1.8013 

28 BohachevskyNo.2 M-N 2 -10 , 10 0 58 Michalewicz 5 M-S 5 0 , 𝜋 -4.6876 

29 BohachevskyNo.3 M-N 2 -100,100 0 59 Michalewicz 10 M-S 10 0 , 𝜋 -9.6601 

30 Camel Six-Hump  M-N 2 -5 , 5 -1.0316 60 Rastrigin M-S 30 -5.12,5.12 0 

 

Table 3.1 above presented the main information for the 60 benchmarking test 

functions used in this thesis. The equations of these test functions are presented in Table 

3.2 below.  
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Table 3.2 The Equations for each benchmark test functions 

𝒇𝒏 Test Objective Function 

1 Ackley N0.2 𝑓(𝑥) = −20𝑒
−0.02√𝐷−1∑ 𝑥𝑖

2𝐷
𝑖=1  

− 𝑒𝐷
−1∑ cos (2𝜋𝑥𝑖)

𝐷
𝑖=1  +20+e 

2 Beale 𝑓(𝑥) = (1.5 − 𝑥1 + 𝑥1𝑥2)
2+(2.25 − 𝑥1 + 𝑥1𝑥2)

2+(2.625 − 𝑥1 + 𝑥1𝑥2)
2  

3 Brown 𝑓(𝑥) = ∑ (𝑥𝑖
2)((𝑥𝑖+1

2 +1)) + (𝑥𝑖+1
2 )((𝑥𝑖+1

2 +1))𝑛−1
𝑖=1   

4 Easom 𝑓(𝑥) = − cos(𝑥1) cos(𝑥2) exp [−(𝑥1 − 𝜋)
2 − (𝑥2 − 𝜋)

2]  

5 Leon 𝑓(𝑥) = 100(𝑥2 − 𝑥1
2)2 + (1 + 1)2  

6 Matyas 𝑓(𝑥) = 0.26(𝑥1
2 + 𝑥2

2)-0.48𝑥1𝑥2 

7 Powell 
𝑓(𝑥) =  ∑ (𝑥4𝑖−3 + 10𝑥4𝑖−2)

2𝐷/4
𝑖=1 + 5(𝑥4𝑖−1 + 10𝑥4𝑖)

2 + (𝑥4𝑖−2 +

10𝑥4𝑖−1)
4 + 10(𝑥4𝑖−3 + 10𝑥4𝑖)

4  

8 Schaffer No1 𝑓(𝑥) = 0.5 + 
𝑠𝑖𝑛2(𝑥1

2+ 𝑥2
2)2−0.5

(1+0.001(𝑥1
2+𝑥2

2))2
   

9 Schaffer No2 𝑓(𝑥) = 0.5 + 
𝑠𝑖𝑛2(𝑥1

2− 𝑥2
2)2−0.5

(1+0.001(𝑥1
2+𝑥2

2))2
  

10 Schaffer No3 𝑓(𝑥) = 0.5 + 
𝑠𝑖𝑛2(cos(|𝑥1

2+ 𝑥2
2|))2−0.5

(1+0.001(𝑥1
2+𝑥2

2))2
  

11 Schaffer No4 𝑓(𝑥) = 0.5 + 
𝑐𝑜𝑠2(sin(|𝑥1

2+ 𝑥2
2|))2−0.5

(1+0.001(𝑥1
2+𝑥2

2))2
  

12 Trid 6 𝑓(𝑥) = ∑ (𝑥𝑖 − 1)
2 − ∑ 𝑥𝑖𝑥𝑖 − 1

𝐷
𝑖=1

𝐷
𝑖=1   

13 Trid 10 𝑓(𝑥) = ∑ (𝑥𝑖 − 1)
2 − ∑ 𝑥𝑖𝑥𝑖 − 1

𝐷
𝑖=1

𝐷
𝑖=1   

14 Zakharov 𝑓(𝑥) = ∑ 𝑥𝑖
2𝑛

𝑖=1 + (
1

2
∑ 𝑖𝑥𝑖
𝑛
𝑖=1 )2 + (

1

2
∑ 𝑖𝑥𝑖
𝑛
𝑖=1 )4  

15 Powell sum 𝑓(𝑥) = ∑ |𝑥𝑖|
𝑖+1𝐷

𝑖=1   

16 Quartic 𝑓(𝑥) = ∑ 𝑖𝑥𝑖
4𝑛

𝑖=1 + 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)  

17 Schwefel 2.20 𝑓(𝑥) = −∑ |𝑥𝑖|
𝑛
𝑖=1   

18 Schwefel 2.21 𝑓(𝑥) = 𝑚𝑎𝑥|𝑥𝑖|  

19 Schwefel 2.22 𝑓(𝑥) = ∑ |𝑥𝑖|
𝑛
𝑖=1 + Π|𝑥𝑖|  

20 Schwefel 2.23 𝑓(𝑥) = ∑ 𝑥𝑖
10𝑛

𝑖=1   

21 sphere 𝑓(𝑥) = ∑ 𝑥𝑖 𝑖
2𝐷

𝑖=1   

22 step 𝑓(𝑥) = ∑ |𝑥𝑖|
𝐷
𝑖=1   

23 Step No.2 𝑓(𝑥) = ∑ (𝑥𝑖 + 0.5)
2𝐷

𝑖=1   
24 Stepint 𝑓(𝑥) = 25 + ∑ |𝑥𝑖|

𝐷
𝑖=1   

25 Sumsquares 𝑓(𝑥) = ∑ 𝑖𝑥𝑖
2𝐷

𝑖=1   

26 Ackley 𝑓(𝑥) = −20𝑒
−0.02√𝐷−1∑ 𝑥1

2𝐷
𝑖=1 − 𝑒𝐷

−1∑ cos(2𝜋𝑥𝑖)
𝐷
𝑖=1 + 20 + 𝑒  

27 Bird 𝑓(𝑥) = sin(𝑥1) 𝑒
(1−cos(𝑥2))

2
+ cos(𝑥2) 𝑒

(1−sin(𝑥1))
2
+ (𝑥1 − 𝑥2)  

28 Bohachevsky No.2 𝑓(𝑥) = 𝑥1
2 + 2𝑥2

2 − 0.3 cos(3𝜋𝑥1) . 0.4 cos(4𝜋𝑥1) + 0.3  

29 Bohachevsky No.3 𝑓(𝑥) = 𝑥1
2 + 2𝑥2

2 − 0.3 cos(3𝜋𝑥1 + 4𝜋𝑥1) + 0.3  

30 Camel Six-Hump 𝑓(𝑥) = 2𝑥1
2 + 1.05𝑥2

4 −
𝑥1
6

6
+ 𝑥1𝑥2 + 𝑥2

2  

31 Cross in 𝑓(𝑥) =  −0.0001[sin(x1) sin(𝑥2) 𝑒
|100−[𝑥1

2+𝑥1
2]/𝜋|+1]0.1 

32 Drop Wave 𝑓(𝑥) =  − 
1+cos (12√𝑥1

2+ 𝑥2
2)

0.5 ( 𝑥1
2+ 𝑥2

2)+2
  

33 Egg Holder 𝑓(𝑥) =  ∑ −(𝑥𝑖+1 + 47)𝑠𝑖𝑛√|𝑥𝑖+1 +
𝑥𝑖

2
+ 47|𝑚−1

𝑖=1 − 𝑥𝑖𝑠𝑖𝑛√|𝑥𝑖+1 + 47|  

34 Griewank  𝑓(𝑥) = ∑   𝑥𝑖
2/4000𝑛

𝑖=1  −  Π cos (
𝑥𝑖

√𝑖
) + 1 

35 GoldStein-Price 
𝑓(𝑥) = [1 + (𝑥1 + 𝑥2+1)

2(19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2

2)]
× [+(2𝑥1 − 3𝑥2)

2(18 − 32𝑥1 + 12𝑥1
2 + 48𝑥2 − 36𝑥1𝑥2

+ 27𝑥2
2 

36 Hartman 3 𝑓(𝑥) = −∑ 𝑐𝑖
4
𝑖=1 𝑒𝑥𝑝 [−∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)

23
𝑗=𝐼 ]  
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Table 3.2 The Equations for each benchmark test functions 

𝒇𝒏 Test Objective Function 

37 Hartman 6 𝑓(𝑥) = −∑ 𝑐𝑖
4
𝑖=1 𝑒𝑥𝑝 [−∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)

26
𝑗=𝐼 ]  

38 Holder-Table 𝑓(𝑥) = −|cos (𝑥1)cos (𝑥2)𝑒
|1−(𝑥1+𝑥2)

0.5/𝜋||  

39 Keane 𝑓(𝑥) =
𝑠𝑖𝑛2(𝑥1−𝑥2)𝑠𝑖𝑛

2(𝑥1−𝑥2)

√𝑥1
2+𝑥2

2
  

40 Levy No.13 
𝑓(𝑥) =  𝑠𝑖𝑛2 (3𝜋𝑥1) + (𝑥1 − 1)

2 [1 + sin2(3𝜋𝑥2)] + (𝑥2 − 1)
2  [1 +

sin2(3𝜋𝑥2)]  

41 Penalized 

 𝑓(𝑥) 
𝜋

𝑛
 × { 10 𝑠𝑖𝑛2(𝜋𝑦1) +  ∑ (𝑦𝑖 − 1)

2 [1 + 10𝑠𝑖𝑛2(𝜋𝑦𝑖+1)] +
𝑛−1
𝑖=1

(𝑦𝑛 − 1)
2} + ∑ 𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚)

𝑛
𝑖=1  

 𝑤ℎ𝑒𝑒 

  𝑦𝑖1 +
1

4
(𝑥𝑖 + 1) 

𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚) =  {

𝑘(𝑥𝑖 − 𝑎)
𝑚             𝑖𝑓 𝑥𝑖 > 𝑎

      0                           𝑖𝑓 − 𝑎 ≤ 𝑥𝑖 ≤ 𝑎

𝑘(−𝑥𝑖 − 𝑎)
𝑚      𝑖𝑓 𝑥𝑖 < −𝑎

 

42 Penalized  N.2 

𝑓(𝑥) =  0.1 × { 𝑠𝑖𝑛2(3𝜋𝑥1) +  ∑ (𝑥𝑖 − 1)
2 [1 + 10𝑠𝑖𝑛2(3𝜋𝑥𝑖+1)] +

𝑛−1
𝑖=1

(𝑥𝑛 − 1)
2 [ 1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛)]} + ∑ 𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚)

𝑛
𝑖=1   

 𝑤ℎ𝑒𝑟𝑒 

𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚) =  {

𝑘(𝑥𝑖 − 𝑎)
𝑚             𝑖𝑓 𝑥𝑖 > 𝑎

      0                           𝑖𝑓 − 𝑎 ≤ 𝑥𝑖 ≤ 𝑎

𝑘(−𝑥𝑖 − 𝑎)
𝑚      𝑖𝑓 𝑥𝑖 < −𝑎

 

43 Perm 𝑓(𝑥) =  ∑ ( ∑ (𝑗𝑖 +  𝛽)((
𝑥𝑗

𝑗
)
𝑖
− 1 ))𝑑

𝑗=1

2
𝑑
𝑖=1    

44 Powersum 𝑓(𝑥) =  ∑ [ ( ∑ 𝑥𝑗
𝑖  ) − 𝑏𝑖]

𝑑
𝑗=1

2𝑑
𝑖=1   

45 Price 1 𝑓(𝑥) = (|𝑥1|  −  5)
2  +  (|𝑥2|  −  5)

2   

46 Price 2 𝑓(𝑥) = 1 + 𝑠𝑖𝑛2𝑥1 + 𝑠𝑖𝑛
2𝑥2 − 0.1𝑒

𝑥1
2−𝑥2

2
  

47 Price 3 𝑓(𝑥) =  100(𝑥2 − 𝑥1
2  )2  +  6[6.4(𝑥2 −  0.5)

2  −  𝑥1  −  0.6 ]
2  

48 Price 4 𝑓(𝑥) = (2𝑥1
3  𝑥2  −  𝑥2

3   )2  +  (6𝑥1  −  𝑥2
2 + 𝑥2)

2  

49 Shubert 𝑓(𝑥) = ∏ ∑ cos ((𝑗 + 15
𝑗=1 )𝑛

𝑖=1 𝑥𝑖 + 𝑗)  

50 Shubert No.3 𝑓(𝑥) = ∑ ∑ 𝑗𝑠𝑖𝑛 5
𝑗=1

𝐷
𝑖=1 ((𝑗 + 1) 𝑥𝑖 + 𝑗) 

51 Shubert No.4 𝑓(𝑥) = ∑ ∑ 𝑗𝑐𝑜𝑠 5
𝑗=1

𝐷
𝑖=1 ((𝑗 + 1) 𝑥𝑖 + 𝑗) 

52 Alpine 𝑓(𝑥) =  ∑ |𝑥𝑖 sin(𝑥𝑖) + 0.1𝑥𝑖|
𝐷
𝑖=1   

53 Bohachevsky 𝑓(𝑥) =  𝑥1
2 + 2𝑥2

2 − 0.3 cos(2𝜋𝑥1) − 0.4cos (4𝜋𝑥2)  

54 Booth 𝑓(𝑥) = (𝑥2 + 2𝑥2 − 7)
2 + (2𝑥1 + 𝑥2 − 5)

2  

55 Branin 𝑓(𝑥) =  (𝑥2 −
5.1𝑥1

2 

4𝜋2
+
5𝑥1

𝜋
− 6)2 + 10 (1 −

1

8𝜋
) cos(𝑥1) + 10  

56 Egg Crate 𝑓(𝑥) =  𝑥1
2 + 2𝑥2

2 + 25)𝑠𝑖𝑛2(𝑥1) + 𝑠𝑖𝑛
2(𝑥2)) 

57 Michalewicz2 𝑓(𝑥) =  − ∑ sin(𝑥𝑖) 𝑠𝑖𝑛
2𝑚  ( 

𝑖𝑥𝑖
2

𝜋
 )2

𝑖=1   

58 Michalewicz5 𝑓(𝑥) =  − ∑ sin(𝑥𝑖) 𝑠𝑖𝑛
2𝑚  ( 

𝑖𝑥𝑖
2

𝜋
 )5

𝑖=1   

59 Michalewicz10 𝑓(𝑥) =  − ∑ sin(𝑥𝑖) 𝑠𝑖𝑛
2𝑚  ( 

𝑖𝑥𝑖
2

𝜋
 )10

𝑖=1   

60 Rastrigin 𝑓(𝑥) =  10𝑑 + ∑ [𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

𝑑
𝑖=1   
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3.4 Experimental Settings  

The performance of the algorithm was evaluated by carrying out 2 sets of 

experiments. The first experimental set looked into the overall performance of the 

algorithms over a fixed number of iterations. Upon completing certain number of 

iterations, the performance of the algorithms was evaluated based on the mean and the 

best fitness values found for each benchmarked function. The number of iterations 

employed in this study had been fixed at 1000. Next, the second experimental set 

investigated the convergence behaviour of the algorithms. In this case, the algorithm was 

run on various numbers of iterations to evaluate the mean fitness value established for 

each case. Hence, the convergence behaviour of the algorithms based on the number of 

iterations was obtained. The proposed NPO algorithm in this study was applied on new 

combination of benchmarked functions, while its performance was compared to that of 

five well-known algorithms (PSO2011, ABC, GWO, FPA, and FFA) (Clerc, 2011; 

Karaboga and Basturk, 2007; Mirjalili et al., 2014; Yang, 2008, 2012). 

 

3.5 Summary 

In summary, this chapter presented the research methodology of the thesis. The 

methodology of this research consists of three main stages, Literature review stage, 

Methodology stage, and results and discussion stage. In first stage, the gap and issues 

have been analyzed and discussed, while in the second stage, the proposed algorithm (i.e., 

NPO) is designed and proposed. Finally, the third stage presents the experimental settings 

and the benchmark test function used in this study for evaluating the proposed algorithm 

in terms of finding the best solutions, the scalability, and the exploration and exploitation 

rates. Next chapter, the source of inspiration with the mathematical model of NPO is 

explained in details. 
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CHAPTER 4 

 

 

NOMADIC PEOPLE OPTIMIZER  

4.1 Introduction 

In the previous chapter, the theoretical background and mathematical notation 

have been presented. The main concepts on optimization problems have been elaborated.  

The chapter concluded that there is always a need to develop a new metaheuristic, due to 

the issues faced by the current state of art metaheuristics. In addition, No Free Lunch 

theorem logically proved that no one can propose an algorithm for solving all 

optimization problems. This means that the success of an algorithm in solving a specific 

set of problems does not guarantee solving all optimization problems with different type 

and nature. The NFL theorem allows researchers to propose new optimization algorithms 

or improve/modify the current ones for solving subsets of problems in different fields. 

In this chapter, novel metaheuristic is proposed and discussed. The proposed 

algorithm is called “Nomadic People Optimizer (NPO)”. The proposed metaheuristic 

contains a novel multi-swarm cooperative approach, called “Meeting Room Approach 

(MRA)”. MRA simulates the human interaction when finding solutions to life problems. 

The chapter is divided into two main parts, first part presents the source of inspiration. 

While the second part presents the mathematical model and the main steps of NPO. The 

last step is called “Periodical Meeting” represents the MRA.  
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4.2 Source of Inspiration  

4.2.1 Nomadic People 

Nomads refer to those who live their entire life traveling from one place to another 

with their herds of camels, cattle, and sheep in search of natural sources of water and 

food. These herds graze on pastures close to water sources and provide their owners food, 

as well as other major necessities, such as skin and wool for clothing and tent-making. 

The milk from the herd serves as a source of calcium and protein for the nomads. It is 

well-known that nomads do not familiarize themselves with an environment or cultivate 

the lands within their settlement as they do not settle in one place for a long time. 

 Early humans were also nomadic as they lived in places with available trees or 

animals for hunting. Their survival in these territories depends on food sources. Upon 

depletion of water source, they immediately travel to another place to settle for another 

period. Therefore, they live a life of constant traveling and do not have permanent 

settlements. Nomads are still found in several regions across the globe, mostly in Africa, 

Asia, South America, Mexico, and the Middle East. Their lifestyle, in general, still 

remains a life of traveling from place-to-place in search of food and water, but over time, 

they have eventually become more civilized, when compared to the early nomads. At 

present times, they travel in vehicles to ease movement of herds and transportation of 

luggage. In fact, the nomads can be categorized into several clans, such as the Berbers, 

the Gypsy, and the Bedouins. The suggested algorithm in this thesis mainly resembles 

the lifestyle of the Bedouins. 

 

4.2.2 The Bedouins 

The Bedouins are the most popular type of nomads whose lives depend 

completely on the principle of desertion. They only travel in the desert in search of water 

and pasture. The Bedouin clans are found in the deserts of the Arabian Peninsula, Western 

Iraq, parts of Syria, Jordan, Palestine, Egypt and North Africa. The word “Bedouin” came 

from the Arabic word “Badawi” (for the singular) and “Badu” (for the plural). The 

Bedouins, in general, are Arabic clans who live in the deserts of the Arabic countries and 

North Africa. Figure 4.1 shows the distribution map of the Bedouins. 
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The Bedouins mainly rely on their grazing animals for their lives. The most 

prominent of these animals are the camels because they use them to transport their tents 

when moving from place to place. They also use the skin of the camels to make their 

tents. Other animals such as sheep and goats serve as a daily source of meat and milk for 

the nomads and their families. These animals are constantly provided with steady sources 

of food and water to ensure a continuous supply of food and other daily needs for the 

nomad. This is the reason for the consistent exploratory life of the nomads and their 

animals. They also trade their livestock to earn some money for their daily up-keep. 

 

Figure 4.1 The distribution of the Bedouins over Arabic countries 

The Bedouin nomads live in clans and each clan has a leader called a Sheikh in 

the Arabic language. The Sheikh controls the activities of the members of his clan; he 

decides when they should migrate to another place, and responsible for solving both 

internal and external problems within his clan. The position of a Sheikh is usually 

hereditary but never through an election (i.e. sometimes revolves within the clan). 

However, the Sheikh must command the strongest influence within the clan in terms of 

affluence (may be the number of livestock or the wealth acquired from trading livestock). 

Thus, the Bedouin community is a tribal society subject to the tribal laws established by 

their ancestral communities. They are not subject to the laws of the state or the country 

they reside. Generally, they are well separated from the happenings within the country as 

they are more interested in their own internal affairs than the affairs of their surroundings. 
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The Bedouins, as earlier explained, live in a tribal society. They have age-long 

customs, traditions, and rules that govern them and any violation of these rules and 

traditions attracts severe punishments or even expulsion from the clan. Their adherence 

to their customs and traditions has enabled their survival despite the difficult nature of 

their lives. These laws and customs are enacted by the leaders of the clans who usually 

meet to discuss external problems, such as when the grazing season should begin. They 

also meet to help each other in solving certain problems or even to consolidate 

relationships among themselves (through marriages). Such meetings usually take place 

in the tent of one of the leaders or sometimes in the tent of the most influential or oldest 

Sheikh. 

On the other hand, there is a high chance of wars between the clans around the 

crops areas and water sources despite the peaceful meetings due to the harsh nature of 

living in the desert. Each clan is struggling to survive in the desert, and thus, can enter 

wars with other clans to preserve the sources of life. The members of each clan are always 

prepared for war whenever it ensues due to the earlier stated reasons. These wars and the 

consistent life of traveling from place to place have made them physically well-built. 

However, the clans can settle their scores either by peaceful meetings or engage in wars 

and this is an important point in the NPO algorithm which will be clarified later. 

Regarding their way of living, the Bedouin have no fixed place to live. They are 

totally dependent on the tents (also called a house of fur) woven from the fur of black 

goats and in some of its sections, from a mixture of furs from camels and goats for 

decoration. Wood or shrubs are used to lift the tents from the ground. The tents offer 

many important features for a nomadic life in general and the Bedouins in particular. For 

instance, they can be easily folded when moving from place to place, and are suitable for 

a comfortable living during the climate changes between summer and winter or between 

night and day. On the other hand, the cost of tent maintenance is much less than the cost 

of maintaining regular houses built with solid materials. The women among the Bedouins 

are mainly responsible for the cutting of wools and furs, as well as spinning and knitting 

the tents and carpets. These activities are done inside the existing tents when establishing 

new ones. 

