

A FUZZY ADAPTIVE TEACHING

LEARNING-BASED OPTIMIZATION

STRATEGY FOR GENERATING MIXED

STRENGTH T-WAY TEST SUITES

FAKHRUD DIN

DOCTOR OF PHILOSOPHY

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : ___

Date of Birth : ___

Title : ___

 : ___

 : ___

Academic Session : ___

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

New IC/Passport Number

Date:

 (Supervisor’s Signature)

Name of Supervisor

Date:

FAKHRUD DIN

APRIL 05, 1982

A FUZZY ADAPTIVE TEACHING LEARNING-BASED

OPTIMIZATION

OPTIMIZATION STRATEGY FOR GENERATING MIXED

 STRENGTH T-WAY TEST SUITES

SEM 2 2018/2019

BN7797082 Prof. Dr. Kamal Zuhairi Zamli

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate

in terms of scope and quality for the award of the degree of Doctor of Philosophy.

 (Supervisor’s Signature)

Full Name : PROF. DR. KAMAL ZUHAIRI BIN ZAMLI

Position : PROFESSOR

Date :

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang or any other institutions.

 (Student’s Signature)

Full Name : FAKHRUD DIN

ID Number : PCC16010

Date :

A FUZZY ADAPTIVE TEACHING LEARNING-BASED OPTIMIZATION

STRATEGY FOR GENERATING MIXED STRENGTH T-WAY TEST SUITES

FAKHRUD DIN

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Doctor of Philosophy

Faculty of Computer Systems & Software Engineering

UNIVERSITI MALAYSIA PAHANG

April 2019

DEDICATION

Dedicated to my beloved parents and family.

For their countless prayers, endless love, unconditional support, tireless patience and continuous

encouragement.

ii

ACKNOWLEDGEMENTS

Thanks to All Mighty Allah, the Magnificent, the Most Merciful Who always bestows upon me

His endless blessings. The completion of this thesis is yet another very special blessing that All

Mighty Allah bestowed on me. Indeed, ‘Then which of the favors of your Lord will you deny?’.

I am thankful to my supervisor, Professor Dr. Kamal Zuhairi Zamli, for his trust, patience and

professional supervision. Without any doubt, his agile and goal-oriented supervision helped me

to be an independent and productive researcher. I always got motivation and learned new research

techniques whenever I met him. This work was only a dream without his novel style of

supervision and dedication towards undertaking quality research. Thank you very much Prof! I

consider myself very lucky to have you as my supervisor.

I am very grateful to my respectable parents for their kind prayers, selfless love and continuous

support. I still remember my mother’s sleepless nights she spent with me whenever I fell ill. I

never have a hard time in my life because of my father’s lifelong hard work. Khan G, you are my

real hero! My parents are the best parents in the world. I am very thankful to my dearest wife for

her unconditional support and company. I always feel blessed to have you in my life. Your

presence and help made my Ph.D. journey very comfortable. Thank you very much, you are

indeed a true, lovely and sincere partner. My special thanks go to my brothers and sisters,

especially to my elder brother Mian Tufail Mohammad for his time and support for our family. I

really love you all. I really appreciate the kind prayers of my mother-in-law and father-in-law.

Finally, I would like to thank my entire family for their sincere prayers.

I would like to express my gratitude to my dear friends Captain Muhammad Sohail, Dr. Shah

Khalid, Mr. Sami Ullah, Dr. Sami Ur Rahman, Mr. Mansoor Ahmed and Mr. Gohar Ali for their

concerns and continuous support during my Ph.D. Thank you guys for being there for me always.

I am very thankful to Mr. Riaz Ul Haq for his time and sincere help. I would like to thank Dr.

Gran Badshah, Dr. Shahid Anwar, Dr. Mushtaq Ali and Mr. Wasif Nabeel Qureshi for their

friendly time. Special thanks to my Ph.D. colleagues Dr. Hasneeza Lisa Zakaria and Dr. Abdullah

for their help and time. I am grateful to Dr. Nomani Kabir for his kind help. I would like to give

special thanks to Dr. Bestoun S. Ahmed and Dr. Mansoor for their valuable guidance and research

tips. I am thankful to all my lab mates for their love and respect. I am grateful to all my colleagues

especially to Dr. Nasir Rashid, Dr. Sehat Ullah, Dr. Aftab Alam, Mr. Anwar Ul Haq, Dr. Fakhre

Alam and Dr. Zahid Khan from the Department of Computer Science & IT for their moral

support. May Allah reward you and bless you all with the best health and more successes.

I express my gratitude to Ministry of Higher Education (MOHE), Malaysia for supporting my

Ph.D. studies. Thank you MOHE for the all the support via the prestigious Malaysian

International Scholarship (MIS). Also, I would like to thank MOHE for partially supporting my

work and publications through FRGS grant entitled: A Reinforcement Learning Sine Cosine

based Strategy for Combinatorial Test Suite Generation (RDU:170103). I am grateful to

University Malaysia Pahang (UMP) for providing me the best infrastructure and conducive

research environment and for supporting my studies. The time I spent at UMP is indeed the best

time of my life which I will always remember. I would like to thank all faculty and staff members

of Faculty of Computer Systems & Software Engineering (FSKKP) for their support and help.

Last but not least, I am very grateful to the administration of University of Malakand for allowing

me to pursue Ph.D. from Malaysia.

iii

ABSTRAK

Penggunaan algoritma meta-heuristik sebagai asas untuk strategi t-cara (di mana t menunjukkan

kekuatan interaksi) dan ujian kekuatan bercampur adalah perkara lumrah dalam kajian masa kini.

Kebanyakan strategi penjanaan data ujian adalah berdasarkan algoritma meta-heuristik seperti

Simulasi Penyepuhlindapan (SA), Pencarian Tabu (TS), Algoritma Genetik (GA),

Pengoptimuman Koloni Semut (ACO), Pengoptimuman Gerombolan Zarah (PSO), Pencarian

Harmoni (HS), Pencarian Burung Kedasih (CS), Algoritma Kelawar (BA) dan Algoritma Lebah

yang telah dibangunkan pada tahun-tahun kebelakangan ini. Walaupun banyak kemajuan telah

dicapai, penyelidikan ke atas strategi baru masih relevan kerana tiada strategi tunggal dapat

mendominasi strategi sedia ada (seperti yang diramalkan oleh Teori Makan Tengahari Percuma).

Di samping itu, kajian meta-heuristik bebas parameter tidak diterokai sepenuhnya dalam literatur

saintifik. Oleh kerana prestasinya yang terbukti dalam banyak masalah pengoptimuman lain,

penggunaan algoritma Pengoptimuman berasaskan Pembelajaran Pembelajaran (TLBO) yang

bebas parameter sebagai strategi t-cara baru dirasakan amat berguna. Tidak seperti algoritma

meta-heuristik yang sedia ada, TLBO adalah bersifat bebas parameter, dan tidak mempunyai

sebarang kawalan parameter tertentu. Oleh itu, TLBO menghindarkan keperluan untuk proses

penalaan khusus yang rumit dan tertumpu hanya pada bermasalah tertentu. Walau bagaimanapun,

TLBO mengambil pendekatan yang mudah untuk melakukan carian global dan setempat secara

berurutan pada setiap lelaran. Memandangkan proses eksplorasi (iaitu mencari lokasi baru yang

berpotensi di ruang carian) dan eksploitasi (iaitu memanipulasi kejiranan setempat) adalah

bersifat dinamik dan bergantung kepada ruang carian semasa, mana-mana pembahagian tetap

antara keduanya boleh menjadikan proses carian kurang berkesan. Menangani isu-isu ini, tesis

ini mencadangkan variasi TLBO baru berdasarkan sistem inferensi kabur Mamdani, yang

dikenali sebagai Adaptif TLBO (ATLBO), untuk membolehkan pemilihan operasi carian global

dan carian tempatan yang adaptif. Sistem inferensi kabur Mamdani mempunyai tiga masukan:

pengukur kualiti, pengukur eksplorasi, pengukur eksploitasi dan satu keluaran pemilihan. Tiga

masukan ini merekod keperluan bagi mencapai nilai optimum dengan membimbing prosess

carian ke arah yang betul.Pengukuran kualiti dan explorasi digunakan untuk mencapai

kepelbagaian penyelesaian, sedangkan langkah Intensifikasi digunakan untuk memudahkan

penumpuan. Output sistem inferensi kabur Mamdani bertindak sebagai suis berselang-seli untuk

pemilihan antara operasi carian global dan carian tempatan. Penerapan ATLBO untuk strategi

penjanaan kekuatan ujian t-cara campuran menunjukkan prestasi yang kompetitif dari segi saiz

sut ujian yang diperolehi berbanding TLBO asal dan algorithma meta-heuristik yang lain. Secara

kesimpulannya, ATLBO menunjukan pencapaian secara purata terbaik sebanyak 39 untuk sut

ujian yang dijalankan dengan mengunakan data eksperimen penanda aras dan merupakan strategi

bebas parameter pertama boleh menghasilkan kedua-dua bentuk sut ujian iaitu keseragaman dan

kekuatan bercampur parameter t-cara.

iv

ABSTRACT

The use of meta-heuristic algorithms as the basis for t-way (where t indicates the interaction

strength) and mixed strength testing strategies is common in recent literature. Many test data

generation strategies based on meta-heuristic algorithms such as Simulated Annealing (SA), Tabu

Search (TS), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Particle Swarm

Optimization (PSO), Harmony Search (HS), Cuckoo Search (CS), Bat Algorithm (BA) and Bees

Algorithm have been developed in recent years. Although much progress has been achieved,

research into new strategies is still relevant owing to the fact that no single strategy can claim

dominance over other existing ones (i.e., as stipulated by the No Free Lunch Theorem).

Additionally, the adoption of new parameter-free meta-heuristic-based t-way strategies has not

been sufficiently explored in the scientific literature. Owing to its proven performance in many

other optimization problems, the adoption of the parameter-free Teaching Learning-based

Optimization (TLBO) algorithm as a new t-way strategy is deemed useful. Unlike most existing

meta-heuristic algorithms, and by virtue of being parameter-free, TLBO does not have any

specific parameter controls. Thus, TLBO avoids the need for cumbersome and problem specific

tuning process. However, on the negative note, TLBO takes a simplistic approach of performing

both global and local search sequentially per iteration. Given that exploration (i.e., globally

finding the new potential region in the search space) and exploitation (i.e., locally manipulating

best-known neighbourhood) are dynamic in nature depending on the current search space region,

any preset division between the two can be counter-productive. Addressing these issues, this

thesis proposes a new TLBO variant based on a Mamdani-type fuzzy inference system, called

adaptive TLBO (ATLBO), to permit adaptive selection of its global and local search operations.

The Mamdani-type fuzzy inference system of ATLBO has three inputs: Quality measure,

Diversification measure and Intensification measure and one output: Selection. The three input

measures capture necessary details so as to achieve optimality by guiding the search process in

the right direction. Quality and Diversification measures are used to achieve solution diversity,

whereas the Intensification measure is used to facilitate convergence. The Selection output of the

Mamdani-type fuzzy inference system acts as an intermittent switch between global search and

local search in ATLBO. The adoption of ATLBO for the mixed strength t-way test generation

strategy demonstrates competitive performances in terms of obtained test suite sizes against the

original TLBO and other meta-heuristic counterparts. To conclude, ATLBO-based strategy

contributes to 39 new best average test suit sizes on benchmarking experiments and is the first

parameter-free strategy that addresses generation for both uniform and mixed strength t-way test

suites.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS xi

LIST OF ABBREVIATIONS xiv

CHAPTER 1 INTRODUCTION 1

1.1 Overview 1

1.2 Problem Statement 5

1.3 Aim and Objectives 9

1.4 Research Scope 9

1.5 Research Activities 10

1.5.1 Literature Review 11

1.5.2 Methodology 12

1.5.3 Benchmarking 12

1.6 Thesis Structure 12

CHAPTER 2 LITERATURE REVIEW 14

2.1 Test Case Design Techniques 14

vi

2.1.1 Equivalence Partitioning 15

2.1.2 Boundary Value Analysis 16

2.1.3 Cause and Effect Graphing 16

2.2 Theoretical Background: Mixed Strength and t-way Testing 18

2.2.1 Mixed Strength and t-way Testing: A Motivating Example 18

2.2.2 Basics of Interaction Coverage 20

2.2.3 Mathematical Objects for Test Suites Representation 23

2.3 Meta-heuristic Algorithms 28

2.4 Meta-heuristic-based t-way Strategies 30

2.4.1 Simulated Annealing-based t-way Strategies 31

2.4.2 Tabu Search-based t-way Strategies 33

2.4.3 Genetic Algorithm-based t-way Strategies 35

2.4.4 Ant Colony Algorithm-based t-way Strategies 37

2.4.5 Particle Swarm Optimization-based t-way Strategies 38

2.4.6 Harmony Search-based t-way Strategies 40

2.4.7 Cuckoo Search-based t-way Strategies 41

2.4.8 Bat Algorithm-based t-way Strategies 43

2.4.9 Bees Algorithm-based t-way Strategies 44

2.5 Categories of Meta-heuristic-based t-way Strategies 45

2.6 Overview of Teaching Learning-based Optimization (TLBO) Algorithm 49

2.6.1 TLBO Variants and their Applications 50

2.7 Fuzzy Logic and Meta-heuristic Algorithms 52

2.8 Research Gap 53

2.9 Chapter Summary 57

CHAPTER 3 METHODOLOGY 58

3.1 The Original Teaching Learning-based Optimization (TLBO) Algorithm 58

3.2 The Proposed Fuzzy Adaptive TLBO (ATLBO) 62

vii

3.2.1 The Mamdani-type Fuzzy Inference System of ATLBO 62

3.2.2 The General ATLBO Algorithm 69

3.3 Computation of the Measures for t-way Testing 71

3.4 Implementation of ATLBO for the Mixed Strength t-way Test Suite Generation 72

3.4.1 Interaction Elements Generation Algorithm 73

3.4.2 Test Suite Generation Algorithm based on ATLBO 75

3.5 Chapter Summary 79

CHAPTER 4 RESULTS AND DISCUSSION 81

4.1 Experimental Setup 81

4.2 Characterizing Time and Size Performances for TLBO and ATLBO 84

4.3 Benchmarking with other Meta-Heuristic Strategies 85

4.4 Statistical Analysis 85

4.5 Discussion 86

4.6 Threats to Validity 106

4.7 Chapter Summary 108

CHAPTER 5 CONCLUSION AND FUTURE WORK 109

5.1 Objectives Revisited 109

5.2 Contributions 111

5.3 Future Work 112

REFERENCES 114

APPENDIX A LIST OF PUBLICATIONS 126

APPENDIX B BEST PAPER AWARD 128

APPENDIX C MALAYSIAN INTERNATIONAL SCHOLARSHIP 129

APPENDIX D Q1 PAPERS 130

viii

LIST OF TABLES

Table 2.1 Decision Table for the Example in Figure 2.2 17

Table 2.2 The Online Gaming Architecture: Parameters and Values 19

Table 2.3 Pairwise and Mixed Strength Test Suite for the System in Figure 2.3 20

Table 2.4 A Simplified Example of a System with three Parameters two Values 21

Table 2.5 The Exhaustive Test Suite for the System in Table 2.4 21

Table 2.6 Mathematical Objects for t-way Test Suites and their Notations 24

Table 2.7 Standard Meta-heuristic-based Strategies 46

Table 2.8 Hybrid Meta-heuristic-based Strategies 47

Table 2.9 Adaptive Meta-heuristic-based Strategies 48

Table 2.10 Existing Straetegies based on Meta-Heuristic Algorithms for t-way Test

Suite Generation: Strengths and Weaknesses 55

Table 3.1 Fuzzy Rule Base of the ATLBO Fuzzy Inference System 67

Table 4.1 Parameter Settings for the Competing Meta-heuristic Algorithms 84

Table 4.2 Characterizing TLBO and ATLBO 88

Table 4.3 CA(N; t, 3p) 90

Table 4.4 CA(N; t, v7) 91

Table 4.5 CA(N; t, v10) 92

Table 4.6 VCA(N; 2, 315, {C}) 93

Table 4.7 VCA(N; 3, 315, {C}) 94

Table 4.8 VCA(N; 2, 43 53 62, {C}) 95

Table 4.9 Wilcoxon Rank-Sum Test for Table 4.2 100

Table 4.10 Wilcoxon Rank-Sum Test for Table 4.3 100

Table 4.11 Wilcoxon Rank-Sum Test for Table 4.4 101

Table 4.12 Wilcoxon Rank-Sum Test for Table 4.5 101

Table 4.13 Wilcoxon Rank-Sum Test for Table 4.6 101

Table 4.14 Wilcoxon Rank-Sum Test for Table 4.7 102

Table 4.15 Wilcoxon Rank-Sum Test for Table 4.8 102

ix

LIST OF FIGURES

Figure 1.1 Failure and Software System 2

Figure 1.2 Relationship of Errors, Faults and Failures 3

Figure 1.3 Abstract Level Representation of Combinatorial t-way Testing 4

Figure 1.4 Strategies with/without Parameter Tuning for the Problem of t-way Test

Suite Generation 7

Figure 1.5 Performance Issues with the Original TLBO Algorithm 8

Figure 1.6 Research Activities 11

Figure 2.1 A Simple Application to Illustrate Equivalence Partitioning 15

Figure 2.2 The CEG for the Example in Figure 2.1 17

Figure 2.3 Online Gaming Architecture 18

Figure 2.4 Total Pairwise Interaction Tuples for the System in Table 2.4 22

Figure 2.5 Interaction Elements/Tuples Coverage for the System in Table 2.4 23

Figure 2.6 Representation of CA, MCA, and VCA 28

Figure 2.7 General Meta-heuristic-based Strategy for t-way Test Suite Generation 30

Figure 2.8 SA-based Strategy for t-way Test Suite Generation 33

Figure 2.9 TS-based Strategy (MiTS) for t-way Test Suite Generation 35

Figure 2.10 GA-based Strategy for t-way Test Suite Generation 36

Figure 2.11 ACA-based Strategy for t-way Test Suite Generation 38

Figure 2.12 PSO-based Strategy for t-way Test Suite Generation 40

Figure 2.13 HS-based Strategy (HSS) for t-way Test Suite Generation 42

Figure 2.14 CS-based Strategy for t-way Test Suite Generation 43

Figure 2.15 BA-based Strategy (BTS) for t-way Test Suite Generation 44

Figure 2.16 Bees Algorithm-based Strategy for t-way Test Suite Generation 45

Figure 2.17 Types of TLBO Variants 50

Figure 2.18 Research Problems in the Existing Related Literature 56

Figure 3.1 Concepts of TLBO for Optimization 59

Figure 3.2 TLBO's Teaching and Learning Analogy 60

Figure 3.3 The Original TLBO Algorithm 61

Figure 3.4 Fuzzy Inference System for ATLBO 65

Figure 3.5 Membership Functions of the three Input Measures 66

Figure 3.6 Membership Functions of the Selection Output Linguistic Variable 66

Figure 3.7 Max-min Inference Method and Defuzzification 68

Figure 3.8 ATLBO based on Fuzzy Inference System 70

Figure 3.9 Pairwise Test Suite for the Online Gaming Architecture 71

x

Figure 3.10 Hamming Distance Calculation for Intensification and Diversification 72

Figure 3.11 The Hash Map and Interaction Elements for the VCA 73

Figure 3.12 Algorithm for Interaction Elements Generation 74

Figure 3.13 ATLBO for Generating Mixed Strength t-way Test Suite 77

Figure 3.14 Graphical Representation of Test Suite Generation by ATLBO 78

Figure 3.15 Example for Illustrating Generation of Test Suite and Removal of

Interaction Elements from Hs 79

Figure 4.1 Mean Exploration and Exploitation Percentage of ATLBO for Table 4.2 88

Figure 4.2 Box Plots for Table 4.2 89

Figure 4.3 Mean Exploration and Exploitation Percentage of ATLBO for Table 4.3 96

Figure 4.4 Mean Exploration and Exploitation Percentage of ATLBO for Table 4.4 97

Figure 4.5 Mean Exploration and Exploitation Percentage of ATLBO for Table 4.5 98

Figure 4.6 Mean Exploration and Exploitation Percentage of ATLBO for Table 4.6 99

Figure 4.7 Mean Exploration and Exploitation Percentage of ATLBO for Table 4.7 99

Figure 4.8 Mean Exploration and Exploitation Percentage of ATLBO for Table 4.8 100

xi

LIST OF SYMBOLS

∑ Summation

! Factorial

λ Lamda

∃ There exists

+ Don’t care

% Percentage

P Number of parameters

v Values each parameter carries

t Interaction strength

N Number of rows

vP Number of parameters each carries v values

CAi ith covering array

Cost(CA) Cost of covering array

f(x) Objective function value (total interaction elements covered)

xi Single interaction element

∈ Element of

Hs Hash map of interaction elements

RM Ringgit

/ Division

≥ Greater than or equal to

≤ Less than or equal to

⊇ Superset or equal to

 𝐴′ New solution

 𝑓(𝐴′) Fitness function

 𝑝 Acceptance probability

 𝑟 Cooling rate

∆ The difference in fitness functions

ε Maximum evaluations

so Initial solution

s* New solution

𝜌 Neighborhood function

𝜎 Number of elite elements

Ʈ Pheromone amount

Ƞ Trial level

xii

α Pheromone coefficient

β Heuristic coefficient

ρ Pheromone evaporation rate

Xi Candidate test case

gBest Global best

lBest Local best

C1, C2 Cognitive parameters

ω Inertia weight

Ps Combination list

Vi
t Velocity of ith particle at time t

𝑟𝑎𝑐𝑐𝑒𝑝𝑡 Acceptance rate

 𝑟𝑝𝑎 Pitch adjustment rate

¬ Not

pa Probability of finding cuckoo eggs in a nest

Qi Frequency of bat

n Number of scout bees

m Number of patches

e Number of elite patches

Exp Exponent

C(c*) Cost of new solution

C(c) Cost of current solution

D Dimension of the problem

Xi Vector with D elements

𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 Best learner in population X

 𝑋𝑚𝑒𝑎𝑛 Mean of population X

 ≠ Not equal to

X Population

X´ Updated population

TF Teaching factor

Xbest Current best solution in population

Im Intensification measure

Dm Diversification measure

Qm Quality measure

Xcurrent Current solution

μ(A(x)) Membership function value of fuzzy set

max_fitness Maximum fitness

xiii

min_fitness Minimum fitness

— Division

| Such that

| | Absolute value

∅ Empty set

tsub Sub strength

α Significance level

 𝛼𝐻𝑜𝑙𝑚 Bonferroni-Holm correction

* Best value

- Result not available

∏ Product

fi Number of linguistic terms of the ith linguistic variable

xiv

LIST OF ABBREVIATIONS

ATLBO Adaptive Teaching Learning based Optimization

TLBO Teaching Learning based Optimization

GA Genetic Algorithm

SA Simulated Annealing

PSO Particle Swarm Optimization

ACO Ant Colony Optimization

HS Harmony Search

DPSO Discrete Particle Swarm Optimization

APSO Adaptive Particle Swarm Optimization

BA Bat Algorithm

CS Cuckoo Search

TS Tabu Search

ACA Ant Colony Algorithm

FPA Flower Pollination Algorithm

PSTG Particle Swarm-based Test Generator

CEG Cause and Effect Graphing

ILS Iterated Local Search

VNS Variable Neighborhood Search

GLS Guided Local Search

GRASP Greedy Randomized Adaptive Search Procedure

CASA Covering Arrays for Simulated Annealing

OA Orthogonal Array

CA Covering Array

MCA Mixed Covering Array

VCA Variable Strength Covering Array

CCA Constrained Covering Array

SCA Sequence Covering Array

CTCA Cost-Aware Covering Array

OPAT One-Parameter-At-A-Time

OSAT One-Set-At-A-Time

OTAT One-Test-At-A-Time

IEEE Institute of Electronics & Electric Engineering

BSOD Blue Screen of Dearth

SUT Software/System Under Test

xv

UML Unified Modelling Language

GCC GNU Compiler Collection

NP Nondeterministic Polynomial time

CPHF Covering Perfect Hash Families

MiTS Mixed Tabu Search

TSA Tabu Search Algorithm

GS Genetic Strategy

VS-PSTG Variable Strength Particle Swarm-based Test Generator

CPSO Conventional Particle Swarm Optimization

HSS Harmony Search-based Strategy

HM Harmony Memory

HMS Harmony Memory Size

BTS Bat-inspired t-way Strategy

QOBL Quasi Opposition Based Learning

FATLBO Fuzzy Adaptive Teaching-Learning-based Optimization

MTLBO Modified Teaching-Learning-based Optimization

ITLBO Improved Teaching-Learning-based Optimization

DE Differential Evolution

HSTLBO Harmony Search-based Teaching-Learning-based Optimization

Co-TLBO Cooperative Teaching-Learning-based Optimization

FL Fuzzy Logic

COG Centre of Gravity

FWER Family-Wise Error Rate

GUIs Graphical User Interfaces

ISA Improved Simulated Annealing

SA-VNS Simulated Annealing and Variable Neighborhood Search

ITL Interaction Tuples List

IEL Interaction Elements List

FTLS Final t-way Test Suite

FTS Final Sequence t-way Test Suite

IE Interaction Element

TTLBO Teacher’s Teaching-learning-based Optimization

1

CHAPTER 1

INTRODUCTION

1.1 Overview

Errors in the life cycle of software are unavoidable. The action of any stakeholder

involves in software development that leads to an unwanted result is called error. In the

source code, design or resources of software, errors represent mistakes. When

programmers commit mistakes while coding, they are known as bugs. The dynamic

reliability of software such as correctness (the software expected behavior) is intensely

affected by errors. Errors create defects, also known as faults. A faulty software

component upon use causes software failures. A software system, from its requirements

to maintenance, may either provide expected outcome (i.e., observing specifications) or

encounter failures as shown in Figure 1.1. Errors and faults are associated with software

artifacts such as use cases, unified modeling language (UML) models, hierarchy charts,

etc. including source code. Failures happen to executable artifacts only, which is normally

considered to be source code (Jorgensen 2016). The relationship between these terms is

shown in Figure 1.2. When users encounter failure while using a software system or

testers provoke failure during testing, it is reported as a problem or incident.

With the increasing complexity of today’s software, the nature of faults has now

become more challenging too. This is evident from the IEEE Standard Classification for

Software Anomalies reported in (Zubrow 2009) that lists a range of faults such as

input/output faults, logic faults, computation faults, interface faults, data faults, etc. (The

document defines anomaly in software as “departure from the expected”). Large,

configurable and other software applications, in addition to the above-mentioned faults,

encounter a different kind of fault known as interaction fault. Such a fault can appear to

be elusive. It may cause interaction failure when different software systems interact

2

(within an environment) or due to the combination of different features of same

configurable software.

Figure 1.1 Failure and Software System

Interaction faults caused several Windows XP machines to crash. The incident

resulted in the Blue Screen of Death (BSOD) problem and was reported in the Register

news article (Leyden 2012). The problem occurred owing to the three-way interaction

between Windows XP Cache manager, Symantec’s security software and third-party

encryption software. In GCC (GNU Compiler Collection), a framework for compilation,

some interaction faults (configuration dependent) have been identified (Garvin and

Cohen 2011). According to (Yin, Ma et al. 2011), 23.4%∼61.2% faults in 5 software

systems (COMP-A, CentOS, MySQL, Apache, and OpenLDAP) involved some

combinations of parameters. Similarly, (Kuhn, Wallace et al. 2004) reported that in a

variety of software systems faults could be triggered, though fewer, when three, four, five

or six parameters interact. In essence, interaction faults can lead even to system crash

owing to incompatibility problems of various factors or parameters of the system. (Niu,

N et al. 2018). Therefore, exploring these faults is crucial for the success of a software

system.

Interaction faults can be of two types: configuration faults and combination of

parameter values faults. The former type may occur when various software systems

interact. The latter one may arise when various parameters of the same software system

are used in combination. Windows XP, Mozilla Firefox, and Apache Tomcat is a single

configuration of an environment where three different software systems: Operating

System, Web Browser and Web Server, respectively, are used. Similarly, Arial, Bold, 10

3

and Western is one combination of input values for the Font, Font Style, Font Size, and

Script parameters in the Microsoft Notepad Font window.

Figure 1.2 Relationship of Errors, Faults and Failures

It is common for today’s software to have an exorbitant amount of combinations

of input parameters or configurations. For example, the recent version of Apache server

software has 172 input parameters. Of these, 158 are two-valued, 8 are three-valued, 4

are four-valued, 1 is five-valued and the final 1 is six-valued. This results in 1.8x1055

unique input combinations. Testing the web server exhaustively is infeasible even if only

one second would reserve for each combination. It is even equally important to reduce

testing efforts in case of software having a small number of input parameters.

Software testers wish to test Software Under Test (SUT) exhaustively. However,

it is infeasible as almost every software today, like the Apache server software mentioned

before, comes with dozens or even hundreds of input parameters. An appropriate solution

point, known as combinatorial t-way (where t defines interaction strength) testing, is a

collection of sampling strategies that efficiently sift out only selected input parameters

sufficient for testing the large input space (Nie and Leung 2011). Combinatorial t-way

testing represents a SUT as a model that contains the SUT’s factors (configuration options

or input parameters) each of which can be assigned values from a specific domain. This

model is then used by a combinatorial t-way testing strategy to generate, for example, a

combinatorial object called t-way covering array or simply covering array (CA).

Specifically, a CA is a mathematical representation of a t-way test suite. In CA, each

possible combination of input parameters values must appear at least once for each and

every t (which is known as the interaction strength) input parameters’ combinations. The

4

SUT is finally tested with CA by executing its test cases (i.e., each row in the CA) on

each combination (Yilmaz, Fouch et al. 2014). An abstract level representation of

combinatorial t-way testing is shown in Figure 1.3.

Figure 1.3 Abstract Level Representation of Combinatorial t-way Testing

In general, most t-way test suite generation strategies can be classified into three

categories based on how CAs are generated:

i. One-test-at-a-time (OTAT): Strategies in this category repeatedly

generate one test case as a single row of the CA until all required

interactions are covered (Cohen, Dalal et al. 1997).

ii. One-set-at-a-time (OSAT): Strategies in this category generate a set of test

cases at the end of each iteration. The strategy optimizes the coverage by

mutating values of selected parameters of some test cases in the set. The

size of the test set is decreased or even increased so as to achieve full

coverage (Cohen, Colbourn et al. 2003, Nurmela 2004).

iii. One-parameter-at-a-time (OPAT): Strategies in this category initially do

not generate complete test cases. Instead, they first assign values to some

part of the input parameters to cover their interactions and subsequently

set up the remaining part to generate complete test cases (Lei, Kacker et

al. 2008).

The most flexible and efficient are the OTAT strategies as compared with the

other two categories (Niu, N et al. 2018).

Generally, it is good enough to test only uniform interactions i.e., same interaction

strength among all parameters of a SUT. However, only covering uniform interactions

may not be sufficient in case of many contemporary real applications (Yilmaz, Cohen et

al. 2006, Afzal, Torkar et al. 2009). For example, for some SUT there may be 100% two-

5

way interactions among all its parameters but may also be a 100% three-way (or higher)

interactions among some subset(s) of its parameters. Such cases support the argument

that while testing the SUT, the interaction strength might be variable instead of fixed.

Therefore, t-way testing when t varies (variable or mixed strength interactions) be

preferred than simple t-way testing (uniform strength interactions) owing to its flexible

and practical nature (Nie and Leung 2011).

The problem of mixed strength test suites generation is a Nondeterministic

Polynomial time (NP)-hard problem (Lei and Tai 1998). Significant research efforts have

been made to investigate this problem. Recent efforts have focused on the adoption of

meta-heuristic algorithms as the basis for the test suite generation strategies (Mahmoud

and Ahmed 2015, Timaná-Peña, Cobos-Lozada et al. 2016) because these algorithms can

achieve better results in terms of sizes compared with other computational strategies.

Meta-heuristic based strategies often start with a generation of random

solution(s). One or more search operators are then iteratively applied to the solution(s)

for improving the overall objective function evaluation (i.e., for greedy coverage of

interaction combinations). Although several variations exist, the main difference among

meta-heuristic strategies lies on each individual search operator and on the manipulation

of exploration and exploitation. Owing to their success, many new t-way strategies based

on meta-heuristic algorithms have been introduced in the literature.

Fuzzy control is widely adopted for tuning control parameters of meta-heuristic

algorithms so as to balance exploration and exploitation. It is an active and useful research

area that contributes to the applications of fuzzy logic and fuzzy sets (Castillo, Neyoy et

al. 2015). Fuzzy controllers appear more effective in analyzing complex processes than

conventional quantitative approaches. Similarly, the methodology followed by fuzzy

controllers can be useful when the interpretation tools of available sources of information

are qualitatively inaccurate or uncertain (Yen and Langari 1999).

1.2 Problem Statement

Software complexity and its operating environments may cause its behavior to be

dependent on many factors. One important factor is unwanted interactions that can

increase the occurrence of faults in software. Though useful, traditional software testing

methods may not handle interaction faults owing to large input spaces of today’s software

6

(Cohen, Dwyer et al. 2007). From last two decades, t-way test suite generation strategies

effectively test software by sampling only required interactions. The t-way test suites

generated successfully by these strategies cover interactions based on the required

interaction strength at least once from typically a large number of parameter values or

configuration options.

The problem of generating t-way test suites or mixed strength test suites is a

computationally hard problem (Lei and Tai 1998, Yilmaz, Cohen et al. 2006, Afzal,

Torkar et al. 2009, Kuliamin and Petukhov 2011). To be specific, searching for test suites

with fewer possible test cases is an NP-hard problem (Lei, Kacker et al. 2008). Thus, it

can be painstakingly difficult to search optimum mixed strength test suites. After being

formulated as an optimization problem, several research studies emerged in the literature

adopting meta-heuristic algorithms for the generation of near-optimal test suites. Meta-

heuristic algorithms adopted by t-way test suite generation strategies include Simulated

Annealing (SA) (Cohen, Colbourn et al. 2003), Tabu Search (TS) (Nurmela 2004),

Genetic Algorithm (GA) (Shiba, Tsuchiya et al. 2004), Ant Colony Algorithm (ACA)

(Shiba, Tsuchiya et al. 2004), Particle Swarm Optimization (PSO) (Ahmed and Zamli

2011c, Ahmed, Zamli et al. 2012), Harmony Search (HS) (Alsewari and Zamli 2012),

Cuckoo Search (CS) (Ahmed, Abdulsamad et al. 2015), Bat algorithm (BA) (Alsariera

and Zamli 2015), and Bees Algorithm (Mohd Hazli, Zamli et al. 2012). Although much

progress has been achieved (Timaná-Peña, Cobos-Lozada et al. 2016), research into new

strategies is still relevant owing to the fact that no single strategy can claim dominance

over other existing ones (i.e., as stipulated by the No Free Lunch Theorem (Wolpert and

Macready 1997)).

Most meta-heuristic algorithms introduce specific parameter controls so as to

search optimum solutions (i.e., t-way test suites). For example, GA exploits crossover

probability, mutation probability, selection operator, etc.; PSO introduces inertia weight

and social/cognitive parameters; HS relies on the consideration rate of harmony memory

and pitch adjustment; ACO exploits evaporation rate, pheromone influence, and heuristic

influence; SA uses temperature and cooling rate; TS introduces short-term memory and

long-term memory, CS relies on switching probability; BA exploits frequency, loudness

and pulse emission rates; and Bees Algorithm uses the number of scout bees, the number

of patches, the number of elite patches, etc. Tuning such control parameters accordingly

7

ensures a suitable quality solution. However, the tuning of these parameters is often time

consuming and problem specific because there is no one-size-fits-all strategy. Therefore,

it is necessary to design new t-way strategies based on parameter-free meta-heuristic

algorithms as the adoption of the same has not been explored in the scientific literature

as depicted in Figure 1.4.

Figure 1.4 Strategies with/without Parameter Tuning for the Problem of t-way Test

Suite Generation

Owing to its proven performance in many other optimization problems, the

adoption of the parameter-free Teaching Learning-based Optimization (TLBO) (Rao,

Savsani et al. 2011, Rao, Savsani et al. 2012) algorithm as a basis for a new t-way strategy

is deemed useful. Unlike most existing meta-heuristic algorithms, and by virtue of being

parameter-free, TLBO does not have any specific parameter controls. Thus, TLBO

avoids the need for cumbersome and problem specific tuning process. However, on the

negative note, TLBO takes a simplistic approach of performing both global search and

local search sequentially per iteration. Given that exploration (i.e., globally finding new

potential region in the search space) and exploitation (i.e., locally manipulating best-

known neighborhood) are dynamic in nature depending on the current search space

region, any preset division between the two or their 50-50 probability as in TLBO can be

counter-productive (M. Črepinšek, Liu et al. 2013, Yang, Deb et al. 2013). For instance,

Figure 1.5 (a) shows that the search needs to be intensified as convergence to the global

minimum is near. Local search may complete its turn at this point of the search process

and is immediately followed by global search. This causes TLBO to miss the global

minimum as shown in Figure 1.5 (b). Similarly, Figure 1.5 (c) requires more exploration

than exploitation as the illustrated problem has more than one optimal solutions (i.e.,

8

multimodal). On the other hand, exploitation is required in case of the search space for a

unimodal problem depicted in Figure 1.5 (d).

Figure 1.5 Performance Issues with the Original TLBO Algorithm

To address these issues, this thesis presents a new TLBO variant called adaptive

TLBO (ATLBO) integrated with the Mamdani-type fuzzy inference system (Cordón

2011, Camastra, Ciaramella et al. 2015) for the problem of generating mixed strength t-

way test suites. ATLBO adaptively selects either local search operation or global search

operation per iteration. This new capability enables ATLBO to have a good balance

between exploration and exploitation. Experimental results reveal that ATLBO exhibits

competitive performances in terms of obtained mixed strength test suite sizes against

original TLBO and other meta-heuristic counterparts. In essence, the hypothesis of this

thesis suggests that ATLBO is very effective for the problem of generating mixed

strength t-way test suites owing to its improved search mechanism and a good balance

between global search and local search.

9

1.3 Aim and Objectives

The quest for new or enhanced meta-heuristic algorithms to effectively and

efficiently solve the mixed strength t-way test suite generation problem is the main

motivation of this research work. Therefore, this thesis aims to propose an enhanced

TLBO variant called adaptive TLBO (ATLBO) using a Mamdani-type fuzzy inference

system for the mixed strength test suite generation problem. For fulfilling this aim, the

objectives of the research are:

i. To design a new variant of TLBO called ATLBO based on a Mamdani-type

fuzzy inference system for adaptively selecting exploration (i.e., global

search) and exploitation (i.e., local search).

ii. To implement ATLBO for addressing generation for both uniform and mixed

strength t-way test suites.

iii. To evaluate the performance of ATLBO in terms of generated test suite sizes

against the original TLBO and other meta-heuristic algorithms.

1.4 Research Scope

Following points highlight the scope of this research work.

• The focus of this thesis is the test case generation phase in the software

testing life cycle. Specifically, the mixed strength t-way test suite

generation/sampling for test execution is addressed in this research work.

• The methodology adopted by a t-way strategy can either be exact,

algebraic, greedy, or meta-heuristic. Strategies based on meta-heuristic

algorithms have generated most optimal test suites to date. Therefore, only

meta-heuristic-based strategies for t-way testing are considered in this

thesis.

• Meta-heuristic algorithms with no algorithm-specific parameters (i.e.,

parameter-free) have been recently introduced in the optimization

literature. Besides TLBO, Jaya (Rao 2016) and Symbiotic Organisms

Search (SOS) (Cheng and Prayogo 2014) are some other examples of

10

parameter-free meta-heuristic algorithms. This research has adopted

TLBO owing to its successful applications for solving a wide range of

optimization problems in many fields of science and engineering.

• The scope of this thesis is limited to the design and implementation of a

mixed strength t-way test suite generation strategy based on ATLBO. The

current interaction strength support is set at t = 4 which is empirically

consistent with evidence in the literature (where 70-90% of the faults can

be detected).

• Two main types of fuzzy inference systems, namely Mamdani (Mamdani

and Assilian 1975) and Sugeno (Sugeno 1985) have broad acceptance and

applications for solving many real-world problems. This work integrates

the well-known Mamdani-type fuzzy inference system with ATLBO so as

to achieve a suitable performance. Sugeno as well as other types of fuzzy

inference systems are outside the scope of this thesis.

• This thesis focuses only on the test generation and not on the test

execution. As a result, the performance of ATLBO for the mixed strength

t-way test suite generation is gauged in terms of obtaining the most

minimum test suite size.

1.5 Research Activities

Overall, the research activities encompass three main phases, namely the

literature review, methodology and evaluation. The first phase is the literature review that

leads to a complete understanding of the domain of interest via the available state-of-the-

art literature. The research problem and proposed research contribution are formulated

from this phase. The second phase constitutes the methodology of this work where

initially the general ATLBO with its new search mechanism is presented followed by

giving the complete details of adopting ATLBO for addressing generation for both

uniform and mixed strength t-way test suites. Finally, the evaluation/benchmarking phase

investigates the performance of ATLBO in terms of the generated test suite sizes against

referenced strategies based on original TLBO and other well-established meta-heuristic

algorithms. To illustrate how the phases are related, the research activities are

summarized in Figure 1.6. The following subsections elaborate these phases further.

11

Figure 1.6 Research Activities

1.5.1 Literature Review

In this phase, the literature survey is carried out to understand the current state of

research on the uniform and mixed strength t-way testing. Software testing is considered

as general research area which is then narrowed down to test data generation strategies

owing to their alluring prospects. The literature review starts by reviewing existing

foundation test case design strategies along with newly establishing strategies for

exploring software interaction faults. After identifying the importance of the

complementary test case design strategies, existing strategies in the literature for t-way

testing are reviewed in order to identify their features and possible limitations. The

research statement is formulated after the literature review survey. This phase provided

the foundation for the methodology of this research study.

12

1.5.2 Methodology

In this phase, TLBO is adopted owing to its simple design for optimization. A

new variant of TLBO, called ATLBO is designed that intelligently applies the local and

global search operations using a Mamdani-type fuzzy inference system. After presenting

the general structure of ATLBO, the details of its implementation for addressing the

problem of mixed strength t-way test suite generation are given. Other more optimized

supporting algorithms are also designed and developed in this phase. Detailed

methodology of this research study for addressing the problem of mixed strength t-way

test suites will be discussed in Chapter 3.

1.5.3 Benchmarking

Initially, ATLBO is benchmarked against the original TLBO for a predefined set

of example systems to evaluate its performance (in terms of time) and efficiency (in terms

of generated test suite sizes). Then, the results of ATLBO are benchmarked against the

well-known results of other state-of-the-art meta-heuristic based strategies to further

investigate and evaluate its efficiency.

1.6 Thesis Structure

This thesis is organized into five chapters. The organization outlined in this

section is as follows. Chapter 2 reviews the foundation knowledge relevant to software

interaction testing and meta-heuristic based test case generation strategies. The chapter

starts with the introduction of basic test case design strategies with examples that

illustrate how each strategy selects test cases. Then, a simple online gaming architecture

is presented as a configuration software system to illustrate uniform and mixed strength

interaction testing. Thereafter, the chapter explains the formulation for interaction

elements and how these elements are covered by test cases. This is followed by a

theoretical background of t-way testing. The chapter then overviews meta-heuristic

algorithms. Then, it briefly describes and investigates uniform and mixed strength

interaction test suite generation strategies based on meta-heuristic algorithms such as SA,

TS, GA, ACA, PSO, HS, CS, BA and Bees Algorithm available in the existing literature.

Here, the search process and algorithm structure of these meta-heuristic based strategies

are described. Following this, strategies based on meta-heuristic algorithms for t-way

testing are categorized into standard, adaptive and hybrid strategies. The chapter then

13

presents an overview of TLBO and reviews its different variants with their applications.

Hereafter, the chapter identifies the research gap in the application of these meta-

heuristic-based strategies for t-way testing.

Chapter 3 presents the methodology that justifies how ATLBO is designed and

implemented for addressing the t-way test suite generation problem. After the overview

of original TLBO, the detailed design of ATLBO is given. Specifically, the Mamdani-

type fuzzy inference system is briefly discussed which ATLBO uses for the global search

and local search selection as per search requirement. Finally, the implementation of

ATLBO for mixed strength t-way test suites is presented with thorough explanations on

how it can be used for automated test data generation.

Chapter 4 evaluates performance of ATLBO against other strategies based on

meta-heuristic algorithms in terms of the generated test suite sizes. ATLBO’s

performance is first evaluated in terms of both time and generated test suite size against

original TLBO. Similarly, the generated test suite sizes by ATLBO are benchmarked

against the results available in the high-impact literature. All experimental results are

reported in the form of best and mean solutions. Similarly, the chapter also includes

statistical analysis conducted for all the obtained results to ensure better comparison. For

every test generation problem, the chapter depicts the percentage distribution pattern of

exploration and exploitation adopted by ATLBO. The chapter then briefly discusses the

observations based on the obtained results. At the end, the chapter presents the identified

threats to validities and elaborates how to mitigate their effects on the results.

Finally, chapter 5 concludes this research study with a summary of achievements

and contributions. Moreover, it revisits the main research hypothesis and debates on the

effectiveness of ATLBO. Eventually, the chapter derives conclusions based on

conducting this research and its findings and presents future work.

14

CHAPTER 2

LITERATURE REVIEW

The foundation for this work has been laid out in chapter 1. The area of interest

has been elaborated in the chapter followed by a brief description of the problem

statement. The aim and the objectives that drive this study have been stated. Finally, the

structure of the thesis has given in the chapter.

Complementing chapter 1, this chapter reviews the body of knowledge in the area

of automatic test case design to understand it, and subsequently identifies the research

problem. Firstly, the chapter explains the basic test case design techniques. Secondly, the

chapter presents the fundamentals of combinatorial mixed strength and t-way testing.

Thirdly, the chapter comprehensively reviews the state-of-the-art meta-heuristic-based t-

way strategies along with their novel division into three categories, namely standard,

adaptive and hybrid strategies. Fourthly, the chapter presents an overview of original

TLBO and briefly reviews its variants and their applications. Fifthly, the chapter

identifies the research gap in the existing works of the application of meta-heuristic

algorithms for t-way test suite generation. Lastly, the chapter concludes the presented

contents in the summary section.

2.1 Test Case Design Techniques

Effective testing is based on efficient test case design techniques. These

techniques enable testers to select test cases that best suit the system. Some of the well-

known test case design techniques are explained with examples in the following

subsections.

15

2.1.1 Equivalence Partitioning

Equivalence partitioning tests the Software/System Under Test (SUT) with

equally partitioned classes of its input/output domains (Hass 2014). With such a

technique, testing the SUT using a selected test case in a class is sufficient to test it with

all other possible test cases in that class partition. To put it differently, the value of any

test case in a class is supposedly equivalent to the value of any other test case in that class

partition. Thus, if a test case is successful in fault detection in a class, it is equivalently

attributed to the other test cases as well in the same class partition (Myers, Sandler et al.

2011). To clearly illustrate this concept, a simple example is given in Figure 2.1.

Figure 2.1 A Simple Application to Illustrate Equivalence Partitioning

A simple application that calculates the total amount of a customer bill after

discount based on the purchase amount is presented. For example, if the purchase amount

is between RM30.00-RM99.00, the discount will be 5%. For the purchase amount above

RM99.00, the offered discount is 10%. It can be observed here that there is no discount

for the purchase amount below RM30.00. Testing all the possible values of the purchase

amount field is infeasible. Hence, the values of the purchase amount can be partitioned

into classes using equivalence partitioning that determine the discount. Clearly, in case

of the running example, there are three classes of the purchase amount, i.e., purchase

amount below RM30.00, purchase amount above RM99.00, and purchase amount

between RM30.00-RM99.00. To test the Amount after Discount field of the application,

only one value (possibly the value at the mid) needs to be selected from each class

partition. Therefore, 14.00, 49.00, and 200.00 are required to test the system using

equivalence partitioning.

16

2.1.2 Boundary Value Analysis

Boundary value analysis uses the class partitions of equivalence partitioning for

the selection of test cases. Test cases selected using boundary value analysis include the

values exactly on, below and above the edges of the class partitions as many faults could

also occur using such values (Burnstein 2006, Myers, Sandler et al. 2011).

In the case of example depicted in Figure 2.1, the boundaries of the three class

partitions are 1.00, 29.00, 99.00 and 100.00, respectively. To undertake the boundary

value analysis, testers for this example would use (0.00, 1.00, 2.00), (28.00, 29.00, 30.00)

and (99.00, 100.00, 101.00) as test cases.

2.1.3 Cause and Effect Graphing

Cause and Effect Graphing (CEG) is another specification-based test design

technique for validating the functionality of a given SUT. CEG is more effective for

control centric SUTs as compared to the previously discussed techniques which are used

with data-centric SUTs (Srivastava, Patel et al. 2009). By using a graph, CEG visualizes

the SUT’s inputs (or causes) with their corresponding outputs (or effects) (Hass 2014).

The cause corresponds to an input condition from the specification that may influence the

result of the SUT, whereas the effect corresponds to the response of the SUT to any set

of input conditions (Srivastava, Patel et al. 2009).

Initially causes, effects and constraints are identified from the SUT’s

specifications when tests adopt CEG. This is followed by the construction of cause and

effect graph as a combinatorial logic network graph. The nodes of the graph represent

causes, effects and constraints whereas its edges represent Boolean operators (AND, OR,

NOT) between causes and effects. After the graph construction, a unique identifier is

assigned to each cause and effect and their relationships are marked on the graph. The

next step transforms the graph into a decision table to design test cases.

For the example application shown in Figure 2.1, suppose that the SUT’s

specification requires that the Purchase Amount field needs not be negative and that its

value should not contain any alphabets or special symbols. The SUT should display an

error message if the value of Purchase Amount field is negative, and if it contains

alphabet(s) or special symbol(s); the “Invalid value” message needs to appear. Otherwise,

17

the Total Amount after Discount value should appear. In this case, the input conditions

or causes are C1: The value of Purchase Amount > 0.00 and C2: The value without

alphabets or special symbols. Similarly, the output conditions or effects are E1: The value

is negative; E2: The Total Amount after Discount value and E3: An Invalid value. CEG

visualizes the relationships between these causes and effects in Figure 2.2.

Figure 2.2 The CEG for the Example in Figure 2.1

In the decision table, shown in Table 2.1, rows represent causes and effects

whereas columns represent test cases (three test cases T1, T2 and T3 for the running

example). The entry of each cell of the table may be ‘0’, ‘1’, or ‘+’. If a cell entry is ‘0’,

it indicates the absence of cause or effect. If a cell entry is ‘1’, it indicates the presence

of cause or effect. The entry ‘+’ indicates ‘don’t care’.

Table 2.1 Decision Table for the Example in Figure 2.2

The above-discussed techniques are useful to discover and prevent faults.

However, such techniques are unable to detect faults due to interactions of input

18

components (Cohen, Dwyer et al. 2007). Combinatorial t-way testing among other

techniques is found most effective to avoid the otherwise impossible exhaustive testing.

2.2 Theoretical Background: Mixed Strength and t-way Testing

It has been proved empirically that only a small number of inputs (usually from 3

to 6) causes faults in certain classes of software (Kuhn and Okum 2006). If t or fewer

input parameters involved in the occurrence of a fault, a smaller set of test cases can be

designed on some t-way combinations. These test cases appear to be very effective as

they can detect 50% to 75% of the faults in a SUT (Kuhn, Wallace et al. 2004).

2.2.1 Mixed Strength and t-way Testing: A Motivating Example

To illustrate the generation problem of both mixed strength and t-way test suites,

a simple model of online gaming architecture is presented as shown in Figure 2.3.

Figure 2.3 Online Gaming Architecture

The online gaming architecture is composed of five parameters or components.

There are two types of clients (i.e., parameters are ‘Client Browser’ and ‘Smart Phone

OS’) where parameter ‘Client Browser’ represents a normal PC user whereas parameter

‘Smart Phone OS’ represents a mobile user. Both parameters have different

configurations or values. On the server side, there are three types of parameters, namely

‘Server’, ‘Game Server’ and ‘Database Server’. Each of these parameters carries different

values. Thus, the online gaming architecture depicted in Figure 2.3 can be summarized

19

(see Table 2.2) as a system of five parameters where three parameters carry two values

while two parameters carry three values.

Table 2.2 The Online Gaming Architecture: Parameters and Values

This system can be tested with different testing methods, but one of the common

sources of software faults may be some unexpected interaction between the system’s

parameters or configurations (Williams and Probert 2001). The chances of failure of a

system increase with the increase in number of parameters. To mitigate such chances,

and ensure the quality of a SUT, testers may require to perform exhaustive testing (i.e.,

test all combinations or interactions among parameters). For the system discussed here,

exhaustive testing yields a total 72 test cases (i.e., 2x2x2x3x3). However, there can only

be 9 test cases to execute if two-way interactions of the system parameters are considered

as shown in Table 2.3 (first 9 test cases). Though this will give a minimum number of

test cases and will cover all the two-way combinations but may miss some interaction

faults. For example, the parameters; Server, Game Server, and Smart Phone OS need to

be tested collectively to avoid possible faults because of their interactions. One way of

achieving this is to first prepare two-way test cases for all five parameters followed by

preparing three-way test cases for the three stated parameters. This will result in 21 test

cases. However, the testing cost will be increased due to a large number of test cases,

particularly in cases where the system is highly configurable or has large input

parameters.

Another way of designing test cases for two- and three-way interactions

simultaneously is combining them in a single test suite. This method not only maintains

minimal coverage across the parameters but also avoids testing all the 71 or 21 test cases.

Table 2.3 shows the test suite that covers the variable or mixed strength interactions

among the parameters of the system shown in Figure 2.3. There are now only 10 test

20

cases to cover pairwise or two-way interactions of all the five parameters of the system

and three-way interactions of the three parameters mentioned above.

Table 2.3 Pairwise and Mixed Strength Test Suite for the System in Figure 2.3

The above discussion signifies the importance of defining and creating test suites

that cover both t-way and mixed strength interactions, particularly when interactions

grow. To save testing cost and time, it is unavoidable to search for effective and efficient

ways for creating test suites with minimum possible test cases, specifically for systems

with large configurations or with large number of input parameter values.

2.2.2 Basics of Interaction Coverage

In this section, a simplified example is presented to comprehend the process of

test suites creation and interaction elements coverage. In Table 2.4, a system with three

parameters (a, b, c) each with two values is presented.

21

Table 2.4 A Simplified Example of a System with three Parameters two Values

For this example, as illustrated in the previous section, the test suite with total 8

(i.e., 2x2x2 or 23) test cases as shown in Table 2.5 can test the system exhaustively (i.e.,

at full strength t = 3).

Table 2.5 The Exhaustive Test Suite for the System in Table 2.4

With the increase in number of parameters and values, the size of exhaustive test

suites increases exponentially. Pairwise test suites are helpful as they significantly reduce

the number of test cases and achieve complete coverage of the interaction elements or

tuples. Mathematically, the total number of these interaction tuples can be calculated

exactly using Eq. 2.1 (Colbourn and Dinitz 2006).

Total Interaction Tuples or Elements = (𝑃
𝑡
)𝑣𝑡 = 𝑃!

𝑡!(𝑃−𝑡)!
𝑣𝑡 2.1

Eq. 2.1 calculates the total number of interaction tuples using the number of

system’s parameters (P), the required interaction strength (t) and the number of values

(v) each parameter carries. For cases where P, t, and v vary, the total number of interaction

elements is equal to the sum of products of each individual interaction sets. The first step

that any t-way testing strategy takes is to determine all the possible combinations of the

system parameters or interaction sets using Eq. 2.2.