As earlier stated, the leader of each clan (Sheikh) fully controls the members of 

his clan; he decides where each family should to establish their tent. Generally, these 



49 

families are meant to establish their tents in a semi-circular manner around the tent of the 

Sheikh. Figure 4.2 illustrates the distribution of family tents by the Sheikh of a clan. 

4.2.3 Observations and Rules  

Based on the nature and the lifestyle of the Bedouins, two primary observations can 

be made, which happen to inspire the new algorithm; NPO. The first observation refers 

to the classification of their families. There are two classes of their families, in which the 

first class is the Sheikh family. The Sheikh family is responsible for several fateful 

decisions, such as the time to move from a present place to another. They also determine 

the location of the new place to move to, as well as the pattern of distributing the families 

around the Sheikh’s tent in the clan. Meanwhile, the second class is made up of the 

families of the rest of the clan (i.e. normal families). These families possess no power 

over the decisions made by the Sheikh family, but obey orders from the Sheikh. The 

second observation is regarding their lifestyle. In general, several rules have been 

outlined, as follows: 

i) The Bedouins live a life of continuous traveling in search for suitable places to live in, 

depending on the availability of sources of water, plantation, and food for them, as 

well as for their livestock.  

ii) The clans either peacefully meet each order for deliberations or engage in bloody 

fights to overcome their variances. A peaceful meeting can be summoned to encourage 

marriages between two clans, as well as to reduce risk of conflicts between them. On 

the other hand, war may spark between clans as a Sheikh attempts to take over a region 

with better sources of water and grazing field. 

iii) The Sheikh is the supreme authority who decides the fate of the families and their 

members; he decides either to fight a war with another clan or to join in peaceful 

meetings. He also decides when and where the clan should move. 

iv) The Bedouins use their tents as their main housing due to several advantages. A tent 

is provided for each family, and these tents are distributed in a semi-circular pattern, 

with the tent of the Sheikh at the center. Figure 4.2 portrays the distribution of tents 

around a Sheikh’s tent. 
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v) The authority of the Sheikh over the rest of the clan is not conferred via democratic 

process, but elections are held in rare cases. Commonly, the transition of leadership is 

either hereditary (from father to son) or in situations of conflict where a normal family 

may become more influential than the Sheikh’s, thus resulting in taking over power 

from the Sheikh’s family. 

vi) The Sheikh sends the families to scout for good places for living. These families move 

randomly in different directions and distances. When a family finds a better place than 

the present one, the Sheikh moves towards the new position and re-establishes the clan 

(i.e. the normal families) in a semi-circular shape around his tent.  

vii) The annual migration of the Bedouins usually occurs during the summer and winter 

seasons, exploiting the slight climatic and territorial changes by using their seasonal 

or periodic movements between the summer and winter pasture areas (SPA and WPA). 

Typically, the location of the SPA is usually determined by the availability of water 

and pasture sources, as well as suitable climatic conditions. The WPA, on the other 

hand, aims for places (depressions surrounded by sand dunes) with wells and dams, 

which could be either small or closed areas. They occupy the SPA between the period 

of May and October (late harvest period) and move to the WPA for the rest of the year. 

The Bedouins live an exciting and inspirational lifestyle, thus the NPO algorithm 

is inspired by their way of life. The mathematical model of the NPO is depicted in the 

following subsection. 

 

(a) Families in the clan                                     (b) Solutions in the search space 

Figure 4.2 Semi-circular distribution of the families 
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4.3 Mathematical Model of NPO 

The unique lifestyle of the Nomads, in general, and Bedouins, in particular, has 

enabled their settlement in the desert for centuries. This unique lifestyle has inspired the 

development of a new metaheuristic that may lead to viable solutions for optimization 

problems. Table 4.1 presents the list of variables employed to develop the mathematical 

model of the NPO algorithm. The NPO algorithm is comprised of five main steps, which 

are 1) initial meeting, 2) semi-circular distribution, 3) families searching, 4) leadership 

transition, and lastly, 5) periodical meeting.  

Table 4.1 List of variables used in NPO 

Symbol Meaning Range 

𝜎 Sheikh of the Clan Integer 

𝜎𝑐⃗⃗  ⃗ The position of the Sheikh Integer 

𝑈𝐵 Upper Bound  Based on the Problem 

𝐿𝐵 Lower Bound Based on the Problem 

𝑅𝑎𝑛𝑑 Random Number between 0 and 1 [0,1] 

𝑅𝑑 Reduce of the circle UB / 2  

𝜃 The value of the angle 0 – 2π 

Ψ The direction variable 1 , -1 

The terminologies used to describe NPO are discussed below: 

1. Sheikh (𝜎): Leader, an individual represents the current local best solution in the 

swarm.  

2. Best Leader (𝜎𝐵): An individual represents the global best solution in all swarms, 

which is used in the meeting room approach.  

3. Normal Leader (𝜎𝑁): An individual represents the other leaders except the Best 

Leader (𝜎𝐵). 

4. Family (𝑥): An individual represents a member in the swarm or clan which has a 

lower fitness value than the leader. 

5. Clan (𝑐): a group of families (x), including the Leader (𝜎), which represents an 

individual swarm. NPO consists of several clans, each clan consists of several 

families and single Leader. 

6. Fitness: a term refers to the function or method to evaluate the goodness of a position 

in the search space. It takes the coordinates in the solution space and returns a 

numerical value (goodness). The fitness function provides an interface between the 

physical problem and the optimization algorithm.  

7. Direction (Ψ): It is a variable used for guiding the Normal Leaders towards the Best 

Leaders.  

 



52 

Step 1: Initialize all leaders in the algorithm. They meet only to distribute the families of their 

clans in the desert. The location of each Sheikh is randomly determined using following equation:  

𝜎𝑐⃗⃗  ⃗ = (𝑈𝐵 − 𝐿𝐵) × 𝑅𝑎𝑛𝑑 + 𝐿𝐵 4.1 

where 𝑈𝐵, 𝐿𝐵  represent the upper bound and lower bound respectively, while Rand 

denotes a random value between 0 and 1, and 𝜎𝑐⃗⃗  ⃗ represents the position of the Sheikh of 

the clan 𝑐 

 

Step 2: Create an individual clan (a set of families) for each leader, by distributing the 

families around their leader in a semi-circular shape. 

After a Sheikh has moved to his position in the desert (the search space), he 

decides based on his authority the location of each family around his own tent in a semi-

circular shape, as well as the position of his own tent at the centre of the circle. Figure 3 

illustrated the semi-circular distribution of the families around the Sheikh’s tent.  

Mathematically, it is possible to distribute points randomly within a given circle 

with a known radius using the equation of the 2D circle. These points are circled around 

the origin (centre of the circle) by the value of the angle, as given in Equations 

𝑋 = (𝑅𝑑 × √𝑅1 ) ×  𝑐𝑜𝑠(𝜃) + 𝑋0 4.2 

𝑌 = (𝑅𝑑 × √𝑅2 ) ×  𝑠𝑖𝑛(𝜃) + 𝑌0 4.3 

where X0 and Y0 represent the coordinates of the origin point (centre of the circle), while 

𝑅1 and 𝑅2 denote the random coordinates of a point within the perimeter of that circle. 

Meanwhile, 𝜃 refers to the angle value of that point, which is a random value lies between 

[0, 2π]. 

Equations (4.2) and (4.3) are used when the generated points are within a circle 

in 2D shape, (i.e., 𝑋, 𝑌, and 𝜃). Nevertheless, if the solutions are represented within the 

search space, the problems do not require any 𝑋 and 𝑌  coordinates. Hence, the 

representation of the solutions is unary (i.e. single dimension), instead of 2D. As such, 

the distribution of tents randomly around the Sheikh’s tent requires an 𝑋 coordinate, 



53 

while excluding the non-required 𝑌 coordinate. With that, the equation was developed to 

fit this scenario, as given in Equation (3.4) in the following: 

𝑥𝑖
𝑐⃗⃗⃗⃗ = 𝜎𝑐⃗⃗  ⃗ × √𝑅𝑎𝑛𝑑 × 𝑐𝑜𝑠(𝜃) 4.4 

 

where 𝑥𝑖
𝑐⃗⃗⃗⃗  represents the position of a family, 𝜎𝑐⃗⃗  ⃗ represents the position of the Sheikhs’ 

tent. It can be noted from equation (4.4) that the value of the family location is based 

entirely on the value of the location of the Sheikh, and this is within the powers of the 

Sheikh since he is in charge of distributing the families around his tent. The families and 

the clans were represented as vectors because they are not a single value but represent the 

values of the solutions which are not less than one value and no more than the number of 

dimensions of the problem itself. 

While this step can be used to initiate the normal families around the Sheikh, it 

also can be used as a local search process for it depends on two random values (𝑅𝑎𝑛𝑑 

and 𝜃). Therefore, this step can be called at any time, mainly because it has an effect on 

the positions of the normal families, apart from enhancing the convergence of the 

algorithm. Figure 4.2 shows the random distribution of normal families in the desert and 

in the search space as well. 

 

Step 3: For each family in each clan, explore the search space and find better positions. 

This step is used when the source of food is not enough. In such situations, the Sheikh deploys 

each family to find a better source of food, any family that finds a better source of food will 

assume authority over that location and becomes the new Sheikh. In our algorithm, the 

families can move in different directions in the search space based on random steps and 

directions generated by the Levy Flight formula as follows: 

𝑥𝑛𝑒𝑤
𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  𝑥𝑜𝑙𝑑

𝑐⃗⃗ ⃗⃗ ⃗⃗  ⃗ + (𝑎𝑐 ∗ (𝜎𝑐 − 𝑥𝑜𝑙𝑑
𝑐 )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ⊕  𝐿𝑒𝑣𝑦 ) 4.5 

where 𝑋𝑓
𝑛𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑎𝑛𝑑 𝑋𝑓

𝑜𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   represent the new and old positions of the current family 

respectively, 𝑎𝑐 represent the area of the clan which is the average distance between all 

the normal families and the Sheikh’s tent. 𝑎𝑐 can be calculated using the following 

equation: - 
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𝑎𝑐  =  
∑ √(𝜎𝑐 − 𝑥𝑖

𝑐)2#𝑛𝑜𝐹
𝑖=1

#𝑛𝑜𝐹
 4.6 

 

The distance between the normal families and the Sheikh’s family gets closer for 

good, thus, the value of 𝑎𝑐 enhances the search process when its value is decreased. The 

families move in different directions, and in random step sizes; the step sizes are 

generated by the Levy flight (𝜆𝑐) equation as follows:  

𝐿𝑒𝑣𝑦 ∼ 𝑢 =   𝑡−𝜆      (1 <  𝜆 ≤  3) 4.7 
 

The Levy flight equation is usually used to generate a random walk while drawing 

the random step length from a Levy distribution with an infinite mean and variance( Yang 

and Deb, 2009a). The stochastic equation for random walk is typically represented in 

Equation (4.5). A random walk is generally a Markov chain that depends on its current 

location (the first term in the above equation) and the transition probability (the second 

term) to determine its next status/location. The product ⊕ means entry-wise 

multiplications. Here, the random walk via Levy flight is more efficient in exploring the 

search space as its step length is much longer in the long run. 

 

Step 4: For each clan, swap the new current best solutions with the current leader. As 

explained earlier, the leadership amidst the Bedouins is either hereditary (from father to son) or 

through revolutions, which never involved the democratic process. A family may have 

control over a water source and thus, expand its influence and control over the rest of the 

families. Therefore, the power of the former Sheikh’s family becomes weaken, hence 

allowing the new family to take over the leadership of the clan. This feature is a crucial factor 

in the NPO algorithm as it enables the state of solutions to be enhanced from the worst to 

better. In precise, it represents the Local Best Solution, which in turn, reflects the Exploitation 

side of the algorithm. When a family discovers a better solution value, it becomes the new 

Sheikh of that generation. 

 

Step 5: Determine the best leader ever over all leaders, then, move the other normal 

leaders towards the best leader ever. It is a periodical meeting between the best solutions 

which is performed within each iteration. 

The periodical meetings are dissimilar to the initial meeting (i.e. step 1), except 

for the redistribution of Sheikhs in the desert. During these periodical meetings, the 
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Sheikhs strive to resolve any external problem and discuss the best locations for 

relocation purpose. The reason for this meeting is to enable each Sheikh to have control 

over his place, but without arousing the ambitions of others, instead, bringing them closer 

to himself. 

The periodic meetings occur in two stages and they involve only the Sheikhs. The 

families are disallowed from interfering, except those in power. The first phase of the 

meeting is to determine the most powerful Sheikh, or in precise, the Sheikh of the best 

location who will propose solutions to other Sheikhs for them to update their locations. 

This update is performed by adding the variance between the position of the strongest 

Sheikh and that of the normal Sheikh as depicted in the following equation: 

∆𝑃𝑜𝑠 = Ψ 

(

 
√∑ (𝜎𝐸 −  𝜎𝑐

𝑁)2𝐷
𝑖

#𝐷

)

  

4.8 

where 𝜎𝐸  represents the position of the best Sheikh, and 𝜎𝑁𝑖 denotes the position of the 

normal Sheikhs. Meanwhile, #𝐷 is the number of dimensions of the problem, Ψ refers to 

the direction, and ∆𝑃𝑜𝑠 represents the normalized distance between the best sheikh and 

the normal sheikh. The direction variable Ψ guides the normal sheikhs to better positions 

depending on the fitness value of the best sheikh, as follows:  

Ψ = {      1        𝑖𝑓 f(σ
E) ≥ 0 

−1       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 4.9 

The normal sheikhs update their positions via equation (4.10). This equation 

represents the exploration stage in NPO.  

𝜎𝑐
𝑛𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =   𝜎𝑐

𝑁⃗⃗ ⃗⃗  ⃗ +   ∆𝑃𝑜𝑠 (𝜎𝐸 −  𝜎𝑐
𝑁) ∗

𝐼𝑇

#𝑇
 4.10 

where 𝜎𝑐
𝑛𝑒𝑤𝑎𝑛𝑑 𝜎𝑐

𝑁 represent the new and old position of the normal sheikh respectively, 

while IT and #𝑇 represent the current iteration and the total number of iterations 

respectively.  

During the periodical meeting, the positions of all normal sheikhs are updated. The sheikh 

stays at the new position if it is better than before, apart from establishing his new clan based on 

the second step (semi-circular distribution), otherwise he returns to the old position. It is 

important to mention that the periodical meeting is a unique method of sharing information 



56 

between swarms, for it reflects a cooperative scheme for multi-swarms. As mentioned before, 

each clan represents an individual swarm, while the periodical meeting facilitates communication 

between them.  

This cooperative multi-swarm scheme is called Meeting Room Approach (MRA). Figure 

4.3 illustrates the structure and the block diagram of MRA. MRA can be applied with other 

metaheuristics, such as PSO, FA, and BA. It helps the algorithms to balance between exploration 

and exploitation, which promotes faster convergence, in comparison to other standard versions 

of the algorithms.  

 

Figure 4.3 Meeting Room Approach 
 

 

The pseudocode of MRA is given in Figure 4.4, while the pseudocode and flowchart of 

NPO are given in Figure 4.5 and Figure 4.6 respectively. 

Algorithm : Meeting Room Approach 

1. Input: All Sheikhs – or Leaders – in the swarms 

2. Output: Best Sheikh Ever, Updated Positions for all Normal Sheikhs 

3. Procedure: 

4. 𝜎𝐵 = Determine the best Sheikh 

5. For 𝑖 = 1 To #𝑆ℎ𝑒𝑖𝑘ℎ𝑠 − 1  

6.        Calculate Δ𝑃𝑜𝑠 between 𝜎𝑖
𝑛  and 𝜎𝐵  via 𝑒𝑞. 4.8 

7.        Update the position of  𝜎𝑖
𝑛  via 𝑒𝑞. 4.10 

8.        Re-initialize the 𝐶𝑙𝑎𝑛𝑖 – or 𝑠𝑤𝑎𝑟𝑚𝑖 – based on the new position of 𝜎𝑖
𝑛 

9. End For 

10. Return the best Sheikh ever 

Figure 4.4 Pseudocode of MRA 

 

Swarm 1 Swarm 2 

Swarm 3 

Swarm 5 
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Swarm N 

Swarm 4 
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Algorithm : Nomadic People Optimizer (NPO) 

1.  Input: No. of Clans (#Clans), No. of Families (#F), No. of Iterations (#𝑇) 

2.  Output: The Best Sheikh  

3.  Procedure: 

4.  Define the objective function 𝑓(𝑥),  

5.  Initialize the Leaders 𝜎𝑐
𝑂  , 𝑐 = {1 , 2 , 3 , …  , 𝑁𝑜. 𝑜𝑓 𝐶𝑙𝑎𝑛𝑠} as follows: 

 𝜎𝑐
𝑂 = (𝑈𝐵 − 𝐿𝐵) × 𝑅𝑎𝑛𝑑 + 𝐿𝐵 

6.  Calculate the fitness value for each leader using the objective function 

7.  Repeat (𝐼𝑡𝑟): 
8.     For 𝑐 = 1 to #𝐶𝑙𝑎𝑛 

9.  Distribute the solutions around the leader in a semi-circular shaper as follows: 

 𝑥𝑖
𝑐⃗⃗⃗⃗ = 𝜎𝑐⃗⃗  ⃗ × √𝑅𝑎𝑛𝑑 × 𝑐𝑜𝑠(𝜃) 

10.  Calculate the fitness value for each solution 𝑥𝑖
𝑐 using the objective function 

11.  Set the best 𝑥𝑖
𝑐 in the clan 𝑐 as 𝜎𝑐

𝐵  

12.      If 𝜎𝑐
𝐵 is better than the original 𝜎𝑐

𝑂 Then, swap them 𝜎𝑐
𝑂 = 𝜎𝑐

𝐵 

13.      Else: Explore the search space using the following steps:  

14.         Calculate the average distance between all families as follows:  

 𝑎𝑐  =  
∑ √(𝜎𝑐 − 𝑥𝑖

𝑐)2#𝑛𝑜𝐹
𝑖=1

#𝑛𝑜𝐹
 

15.         Move the family towards the new position: 

 𝑥𝑛𝑒𝑤
𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  𝑥𝑜𝑙𝑑

𝑐⃗⃗ ⃗⃗ ⃗⃗  ⃗ + (𝑎𝑐 ∗ (𝜎𝑐 − 𝑥𝑜𝑙𝑑
𝑐 )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ⊕  𝐿𝑒𝑣𝑦 ) 

16.         Calculate the fitness value for each solution 𝑥𝑖
𝑐 using the objective function 

17.         Set the best 𝑥𝑖
𝑐 in the clan 𝑐 as 𝜎𝑐

𝐵 

18.      End if  

19.     End For 

20.     Determine the best leader ever as 𝜎𝐸 

21.     Determine the value of the direction variable Ψ as follows: 

 Ψ = {
      1        𝑖𝑓 (𝜎𝐸) ≥ 0 
−1       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

22.     Calculate ∆𝑃𝑜𝑠 via the following function 

 ∆𝑃𝑜𝑠 = Ψ 

(

 
√∑ (𝜎𝐸 −  𝜎𝑐

𝑁)2𝐷
𝑖

#𝐷

)

  

23.     For each normal leader 𝜎𝑐
𝑁, move towards the best leader ever 𝜎𝐸, as follows: 

 𝜎𝑐
𝑛𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =   𝜎𝑐

𝑁⃗⃗ ⃗⃗  ⃗ +   ∆𝑃𝑜𝑠 (𝜎𝐸 −  𝜎𝑐
𝑁) ∗

𝐼𝑇

#𝑇
 

24.           Calculate the fitness value for each 𝜎𝑐
𝑛𝑒𝑤 using the objective function 

25.           If: the 𝜎𝑐
𝑛𝑒𝑤 is better than the 𝜎𝑐

𝑁, Then keep it 

26.           Else: keep the 𝜎𝑐
𝑁 

27.     End For 

28.  Loop Until (𝐼𝑡𝑟 > #𝑇) 

29.  Return 𝜎𝐸 

Figure 4.5 Pseudocode of NPO 
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ExplorationExploitation

Stop
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Figure 4.6 Flowchart of NPO 

 

The time complexity of NPO has been calculated, it is equal to: 

𝑂(𝑇𝐶(𝐹 − 1))                                      .114  

where #𝑇 represents the total number of iterations, while 𝐶  represents the number of 

clans, 𝐹 represents the number of Families. The first part of the equation above contains 

three main loops, the main loop (𝑇), the inner loop (𝐶), and the loop inside the familis 

searching step (𝐹). This step needs F-1 loops for execution, because the Sheikh of that 

clan does not move or search for a new positon. The second part contains the time of 

𝑀𝑅𝐴, which represents the time complexity of the meeting room approach procedure, 

#𝜎 represents the number of Sheikhs in the meeting room, which is equal to 𝐶 in the 

previous equation. 
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4.4 Graphical Illustration of NPO  

As earlier stated in the previous section, the proposed NPO has two exploitation 

steps and two exploration steps. The final step is used to achieve a balance between 

exploitation and exploration. In this section, both exploration and exploitation are 

simulated in figures for a better understanding. The last section provides an analysis of 

the balancing mechanism.  

4.4.1 Exploitation   

The semi-circular distribution step helps the Sheikhs to establish their clans (i.e. 

normal families) based on equation (4.4). This step represents a local search as well. The 

leadership transition step changes or swaps Sheikhs with the best family in the clan.  Both 

represent the local search algorithm or exploitation. It is worth mentioning that NPO does 

not implement a traditional local search algorithm, in other words, the semi-circular 

distribution employs a re-initialization method for the normal families based on the 

position of the Sheikh’s tent. Figure 4.7A and Figure 4.7B illustrate the effect of these 

two steps on the search process.  

  

Figure 4-7A      Initialization (One Sheikh) Figure 4-7B       Semi-Circular Distribution  

Figure 4.7 Illustration of the first two steps of NPO 

 

Figure 4.7A illustrates the first step of the NPO algorithm. The leader is initialized 

in the search space by using the first step which is represented by the red circle. In 

Figure 4.7B, all the families are initialized around the leader, in other words, the clan is 

established by using the second step. 

 

Optimal 

Solution 

Sheikh  

Diameter 

Normal 

Families 
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Figure 4.8A     Before Leadership Transition Figure4.8B       After Leadership Transition  

Figure 4.8 Illustration of the exploitation step of NPO 

In Figure 4.8A, a family inside the clan has a better place – or position – than the 

leader, for this reason, this family got the leadership from the leader and became the 

new leader of that clan. Figure 4.8B illustrates that the previous leader became a normal 

family (blue circle) while the family became the new leader (red circle).  

  

Figure 4.9A     Semi-Circular Distribution Figure4.9B         Leadership Transition  

Figure 4.9 Illustration of the exploitation steps of NPO 

 

The new leader established the new clan around him using the second step in Figure 

4.9A. Then, one of the new families has a better position – or near to the optimal 

solution – which meaning that there is a new leader to the clan. This process represents 

the local search part of NPO, by searching around the current local best solution. The 

rest of figures in this section represent the local search of NPO until the stop condition 

is satisfied.  

Leadership 

Transition 

New 

Sheikh  

Leadership 

Transition 
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It is worth to mention that this simulation illustrates the searching process of only 

single clan – or swarm – while in the NPO, there are 𝐶 clans are searching at the same 

time. Meaning that, the local search is performed multiple times in different places in 

the search space, and there are several local best solution for each clan.  

 

  

Figure 4.10A       Leadership Transition Figure4.10B Op.4      Leadership Transition 

  

Figure4.10C      Semi-Circular Distribution Figure4.10D 4         Leadership Transition  

Figure 4.10 Exploitation Analysis 
 

In Equation (4.4), there are three main variables or parameters which controls the 

distribution of the families around the Sheikh’s tent. These variables are the position of 

the Sheikh’s tent, the angle, and the random distance (radius) between the families and 

the Sheikh’s tent. Note that each of these variables has its own effect on the distribution 

of the families (i.e. solutions). From equation (4.4), the new location 𝑋𝑐  equals the 

Sheikh’s (𝜎𝑐) location multiplied by the square root of the random radius (𝑅𝑎𝑛𝑑) and by 

𝑐𝑜𝑠(𝜃). As 𝑐𝑜𝑠() is within [−1,1], and 𝑅𝑎𝑛𝑑 is within [0,1], four main observations are 

evident:  

New 

Sheikh 

Leadership 

Transition 

New 

Sheikh  
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1. The position of the normal families is always equal to the origin of the coordinate 

system or the Sheikh’s tent when 𝑅𝑎𝑛𝑑 is equal to 1 and 𝜃 is equal to 0 or 2𝜋, as 

follows: 

𝑋𝑐 = 𝜎𝑐 ∗ √1 ∗ cos(2𝜋) → 𝑋𝑐 = 𝜎𝑐 ∗ 1 ∗ 1 → 𝑋𝑐 = 𝜎𝑐 

𝑋𝑐 = 𝜎𝑐 ∗ √1 ∗ cos(0)  → 𝑋𝑐 = 𝜎𝑐 ∗ 1 ∗ 1 → 𝑋𝑐 = 𝜎𝑐 

2. The position of the normal families is always close to the origin of the coordinate 

system or the Sheikh’s tent when 𝑅𝑎𝑛𝑑 is close to 1 and 𝜃 is close to 0 or 2𝜋. 

3. The distance between the normal families and the Sheikh’s position increases as the 

value of 𝑅𝑎𝑛𝑑 decreases or as the value of 𝜃 is close to 𝜋. 

4. It is nearly impossible to give the same exact random values for both variables due to 

each the difference in the range of each variable ( 𝑅𝑎𝑛𝑑 ∈ [0,1], 𝜃 = [0,2𝜋] ). 

Whenever 𝑅𝑎𝑛𝑑  and 𝜃  produce the same values, the local search is normally 

performed because each one is used in a different mathematical operator, square root 

and cos function, Thus, two different values will be generated.  

From these observations, the semi-circular distribution has a great impact on the 

exploitation part in NPO, especially when the value of 𝑅𝑎𝑛𝑑 is close to 1. However, this 

step, in some cases, can help the NPO algorithm to escape from local minima when the 

value of 𝑅𝑎𝑛𝑑  is small enough because the normal families will be far away from the 

center or the Sheikh’s tent.  

  

4.4.2 Exploration  

The primary meeting and the families searching step represent the exploration 

ability of the algorithm. The first step represents the initialization stage, in other words, 

it is responsible for initializing the first solutions or the position of each Sheik in the 

search space. The second step represents the global search ability of the algorithm, in 

other words, it is implemented when there is no family with a better fitness than that of 

the current Sheikh. This step helps the families to explore the search space by moving towards 

different directions using levy flight function. Figure 4.13 (A-H) simulates the exploration 

process of NPO.  
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Optimal 

Solution 

Sheikh  

  

Figure 4.11A     Initialization (One Sheikh) Figure 4.11B       Semi-circular distribution  

Figure 4.11 Illustration of the first two steps of NPO 
 

   In the Figure 4.11A and Figure 4.11B, the leader is initialized and established his 

clan in a semi-circular shape. The position of the leader is closer than all other families 

to the optimal solution, meaning that there is no family in the clan has a better positon 

than their leader. This leads to execute the third step (i.e., families searching) or the 

exploration. 

  

Figure 4.12A     Families Searching Figure 4.12B      Leadership Transition  

Figure 4.12 Illustration of the exploration and exploitation of NPO 
 

    Based on equation 4.5, all families tried to move towards the current best 

solution which is the leader. Once there is a family found a new better position – or 

near to the optimal solution – then it will be the new current local best (i.e., new leader) 

via executing the fourth step (Leadership Transition).  

    It is worth to mention that this simulation illustrates the searching process of only single 

clan – or swarm – while in the NPO, there are 𝐶 clans are exploring the search space at the 

Leadership 

Transition 
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same time. Meaning that, the local search is performed multiple times in different places in the 

search space, and there are several local best solution for each clan. 

  

Figure 4.13A      Leadership Transition Figure 4.13B      Leadership Transition 

  

Figure 4.13C    Semi-circular distribution Figure 4.13D     Leadership Transition 

  

Figure 4.13E    Leadership Transition Figure 4.13       Leadership Transition 

Figure 4.13 Exploration Ability of NPO 
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The families searching step takes charge as a global search mechanism. This step 

is used when there is no better family in the clan than the Sheikh’s family, meaning that 

they are positioned in places with limited food sources. Therefore, the families must find 

better positions to have a chance of taking the leadership position from the current Sheikh. 

Based on Equation (4.5), there are two main components, the current position, and the 

step size factor. The step size factor consists of two main factors as well, the clan area 

(𝑎𝑐) and the Levy flight equation. The clan area is an average value of the distances 

between all the families and their Sheikh. It determines the quality of all the families or 

solutions in the clan. In other words, 𝑎𝑐  is an indicator of how good the families are 

distributed in the clan (i.e. search space); if 𝑎𝑐 is big, the average distance between the Sheikh 

and the families is big and this results in a good exploration ability. 

 

4.4.3 Graphical Illustration of Balancing Mechanism  

As earlier stated, the last step in the NPO (the periodical meeting) represents a 

balancing mechanism between exploration and exploitation. This step is generally called 

the “Meeting Room Approach” or MRA. It is a multi-swarm cooperative approach which 

involves only the Sheikhs. In other words, the Sheikhs occasionally meets and share their 

positional information. Specifically, the best Sheikh among the Sheiks provides the 

information for the other Sheiks to update their positions. Figure 4.14 (A-G) simulate and 

illustrate the effect of MRA on the NPO algorithm.   

 

Figure 4.14A The best sheikh has been determined  
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Normal 
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Figure 4.14B      The normal sheikhs move toward the best sheikh  

 

 

Figure 4.14C      The sheikhs established their clans in the new positions using OP.2  

 

 

Figure 4.14D      New Best Sheikh has been determined 

 

Best Sheikh 
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Figure 4.14E      The normal sheikhs move toward the best sheikh 

 

 

Figure 4.14F      The sheikhs established their clans in the new positions using OP.2 

 

 

Figure 4.14G     New Best Sheikh has been determined 

Figure 4.14 MRA Balancing Mechanisim 
 

Best 

Sheikh 
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It is obvious from the figures that all the swarms or clans search for the optimal solution 

in two different ways; the first way is when only their Sheikhs move towards the best Sheikh 

(representing another exploration ability of NPO), while the second way is when each swarm, 

including their Sheikhs and families, are moving together around the best Sheik, meaning that the 

swarms are exploiting the search space (another form of exploitation ability). This behavior is 

due to the effect of the direction variable in Equation (3.8). The direction variable (Ψ) guides the 

Sheikhs towards better places; however, the value of Δ𝑃𝑜𝑠 is normalized and helps the Sheikhs 

to find better places rather than the place of the best Sheikhs. The simulation presented above 

focused only on the effect of MRA on the searching process of NPO. However, the interaction 

between all steps on the performance of the proposed NPO algorithm is presented Figure 4.15 

below. Which illustrate the effect of MRA, semi-circular distribution, and leadership transition 

on the search process of NPO.  

 

Figure 4.15A      All swarms and families distributed using step 2 

 

 

Figure 4.15B       Determin the new Sheikhs for all clans using  the explotation step 
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Figure 4.15C      Leadership Transition for all clans 

 

 

Figure 4.15D      New Sheikhs have been determined 

 

 

Figure 4.15E      New best Sheikh has been determined for MRA 

 

New Best Sheikh 
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Figure 4.15F      All Sheikhs establesh their new clans using step 2 

Figure 4.15 Simulation of all NPO operators 

 

The interaction between the clans is very clear in the figures above, the figure 

showed how fast the searching process can be. Because the normal families can be the 

best Sheikh ever once they find good positions, which leads to good balancing between 

the exploration and the exploitation capability of NPO which is the first contribution of 

the thesis.  

 

4.5 Example: NPO for Solving Sphere Problem 

Sphere is a very common benchmark test function, it is continuous, convex and 

unimodal, where there is only a single local minimum solution. The plot of two 

dimensions and contour of the function Sphere function is given in Figure 4.16, it can be 

formulated as follows:  

𝑓(𝑥) =  ∑𝑥2
𝐷

𝑖=1

 
4.11 

Where x represents the vector of decision variables, while D represents number of 

dimensions. In this section, NPO is applied to solve the sphere function. The settings of 

this example with the values of the NPO parameters are given in the following table:  
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Figure 4.16A   The plot of two dimensions  Figure 4.16B     The contour of the function 

Figure 4.16 Sphere Test Function 

 

Table 4.2 Parameter Settings for the example 

Parameter Value 

UpperBound (𝑈𝐵) , LowerBound (𝐿𝐵) 100, -100 

No. of Dimensions (𝐷) 2 

No. of Clans (#𝐶) 2 

No. of Families (#𝐹) 3 

No. of Iterations (#𝑇) 2 
 

Sphere test function is a unimodal test functions, which needs for the exploitation 

steps (i.e., semi-circular distribution and leadership transition). The sequence of the 

solution is given as follows:  

Note: All numbers in the following steps are generated randomly, except for the fitness 

values, they have been calculated based on the objective function.  

(STEP 1) Read the initial values for #𝐶, #𝐹,#𝑇.  

(STEP 4) Define the objective function, which is: what are the best decision variables (𝑥) 

which manimize the objective function 𝑓(𝑥), as follows:  

min𝑓(𝑥) =  ∑ 𝑥𝑖
2𝐷

𝑖=1  𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ∈ [𝑈𝐵, 𝐿𝐵], for all 𝑖 = 1,2, …𝐷. 

The optimal value for this test function 𝑓(𝑥∗) = 0 at 𝑥∗ = (0,0, … , 0).  
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(STEP 5) For each clan, initialize the positions of their Leaders 𝜎𝑐
𝑂 via equation 4.1, as 

follows:  

𝜎1
𝑂 . 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(1) = 100 – (-100) × 0.80725 + (-100) = 61.4498 

𝜎1
𝑂 . 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(2) = 100 – (-100) × 0.00933 + (-100) = -98.1336 

𝜎2
𝑂 . 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(1) = 100 – (-100) × 0.48635 + (-100) = -2.7287 

𝜎2
𝑂 . 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(2) = 100 – (-100) × 0.53975 + (-100) = 7.9504 

(STEP 6) Calculate the fitness value for the leaders using the identified 𝑓(𝑥) in step 2, as 

follows: 

𝜎1
𝑂 . 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 13406.288 

𝜎2
𝑂 . 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 70.6565 

(STEP 7) Start the main iteration 𝐼𝑡𝑟 from 1 until #𝑇 

(STEP 8) For 𝑐 = 1 to #𝐶𝑙𝑎𝑛 

(STEP 9) Distribute the families in the clan 𝑐 around 𝜎𝑐
𝑂 via equation 4.4, as follows:  

When 𝑐 = 1: 

𝑥11 = 𝜎1
𝑂 

𝑥12. 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(1) = 61.4498 ×  √0.44  × 𝑐𝑜𝑠(3.88) = -30.1445 

𝑥12. 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(2) =  −98.1336 × √0.67  × 𝑐𝑜𝑠(0.94) = −47.375202 

𝑥13. 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(1) =  61.4498 × √ 0.51  × 𝑐𝑜𝑠(4.31) =-17.18572 

𝑥13. 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(2) =  −98.1336 × √ 0.83  × 𝑐𝑜𝑠 (6.03) = -86.55371 

Where 𝑐 = 2: 

𝑥22. 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(1) = −2.7287 × √0.11  × 𝑐𝑜𝑠(4.21)  = 0.435779 

𝑥22. 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(2)= 7.9504 × √0.27  × 𝑐𝑜𝑠(1.18) = 1.573657 
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𝑥23. 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(1) =  −2.7287 × √ 0.95   × 𝑐𝑜𝑠(5.91) =-2.47654 

𝑥23. 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(2)  =  7.9504 ×  √0.55  × 𝑐𝑜𝑠(2.09) = -2.92561 

(STEP 10) Calculate the fitness value for each family in the clans, as follows: 

Where 𝑐 = 1: 

𝑥12. 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 3153.10006 

𝑥13. 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 7786.8936 

Where 𝑐 = 2: 

𝑥22. 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 2.66629 

𝑥23. 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 14.69244 

 

(STEP 11) If 𝑥1𝑖 < 𝜎1
𝑂 then swap them.  

Where 𝑐 = 1:  

If there is an (𝑥1𝑖) is better (min) than the leader 𝜎1
𝑂, then 𝜎1

𝐵 = 𝑥1𝑖. 

Where 𝑐 = 2: 

If there is an (𝑥2𝑖) is better (min) than the leader 𝜎2
𝑂, then 𝜎2

𝐵 = 𝑥1𝑖. 

(STEP 12) If 𝜎𝑐
𝐵 is better (min) than 𝜎𝑐

𝑂 then switch them.  

Where 𝑐 = 1: 

𝜎1
𝐵 < 𝜎1

𝑂  then , 𝜎1
𝑂 = 𝜎1

𝐵 . 

Where 𝑐 = 2: 

𝜎2
𝐵 < 𝜎2

𝑂  then , 𝜎2
𝑂 = 𝜎2

𝐵 . 
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Note: The steps (STEP 13) To (STEP 18) will not be executed, because this is the ELSE 

part.  

(STEP 19) If  ≤ #𝐶𝑙𝑎𝑛𝑠 ,  then Go To (STEP 8), Otherwise Go To (STEP 20).  

(STEP 20) Determine the best leader, then the leader of the second clan is the best, as 

follows: 𝜎𝐸 = 𝜎2
𝑂 = 2.66629. 

(STEP 21) The value of direction variable Ψ = 1, based on equation 4.9. 

(STEP 22) Calculate ∆𝑃𝑜𝑠 via equation 4.8, as follows:  

∆𝑃𝑜𝑠 = 1 × ( 
√(0.435779 − −30.1445)2 + (1.5736 − −47.3752)2

2
 ) = 28.8580 

(STEP 23) For each normal leader, update their positions, as follows:  

 𝜎1
𝑛𝑒𝑤 = [−30.1445,−47.3752] + 28.8580 × ([0.435779, 1.5736] −

[−30.1445, −47.3752] =  [852.3412, 1365.24]. Meaning that:  

𝜎1
𝑛𝑒𝑤. 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(1) =  852.3412 

𝜎1
𝑛𝑒𝑤. 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(2) = 1365.24 

(STEP 24) Calculate the fitness value for the new normal leader, as follows:  

𝜎1
𝑛𝑒𝑤. 𝐹𝑖𝑛𝑒𝑠𝑠 = 4917421.548 

(STEP 25 – STEP 26) If 𝜎1
𝑛𝑒𝑤 is better (min) than the 𝜎1

𝑁 then swap them. Otherwise, 

keep the original value. It can be noted that the fitness value of the new normal leader is 

worst (higher) than the original normal leader, then, it will keep the original positions.  

(STEP 27) If the is no more normal leaders, then Go To (STEP 28), otherwise Go To 

(STEP 23).  

(STEP 28) If 𝐼𝑡𝑟 > #𝑇 then Go To (STEP 29), Otherwise Go To (STEP 7).  

(STEP 29) Return the best solution 𝜎𝐸 = 2.66629. 

The steps above showed in details the main sequential of the process of the 

algorithm when it tried to solve the Sphere test function. It is obvious that the algorithm 
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did not execute the exploration part (Steps 13 – 18), due to the nature of the Sphere 

function which is a unimodal function, meaning that it requires exploitation more than 

exploration. Only single iteration has been occurred during the previous example, more 

iteration will attain better results the results. This function will be tested in details in next 

chapter.  

 

4.6 Summary  

This chapter explained in details the proposed metaheuristic, which is called ‘Nomadic 

People Optimizer’, or NPO. The chapter started by illustrating the source of inspiration of nomad 

people, presenting in details the life of bedwins, and the inspired laws and observations. The 

mathematical model and the five steps are given in this chapter as well. Finally, the exploration 

and the exploitation capability of NPO with the proposed balancing mechanism – called Meeting 

Room Approach ‘MRA’ – have been analysed in details.  The results of NPO over unconstrained 

benchmark test function are going to be presented and discussed in the next chapter. While the 

evaluation of the proposed MRA are going to be presented in the following chapter over the 

Particle Swarm Optimization (PSO) algorithm.
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CHAPTER 5 

 

 

RESULTS AND DISCUSSION 

5.1 Introduction 

In the previous chapter, the source of inspiration for the proposed NPO 

metaheuristic has been described. Additionally, the mathematical model and the main 

pseudocode were given. As mentioned, NPO consists of five steps, each step has a 

specific need and purpose. The last step, which is the periodical meeting, represents the 

proposed meeting room approach, which is the first objective of this thesis. It helps NPO 

to balance between the exploration and the exploitation ability, by guiding the best 

sheikhs toward better positions in the search space.  

To benchmark the performance of NPO metaheuristic, the current chapter 

presents a complete evaluation for NPO with the necessary statistical analysis. Overall, 

this chapter is divided into five main sections. The first sections presents the experimental 

settings, which consists of two subsections, the first subsections illustrates the new 

combinations test functions, while the second subsections illustrates the simulation 

settings. The second section presents the results of NPO over the 60 test functions. In 

addition, the section also presents the results of NPO over the large-scale problems, which 

are 18 test functions selected form the 60 test functions mentioned above with different 

number of dimensions. In third section, the convergence curves are displayed. The fourth 

section presents the analysis of the exploration and the exploitation ability of NPO, while 

the fifth section discusses the attained results, and presents a complexity analysis for 

NPO. Finally, the last section gives the summary.  
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5.2 Comparison and Simulation Settings  

All the experiments, including NPO and the previously mentioned 60 benchmark 

test functions were executed on a personal computer (Core i7, 3.60 GHz, 16 GB of RAM, 

64-bit Windows 10 operating system ) using MATLAB 2018a .The performance of NPO 

was compared to that of six well-known metaheuristics (Particle Swarm Optimization 

(PSO2011), Artificial Bees Colony (ABC), Flower Pollination Algorithm (FPA), Grey 

Wolf Optimizer (GWO), and Firefly Algorithm (FFA)). The experiments were executed 

in 30 different runs, and the best, worst, median, mean, and standard deviation were 

recorded. Table 5.1 showed the specific/default parameters for the metaheuristics 

mentioned above. Appendix B contains more details about the metaheuristics. 

NPO was compared to the other metaheuristics based on the mentioned statistical 

parameters based on 30 run times. Also, NPO is compared to the other metaheuristics 

based on a statistical tests which is the Mean Absolute Error (MAE), and the Wilcoxon 

Signed-Rank test. To establish the speed of the NPO in converging to the optimal 

solution, a convergence analysis for all the algorithms was performed. The results of the 

30 runtimes (means and standard deviation) are compared to those of the mentioned 

metaheuristics. 

Table 5.1 The specific paramaters used in the studies metaheuristics 

Algorithm Parameter Settings 

PSO2011 

Swarm Size S.S 50 

Inertia weight 𝜔 Linearly Decrease (0.9 – 0.1) 

cognitive parameter 𝑐1 1.49 

social parameter 𝑐2 1.49 

ABC 

Colony Size C.S 50 

No. Food Source C.S / 2 

Limit 50 

FPA 

Population Size P.S 50 

Switch Probability 𝑃 0.8 

Levy flight 𝜆 1.5 

GWO 
Swarm Size S.S 50 

𝑎 Linearly Decrease (2 – 0.1) 

FFA 

Swarm Size S.S 50 

𝑎 0.5 

𝛽𝑚𝑖𝑛  0.2 

𝛾 1.0 

𝛿 0.96 

NPO Swarm Size  (𝜎 × #𝐹 )  50 (5 × 10) 
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5.3 Results  

This section presents the results of proposed NPO, it is divided into two 

subsections. In the first subsection, the performance of NPO over the unconstrained test 

function is presented, while the second subsections presents the performance of NPO 

over the large-scale problems.  