22

Total Parameters Combinations = (𝑃
𝑡
) = 𝑃!

𝑡!(𝑃−𝑡)!
 2.2

For P = 3 and t = 2, Eq. 2.2 results in the value three. Therefore, for the example

in Table 2.4, there are three possible parameter combinations, namely ab, ac and bc.

After this calculation, the t-way strategy assigns related values to every

combination of the parameters to form interaction elements or tuples. The strategy then

attempts to generate test suite with fewer possible test cases in order to cover all these

tuples. Figure 2.4 shows parameters combinations (total three) and interaction elements

(total 12) for the system in Table 2.4.

Figure 2.4 Total Pairwise Interaction Tuples for the System in Table 2.4

The final test suite covers all the interaction tuples at least once to ensure that all

tuples are tested at least once. The process of constructing test cases demonstrates the

coverage of interaction elements. A test case, based on its arrangement, could be

sufficient for testing either one or more interaction elements. If a test case covers more

elements, it is the more suitable candidate to be added to the final test suite. Figure 2.5

illustrates how only four test cases (a reduction of 50% testing efforts) cover all the 12

interaction tuples shown in Figure 2.4.

Although, 100% coverage is achieved with only four test cases for the running

example, the same percentage of tuples can be covered by more than four test cases if

other test cases were chosen instead of those shown in Figure 2.5. The first test case (a1,

b1, c1) in Figure 2.5 achieves 25% coverage of the total pairwise interaction tuples as it

covers three interactions. With the addition of the second test case i.e., (a1, b2, c2),

coverage percentage reaches 50 as three more interactions have been covered now. The

addition of the last two test cases in the test suite completes 100% coverage as they cover

23

the remaining six interactions. Interaction elements are removed once they are covered

by a test case.

Figure 2.5 Interaction Elements/Tuples Coverage for the System in Table 2.4

The process of interaction coverage explained above is usually followed by most

of the greedy t-way test suite generation strategies. However, test case selection and test

suite generation differentiate one t-way strategy from another.

As the problem of t-way test generation is NP-hard, a strategy can only predict an

approximate number of test cases using the lower bound. For uniform t-way test suites,

the lower bound is computed as the interaction strength times values (i.e., vt). When the

test suite size reaches the lower bound, it is called an absolute minimal. A strategy cannot

produce test suite size minimum than the lower bound. In a SUT with different P and v

while only a single interaction strength t, the lower bound here can be computed by

multiplying interaction strength t times the first maximum values of the parameters in

descending order. For mixed strength t-way test suites, the lower bound is the sum of

products of the first maximum values in descending order times the main and sub

interaction strengths.

2.2.3 Mathematical Objects for Test Suites Representation

There are seven different mathematical objects reported in the literature for the

mathematical representation of t-way test suites (See Table 2.6). Covering array (CA) is

24

the most common type of mathematical object used by strategies in t-way test suite

generation. CAs were initially used for interaction testing by Williams and Probert

(Williams and Probert 1996) and Cohen et al. (Cohen, Dalal et al. 1997). With CAs, the

input space and its domain of values (or configurations options) of a software system can

be modeled efficiently. Moreover, CAs are the foundation mathematical objects for other

types such as sequence covering arrays (SCAs). CAs are widely accepted owing to their

ability of cost-effectively executing every behavior of a system caused by the interaction

of t or fewer input values and efficient representation of optimized t-way test suites. In

CA, it is assumed that the array contains all required interactions among the parameters’

values at least once. CA is originated from another mathematical object called orthogonal

array (OA) (Federer and Mandeli 1986). All the mathematical objects reported in the

literature for the representation of test suites are defined as follows.

Table 2.6 Mathematical Objects for t-way Test Suites and their Notations

Mathematical Objects Notations

1 Orthogonal Array (OA) OAλ(N; t, P, v)

2 Covering Array (CA) CAλ(N; t, P, v)

3 Mixed Covering Array (MCA)
MCA(N; t, P, (v1, v2, … vP}) or

MCA(N; t, vP)

4 Variable Strength Covering Array (VCA) VCA(N; t; P, v, {CA1… CAj})

5 Constrained Covering Array (CCA) CCA(N; t, P, v)

6 Sequence Covering Array SCA(N; t, P, v)

7 Cost-Aware CA CTCA(N; t, P, Cost(CA))

Definition 2.1. An OAλ(N; t, P, v) is an array of N  P dimensions where it is

needed that every N  t sub-array contains each t-tuple exactly λ times where λ = N/vt; t

is the interaction strength, P is the number of parameters (P ≥ t); and v is the number of

values corresponding to each parameter.

For instance, OA(9; 3, 4, 3) contains only nine rows in the array to cover 3-way

interactions (t) among a system of four parameters (P) each with three values (v). The use

of OA is discontinued in t-way test suite generation owing to the requirement of the exact

repetition of the t-elements when parameters’ values grow. As an alternative version of

the OA, the CA notation is presented. CA can handle an increasing number of parameters

and values (Kacker, Kuhn et al. 2013) and is defined as:

Definition 2.2. CAλ(N; t, P, v) is the general form of CA which represents an N 

P array on values (0, 1, …, v-1) | every X where X = {x0, …, xt-1} ∈ λ-covered and every

25

N  t sub-array consists of all ordered t size subsets over v values at least λ times, where

the set of columns (parameters) X = {x0, …, xt-1} ⊇ {0, …, P-1}.

For λ=1, the notation reduces simply to CA(N; t, P, v) which indicates that all the

t-tuples or elements of the values of system’s parameters appear in the array at least once

(Hartman and Raskin 2004). A CA with fewer possible rows (i.e., with smallest N)

corresponds to an optimal CA which is represented mathematically using Eq. 2.3.

𝐶𝐴(𝑡, 𝑃, 𝑣) = min { 𝑁: ∃ 𝐶𝐴 (𝑁; 𝑡, 𝑃, 𝑣)} 2.3

The notation of CA assumes that the value 𝑣 (number of values) for each

parameter 𝑃 needs to be uniform which is not common in real applications. Usually,

parameters of many real-world systems have varying number of values. Such systems

can be modelled by another general mathematical structure called mixed covering array

(MCA) which is defined below:

Definition 2.3. MCA(N; t, P, (v1, v2, … vP}) represents an N  P array over v

values, where the rows of every N  t sub-array contain all t interactions of values at least

once from the t columns.

The notation has the flexibility to be presented as MCA(N; t, vP) that can also be

used for a CA with fixed-level, such as CA(N; t, vP}. Both the abovementioned objects

define a fixed strength t across all parameters. However, normally certain groups of

parameters require much stronger testing (i.e., higher interaction strength for certain

groups of parameters). This is particularly beneficial in cases, for example, when

increasing t across all parameters is expensive or when developers/testers can identify

that certain groups of parameters can cause failures (Yilmaz, Fouch et al. 2014). In a

nutshell, mixed or variable strength covering array (VCA) offers the flexibility of varying

coverage strength across the input space and is defined as:

Definition 2.4. VCA(N; t; P, v, {CA1… CAj}) is also a mathematical structure

generated as an array of N rows and P columns on v values, but every N  t array contains

one or more sub-covering arrays, namely CA1..CAi with interaction strengths t1…tj,

respectively, all larger than t.

26

All these objects are called traditional mathematical objects for t-way testing.

Although the objects explained so far support many applications, they still may not suit

the requirements of many other current applications.

The involvement of constraints in the usage of modern day software systems is

now customary. Constraints dictate that certain combination of values must either be

present or absent in the array. A constraint can make many of the CA or MCA rows

invalid to test. To this end, another definition of constrained covering array (CCA) can

be derived from the previous definitions (Ahmed, Gambardella et al. 2017):

Definition 2.5. In its standard form, CCA(N; t, P, v) can be defined as an N  P

sub-array on v values with constraints C, where every N  t sub-array satisfies constraints

of all ordered subset of size t over values v at least once.

To accommodate varying or mixed number of values, the notation CMCA(N; t,

P, (v1, v2, … vP)) is used.

To test a system with traditional mathematical objects, it is assumed that ordering

of parameter values in a given row of the object has no effect on its ability of exploring

fault. Any permutation of the parameter values in a row covers similar set of parameter

value combinations, and need to detect similar interaction faults. However, this is not the

case particularly in event-driven systems such as graphical user systems and device

drivers where processing of an event is often dependent on prior events. Therefore,

different permutations of the same group of events can detect different interaction faults

(Ahmed and Zamli 2011b). This new mathematical object can be defined as follows

(Kuhn, Higdon et al. 2012):

Definition 2.6. A sequence covering array, SCA(N; t, P, v) is an N  P array where

each row contains v values from parameters P with every t-length permutation of the

values v at least once. Adjacency of the values in the t-length permutations is not required.

Normally different testing cost is associated with every configuration (or test run).

For instance, software installation or compilation costs more than other configurations

(Yilmaz, Fouch et al. 2014). In such testing scenarios, minimizing the number of

configurations or test runs may not reduce the overall cost of testing. With this, another

object can be defined as follows (Demiroz and Yilmaz 2016):

27

Definition 7. A cost-ware covering array, CTCA(N; t, P, Cost(CA)) is a t-way

covering array that minimizes the cost of each row of the CA.

In this work, only CA, MCA and VCA are considered. Most of the t-way testing

literature focused on these objects. CCA is also a very important construct as constraints

are common in today’s complex software systems. CTCA is a recently introduced object

that attempts to minimize the number of costly interaction elements in the array.

As stated earlier, the CA notation can efficiently abstract t-way test suites. For

example, Figure 2.6 (a) shows a test suite of size N = 8 (i.e., eight test cases) with three-

way (t = 3) interactions for a system that has four parameters (P), namely a, b, c, and d

each with two values (v). This test suite can simply be represented by the notation CA(8;

3, 24). Figure 2.6 (b) is another test suite of size N = 12 with three-way interactions for a

system that has four parameters (a, b, c, d) where three parameters (a, b, and c) carry two

values and one parameter (d) carries three values. For this test suite, the notation MCA(12;

3, 23 31) can be used.

Similarly, Figure 2.6 (c) shows a test suite of size N = 9 with two-way (the main

strength tm) interactions for a system having four parameters (a, b, c, and d) of which two

have three values (a and b) and two have two values (c and d). The suite also covers

three-way interactions (sub-strength ts) of the system’s three parameters (b, c, and d)

where the first one (b) has three values, whereas the last two (c and d) have two values.

For the representation of this complex structure, the simple notation VCA(9; 2, 32 22, {CA

(3, 31 22)}) can be used.

Mathematically, the t-way test generation can be expressed as an optimization

problem using Eq. 2.4 and Eq. 2.5:

Maximize 𝑓(𝑥) = ∑ 𝑥𝑖
𝑁
1 2.4

Subject to 𝑥 ∈ 𝑥𝑖 , 𝑖 = 1, 2, … . , 𝑁 2.5

where 𝑓(𝑥) is an objective function capturing the weight of the test case in terms of the

number of covered interactions; 𝑥 is the set of each decision variable 𝑥𝑖 ; 𝑥𝑖 is the set of

possible range of values for each decision variable, that is, 𝑥𝑖 = {𝑥i (1), 𝑥𝑖(2),

. . . , 𝑥𝑖(𝐾)} for discrete decision variables (𝑥i (1) < 𝑥𝑖(2) < . . . < 𝑥𝑖(𝐾)); N is the

28

number of decision parameters; and 𝐾 is the number of possible values for the discrete

variables.

Figure 2.6 Representation of CA, MCA, and VCA

So far, this section presented the preliminaries of mixed strength and t-way testing

that included the background and mathematical notations of the same. The next section

presents state-of-the-art meta-heuristic based strategies for t-way test suites generation.

2.3 Meta-heuristic Algorithms

Problems are considered hard optimization problems if any deterministic

algorithm fails to solve them satisfactorily within an acceptable time limit. These hard

problems are everywhere, from computer science to engineering and from management

to finance. There can be different categories of hard optimization problems based on

whether they are single or multi-objective, discrete or continuous, static or dynamic,

constrained or unconstrained. In order to solve these problems to near optimality, meta-

heuristic algorithms can be used. Meta-heuristic algorithms solve approximately many

hard optimization problems without the need of adapting deeply to each problem. This is

clearly indicated in the name with the Greek prefix “meta” that they are “higher-level”

heuristics contrary to problem-specific heuristics. Meta-heuristic algorithms are

generally used for problems which have no problem-specific algorithms for their solution

(Boussaïd, Lepagnot et al. 2013). They have successfully solved complex problems in

many fields of study such as forecasting (Cheng, Firdausi et al. 2014, Cheng, Wibowo et

al. 2015), economics (Arifovic 1996), medicine (Sheikhan and Ghoreishi 2013),

29

computer science (Mirjalili, Mohd Hashim et al. 2012), and engineering (Talatahari,

Kheirollahi et al. 2013, Cheng, Prayogo et al. 2014), to name a few.

Characteristics common in almost all meta-heuristics algorithms include

inspiration from nature (simulate laws from biology or ethology, physics or sociology);

the application of stochastic constructs (involving randomness); no use of gradient or

Hessian matrix of the fitness function; adaptation of several specific parameters to the

optimization problem (Boussaïd, Lepagnot et al. 2013). Some of the new algorithms

claim to be parameter-free (i.e., they do not use algorithm-specific parameters).

Different classifications for meta-heuristic algorithms are reported in the

literature. Two well-known classifications are based on the inspiration of an algorithm

from a natural phenomenon such as swarm intelligence, evolution theory, physics, etc.,

and the number of random solutions generated by an algorithm in each iteration during

optimization. This last classification has two categories: single-solution based also

known as trajectory algorithms and population-based meta-heuristic algorithms.

Algorithms in the former category generate only one random solution and subsequently

improve it stochastically till the end of optimization. Simulated Annealing (SA), the

Iterated Local Search (ILS), the Tabu Search (TS), the Guided Local Search (GLS), the

GRASP method, the Variable Neighborhood Search (VNS) and their variants are some

meta-heuristic algorithms in this category. The focus of this work is on the latter category

in which algorithms mostly generate many random solutions and improve them in each

stage of optimization. Some popular algorithms in this category include Genetic

Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO),

Artificial Bee Colony (ABC), Harmony Search (HS), Cuckoo Search (CS) and Teaching

Learning-based Optimization (TLBO).

Exploration and exploitation (or diversification and intensification) lie at the heart

of every meta-heuristic algorithm (Talbi 2009). Exploration finds potential areas of

solutions in the entire random search space, whereas exploitation focuses on the

neighborhood of potential solutions. Excessive or limited use of any of the two can

degrade the performance of a meta-heuristic algorithm. Therefore, a meta-heuristic

algorithm needs to have a proper balance between exploration and exploitation so as to

search high-quality solutions (M. Črepinšek, Liu et al. 2013, Yang, Deb et al. 2013).

30

2.4 Meta-heuristic-based t-way Strategies

Generally, meta-heuristic-based strategies start by creating lists that consist of all

mixed strength and t-way interaction elements. The strategy employs an efficient

algorithm for this purpose. A meta-heuristic algorithm such as PSO adopted by the

strategy then searches an optimal test case based on the maximum coverage of interaction

elements in the randomly generated population of test cases. Afterwards, the strategy

removes the covered interaction elements from the list. The strategy continues this

process till full coverage of all the interaction elements i.e., when the list is empty. Figure

2.7 depicts the steps common in most meta-heuristic based t-way test suite generation

strategies.

Figure 2.7 General Meta-heuristic-based Strategy for t-way Test Suite Generation

This section briefly reviews the mixed strength and t-way test suite strategies

reported in the literature. As the focus of this thesis is the generation of mixed strength

test suites via a meta-heuristic algorithm, the strategies based on meta-heuristic

algorithms are discussed only from the related literature. Initially, t-way strategies based

on each meta-heuristic algorithm such as PSO are reviewed. Based on this review, the

test suite generation strategies are then divided into three different categories by

considering the application of meta-heuristic algorithm in a strategy. Finally, the pros and

cons of test data generation strategies based on each individual meta-heuristic algorithm

are outlined. For an objective assessment, issues such as parameter tuning and how each

meta-heuristic algorithm in a strategy balances exploration and exploitation are critically

analysed.

31

2.4.1 Simulated Annealing-based t-way Strategies

Simulated Annealing (SA) is a single-solution-based meta-heuristic algorithm

inspired by the physical annealing process of metals. The algorithm starts by initializing

its temperature parameter and then generating an initial solution. Next, SA randomly

selects a new solution in neighborhood of the current solution in each iteration. Based on

the temperature and fitness function evaluations for the new and current solutions, SA

either accepts or rejects the new solution. SA updates the current solution with the new

one based on better fitness evaluation, otherwise, it uses probability to accept the new

solution (Eaarts and Korst 1989). At the end of each iteration, SA decreases the

temperature by using a cooling rate to gradually decrease the probability of accepting

poor solutions. Moreover, the acceptance probability, 𝑝(𝑇, 𝑓(𝑋𝑡+1), 𝑓(𝑋𝑡)) =

𝑒
(

𝑓(𝑋𝑡+1) ≥ 𝑓(𝑋𝑡)

𝑇
)

 of SA enables it to balance exploration and exploitation. The

performance of SA depends on the tuning of its two control parameters, namely the

temperature 𝑇and the cooling rate 𝑟 (Busetti 2003).

As for as t-way testing is concerned, SA is the most widely used meta-heuristic

algorithm. It has successfully generated most optimal CAs and its variants. Cohen et al.

(Cohen, Colbourn et al. 2003) first employed SA for the construction of CAs. The

strategy built optimal CAs as compared to algebraic methods only in the cases when

interaction strength 𝑡 ≤ 3. In (Cohen, Gibbons et al. 2003a), VCAs are introduced and

generated with SA-based strategy. The interaction strength is still smaller i.e., 𝑡 ≤ 3. SA

is used in combination with algebraic constructions to generate the most optimal CAs,

MCAs and VCAs (Cohen, Colbourn et al. 2003). Similarly, SA is hybridized with a

greedy algorithm in (Bryce and Colbourn 2007) and is proved faster than a hybrid

approach based on TS and greedy algorithm for the generation of CAs. Cohen et al.

(Cohen, Colbourn et al. 2008) proposed a hybrid strategy based on SA and algebraic

constructions to generate the smallest sizes strength 𝑡 = 3 CAs. However, the strategy

failed when no algebraic construction was possible for an array. The SA search is

reformulated in (Garvin, Cohen et al. 2009) so that it can work better on both constrained

and unconstrained problems. However, even offering better results (25% fewer

configurations on average), run time of the SA is longer. The binary search of the strategy

suffered from a faulty assumption and was less efficient. Binary CAs of strength 𝑡 ≤ 5

are generated by SA based strategy integrated with binary composite functions in (Torres-

32

Jimenez and Rodriguez-Tello 2010). The strategy generated the most optimal binary CAs

in many cases.

CASA (Covering Arrays by Simulated Annealing) is the most successful SA-

based constrained test suite generation strategy. The eight modifications (where

modifying the global strategy for selecting the sample size and changing the neighboring

of the search being the most promising) enabled CASA to be more efficient. The strategy

outperformed, with these modifications, even greedy based strategy in terms of

performance in certain cases. Another SA-based strategy called Improved Simulated

Annealing (ISA) proposed in (Rodriguez-Cristerna and Torres-Jimenez 2012)

successfully generated binary CAs of strength 3 ≤ 𝑡 ≤ 6. The number of parameters that

ISA can support is between 4 and 1712. To generate MCAs of strength 2 ≤ 𝑡 ≤ 3, Avila-

George et al. (Avila-George, Torres-Jimenez et al. 2013) proposed SA based strategy that

showed competitive results as far as performance is concerned. The strategy used the

Diophantine equation to fine tune its control parameters.

SA-VNS (Rodriguez-Cristerna and Torres-Jimenez 2012) generated quality

MCAs of strength 2 ≤ 𝑡 ≤ 3 and is based on two meta-heuristic algorithm: SA and

Variable Neighborhood Search (VNS). The generation time of SA-VNS was longer than

those strategies selected from references. In another similar research (Rodriguez-

Cristerna, Torres-Jimenez et al. 2015), SA and VNS are again collectively used for the

generation of MCAs. In this hybrid implementation, SA is responsible to control

acceptance moves, whereas VNS is mainly responsible to avoid local optimal arrays by

searching neighbourhoods at various distances. The strategy required to fine tune seven

different parameters. SA is used as a hyper-heuristic for the selection of six search

operators as low-level heuristics to generate CCAs by Jia et al. (Jia, Cohen et al. 2015).

This is the first hyper-heuristic methodology proposed for the generation of combinatorial

test suites. Apart from showing effectiveness in terms of both efficiency and

performance, the hyper-heuristic based strategy is general as it learns the nature of the

problem by selecting the appropriate search operator. More recently, the SA-based

strategy (Demiroz and Yilmaz 2016) is used to generate cost-aware covering arrays

CTCAs that not only minimizes the number of test cases but also the associated

interaction test cost. The empirical evidence suggested that the proposed strategy

33

outperformed existing strategies. SA based strategy for the test suite generation is shown

in Figure 2.8.

Figure 2.8 SA-based Strategy for t-way Test Suite Generation

Source: Garvin, Cohen et al. (2011)

SA has been reported as one of the most effective meta-heuristic algorithms for

the generation of CAs and MCAs. Its application for test suit generation in stand-alone

or hybrid form will further be explored by the research community (Timaná-Peña, Cobos-

Lozada et al. 2016). However, SA is not only a single-solution based meta-heuristic but

also rely hugely on the neighborhood structures while such structures are not available

(Beasley, Martin et al. 1993).

2.4.2 Tabu Search-based t-way Strategies

Tabu search (TS) (Glover 1989) is another single-solution meta-heuristic

algorithm inspired by the human memory. TS conducts the searching process by using

neighborhood structures equivalent to short-term and long-term human memories.

Different neighborhood structures are used to remember the path visited by the algorithm

during the search. A tabu list is maintained by TS to remember recently encountered

solutions and subsequently forbid their regeneration. The list acts as a short-term memory

of the algorithm, prevents endless repetition and forces TS to accept worse moves. To

34

balance exploitation and exploration, the algorithm can introduce short-term memory and

long-term memory.

TS is adopted by many test suite generation strategies. Nurmela (Nurmela 2004)

proposed a TS-based strategy that improved many available results i.e., sizes of CAs at

the expense of longer run time. In (Bryce and Colbourn 2007), TS is combined with a

greedy algorithm for t-way test suite generation. However, this hybrid strategy was

slower in covering t-tuples than the SA-based hybrid strategy. The covering perfect hash

families (CPHF) based representation of CAs enable the TS-based strategy by (Walker Ii

and Colbourn 2009) to generate optimal arrays of higher strengths (𝑡 ≥ 5). Gonzalez-

Hernandez et al. (Gonzalez-Hernandez, Rangel-Valdez et al. 2010) proposed first TS-

based strategy that can generate MCAs with more parameters (from 2 to 11), values (from

2 to 20) and t (from 2 to 6). However, the strategy suffers from extensive tuning of

configuration probabilities for TS to achieve optimal results. MiTS (Gonzalez-Hernandez

and Torres-Jimenez 2010) is a TS-based strategy applied to a limited set of MCAs (10

only) of strength 2 ≤ 𝑡 ≤ 3. In addition, it requires tuning of several components of its

three neighborhood functions.

Tabu Search Algorithm (TSA) (Gonzalez-Hernandez, Rangel-Valdez et al. 2012)

is a TS-based strategy with four neighborhood functions. The strategy successfully

generated most optimal sizes 20 MCAs of strength 2 ≤ 𝑡 ≤ 6 out of total 23 MCAs used

as benchmarks. TSA requires rigorous two steps fine tuning process to find the best

configurations for its three main components. TCA (Lin, Luo et al. 2015) used a two-

mode local search framework that combines TS with the random walk to generate CCAs.

The strategy outperformed its meta-heuristic based and greedy based competitors on 3-

way and 2-way CCAs. Smaller sizes MCAs of strength 2 ≤ 𝑡 ≤ 3 are generated by a TS-

based strategy (Gonzalez-Hernadez 2015). The novelty of the proposed strategy is its

application of statistical tests to fine tune related parameters. The hyper-heuristic strategy

(Zamli, Alkazemi et al. 2016) adopted TS as its high-level heuristic. As a selection and

acceptance hyper-heuristic, the strategy generated CAs and MCAs of strength 2 ≤ 𝑡 ≤

6. This TS-based hyper-heuristic strategy outperformed many strategies based on meta-

heuristic algorithms and other tools on a wide range of benchmarks as far as efficiency is

concerned. Statistical evidence also showed the effectiveness of the strategy. The pseudo

code of a TS-based strategy (MiTS) is shown in Figure 2.9.

35

Figure 2.9 TS-based Strategy (MiTS) for t-way Test Suite Generation

Source: Gonzalez-Hernadez (2015)

2.4.3 Genetic Algorithm-based t-way Strategies

Genetic algorithm (GA) (Holland 1975) is a well-known population-based meta-

heuristic algorithm inspired by the process of natural selection. The population of

solutions generated by GA evolves through generations (i.e., iterations). Best solutions

survive for next generations based on objective function evaluations. Future generations

are created by the successive applications of genetic operators such as crossover,

mutation, and selection. During evolution, GA preserves the diverse solutions of the

population to ensure adequate exploration of the search space and to escape local optimal

(Boussaïd, Lepagnot et al. 2013). To balance exploration and exploitation, however, GA

requires proper tuning of mutation rate, crossover rate, number of generations, and

population size.

Population size is one of the main issues in GA that needs proper attention. GA

with small population size could easily trap in local optima, whereas require more

computation time in the case of large population size. It is observed that a population of

100 chromosomes or candidate solutions for 200 iterations or generations is an optimal

population size. Increasing the population size, for example to over 1000, could not make

any difference in the results (Roeva, Fidanova et al. 2013). Other research findings

regarding the population size suggest that a population of 30 chromosomes are sufficient

for most optimization problems (Grefenstette 1986).

36

In the GA-based strategy (Shiba, Tsuchiya et al. 2004), a chromosome is similar

to a test case. The strategy starts by initializing a random population of m test cases. These

test cases then undergo selection, crossover and mutation operations repeatedly till

satisfaction of termination criteria. The algorithm of the strategy selects σ number of elite

chromosomes based on the fitness evaluation for the next generations. The remaining m-

σ chromosomes are used to generate the next population. Tournament selection is used

for selecting two chromosomes randomly and then adding the winner to the mating pool

for reproduction. The crossover enables two chromosomes to generate a new

chromosome by independently exchanging values between them with probability 0.5.

The mutation process replaces one position value with another value selected at random.

Finally, the strategy performs a massive mutation at the end of a specified number of

generations when there is no improvement. The pseudo code of GA-based strategy is

presented in Figure 2.10.

Figure 2.10 GA-based Strategy for t-way Test Suite Generation

Source: Shiba, Tsuchiya et al. (2004)

Few strategies adopted GA for t-way test suite generation. The work of (Shiba,

Tsuchiya et al. 2004) based on GA provided competitive results but the optimality of the

obtained results is not always true. To generate binary CAs of strength 3, a GA-based

(i.e., memetic algorithm) strategy is introduced in (Rodriguez-Tello and Torres-Jimenez

2009). This strategy outperformed the referenced strategies by generating the most

optimal CAs than known previously. The GA based strategy of (Sabharwal, Bansal et al.

2016) is an extension of the open source pairwise test generation tool called PWiseGen.

37

A modified binary search operator is used to overcome the restriction of using N (test

size) as input to the tool in advance. Owing to the complex crossover and mutation

operations, the proposed strategy takes a long time to generate higher strength CAs and

MCAs which is, however, compensated by the smaller sizes of the obtained arrays. More

recently, Genetic Strategy (GS) (Esfandyari and Rafe 2018) adopted GA as its backbone

algorithm for generation of CAs, MCAs and VCAs. GS supports highest strength (i.e., t

= 20). Based on the extensive experimental results, GS showed competitive performance

(time) and efficiency (generated test suites sizes) against its competitors. Moreover, the

strategy minimized the running time of the objective function evaluation by introducing

an efficient bit structure.