 

5.3.1 NPO for unconstrained test functions  

After executing and recording all the experiments over the 60 benchmark test 

functions, the outcomes showed that the NPO exerted superior performance and could 

reach the optimal solution for many test functions. Although some of these test functions 

had been exceptionally challenging to solve and their best results could not be efficiently 

arrived at with the NPO, the algorithm was able to reach values very close to their ideal 

best results.  Figure 5.1 (A-F) displays several selected test functions. Table 5.2 presents 

the results of NPO and the other five metaheuristics over the 60 test functions.  

All algorithms were evaluated 30 run times on 60 test functions, which means 

each algorithm was ran for a total of 1800 times. Figure 5.2 illustrates that the NPO 

arrived at the best solution for 52 tests, out of 60, while GWO ranked second with 43 best 

solutions. ON the other hand, ABC and FPA managed to solve 42 tests each, FA with 34 

tests, and finally, PSO solved only 21 tests. Figure 5.2, Figure 5.3, and Figure 5.4 portray 

the complete results of all tests, the results of unimodal only, and the results of 

multimodal results, respectively.  
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Figure 5.1A     Matyas test function Figure 5.1B     Quartic test function 

 
 

Figure 5.1C     Sphere test function Figure 5.1D      Ackely test function 

  

Figure 5.1E       Griewank test function Figure 5.1F      Rastrigin test function 

Figure 5.1 3D illustration of some benchmark test functions 
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Table 5.2 Results of the metaheuristics over benchmark test functions 

𝒇𝒏 Statistic PSO2011 ABC FPA GWO FFA NPO 

1 

Best -199.9877 -200 -200 -200 -200 -200 

Worst -199.8449 -200 -200 -200 -199.9994 -200 

Median -199.9545 -200 -200 -200 -199.9997 -200 

Mean -199.9439 -200 -200 -200 -199.9997 -200 

S.D 0.037191 0 0 5.49E-10 0.00013675 0 

2 

Best 2.7457E-06 1.55E-12 0 5.56E-10 2.56E-12 1.20E-07 

Worst 0.0014077 1.31E-08 0 0.76207 1.83E-09 0.000948752 

Median 0.000090535 2.45E-10 0 2.48E-08 2.35E-10 2.64811E-05 

Mean 0.00020231 1.15E-09 0 0.025402 4.04E-10 0.000104974 

S.D 0.00028704 2.63E-09 0 0.13913 4.78E-10 0.0033127 

3 

Best 25.7848 1.14E-07 1.0499 1.14E-63 1.75E-06 0 

Worst 156.9656 6.2875E-04 15.015 6.2875E-60 9.25E-06 0 

Median 83.8289 2.83E-62 6.5799 2.83E-62 4.09E-06 0 

Mean 85.1968 2.68E-60 7.1191 2.68E-60 4.11E-06 0 

S.D 34.7038 1.18E-59 3.8435 1.18E-59 1.67E-06 0.00E+00 

4 

Best -0.99974 -1 -1 -1 -1 -1 

Worst -0.95692 -0.998047 -1 -1 0.00E+00 -1 

Median -0.99655 -1 -1 -1 -1.00E+00 -1 

Mean -0.99273 -0.999917 -1 -1 -7.33E-01 -1 
S.D 0.009772 3.59E-04 0.00E+00 1.51E-07 4.50E-01 0.00E+00 

5 

Best 1.18E-04 3.61E-05 0 6.25E-10 3.84E-12 2.37E-07 

Worst 2.60E-02 0.068356283 0 1.66E-06 4.68E-10 0.89713 

Median 2.15E-03 0.001941576 0 1.59E-07 9.86E-11 0.32655 

Mean 5.13E-03 0.006420366 0 3.32E-07 1.22E-10 0.34166 

S.D 7.08E-03 0.012799033 0 4.09E-07 1.05E-10 0.23695 

6 

Best 3.5745E-08 4.31E-15 9.96E-57 4.94E-247 2.45E-12 0 

Worst 0.000055609 1.36E-11 5.91E-47 9.01E-210 4.68E-10 0 

Median 7.4128E-06 1.36E-12 1.36E-50 7.65E-222 7.97E-11 0 

Mean 0.000013438 2.57E-12 3.14E-48 3.02E-211 1.21E-10 0 

S.D 0.000014366 3.66E-12 1.11E-47 0 1.22E-10 0 

7 

Best 1.44E-01 3.77E-05 0.43335 4.43E-13 4.17E-09 0 

Worst 1.76E+01 7.45E-03 14.5569 1.66E-08 2.96E-06 3.94E-39 

Median 3.56E+00 1.53E-03 3.5848 1.64E-09 1.90E-07 3.89E-153 

Mean 4.48E+00 2.13E-03 4.4113 3.01E-09 4.49E-07 3.50E-20 

S.D 4.07E+00 1.98E-03 3.411 3.82E-09 6.53E-07 1.31E-40 

8 

Best 3.75E-07 0 0 0 3.05E-12 0 

Worst 6.14E-04 0 0 0 2.50E-03 0 

Median 1.70E-05 0 0 0 5.30E-11 0 

Mean 4.80E-05 0 0 0 8.32E-05 0 

S.D 1.13E-04 0 0 0 4.56E-04 0 

9 

Best 1.55E-07 0.00E+00 0 0 1.14E-11 0 

Worst 5.48E-03 1.93E-07 0 0 4.45E-10 0 

Median 2.04E-04 1.72E-10 0 0 8.22E-11 0 

Mean 8.37E-04 1.16E-08 0 0 1.08E-10 0 

S.D 1.53E-03 3.68E-08 0 0 9.46E-11 0 

10 

Best 0.0015737 0.001566855 0.0015669 0.001566855 0.0015669 0.0015669 

Worst 0.0094556 0.001587719 0.0015672 0.001567308 0.0015671 0.0015669 

Median 0.0024329 0.001567421 0.0015669 0.001566888 0.0015669 0.0015669 

Mean 0.0035316 0.00156986 0.0015669 0.001566911 0.0015669 0.0015669 

S.D 0.002101 4.71E-06 8.60E-08 8.83E-08 4.02E-08 1.36E-08 

11 

Best 0.29259 0.292578645 0.29258 0.29258 0.29258 0.29258 

Worst 0.29659 0.292589884 0.29258 0.29258 0.29661 0.29258 

Median 0.29391 0.292579232 0.29258 0.29258 0.29258 0.29258 

Mean 0.294 0.292580317 0.29258 0.29258 0.29288 0.29258 

S.D 0.0012469 2.50E-06 2.35E-07 1.72E-07 8.84E-04 1.39E-15 

12 

Best -47.1355 -50 -50 -50 -50 -50 

Worst 24.9203 -50 -50 -49.9997 -50 -50 

Median -27.1536 -50 -50 -49.9999 -50 -50 

Mean -24.2545 -50 -50 -49.9999 -50 -50 

S.D 1.69E+01 2.96E-14 3.54E-14 5.29E-05 1.52E-06 0 

13 

Best -209.8977 -210 -210 -209.99 -209.9999 -210 

Worst -159.3806 -210 -210 -74.693 -209.998 -209.98 

Median -204.2893 -210 -210 -209.995 -209.9996 -210 

Mean -201.6952 -210 -210 -188.397 -209.9994 -209.995 

S.D 1.44802 6.20E-13 4.92E-07 38.2347 5.42E-04 6.1259 
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Table 5.2 Results of the metaheuristics over benchmark test functions 

𝒇𝒏 Statistic PSO2011 ABC FPA GWO FFA NPO 

14 

Best 246.5546 1.89E+02 17.2851 4.40E-29 4.6417 0 

Worst 520.3061 3.16E+02 169.1789 6.74E-26 31.1956 0 

Median 402.8341 2.51E+02 44.2972 1.65E-29 18.4768 0 

Mean 389.7976 2.48E+02 53.1959 6.38E-27 17.9621 0 

S.D 72.833 3.47E+01 31.1372 1.39E-26 6.80E+00 0 

15 

Best 0.024323 3.25E-16 2.21E-12 0.00E+00 1.44E-08 0 

Worst 0.2799 4.41E-13 1.48E-06 0.00E+00 7.69E-07 0 

Median 0.087994 1.19E-14 2.20E-10 0.00E+00 1.07E-07 0 

Mean 0.11365 4.47E-14 7.03E-08 0.00E+00 1.43E-07 0 

S.D 0.071194 8.75E-14 2.81E-07 0 1.41E-07 0 

16 

Best 1.3389 0.1153898 0.028022 1.85E-04 0.00409 6.00E-08 

Worst 7.7498 0.294229888 0.56196 0.001033197 0.096157 8.24E-05 

Median 5.4099 0.206504048 0.13346 4.47E-04 0.015618 9.58E-06 

Mean 6.9606 0.195930447 0.17695 4.47E-04 0.025424 1.74E-05 

S.D 0.6477 0.055478056 0.12362 2.11E-04 0.023129 2.04E-05 

17 

Best 6.412 1.73E-14 24.4649 1.84E-41 0.20607 0 

Worst 15.3984 1.38E-13 96.0046 2.27E-39 0.49932 0 

Median 12.912 4.33E-14 52.2212 3.85E-40 0.33775 0 

Mean 8.3662 4.92E-14 52.7072 5.61E-40 0.34615 0 

S.D 0.4647 2.84E-14 16.3115 6.14E-40 0.068941 0 

18 

Best 57.2433 30.76537235 10.4292 2.71E-19 0.038303 0 

Worst 80.7359 52.86893997 21.4516 4.46E-17 0.094114 0 

Median 68.9134 40.23089612 15.5261 7.06E-18 0.061089 0 

Mean 68.8236 40.79692823 15.7964 1.18E-17 0.063286 0 

S.D 4.6243 6.529544516 3.1328 1.34E-17 0.0157 0 

19 

Best 1.7985 1.30E-14 47493.2929 8.28E-41 0.27895 0 

Worst 4.3046 1.02E-13 5.70E+19 4.06E-39 50.1202 0 

Median 3.1041 4.37E-14 2392815161 4.53E-40 0.36643 0 

Mean 2.5986 4.52E-14 1.90E+18 9.00E-40 3.2888 0 

S.D 1.0657 2.25E-14 1.04E+19 1.02E-39 9.9447 0 

20 

Best 9.5101 2.35E+00 0.44804 4.34E-107 3.90E-23 0 

Worst 19.1102 7.85E+00 2185.4865 6.25E-91 1.09E-17 0 

Median 12.0145 4.41E+00 26.123 4.31E-98 8.48E-20 0 

Mean 13.4548 3.98E+00 269.1776 2.35E-92 7.55E-19 0 

S.D 3.0017 1.09E+00 575.2657 1.14E-91 2.02E-18 0 

21 

Best 1.2945 0 2.66E-52 0 0.0012864 0 

Worst 5.1309 0 2.34E-39 0 0.0053216 0 

Median 3.8818 0 6.97E-46 0 0.0027475 0 

Mean 2.7707 0 8.28E-41 0 0.0030036 0 

S.D 1.0831 0 4.26E-40 0 0.001052 0 

22 

Best 672 0 26 0 0 0 

Worst 881 0 70 0 0 0 

Median 799.5 0 44.5 0 0 0 

Mean 783.9333 0 47.5333 0 0 0 

S.D 57.3597 0 12.1335 0 0 0 

23 

Best 14684 0 218 0 0 0 

Worst 43333 0 1215 0 0 0 

Median 33456.5 0 614.5 0 0 0 

Mean 34109.1667 0 612.6 0 0 0 

S.D 6721.4537 0 257.6794 0 0 0 

24 

Best 0 0 0 0 0 0 

Worst 1 0 0 0 0 0 

Median 0 0 0 0 0 0 

Mean 0.066667 0 0 0 0 0 

S.D 0.25371 0 0 0 0 0 

25 

Best 3195.407 2.79E-16 11.2992 5.14E-30 0.0077476 0 

Worst 5905.7553 2.67E-16 111.8415 8.86E-28 1.7702 0 

Median 4865.1481 2.69E-16 47.7022 4.52E-29 0.072834 0 

Mean 4811.7969 2.72E-16 53.6457 1.21E-28 0.21006 0 

S.D 588.3249 8.51E-12 27.5951 1.76E-28 0.34752 0 

26 

Best 1.2293 0.020580523 0 0 2.86E-05 0 

Worst 4.5856 0.154424436 0 0 0.00058994 0 

Median 3.2952 0.063475712 0 0 0.00024973 0 

Mean 3.1853 0.069228159 0 0 0.00027632 0 

S.D 0.92982 0.036675834 0 0 0.00014538 0 
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Table 5.2 Results of the metaheuristics over benchmark test functions 

𝒇𝒏 Statistic PSO2011 ABC FPA GWO FFA NPO 

27 

Best -106.7645 -106.7645 -106.7645 -106.7645 -106.7645 -106.7645 

Worst -106.2736 -106.7645 -106.7645 -87.3109 -106.7645 -106.7393 

Median -106.749 -106.7645 -106.7645 -106.7645 -106.7645 -106.7632 

Mean -106.687 -106.7645 -106.7645 -105.4675 -106.7645 -106.7597 

S.D 0.13455 2.05E-16 1.09E-09 5.9359 6.27E-08 0.0070169 

28 

Best 0.0058429 0 0 0 1.08E-07 0 

Worst 0.22859 0 0 0 4.41E-06 0 

Median 0.058131 0 0 0 1.41E-06 0 

Mean 0.075826 0 0 0 1.60E-06 0 

S.D 0.059017 0 0 0 1.16E-06 0 

29 

Best 0.0019593 0 0 0 4.41E-08 0 

Worst 0.29095 0 0 0 3.66E-06 0 

Median 0.019745 0 0 0 5.74E-07 0 

Mean 0.037888 0 0 0 8.64E-07 0 

S.D 0.056996 0 0 0 9.09E-07 0 

30 

Best -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

Worst -1.0297 -1.0316 -1.0316 -1.0316 -1.0316 -1.0088 

Median -1.0315 -1.0316 -1.0316 -1.0316 -1.0316 -1.0296 

Mean -1.0312 -1.0316 -1.0316 -1.0316 -1.0316 -1.0266 

S.D 5.65E-04 4.52E-16 4.65E-13 5.37E-09 1.77E-09 0.006205 

31 

Best -2.0626 -2.0626 -2.0626 -2.0626 -2.0626 -2.0626 

Worst -2.0623 -2.0626 -2.0626 -2.0626 -2.0626 -2.0626 

Median -2.0626 -2.0626 -2.0626 -2.0626 -2.0626 -2.0626 

Mean -2.0626 -2.0626 -2.0626 -2.0626 -2.0626 -2.0626 

S.D 0.000057938 9.03E-16 1.35E-10 2.70E-09 5.03E-07 1.02E-03 

32 

Best -0.99989 -1 -1 -1 -1 -1 

Worst -0.93623 -1 -1 -0.9362453 -1 -1 

Median -0.99233 -1 -1 -1 -1 -1 

Mean -0.98567 -1 -1 -0.9978748 -1 -1 

S.D 0.01849 0.00E+00 8.63E-13 0.011639957 7.17E-09 0 

33 

Best -959.6403 -959.6407 -959.6407 -959.64066 -959.6407 -959.6407 

Worst -887.0879 -959.6097 -894.5789 -786.522428 -718.1675 -959.6407 

Median -959.1016 -959.6406 -959.6407 -959.64064 -959.6407 -959.6407 

Mean -954.6817 -959.638708 -957.4719 -920.641634 -912.4829 -959.6407 

S.D 13.5893 0.006340094 11.8786 54.64965465 71.4234 2.04E-12 

34 

Best 0.36776 4.44E-16 0 0 1.55E-08 0 

Worst 4.2538 0.0173688 0 0 1.85E-06 0 

Median 1.3513 8.16E-15 0 0 4.32E-07 0 

Mean 1.6518 5.79E-04 0 0 5.55E-07 0 

S.D 1.0598 0.003171094 0 0 4.58E-07 0 

35 

Best 3 3 3 3 3 3.0001 

Worst 3.0031 3 3 3 3 16.6273 

Median 3.0002 3 3 3 3 3.0105 

Mean 3.0004 3 3 3 3 3.0185 

S.D 6.05E-04 1.79E-15 1.02E-15 1.31E-05 9.72E-09 0.023689 

36 

Best -3.8627 -3.2618 -3.8628 -3.86277956 -3.8628 -3.8609 

Worst -3.859 -3.0021 -3.8628 -3.85490064 -3.8628 -0.9528 

Median -3.8622 -3.0428 -3.8628 -3.8628 -3.8628 -3.7741 

Mean -3.8619 -3.8628 -3.8628 -3.8624 -3.8628 -3.7241 

S.D 0.00095848 4.723E-10 3.16E-15 0.002870273 4.72E-10 0.72518 

37 

Best -3.0349 -3.0425 -3.0425 -3.04245754 -3.0425 -3.0425 

Worst -2.9144 -2.98 -2.981 -2.91775065 -2.98 -2.83984 

Median -2.9855 -3.0425 -3.0425 -3.04245429 -3.0425 -3.03345 

Mean -2.9851 -3.028 -3.0404 -3.01605053 -3.028 -3.01605 

S.D 0.035303 0.026583 0.011219 0.037190414 0.026583 0.045706 

38 

Best -19.2085 -19.2085 -19.2085 -19.2085 -19.2085 -19.2085 

Worst -19.1928 -19.2085 -19.2085 -19.2042 -19.2085 -19.2085 

Median -19.2072 -19.2085 -19.2085 -19.2085 -19.2085 -19.2085 

Mean -19.2056 -19.2085 -19.2085 -19.2084 -19.2085 -19.2085 

S.D 0.0039289 1.2783E-08 4.32E-07 0.00077948 1.28E-08 0.0015E-09 

39 

Best -0.67367 -0.67366 -0.67367 -0.67367 -0.67367 -0.67367 

Worst -0.67365 -0.67367 -0.67367 -0.67367 -0.67367 -0.67189 

Median -0.67367 -0.67367 -0.67367 -0.67367 -0.67367 -0.67367 

Mean -0.67367 -0.67367 -0.67367 -0.67367 -0.67367 -0.67354 

S.D 4.0838E-06 8.25E-17 3.35E-16 1.24E-08 1.11E-11 0.00039502 
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Table 5.2 Results of the metaheuristics over benchmark test functions 

𝒇𝒏 Statistic PSO2011 ABC FPA GWO FFA NPO 

40 

Best 8.2958E-06 3.18E-21 1.35E-31 1.43E-09 1.27E-10 5.47E-08 

Worst 0.0047618 1.08E-18 1.35E-31 3.07E-07 5.47E-08 0.12216 

Median 0.00073654 2.56E-19 1.35E-31 6.21E-08 8.04E-09 0.0024452 

Mean 0.0012918 3.19E-19 1.35E-31 8.36E-08 1.29E-08 0.011027 

S.D 0.0013928 2.77E-19 6.68E-47 8.32E-08 1.31E-08 0.023757 

41 

Best 8.8242 3.82E-16 1.3124 0.0065555 1.20E-05 0.0089157 

Worst 14.8547 1.18E-15 30.5618 0.063406 5.41E-05 0.075277 

Median 11.8014 7.86E-16 5.7516 0.020171 2.20E-05 0.024699 

Mean 11.8403 7.86E-16 7.6587 0.024756 2.55E-05 0.025745 

S.D 4.0177 1.61E-16 6.5852 0.013532 1.10E-05 0.013262 

42 

Best 2.1049 5.0164E-16 29.6125 1.41E-05 0.0001365 0.15734 

Worst 5.7544 1.4295E-15 519068.5251 0.80499 0.00053382 2.9718 

Median 3.3085 8.7177E-16 522.7366 0.29864 0.0002889 1.3694 

Mean 3.5478 8.60768E-16 30170.4933 0.29976 0.00028766 1.6593 

S.D 7.0145 1.79894E-16 98971.8372 0.19359 9.07E-05 1.2139 

43 

Best 7.67E-02 1.31E-08 7.91E-06 9.38E-06 4.63E-07 0.017449 

Worst 3.2113 0.011847851 0.00096267 1.5743 0.01093 2.9394 

Median 1.1133 0.000954721 0.00019502 0.00027899 0.0005889 0.074672 

Mean 1.2307 0.003526435 0.00023581 0.05431 0.0038414 0.94867 

S.D 0.84764 0.001604834 0.00023964 0.2871 0.0050794 0.85019 

44 

Best 2.73E-02 5.82E-05 0.00019968 0.00012909 1.98E-08 0.00031389 

Worst 2.3947 0.005481231 0.010521 0.88183 0.0016547 8.6957 

Median 0.30682 0.000318945 0.0015656 0.0011625 0.0002464 0.81461 

Mean 5.13E-01 0.00013892 0.0021292 0.10797 0.00029232 0.067372 

S.D 5.10E-01 0.00013892 0.0021506 0.25769 0.000372 1.8389 

45 

Best 0.00010208 1.45E-02 9.19E-13 9.50E-09 2.81E-08 8.30E-16 

Worst 0.33693 5.2447 1.32E-07 6.30E-07 1.20E-05 4.17E-06 

Median 0.040306 4.5208 2.60E-10 2.08E-07 1.58E-06 1.70E-09 

Mean 0.065738 1.8509 2.60E-09 2.41E-07 2.34E-06 2.61E-07 

S.D 0.077089 14.1462 2.41E-08 1.88E-07 2.91E-06 8.00E-07 

46 

Best 0.90001 0.9 0.9 0.9 0.9 0.9 

Worst 1.0004 0.9 0.90001 1.0001 0.91505 0.9 

Median 0.90536 0.9 0.9 0.9 0.9 0.9 

Mean 0.91429 0.9 0.9 0.90667 0.90116 0.9 

S.D 0.023247 4.52E-16 1.66E-06 0.025383 0.0030237 4.52E-16 

47 

Best 0.00052928 9.3699E-06 9.29E-21 1.64E-10 1.37E-10 0.00078669 

Worst 0.057101 0.083267 8.87E-08 0.0074155 0.043267 0.83767 

Median 0.025498 0.000019209 1.32E-11 0.0037077 1.92E-08 0.044902 

Mean 0.026035 0.0014423 4.57E-09 0.0037077 0.0014423 0.13661 

S.D 0.019169 0.0078994 1.65E-08 0.0037711 0.0078994 0.20926 

48 

Best 0.0008569 0.000003268 4.42E-17 2.95E-20 1.33E-10 3.52E-249 

Worst 19.525 0.0009642 1.24E-12 1.30E-11 2.96E-07 2.34E-10 

Median 0.57055 0.0029993 1.64E-15 3.88E-13 3.00E-08 5.25E-73 

Mean 1.8298 0.000589524 4.81E-14 1.46E-12 5.91E-08 7.81E-42 

S.D 3.8376 9.80078E-06 2.26E-13 2.79E-12 8.01E-08 4.28E-14 

49 

Best -186.7306 -186.7309 -186.7309 -186.7309 -186.7309 -186.7309 

Worst -176.1507 -186.7309 -186.7301 -186.5771 -186.7309 -121.7144 

Median -185.4696 -186.7309 -186.7308 -186.7308 -186.7309 -186.544 

Mean -184.4844 -186.7309 -186.7307 -186.7215 -186.7309 -180.9683 

S.D 2.7483 8.88E-06 0.00018617 0.031254 1.55E-06 0.0015698 

50 

Best -29.6745 -29.6759 -29.6759 -29.6759 -29.6759 -29.6759 

Worst -28.8867 -29.6759 -29.6758 -29.6758 -29.2371 -29.6758 

Median -29.6007 -29.6759 -29.6759 -29.6759 -29.6759 -29.6788 

Mean -29.5224 -29.6759 -29.6759 -29.6759 -29.6613 -29.6786 

S.D 0.19679 3.61E-15 2.17E-05 1.96E-05 0.080107 2.4181E-17 

51 

Best -25.6987 -25.7418 -25.7418 -25.7418 -25.7418 -25.7418 

Worst -22.4133 -25.7416 -25.7416 -21.3887 -25.7418 -25.7407 

Median -25.4185 -25.7418 -25.7418 -25.7418 -25.7418 -25.7418 

Mean -25.0985 -25.74177 -25.7418 -25.5946 -25.7418 -25.7418 

S.D 0.83683 1.45E-14 3.09E-05 0.79445 1.80E-07 0.000326 

52 

Best 3.1901 5.04E-08 3.0672 4.60E-41 0.0049316 0 

Worst 5.6217 1.83E-05 9.2612 0.00088014 0.021716 0 

Median 4.1841 8.59E-07 6.2124 4.04E-38 0.0092847 0 

Mean 4.9583 1.76E-06 6.2209 4.66E-05 0.010317 0 

S.D 1.4454 3.35E-06 1.7611 0.00017085 0.0039505 0 
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Table 5.2 Results of the metaheuristics over benchmark test functions 

𝒇𝒏 Statistic PSO2011 ABC FPA GWO FFA NPO 

53 

Best 0.0014994 0 0 0 6.90E-08 0 

Worst 0.35754 0 0 0 7.60E-06 0 

Median 0.050016 0 0 0 1.15E-06 0 

Mean 0.10545 0 0 0 2.06E-06 0 

S.D 0.11116 0 0 0 1.89E-06 0 

54 

Best 7.1698E-07 4.70E-20 0 1.63E-10 2.81E-12 3.98E-10 

Worst 0.00089499 3.53E-17 0 2.66E-07 5.20E-09 0.039862 

Median 0.000077554 5.50E-18 0 4.79E-08 1.65E-09 0.000117 

Mean 0.00017393 8.57E-18 0 6.43E-08 2.20E-09 0.0016352 

S.D 0.00023355 9.23E-18 0 6.59E-08 1.56E-09 0.0072483 

55 

Best 0.39789 0.39788 0.39789 0.39789 0.39789 0.3989 

Worst 0.39935 0.39788 0.39789 0.39797 0.39789 0.3989 

Median 0.39802 0.39788 0.39789 0.39789 0.39789 0.3989 

Mean 0.39816 0.39788 0.39789 0.39789 0.39789 0.3989 

S.D 0.00038302 0 1.59E-11 1.58E-05 1.17E-09 0 

56 

Best 3.3749E-07 9.90E-21 1.12E-49 0 1.02E-10 0 

Worst 0.0019971 1.91E-18 1.33E-34 0 1.44E-08 0 

Median 0.00013971 3.33E-19 1.12E-45 0 5.33E-09 0 

Mean 0.00038729 5.01E-19 4.44E-36 0 5.28E-09 0 

S.D 0.00054741 4.62E-19 2.42E-35 0 3.95E-09 0 

57 

Best -1.8013 -1.80130341 -1.8013 -1.8013 -1.8013 -1.8013 

Worst -1.801 -1.80130341 -1.8013 -1.8013 -1.8013 -0.99999 

Median -1.8013 -1.80130341 -1.8013 -1.8013 -1.8013 -1.7879 

Mean -1.8013 -1.80130341 -1.8013 -1.8013 -1.8013 -1.6392 

S.D 6.79E-05 9.03E-16 9.03E-16 8.82E-07 6.23E-10 0.29461 

58 

Best -3.9775 -4.68765818 -4.6861 -4.6876 -4.6877 -3.9969 

Worst -3.0457 -4.68765818 -4.4941 -3.5992 -4.1684 -1.701 

Median -3.4219 -4.68765818 -4.6438 -4.4959 -4.5377 -3.3491 

Mean -3.4417 -4.68765818 -4.6447 -4.4262 -4.5629 -3.2611 

S.D 2.60E-01 2.61E-15 0.039355 0.32476 0.11493 0.49051 

59 

Best -5.4708 -9.66015172 -8.5604 -9.3067 -9.5515 -9.2284 

Worst -3.8777 -9.66015172 -6.9282 -5.5648 -7.138 -3.7357 

Median -4.5549 -9.66015172 -7.5294 -8.0418 -9.0418 -5.8739 

Mean -4.5434 -9.66015172 -7.5887 -7.9528 -8.8045 -5.6797 

S.D 0.41908 0 0.41986 0.93142 0.6493 0.86726 

60 

Best 0.024484 5.68E-14 0 0 4.94E-10 0 

Worst 2.151 1.40E-11 0 0 2.06E-07 0 

Median 1.076 1.71E-13 0 0 5.18E-08 0 

Mean 1.1077 8.83E-13 0 0 5.99E-08 0 

S.D 0.55972 2.76E-12 0 0 5.08E-08 0 

 

Table 5.3 summarizes the results and the comparison with other metaheuristics. 

The table also depicts the number of test functions that had been solved via NPO. The 

symbol ‘+’ represents the number of test functions where NPO exhibited better results, 

while ‘-’ denotes the worst results, ‘=’ reflects both algorithms with similar good or bad 

results, ‘*’ refers to the number of test functions where NPO reached the optimal solution. 

From the Table, it is evident that NPO has successfully outperformed the other 

metaheuristics by 86.6%. 

 



85 

52

19

42 43

34

42

0

10

20

30

40

50

60

NPO PSO ABC GWO FFA FPA

B
es

t 
T

es
ts

 R
es

u
lt

s 

Algorithms

Table 5.3 Summarized comparison results of NPO verses other algorithms 

Tests 
vs. PSO vs. ABC vs. GWO vs. FFA vs. FPA Opt. 

+ - = + - = + - = + - = + - = * - 

U-N 

U-S 21 0 4 5 0 18 2 0 23 12 2 11 11 2 12 23 2 

M-N 

M-S 
14 2 19 7 2 26 7 0 28 9 1 25 2 1 32 29 6 

All 

Tests 
35 2 23 12 2 44 9 0 51 21 3 36 13 3 44 52 8 

 

 

Figure 5.2 The results of all tests 

 

 

Figure 5.3 The results of unimodal tests 
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Figure 5.4 The results of multimodal tests   

 

 

All algorithms have been ranked statistically based on Mean Absolute Error 

(MAE). MAE determines which algorithm has the lowest difference (i.e. error) to the 

optimal solution. It can be calculated by using the following equation:  

𝑀𝐴𝐸 =  
∑ | 𝑚𝑖 − 𝑘𝑖 |
𝑁
𝑖=1

𝑁
 4.1 

where 𝑚𝑖  indicates the mean of optimal values, 𝑘𝑖  is the corresponding global 

optimal value, and 𝑁  represents the number of samples. In our case, 𝑁  denotes the 

number of test functions. Table 5.4 shows the ranking of the algorithms based on MAE 

equation. It is clear that NPO outperformed other algorithms, it has a very small 

difference between the mean values of all test with the optimal values. FPA and PSO 

have very large MAEs, because they failed to solve several test functions. These test 

functions obtained very large mean values with FPA in the last position.  
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Table 5.4 The rank of algorithm based on MAE 

Unimodal Multimodal All Tests 

Rank Alg. MAE Rank Alg. MAE Rank Alg. MAE 

1 NPO 0.013871 1 ABC 0.063359 1 NPO 0.29188916 

2 GWO 0.865159 2 NPO 0.490473 2 GWO 1.08097118 

3 FFA 0.886671 3 GWO 1.178871 3 FFA 1.177124 

4 ABC 11.72098 4 FFA 1.468787 4 ABC 4.9207 

5 FPA 8.86E+11 5 FPA 152.4946 5 FPA 3.69083E+11 

6 PSO 1.84E+15 6 PSO 168.9485 6 PSO 7.66436E+16 

 

Although the statistical results presented in Table 5.3 provide a first insight into 

the performance of NPO, a pair-wise statistical test is typically used for a better 

comparison. For this purpose, by using the results obtained from 30 runs of each 

algorithm, a Wilcoxon Signed-Rank Test is performed with a statistical significance 

value ∝= 0.05. The null hypothesis 𝐻0 for this test is: “There is no difference between 

the median of the solutions produced by algorithm A and the median of the solutions 

produced by algorithm B for the same benchmark problem”. i.e., median (A) = median 

(B). To determine whether algorithm A reached a statistically better solution than 

algorithm B, or if not, whether the alternative hypothesis is valid, the size of the ranks 

provided by the Wilcoxon Signed-Rank Test (i.e., T+, and T-)) are examined.  

In Table 5.5, the statistical pair-wise results of the NPO algorithm compared to 

those of other algorithms are given. In this table, + indicates the positive ranks, while – 

indicates the negative ranks, finally, = indicates the equal ranks. In the z-distribution 

column, the asterix (*) indicates that a p-value of less than 0.05, which means there is a 

significant difference between the two algorithms in that test. The legends used in this 

test are: 

b- The sum of negative ranks equals the sum of positive ranks. 

c- Based on positive ranks. 

d- Based on negative ranks
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Table 5.5 The Wilcoxon Signed Rank Test 

𝒇𝒏 
NPO vs. PSO NPO vs. ABC NPO vs. FPA NPO vs. GWO NPO vs. FA 

+ - = 𝒛 + - = 𝒛 + - = 𝒛 + - = 𝒛 + - = 𝒛 

𝒇𝟏 30 0 0 -4.782, d* 0 0 30 0.000, b 0 0 30 0.000, b 0 0 30 0.000, b 0 0 30 0.000, b 

𝒇𝟐 24 6 0 -2.705, d* 0 30 0 -4.782, c* 0 30 0 -4.782, c* 3 27 0 -2.993, c* 0 30 0 -4.782, c* 

𝒇𝟑 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 

𝒇𝟒 30 0 0 -4.782, d* 25 5 0 -2.023, d* 0 0 30 0.000, b 0 0 30 0.000, b 8 0 22 -2.828, d* 

𝒇𝟓 1 29 0 -4.762, d* 1 29 0 -4.762, c* 0 30 0 -4.782, c* 1 29 0 -4.762, c* 0 30 0 -4.782, c* 

𝒇𝟔 30 0 0 -4.782, d* 30 0 0 -4.286, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 

𝒇𝟕 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 

𝒇𝟖 30 0 0 -4.782, d* 0 0 30 0.000, b 0 0 30 0.000, b 0 0 30 0.000, b 30 0 0 -4.782, d* 

𝒇𝟗 30 0 0 -4.782, d* 24 0 6 -4.286, d* 0 0 30 0.000, b 0 0 30 0.000, b 30 0 0 -4.782, d* 

𝒇𝟏𝟎 30 0 0 -4.782, d* 20 0 10 -3.922, d* 3 0 27 -1.633, d 7 0 23 -2.460, d* 0 30 0 -4.867, c* 

𝒇𝟏𝟏 0 30 0 -4.782, c* 2 0 28 -1.414, d 0 0 30 0.000, b 0 0 30 0.000, b 4 26 0 -2.651, c* 

𝒇𝟏𝟐 30 0 0 -4.782, d* 2 0 82  -1.414, d 0 0 30 0.000, b 19 0 11 -4.264, d* 0 0 30 0.000, b 

𝒇𝟏𝟑 30 0 0 -4.782, d* 7 0 23 -2.460, d* 0 2 28 -1.414, c 30 0 0 -4.782, d* 12 1 17 -3.197, d* 

𝒇𝟏𝟒 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 

𝒇𝟏𝟓 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 0 0 30 0.000, b 30 0 0 -4.783, d* 

𝒇𝟏𝟔 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 

𝒇𝟏𝟕 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 

𝒇𝟏𝟖 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 

𝒇𝟏𝟗 30 0 0 -4.782, d* 30 0 0 -4.783, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 

𝒇𝟐𝟎 30 0 0 -4.782, d* 30 0 0 -4.783, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 

𝒇𝟐𝟏 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 0 0 30 0.000, b 30 0 0 -4.782, d* 

𝒇𝟐𝟐 30 0 0 -4.782, d* 0 0 30 0.000, b 30 0 0 -4.782, d* 0 0 30 0.000, b 0 0 30 0.000, b 

𝒇𝟐𝟑 30 0 0 -4.782, d* 30 0 0 0.000, b 30 0 0 -4.782, d* 0 0 30 0.000, b 0 0 30 0.000, b 

𝒇𝟐𝟒 2 0 28 -1.414, d 0 0 30 0.000, b 0 0 30 0.000, b 0 0 30 0.000, b 0 0 30 -4.782, b 

𝒇𝟐𝟓 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 

𝒇𝟐𝟔 30 0 0 -4.782, d* 30 0 0 -4.782, d* 0 0 30 0.000, b 0 0 30 0.000, b 30 0 0 -4.782, d* 

𝒇𝟐𝟕 5 0 25 -1.624, d  0 20 10 -4.782, c* 0 20 10 -4.782, c* 0 20 10 -4.782, c* 0 20 10 -4.782, c* 

𝒇𝟐𝟖 30 0 0 -4.782, d* 0 0 30 0.000, b 0 0 30 0.000, b 0 0 30 0.000, b 30 0 0 -4.782, d* 

𝒇𝟐𝟗 30 0 0 -4.782, d* 0 0 30 0.000, b 0 0 30 0.000, b 0 0 30 0.000, b 0 30 0 -4.782, c* 

𝒇𝟑𝟎 0 3 27 -1.633, c 0 3 27 -1.633, c 0 3 27 -1.633, c 0 3 27 -1.633, c 0 3 27 -1.633, c 

𝒇𝟑𝟏 19 11 0 -1.820, d 0 4 26 -1.841, c* 0 30 0 -5.201, c* 0 4 26 -1.841, c 0 30 0 -5.201, c* 

𝒇𝟑𝟐 30 0 0 -4.782, d* 0 0 30 0.000, b 0 0 30 0.000, b 1 0 29 -1.000, d 0 0 30 0.000, b 

𝒇𝟑𝟑 30 0 0 -4.782, d* 17 0 13 -3.640, d* 0 0 30 0.000, b 16 0 14 -3.520, d* 13 17 0 -1.677, c 

𝒇𝟑𝟒 30 0 0 -4.782, d* 30 0 0 -4.783, d* 0 0 30 0.000, b 0 0 30 0.000, b 30 0 0 -4.782, d* 
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Table 5.5 The Wilcoxon Signed Rank Test 

𝒇𝒏 
NPO vs. PSO NPO vs. ABC NPO vs. FPA NPO vs. GWO NPO vs. FA 

+ - = 𝒛 + - = 𝒛 + - = 𝒛 + - = 𝒛 + - = 𝒛 

𝒇𝟑𝟓 1 29 0 -4.741, c* 0 30 0 -4.782, c* 0 30 0 -4.782, d* 1 29 0 -4.165, c* 0 30 0 -4.782, c* 

𝒇𝟑𝟔 1 29 0 -4.762, c* 1 29 0 -4.762, c* 1 29 0 -4.762, c* 0 30 0 -4.782, c* 0 30 0 -4.782, c* 

𝒇𝟑𝟕 26 4 0 -3.445, d* 16 14 1 -0.086, d 5 24 1 -3.060, c* 14 15 1 -0.076, d 10 19 0 -1.373, c 

𝒇𝟑𝟖 26 4 0 -3.795, d* 14 16 1 -1.970, c* 0 13 17 -3.186, c* 12 17 1 -1.990, c* 0 13 17 -3.186, c* 

𝒇𝟑𝟗 16 14 0 -0.175, d 0 30 0 -4.852, c* 0 30 0 -4.852, c* 8 8 14 0.000, b 0 22 8 -4.236, c* 

𝒇𝟒𝟎 12 18 0 -2.129, c* 0 30 0 -4.782, c* 0 30 0 -4.782, c* 0 30 0 -4.782, c* 0 29 1 -4.782, c* 

𝒇𝟒𝟏 30 0 0 -4.782, d* 0 30 0 -4.782, c* 30 0 0 -4.782, d* 16 14 0 -1.635, d 0 30 0 -4.782, c* 

𝒇𝟒𝟐 30 0 0 -1.903, d 0 30 0 -4.782, c* 30 0 0 -4.782, d* 6 24 0 -3.898, c* 0 30 0 -4.782, c* 

𝒇𝟒𝟑 18 12 0 -1.306, d 4 26 0 -3.445, c* 0 30 0 -4.782, c* 2 28 0 -3.980, c* 0 30 0 -4.782, c* 

𝒇𝟒𝟒 21 9 0 -1.244, d 4 26 0 -2.651, c* 1 29 0 -4.762, c* 2 28 0 -3.939, c* 0 30 0 -4.782, c* 

𝒇𝟒𝟓 30 0 0 -4.782, d* 29 1 0 -4.474, d* 10 20 0 -1.306, c 29 1 0 -4.474, d* 30 0 0 -4.782, d* 

𝒇𝟒𝟔 30 0 0 -4.782, d* 0 0 30 0.000, b 1 0 29 -1.000, d 0 0 30 0.000, b 9 0 21 -2.666, d* 

𝒇𝟒𝟕 21 9 0 -2.849, c* 4 26 0 -2.651, c* 0 30 0 -4.782, c* 3 27 0 -4.391, c* 1 29 0 -4.515, c* 

𝒇𝟒𝟖 30 0 0 -4.782, d* 30 0 0 -4.782, d* 29 1 0 -4.165, d* 29 1 0 -4.165, d* 30 0 0 -4.782, d* 

𝒇𝟒𝟗 30 0 0 -1.903, d 3 27 0 -4.268, c* 1 29 0 -4.762. c* 3 27 0 -4.268, c* 0 29 1 -4.703, c* 

𝒇𝟓𝟎 30 0 0 -4.782, d* 0 17 13 -3.727, c* 1 16 13 -3.219, c* 3 15 12 -1.686, c 1 16 13 -2.893, c* 

𝒇𝟓𝟏 29 1 0 -4.165, d 3 4 23 -0.689, c 9 4 17 -0.825, d* 16 3 11 -2.241, d* 0 4 26 -1.841, c* 

𝒇𝟓𝟐 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 

𝒇𝟓𝟑 30 0 0 -4.782, d* 0 0 30 0.000, b 0 0 30 0.000, b 0 0 30 0.000, b 30 0 0 -4.782, d* 

𝒇𝟓𝟒 1 29 0 -4.741, c* 0 30 0 -4.782, c* 0 30 0 -4.782, c* 0 30 0 -4.782, c* 0 30 0 -4.782, c* 

𝒇𝟓𝟓 3 27 0 -4.659, c* 0 30 0 -5.477, c* 0 30 0 -5.477, c* 0 30 0 -5.477, c* 0 0 30 0.000, b 

𝒇𝟓𝟔 30 0 0 -4.782, d* 30 0 0 -4.782, d* 30 0 0 -4.782, d* 0 0 30 0.000, b 30 0 0 -4.782, d* 

𝒇𝟓𝟕 2 28 0 -4.659, c* 0 30 0 -4.784, c* 0 30 0 -4.784, c* 0 30 0 -4.784, c* 0 30 0 -4.784, c* 

𝒇𝟓𝟖 7 23 0 -1.841, c 0 30 0 -4.782, c* 0 30 0 -4.782, c* 1 29 0 -4.618, c* 0 30 0 -4.782, c* 

𝒇𝟓𝟗 24 6 0 -4.083, d* 0 30 0 -4.782, c* 1 29 0 -4.350, c* 1 29 0 -4.762, c* 1 29 0 -4.741, c* 

𝒇𝟔𝟎 30 0 0 -4.782, d* 29 0 1 0.000, b 0 0 30 0.000, b 0 0 30 0.000, b 30 0 0 -4.782, d* 
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The previous table displayed the Wilcoxon Signed Rank test for comparison of 

the 30 runs of each metaheuristic. The table can be summarized as follows: 

 NPO vs. PSO: The test indicates that there are more significant negative ranks (N = 

50) rather than significant positive ranks (P = 10). This means that the median of NPO 

is more than median of PSO, in other words, the 𝐻0  is rejected and the NPO has 

superior performance and has outperformed PSO. 