2.4.4 Ant Colony Algorithm-based t-way Strategies

Ant colony algorithm (ACA) is a swarm-based meta-heuristic algorithm inspired

by the foraging behavior of ants. A given optimization problem in ACA is encoded as a

construction graph. The paths between the food source and ants’ nest represent candidate

solutions in ACA. The deposited amount of pheromone by an ant on each vertex or edge

of the path determines the quality of a candidate solution. At a given point (vertex), the

probability to choose an edge out of several edges is highest for the edge with the greatest

concentration of pheromone.

Edge selection and pheromone update are two key operations in ACA. The first

operation is based on probability, whereas the second operation is based on the

movements of ants from one node to the next. For optimality, several control parameters

of ACA such as pheromone amount (Ʈ), pheromone coefficient (α), heuristic coefficient

(β), and pheromone evaporation rate (ρ) need to be tuned properly.

For test suite generation, ACA represents values by food sources, whereas their

locations represent parameters (Shiba, Tsuchiya et al. 2004). Test cases are represented

by paths to the food sources. The amount of pheromones deposited by ants on each path

determines its quality. The density of pheromones gets higher for some paths as more and

more ants choose these paths over time. After comparing objective functions of these

paths, the comparison algorithm of the strategy selects best test cases to be part of the

final test suite. Figure 2.11 summarizes the ACA-based test suite generation strategy.

38

Figure 2.11 ACA-based Strategy for t-way Test Suite Generation

Source: Shiba, Tsuchiya et al. (2004)

The strategy proposed by (Shiba, Tsuchiya et al. 2004) first adopted ACA for the

generation of CAs and MCAs of strength 2 ≤ 𝑡 ≤ 3. The proposed ACA based strategy

showed competitive performance against GA-based strategy and other referenced

strategies except the SA-based strategy. The strategy (Chen, Gu et al. 2009) adopted ACA

for the generation of VCAs. Compared to the referenced SA-based and greedy-based

strategies and tools, the proposed strategy showed acceptable performance.

2.4.5 Particle Swarm Optimization-based t-way Strategies

Particle swarm optimization (PSO) is a swarm-based meta-heuristic algorithm

inspired by the flocking behavior of birds or fishes. PSO stochastically generate many

candidate solutions in the search space known as particles. Each particle has a velocity,

a position in the search space, and memory for remembering its last best position. PSO

uses two topologies known as gBest (i.e., global best) and lBest (i.e., local best). The

gBest evaluate a target particle against the best particle in the entire population. The lBest,

on the other hand, checks the optimality of a target particle against its neighbouring

particles. To balance exploration and exploitation, inertia weight ω is introduced in PSO.

A large value of ω encourages more global search, whereas a smaller ω encourages more

local search. For optimal results, PSO needs tuning of its five different parameters

including cognitive parameters (C1 and C2), ω, population size and number of iterations

(Ahmed and Zamli 2011c). PSO has widespread applications in many fields of research.

39

Initially, Ahmed et al. adopted PSO for t-way test suite generation by proposing

Particle Swarm-based Test Generator (PSTG) (Ahmed and Zamli 2010) and Variable

Strength PSTG (VS-PSTG). PSTG successfully generated CAs and MCAs, whereas VS-

PSTG generated VCAs. Both the strategies supported interaction strength up to 2 ≤ 𝑡 ≤

6. The strategies, however, required extensive tuning of the related parameters to obtain

optimal results. Similarly, both the strategies suffered from the problem of falling in local

minima.

A set based discrete PSO (DPSO) and conventional PSO (CPSO) (Wu, Nie et al.

2015) generated a wide range of CAs, MCAs and VCAs. The systematic guidelines for

tuning the parameters of both DPSO and CPSO enable the strategies to obtain optimal

results. CPSO showed better performance than DPSO, whereas in efficiency DPSO

produced quality t-way test suites. DPSO suffered from the overhead of the two auxiliary

methods (re-initialization of the particles and an extended evaluation of the gBest). More

recently, the multi-objective PSO-based strategy proposed by (Ahmed, Gambardella et

al. 2017) generated CCAs of comparable sizes. For efficient performance, the strategy

used multi-threading to operate all the algorithms in parallel.

Concerning t-way test suite generation, test cases are represented as particles in

PSO-based strategies (Ahmed, Zamli et al. 2012, Ahmed, Zamli et al. 2012). A PSO

based strategy starts by randomly generating a population of particles with random initial

velocities. At each cycle of the search process, PSO uses the best test case to update the

velocities of the particles as they fly around the search space. Based on these updated

velocities, current test cases move to new test cases. These movements are continued

until all interactions are covered (i.e., termination criteria for the strategy). Finally, the

strategy adds the best test case in the population to the final test suite and subsequently

removes the number of interactions covered by it from the list of all interactions. The

pseudocode of PSO for generating test suites is shown in Figure 2.12.

One of the main disadvantages of PSO is its frequent interaction with the

environment as it continuously updates the particles’ velocities in the swarm until the

search for a quality solution is successful. Similarly, PSO requires proper tuning of its

various parameters before obtaining optimal solutions of a given optimization problem

(Pedersen 2010). Moreover, the time cost of PSO is higher for practical usage (Lee and

Park 2006).

40

Figure 2.12 PSO-based Strategy for t-way Test Suite Generation

Source: Ahmed, Zamli et al. (2012)

2.4.6 Harmony Search-based t-way Strategies

Harmony search (HS) is a population-based meta-heuristic algorithm inspired by

the improvisation procedure of professional jazz musicians (Geem and Kim 2001).

Solutions in HS are represented by harmonics. HS uses three main parameters to search

perfect harmonics i.e., global optimal solutions. The harmony memory accepting rate

corresponding to the usage of the harmony memory parameter in HS ensures the selection

of best harmonics for the new harmony memory. Pitch adjustment enables HS to generate

a new solution by slightly modifying the current solution. Pitch adjustment rate and pitch

bandwidth control this parameter in HS. The randomization parameter of HS increases

the diversity of solutions. HS provides balance between exploration and exploitation with

the help of these parameters.

41

HS, like PSO, interacts frequently with the environment during the search

process. It probabilistically uses values of harmony memory accepting rate 𝑟𝑎𝑐𝑐𝑒𝑝𝑡 and

Pitch adjustment rate 𝑟𝑝𝑎 in order to select solutions from the Harmony Memory (HM).

Some disadvantages of HS include its minimal application of mathematics and use of

some kind of elitism and/or selection like GA (Yang 2010a). Moreover, the performance

of HS is dependent on proper tuning of its four algorithm specific parameters, namely

iterations/improvisations, harmony memory size (HMS), 𝑟𝑎𝑐𝑐𝑒𝑝𝑡 , and 𝑟𝑝𝑎.

Concerning t-way test suite generation, (Alsewari and Zamli 2012) adopted HS

in their proposed strategy called Harmony Search-based Strategy (HSS). HSS generated

CAs, MCAs and VCAs with constraints support and interaction strength support of up to

2 ≤ 𝑡 ≤ 15, the highest after the recently introduced GA based strategy (Esfandyari and

Rafe 2018). However, HSS required extensive experimentation to fine tune its various

algorithm-specific parameters before generating optimal arrays. The pseudo code of HSS

is presented in Figure 2.13.

2.4.7 Cuckoo Search-based t-way Strategies

Cuckoo search (CS) (Yang and Deb 2009) is a relatively new population-based

meta-heuristic algorithm inspired by the aggressive reproduction method of some cuckoo

birds. Solutions in CS are represented by cuckoos’ eggs or nests. To balance between

exploration and exploitation, CS intensifies the search through the use of local random

walk for solutions near potential optimal solutions, whereas it employs global random

walk by using Lévy flights to efficiently explore the entire search space. A switching

parameter 𝑝𝑎 controls both these walks which is the only parameter of CS that requires

proper tuning.

42

Figure 2.13 HS-based Strategy (HSS) for t-way Test Suite Generation

Source: Alsewari and Zamli (2012)

Most recently, (Ahmed, Abdulsamad et al. 2015, Ahmed 2016) adopted CS for

the generation of CAs and MCAs of strength 2 ≤ 𝑡 ≤ 6. Both the CS-based strategies

showed comparable performance and efficiency against the referenced tools and other

meta-heuristic-based strategies. At the beginning, the CS-based strategy randomly

generates an initial population of nests. Here, each nest represents a candidate test case.

In each cycle during the search, CS first generates a new nest by employing a Lévy flight

and then replaces it with the current nest based on better objective function evaluation.

Afterwards, CS identifies and subsequently removes the worse nests with probability 𝑝𝑎.

Similar to GA, remembering and considering previous best solutions (i.e., the elitism

mechanism) can also be noticed in CS. Figure 2.14 shows a simple framework of CS

43

based strategy proposed by Ahmed et al. for the problem of generating uniform t-way test

suites.

Figure 2.14 CS-based Strategy for t-way Test Suite Generation

Source: Ahmed, Abdulsamad et al. (2015)

2.4.8 Bat Algorithm-based t-way Strategies

Bat algorithm (BA) is a population-based meta-heuristic algorithm inspired by

the echolocation qualities of microbats (Yang 2010b). It is one of the most simple, easy

to implement, and flexible optimization algorithms that guarantees global convergence

under the appropriate settings of its parameters (Huang, Zhao et al. 2013). The use of

frequency-tuning enables BA to increase solutions diversity in the search space, whereas

variations in loudness and pulse emission rate enable it to intensify the search into the

regions with potential solutions. To be specific, BA balances between exploration and

exploitation by using these parameters. Some capabilities of BA are, however, similar to

SA such as the use of a constant in loudness α is similar to the cooling factor used by SA

in a cooling schedule. Moreover, BA uses frequencies and locations for updating

solutions like PSO.

The test suite generation strategy called BTS (Alsariera and Zamli 2015) adopted

BA as its backbone meta-heuristic algorithm. BTS generated small CAs with interaction

strength support of 2 ≤ 𝑡 ≤ 6. It has shown competitive performance against the publicly

available t-way test suite generation tools. Test cases in BTS are represented as bats. The

44

strategy starts by initializing the BA parameters (i.e., frequency 𝑄𝑖 , loudness 𝐴𝑖 , and

pulse rate 𝑟𝑖) and randomly generating the population of bats with initial velocities 𝑣𝑖. At

each iteration, BTS selects the best test case based on the maximum coverage of

interaction tuples and updates the frequencies, locations, and velocities of others in the

population. Upon searching a best test case, the strategy removes the interaction tuples

covered by it from the interaction elements list (IEL). Figure 2.15 presents BTS for the

generation of CAs.

Figure 2.15 BA-based Strategy (BTS) for t-way Test Suite Generation

 Source: Alsariera and Zamli (2015)

2.4.9 Bees Algorithm-based t-way Strategies

Bees Algorithm (Pham, Ghanbarzadeh et al. 2006) is a population-based meta-

heuristic algorithm inspired by the foraging behavior of honey bees. To balance

exploration and exploitation, the Bees Algorithm divides the search space into patches

based on the objective function evaluations. The algorithm intensifies search by

recruiting more bees for patches with better objective function values. Generally, the

Bees Algorithm favors local search more than global search. For optimal results, six

different parameters of the algorithm need to be tuned which are the number of scout bees

45

(n), the number of patches (m), the number of elite patches (e) out of m, the number of

non-elite patches (nsp), the number of bees recruited for elite patches (nep), and an initial

size of patches (ngh).

The strategy proposed by (Mohd Hazli, Zamli et al. 2012) adopted Bees

Algorithm to generate optimal SCAs. Test cases are represented by patches. The strategy

showed competitive results against the only available SCAs generation framework for a

small number of systems. Bees Algorithm based strategy (Mohd Hazli and Zamli 2013)

successfully generated CAs of strength 3 ≤ 𝑡 ≤ 10. Figure 2.16 presents the pseudo

code of the strategy based on Bees Algorithm.

Figure 2.16 Bees Algorithm-based Strategy for t-way Test Suite Generation

Source: Mohd Hazli, Zamli et al. (2012)

2.5 Categories of Meta-heuristic-based t-way Strategies

Based on the review in the previous section, meta-heuristic-based test suite

generation strategies can be classified into three categories: standard strategies, hybrid

strategies, and adaptive strategies.

A strategy is categorized as a standard strategy if it generates t-way test suites by

employing only a single meta-heuristic algorithm. For instance, Ahmed et al. (Ahmed,

Zamli et al. 2012) and Wu et al. (Wu, Nie et al. 2015) adopted only PSO for generating

46

test suites. Moreover, Cohen et al. (Cohen, Gibbons et al. 2003a) and Alsewari et al.

(Alsewari and Zamli 2012) employed SA and HS, respectively, to generate VCAs and

CCAs. These and others standard meta-heuristic-based strategies have successfully

generated CAs and its variants of competitive sizes. Some of the most widely cited earlier

standard meta-heuristic-based strategies in t-way test suite generation are Tabu search

(TS) (Nurmela 2004), SA (Cohen, Gibbons et al. 2003a) and so forth. More recently,

PSO (Ahmed and Zamli 2011c, Wu, Nie et al. 2015, Ahmed, Gambardella et al. 2017),

HS (Alsewari and Zamli 2012), CS (Ahmed, Abdulsamad et al. 2015) and BA (Alsariera

and Zamli 2015) have been adopted by t-way strategies. Table 2.7 summarizes these

strategies reported in the literature between 2003 and 2018.

Table 2.7 Standard Meta-heuristic-based Strategies

Reference

Adopted meta-

heuristic

algorithm

Generated CAs

and its variants

Interaction

strength support

(t)

1 (Cohen, Gibbons et al. 2003b) SA CAs only 2 ≤ 𝑡 ≤ 3

2 (Cohen, Gibbons et al. 2003a) SA
CAs, MCAs,

VCAs
2 ≤ 𝑡 ≤ 3

3 (Nurmela 2004) TS CAs only 2 ≤ 𝑡 ≤ 3

4
(Rodriguez-Tello and Torres-

Jimenez 2009)
GA Binary CAs only 2 ≤ 𝑡 ≤ 3

5 (Garvin, Cohen et al. 2009) SA
CAs, MCAs,

CCAs
2 ≤ 𝑡 ≤ 3

6 (Ahmed and Zamli 2010) PSO CAs, MCAs 2 ≤ 𝑡 ≤ 6

7 (Ahmed and Zamli 2011c) PSO
CAs, MCAs,

VCAs
2 ≤ 𝑡 ≤ 6

8
(Mohd Hazli, Zamli et al.

2012)
Bees Algorithm SCAs only 2 ≤ 𝑡 ≤ 10

9 (Ahmed, Zamli et al. 2012) PSO
CAs, MCAs,

VCAs
2 ≤ 𝑡 ≤ 6

10 (Alsewari and Zamli 2012) HS
CAs, MCAs,

VCAs, CCAs
2 ≤ 𝑡 ≤ 15

11 (Mohd Hazli and Zamli 2013) Bees Algorithm CAs 4 ≤ 𝑡 ≤ 10

12 (Wu, Nie et al. 2015) PSO
CAs, MCAs

VCAs
2 ≤ 𝑡 ≤ 4

13
(Ahmed, Abdulsamad et al.

2015)
CS CAs, MCAs 2 ≤ 𝑡 ≤ 4

14 (Alsariera and Zamli 2015) BA CAs 2 ≤ 𝑡 ≤ 6

15
(Sabharwal, Bansal et al.

2016)
GA CAs, MCAs 2 ≤ 𝑡 ≤ 4

16 (Ahmed 2016) CS CAs, MCAs 2 ≤ 𝑡 ≤ 6

17 (Demiroz and Yilmaz 2016) SA CTCAs 2 ≤ 𝑡 ≤ 3

18
(Ahmed, Gambardella et al.

2017)

Multi-objective

PSO
CCAs 2 ≤ 𝑡 ≤ 3

19 (Esfandyari and Rafe 2018) GA
CAs, MCAs,

VCAs
2 ≤ 𝑡 ≤ 20

47

Hybrid meta-heuristic-based strategies is the second category that combines a

meta-heuristic with another algorithm (meta-heuristic or otherwise) to further increase

the efficiency of t-way strategies. Table 2.8 presents these t-way strategies.

Table 2.8 Hybrid Meta-heuristic-based Strategies

Reference

Adopted meta-heuristic

algorithm (s) and/or other

methods

Generated

CAs and its

variants

Interaction

strength

support (t)

1 (Cohen, Colbourn et al. 2003) SA, algebraic constructions CAs, MCAs 2 ≤ 𝑡 ≤ 3

2 (Shiba, Tsuchiya et al. 2004)
GA, ACA, test case

minimization algorithm
CAs, MCAs, 2 ≤ 𝑡 ≤ 3

3 (Bryce and Colbourn 2007)
SA, TS, HC, Great Flood,

greedy algorithm
CAs, MCAs 2 ≤ 𝑡 ≤ 4

4 (Cohen, Dwyer et al. 2007)
SA, greedy algorithm, SAT

solver
CAs, CCAs 2 ≤ 𝑡 ≤ 3

5
(Walker Ii and Colbourn

2009)

TS, Covering Perfect Hash

Families (CPHF)
CAs 2 ≤ 𝑡 ≤ 7

6 (Chen, Gu et al. 2009)
ACA, tests minimization

algorithm

CAs, MCAs,

VCAs
2 ≤ 𝑡 ≤ 3

7
(Gonzalez-Hernandez,

Rangel-Valdez et al. 2010)

TS, two neighbourhood

functions
CAs, MCAs 2 ≤ 𝑡 ≤ 6

8
(Gonzalez-Hernandez and

Torres-Jimenez 2010)

TS, three neighbourhood

functions
CAs, MCAs 2 ≤ 𝑡 ≤ 3

9
(Torres-Jimenez and

Rodriguez-Tello 2010)

SA, composite

neighbourhood functions
Binary CAs 2 ≤ 𝑡 ≤ 5

10 (Garvin, Coehn et al. 2011)
SA, efficient one-sided

narrowing algorithm

CAs, MCAs,

CCAs
2 ≤ 𝑡 ≤ 3

11
(Rodriguez-Cristerna and

Torres-Jimenez 2012)

SA, Variable

Neighbourhood Search

(VNS)

CAs, MCAs 2 ≤ 𝑡 ≤ 3

12
(Rodriguez-Cristerna and

Torres-Jimenez 2012)

SA, neighbourhood

functions
Binary CAs 2 ≤ 𝑡 ≤ 3

13
(Rodriguez-Cristerna, Torres-

Jimenez et al. 2015)

SA, variable neighbourhood

search (VNS)
CAs, MCAs 2 ≤ 𝑡 ≤ 3

14 (Jia, Cohen et al. 2015)
SA, six search operators as

low level heuristics
CCAs 2 ≤ 𝑡 ≤ 3

15 (Lin, Luo et al. 2015) TS, random walk CCAs 2 ≤ 𝑡 ≤ 3

16 (Zamli, Alkazemi et al. 2016)
TS, four low-level meta-

heuristic search operators
CAs, MCAs 2 ≤ 𝑡 ≤ 6

17
(Avila-George, Torres-

Jimenez et al. 2018)
SA, algebraic method CAs 2 ≤ 𝑡 ≤ 6

For instance, augmented annealing (Cohen, Colbourn et al. 2008) combined SA

with algebraic construction to find much smaller arrays faster. The hybrid t-way strategy

(Bryce and Colbourn 2007) initially employed a greedy algorithm and then TS to generate

CAs. Similarly, two strategies by (Rodriguez-Cristerna and Torres-Jimenez 2012,

48

Rodriguez-Cristerna, Torres-Jimenez et al. 2015) hybridized SA with VNS to generate

MCAs and CAs. Finally, (Jia, Cohen et al. 2015, Zamli, Alkazemi et al. 2016) explored

hybridization of meta-heuristic algorithms based on hyper-heuristic methodology. These

strategies employed SA and TS, respectively as their high-level heuristics to select an

appropriate low-level meta-heuristic algorithm or search operator from a pool of available

meta-heuristic algorithms or search operators.

The third category is named adaptive meta-heuristic algorithms-based strategies.

Strategies in this category employ meta-heuristic algorithm(s) for test suite generation

with an additional method to further improve the performance of the employed meta-

heuristic algorithm by dynamic tuning of its control parameters.

A strategy proposed by Mahmoud and Ahmed (Mahmoud and Ahmed 2015) is

one example in this category. To generate smaller CAs and MCAs, this strategy adopted

fuzzy inference system to automate the parameter tuning of PSO. MiTS (Gonzalez-

Hernadez 2015) generates smaller MCAs of uniform strength, is also an example of

adaptive meta-heuristic-based t-way strategy. To achieve optimal results, the tuning

procedure of the strategy uses statistical tests to identify best values for the search

parameters. Table 2.9 lists these adaptive t-way strategies.

Table 2.9 Adaptive Meta-heuristic-based Strategies

Reference

Adopted meta-

heuristic

algorithm and

other method

Generated CAs

and its variants

Interaction

strength

support (t)

1
(Avila-George, Torres-Jimenez

et al. 2013)

SA, neighbourhood

two functions,

Diophantine

equation for tuning

control parameters

CAs, MCAs 2 ≤ 𝑡 ≤ 3

2 (Gonzalez-Hernadez 2015)

TS, neighbourhood

functions,

statistical method

for parameter

tuning

CAs, MCAs 2 ≤ 𝑡 ≤ 6

3 (Mahmoud and Ahmed 2015)

PSO, Mamdani

fuzzy inference

system

CAs, MCAs 2 ≤ 𝑡 ≤ 4

The motivation behind standard meta-heuristic-based strategies is to avoid the

restrictions or requirement of priori knowledge by algebraic methods for generating CAs

and its variants. In practical testing scenarios, fulfilling all the CAs generation

49

requirements is often not feasible (Wu, Nie et al. 2015). Parameter tuning or the

application of appropriate search operator is a common challenge for the majority of

meta-heuristic algorithms. In the case of t-way testing, customization of the algorithmic

parameters of the adopted meta-heuristic algorithms is required prior to obtaining optimal

test suite. This is especially essential when the nature of the problem changes. For

instance, different search operators need to be applied when constraints are involved in

the data set (Kitsos, Simos et al. 2015).

Standard meta-heuristic-based t-way strategies have successfully created optimal

arrays in many cases. Unfortunately, the creation time of these optimal arrays is

considerably high. The motivation behind hybrid strategies is to reduce this time and

enhance the efficiencies of the strategies. The challenge for this category is its

confinement to only smaller interaction strengths i.e., support t up to 3 only in most cases.

The motivation behind adaptive meta-heuristic-based t-way strategies is to

overcome the parameter tuning problem of standard meta-heuristic based strategies. Such

strategies introduce additional methods for automatic tuning of algorithmic parameters

or search operators of the standard strategies. However, the challenge for adaptive

strategies is performance degradation owing to the overhead of the additional methods

for tuning. These methods, such as fuzzy logic further affect the performance of adaptive

strategies.

2.6 Overview of Teaching Learning-based Optimization (TLBO) Algorithm

The adoption of TLBO since its appearance by researchers in a variety of domains

proves its effectiveness and efficiency in the field of optimization. Following are some

advantages of TLBO (Singh, Chaudhary et al. 2017, Gandomi and Kashani 2018, Wang,

Li et al. 2018):

i. TLBO has no algorithm-specific parameters to tune for achieving good

performance.

ii. TLBO is easy to implement.

iii. TLBO is computationally more efficient than other well-established meta-

heuristic algorithms.

50

2.6.1 TLBO Variants and their Applications

Since its inception, many TLBO variants have been put forward to improve its

performance. Apart from the original TLBO, the main TLBO variants available in the

literature can be divided into three categories: modified-based, hybrid-based, and

cooperative-based (see Figure 2.17). A discussion with some examples of each category

is presented as follows.

Figure 2.17 Types of TLBO Variants

As the names suggest, the modified-based category refers to variants that enhance

TLBO’s performance by modifying its parameter (e.g., elitism feature and adaptive

behaviour) or altering the teacher and/or the learner phases. Rao and Patel (Rao and Patel

2012) introduced elitism feature within TLBO and demonstrate its efficiency for tackling

35 constrained benchmark functions. In other early work, Niknam et al. (Niknam,

Azizipanah-Abarghooee et al. 2013) introduced an additional phase, termed modified

phase, whereby four adaptive search operators are defined and probabilistically selected

during runtime. The work has been successfully adopted for dynamic economic dispatch

in power systems. Based on the same work, Amin et al. (Shabanpour-Haghighi, Seifi et

al. 2014) also exploited the modified phase within TLBO and introduced an adaptive

search operator based on Morlet wavelet function. With the fuzzy decision support (i.e.,

to select the best Pareto-optimal solution), the modified TLBO is then adopted for multi-

objective optimal power flow problems. Although not introducing new phase, Hoseini et

al. (Hoseini, Hosseinpour et al. 2014) adopted a similar approach for addressing multi-

objective optimal location of automatic voltage regulators in the distribution system.

Mandal and Roy (Mandal and Roy 2013) solved the multi-objective optimal reactive

power dispatch problems by incorporating quasi-opposition based learning (QOBL)

concept in the original TLBO algorithm to accelerate the convergence speed. In their

work, Xia et al. (Xia, Gao et al. 2014) presented a modified TLBO for disassembly

sequence planning problems. They modified the teacher–learner operator apart from

introducing a feasible solution generator operator to satisfy the constraints of a

disassembly sequence.

51

Most recently, Lei et al. (Lei, Gao et al. 2018) proposed teacher’s teaching-

learning-based optimization (TTLBO) algorithm for scheduling in hybrid flow shop to

minimize energy consumption. The learner phase is replaced with self-learning of

teachers and a crossover operator for global search. In other recent work, Niu et al. (Niu,

Ma et al. 2018) proposed a modified TLBO called MTLBO for global optimization.

MTLBO divides the learners into two groups based on the mean results in both the phases.

The group of learners having best mean results increases their knowledge by interaction

among themselves, whereas the group of learners with average mean results increases

their knowledge by learning from their teacher. MTLB has shown better solution quality

as well as faster convergence speed. Wang et al. (Wang, Li et al. 2018) proposed

improved TLBO (ITLBO) for constrained optimization problems that modifies both the

phases of TLBO. The teacher phase is divided into sub-population to enhance diversity,

whereas the learner phase is based on the ranking differential vector to promote

convergence.

Although producing sound results, modified-based TLBO algorithm is often

applicable to specific problems and not sufficiently general (i.e., owing to problem

domain assumption). As such, the performance of modified TLBO cannot be guaranteed

even with the slight modification of the same problem instances.

Complementing the modified-based category, the hybrid-based category refers to

the integration of one or more meta-heuristic algorithms (or their search operators) within

TLBO. To date, TLBO has been used to form a hybrid model from many meta-heuristic

algorithms. Jiang and Zhou (Jiang and Zhou 2013) explored the adoption of hybrid TLBO

with differential evolution (DE) to solve the short-term optimal hydro-thermal

scheduling. Tuo et al. (Tuo, Yong et al. 2013) implemented an improved harmony search

based TLBO (HSTL) to balance between convergence speed and population diversity for

general constrained optimization problems. Lim and Mat Isa (Lim and Isa 2014)

integrated particle swarm optimization (PSO) with TLBO as an alternative strategy to

cater for the local optimum problem within constrained benchmark functions. Recently,

Huang et al. (Huang, Gao et al. 2015) integrated TLBO with the cuckoo search algorithm

for the parameter optimization in structure designing and machining problem.

Indeed, while hybrid-based algorithm can be useful to capitalize on TLBO

strengths and compensate on its deficiencies, the actual implementation can be bulky and

52

computationally heavy. Additionally, achieving a good balance between exploration and

exploitation (of the hybrid search operators) can still be problematic.

Last but not least, the cooperative-based category refers to variants of TLBO that

address large optimization problems with multiple-swarm populations. In this case, tasks

are split into k sub-problems for simultaneous optimization before combining the results.

Biswas et al. (Biswas, Kundu et al. 2012) highlighted the earliest work that exploits

cooperative co-evolutionary TLBO with modified exploration strategy for large-scale

optimization problems. Similarly, Satapathy and Naik (Satapathy and Naik 2013)

explored cooperative TLBO (Co-TLBO) which allows cooperative behavior via the

adoption of multiple swarm populations. In other work, Zou et al. (Zou, Wang et al. 2013)

proposed the adoption of multiple swarm populations for the dynamic optimization

problem.

Despite its potential, the key challenges of cooperative-based TLBO algorithm

are twofold. The first challenge is to identify the best sub-problem size (and the multiple

swarm populations). The second challenge is to model the independent variables to be

placed in different sub-problems.

These and many other variants of TLBO suggest that its solution diversity and

convergence speed can be improved further. This research work attempts to enhance

original TLBO further by proposing a modified type variant that selects the appropriate

phase in each iteration as per search requirements with the help of fuzzy logic. Moreover,

neither original TLBO nor its variants solve the problem of t-way test suite generation

before this work as per the review presented here.

2.7 Fuzzy Logic and Meta-heuristic Algorithms

Fuzzy logic (FL) encompasses fuzzy sets theory and possibility theory. The idea

of FL was first coined by Zadeh in 1965 for representing and manipulating imprecise or

fuzzy data. As a Soft Computing methodology, FL can effectively analyze complex

systems, particularly when the data can be modeled with several linguistic parameters.

Fuzziness is an essential feature of the language. The human brain is capable to interpret

incomplete, vague or ambiguous sensory information accumulated by perceptive organs.

Fuzzy set theory offers a systematic way to manipulate such information linguistically

53

and supports numerical computation through the use of linguistic labels which are

specified by membership functions (Yen and Langari 1999).

In the recent literature, the use of FL for performance improvement of meta-

heuristic algorithms appeared very effective. To date, two major forms of FL application

in evolutionary and swarm-based optimization algorithms are: (a) performance

enhancement by tuning parameters dynamically and (b) performance enhancement by

hybridizing meta-heuristic algorithms (Ameli, Alfi et al. 2016). With the help of FL, these

algorithms can obtain dynamic adaptation features. Dynamic tuning of parameters is a

typical approach adopted for meta-heuristic algorithms to achieve further improvement.

Here, a fuzzy-based system is employed with the goal for setting some parameters of a

meta-heuristic algorithm (Neyoy, Castillo et al. 2013, Avila and Valdez 2015, Castillo,

Meléndez et al. 2015, Pérez, Valdez et al. 2015, Solano-Aragón and Castillo 2015, Ameli,

Alfi et al. 2016, Pérez, Valdez et al. 2017, Valenzuela, Valdez et al. 2017). For better

performance and further optimal results, meta-heuristic algorithms have also been

hybridized. Maintaining a balance between exploration and exploitation is required in

hybrid algorithms so as to find acceptable solutions. Apart from parameter tuning and

algorithm hybridization, FL has also been used with an algorithm to improve its

performance (Cheng and Prayogo 2016). In this thesis, FL has applied in a new way as it

selects either the exploration (i.e., global search) or the exploitation (i.e., local search) in

the proposed adaptive TLBO (ATLBO).

2.8 Research Gap

The review of meta-heuristic-based strategies for t-way test suite generation and

their categorization in previous sections served as useful tools to identify the research gap

in the existing literature. Apparently, meta-heuristic algorithms appear suitable for t-way

testing. However, a critical look unfolds some limitations of these algorithms as far as

the complexity of both the algorithm structure and search process are concerned. For

instance, although SA has been adopted by 15 out of 39 total reviewed strategies, it may

need extensive computations owing to its update rule in the large random search space.

This is especially true in case of either higher interaction strength (i.e., t > 3) or more

complex system configuration (Cohen 2004, Afzal, Torkar et al. 2009). SA, being a single

solution meta-heuristic, can be overly sensitive to its initial starting point in the search

space, hence, suffers from early convergence. Moreover, the performance of SA depends

54

on properly scheduling the decrease in the temperature. Most SA based strategies, thus,

are limited to small configurations with maximum interaction strength support of only t

= 3.

TS (adopted by 8 strategies) also needs heavy computations in order to keep and

update arrays in the tabu list (Ahmed, Zamli et al. 2012). TS requires more iterations in

covering interaction tuples as compared to other meta-heuristic algorithms such as SA

and PSO (Ahmed and Zamli 2011a). Similarly, no TS based strategy support the

generation of VCAs. In GA, representation of problem via chromosomes can be

troublesome. The crossover and mutation processes of GA make it computationally

expensive. These processes slow down the array generation by GA as it takes more time

than SA and TS while generating various CAs (Kuliamin and Petukhov 2011).

ACA, owing to its distributed nature, requires more computational power.

Similarly, the complex algorithm structure of ACA limits its application for CAs and

VCAs generation to smaller interaction strengths of t = 2 and t = 3. PSO (adopted by 6

strategies) despite of supporting interaction strength greater than 3, requires extensive

parameter tuning before generating optimal results. Moreover, PSO suffers from other

limitations such as falling in local minima and premature convergence which lead to poor

optimization (Ahmed, Abdulsamad et al. 2015). HS-based strategy (Alsewari and Zamli

2012) not only generates CAs, MCAs, VCAs and CCAs but also supports higher

interaction strength (t = 15). However, like PSO, HS has many parameters to tune prior

to generating smallest arrays. Similarly, HS is computationally heavy owing to its

frequent interaction with the environment. CS-based t-way strategy generated only CAs

and MCAs for a small number of parameters and values with interaction strength support

of up to t = 4. Although useful for t-way test suite generation, aggressive Lévy flight

motion leads to poor exploitation in CS. Apart from the parameter tuning problem, BA

suffers from the problem of early convergence and then followed by a slow convergence

rate (Fister, Fister et al. 2014). Despite low algorithm complexity, it is difficult to divide

the roles of bees as workers in the Bees Algorithm. Table 2.10 provides a comparison of

the meta-heuristic-based strategies for the t-way test suite generation problem.

Based on the above discussion and comparison of meta-heuristic-based strategies

for generating t-way test suites given in Table 2.10, it can be observed that:

55

Table 2.10 Existing Straetegies based on Meta-Heuristic Algorithms for t-way Test

Suite Generation: Strengths and Weaknesses

Strategy Strengths Weaknesses

SA

• Adopted by most research studies in

the literature

• Offers most optimal t-way test suites

• Generates CAs and all its variants

• Performance depends on its control

parameters (i.e., initial temperature and

cooling rate)

• Computationally heavy particularly in

case of complex configurations

• Relies on standard structures to

generate optimal test suites while it is

difficult to have such structures

TS

• Supports configurations with many

input parameters or configuration

options

• Avoids solutions that are already

generated using the tabu list

• Needs tuning of its various parameters

such as tabu list size, long term and

short term memories

• No support for generating mixed

strength t-way test suites

• Computationally heavy for large

configurations

GA

• Supports generation test suites with

highest interaction strength (i.e., t =

20).

• Maintains a good balance between

exploration and exploitation

• Needs to tune its different control

parameters such as mutation rate,

crossover rate and selection strategy

• Computationally heavy owing to

continuous interaction with peers and

the environment

ACO

• Supports generation of both CAs

and VCAs

• Achieves optimal balance of

exploration and exploitation

• Relies on several control parameters

such as pheromone amount, pheromone

coefficient, pheromone evaporation

rate, etc.

• Computationally heavy owing to its

inherent parallel nature

PSO

• Offers optimal sizes CAs, MCAs,

VCAs and CCAs

• Supports generation of higher

strength (i.e., t ≤ 6) test suites

• Performance depends on many

algorithm-specific parameters (i.e.,

social and cognitive parameters)

• Frequent interaction with the

environment as particles’ velocities

need to be updated continuously

HSS

• Supports generation of CAs, MCAs,

VCAs and CCAs

• Offers test suites with interaction

strength support of t = 15

• Needs extensive tuning of its four

control parameters

• Computationally expensive because of

the frequent interaction with the

environment

CS

• Introduces Lévy flight motion to

tackle entrapment in local optima

• Supports generation of CAs and

MCAs of competitive sizes with

interaction strength support of t = 6

• Needs proper tuning of its single control

parameter called switching probability

• No support for generating mixed

strength t-way test suites

BA

• Achieves a good balance between

exploration and exploitation via

unique features inherited from

microbats

• Offers smaller sizes CAs with

interaction strength support of t = 6

• Relies on extensive tuning of its several

control parameters

• Tested on a limited set of benchmarks

Bees

Algorithm

• Supports generation of both CAs and

SCAs

• Generates test suites of interaction

strength support up to t = 10

• Relies on proper tuning of its six

different control parameters

• Faces challenge of assigning roles to

worker bees

56

i. No single strategy based on meta-heuristic algorithm can generate optimal t-

way test suite for all configurations. In line with the No Free Lunch Theorem

(Wolpert and Macready 1997), this implies that the search for new and

efficient strategies based on meta-heuristic algorithms, particularly newly

developed ones, is still an active and open research topic.

ii. Most of the existing well-known strategies are not only computationally

heavy but also require many parameters to be tuned for achieving good results.

The number of tuned parameters, thus, needs strong consideration when

developing new strategies.

iii. The adaptive meta-heuristic based strategies through dynamic tuning have

been successfully explored. However, there is a lack of study on adopting

parameter-free meta-heuristic algorithms such as TLBO.

iv. Although useful, TLBO has preset exploration and exploitation. For better

performance, exploration and exploitation need to be dynamic.

The aim of this thesis is to fill these gaps by designing and implementing a t-way

strategy based on an efficient and parameter-free meta-heuristic algorithm called

adaptive TLBO (ATLBO) for addressing the problem of generating mixed strength t-way

test suites. A Mamdani-type fuzzy inference system is integrated with the original TLBO

in this research to adaptively select the search operations (global or local) on the basis of

search need at that particular time of searching. ATLBO-based strategy is the first

strategy based on a parameter-free meta-heuristic in the related literature for t-way test

suite generation. Figure 2.18 summarizes the discussion given here.

Figure 2.18 Research Problems in the Existing Related Literature

57

2.9 Chapter Summary

In essence, testers can use test case design techniques as a basis for the creation

of test cases. Combinatorial t-way testing is complementing these techniques and has

been proved effective in testing software applications with huge configuration spaces or

input parameters. CAs and its variants abstract this type of testing by efficiently

representing t-way test suites. As CAs generation is an optimization problem, several

meta-heuristic based strategies have been proposed in the literature. These include t-way

strategies based on meta-heuristic algorithms such as SA, TS, GA, ACA, PSO, HS, CS,

BA and Bees Algorithm. Exiting strategies can be divided into three categories: standard,

hybrid and adaptive. These strategies have produced best test suites (in terms of sizes) to

date. However, all these strategies suffer from several problems such as extensive tuning

of parameters, heavy computation, etc. before able to obtain optimal results. Moreover,

only few strategies while no adaptive strategy in the literature generate VCAs of strength

greater than 3.

Owing to these limitations of existing strategies, there is a need to propose an

efficient strategy based on a newly developed parameter-free meta-heuristic algorithms

for the generation of optimal test suites. TLBO is one such meta-heuristic algorithm.

TLBO and its variants (modified, hybrid and cooperative) are found effective for the

optimization problems in different fields of engineering and science. The algorithm offers

demanding features: simple computational characteristics, ease of implementation and

free of parameter tuning. Fuzzy set theory as a mathematical foundation of fuzzy logic

has given computers the power to think and reason like humans. Fuzzy inference systems

have been found effective for performance enhancement of meta-heuristic algorithms.

Considering the features of original TLBO, an improved variant of TLBO called ATLBO

based on the Mamdani-type fuzzy inference system, proposed in this research, is

supposed to be effective for the problem of mixed strength test suite generation. Building

upon this chapter, the next chapter presents the methodology adopted in this research for

the design of ATLBO and its implementation for the mixed strength test suite generation

as an effort to prepare optimal test suites.

58

CHAPTER 3

METHODOLOGY

In the previous chapter, a review of some well-known test case design techniques

is presented. The importance of t-way and mixed strength interaction testing is elaborated

using a simplified model of an online gaming architecture. Foundation terminologies and

objects related to t-way interaction testing are defined. An extensive review of meta-

heuristic based t-way strategies is given with their novel categorization. Teaching

Learning-based Optimization (TLBO) algorithm and its variants with their applications

are investigated. Fuzzy logic in the context of meta-heuristic algorithms is overviewed.

Finally, research gap is identified in the existing literature so as to fill it with required

new contributions.

This chapter starts by presenting an overview of the original TLBO with critically

analyzing its searching capabilities. The design of the proposed ATLBO is presented next

with detailed elaboration of its Mamdani-type fuzzy inference system. Hereafter, the

chapter presents the pseudo code of the general ATLBO algorithm. After justifying the

effectiveness of ATLBO, this chapter focuses on its implementation in a strategy to

address the problem of mixed strength test suite generation. This chapter also discusses

the implementation of t-way and mixed-strength interaction elements generation

algorithm.

3.1 The Original Teaching Learning-based Optimization (TLBO) Algorithm

Teaching Learning-based Optimization (TLBO) (Rao, Savsani et al. 2011, Rao,

Savsani et al. 2012) algorithm is a novel nature-inspired meta-heuristic algorithm for

unconstrained and constrained optimization problems. In TLBO, the entire optimization

process is equated with the teaching and learning methodology inside a classroom.

59

Students or learners are simulated as solutions whereas their subjects are represented as

dimensions of the solutions (see Figure 3.1). The result of the class is regarded as the

objective function value. TLBO exhibits competitive performances owing to its

promising characteristics such as no algorithm-specific parameters, ease of

implementation, computationally lightweight, and effective search ability (Singh,

Chaudhary et al. 2017, Gandomi and Kashani 2018, Wang, Li et al. 2018).

Figure 3.1 Concepts of TLBO for Optimization

The analogy adopted by TLBO from teaching and learning process between a

teacher and his or her students or learners is further elaborated here. Basically, a teacher

has more knowledge than the students. He or she tries to impart this knowledge to the

students so as to take their knowledge to his/her competency level as shown in Figure 3.2

(a). As teachers have different competency levels, there could also be potential

improvements when students learn from other teachers. At the same time, students can

also learn from other students or peers with more knowledge to improve their competency

levels as depicted in Figure 3.2 (b).

Within TLBO, the solution is represented in the population X. An individual Xi

within the population represents a single possible solution. Specifically, Xi is a vector

with D elements where D is the dimension of the problem representing the subjects taken

by the students or taught by the teacher.

TLBO divides the whole searching process into two main phases; the teacher

phase and the learner phase. In order to perform the search, TLBO undergoes both phases

sequentially one-after-the-other per iteration. The teacher phase involves invoking the

global search operation (i.e., exploration). At any instance of the search process, the

teacher is always assigned to the best individual 𝑋𝑖. The algorithm attempts to improve

other individual 𝑋𝑖 by moving their position towards 𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 taking into account the

current mean value of the population, 𝑋𝑚𝑒𝑎𝑛 as follows:

60

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑟(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − 𝑇𝐹𝑋𝑚𝑒𝑎𝑛) 3.1

where 𝑋𝑖
𝑡+1 is the new updated 𝑋𝑖

𝑡, 𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 is the best individual in the population 𝑋,

𝑋𝑚𝑒𝑎𝑛 is the mean of 𝑋, 𝑟 is the random number from [0,1] and 𝑇𝐹 is a teaching factor

which can either be 1 or 2 and meant for emphasizing the quality of teaching. It is tested

with various values but TLBO is more successful when it is either 1 or 2 (Chikh, Belaidi

et al. 2018).

Figure 3.2 TLBO's Teaching and Learning Analogy

Source: (Rao, Savsani et al. 2011)

The learner phase exploits the local search operation (i.e., exploitation).

Specifically, the learner 𝑋𝑖
𝑡 increases its knowledge by interacting with its random peer

𝑋𝑗
𝑡 within the population 𝑋 such that 𝑖 ≠ 𝑗. A learner learns if and only if the other learner

61

has more knowledge than he does. At any iteration i, if 𝑋𝑖
𝑡 is better than 𝑋𝑗

𝑡, then 𝑋𝑗
𝑡

moves toward 𝑋𝑖
𝑡 (refer to Eq. 3.2). Otherwise, 𝑋𝑖

𝑡 moves toward 𝑋𝑗
𝑡 (refer to Eq. 3.3).

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑟 (𝑋𝑗
𝑡 − 𝑋𝑖

𝑡) 3.2

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑟 (𝑋𝑖
𝑡 − 𝑋𝑗

𝑡) 3.3

where 𝑋𝑖
𝑡+1 is the new updated 𝑋𝑖

𝑡 , 𝑋𝑗
𝑡 is the random peer, and r is the random number

from [0,1]. The original TLBO can be summarized in Figure 3.3.

Figure 3.3 The Original TLBO Algorithm

In line 1, the algorithm initializes a random population of learners and evaluates

them. Line 2 starts the main loop of the algorithm where the termination condition is

specified. The termination condition can be the number of iterations, objective function

evaluations, etc. In the case of t-way test suite generation problem, the termination

condition is the coverage of all the interaction tuples or elements. Line 3 starts the sub-

62

loop which is repeated till the evaluation of all the learners. The algorithm selects the best

candidate solution (i.e., the teacher) in the population and calculates the population mean

in line 4. With this, the algorithm commences the teacher phase. The teaching factor 𝑇𝐹

is computed in line 5. The main equation of the teacher phase (Eq. 3.1) is evaluated in

line 6 which attempts to enhance the learning capabilities of each learner in the population

through teaching. Finally, the learner’s knowledge is checked and subsequently updated

in the case of improvement (lines 7-9). Lines 4-9 constitute the teacher phase.

The learner phase follows the teacher phase immediately. Line 10 starts the

learner phase. A learner is randomly selected from the population such that its roll number

does match with the roll number of the current learner. If the knowledge level of the

current learner is better than the newly selected learner, Eq. 3.2 is evaluated in line 12,

otherwise Eq. 3.3 is computed in line 15. Here, a new learner with some knowledge level

comes whether Eq. 3.2 or Eq. 3.3 is evaluated. Lines 17-19 update the knowledge of the

current learner if his knowledge is poor than the new learner. Lines 10-19 constitute the

learner phase. Line 20 ends the sub-loop after evaluating all the learners. A best so far

learner (i.e., solution) is returned by the algorithm in line 21. These steps are repeated

until the satisfaction of the termination criteria specified in the main loop. The final Xbest

is the global optimum solution offered by TLBO. Line 22 ends the algorithm.

3.2 The Proposed Fuzzy Adaptive TLBO (ATLBO)

This section presents the general design of the proposed fuzzy adaptive TLBO

(ATLBO). The section first briefly describes the Mamdani-type fuzzy inference system

of ATLBO and then explains the ATLBO algorithm by presenting its pseudo code.

3.2.1 The Mamdani-type Fuzzy Inference System of ATLBO

A fuzzy inference system is often defined as a system that represents human

knowledge mapped in the form of a set of fuzzy rules to produce some approximate

decision (Iancu 2012). Classical logic (crisp value) is differentiated from fuzzy sets by

the introduction of membership functions. According to Zadeh (Zadeh 1965), μ(A(x))

denotes the membership of element x of the fuzzy set A, and can gradually transform

from μ(A(x)) = 1 (full membership) to μ(A(x)) = 0 (full non-membership). Consequently,

it can take all possible values from the interval [0, 1], and is therefore not restricted to

only two truth values (0 or 1) of classical logic. This thesis adopted a Mamdani-type

63

fuzzy inference system (Mamdani and Assilian 1975, Cordón 2011, Camastra,

Ciaramella et al. 2015) for the proposed fuzzy adaptive TLBO (ATLBO) owing to its

effectiveness for performance enhancements of meta-heuristic algorithms in the related

literature.

The methodology of the Mamdani fuzzy inference systems captures the process

behaviours by using linguistic variables and then uses these variables as input to the

linguistic control rules (Dadios 2012). The fuzzy model based on the Mamdani fuzzy

inference systems involves defining membership functions and subsequently describing

the rules. The rules act as a bridge between input and output variables and are based on

the description of the fuzzy behaviour that is obtained by defining linguistic variables

(Zimmermann 1996).

A Mamdani fuzzy inference system encompasses the fuzzification, rule base with

its inference system and defuzzification as its basic components. The general structure of

a Mamdani fuzzy inference system, however, include the membership functions,

input/output variables and the rules. The Mamdani-type fuzzy inference system designed

for ATLBO is shown in Figure 3.4.

The fuzzy system is composed of three components, namely the fuzzification,

fuzzy rules inference evaluation, and defuzzification (refer to Figure 3.4). There are three

input parameters and one output parameter of the system. The three input parameters are:

Quality Measure (𝑄𝑚), Intensification Measure (𝐼𝑚), and Diversification Measure (𝐷𝑚)

and the one output parameter is: Selection.

The choice of selecting and using these three input parameters is new for

improving the performance of a meta-heuristic algorithm. These parameters capture all

the necessary details related to a potential solution so as to achieve optimality by guiding

the search in the right direction. The 𝑄𝑚 takes into account the number of interaction

elements covered by a candidate test case. The other two parameters (𝐼𝑚 and 𝐷𝑚) are

based on Hamming distance. The quality and diversification measures are used to achieve

solution diversity, whereas the intensification measure is used to facilitate convergence.

The first input parameter or crisp input 𝑄𝑚 is the normalized fitness value

capturing the quality of the current potential solution 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 in terms of covering the

64

number of interaction tuples or elements. The value of the 𝑄𝑚 will be high for a test case

that covers a maximum number of interaction tuples. Eq. 3.4 formally defines 𝑄𝑚.

𝑄𝑚 = [
𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 − 𝑚𝑖𝑛 𝑓𝑖𝑡𝑛𝑒𝑠𝑠

𝑚𝑎𝑥 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 − 𝑚𝑖𝑛 𝑓𝑖𝑡𝑛𝑒s𝑠
] ∙ 100 3.4

The second parameter or crisp input 𝐼𝑚 is the Hamming distance normalized

value measuring the proximity of the 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 against 𝑋𝑏𝑒𝑠𝑡.. 𝐼𝑚 can be formally defined

as:

𝐼𝑚 = [
|𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡|

𝐷
] ∙ 100 3.5

where D is the dimension of the given problem.

The third and final crisp input 𝐷𝑚 is also the Hamming distance normalized value.

Unlike 𝐼𝑚 which measures intensification of the search against the global best, 𝐷𝑚

measures diversity of 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 against the overall population 𝑋 . 𝐷𝑚 can be formally

defined as follows:

𝐷𝑚 = [
∑ |𝑋𝑗 − 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡|

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒
𝑗=1

𝐷
] ∙ 100 3.6

First, fuzzification starts the fuzzy inference process by transforming the crisp

inputs into fuzzy inputs with the help of membership functions. All crisp inputs have

universes of discourse, i.e., set of possible values that crisp inputs can assume. The

universes of discourse for all the linguistic variables of the proposed fuzzy inference

system are between 0 and 100. The fuzzification process of all the input variables is based

on three defined trapezoidal membership functions with linguistic terms, namely Low,

Medium and High (see Figure 3.5Figure 3.5). It is worth noting that the trapezoidal

membership functions for the linguistic variables Quality Measure and Diversification

Measure are identical as shown in Figure 3.5 (a) and Figure 3.5 (c). Similarly, the

fuzzification process of the output variable Selection is based on two defined trapezoidal

membership functions with linguistic terms, namely Global_Search and Local_Search as

shown in Figure 3.6.

65

Figure 3.4 Fuzzy Inference System for ATLBO

66

The values in the range of 0-20 are considered as absolute Low; the values in the

range of 20-40 are considered as partial Low and Medium; the values in the range of 40-

60 are considered as absolute Medium; the values in the range of 60-80 are considered as

partial Medium and High; the values in the range of 80-100 are considered as absolute

High. The High and Low ranges in the case of Intensification Measure are exchanged

(refer to Figure 3.5 (b)). Conversely, change did not occur in the Medium range. The

Selection values taking the range of 0-20 are considered as absolute Local_Search; the

Selection values in the range of 20-80 are considered as partial Local_Search and

Global_Search; the Selection values in the range of 80-100 are considered as absolute

Global_Search.

Figure 3.5 Membership Functions of the three Input Measures

Figure 3.6 Membership Functions of the Selection Output Linguistic Variable

Decision making logic is the next step after finalizing the membership functions

for fuzzy inputs and output of the system. The Mamdani-type fuzzy inference evaluation

of the proposed system performs this step, where IF-THEN rules contain fuzzy

prepositions in both IF (known as antecedent or premise) and THEN (known as

consequent or conclusion) parts (Iancu 2012). An ith rule in the Mamdani-type fuzzy

inference system can be written as follows:

Rule ith: IF x IS Ai AND y IS Bi THEN O IS Ci 3.7

where x and y denote input linguistic variables, O denotes the output variable linguistic

variable, and Ai, Bi, and Ci denote the linguistic terms defined for the fuzzy variables.

67

The fuzzy rule base of ATLBO consists of only four fuzzy rules as shown in Table

3.1. These rules guide ATLBO to select the appropriate search operation. The total

number of fuzzy rules r for a fuzzy inference system is calculated using Eq. 3.8.

Table 3.1 Fuzzy Rule Base of the ATLBO Fuzzy Inference System

Rule #: Rule

Rule 1: IF Quality IS NOT High THEN Selection IS Global_Search

Rule 2:
IF Quality IS High AND Diversification IS NOT High AND Intensification IS

High THEN Selection IS Global_Search

Rule 3:
IF Quality IS High AND Diversification IS High AND Intensification IS NOT

High THEN Selection IS Local_Search

Rule 4:
IF Quality IS High AND Diversification IS High AND Intensification IS High

THEN Selection IS Local_Search

r = ∏ 𝑓𝑖

𝑛

𝑖

 3.8

where n is the total number of crisp variables and 𝑓𝑖 is the number of linguistic terms

defined for each input linguistic variable.

In the case of ATLBO’s fuzzy inference system, there can be a total of 33 or 27

rules as each input linguistic variable takes three linguistic terms. However, it is observed

that the rules can be reduced to four only as shown in Table 3.1. Minimum possible rules

not only simply the processing logic but may also improve the fuzzy system performance.

Concerning the fuzzy rules inference evaluation, the fuzzy rules are defined based

on the following scenarios:

• Rule 1: Quality measure is Low regardless of intensification and

diversification measures. The search is trapped in the local minima region,

thus requiring global search.

• Rule 2: Quality measure is High but lacks diversity. The search is trapped

in the local minima region because of excessive local search.

• Rule 3: Quality measure is High but lack of convergence because of

excessive global search.

68

• Rule 4: Search is near convergence. Local search is required.

The max-min inference method is adopted in the proposed fuzzy system. The

method interprets the fuzzy operator AND by considering the minimum value of the

antecedents while adopting maximum value for aggregating them (see Figure 3.7).

Finally, the defuzzification step transforms the fuzzy conclusions of the inference

scheme into the crisp output. As described earlier, a single output linguistic variable

called Selection is defined for the defuzzification. Eventually, the actual selection

depends on the output of the deffuzzification process based on the center of gravity

(COG). COG is the most commonly adopted method in fuzzy systems owing to its

accurate computation of results on the basis of weighted values of many output

membership functions (Pappis and Siettos 2014). The result of defuzzification is assigned

to the Selection crisp variable after the evaluation of COG formula according to Eq. 3.9.

3.9

where μ(A(x)) denotes the membership function value of the output fuzzy set.

Suppose quality, intensification and diversification parameters have values 65, 70

and 80, respectively, as shown in Figure 3.7.