 NPO vs. ABC: The test indicates that there are more significant negative ranks (N = 

26) rather than significant positive ranks (P = 23). This means that the median of NPO 

is more than median of PSO, in other words, the 𝐻0 is rejected and NPO is statistically 

better than ABC algorithm.  

 NPO vs. FPA: The test indicates that there are more significant negative ranks (N = 

23) rather than significant positive ranks (P = 22). This means that the median of NPO 

is more than median of PSO, in other words, the 𝐻0 is rejected and NPO has better 

performance than FPA.  

 NPO vs. GWO: The test indicates that there more significant negative ranks (N = 21) 

rather than significant positive ranks (P = 20). This means that the median of NPO is 

more than median of PSO, in other words, the 𝐻0 is rejected and the NPO is better 

than GWO, however, there are 19 tests where both have equal results.  

 NPO vs. FFA: The test indicates that there more significant negative ranks (N = 28) 

rather than significant positive ranks (P = 26). This means that the median of NPO is 

more than median of PSO, in other words, the 𝐻0 is rejected, and the NPO statistically 

is better than FFA.  
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5.3.2 NPO for Large-Scale Problems 

To test the robustness of NPO over large-scale problems with different 

dimensions sizes, several continuous benchmark functions were chosen and used with 

medium (100), large (500), and very large (1000 and 2000) number of decision variables 

(dimensions). The results of the 30 runtimes (best, worst, median, mean and standard 

deviation) are compared to those of the mentioned metaheuristics. The test functions used 

in this section are 18 problems. These problems are (𝑓3, 𝑓14, 𝑓15, 𝑓16, 𝑓17, 𝑓18, 𝑓19,

𝑓20, 𝑓21, 𝑓22, 𝑓23, 𝑓25, 𝑓26, 𝑓34, 𝑓41, 𝑓42, 𝑓52, and 𝑓60) . The main difference 

between these test functions and the rest is that these functions have dynamic number of 

variables, thus, these functions can be used with the mentioned above dimensions. The 

results are presented in Table 5.6, Table 5.7, Table 5.8, and Table 5.9 respectively.  

The results have clearly showed that NPO has the ability to handle the large-scale 

problems. NPO has attained the best results in 16 out of 18 test functions, while the other 

algorithms have failed with most of these tests, especially with the very large problems 

(i.e., number of dimensions = 2000). The multi-swarm structure of NPO provides stable 

performance in terms of the scalability, and outperforms the other algorithms from the 

literature. The exploration part of NPO helps the algorithm to explore a wide area in the 

search space, and avoid trapping in the local optima.  
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Table 5.6 Results for Large-scale problems, D = 100 

𝒇𝒏 Statistic PSO2011 ABC FPA GWO FFA NPO 

3 

Best 436.081 4.014E-04 0 1.5659E-67 0.00143 0 

Mean 745.205 2.474E-03 4.4369E-10 9.1041E-65 0.0022 0 

S.D 359.351 3.047E-03 1.1389E-09 1.2454E-65 8.316E-04 0 

14 

Best 1334.055 1254.458 541.7490 7.1317E-08 0.9161 6.710E-277 
Mean 1429.126 1365.845 987.7509 1.9303E-05 23.0758 1.53E-39 
S.D 54.767 84.4225 243.5670 3.4657E-05 18.5865 7.3353E-39 

15 

Best 0.10286 4.278E-10 5.4514e-12 0 2.9247E-21 0 

Mean 0.21673 1.215E-06 5.8140e-07 0 6.3895E-20 0 

S.D 0.11339 4.514E-06 1.5695e-06 0 2.3877E-19 0 

16 

Best 664.939 2.0912 2.1086 1.6465E-04 0.0113 7.32E-07 

Mean 773.376 2.5277 5.1964 9.3399E-04 0.0239 1.39E-05 

S.D 108.421 0.3258 2.7691 4.3166E-04 0.0062 1.28E-05 

17 

Best 3979.665 1.7350 500.2493 2.3363E-37 1.9038 0 

Mean 3270.285 3.7836 590.1090 9.1332E-37 2.1659 0 

S.D 1770.391 3.6024 73.2246 5.4085E-37 0.2972 0 

18 

Best 81.7736 86.4876 23.9367 6.0793E-12 0.8033 0 

Mean 85.0544 89.1781 27.6855 1.1477E-08 3.9197 0 

S.D 2.7092 1.6063 2.4035 3.6298E-08 4.8113 0 

19 

Best 4.335E+129 0.0049 1.4386E+49 1.3413E-37 66.0143 0 

Mean 6.860E+129 0.0110 3.1938E+65 9.9048E-37 148.4295 0 

S.D 9.423E+130 0.0097 8.5272E+65 5.4157E-37 116.4210 0 

20 

Best 3.0868E+09 7.715E-16 5296.51 8.2247E-201 4.928E-13 0 

Mean 6.8301E+09 1.220E-14 43319.74 8.4557E-186 1.092E-12 0 

S.D 3.2105E+09 1.830E-14 33137.14 2.4784E-187 1.246E-12 0 

21 

Best 152314.109 0.0064 5835.941 1.6252E-64 0.040309 0 

Mean 159666.025 0.0117 7814.524 6.4274E63 0.044081 0 

S.D 7207.4705 0.0048 1593.364 1.1686E-62 0.0032 0 

22 

Best 3233 0 513 0 0 0 

Mean 3270.6 0 617.33 0 0 0 

S.D 48.726 0 56.049 0 0 0 

23 

Best 158470 2 6641 0 0 0 

Mean 168557.2 6.4511 9546.314 0 0 0 

S.D 7004.646 1.8542 2047.47 0 0 0 

25 

Best 72373.335 5.128E-09 2793.84 3.0859E-65 1.3207 0 

Mean 7825.9311 6.148E-08 4353.14 3.0494E-63 3.2474 0 

S.D 5514.437 1.147E-08 836.445 4.8647E-63 1.2411 0 

26 

Best 0.120141 0.4537 0 0 3.4214E-09 0 

Mean 0.591568 1.5798 0 0 1.3468E-04 0 

S.D 0.442324 1.0513 0 0 7.5581E-05 0 

34 

Best 0.14781 4.151E-06 0 0 3.14E-08 0 

Mean 0.23108 0.0024 0 0 1.45E-07 0 

S.D 0.08286 0.0050 0 0 1.86E-07 0 

41 

Best 5.533E+08 0.47845 15.3689 0.13323 7.434E-05 0.8788 

Mean 7.902E+08 0.44885 32366.04 0.23647 9.956E-05 0.9922 

S.D 1.436E+08 0.00474 59623.47 0.06456 2.184E-05 0.0578 

42 

Best 1.718E+09 1.8745 2.499E+05 5.0365 0.00285 8.3533 

Mean 1.864E+09 2.8471 2.057E+06 6.0282 0.00344 9.8193 

S.D 1.347E+08 0.0576 2.215E+06 0.4857 5.634E-04 0.28 

52 

Best 185.5875 0.0822 30.0075 6.0308E-38 0.0552 0 

Mean 204.521 0.1556 39.6843 5.5211E-36 0.3184 0 

S.D 9.0134 0.0601 5.0509 3.0247E-35 0.2329 0 

60 

Best 0.03714 13.1517 0 0 4.9966E-10 0 

Mean 1.02581 16.6879 0 0 1.1010E-08 0 

S.D 0.57207 2.4709 0 0 1.1926E-08 0 
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Table 5.7 Results for Large-scale problems, D = 500 

𝒇𝒏 Statistic PSO2011 ABC FPA GWO FFA NPO 

3 

Best 6.427E-04 0.1745 32435.141 2.3014E-33 115.5513 0 

Mean 0.0264079 1.6847 47834.784 7.2738E-29 277.7533 0 

S.D 0.0431787 0.9845 14199.052 3.9080E-28 170.7327 0 

14 

Best 3.55412 7726.247 13357.241 1337.803 4021.204 1.09E-93 

Mean 4.77746 8094.705 4.323E+16 2035.742 4229.626 1.23E-21 

S.D 0.85447 246.1136 1.514E+16 3506.202 85.069 6.677E-21 

15 

Best 0.08494 0.0077 1.746E-10 1.7013E-69 1.1488E-07 0 

Mean 0.16394 0.0247 1.014E-05 1.4947E-11 1.5689E-06 0 

S.D 0.06386 0.0180 3.688E-05 7.9674E-11 1.8213E-06 0 

16 

Best 21895.22 9.5551 3945.361 0.0015 1.3354 2.27E-07 

Mean 23222.46 13.2630 4576.369 0.0034 1.6052 2.13E-05 

S.D 1034.118 4.3713 358.529 0.0012 0.2452 2.10E-05 

17 

Best 177849.305 2281.812 3945.361 1.0952E-17 28.0671 0 

Mean 181129.776 2429.345 4576.369 2.4946E-17 37.5265 0 

S.D 235.896 130.7143 358.529 1.0523E-17 14.2496 0 

18 

Best 90.0878 98.0309 32.087 32.3180 78.0813 0 

Mean 91.6079 98.2855 36.716 46.7162 79.1870 0 

S.D 1.07263 0.1744 3.2361 6.1147 1.3015 0 

19 

Best - 2.5478 2646.036 2.3985E-18 INF 0 

Mean - 2.2331 INF 2.2662E+102 INF 0 

S.D - 0.4784 NaN 1.2387E+103 NaN 0 

20 

Best 6.497E+10 3479.34 391761.112 6.5694E-89 1.4661 0 

Mean 6.775E+10 2.346E+08 3146682.952 2.3123E-72 2.4460 0 

S.D 1.808E+10 4.603E+08 3270352.318 8.7302E-72 1.2895 0 

21 

Best 15160.206 17730.447 495913.721 3.4875E-31 0.2541 0 

Mean 19520.951 34161.687 709919.845 1.4785E-30 0.6185 0 

S.D 3517.773 10941.154 10100.475 2.6478E-30 0.0561 0 

22 

Best 2.076E+07 8 4076 0 4 0 

Mean 4.753E+07 22.842 4471.00 0 31.3334 0 

S.D 3.544E+07 24.484 298.707 0 38.2165 0 

23 

Best 7.040E+30 18 46651 0 16 0 

Mean 1.574E+30 24.1482 72006.133 0 17.00 0 

S.D 3.101E+30 3.4845 16276.273 0 1.00 0 

25 

Best 2.267E+06 0.00148 126351.566 9.5724E-31 1880.0944 0 

Mean 2.318E+06 0.02854 173852.407 2.7055E-30 2248.810 0 

S.D 5.125E+04 0.9453 22891.88 1.6336E-30 581.7029 0 

26 

Best 0.03449 2.7839 0 0 1.594E-04 0 

Mean 0.27365 3.4535 0 0 0.0011 0 

S.D 0.14307 0.5038 0 0 5.403E-04 0 

34 

Best 0.05649 199.0954 0 0 1.8316e-08 0 

Mean 0.17311 278.6552 0 0 4.8136e-06 0 

S.D 0.09765 61.7961 0 0 5.6278e-06 0 

41 

Best 5.483E+09 4.6874 199170.663 0.70820 8.4167 1.0599 

Mean 5.734E+09 8.9965 12613.77 0.75102 13.3083 1.1182 

S.D 1.877E+08 2.9984 14376.24 0.02623 3.6139 0.0232 

42 

Best 9.850E+09 39.9985 1.097E+07 44.4242 160.9658 49.385 

Mean 1.104E+10 42.8541 3.525E+07 45.7044 187.347 49.435 

S.D 7.341E+08 1.3147 2.387E+07 0.58574 17.9665 0.0165 

52 

Best 1118.486 104.5457 281.22 1.3988E-18 20.0697 0 

Mean 1136.983 112.5482 307.91 5.6327E-05 32.3101 0 

S.D 22.4322 5.4539 16.73 2.8410E-04 5.4495 0 

60 

Best 0.006272 1434.661 0 0 5.2875e-08 0 

Mean 0.024489 1487.747 0 0 0.1159 0 

S.D 0.021632 54.4633 0 0 0.2828 0 
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Table 5.8 Results for Large-scale problems, D = 1000 

𝒇𝒏 Statistic PSO2011 ABC FPA GWO FFA NPO 

3 

Best 1.884E+14 8.2845 73321 2.9811E-23 92233 0 

Mean 6.724E+14 13.8471 14721 3.4570E-07 11402 0 

S.D 5.593E+14 1.4852 62138 1.8733E-06 16272 0 

14 

Best 8.780E+20 16471.845 4.254E+20 5.0565E+03 10310289.  1.4641E-29 

Mean 1.247E+21 17093.965 7.153E+20 6.1382E+03 10659.488 2.458E-08 

S.D 4.426E+20 170.8093 4.710E+20 8.1277E+02 365.8192 5.145E-16 

15 

Best 0.02814847 0.1618 1.0827E-12 4.104E-17 1.15E-07 0 

Mean   0.14568460 0.5772 8.8026E-07 5852E-07 3.02E-06 0 

S.D   0.08088675 0.3346 2.5222E-06 1.5881E-06 4.63E-06 0 

16 

Best 85741.0402 10.2358 579.315 0.0024 36.8031 7.56E-07 

Mean 94055.5519 15.4248 1084.22 0.0054 45.7973 1.92E-05 

S.D 66473.3895 2.8910 3050.26 0.0017 8.3942 1.31E-05 

17 

Best 36546.099 1522.404 8141.30 2.1143E-13 1019.825 0 

Mean 36820.109 1679.982 96368.197 3.3337E-13 1064.665 0 

S.D 217.385 1215.932 689.673 7.6509E-14 229.1318 0 

18 

Best 93.496 99.0736 35.6192 64.2613 90.8359 0 

Mean 94.885 99.2117 39.6581 70.38787 91.7011 0 

S.D 0.8984 0.1038 2.5562 3.43506 0.4292 0 

19 

Best - 4.9584 1002.001 7.8935E+172 INF 0 

Mean - 5.1845 INF 3.8723E+223 INF 0 

S.D - 0.2748 NaN INF NaN 0 

20 

Best 1.441E+11 3.144E+10 1.9020E+06 1.2871E-62 2.5048E+06 0 

Mean 1.552E+11 5.241E+10 9.8527E+06 1.2074E-40 6.4941E+06 0 

S.D 7.892E+09 1.356E+10 8.5741E+06 6.5674E-40 1.7085E+06 0 

21 

Best 1.805E+06 6.0546E+05 1.089E+05 3.0443E-24 163632 0 

Mean 1.870E+06 6.4537E+05 1.581E+05 8.4606E-24 181548 0 

S.D 4.334E+04 3.7818E+04 2.745E+05 4.3937E-24 7976.2 0 

22 

Best 3520 34.8415 6880 0 9488 0 

Mean 35816.40 39.8441 9510.4566 0 10089.15 0 

S.D 385.927 10.8475 8414.23 0 251.9855 0 

23 

Best 1841577 52.8475 117894 0 160058 0 

Mean 1876739.44 61.9481 15286.166 0 185726 0 

S.D 25551.224 16.9478 23709.350 0 12328 0 

25 

Best 90849918.854 0.9385 5.251E+05 6.4287E-24 725113 0 

Mean 93230340.852 1.0014 7.692E+05 3.1608E-23 836591 0 

S.D 21582519.451 0.0014 1.212E+05 1.4596E-23 41979 0 

26 

Best 0.1248347549 0.7631 0 0 2.1956E-04 0 

Mean 0.3425190851 3.3580 0 0 9.2611E-04 0 

S.D 0.2793844328 1.7072 0 0 4.9399E-04 0 

34 

Best 0.107854422 5068.484 0 0 2.1198E-07 0 

Mean 0.190997743 5661.874 0 0 2.2829E-06 0 

S.D 0.140423693 445.5457 0 0 2.6432E-06 0 

41 

Best 1.1209E+10 3.8475 1.338E+06 0.8768 1.668E+06 1.1681 

Mean 1.1944E+10 4.6841 6.633E+06 0.9015 3.489E+06 1.17 

S.D 8.1539E+08 0.9884 4.860E+06 0.0161 1.179E+06 0.0268 

42 

Best 2.4512E+10 79.3684 3.454E+07 94.4521 5.634E+07 98.8592 

Mean 2.4700E+10 84.9612 7.467E+07 95.4800 7.775E+07 98.8714 

S.D 1.6453E+10 6.9411 3.081E+07 0.4430 1.162E+07 0.00124 

52 

Best 2285.5368 668.9409 620.068 1.9610E-14 678.622 0 

Mean 2321.4304 719.3644 668.383 1.5370E-05 732.821 0 

S.D 31.2049 30.0033 38.864 5.8759E-05 21.956 0 

60 

Best 0.010911 6346.161 0 0 2.4143E-07 0 

Mean 0.036556 6421.448 0 0 0.1234 0 

S.D 0.03629 89.0268 0 0 0.2983 0 
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Table 5.9 Results for Large-scale problems, D = 2000 

𝒇𝒏 Statistic PSO2011 ABC FPA GWO FFA NPO 

3 

Best 2.5165E+23 24.9891 187857 1.8118E-06 272221 0 

Mean 6.4323E+24 29.1845 334987 3.81559 415776 0 

S.D 9.8032E+14 3.8541 939815 14.55623 68451 0 

14 

Best 1.338E+24 35572.845 5.8022E+23 1.1272E+04 7.261E+24 1.054E-3 

Mean 1.562E+24 35821.841 1.5932E+24 1.3308E+04 9.533E+24 0.00784 

S.D 1.963E+23 227.2855 6.4922E+23 1.3890E+03 1.091E+24 0.01474 

15 

Best 0.100132 1.6976 7.8722E-11 6.1658E-07 1.1973E-07 0 

Mean 0.229218 2.0018 2.7013E-06 0.00436 3.8691E-06 0 

S.D 0.128811 0.2633 9.2661E-06 0.019509 5.1145E-06 0 

16 

Best 3.956E+05 12.6052 2383 0.0037 5800 2.3419E-07 

Mean 4.086E+05 16.1874 4665 0.0083 6941 2.2757E-05 

S.D 1.167E+05 2.5176 1393 0.0024 506.93 2.0576E-05 

17 

Best 73063.711 57632.748 16622 1.9437E-10 22988 0 

Mean 73635.765 60089.174 19997 2.6938E-10 23692 0 

S.D 763.962 2276.845 16672 4.9538E-11 358.70 0 

18 

Best 96.0583 99.6208 37.7266 75.747423 97.8796 0 

Mean 96.8142 99.6793 43.4886 81.18971 98.3709 0 

S.D 0.7548 0.0413 3.0758 3.262956 0.2807 0 

19 

Best - 22.1478 INF 7.1622E+03 INF 0 

Mean - 25.9658 INF 7.4488E+03 INF 0 

S.D - 1.4414 NaN 1.7400E+02 NaN 0 

20 

Best 3.0892E+11 4.472E+11 2366245 7.8008E-38 1.9167E+07 0 

Mean 3.2103E+11 5.334E+11 1983923 1.7615E-04 3.0004E+07 0 

S.D 1.1225E+10 5.517E+10 1472984 9.6453E-04 5.624E+06 0 

21 

Best 3.7959E+06 3.0568E+06 23426 2.7822E-19 4.3745+07 0 

Mean 3.8229E+06 3.1489E+06 33365 5.6527E-19 4.3899+07 0 

S.D 4.4358E+04 9.1274E+04 48586 2.2700E-19 1.0478+04 0 

22 

Best 71481 104.4456 15810 0 21986 0 

Mean 72484 112.6341 19156 0 22518 0 

S.D 887.383 29.2245 18452 0 287.61 0 

23 

Best 3798199 142.2355 240181 0 424709 0 

Mean 3.815E+06 162.2411 327451 0.0333 448213 0 

S.D 18168.498 56.5468 482315 0.1825 15294 0 

25 

Best 3.7712E+07 1.1104 265134 7.0539E-19 88813 46 0 

Mean 3.8317E+07 1.3347 322812 4.5726E-18 4221967 0 

S.D 5.1128E+05 0.0114 384351 9.7734E-18 1388215 0 

26 

Best 0.03245 2.3939 0 0 1.1085E-04 0 

Mean 0.26227 3.0277 0 0 9.8684E-04 0 

S.D 0.20556 0.4295 0 0 5.2224E-04 0 

34 

Best 0.17971 2.741E+04 0 0 3.8677E-07 0 

Mean 0.26673 2.818E+04 0 0 0.0018 0 

S.D 0.09525 483.4293 0 0 0.0100 0 

41 

Best 2.7797E+10 2.8421 4794010.6 0.9801 1.634E+07 1.6625 

Mean 2.4371E+10 2.9982 1568531.7 1.0044 2.364E+07 1.7618 

S.D 7.3089E+10 0.0854 8206735.6 0.0121 5.615E+06 0.00426 

42 

Best 5.983E+10 201.948 4.3962E+07 194.3941 2.181E+07 98.8203 

Mean 5.049E+10 206.665 1.7392E+08 195.402 2.796E+08 98.3888 

S.D 8.779E+08 0.68451 1.0067E+08 0.514705 2.810E+07 0.04481 

52 

Best 4665.602 2695.774 1357 1.3989E-11 1558 0 

Mean 4718.114 2774.461 1422 2.3068E-04 1604 0 

S.D 50.057 67.6205 76.7146 4.7534E-04 25.48 0 

60 

Best 3.7212E-04 20592.204 0 0 7.9327E-07 0 

Mean 0.3368912 21365.648 0 0 0.0029 0 

S.D 0.03807503 489.8769 0 0 0.0156 0 
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5.4 Convergence Analysis  

The convergence curves for several test functions of NPO and the other 

algorithms are provided in Figures 5.4A – Figure5.4F for the first 100 iterations. It is 

clear that NPO has fast convergence as compared with the other algorithms, because of 

two reasons. Firstly, the semi-circular distribution and the leadership transition change 

the position of the families (solutions) faster than the other algorithms, in other words, 

these two steps enhance the local search mechanism and get a new local best solution 

each iteration. At the same time, when the families are distributed based on semi-circular 

distribution, their new positions depend on their sheikhs (local best solutions), meaning 

that the families are converging fast enough toward the optimal solution. Secondly, the 

periodical meeting (meeting room approach) increases the exploration ability of NPO by 

sharing the information between the Sheikhs (local best solutions), which enhances the 

searching ability of the families when they are looking for new positions.  