Figure 3.7 Max-min Inference Method and Defuzzification

With 𝑄𝑚= 65, rule # 1 will be activated as Quality Measure is only partially

associated with the fuzzy set High. Similarly, rule # 3 will be fired on the subset partial

69

High, partial Medium and Low, and absolute High of input linguistic variables Quality

Measure, Intensification Measure and Diversification Measure, respectively. By using

Eq. 3.9, the defuzzification step can imply the crisp output of the fuzzy inference system

for the selection variable as Selection = 62.08.

A number of design choices such as triangular memberships, the number of

linguistic terms, etc., have been relevant in the implementation of the fuzzy inference

system of ATLBO. However, the proposed fuzzy inference system is easy to understand,

functional and sufficiently efficient owing to the adoption of the basic design choices.

It is evident from the overview of the original TLBO where both global search

and local search operations get equal opportunity (50%) in each iteration during the

search process. Therefore, when the defuzzification output of the fuzzy system assigned

to the Selection crisp out is greater than 50%, the proposed algorithm selects global search

or teacher phase. Otherwise, it selects local search or learner phase.

3.2.2 The General ATLBO Algorithm

Based on the proposed fuzzy inference system along with the TLBO description

given in the previous section, Figure 3.8 highlights the newly developed adaptive TLBO

(ATLBO) based on the TLBO description provided in the previous section. The boxes

mark where ATLBO code differs from original TLBO code.

Line 1 defines trapezoidal membership functions for the three input parameters

and one output parameter to obtain the linguistic variables. Line 2 defines the four fuzzy

rules as explained previously. The algorithm initializes a random population of learners

and evaluates them in line 3. Line 4 sets the Selection variable to 100 in order to run

teacher phase in the first iteration similar to the original TLBO. Line 5 starts the main

loop of the algorithm. Line 6 starts the for loop so as to search all learners and improve

their competency levels in either teacher phase or learner phase. Line 7 checks whether

the Selection variable is greater than 50. Based on this condition, the algorithm either

runs teacher phase (lines 8-13) or learner phase (lines 16-25).

70

Figure 3.8 ATLBO based on Fuzzy Inference System

Line 27 computes the three crisp measures or input parameters (𝑄𝑚, 𝐼𝑚, and 𝐷𝑚)

for the current obtained solution. Line 28 fuzzifies these crisp measures using simple

membership functions. After inference evaluation process, line 29 performs

defuzzification to obtain crisp output and assigns it to the Selection variable. The value

of the Selection variable will decide whether to run the teacher phase or the learner phase

in the next for loop iteration. In line 31, the algorithm returns the current best result.

71

3.3 Computation of the Measures for t-way Testing

This section describes how the three measures (𝑄𝑚, 𝐼𝑚 and 𝐷𝑚) are computed

with an example in case of t-way testing as the case study. For this purpose, the online

gaming architecture model discussed in Chapter 2, Section 2.2 is reconsidered as shown

in Figure 3.9. It is a system with 5 parameters where 3 parameters carry 2 values whereas

2 parameters carry 2 values.

Maximum fitness (max_fitness in Eq. 3.4) is equal to the value of Eq. 2.2. For the

running example, max_fitness is 10. Minimum fitness (min_fitness in Eq. 3.4) is 0.

Current fitness (current_fitness in Eq. 3.4) is calculated in terms of interaction tuples’

coverage. For instance, the 𝑄𝑚 for a test case tc1 = {0 1 0 2 1} is computed below if it

covers 9 interaction tuples (i.e., it current fitness is 9). The value 90 is the normalized

value for the fuzzy inference system.

𝑄𝑚 = [
𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 − 𝑚𝑖𝑛 𝑓𝑖𝑡𝑛𝑒𝑠𝑠

𝑚𝑎𝑥 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 − 𝑚𝑖𝑛 𝑓𝑖𝑡𝑛𝑒s𝑠
] ∙ 100

= [
9 − 0

10 − 0
] . 100 = 90

Figure 3.9 Pairwise Test Suite for the Online Gaming Architecture

As far as the intensification measure (𝐼𝑚) is concerned, it is the Hamming distance

between the current test case and the best case in the population divided by the vector D,

which is equal to P, the total number of parameters. If tc2 = {1 1 1 0 1} is considered as

the current test case and tc3 = {1 1 1 2 2} is the best case in the population as shown in

Figure 3.10, the Hamming distance for this case is 2 as all the values of both the test cases

differ by 2. The 𝐼𝑚 for this case is (which is its normalized value):

𝐼𝑚 = [
|𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡|

𝐷
] ∙ 100

72

= [
2

5
] . 100 = 40

Finally, diversification measure (𝐷𝑚) is the Hamming distance between a current

test case and the entire population divided by D which is computed using Eq. 3.10.

𝐷 = (𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 − 1) ∗ 𝑃 3.10

Figure 3.10 Hamming Distance Calculation for Intensification and Diversification

The population size for the current example is 3, whereas P is 5. If tc1={0 1 0 2

1} is considered as the current test case from Figure 3.10, then the Hamming distance

between tc1 and tc2 is 3 and the same between tc1 and tc3 is 3. The accumulative Hamming

distance from the rest of the population for tc1 is 3+3 = 6 (see Figure 3.10) as it differs

by 2 values from tc2 and tc3. The normalized value of 𝐷𝑚 is computed as follows:

𝐷𝑚 = [
∑ |𝑋𝑗 − 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡|𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒

𝑗=1

𝐷
] ∙ 100

= [
 6

10
] . 100 = 60

3.4 Implementation of ATLBO for the Mixed Strength t-way Test Suite

Generation

Having given an overview of TLBO and its adaptive variant (ATLBO), the

following section outlines its application to address the problem of generating mixed

strength t-way test suite. In general, ATLBO based strategy is a composition of two main

algorithms: (i) an interaction elements generation algorithm, which generates

combinations of parameter values that are used in the test suite generator for optimization

purposes; (ii) an ATLBO based test suite generator algorithm. The next sub-sections,

explain these two algorithms in detail.

73

3.4.1 Interaction Elements Generation Algorithm

The interaction elements generation algorithm involves generating the parameter

(P) combinations and the values (v) for each parameter combination based on the

interaction strength (t). The parameter generation adopts binary digits, whereby 0

indicates the exclusion of a referred parameter and 1 indicates the inclusion of the

parameter.

As an illustration, consider an example involving VCA(N; 2, 23 31, CA(3; 23)) as

shown in Figure 3.11.

Figure 3.11 The Hash Map and Interaction Elements for the VCA

The mixed strength covering array VCA can be composed of two parts: the main

configuration MCA(N; 2, 23 31) and the sub-configuration CA(3; 23), respectively. The

main configuration, MCA(N; 2, 23 31), requires a 2-way interaction (as main strength) for

a system of four parameters. The algorithm first generates all binary number possibilities

up to four digits. Subsequently, the binary numbers that contain two 1 s are selected,

indicating that a pairwise interaction (i.e., t = 2) exists. For example, the binary number

1100 refers to P1.P2 interaction. P1 has two values (0 and 1); P2 has two values (0 and 1);

P3 has two values (0 and 1), and P4 has three values (0, 1, and 2). The 2-way parameter

interaction has six possible combinations based on the parameter generation algorithm.

74

For combination 1001, whereby P1 and P4 are available, there are 2×3 possible interaction

elements between P1 and P4. For each parameter in the combination (i.e., with two 1 s),

the value of the corresponding parameter is included in the interaction elements. Here,

the excluded values are marked as “x”. This process is iteratively repeated for the other

five interactions: (P1, P2), (P1, P3), (P2, P3), (P2, P4), and (P3, P4). In a similar manner,

the sub-configuration, CA (3; 23), requires a 3-way interaction (as sub-strength) for a

system of 3 parameters. A 3-way interaction yields the (P1, P2, P3) interaction.

Revisiting the overall VCA(N; 2, 23 31, CA(3; 23)), the complete interaction

elements are the combinations from both MCA(N; 2, 23 31) and CA(3; 23). The hash map

list of mixed interaction elements Hs, which employs the binary representation of the

interaction as the map retrieval key, is implemented to ensure efficient indexing for

storage and retrieval. The complete algorithm for the interaction elements generation is

highlighted in Figure 3.12.

Figure 3.12 Algorithm for Interaction Elements Generation

Line 1 initializes an empty hash map Hs. Line 2 sets variable m to the number of

parameters. The set of values of parameters are stored in a data structure called p (see

line 3). The main loop of the algorithm starts at line 4 which runs 2m times. The body of

this loop generates interaction elements between parameters based on the given

interaction strength t along with the generation of their hash key in the hash map. A binary

type array b is declared to hold the binary form of the index variable (lines 5-6). The sub-

75

loop (lines 7-14) generates the interaction elements to be added to the hash map. The hash

key for the added interaction element is inserted into the hash map (see lines 15-18). Line

20 returns the hash map containing all the interactions elements for a given configuration.

3.4.2 Test Suite Generation Algorithm based on ATLBO

ATLBO first initializes the population search space as a D-dimensional vector,

𝑋𝑗 = [𝑋𝑗,1, 𝑋𝑗,2, … … … , 𝑋𝑗,𝐷], where each dimension represents a parameter and contains

integer numbers between 0 and (vi) (i.e., the number of values of the ith parameter). TLBO

requires both local search and global search to be summoned per iteration. Conversely,

ATLBO permits the adaptive selection of the local search and global search through the

fuzzy inference selection. The net effect is that ATLBO has less fitness function

evaluations than the original TLBO for the same number of iterations.

For the mixed strength test suite generation problem, this research deals with the

discrete version of ATLBO. As such, to deal with discrete parameters and values, each

individual 𝑋𝑗 needs to capture the parameters as a valid range of integer numbers (i.e.,

based on the user inputs). Local search and global search updates in ATLBO may result

into necessary rounding off of floating point values.

The rounding off of floating point values should be addressed, as well as the out-

of-range values. The clamping rule at the boundary within ATLBO is established to

restrict both lower and higher bounds. At least three possibilities exist in dealing with

boundary conditions used in the literature for discrete problems, i.e., invisible walls,

reflecting walls, absorbing walls (Robinson and Rahmat-Samii 2004). In the invisible

walls, when a current value goes outside the boundary, the corresponding fitness value is

not computed. In the reflecting walls, when a value reaches the boundary, it is reflected

back to the search space (i.e., mirroring effects). The boundary condition returns the

current value to the search space when the value moves out-of-range in the absorbing

walls. For example, if a parameter value is in the range from 1 to 4, the position is reset

to 1 when it reaches a value larger than 4. In this study, the absorbing walls approach is

used as the clamping rule in the implementation of ATLBO.

The local and global search processes of ATLBO are iteratively continued until

convergence has been achieved (i.e., if and only if all the interaction elements from the

Hs are completely removed), in relation to the stopping criteria.

76

Two approaches are considered for storing and locating the interaction elements:

array list and hash map. The array list approach is fast for a small number of values but

is not scalable for large parameters, because it must iterate the entire lists to fetch the

required interaction values. Given that the process of fetching and locating the required

interaction values are fundamentally important for fitness function evaluation, the array

list approach can introduce time performance penalty. Alternatively, the hash map offers

an effective approach of locating the required interaction values using only the unique

key based on the binary interaction value itself. For this reason, the hash map approach

is favored for the ATLBO. The ATLBO test suite generator is summarized in Figure 3.13

based on the aforementioned design choices.

Line 1 calls the interaction elements generation algorithm to enumerate the

interaction elements in the hash map 𝐻𝑠 based on the interaction strength, the number of

parameters and their values. Line 2 defines the trapezoidal membership functions for the

input and output linguistic variables. Line 3 defines the fuzzy rules of the fuzzy inference

system. Line 4 initializes a random population of learners and evaluates them. Lines 5 is

meant to run the teacher phase in the first iteration. The algorithm enters into its main

loop in line 6 which will terminate on coverage of all the interaction elements or tuples.

The algorithm enters into the for loop in line 7 to update the members of the population

using the teacher or learner search operators. As the Selection variable is set to 100 (line

8), the algorithm runs the teacher phase in the first iteration (see lines 9-14). Line 28

computes the three measures for the current best test case. Line 29 converts the crisp

input into fuzzy input. Line 30 defuzzify the linguistic variables by using the COG

defuzzification method and assigns the crisp output to the Selection variable. ATLBO

uses the value of this variable in the next iteration to run either the teacher phase (lines

9-14) or the learner phase (lines 17-27). Line 32 accumulates the best test case and stores

it in the final test suite list Fs. The algorithm then removes the interaction elements or

tuples from the hash map Hs covered by the current test case in line 33. Finally, line 35

displays the obtained optimal test suite Fs.

77

Figure 3.13 ATLBO for Generating Mixed Strength t-way Test Suite

For further details, an illustration of the test suite generation process by ATLBO

is shown in Figure 3.14.

78

Figure 3.14 Graphical Representation of Test Suite Generation by ATLBO

79

Initially, ATLBO-based strategy receives Hs for a given CA or VCA. The strategy

then randomly generates the search space as a population of learners. After this, the

strategy activates either the teacher phase or the learner phase that updates each learner

based on the maximum number of interaction elements coverage. For each of the learner

in the population, ATLBO computes 𝑄𝑚, 𝐼𝑚 and 𝐷𝑚. Taking these measures as input

linguistic variables, the Mamdani-type fuzzy inference system generates the crisp output

Selection. This value is then used in the next run to decide whether to use the teacher

phase or the learner phase. This procedure is repeated for all the learners in the

population. Following this, the strategy selects the best test case from the updated

population and check it for the maximum number of interaction elements coverage. If the

test case covers more interaction elements, the strategy adds it to Fs. Finally, all the

covered interaction elements are removed from Hs. Figure 3.15 illustrates an example of

the generation of test suite and the removal of interaction elements or tuples from Hs.

Figure 3.15 Example for Illustrating Generation of Test Suite and Removal of

Interaction Elements from Hs

3.5 Chapter Summary

Summing up, the chapter has provided the complete technical details of this work

by elaborating the design and implementation of all the algorithms. In the beginning, the

80

chapter has discussed TLBO which is a population-based optimization algorithm that

mimics the classroom environment to produce optimal solutions. It has two main phases;

the teacher phase and the learner phase, which are implemented sequentially. The teacher

phase launches the global search operation, whereas the learner phase invokes the local

search operation. Next, the chapter discusses the design of the proposed fuzzy inference

system for ATLBO. The system has three inputs (𝑄𝑚 , 𝐼𝑚 and 𝐷𝑚) and one output

(Selection). Trapezoidal member functions and four fuzzy inference rules have been used

in the system. Afterward, the chapter has integrated the fuzzy inference system to present

the general adaptive TLBO (ATLBO).

In the final part of the chapter, ATLBO is adopted for the problem of mixed

strength t-way test suite generation. Here, the two main algorithms (i.e., interaction

elements generation algorithm and ATLBO based test suite generator algorithm) are

discussed in detail. The first algorithm initially generates the parameter (P) combinations

and then the values (v) for each parameter combination based on interaction strength (t).

Hash map approach, for storing and locating interaction elements, is preferred over the

array list approach owing to its efficiency. The discrete version of ATLBO is used, and

the clamming rule (absorbing walls) is established. ATLBO summons local and global

search processes till all the interaction elements from Hs are completely removed (i.e.,

the stopping criteria for the processes). In the end, the chapter has illustrated how the

ALBO automate the mixed strength test suite generation process. After design and

implementation of ATLBO, the next chapter presents the experimental setup and detailed

results to investigate and evaluate its performance and effectiveness against the original

TLBO and other state-of-the-art meta-heuristic algorithms for addressing the problem of

generating mixed strength test suite.

81

CHAPTER 4

RESULTS AND DISCUSSION

In the last chapter, design details of the general ATLBO, as well as its

implementation for mixed strength test suite generation problem, have been provided. At

the beginning, an overview of original TLBO has given. The Mamdani-type fuzzy

inference system of ATLBO has been discussed in detail. ATLBO algorithm based on

the fuzzy inference system has given. Finally, the implementation of ATLBO for the

problem of generating mixed strength test suites has been given after explaining the

interaction elements generation algorithm.

This chapter presents the evaluation process of ATLBO. For this purpose, the

experiments are divided into three parts. The first part characterizes ATLBO and TLBO

on a set of CAs and VCAs. The test suite generation time and sizes are used for the

characterization. The second part adopts viable results from the literature for comparison

with the results of both ATLBO and TLBO in terms of the generated test suite sizes. All

other results are obtained by strategies based on meta-heuristic algorithms. The third part

of the chapter presents the statistical analysis of the results obtained in the previous two

parts. Moreover, the chapter also illustrates adaptive exploitation and exploration

distribution pattern of ATLBO for each CA and VCA included in the experiments.

Hereafter, the chapter thoroughly discusses the experimental observations. Finally, the

chapter sheds light on the related threats to validities to the obtained experimental results.

4.1 Experimental Setup

For the effective evaluation of ATLBO, the experiments conducted in this study

focuses on the following three related goals.

82

• To characterize the generation efficiency and performance of ATLBO

against the original TLBO (i.e., the efficiency is characterized by the size

of the generated test suite while the performance is characterized by the

execution time of each strategy).

• To gauge the adaptive distribution pattern of the exploration and

exploitation of ATLBO.

• To benchmark ATLBO against other meta-heuristic based test suite

generation strategies including the original TLBO.

Both original TLBO and the proposed ATLBO are implemented using the same

programming language and data structures as well as executed on the same hardware

platform, their characterization is acceptable. Tracking the exploration and exploitation

of ATLBO for all experiments is helpful to know how it carries search for different

problems. The third goal ensures the performance evaluation of ATLBO against existing

t-way strategies based on state-of-the-art meta-heuristic algorithms.

The experiments are divided into three parts to achieve the aforementioned goals.

In the first part, 3 selected CAs: CA(N; 2, 105), CA(N; 2, 42 55), CA(N; 2, 23 35), and 3

selected VCAs: VCA(N; 2, 52 42 32, CA (3,42 32)), VCA(N; 2, 57, CA (3,53)), VCA(N; 2,

313, CA(3, 33)) are adopted based on the interaction strength t = 2. In doing so, the aim is

to highlight the time and size performance of the implemented ATLBO and the original

TLBO. In the second part, the generated test suite sizes of the proposed ATLBO and the

original TLBO implementations are benchmarked against each other as well as against

existing meta-heuristic based strategies based on the benchmark experiments published

in (Wu, Nie et al. 2015). To be specific, the benchmark experiments involve CA(N; t, 3p)

with varying t from 2 to 4 and p from 2 to 12, CA(N; t, v7) along with CA(N; t, v10) with

varying t from 2 to 4, and v varying from 4 to 6, VCA(N; 2, 315, {C}), VCA(N; 3, 315, {C}),

and VCA(N; 2, 43 53 62, {C}). In the third part, statistical analysis of the obtained results

is carried out to further ensure an acceptable comparison.

It is noted that a fair comparison between each meta-heuristic based strategy (M.

Črepinšek, S.-H. Liu et al. 2014, Draa 2015, M. Črepinšek, S.-H. Liu et al. 2015, M.

Mernik, S.-H. Liu et al. 2015) is impossible owing to potentially different number of

83

fitness function evaluations, variation in the data structures, programming language

implementation and running environment. Furthermore, each meta-heuristic may require

the specific control parameter settings (e.g., PSO based strategies rely on inertia weight,

social and cognitive parameters as parameters, whereas CS relies on its elitism

probability). Given that the implementations of other meta-heuristic-based strategies are

not available publicly, the algorithm internal settings cannot be modified so as to fairly

run the adopted experiments in the experimental setup for this work. A t-way strategy

based on the original TLBO for test suite generation is also implemented for comparative

purposes. It is also observed that direct comparative performance of ATLBO with the

original TLBO (i.e., even with the same number of iterations) can also be unfair. With

the same number of iterations, the original TLBO has twice as much fitness function

evaluations as compared to ATLBO owing to the serial execution of both exploration and

exploitation steps. Thus, the number of iterations within TLBO must always be half of

ATLBO for a fair comparison.

For ATLBO the population size is set to 40 and the maximum number of iterations

is set to 100 in all the experiments. For the original TLBO, the population size is the same

but the maximum number of iterations is set to 50. Both the ATLBO and TLBO

implementations are based on the Java programming language. Table 4.1 presents the

parameter settings for all the competing meta-heuristic algorithms. The experimental

platform used for this work comprises of a PC running Windows 10, CPU 2.9 GHz Intel

Core i5, 16 GB 1867 MHz DDR3 RAM and a 512 MB of flash HDD. ATLBO and TLBO

are run 30 times in all the experiments to ensure statistical significance.

The best and the mean time (whenever applicable), as well as the best test sizes

and the mean test sizes for each experiment, are reported side-by-side. The best cell

entries are marked as “*”, whereas the best mean cell entries are marked in bold font.

Cell entries that are not available are marked with a dash “-“. This study also tracks the

mean percentage of exploration (i.e., global search) and exploitation (i.e., local search)

for each experiment that involves ATLBO to highlight how the actual search progresses

for different CAs and VCAs.

84

Table 4.1 Parameter Settings for the Competing Meta-heuristic Algorithms

Algorithm Parameters Values

SA

Starting temperature 20

Cooling schedule 0.9998

Iteration 1000

ACA

Pheromone control 1.6

Heuristic control 0.2

Pheromone amount 0.01

Pheromone persistence 0.5

Initial pheromone 0.4

Elite ants 2

Max stale period 5

Population size 20

Iteration 1000

PSTG (PSO)

Inertia weight 0.3

Acceleration coefficients 1.375

Population size 80

Iteration 100

HS

Harmony memory consideration rate 0.7

Pitch adjustment rate 0.2

Harmony memory size Population size 100

Iteration (improvisation) 100

CS

Probability 0.25

Population size 100

Iteration 100

DPSO

Inertia weight 0.5

Acceleration coefficients 1.3

Pro1 0.5

Pro2 0.3

Pro3 0.7

Population size 80

Iteration 250

4.2 Characterizing Time and Size Performances for TLBO and ATLBO

Given that both implementations are based on the same data structure, same

language implementation, same running environment and same fitness function

evaluations, a fair comparison of test suite sizes and time performance for TLBO and

ATLBO is possible now. Table 4.2 highlights the obtained results, whereas Figure 4.1

depicts the mean exploration and exploitation percentage for ATLBO based on the

provided CAs and VCAs. Moreover, box plots (see Figure 4.2) are constructed for each

of the CA and VCA given in Table 4.2. These plots are helpful to visually show whether

the implemented ATLBO and TLBO generate consistent results.

85

4.3 Benchmarking with other Meta-Heuristic Strategies

Unlike the experiments in the previous section, the benchmark experiments in this

section also include the performance of ATBLO against all other strategies. However,

the execution is omitted because of the differences in the parameter control settings (e.g.,

maximum iteration, unequal evaluation of fitness function, etc.) and implementation

(e.g., data structure, implementation language, etc.). Despite these differences, it is the

comparison is still valid as the published best and mean test sizes are obtained utilizing

the best control parameter settings.

Tables 4.3-4.8 highlight the results for each CA and VCA considered in this study.

Figures 4.3-4.8 depict the mean exploration and exploitation percentage for ATLBO

based on the given CAs and VCAs.

4.4 Statistical Analysis

All the obtained results are analyzed statistically on the basis of 1xN pair

comparisons with 95% confidence level (α=0.05) and 90% confidence level (α=0.10).

The reason for using two values of α is that the competing strategies are not only well-

tuned but also have reported their best-obtained test suite sizes. The Wilcoxon Rank-Sum

test is adopted to prove the statistical significance of ATLBO-based strategy as the

control strategy against other strategies in the comparison. The nature of the obtained

results (being not normally distributed) justifies the selection of a non-parametric test

such as the adopted Wilcoxon Rank-Sum test for the statistical analysis.

The null hypothesis 𝐻0 demonstrates that the test suite size for the ATLBO-based

strategy is statistically smaller than for the other competing strategy. In this case, ATLBO

has a lower population median. The alternative hypothesis 𝐻1 shows that there is no

significant difference between ATLBO-based strategy and its counterpart in terms of test

suite size.

The Bonferroni-Holm correction is adopted for the Family-Wise Error Rate

(FWER) because of the multiple comparisons. It adjusts the α value by its step down

procedure that sequentially rejects poor strategies than the control strategies until a better

strategy arrives. To be specific, the α is adjusted by using Eq. 4.1 after sorting the p-

values in ascending order such that 𝑝1 < 𝑝2 < 𝑝3 … < 𝑝𝑖 … < 𝑝𝑘.

86

α𝐻𝑜𝑙𝑚 =
α

𝑘−𝑖+1
 4.1

where 𝑘 represents the total number of paired samples and 𝑖 represents the current test

number.

If 𝑝1 < α𝐻𝑜𝑙𝑚, the hypothesis for the comparison is rejected and a subsequent

comparison for 𝑝2 is then allowed. In case of rejection of the second hypothesis, the test

proceeds to the third comparison. The procedure continues until a null hypothesis cannot

be rejected. Tables 4.9-4.15 presents the complete statistical analyses.

4.5 Discussion

Reflecting on the experiments undertaken, several observations can be elaborated

based on the obtained results.

Table 4.2 shows the size and time performance of ATLBO and the original TLBO.

In terms of the best test size, ATLBO outperforms TLBO in two out of six entries.

ATLBO outperforms TLBO in four out of six entries in terms of the mean test sizes.

ATLBO and TLBO have similar execution times for small parameter values for time

performances. However, TLBO significantly outperforms ATLBO as the parameter

number increases (with fixed t = 2) because of the overhead introduced by the fuzzy

inference selection. Figure 4.1 shows that the search gradually favours exploration over

exploitation as parameter p increases (with constant t = 2, and a small variant of v).

The box plots analysis of Table 4.2 in Figure 4.2 (a)-(f) reveals some salient

features of the searching process of ATLBO and TLBO. Considering Figure 4.2 (a) for

CA(N; 2, 105), the distribution of box plot results is asymmetric for both strategies. TLBO

has the largest range of results as well as has largest interquartile range than ATLBO.

Moreover, the median of ATLBO is also lower than TLBO. Referring to Figure 4.2 (b)

for CA(N; 2, 42 55), ATLBO has again the lower range of results than that of TLBO.

However, both ATLBO and TLBO share the same interquartile range and median for the

given CA. The distribution of box plot results for CA(N; 2, 23 35) shown in Figure 4.2 (c)

is again asymmetric as both strategies have different ranges of results as well as different

medians. ATLBO has a lowest range of results and median than TLBO. In this case,

however, both have same interquartile range. Figure 4.2 (d) for VCA(N; 52 42 32, CA(3,

52 42) again demonstrates the dominance of ATLBO over TLBO as far as range of results,

87

median and interquartile range are concerned. Considering the box plots for the last two

VCAs in Figure 4.2 (e) and Figure 4.2 (f), both ATLBO and TLBO have similar

performances.

Unlike Table 4.2, Tables 4.3-4.8 account for the size performance of the proposed

ATLBO and the original TLBO against other meta-heuristic-based strategies. The

execution time measures are omitted in this case as the experiments are conducted

unfairly based on unequal fitness function evaluation (e.g., different maximum number

of iterations and control parameters).

ATLBO outperforms all other strategies with the best entries in 17 out of 24 cells

in terms of the best test sizes as shown in Table 4.3. TLBO and DPSO also provide

competitive performance with 14 and 12 best entries, respectively. APSO offers 7 best

entries, whereas CS provides 5 best entries. PSTG performs the poorest with only 3 best

entries. ATLBO also outperforms the rest of the strategies in terms of the mean test sizes

(i.e., with 16 cells). The next closest rival is TLBO (i.e., with 5 cells) and DPSO (i.e.,

with 4 cells). From Figure 4.3 (a) till (c), it is observed that increasing the parameter value

p for the same interaction strength t and values v causes ATLBO to favour exploration.

Increasing t similarly also causes ATLBO to favour exploration.

DPSO outperforms other strategies with 12 out of 18 cell entries in terms of the

best test sizes in Table 4.4. ATLBO comes as the runner up with total 8 best cells. Both

APSO and CS offer 3 best cells, whereas TLBO offers 2 cells. PSTG again performs the

poorest with only 1 best cell. DPSO also outperforms other strategies with 7 out of 18

best cell entries in terms of the mean test sizes. ATLBO is again the runner up with 6 best

entries. APSO offers 2 best cell entries. TLBO, CS and PSTG perform the worst with

only 1 best cell entry. Referring to Figure 4.4 (a) till (c), it is observed that increasing the

values v for the same interaction strength t and parameters p have small effects in terms

of exploration and exploitation. However, increasing t tends to cause ATLBO to increase

exploration.

88

Table 4.2 Characterizing TLBO and ATLBO

ID CA and VCA

Original TLBO ATLBO

Size Time (sec) Size Time (sec)
% Mean Exploit %Mean Explore

Best Mean Best Mean Best Mean Best Mean

CA1 CA(N; 2, 105) 117 118.60 28.92 42.30 116* 118.40 23.76* 29.23 79.85 20.16

CA2 CA(N; 2, 4255) 33 34.20 9.22* 10.27 32* 33.90 12.77 13.98 61.75 38.25

CA3 CA(N; 2, 2335) 13* 14.77 5.12* 6.15 13* 14.16 6.64 8.07 32.20 67.80

VCA1 VCA(N; 2, 524232, CA (3,4232)) 105* 108.05 43.46* 48.42 105* 107.60 68.31 74.73 13.01 86.99

VCA2 VCA(N; 2, 57, CA (3,53)) 125* 125.00 66.63* 69.10 125* 125.00 125.02 131.42 18.69 81.31

VCA3 VCA(N; 2, 313, CA (3,33)) 27* 27.00 45.94* 49.60 27* 27.00 64.37 69.98 23.43 76.57

Figure 4.1 Mean Exploration and Exploitation Percentage of ATLBO for Table 4.2

Entries with * indicate best sizes, entries in bold indicate best mean sizes

89

Figure 4.2 Box Plots for Table 4.2

90

Table 4.3 CA(N; t, 3p)

t p

PSTG (Ahmed,

Zamli et al.

2012)

DPSO (Wu,

Nie et al. 2015)

APSO (Mahmoud

and Ahmed 2015)

CS (Ahmed,

Abdulsamad et

al. 2015)

Original

TLBO
ATLBO

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean % Mean Exploit % Mean Explore

2

4 9* 10.15 9* 9.00 9* 9.95 9* 10.0 9 9.00 9* 9.00 96.36 3.64

5 12 13.81 11* 11.53 11* 12.23 11* 11.80 11* 11.43 11* 11.33 55.14 44.86

6 13 15.11 14 14.50 12* 13.78 13 14.20 13 14.60 13 14.33 53.49 46.51

7 15* 16.94 15* 15.17 15* 16.62 14* 15.60 15* 15.07 15* 15.05 52.71 47.29

8 15* 17.57 15* 16.00 15* 16.92 15* 15.80 15* 15.70 15* 15.90 40.88 59.12

9 17 19.38 15* 16.43 16 18.31 16 17.20 15* 16.23 15* 15.03 41.46 58.54

10 17 19.78 16* 17.30 17 18.12 17 17.80 16* 17.40 16* 17.37 37.02 62.98

11 17 20.16 17 17.70 - - 18 18.60 16* 17.73 16* 17.67 36.77 63.23

12 18 21.34 16* 17.93 - - 18 18.80 17 18.10 17 17.80 37.14 62.86

3

5 39 41.37 41 43.17 41 42.20 38* 39.20 38* 42.53 38* 42.37 61.59 38.41

6 45 46.76 33* 38.30 45 46.51 43 44.20 33* 38.87 33* 38.43 55.86 44.14

7 50 52.20 48* 50.43 48* 51.12 48* 50.40 50 50.53 49 50.00 40.27 59.73

8 54 56.76 52 53.83 50* 54.86 53 54.80 52 53.17 52 53.33 38.39 61.61

9 58 60.30 56 57.77 59 60.21 58 59.80 56 57.77 55* 57.50 35.01 64.99

10 62 63.95 59* 60.87 63 64.33 62 63.60 60 60.93 59* 60.73 34.09 65.91

11 64 65.68 63 63.97 - - 66 68.20 62* 63.70 62* 63.57 32.17 67.83

12 67 68.23 65* 66.83 - - 70 71.80 65* 66.70 65* 66.53 29.93 70.07

4

6 133 135.31 131 134.37 129* 133.98 132 134.20 130 133.63 130 134.10 50.50 49.50

7 155 158.12 150 155.23 154 157.42 154 156.80 146* 155.77 152 156.03 40.22 59.78

8 175 176.94 171* 175.60 178 179.70 173 174.80 171* 175.83 171* 175.50 33.85 66.15

9 195 198.72 187 192.27 190 194.13 195 197.80 187 190.33 156* 189.60 31.76 68.24

10 210 212.71 206 219.07 214 212.21 211 212.20 205* 208.80 207 208.43 27.20 72.80

11 222 226.59 221 224.27 - - 229 231.00 221* 224.12 221* 223.43 24.65 75.35

12 244 248.97 237 239.83 - - 253 255.80 236 239.29 235* 237.83 22.41 77.59

Entries with * indicate best sizes, entries in bold indicate best mean sizes and entries with ‘– ‘indicate ‘Not Available’

91

Table 4.4 CA(N; t, v7)

t v

PSTG (Ahmed,

Zamli et al. 2012)

DPSO (Wu, Nie

et al. 2015)

APSO

(Mahmoud and

Ahmed 2015)

CS (Ahmed,

Abdulsamad et

al. 2015)

Original TLBO ATLBO

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean
% Mean

Exploit

%

Mean

Explore

2

2 6* 6.82 7 7.00 6* 6.73 6* 6.80 7 7.00 7 7.00 50.87 49.13

3 15 15.23 14* 15.00 15 15.56 15 16.20 15 15.10 14* 14.93 51.60 48.40

4 26 27.22 24 25.33 25 26.36 25 26.40 24 25.27 23* 25.17 57.74 42.26

5 37 38.14 34* 35.47 35 37.92 37 38.60 34* 35.43 34* 35.47 63.82 36.18

6 - - 47* 49.23 - - - - 47* 48.91 47* 48.80 70.29 29.71

7 - - 64* 66.37 - - - - 65 66.21 64* 66.10 68.82 31.18

3

2 13 13.61 15 15.06 15 15.80 12* 13.80 15 15.12 15 15.12 48.42 51.58

3 50 51.75 49 50.60 48* 51.12 49 51.60 49 50.38 48* 50.33 39.60 60.40

4 116 118.13 112 115.27 118 120.41 117 118.40 112 115.37 111* 115.67 43.16 56.84

5 225 227.21 216* 219.20 239 243.29 223 225.40 217 219.90 217 218.80 44.77 55.23

6 - - 365* 370.57 - - - - 369 372.50 369 372.20 45.87 54.13

7 - - 574* 577.67 - - - - 579 583.50 576 581.20 46.56 53.44

4

2 29 31.49 34 34.00 30 31.34 27* 29.60 31 33.70 31 33.68 46.04 53.96

3 155 157.77 150* 154.73 153 155.20 155 156.80 151 155.25 150* 155.24 39.42 60.58

4 487 489.91 472* 481.53 472* 478.90 487 490.20 480 485.53 478 484.69 39.90 60.10

5 1176 1180.63 1148* 1155.63 1162 1169.94 1171 1175.20 1166 1173.17 1159 1173.40 40.14 59.86

6 - - 2341* 2357.73 - - - - 2401 2406.35 2394 2404.25 40.47 59.53

7 - - 4290* 4309.6 - - - - 4419 4421.40 4407 4417.60 37.38 62.62

Entries with * indicate best sizes, entries in bold indicate best mean sizes and entries with ‘– ‘indicate ‘Not Available’

92

Table 4.5 CA(N; t, v10)

t v

PSTG

(Ahmed,

Zamli et al.

2012)

DPSO (Wu,

Nie et al. 2015)

CS (Ahmed,

Abdulsamad et

al. 2015)

Original TLBO ATLBO

Best Mean Best Mean Best Mean Best Mean Best Mean
%Mean

Exploit

%Mean

Explore

2

4 - - 28* 29.20 - - 28* 28.73 28* 28.69 42.42 57.58

5 45 48.31 42 43.67 45 47.8 41* 43.30 42 43.53 46.92 53.08

6 - - 58* 59.23 - - 58* 59.47 58* 59.33 50.27 49.73

3

4 - - 141 143.70 - - 140* 142.57 140* 142.80 30.77 69.23

5 287 298.00 273 276.20 297 299.20 273 275.70 272* 275.23 31.04 68.96

6 - - 467 470.50 - - 467 470.47 466* 469.90 31.53 68.47

4

4 - - 664 667.00 - - 663 668.12 661* 664.06 25.68 74.32

5 1716 1726.72 1618* 1620.80 1731 1740.20 1621 1621.80 1619 1620.91 22.32 77.68

6 - - 3339 3342.50 - - 3338* 3343.81 3338* 3342.10 21.13 78.87

Entries with * indicate best sizes, entries in bold indicate best mean sizes and entries with ‘– ‘indicate ‘Not Available’

93

Table 4.6 VCA(N; 2, 315, {C})

ID VCA

PSTG (Ahmed,

Zamli et al.

2012)

DPSO (Wu,

Nie et al.

2015)

ACS (Shiba,

Tsuchiya et

al. 2004)

SA (Cohen,

Colbourn et

al. 2003)

Original

TLBO
ATLBO

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean
%Mean

Exploit

%Mean

Explore

VCA1 Ø 19 20.92 18 18.63 19 - 16* - 19 19.67 18 18.60 31.30 68.70

VCA2 CA(3, 33) 27* 27.50 27* 27.27 27* - 27* - 27* 27.33 27* 27.00 22.26 77.74

VCA3 CA(3, 33)2 27* 27.94 27* 27.83 27* - 27* - 27* 27.47 27* 27.53 21.46 78.54

VCA4 CA(3, 33)3 27* 28.13 27* 28.00 27* - 27* - 27* 27.93 27* 27.43 22.00 78.00

VCA5 CA(3, 34) 30 31.47 27* 31.43 27* - 27* - 27* 32.73 27* 27.00 22.26 77.74

VCA6 CA(3, 35) 38 39.83 38 40.93 38 - 33* - 38 40.97 38 40.60 16.25 83.75

VCA7 CA(3, 36) 45 46.42 43 45.70 45 - 34* - 43 43.73 43 43.67 18.05 81.95

VCA8 CA(3, 37) 49 51.68 47 49.87 48 - 41* - 49 50.03 47 49.83 17.96 82.04

VCA9 CA(4, 34) 81* 82.21 81* 81.03 - - - - 81* 81.03 81* 81.03 7.44 92.56

VCA10 CA(4, 35) 97 99.31 85* 94.50 - - - - 89 97.53 87 96.90 7.26 92.74

VCA11 CA(4, 37) 158 160.31 152* 156.83 - - - - 153 156.51 152* 156.33 10.74 89.26

Entries with * indicate best sizes, entries in bold indicate best mean sizes and entries with ‘– ‘indicate ‘Not Available’

94

Table 4.7 VCA(N; 3, 315, {C})

ID VCA

PSTG (Ahmed,

Zamli et al.

2012)

DPSO (Wu, Nie

et al. 2015)

HSS (Alsewari

and Zamli 2012)

Original

TLBO
ATLBO

Best Mean Best Mean Best Mean Best Mean Best Mean
%Mean

Exploit

%Mean

Explore

VCA1 Ø 75 78.69 72* 73.97 75 75.00 73 74.47 73 73.60 24.64 75.36

VCA2 CA(4, 34) 91 91.80 86 89.83 87 87.00 90 90.03 85* 89.23 20.36 79.64

VCA3 CA(4, 34)2 91 92.21 88 90.77 90 90.00 86* 89.76 87 90.10 20.24 79.76

VCA4 CA(4, 35) 114 117.30 107 111.17 112 112.00 106* 111.90 107 112.13 16.44 83.56

VCA5 CA(4, 37) 159 162.23 152* 158.57 159 160.10 155 158.40 153 158.30 12.11 87.89

VCA6 CA(4, 39) 195 199.28 193 196.00 199 199.80 190 193.40 189* 193.29 11.15 88.85

VCA7 CA(4, 311) 226 230.64 225* 227.50 242 243.00 226 229.51 225* 227.48 10.01 89.99

Entries with * indicate best sizes, entries in bold indicate best mean sizes and entries with ‘– ‘indicate ‘Not Available’

95

Table 4.8 VCA(N; 2, 43 53 62, {C})

ID CA

PSTG

(Ahmed,

Zamli et al.

2012)

DPSO (Wu,

Nie et al.

2015)

HSS (Alsewari

and Zamli

2012)

ACS (Shiba,

Tsuchiya et al.

2004)

SA (Cohen,

Colbourn et

al. 2003)

Original

TLBO
ATLBO

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean
%Mean

Exploit

%Mean

Explore

VCA1 Ø 42 43.60 40 42.30 42 43.50 41 - 36* - 40 42.03 39 41.63 43.47 56.53

VCA2 CA(3, 43) 64* 65.50 64* 64.00 64* 64.00 64* - 64* - 64* 64.03 64* 64.00 31.11 68.89

VCA3
CA(3, 43

52)
124 126.60 119 124.70 116 120.90 104 - 100* - 121 125.67 122 124.50 18.31 81.69

VCA4
CA(3, 43),

CA(3, 53)
125* 127.90 125* 125.00 125* 125.00 125* - 125* - 125* 125.00 125* 125.00 15.88 84.12

VCA5
CA(3, 43

53 61)
206 210.20 203 207.50 212 214.00 201 - 171* - 203 208.77 203 208.68 14.42 85.58

VCA6

CA(3, 43),

CA(4,53

61)

750* 755.70 750* 750.80 750* 750.00 - - - - 750* 750.00 750* 750.00 12.70 87.30

VCA7
CA(4, 43

52)
472 478.10 440* 450.60 453 454.3 - - - - 459 466.70 451 459.10 6.52 93.48

Entries with * indicate best sizes, entries in bold indicate best mean sizes and entries with ‘– ‘indicate ‘Not Available’

96

Figure 4.3 Mean Exploration and Exploitation Percentage of ATLBO for Table 4.3

97

Figure 4.4 Mean Exploration and Exploitation Percentage of ATLBO for Table 4.4

98

Figure 4.5 Mean Exploration and Exploitation Percentage of ATLBO for Table 4.5

99

Figure 4.6 Mean Exploration and Exploitation Percentage of ATLBO for Table 4.6

Figure 4.7 Mean Exploration and Exploitation Percentage of ATLBO for Table 4.7

100

Figure 4.8 Mean Exploration and Exploitation Percentage of ATLBO for Table 4.8

Table 4.9 Wilcoxon Rank-Sum Test for Table 4.2

Pair

Comparison

p-value in

ascending order

Bonferroni-Holm Correction p holm

(95% confidence level)

Bonferroni-Holm

Correction p holm (90%

confidence level)

ATLBO vs

TLBO
0.0215

p holm = 0.05, p-value < p holm,Reject

Ho

p holm = 0.10, p-value

< p holm, Reject Ho

Table 4.10 Wilcoxon Rank-Sum Test for Table 4.3

Pair

Comparison

p-value in

ascending order

Bonferroni-Holm Correction p holm

(95% confidence level)

Bonferroni-Holm

Correction p holm (90%

confidence level)

ATLBO vs

PSTG
0.0000

p holm = 0.0125, p-value < p holm,

Reject Ho

p holm = 0.025, p-

value < p holm, Reject Ho

ATLBO vs

CS
0.0005

p holm = 0.016667, p-value < p holm,

Reject Ho

p holm = 0.

0.033333, p-value < p

holm, Reject Ho

ATLBO vs

DPSO
0.0005

p holm = 0.025, p-value < p holm,

Reject Ho

p holm = 0.05, p-

value < p holm, Reject Ho

ATLBO vs

TLBO
0.0025

p holm = 0.05, p-value < p holm,

Reject Ho

p holm = 0.10, p-

value < p holm, Reject Ho

Owing to incomplete sample (i.e., with one or more NA entries), the contribution APSO are ignored

101

Table 4.11 Wilcoxon Rank-Sum Test for Table 4.4

Pair

Comparison

p-value in

ascending order

Bonferroni-Holm Correction p holm

(95% confidence level)

Bonferroni-Holm Correction

p holm (90% confidence

level)

ATLBO vs

TLBO
0.017

p holm = 0.025, p-value < p holm,

Reject Ho

p holm = 0.02, p-value < p

holm, Reject Ho

ATLBO vs

DPSO
0.1025

p holm = 0.05, p-value > p holm, Cannot

Reject Ho

p holm = 0.10, p-value > p

holm, Cannot Reject Ho

Owing to incomplete sample (i.e., with one or more NA entries), the contributions of PSTG, CS and

APSO are ignored

Table 4.12 Wilcoxon Rank-Sum Test for Table 4.5

Pair

comparison

p-value in

ascending order

Bonferroni-Holm correction p holm

(95% confidence level)

Bonferroni-Holm

correction p holm (90%

confidence level)

ATLBO vs

DPSO
0.0105

p holm = 0.025, p-value < p holm,

Reject Ho

p holm = 0.05, p-value

< p holm, Reject Ho

ATLBO vs

TLBO
0.033

p holm = 0.05 , p-value < p holm,

Reject Ho

p holm = 0.10, p-value

< p holm, Reject Ho

Owing to incomplete sample (i.e., with one or more NA entries), the contributions of PSTG and CS are

ignored

Table 4.13 Wilcoxon Rank-Sum Test for Table 4.6

Pair

comparison

p-value in

ascending order

Bonferroni-Holm correction p holm

(95% confidence level)

Bonferroni-Holm

correction p holm (90%

confidence level)

ATLBO vs

TLBO
0.004

p holm = 0.016667, p-value < p holm,

Reject Ho

p holm = 0.033333, p-

value < p holm, Reject Ho

ATLBO vs

PSTG
0.005

p holm = 0.025 , p-value < p holm,

Reject Ho

p holm = 0.05 p-value

< p holm, Reject Ho

ATLBO vs

DPSO
0.0295

p holm = 0.05 , p-value < p holm,

Reject Ho

p holm = 0.10, p-value

< p holm, Reject Ho

Owing to incomplete sample (i.e., with one or more NA entries), the contributions of ACS and SA are

ignored

102

Table 4.14 Wilcoxon Rank-Sum Test for Table 4.7

Pair

comparison

p-value in

ascending order

Bonferroni-Holm correction p holm

(95% confidence level)

Bonferroni-Holm

correction p holm (90%

confidence level)

ATLBO vs

PSTG
0.009

p holm = 0.0125, p-value < p holm,

Reject Ho

p holm = 0.025, p-value

< p holm, Reject Ho

ATLBO vs

HSS
0.009

p holm = 0.016667, p-value < p holm,

Reject Ho

p holm = 0.033333, p-

value < p holm, Reject Ho

ATLBO vs

TLBO
0.118

p holm = 0.025 , p-value > p holm,

Cannot Reject Ho

p holm = 0.05 p-value >

p holm, Cannot Reject Ho

ATLBO vs

DPSO
0.199

p holm = 0.05 , p-value > p holm,

Cannot Reject Ho

p holm = 0.10, p-value

> p holm, Cannot Reject Ho

Table 4.15 Wilcoxon Rank-Sum Test for Table 4.8

Pair

comparison

p-value in

ascending order

Bonferroni-Holm correction p holm

(95% confidence level)

Bonferroni-Holm correction

pholm (90% confidence level)

ATLBO vs

PSTG
0.009

p holm = 0.0125, p-value < p holm,

Reject Ho

p holm = 0.025, p-value <

p holm, Reject Ho

ATLBO vs

TLBO
0.0215

p holm = 0.016667, p-value > p

holm, Cannot Reject Ho

p holm = 0.033333, p-

value < p holm, Reject Ho

ATLBO vs

DPSO
0.343

p holm = 0.025 , p-value > p holm,

Cannot Reject Ho

p holm = 0.05 p-value > p

holm, Cannot Reject Ho

ATLBO vs

HSS
0.50

p holm = 0.05 , p-value > p holm,

Cannot Reject Ho

p holm = 0.10, p-value >

p holm, Cannot Reject Ho

Owing to incomplete sample (i.e., with one or more NA entries), the contributions of ACS and SA are

ignored

Given the lack of published results, few observations can be made for PSTG and

CS in Table 4.5. ATLBO offers the best results in almost all configurations in terms of

the best test sizes with the exception of CA(N; 2, 510) and CA(N; 4, 510). As the runner

up, TLBO (i.e., 5 out of 9 best cell entries) outperforms DPSO (i.e., 3 out of 9 best cell

entries). ATLBO outperforms both DPSO and TLBO with 5 out 9 best entries in terms

of the mean test sizes. Both DPSO and TLBO share the same number of best mean test

sizes (i.e., 2 out of 9 best cell entries). The exploration and exploitation of ATLBO in

Figure 4.5 (a) till (c), show that increasing the values v for the same interaction strength

t and parameters p causes a small increase in exploitation. Increasing t tends to cause

ATLBO to increase exploration, which is similar to an earlier case.

Table 4.6 indicates that SA outperforms all other strategies in terms of the best

test sizes with 8 out of 11 best cell entries. DPSO is the runner up with 7 best cell entries.

Except SA and DPSO, ATLBO outperforms all other strategies with 6 best cells. TLBO

outperforms PSTG and ACS with 5 best cells. PSTG and ACS perform the worst with 4

103

cells. ATLBO outperforms all other strategies with 8 out of 11 best cells in terms of the

mean test sizes. Although DPSO has the best results, it has a poorer mean value compared

with ATLBO with 3 out of 11 cells. TLBO offers 2 cells with the best mean test sizes.

PSTG has one entry with the best mean value. Given the lack of published results,

information cannot be inferred for ACS and SA. Figure 4.6 shows that increasing sub-

configurations causes ATLBO to further increase exploration than exploitation for the

fixed VCA(N; 2, 315, {C}} with sub-configurations {C}.

Both DPSO and ATLBO outperform all other strategies in Table 4.7 in terms of

the best test sizes with 3 out of 7 cell entries, followed by TLBO with 2 cells. HSS and

PSTG perform the worst without a single best cell entry. ATLBO outperforms all existing

strategies with 4 out 7 entries in terms of the mean test sizes. TLBO, HSS and DPSO

offer only 1 best cell entry. PSTG performs the poorest with no best mean value. The

chart in Figure 4.7 shows that increasing sub-configurations also tend to increase

exploration further for the fixed VCA(N; 2, 315, {C}} with sub-configurations {C}.

SA outperforms all other strategies in all VCA configurations in terms of the best

test sizes with 5 entries, as shown in Table 4.8. DPSO follows with 4 best cell entries,

which performs better than ATLBO, TLB, HSS and PSTG (all with three cell entries,

respectively). ACS has the poorest performance with 2 cell entries. DPSO and HSS yield

the best results with 4 out of 7 entries for the mean test sizes. ATLBO is the runner up

with 3 cell entries. TLBO has 2 best entries, whereas PSTG has none. Information cannot

be inferred for ACS and SA because of the lack of published results. Finally, the chart in

Figure 4.8 shows consistent observation noted for the last two findings. In particular,

increasing sub-configurations {C} also tend to increase exploration further for the fixed

VCA(N; 2, 43 53 62, {C}).

Considering both comparisons (best and mean test suite sizes), ATLBO offers

competitive performance against existing strategies (with the closest competitors are

DPSO and SA). Despite its competitive performance, there appears to be some overhead

for ATLBO as far as execution time is concerned, that is, in order to accommodate the

processes related to fuzzy inference rules (i.e., calculating the quality measure (𝑄𝑚),

intensification measure (𝐼𝑚), and diversification measure (𝐷𝑚)).

104

Recall that this work modifies the sequential nature of exploration and

exploitation within TLBO. Specifically, this work enhances the original TLBO with the

adaptive selection – local search and global search are decided at run-time based on the

progress of the search. In fact, the core feature of TLBO has been maintained, that is, the

proposed ATLBO is still parameter-free. Typically, existing meta-heuristics adopts

specific control parameters and requires explicit (problem domain) tuning to ensure a

balance between exploration and exploitation. Explicit tuning is unnecessary for ATLBO

because the balance between exploration and exploitation is adaptively handled by the

implemented fuzzy inference system.

The search pattern of the original TLBO is straightforward, wherein both

exploration and exploitation are always at 50%. However, to understand the searching

pattern of ATLBO, there is a need to track the mean percentage of exploration and

exploitation taking the mixed strength t-way test generation problem as the case study.

Within the problem of generating mixed t-way test suites, VCA(N; t, vp, {C}), four main

variables of interest exist (i.e., interaction strength t, values v, parameter p, and sub-

configuration {C}). Based on the conducted experiments, the following conclusions have

been derived.

• For small value of p, t and v, ATLBO favours exploitation over exploration

(i.e., with typical values p ≤ 6, t ≤ 3, v ≤ 2).

• For a fixed t and v, when the parameter p increases, ATLBO favours

exploration over exploitation.

• For a fixed p and v, when the interaction strength t increases, ATLBO favours

exploration over exploitation.

• For a fixed p and t, when the value v increases, ATLBO favours exploration

over exploitation. However, the rate of exploration increment is smaller as

compared to the effect of increasing p or t.

• Given VCA(N; t, vp, {C}), and for a fixed p, v, and t, when {C} increases,

ATLBO favours exploration over exploitation.

105

As the search space grows (i.e. horizontally with the increase of p and t, or

vertically with the increase of v), ATLBO needs to explore more promising regions to

obtain good quality solutions. The findings of this work are consistent with intuition

indicating the effectiveness of the developed fuzzy rules.

ATLBO-based strategy demonstrated acceptable statistical dominance against the

competing state-of-the-art strategies as shown in Tables 4.9-4.15 by the conducted

statistical tests for all the obtained test sizes. Statistical analysis of Table 4.2 presented in

Table 4.9 clearly indicates statistical significance of ATLBO-based strategy in

performance against the original TLBO at both values of α (i.e., 95% confidence level

and 90% confidence level).

According to the statistical analysis of Table 4.3 in Table 4.10, ATLBO is

statistically significant than PSTG, CS, DPSO and TLBO while ignoring the contribution

of APSO owing to missing results. Table 4.11 shows the statistical analysis of Table 4.4,

indicating that statistically, ATLBO has better performance than TLBO-based strategy,

whereas similar performance to DPSO-based strategy. Here, the contributions of PSTG,

CS and APSO are ignored due to the unavailability of complete samples for these

strategies. Referring to the statistical analysis of Table 4.5 in Table 4.12, ATLBO is

statistically better than DPSO and TLBO at both 95% confidence level and 90%

confidence level, whereas the contributions of PSTG and CS are excluded because of the

incomplete samples. At both 95% confidence level and 90% confidence level, ATLBO-

based strategy has statistically significant performance than PSTG, TLBO and DPSO

according to statistical analysis of Table 4.6 in Table 4.13. ATLBO has outperformed

PSTG and HSS statistically at both 95% confidence level and 90% confidence level,

whereas showed similar performance against TLBO and DPSO (see statistical analysis

of Table 4.7 in Table 4.14). Statistical analysis of Table 4.8 in Table 4.15 indicates that

statistically ATLBO has better performance than PSTG and TLBO at 90% confidence

level, whereas it has similar performance to other strategies at both 95% and 90%

confidence levels.

106

4.6 Threats to Validity

Many threats to validities could be associated with the experimental studies. Few

threats have been identified in this research and subsequently elaborated so as to mitigate

their effects on the obtained results.

First, the choice of the benchmarks represents an essential threat. The

experimental benchmarks adopted in this work are from other well-known studies and

experiments in the literature. However, it cannot be guaranteed that these benchmarks

represent the actual software configurations in real world. Nevertheless, the benchmarks

are derived from configurations of different software programs.