 

Figure 5.5A Convergence curve for 𝑓7 
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Figure 5.5B Convergence curve for 𝑓16 

 

Figure 5.5C Convergence curve for 𝑓21 
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Figure 5.5D Convergence curve for 𝑓26 

 

Figure 5.5E Convergence curve for 𝑓34 
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Figure 5.5F Convergence curve for 𝑓60 

  Figure 5.5 Convergence curves for functions(𝑓7, 𝑓16, 𝑓21, 𝑓26, 𝑓34, 𝑓60) 
  

As a summary of the convergence, each member (family) in NPO has its own 

responsibility to improve its position within the clan, and help the clan to find better 

position within the desert. This is evident in the convergence curves, NPO showed a 

superior performance as compared to the rest algorithms.  

 

5.5 Exploitation and Exploration Analysis  

To analyse the two highly influential factors (exploration and exploitation) of the 

metaheuristics, five commonly used numerical optimization problems with different 

modality were employed with 30 dimensions. These test function are 

(𝑓19, 𝑓21, 𝑓26, 𝑓41, 𝑓60 ). This section focuses mainly on calculating diversity in swarm 

during iterations instead of running the algorithm over certain number of independent 

runs and averaging the results. Accordingly, we executed algorithm once, as our 

preliminary experiments also evidenced insignificant difference in results over multiple 

runs.  
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The exploitation has been calculated by using a counter in three different parts, 

first part when all families are initialized around the Sheikh’s tent. While the second and 

third parts when each time the Leadership Transition is executed. On the other hand, the 

exploration has been calculated by using the same method, in three different parts as well. 

First part when the Sheikh’s are initialized in the initial meeting, while the second part 

during the families searching. Final part, when any Sheikh update his own position inside 

the MRA. Table 5.10 presents the best objective function value found by NPO and the 

other metaheuristics, exploration, and exploitation. 

Table 5.10 Results of Exploration and Exploitation 

𝒇𝒏 Measurements PSO ABC FPA GWO FA NPO 

𝒇𝟏𝟗 

Solution 1.7985 1.30E-14 47493.2929 8.28E-41 0.27895 0 

Exploration 35% 58% 85% 32% 83% 22% 

Exploitation 65% 42% 15% 68% 17% 78% 

𝒇𝟐𝟏 

Solution 1.2945 0 2.66E-52 0 0.0012864 0 

Exploration 33% 59% 63% 68% 88% 46% 

Exploitation 67% 41% 37% 32% 12% 54% 

𝒇𝟐𝟔 

Solution 1.2293 0.020580523 0 0 2.86E-05 0 

Exploration 36% 61% 60% 45% 92% 78% 

Exploitation 67% 39% 40% 55% 08% 22% 

𝒇𝟒𝟏 

Solution 8.8242 3.82E-16 1.3124 0.0065555 1.20E-05 0.008915 

Exploration 40% 58% 59% 71% 86% 87% 

Exploitation 60% 42% 41% 39% 14% 13% 

𝒇𝟔𝟎 

Solution 0.024484 5.68E-14 0 0 4.94E-10 0 

Exploration 56% 72% 74% 76% 82% 71% 

Exploitation 44% 28% 26% 24% 18% 29% 

 

From Table 5.10, there is a dynamic problem nature-related difference between 

the exploration and exploitation features of NPO. The flexibility of this difference could 

be attributed to two reasons: the first reason is the enhancing effect of MRA on the 

searching process through guiding the normal Sheikhs towards better positions once 

established; the second reason is related to the process of checking for any family with a 

better fitness than the Sheikh of the clan (Step 10 in the pseudocode). This condition 

controls the algorithm and decides whether a local search (leadership transition and semi-

circular distribution – or exploitation) or a global search (families searching – or 

exploration) is needed. Unlike the other algorithms, the exploitation and exploration 

functions are simultaneously executed in the NPO using different governing equations. 
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5.6 Discussion  

This section discusses the outcomes of NPO, and attempts to answer the following 

question: ‘why is NPO efficient?’ In fact, two primary reasons can be outlined in this 

case, which are: 1) NPO has good exploration and exploitation capabilities, and 2) NPO 

has a powerful mechanism that balances exploration and exploitation capabilities. The 

exploration is applied twice, the first time occurs when the leaders are initialized at the 

first meeting and meet at the periodical meeting, while second time takes place when the 

families are searching in the search space, or in precise, the third step. The exploration of 

NPO differs from that of other metaheuristics, in which it explores the search space by 

employing several members of swarms, while other swarm-based algorithms commonly 

use a specific mechanism between the global best solution and the whole swarm. 

Moreover, the meeting room approach (MRA), which is proposed in this paper, forces 

the normal leaders to follow the best leader by using the direction variable Ψ. This 

variable guides them towards better places, in precise, they may find better positions for 

their clans.  In this paper, two values were employed for the direction variable, +1 or -1, 

because the values of fitness appeared either positive or negative, while in future studies, 

the researcher may use varied values based on their case studies, if these values do not 

suit them. 

The exploration ability of NPO was optimum when NPO was applied on 

multimodal test functions, which comprised of 35 test functions. NPO successfully 

discovered 29 optimal solutions. In addition, NPO proved that it possesses the ability to 

avoid all local optima and could approach the global optima on most of these tests. The 

convergent curves showed that NPO had the fastest convergence on multimodal test 

functions as well.  

On the other hand, the exploitation stage consists of two steps: semi-circular 

distribution, and leadership transition. These two steps represent the local search 

mechanism of NPO, while the families searching explore the search space solutions 

generated by the other two operators. Besides, it is worth to mention that each clan with 

these three operators reflects an independent search algorithm, which indicates that 

search algorithms are embedded in NPO #𝐶𝑙𝑎𝑛𝑠  (no. of clans). For each iteration 

(generation) in NPO, the families in each clan search for better places to move to, thus 

discovering sheikhs, and the clans can be enhanced internally. Even if those sheikhs fail 
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to emerge as better than the global best sheikh, they still represent an enhancement in 

NPO, thus leading to an enhancement in the searching process, when MRA is applied. 

Figure 5.6 illustrates an idea of the processes that take place in both stages and the general 

block diagram of NPO.  

It is obvious that NPO does not contain any controlling parameters, except for 

structural parameters, i.e., number of clans and number of iterations. Although these 

parameters do not influence the search behaviour of NPO, they do have an impact on the 

probability of finding the best solutions, or in precise, more families or more clans find 

the solutions faster in the expense of execution time. This study had examined five clans 

and ten families in each clan (50 swarm size in total), in which the performance was 

found efficient in terms of execution time.  

 

Figure 5.6 Exploration and exploitation of NPO 

 

It is important to note that NPO exhibited exceptional performance with noise test 

function, especially Quartic test function (𝑓16 ). To the best of our knowledge, no 

algorithm in the literature has recorded the performance level achieved in this study. On 

the other hand, some functions, such as Matyas (𝑓6) and Stepint (𝑓24), proved to be 

difficult functions since the flatness of the function did not provide the algorithm any 

information to channel the search space towards the best solutions. NPO, nonetheless, 
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attained the best solution for these two functions, hence proving its efficacy in solving 

problems with limited information.  

With proven efficiency of NPO, it also has some shortcomings that should be 

investigated in future studies. On drawback of NPO is its failure in solving several test 

functions, especially those in the form of multimodal, such as (𝑓41 − 𝑓44, 𝑓47). Next, NPO 

failed in seeking the best solution for 𝑓13, which refers to a unimodal test function in the 

used number of iterations, where it started rapidly at the beginning of the search, but upon 

reaching the fitness value (209) that is close to the optimal solution (210), the 

convergence became very slow. Nevertheless, NPO attained the optimal solution for this 

test when 5,000 iterations were used. Figure 5.7portrays the convergence of NPO for 𝑓13. 

 

Figure 5.7 Convergence curve for 𝑓13 

 

As mentioned previously, NPO and the other algorithms are swarm-based 

metaheuristics. Hence, they have been evaluated within the same environment. A time-

based comparison, however, showed that NPO reached the optimal solutions for most of 

the tests within shorter period of time, in comparison to other algorithms. Figure 5.8 

displays the time-based comparison of single run for each test. Figure 5.8 shows that the 
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NPO has a superior performance in terms of execution time in many test functions, such 

as ( 𝑓1, 𝑓4, 𝑓6 − 𝑓11, 𝑓13 − 𝑓32, 𝑓34, 𝑓38, 𝑓39, 𝑓48, 𝑓49, 𝑓52, 𝑓53, 𝑓56, 𝑓60 . Meanwhile, the 

performance of NPO appeared moderate for the other test functions.  

Almost all metaheuristic algorithms are simple in terms of complexity, and thus 

they are easy to implement. The time complexity of the NPO algorithm is compared with 

the other metaheuristics in Table 5.11. 

  

Table 5.11 Comparison of time complexity 

Algorithm Time Complexity Rank 

PSO 𝑂(𝑇. 𝑃) 2 

ABC 𝑂(𝑇. (𝐸 + 𝑂). 𝐴) 3 

FPA 𝑂(𝑇.𝑁) 2 

GWO 𝑂(𝑇. 𝐺) 2 

FFA 𝑂(𝑇.𝑁2) 4 

NPO 𝑶(𝑻. 𝑪. (𝑭 − 𝟏)) 1 

 

From Table 5.11, it is obvious that the complexity of the algorithms is almost the 

same. However, NPO requires less amount of time due to two main reasons. First, NPO 

contains a condition which controls the searching process, local search (Semi-Circular 

Distribution Operator) or global search (Families Searching Operator).  Meaning that, 

NPO does not require to iterate all families for exploration or exploitation inside each 

iteration. Second, NPO deals with several swarms, not all these swarms’ members are 

moving – or searching – because the leader stays at his own positions. 



105 

 

Figure 5.8 Time-based comparison between all metaheuristics 
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The Meeting Room Approach (MRA) was individually evaluated by developing 

a new version of Particle Swarm Optimization algorithm which is called “MPSO” based 

on the proposed MRA. The performance of the developed MPSO was compared to the 

standard PSO and a “Master-Slave PSO model”. In general, the results showed a better 

performance of MPSO compared to the other algorithms on the same test functions. The 

results also showed that MPSO can solve both unimodal and multimodal test functions 

faster than the standard PSO algorithm. MPSO is explained and discussed in details in 

Appendix B. 

 

5.7 Summary  

The results obtained by NPO over a new combination set of sixty benchmark test 

functions has been analyzed and discussed in this chapter. It also shows the ability of 

NPO for solving the large-scale optimization problems. The new proposed combination 

of test functions were classified into four different classes, Unimodal Separable (U-S), 

Unimodal None Separable (U-N), Multimodal Separable (M-S), and Multimodal None 

Separable (M-N). 
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CHAPTER 6 

 

 

CONCLUSION AND FUTURE WORK  

6.1 Introduction 

Several metaheuristic algorithms and improvements to the existing ones have 

been presented over the years. Most of these algorithms were inspired either by nature or 

the behaviour of certain swarms, such as birds, ants, bees, or even bats. In this thesis, a 

new nature inspired metaheuristic have been proposed for global optimization problems. 

This chapter presents a summary of the research, contributions and description of the 

future direction of the research as presented in this thesis. 

 

6.2 Research Summary 

Hard optimization problems are roughly defined as problems that are difficult to 

be optimally solved using any deterministic method within a ‘‘reasonable’’ time frame. 

Such problems are classified based on their nature into several categories, such as 

constrained or unconstrained, continuous or discrete, static or dynamic, mono or multi-

objective. These problems are satisfactorily solved using metaheuristics. Metaheuristic 

are algorithm which have the capability of solving a wide range of hard optimization 

problems without necessarily adapting to each problem. The prefix ‘‘meta’’ (Greek 

prefix) in the word metaheuristic indicates advanced nature of these heuristics compared 

to the problem-specific heuristics. 

Problems that cannot be satisfactorily solved with the problem-specific 

algorithms are usually solved with metaheuristics, especially the complex problems 
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encountered in the industries and service areas such as finance, engineering, and 

production management. Virtually all metaheuristics are nature-inspired (based on some 

physical, biological, and ethological principles), do not use the objective function 

gradient or Hessian matrix, use stochastic components (involving random variables), 

have several parameters that demands fitting into the problem to be solved. 

Metaheuristics have received a great interest in the last 3 decades. 

The success of a metaheuristic in solving a given problem is determined by its 

ability to strike a balance between exploration (diversification) and exploitation 

(intensification). The regions of the search space with high quality solutions are identified 

through exploitation. Furthermore, exploitation is important for intensifying the solution 

search to some promising areas of the accumulated search experience. The existing 

metaheuristics differ from each other in the way they strive to strike this balance. 

Metaheuristics can be classified based on many classification criteria. These criteria may 

include a consideration of their features with respect to the search path, the memory 

requirement, the kind of neighbourhood exploration deployed, or the number of current 

solutions carried from one round of iteration to the other. In the literature, metaheuristics 

are mainly classified as either single solution-based (SSB) or population-based (PB) 

metaheuristics. The basic SSB metaheuristics are mainly more exploitation oriented 

while the basic PB metaheuristics are more exploration oriented. 

There are several issues faced by the metaheuristics, and one of such issues is 

balancing exploration with exploitation. This issue has been previously discussed. 

Algorithmic search processes are delayed when the exploratory capability of the 

algorithm is more than its exploitation capability; but premature convergence is 

experienced when the reverse is the case. Hence, there is a need to ensure a balance 

between these two algorithmic searching behaviours for an optimum searching process. 

Another problem of metaheuristics is their dependence and use of some control 

parameters whose values significantly controls algorithmic searching process. Hence, 

there is a need to tune these parameters for a better algorithmic performance.  

This study strives to provide answer to one basic question; which is: “Why the 

need to design new metaheuristics?” This is the most important question to justify the 

need for new metaheuristics when there are currently tens nature-inspired metaheuristics 

with unique designs and good performances in solving several engineering and industrial 
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problems. However, the emergence of new sources of inspiration directly translate into 

the development of novel metaheuristics. In general, this question has been addressed in 

chapter two but the answers can be summarized thus: 

1. The optimal solution to most engineering and industrial optimization problems is 

difficult to find due to their nonlinearity (NP-hard) under stringent constraints.  

2. It is a fact that no single optimization method can outperform all other methods on all 

problems, but there several optimization methods which are dedicated to finding 

solution to different types of problems. Similarly, some algorithms are developed to 

provide good solutions to different types of problems, but may be outperformed by the 

highly specialized methods in some situations. Wolpert et al. (1997) formalized this 

fact in their No Free Lunch Theorem (NFL) for search and optimization frameworks, 

where they specified on single-objective optimization and proved that, for all 

optimization algorithms, the sum of the values of any performance measure (such as 

the objective value of the best solution candidate discovered until a time step m) over 

all possible objective functions f is always similar. 

3. Some of the drawbacks of the existing metaheuristics have been discussed in chapter 

two. At first, the searching capability of all metaheuristics depend on two main 

components which are exploration and exploitation, and these two components must 

be optimally balanced (this is still a major problem). Secondly, the searching ability 

of most metaheuristics are governed by more than one control parameters whose 

optimal values are difficult to be determined. This is the justification for the need to 

design new parameters-free metaheuristics. 

Three main objectives were considered in this study; the first objective was to 

propose a novel parameter-free multi-swarm metaheuristic inspired by the movement of 

nomads when searching for the sources of food in the desert, while the second objective 

was to implement the proposed algorithm for solving the unconstrained continuous global 

optimization problems. The final objective was to evaluate the proposed algorithm based 

on a combination set of benchmark test functions.  

To address the first objective, a novel parameter-free nature-inspired 

metaheuristic for solving global optimization problems was designed. The proposed 
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metaheuristic was inspired by the movement of nomads in the desert when searching for 

the sources of food. The proposed algorithm (called Nomadic People Optimizer (NPO) 

algorithm) depends on a new multi-swarm cooperative approach called “Meeting Room 

Approach (MRA)” for establishing the best solutions, hence, a multi-swarm 

metaheuristic.  

The NPO consists of two types of families; the first family is the Sheikh’s family 

which has the best position and fitness value (positioned next to the food source). The 

second family is the normal families. Additionally, the NPO consists of five operators; 

the first operator which is responsible for initiating the Sheikh’s families only is called 

“Initialization”. This implies that the Sheikhs’ families are initialized at the first stage, 

and each one represents a clan. The second operator is the semi-circular distribution of 

the normal families around the Sheiks tent. This operator is responsible for distributing 

or initializing the normal families around the Sheikh’s family. The fourth operator is the 

leadership transition which is responsible for transferring leadership to another family 

with more power (may be a new source of food). These two operators represent the 

exploitation part of the NPO.  

The third operator is families searching. This operator is executed when the 

normal families have a lower fitness value compared to that of the Sheikh’s family. The 

normal families search for better places by updating their positions. When a family finds 

a better new position (i.e. a better fitness value), it becomes the new Sheikh. This operator 

represents the exploration part of the NPO. The final operator is the periodical meeting 

(i.e. Meeting Room Approach “MRA”), which is responsible for balancing between the 

exploration and exploitation components of the NPO.  

Meeting Room Approach “MRA” is a general multi-swarm approach, which 

consists of several swarms called ‘clans’; each clan has a leader which represents the best 

solution in the clan (the local best). All the clan leaders periodically meet to select the 

best leader among them (the global best). The best leader has control over all the clan 

leaders with respect to reaching the best positions. The interaction between the best leader 

(global best) and the normal clan leaders (local best) influence the balance between the 

exploration and exploitation capabilities and maintain a suitable diversity in the 

population even when approaching the global solution; thus, reducing the risk of local 

sub-optima convergence. 
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Regarding the third objective, a new combination of unconstrained test functions 

which contain 60 test functions was proposed for the evaluation purposes. These test 

functions were divided into four groups (Unimodal Non-Separable (U-N) with 14 tests, 

Unimodal Separable (U-S) with 11 tests, Multimodal Non-Separable (M-N) with 26 tests, 

and Multimodal Separable (M-S) with 9 tests).  In addition, this set can be divided into 

two groups, fixed and dynamic dimensions. There are 18 tests were used with 30 

dimensions, meaning that these tests are dynamic; while the other tests are fixed 

dimensions. These 18 tests have been used to evaluate the scalability of the proposed 

algorithm when solving the large-scale problems.  

 

6.3 Conclusion  

The major contribution of this study was the design and implementation of a novel 

nature-inspired metaheuristic for unconstrained (normal and large-scale) optimization 

problems. The proposed NPO depends on a new multi-swarm approach and this is 

another contribution of this study. The conclusions drawn from this study are summarized 

as follows: 

i) NPO algorithm has a unique and simple structure as it was inspired by a human life 

behavior (nomadic life of the nomads). Additionally, NPO does not require any 

controlling parameter as it requires only two structural parameters which are the 

number of clans or Sheikhs and the number of families.  

ii) The NPO algorithm was evaluated over sixty benchmark test functions in both 

unimodal and multimodal forms. The proposed algorithm was able to solve 52 

problems (23 unimodal and 29 multimodal functions).  

iii) The scalability of NPO algorithm was evaluated over eighteen large-scale benchmark 

test functions with four variable sizes (100, 500, 1000, and 2000). The NPO had a 

superior performance over sixteen test functions, which proved its ability to solve 

problems with large number of decision variables.  
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iv) The NPO showed a very good performance with noise problems, such as Quartic test 

function. The NPO achieved results that had never been reported for any other 

algorithm in the current literature. 

v) The NPO achieved good results when solving problems with limited information, such 

as Matyas and Stepint test functions. These problems do not provide any information 

on how to channel a search process toward the best solutions due to the flatness of the 

functions.  

vi) The convergence curves showed that NPO had the fastest convergence on multimodal 

test functions. The NPO proved its ability to avoid all local optima and reach the global 

optima on most of the examined test function. This suggests that the NPO had a good 

exploration (families searching operator) and balancing (meeting room approach) 

mechanism.  

vii) The MRA was proven as a good balancing mechanism when applied to PSO 

algorithm.  

 

6.4 Suggestions for Future Works  

In this study, a novel nature-inspired metaheuristic was for solving unconstrained 

(normal and large-scale) optimization problems. Although the proposed metaheuristic 

has been successfully applied to several benchmark test functions with promising results, 

there are several suggestions for future investigations. These suggestions are categorized 

into two classes as follows: 

 

6.4.1 Applications  

The NPO algorithm can be used to solve different case studies, such as: 

i) NPO can be applied in the Machine Learning field such as in the training of Artificial 

Neural Networks (ANNs). The NPO can be used as ANN training algorithm for 

classification and regression problems. In other words, the NPO searches for the best 
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weights and biases for the feedforward neural networks which enhances the 

classification accuracy of the model or decreases the prediction error with the 

forecasting case studies.  

ii) NPO can be used for selecting the best subset features; meaning that it can be applied 

as a wrapper feature selection algorithm. More experimentation and investigation 

may be required to observe the behavior of NPO in such problems.  

iii) NPO can be applied for solving combinatorial optimization problems such as 

Traveling Sales Man problem or t-way test problems.  

iv) Several scheduling problems can be investigated and solved using NPO, such Time 

table problem or CPU task scheduling problem.  

v) The proposed multi-swarm approach (MRA) can be hybridized with other nature-

inspired swarm-based metaheuristics such as Firefly algorithm, Bat algorithm, and 

Grey wolf optimizer algorithm for enhancing their exploration and exploitation 

capabilities.  

 

6.4.2 Modifications 

In this study, the standard version of NPO was proposed and examined; however, 

there are several modifications to this version which can be considered for future studies, 

such as: 

i) The standard version of the NPO is a single objective algorithm, meaning that the 

objective function deals with minimizing or maximizing only one objective. 

Therefore, this version can be modified to handle more than one objective, implying 

the development of a multi-objective version of the NPO algorithm. 

ii) An evolutionary version of the NPO can be proposed by applying a mutation operator 

to the fourth operator (i.e. Leadership Transition), especially with the combinatorial 

optimization problems. This operator may enhances the exploitation capability of 

NPO.  
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iii) In the real life of nomads, some families can migrate from a clan to another clan closer 

to food sources; therefore, a new evolutionary version of NPO can be proposed with 

the migration operator. This operator may enhance the exploration capability of NPO.  

iv) The first operator (i.e. Initialization) utilized a uniform distribution equation for 

generating random positions for the Sheikhs; however, there is a chance that this 

equation may initialize the Sheikhs at positions far from the optimal solution. 

Therefore, this operator may be enhanced by applying another randomization equation 

such as chaotic maps.  

v) The best Sheikh in the meeting room does not move to any new position after sharing 

information with the normal Sheikhs; therefore, this part may be enhanced by applying 

a kind of movement to the best Sheikh which may lead to better exploration, or at 

least, can decrease the chances of falling in the local optima.   
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APPENDIX A 

METAHEURISTICS USED FOR COMPARISON 

In this appendix, full information about the metaheuristics used in chapter four is 

displayed. This information consists of (Metaheuristic Title, Name of Author(s), the year 

of publication, the link of the website, the code download link, and the main pseudocode).  

As mentioned in chapter four, there are five metaheuristics which have been used for 

comparison; they are (Particle Swarm Optimization “PSO”, Artificial Bees Colony 

“ABC”, Flower Pollination Algorithm “FPA”, Grey Wolf Optimizer “GWO”, and Firefly 

Algorithm “FA”). The results obtained from these algorithms by executing their original 

codes, which have been published online on their respective websites.  

 

Title: Particle Swarm Optimization (PSO) 

Author(s) : Eberhart and Kennedy  

Year: 1995 

Inspiration Source based on the social behaviour of birds (flocking) and fishes 

Website Link https://www.particleswarm.info 

Download Link https://www.particleswarm.info/SPSO2011_matlab.zip 

 

Pseudocode 

 

Algorithm 1: SPSO 

1. Input: #𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠, #𝑀𝑎𝑥𝐼𝑡𝑟, 𝑐1, 𝑐2  

2. Initialize all 𝑷𝒂𝒓𝒕𝒊𝒄𝒍𝒆𝒔  

3. Calculate inertia weight via 𝑒𝑞. 5 

4. Evaluate the fitness for all 𝑷𝒂𝒓𝒕𝒊𝒄𝒍𝒆𝒔  

5. While (𝑖𝑡𝑟 ≤ #𝑀𝑎𝑥𝐼𝑡𝑟 ) 
6.      For each particle 𝑝 in 𝑷𝒂𝒓𝒕𝒊𝒄𝒍𝒆𝒔 

7.            Calculate the velocity for 𝑝 via 𝑒𝑞. 3  

8.            Calculate the new position via 𝑒𝑞. 2 

9.            Evaluate the fitness for all 𝑷𝒂𝒓𝒕𝒊𝒄𝒍𝒆𝒔 

10.           If 𝒑. 𝑭𝒊𝒕𝒏𝒆𝒔𝒔 is better than 𝒑𝑩𝒆𝒔𝒕. 𝑭𝒊𝒕𝒏𝒆𝒔𝒔 Then 𝑝𝐵𝑒𝑠𝑡 = p 

11.      Next p       

12.      𝑔𝐵𝑒𝑠𝑡 = Determine the best in 𝑷𝒂𝒓𝒕𝒊𝒄𝒍𝒆𝒔 

13. End While 
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Title: Artificial Bees Colony (ABC) 

Author(s) : Dervis KARABOGA 

Year: 2005 

Inspiration Source 
It is inspired by the behavior of honey bees when    

seeking a quality food source. 

Website Link https://abc.erciyes.edu.tr 

Download Link https://abc.erciyes.edu.tr/form.aspx 

 

Pseudocode 

 

Algorithm 2: ABC 

1. Input    : N (Scouts), N (Experienced), N (Onlooker), N (Bees),  ItrMax 

2. Output  : Optimal Bee Position  

3. Generate Initial Population of N random positions; 

4. While Stop Condition not met Do  

5.       Evaluate Individual bee position given the fitness function  

6.       Select the best position; Elitist, according to fitness values 

7.       Divide the swarm according to fitness of best into Experienced, Onlooker, Scout  

8.       For each Experienced Do  

9.             Update the positions of experienced bees and determine the current global best. 

10.       For each Onlooker Do  

11.             Select one of the experienced bees as an elite one using RouletteWheel approach 

12.             Update the position of onlooker bees  

13.      For each Scout Do  

14.             Walk randomly around the search space  

15.              Update the position of scout bees  

16. End while 
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Title: Flower Pollination Algorithm (FPA) 

Author(s) : Xin-She Yang 

Year: 2012 

Inspiration Source 
Flower pollination process is associated with the transfer of 

pollen by using pollinators such as insects, birds, bats, … . 

Website Link 
https://www.mathworks.com/matlabcentral/fileexchange/451

12-flower-pollination-algorithm 

Download Link 

https://www.mathworks.com/login?uri=https%3A%2F%2Fw

ww.mathworks.com%2Fmatlabcentral%2Ffileexchange%2F

45112-flower-pollination-algorithm&form_type=community 

 

Pseudocode 

 

Algorithm 3: FPA 

1. Initialize a population of n flowers/pollen gametes with random solutions 

2. Define Objective Function 𝑓(𝑥), 𝑥𝑖 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑑} 

3. Find the best solution 𝑔∗ in the initial population 

4. Define a switch probability 𝑝 ∈ [0,1]  

5. While (𝑡 ≤ 𝑀𝑎𝑥𝐺𝑒𝑛) 

6.          For each flower in the population   

7.               If 𝑟𝑎𝑛𝑑 < 𝑝  

8.                        Draw a 𝑑 − dimensional step vector  𝐿 which obeys a Levy distribution 

9.                        Global pollination via 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝐿(𝑔∗ − 𝑥𝑖
𝑡) 

10.               Else  

11.                        Draw 𝜖 from a uniform distribution in [0,1] 

12.                        Randomly choose 𝑗 and 𝑘 among all the solutions 

13.                        Do local pollination via 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡+1 +  𝜖(𝑥𝑖
𝑡 − 𝑥𝑘

𝑡 ) 

14.               End if 

15.               Evaluate new solutions  

16.               If new solutions are better, update them in the population 

17.          End for 

18.          Find the current best solution 𝑔∗ 

19. End While 
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Title: Gray Wolf Optimizer (GWO) 

Author(s) : Ali Mirjalili 

Year: 2014 

Inspiration Source 
It simulates the leadership hierarchy and hunting 

mechanism of gray wolves in nature. 

Website Link http://www.alimirjalili.com/GWO.html 

Download Link http://www.alimirjalili.com/SourceCodes/GWO.zip 

 

Pseudocode 

 

Algorithm 4: GWO 

1. Initialize a population of n wolves 

2. Define Objective Function 𝑓(𝑥), 𝑥𝑖 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑑} 

3. Initialize 𝑎, 𝐴, and 𝐶 

4. Calculate the fitness of each search agent 

5. 𝑋𝑎 = 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡 

6. 𝑋𝑏 = 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑏𝑒𝑠𝑡 𝑠𝑒𝑎𝑟𝑐ℎ 

7. 𝑋𝛿 = 𝑡ℎ𝑒 𝑡ℎ𝑖𝑟𝑑 𝑏𝑒𝑠𝑡 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡 

8. While (𝑡 ≤ 𝑀𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) 

9.             For each search agent 

10.                     Update the position of current search agent  

11.             End For 

12.             Update 𝑎, 𝐴, and 𝐶 

13.             Calculate the fitness of all search agents 

14.             Update 𝑋𝑎 , 𝑋𝑏 , 𝑋𝛿  

15.              𝑡 = 𝑡 + 1 

16. End While 

17. Return 𝑋𝑎 
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Title: Firefly Algorithm (FFA) 

Author(s) : Xin-She Yang 

Year: 2009 

Inspiration Source 
It is based on the behavior and light flashing patterns of 

tropical fireflies 

Website Link 
https://www.mathworks.com/matlabcentral/fileexchange/296

93-firefly-algorithm 

Download Link 

https://www.mathworks.com/login?uri=https%3A%2F%2Fw

ww.mathworks.com%2Fmatlabcentral%2Ffileexchange%2F

29693-firefly-algorithm&form_type=community 

 

Pseudocode 

 

Algorithm 4: FFA 

1. Initialize the swarm of n Fireflies 

2. Define Objective Function 𝑓(𝑥), 𝑥𝑖 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑑} 

3. Initialize 𝑎, 𝛽0  and 𝛿 

4. Calculate the fitness and the light intensity of each firefly and  

5. While (𝑡 ≤ 𝑀𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) 

6.           For each firefly (𝑓𝑖) in the swarm 

7.                  For each firefly (𝑓𝑗) in the swarm 

8.                         If the intensity of (𝑓𝑖) is less than the intensity of (𝑓𝑗( 

9.                                  Calculate the distance between 𝑓𝑖 and 𝑓𝑗  

10.                                  Calculate the attractiveness between 𝑓𝑖 and 𝑓𝑗 

11.                                  Update the position of (𝑓𝑖) 

12.                                  Evaluate the new solution and update the light intensity 

13.                          End if 

14.                   End For 

15.            End For 

16.            Rank the swarm and find the current best firefly  

17.            𝑡 = 𝑡 + 1 

18. End While 

19. Return best firefly 
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APPENDIX B  

MULTI-SWARM PARTICLE SWARM OPTIMIZATION (MPSO) 

Several metaheuristics have been previously proposed and several improvements 

have been implemented as well. Most of these methods were either inspired by nature or 

by the behaviour of certain swarms such as birds, ants, bees, or even bats. In the 

metaheuristics, two key components (exploration and exploitation) are significant and 

their interaction can significantly affect the efficiency of a metaheuristic. However, there 

is no rule on how to balance these important components. In this thesis, a new balancing 

mechanism based on multi-swarm approach is proposed for balancing exploration and 

exploitation in metaheuristics.  The aim of this appendix is to evaluate the meeting room 

approach on well-known metaheuristic, which is Particle Swarm Optimization (PSO) 

algorithm.  

C-1 Challenges of PSO 

The PSO is a simple social model which has attracted several research interests 

since inception in 1995 due to its ease of implementation and simplicity (Eberhart and 

Kennedy, 1995). Although PSO has undergone several developmental modifications, it 

is still prone to the following problems which demand to be addressed in future studies: 

 Premature convergence: The PSO ends up searching early best solutions and this is 

predominant in multimodal functions. 

 Convergence speed: The PSO establishes the best solution in the early search stage 

but get stagnated in the process of exploiting the global solution.  

 Quality of solution. The PSO produces low-quality solutions due to inherent problem 

complexity, multimodality, and discontinuity. Uncertainty of solutions. The stochastic 

nature of PSO makes it produce different solutions in different runs. 

 Update strategy: The PSO has a simple solution update strategy and hence, cannot 

achieve better solutions in complex environments. 
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C-2 PSO based Meeting Room Approach 

The core idea of multi-swarm is the interaction between several groups while 

searching for a solution. Many multi-swarm schemes have been proposed, each idea 

inspired by a natural behaviour. In this chapter, a new cooperative multi-swarm scheme 

inspired by the human social behaviour is proposed. Here, the interaction is between 

groups of people known as ‘Clans’ and their leaders. The proposed scheme consists of 

several swarms called ‘clans’; each clan consists of several solutions which represent the 

group members. The best member is designated as the leader of a clan; the leader controls 

the members of the clan in terms of the time to move or where to explore. Figure C-1 

depicts the structure of the individual swarm.    

 

 

Figure B. 1 The structure of the individual swarm 
 

In each generation, the leaders meet in a room where the overall best leader update 

the positions of the other normal leaders based on his own positional information. This 

behaviour of knowledge sharing helps to balance the exploration stage with the 

exploitation stage of the PSO. The new multi-swarm approach is called ‘Meeting Room 

Approach’ (MRA). Figure C-2 depicts the PSO based MRA model. In this figure, each 

clan – or swarm – performs a single PSO search, including positional and velocity 

updating, as well as new local population generation. Having established the new 

generations for all the clans, each clan sends the leader ‘best solution’ to the meeting 

room. The best among all the leaders in the meeting room is selected as the overall best 

leader. The new overall best leader shares his positional information with the ordinary 

leaders using the following equations: 

Leader 

Member 
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𝑤𝐿𝑛 = ( 
𝑤𝐿𝑔 − 𝑤𝐿𝑛

𝐼𝑡𝑟
 )  × 𝑟𝑎𝑛𝑑() B.1 

𝑣𝑖
𝐿𝑛(𝑡 + 1) = 𝑤𝐿𝑛  ×  𝑣𝑖

𝐿𝑛
(𝑡) + 𝑟𝑐 (𝑃𝑔

𝐿 − 𝑃𝑛
𝐿(𝑡)) B.2 

𝑥𝑖
𝐿𝑛(𝑡 + 1) =  𝑥𝑖

𝐿𝑛(𝑡) + 𝑣𝑖
𝐿𝑛(𝑡) B.3 

 

Where 𝐿𝑛 represents the normal leaders, 𝐿𝑔 represents the overall best leader, 

𝑥𝑖
𝐿 represents the position of the normal leader, 𝑣𝑖

𝐿𝑛 represents the velocity of the normal 

leader,  𝑤𝐿𝑔 and 𝑤𝐿𝑛 represent the inertia weight of the best leader and the normal leader, 

respectively. 

 

Figure B. 2 PSO based MRA 
  

After each generation, a new leader is chosen for each swarm due to the changes 

in the positions of the members. The new equation of the inertia in the meeting room 

controls the exploration of the search algorithm. The pseudo-code of the proposed Multi-

Swarm Particle Swarm Optimisation (MPSO) algorithm is presented in Figure C-3.  

It is worth to mention that the new version of PSO algorithm (MPSO) does not 

utilise the same equations of MRA which have been discussed in chapter 3. MPSO uses 

Meeting Room 
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the core idea of MRA and applied it based on the behaviour of PSO. In other words, there 

is no mention to ∆𝑃𝑜𝑠 or Ψ variable, they are related to NPO algorithm. Therefore, any 

metaheuristic uses MRA in future, should develop new specific equations for the 

interactions and the information sharing in the meeting room.  

Algorithm: MPSO 

1. Input: #𝑆𝑤𝑎𝑟𝑚, #𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠, #𝑀𝑎𝑥𝐼𝑡𝑟, 𝑐1, 𝑐2, #𝐷𝑖𝑚  

2. Initialize all 𝑳𝒆𝒂𝒅𝒆𝒓𝒔 and their 𝑺𝒘𝒂𝒓𝒎𝒔  
3. Calculate inertia weight via 𝑒𝑞. 5 

4. Evaluate the fitness for all 𝑷𝒂𝒓𝒕𝒊𝒄𝒍𝒆𝒔  

5. While (𝑖𝑡𝑟 ≤ #𝑀𝑎𝑥𝐼𝑡𝑟 ) 
6.    For each 𝒄 in 𝑪𝒍𝒂𝒏𝒔 

7.          For each particle 𝑝 in 𝑷𝒂𝒓𝒕𝒊𝒄𝒍𝒆𝒔 

8.               Calculate the velocity for 𝑝   

9.               Calculate the new position  

10.               Evaluate the fitness for all 𝑷𝒂𝒓𝒕𝒊𝒄𝒍𝒆𝒔 

11.               If 𝑝. 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 is better than 𝑝𝐵𝑒𝑠𝑡. 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 Then  

12.                        𝑝𝐵𝑒𝑠𝑡 = p 

13.               End 

14.          Next 𝑝       

15.    Next 𝑐 
16.    Determine the best 𝑳𝒆𝒂𝒅𝒆𝒓 among all 𝑳𝒆𝒂𝒅𝒆𝒓𝒔 
17.    Update the inertia weight of the Clan c via 𝑒𝑞  𝐵. 1 

18.    Update the velocity of the 𝐿𝑒𝑎𝑑𝑒𝑟𝑐 via 𝑒𝑞 𝐵. 2 

19.    Update the position of the 𝐿𝑒𝑎𝑑𝑒𝑟𝑐 via 𝑒𝑞 𝐵. 3 

20.    Determine the 𝒈𝑳𝒆𝒂𝒅𝒆𝒓 ever as the global best.  

21. End While 

22. Return 𝑩𝒆𝒔𝒕 𝑳𝒆𝒂𝒅𝒆𝒓 

Figure B. 3 Pseudo-code of MPSO 

B-3 Results and Discussion   

This results of the benchmarking evaluations commonly used in the evolutionary 

literature are presented in this section (Jamil et al., 2013). Each test function varies in 

terms of modality (unimodal and multimodal) and the number of dimensions (fixed and 

dynamic). There are four test functions used in this section for evaluating the MPSO. 

These functions are (Sphere, Grewank, Rastirign, and Ackley).  

The performance of the MPSO was evaluated by comparing with that of original 

PSO (SPSO)(Y. Shi and Eberhart, 1999) and Master-Slave PSO (MCPSO)(Niu et al., 

2007). The parameters used for SPSO were recommended by (Y. Shi and Eberhart, 1999) 

with asymmetric initialization method and a linearly decreasing w (changes from 0.9 to 
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0.4). Several swarms of SPSO were involved in the MPSO and MCPSO (as clans and 

slaves respectively) during the benchmark function optimization. Both MPSO and 

MCPSO have the same parameter settings as SPSO1. To investigate the efficiency of the 

proposed MPSO, different population sizes with different dimensions were used for each 

function. The maximum iteration number was set to 500, corresponding to the dimensions 

100, 500, and 1000. The experiments were conducted for a total of 30 settings. Table C-

1 presents the parameters setting for all the evaluated algorithms.  

Table B. 1 Parameters Settings 

Algorithm  Parameter Value 

SPSO 

𝑊 0.9 – 0.4 

No. of Swarms 1 

𝑐1,𝑐2 1.5 

Swarm Size 50 

MCPSO 

𝑊 0.9-0.6 

No. of Slaves 5 

𝑐1,𝑐2, 𝑐3 1.5 

Swarm Size 50 

MPSO 

𝑤𝐿𝑛 0.8 – 0.5 

𝑤𝐿𝑔 0.9 – 0.7 

𝑐1,𝑐2 1.5 

No. of Clans 5 

Clan Size 10 

 

The best and mean fitness values of the particles after 30 experimental runs over 

4 benchmark functions are presented in Table B-2. From the table, MPSO performed 

better than the benchmarking algorithms in almost all the cases. Generally analysing the 

table, MPSO has 5 swarms; each swarm consists of 10 particles but only 5 particles are 

interacting in the meeting room. Hence, it can be said that the MPSO has less 

computational complexity and a better performance in terms of finding the best solution. 

Figure B-4 and Figure B-5 illustrate the ability of the MPSO to evolve in situations that 

the algorithms may have been trapped.  
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Table B. 2 Results for benchmark test functions 

Dim 𝒇𝒏 Algorithm Best Mean S.D 
1
0
0
 

𝑓1 
SPSO 2.5457521 2.7647845 0.0784516 

MCPSO 0.9854126 1.0154784 0.0014784 

MPSO 0.0007845 0.0008748 0.0000184 

𝑓2 
SPSO 0.0884741 0.0964587 0.0078478 

MCPSO 0.0078414 0.0087789 0.0009874 

MPSO 0.0000897 0.0000997 0.0000658 

𝑓3 
SPSO 21.695847 27.947512 0.0847896 

MCPSO 2.0018977 2.6647845 0.0078487 

MPSO 0.0004687 0.0045214 0.0000144 

𝑓4 
SPSO 16.4875218 26.110161 0.0238484 

MCPSO 1.99847 2.5869124 0.0084578 

MPSO 0.0002648 0.0017636 0.0000584 

5
0
0
 

𝑓1 
SPSO 7.2456571 2.7647845 0.0784516 

MCPSO 2.4859157 1.0154784 0.0014784 

MPSO 0.0026472 0.0008748 0.0000184 

𝑓2 
SPSO 1.2785781 0.0964587 0.0078478 

MCPSO 0.9045472 0.0087789 0.0009874 

MPSO 0.0041816 0.0000997 0.0000658 

𝑓3 
SPSO 48.995751 27.947512 0.0847896 

MCPSO 7.2214945 2.6647845 0.0078487 

MPSO 0.0784457 0.0045214 0.0000144 

𝑓4 
SPSO 37.125475 26.110161 0.0238484 

MCPSO 3.35847 2.5869124 0.0084578 

MPSO 0.1778499 0.0017636 0.0000584 

1
0
0
0
 

𝑓1 
SPSO 16.422422 2.7647845 0.0784516 

MCPSO 4.7923729 1.0154784 0.0014784 

MPSO 1.0749752 0.0008748 0.0000184 

𝑓2 
SPSO 3.0899761 0.0964587 0.0078478 

MCPSO 5.2574914 0.0087789 0.0009874 

MPSO 0.9177297 0.0000997 0.0000658 

𝑓3 
SPSO 21.695847 27.947512 0.0847896 

MCPSO 2.0018977 2.6647845 0.0078487 

MPSO 0.9563589 0.0045214 0.0000144 

𝑓4 
SPSO 16.4875218 26.110161 0.0238484 

MCPSO 1.99847854 2.5869124 0.0084578 

MPSO 0.48758311 0.0017636 0.0000584 
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Figure B. 4 Convergence curve for Sphere function 
 

 

Figure B. 5 Convergence curve for Griewank function 

 