Second, a comparison with other strategies is another threat. Many strategies and

tools for generating the t-way test suite exist. Given the unavailability of these strategies

for implementation within the experimental environment set up for this work, ALTBO

cannot be compared with all the available strategies. To eliminate this threat, recently

published results in a reputable journal for those highest related strategies which are

closed to ALTBO (e.g., (Wu, Nie et al. 2015)) have chosen. In the case of this work, the

tuning of the parameters of those strategies is out of the control. Nevertheless, the

comparison here is valid because the published results were obtained with the best tuning

parameters.

Third, the number of fitness function evaluations can be considered a threat. The

original TLBO has twice as much fitness function evaluations as ATLBO, which can also

be a significant threat to the experimentations, rendering unfair comparisons. Both the

teacher and student phase processes are serially executed per iteration in the original

TLBO. In contrast, only one process is selected per iteration in ATLBO based on the

adaptive measure of the searching process. Given that both of the implementations have

been done for this research, straightforwardly these threats can be eliminated. To be

specific, it can be ensured that the number of iterations within TLBO is always half of

that of the ATLBO.

Fourth, the randomness of the search operators within the meta-heuristic

strategies can also be an issue. Here, the best test size results can potentially be obtained

at this point by chance and only once out of many runs. Reporting and comparing only

the best test size results might not provide a fair indication of the size performance of a

107

particular strategy. Thus, this work also relied on the mean results rather than merely

focusing on the best test size results.

Fifth, the choice of fuzzy implementation is another important threat. Using

different fuzzy implementation and inference system may lead to different results (with

different membership functions). It is recognized that at least two different fuzzy

inference systems variations exist in the literature (e.g., the Mamdani-type versus

Sugeno-type fuzzy inference systems). Previous studies that adopt fuzzy systems to

control various parameters within meta-heuristic algorithm apply the Mamdani-type

inference utilizing the centre of gravity for the output defuzzification (Mamdani and

Assilian 1975). In fact, most studies often employ either trapezoidal (i.e., a variant of

triangular) or Gaussian membership functions. In one such study by Valdez et al. (Valdez,

Melin et al. 2010), it was reported that empirical analysis using both types of membership

functions concluded that trapezoidal membership functions give better performance over

Gaussian ones. Hence, this work adopts the Mamdani type fuzzy inference system with

the centre of gravity and trapezoidal membership functions to obtain a suitable

performance.

Sixth, tuning of the fuzzy inference system can also be an issue. For example,

triangular or Gaussian membership functions can be used instead of trapezoid

membership functions. Similarly, the centre of gravity (COG) defuzzification method can

be replaced with the maximum method. The performance of the fuzzy inference system

can also be enhanced by changing the rule premises or actions, changing the centers of

membership functions for input and/or output linguistic variables, or adding additional

linguistic terms to the fuzzy variables. However, the most widely adopted design choices

are selected and used successfully so as to propose a functional and efficient fuzzy

inference system.

Lastly, the choices of efficiency and performance metrics can also pose as threats.

Other metrics that evaluate the efficiency and performance utilizing the internal algorithm

structure can exist. However, this work adopts the generated size of mixed strength t-way

test suites for efficiency and generation time for performance because these metrics are

well-known in the literature (i.e., for mixed strength t-way test suite generation).

108

4.7 Chapter Summary

To sum up, this chapter has provided the overall evaluation process of the ATLBO

for the optimal generation of mixed strength t-way test suites. In the beginning, the

chapter has elaborated how the experimental setup is laid out to achieve the predefined

goals for the effective evaluation of ATLBO. In the three-part experiments, the first part

adopts a set of CAs and VCAs to highlight the time and size performance of ATLBO and

the original TLBO. The second part benchmarks the generated test suite sizes of ATLBO

against the results obtained from the implementation of the original TLBO, as well as

against the results of other meta-heuristic-based strategies adopted from a high-impact

journal paper. The third part presents the statistical analysis of all the obtained results

with 95% confidence level and 90% confidence level utilizing the Wilcoxon Rank Sum

test. The chapter furnishes details about the control parameters for all the competing

meta-heuristic-based strategies and the experimental platform.

The chapter then discusses the performance of ATLBO based on the experimental

observations. Regarding the first part of the experiments, ATLBO has mostly

outperformed TLBO in terms of the best and mean test suite sizes. However, TLBO

outperformed ATLBO in terms of test suite generation time. In the second part of the

experiments, ATLBO showed competitive performance against the two meta-heuristic

based strategies (DPSO and SA), whereas outperformed all other referenced strategies in

terms of test suite sizes. The tendency of ATLBO towards exploration and exploitation

is also tracked. It is observed that ATLBO favours exploration with the increase in p, t

and sub-configurations for VCAs. The Wilcoxon Rank Sum tests of the obtained results

showed significant statistical performance of ATLBO against its counterparts. The null

hypothesis was favoured in most tests for ATLBO against all other strategies except only

DPSO. Finally, the chapter identifies the threats to validities encountered by the

experiments. The threats include the choice of benchmarks, comparison with the selected

strategies, twice fitness function evaluations per iteration in TLBO compared to once in

ATLBO, randomness of search operators, choice of fuzzy implementation, tuning the

inference system and the choices of efficiency and performance metrics. Detailed steps

are undertaken to reduce the effects of all the threats (total seven) on the results. After

completing the evaluation process of the ATLBO based on the experimental results, the

next chapter concludes this work and provides possible future directions.

109

CHAPTER 5

CONCLUSION AND FUTURE WORK

The previous chapter has gauged performance and effectiveness of ATLBO on a

number of experiments against the original TLBO and other meta-heuristic-based t-way

test suite generation strategies. Based on all the presented materials in the earlier chapters,

this chapter summarizes the impact of the proposed ATLBO algorithm for the problem

of generating mixed strength t-way test suite with directions for future work.

5.1 Objectives Revisited

The aim of this research work was to design, implement and evaluate ATLBO for

addressing the problem of mixed strength t-way test suite generation. The objectives of

this research effort for fulfilling the stated aim were as follow:

• To design a new variant of TLBO called ATLBO based on a Mamdani-type fuzzy

inference system for adaptively selecting exploitation (i.e., local search) and

exploration (i.e., global search).

• To implement ATLBO for addressing the problem of generating both uniform

and mixed strength t-way test suites.

• To evaluate the performance of ATLBO in terms of generated test suite sizes

against the original TLBO and other meta-heuristic algorithms.

Addressing the first objective, a new improved variant of TLBO called adaptive

TLBO (ATLBO) is designed. A Mamdani-type fuzzy inference system is introduced in

ATLBO so as to further improve efficiency and stability in search of original TLBO.

Using this fuzzy system, ATLBO summons, based on the current search requirement,

110

either teacher phase (i.e., global search) or learner phase (i.e., local search) per iteration

rather than both as in original TLBO.

The proposed Mamdani-type fuzzy inference system of ATLBO has three input

parameters: Quality Measure (𝑄𝑚), Intensification Measure (𝐼𝑚), and Diversification

Measure (𝐷𝑚) and one output parameter Selection. Trapezoidal membership functions

are used to fuzzify these linguistic variables. The rule based of the system is composed

of four fuzzy linguistic rules with max-min fuzzy inference method. Finally, the center

of gravity (COG) is used as the defuzzification method to obtain the Selection as a single

value crisp output. This value acts as an intermittent switch in ATLBO that decides when

to perform global search or when to perform local search.

The successful implementation of ATLBO for mixed strength test suite

generation satisfies the key aspect of the second objective. ATLBO offers the first more

efficient and completely adaptive strategy for the problem of generating mixed strength

test suite with interaction strength support of t = 4. The ATLBO strategy accepts test

configurations for software-under-test in the form of covering array notation as input.

The strategy automatically minimizes the test suite after processing the test specification

requirement.

The ATLBO strategy incorporates an efficient interaction elements generation

algorithm in order to generate and search for the required interaction elements. The

algorithm adopts hash map approach instead of the array list. With this approach, the

algorithm is able to generate interaction elements based on the given number of input

parameters, their values and interaction strength faster. Moreover, searching for the

interaction elements is now also faster owing to the implementation of the algorithm in

the proposed strategy.

Concerning the final objective, ATLBO has been successfully subjected to a wide

range of well-known benchmarking experiments so as to highlight its performance for

optimal test suite generation. The evaluation against existing state-of-the-art meta-

heuristic based strategies has seamlessly revealed the size performance of ATLBO. In the

experimentation, the results of ATLBO are successfully compared against the results of

other meta-heuristic algorithms as far as test suite sizes are concerned. Experimental

111

results of the ATLBO have been encouraging as it has obtained several new minimal test

suite sizes.

Considering interaction test configurations represented using CAs and VCAs with

higher interaction strength t ≥ 2, the ATLBO often generates minimal test suite sizes. For

uniform test suites, ATLBO obtains 70.37% (i.e., 38 out of total 54 entries) best sizes and

61.11% (i.e., 33 out of total 54 entries) mean best sizes for all the benchmarked

experiments reported in Table 4.2 and Tables 4.3-4.8. In the case of mixed strength test

configurations represented using VCAs, the ATLBO strategy consistently produces best

optimal test suite sizes. For mixed strength test suites, ATLBO obtains 53.57% (i.e., 15

out of total 28 entries) best sizes and 64.29% (i.e., 18 out of total 28 entries) mean best

sizes (see Table 4.2 and Tables 4.6-4.8). Overall, ATLBO generates 53.42% (i.e., 39 out

of total 73 entries) new mean best sizes as provided in Table 4.2 and Tables 4.3-4.8. For

each experiment, the distribution pattern of ATLBO’s exploration and exploitation

operations is reported to determine how much it favors each operation. Statistical

analyses reported in Tables 4.9-4.15 confirm the strong statistical performance of

ATLBO against most existing strategies for t-way test suite generation. Based on these

results, this research work concludes that the proposed ATLBO algorithm is another

useful alternative for addressing the problem of generating both uniform and mixed

strength t-way test suites.

In essence, the main focus of this thesis is to design ATLBO and combine it with

the interaction elements generation algorithm so as to optimize mixed strength interaction

test suites. ATLBO with its Mamdani-type fuzzy inference system successfully improves

the efficiency and stability in search of its predecessor i.e., TLBO. The implementation

of ATLBO is successful for generating optimal uniform and mixed strength t-way test

suites for highly configurable software systems.

5.2 Contributions

In a nutshell, the earlier discussion relates the main contribution of ATLBO to its

ability for generating minimal uniform and mixed strength t-way test suites. The research

contributions of this work can be highlighted from different aspects as follows:

112

• ATLBO as an improved variant of original TLBO employs its Mamdani-type

fuzzy inference system to adaptively select either exploration or exploitation,

and hence, explores the search space more efficiently for optimal test suites.

• ATLBO introduces the first parameter-free meta-heuristic strategy in the

literature for addressing the problem of generating mixed strength test suites

with higher interaction strength t = 4.

• ATLBO contributes to the benchmarking test configurations available in the

published literature with 39 new mean best test suite sizes.

5.3 Future Work

Given the competitive performance of ATLBO for mixed strength test suites, its

adaptation for the generation of other types of mathematical objects is considered as the

scope for future work. Specifically, the applicability of ATLBO will be investigated for

the generation of cost-aware coverings arrays (CTCAs), constrained covering arrays

(CCAs) and sequence covering arrays (SCAs).

Implementing ATLBO for CTCAs is one area for exploration in the future.

CTCAs are recently introduced t-way testing objects that represent an interesting and

novel research direction. The ATLBO strategy can be modified to compute CTCA for a

given cost function associated with the CA. The fitness function, in this case, will be

comprised of two objectives, namely covering all required t-way interaction elements and

minimizing the cost function. Further minimization can be achieved as CTCAs ensure

the accumulation of test cases with minimum possible costly interaction elements.

The generation of CCAs particularly for software product line will be undertaken

as a future endeavor. Constrained interaction testing is gaining much research attention

because most of the modern day software systems are subjected to constraints. A naive

way of handling constraints is to exclude them from the final test suites. ATLBO will be

combined with Choco Solver (Prud’homme, Fages et al. 2017) for handling constraints.

Incorporating support for generating SCAs via ATLBO could be another area for

exploration. Sequences of input parameters in some domain implementations such as

113

Graphical User Interfaces (GUIs) do matter. Therefore, it is desirable that the proposed

algorithm be able to generate sequence-based t-way test suites.

Currently, ATLBO only supports automated test suite generation. The addition of

automated test execution can further improve the applicability of ATLBO. Test cases

generated by ATLBO can be automatically translated into the actual executable form

using some scripting language. The burden of test engineers of dealing with complex

manual test execution can be alleviated by incorporating this useful feature in ATLBO.

Finally, the applicability of ATLBO with its powerful search ability will be

investigated for other related optimization problems. Some of these problems include

wireless sensor network localization and generation of Substitution boxes (S-boxes) in

contemporary symmetric ciphers. Similarly, ATLBO will be used for solving search-

based optimization problems in software engineering such as software module clustering

problem, software effort estimation models and software redundancy reduction.

114

REFERENCES

Afzal, W., R. Torkar and R. Feldt (2009). "A Systematic Review of Search-based Testing

for Non-functional System Properties." Information and Software Technology

51(6): 957-976.

Ahmed, B. S. (2016). "Test Case Minimization Approach using Fault Detection and

Combinatorial Optimization Techniques for Configuration-aware Structural

Testing." Engineering Science and Technology, an International Journal 19(2):

737-753.

Ahmed, B. S., T. S. Abdulsamad and M. Potrus (2015). "Achievement of Minimized

Combinatorial Test Suite for Configuration-aware Software Functional Testing

using the Cuckoo Search Algorithm." Information and Software Technology 66:

13-29.

Ahmed, B. S., L. M. Gambardella, W. Afzal and K. Z. Zamli (2017). "Handling

Constraints in Combinatorial Interaction Testing in the Presence of Multi

Objective Particle Swarm and Multithreading." Information and Software

Technology 86: 20-36.

Ahmed, B. S. and K. Z. Zamli (2010). PSTG: A t-way Strategy Adopting Particle Swarm

Optimization. Proceedings of the 4th Asia International Conference on

Mathematical /Analytical Modelling and Computer Simulation, IEEE.

Ahmed, B. S. and K. Z. Zamli (2011a). Comparison of Metahuristic Test Generation

Strategies based on Interaction Elements Coverage Criterion. Proceedings of the

IEEE Symposium on Industrial Electronics and Applications, IEEE.

Ahmed, B. S. and K. Z. Zamli (2011b). "A Review of Covering Arrays and their

Application to Software Testing." Journal of Computer Science 7(9): 1375-1385.

Ahmed, B. S. and K. Z. Zamli (2011c). "A Variable-Strength Interaction Test Suites

Generation Strategy using Particle Swarm Optimization." Journal of Systems and

Software 84(12): 2171-2185.

Ahmed, B. S., K. Z. Zamli and C. P. Lim (2012). "Application of Particle Swarm

Optimization to Uniform and Variable Strength Covering Array Construction."

Applied Soft Computing 12(4): 1330-1347.

Ahmed, B. S., K. Z. Zamli and C. P. Lim (2012). "Constructing a t-way Interaction Test

Suite using the Particle Swarm Optimization Approach." International Journal of

Innovative Computing, Information and Control 8(1): 431-452.

Alsariera, Y. A. and K. Z. Zamli (2015). "A Bat-inspired Strategy for t-way Interaction

Testing." Advanced Science Letters 21(7): 2281-2284.

Alsewari, A. R. A. and K. Z. Zamli (2012). "Design and Implementation of a Harmony-

Search-based Variable-Strength t-way Testing Strategy with Constraints

Support." Information and Software Technology 54(6): 553-568.

115

Ameli, K., A. Alfi and M. Aghaebrahimi (2016). "A Fuzzy Discrete Harmony Search

Agorithm Applied to Annual Cost Reduction in Radial Distribution Systems."

Engineering Optimization 48(9): 1529-1549.

Arifovic, J. (1996). "The Behavior of the Exchange Rate in the Genetic Algorithm and

Experimental Economies." Journal of Political Economy 104(3): 510-541.

Avila-George, H., J. Torres-Jimenez, L. Gonzalez-Hernandez and V. Hernandez (2013).

"Metaheuristic Approach for Constructing Functional Test-suites." IET Software

7(2): 104-117.

Avila-George, H., J. Torres-Jimenez and I. Izquierdo-Marquez (2018). "Search-Based

Software Engineering for Constructing Covering Arrays." IET Software 12(4):

324-332.

Avila, C. and F. Valdez (2015). An Improved Simulated Annealing Algorithm for the

Optimization of Mathematical Functions. Design of Intelligent Systems Based on

Fuzzy Logic, Neural Networks and Nature-Inspired Optimization. P. Melin, O.

Castillo and J. Kacprzyk. Cham, Springer: 241-251.

Beasley, D., R. Martin and D. Bull (1993). "An Overview of Genetic Algorithms: Part 1.

Fundamentals." University Computing 15(2): 56-69.

Biswas, S., S. Kundu, D. Bose and S. Das (2012). Cooperative Co-Evolutionary

Teaching-Learning based Algoritm with a Modified Exploration Strategy for

Large Scale Global Optimization. International Conference on Swarm,

Evolutionary, and Memetic Computing, Springer.

Boussaïd, I., J. Lepagnot and P. Siarry (2013). "A Survey on Optimization Meta-

heuristics." Information Sciences 237: 82-117.

Bryce, R. and C. Colbourn (2007). One-Test-at-a-Time Heuristic Search for Interaction

Test Suites. Proceedings of the 9th Annual Conference on Genetic and

Evolutionary Computation, ACM.

Burnstein, I. (2006). Practical Software Testing: A Process-oriented Approach, Springer

Science & Business Media.

Busetti, F. (2003). "Simulated Annealing Overview." World Wide Web URL www.

geocities. com/francorbusetti/saweb. pdf.

Camastra, F., A. Ciaramella, V. Giovannelli, M. Lener, V. Rastelli, A. Staiano, G. Staiano

and A. Starace (2015). "A Fuzzy Decision System for Genetically Modified Plant

Environmental Risk Assessment using Mamdani Inference." Expert Systems with

Applications 42(3): 1710-1716.

Castillo, O., A. Meléndez, P. Melin, L. Astudillo and C. Sánchez (2015). Optimization

of Reactive Fuzzy Controllers for Mobile Robots based on the Chemical

Reactions Algorithm. Design of Intelligent Systems based on Fuzzy Logic,

Neural Networks and Nature-inspired Optimization. P. Melin, O. Castillo and J.

Kacprzyk, Springer: 253-266.

116

Castillo, O., H. Neyoy, J. Soria, P. Melin and F. Valdez (2015). "A New Approach for

Dynamic Fuzzy Logic Parameter Tuning in Ant Colony Optimization and its

Aplication in Fuzzy Control of a Mobile Robot." Applied Soft Computing 28:

150-159.

Chen, X., Q. Gu, A. Li and D. Chen (2009). Variable Strength Interaction Testing with

an Ant Colony System Approach. Proceedings of the 16th Asia-Pacific Software

Engineering Conference, IEEE

Cheng, M.-Y. and D. Prayogo (2014). "Symbiotic Organisms Search: A New

Metaheuristic Optimization Algorithm." Computers & Structures 139: 98-112.

Cheng, M.-Y. and D. Prayogo (2016). "Fuzzy Adaptive Teaching–learning-based

Optimization for Global Numerical Optimization." Neural Computing and

Applications 29(2): 309-327.

Cheng, M. Y., P. M. Firdausi and D. Prayogo (2014). "High-performance Concrete

Compressive Strength Prediction using Genetic Weighted Pyramid Operation

Tree (GWPOT)." Engineering Applications of Artificial Intelligence 29: 104-113.

Cheng, M. Y., D. Prayogo and Y. W. Wu (2014). "Novel Genetic Algorithm-based

Evolutionary Support Vector Machine for Optimizing High-performance

Concrete Mixture." Journal of Computing in Civil Engineering 28(4).

Cheng, M. Y., D. K. Wibowo, D. Prayogo and A. F. V. Roy (2015). "Predicting

Productivity Loss Caused by Change Orders using the Evolutionary Fuzzy

Support Vector Machine Inference Model." Journal of Civil Engineering and

Management 21(7): 881-892.

Chikh, M. A. A., I. Belaidi, S. Khelladi, J. Paris, M. Deligant and F. Bakir (2018).

"Efficiency of Bio-and Socio-inspired Optimization Algorithms for Axial

Turbomachinery Design." Applied Soft Computing 64: 282-306.

Cohen, D. M., S. R. Dalal, M. L. Fredman and G. C. Patton (1997). "The AETG System:

An Approach to Testing based on Combinatorial Design." IEEE Transactions on

Software Engineering 23(7): 437–443.

Cohen, M. B. (2004). Designing Test Suites For Software Interaction Testing Doctor of

Philosophy (PhD) Thesis, University of Auckland.

Cohen, M. B., C. J. Colbourn and A.C.H.Ling (2003). Augmenting Simulated Annealing

to Build Interaction Test Suite. Proceedings of the14th International Symposium

on Software Reliability Engineering, IEEE.

Cohen, M. B., C. J. Colbourn and A. C. H. Ling (2008). "Constructing Strength Three

Covering Arrays with Augmented Annealing." Discrete Mathematics 308(13):

2709-2722.

Cohen, M. B., M. B. Dwyer and J. Shi (2007). Interaction Testing of Highly-configurable

Systems in the Presence of Constraints. Proceedings of the International

Symposium on Software Testing and Analysis, ACM.

117

Cohen, M. B., P. B. Gibbons, W. B. Mudgridge, C. J. Colbourn and J. S. Collofello

(2003a). Variable Strength Interaction Testing of Components. Proceedings of the

27th Annual International Conference on Computer Software and Applications,

IEEE.

Cohen, M. B., P. B. Gibbons, W. B. Mugridge and C. J. Colbourn (2003b). Constructing

Test Suites for Interaction Testing. Proceedings of the 25th International

Conference on Software Engineering, IEEE: 38-48.

Colbourn, C. J. and J. H. Dinitz (2006). Handbook of Combinatorial Designs, CRC Press.

Cordón, O. (2011). "A Historical Review of Evolutionary Learning Methods for

Mamdani-type Fuzzy Rule-based Systems: Designing Interpretable Genetic

Fuzzy Systems." International Journal of Approximate Reasoning 52(6): 894-

913.

Dadios, E. P. (2012). Fuzzy Logic–controls, Concepts, Theories and Applications,

InTechOpen.

Demiroz, G. and C. Yilmaz (2016). "Using Simulated Annealing for Computing Cost-

aware Covering Arrays." Applied Soft Computing 49: 1129-1144.

Draa, A. (2015). "On the Performances of the Flower Pollination Algorithm- Qualitative

and Quantitative Analyses." Applied Soft Computing 34: 349-371.

Eaarts, E. and J. Korst (1989). Simulated Annealing and Boltzman Machines: A

Stochastic Approach to Combinatorial Optimization and Neural Computing, John

Wiley and Sons.

Esfandyari, S. and V. Rafe (2018). "A Tuned Version of Genetic Algorithm for Efficient

Test Suite Generation in Interactive t-way Testing Strategy." Information and

Software Technology 94: 165-185.

Federer, W. T. and J. P. Mandeli (1986). "Orthogonal F-rectangles, Orthogonal Arrays,

and Codes." Journal of Combinatorial Theory, Series A 43(2): 149-164.

Fister, I., I. Fister, X. S. Yang, S. Fong and Y. Zhuang (2014). Bat Algorithm: Recent

Advances. Proceedings of the 15th International Symposium on Computational

Intelligence and Informatics, IEEE.

Gandomi, A. H. and A. R. Kashani (2018). "Construction Cost Minimization of Shallow

Foundation using Recent Swarm Intelligence Techniques." IEEE Transactions on

Industrial Informatics 14(3): 1099-1106.

Garvin, B., M. Cohen and M. Dwyer (2011). "Evaluating Improvements to a Meta-

heuristic Search for Constrained Interaction Testing." Empirical Software

Engineering 16: 61-102.

Garvin, B. J. and M. B. Cohen (2011). Feature Interaction Faults Revisited: An

Exploratory Study. The IEEE 22nd International Symposium on Software

Reliability Engineering, IEEE: 90-99.

118

Garvin, B. J., M. B. Cohen and M. B. Dwyer (2009). An Improved Meta-heuristic Search

for Constrained Interaction Testing. Proceedings of the 1st International

Symposium on Search Based Software Engineering, IEEE.

Geem, Z. W. and J. H. Kim (2001). "A New Heuristic Optimization Algorithm: Harmony

Search." Simulation 76(2): 60-68.

Glover, F. (1989). "Tabu Search-Part I." ORSA Journal on Computing 1(3): 190-206.

Gonzalez-Hernadez, L. (2015). "New Bounds for Mixed Covering Arrays in t-way

Testing with Uniform Strength " Information and Software Technology 59: 17-

32.

Gonzalez-Hernandez, L., N. Rangel-Valdez and J. Torres-Jimenez (2010). Construction

of Mixed Covering Arrays of Variable Strength using a Tabu Search Approach.

Proceedings of the International Conference on Combinatorial Optimization and

Applications, Springer.

Gonzalez-Hernandez, L., N. Rangel-Valdez and J. Torres-Jimenez (2012). "Construction

of Mixed Covering Arrays of Strengths 2 through 6 using a Tabu Search

Approach." Discrete Mathematics, Algorithms and Applications 4(3).

Gonzalez-Hernandez, L. and J. Torres-Jimenez (2010). MiTS: A New Approach of Tabu

Search for Constructing Mixed Covering Arrays. The Springer 9th Mexican

International Conference on Artificial Intelligence in Soft Computing: Part II,

Springer: 382-393.

Grefenstette, J. J. (1986). "Optimization of Control Parameters for Genetic Algorithms."

IEEE Transactions on Systems, Man and Cybernetics 16(1): 122-128.

Hartman, A. and L. Raskin (2004). "Problems and Algorithms for Covering Arrays."

Discrete Mathematics 284(1-3): 149-156.

Hass, A. M. (2014). Guide to Advanced Software Testing, Artech House.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems., University of

Michigan Press.

Hoseini, M., H. Hosseinpour and B. Bastaee (2014). "A New Multi Objective

Optimization Approach in Distribution Systems." Optimization Letters 8(1): 181-

199.

Huang, G.-Q., W.-J. Zhao and Q.-Q. Lu (2013). "Bat Algorithm with Global

Convergence for Solving Large-scale Optimization Problem." Jisuanji Yingyong

Yanjiu 30(5): 1323-1328.

Huang, J., L. Gao and X. Li (2015). "An Effective Teaching-Learning based Cuckoo

Search Algorithm for Parameter Optimization Problems in Structure Designing

and Machining Processes." Applied Soft Computing 36: 349-356.

Iancu, I. (2012). A Mamdani-type Fuzzy Logic Controller. Fuzzy Logic-Controls,

Concepts, Theories and Applications, InTech.

119

Jia, Y., M. B. Cohen, M. Harman and J. Petke (2015). Learning Combinatorial Interaction

Test Generation Strategies Using Hyperheuristic Search. Proceedings of the 37th

International Conference on Software Engineering, IEEE.

Jiang, X. and J. Zhou (2013). Hybrid DE-TLBO for Solving Short Term Hydro-thermal

Optimal Scheduling with Incommensurable Objectives. Proceedings of the 32nd

Chinese Control Conference, IEEE.

Jorgensen, P. C. (2016). Software Testing: A Craftsman’s Approach, CRC press.

Kacker, R. N., D. R. Kuhn, Y. Lei and J. F. Lawrence (2013). "Combinatorial Testing for

Software: An Adaptation of Design of Experiments." Measurement: Journal of

the International Measurement Confederation 46(9): 3745-3752.

Kitsos, P., D. E. Simos, J. Torres-Jimenez and A. G. Voyiatzis (2015). Exciting FPGA

Cryptographic Trojans using Combinatorial Testing. The IEEE 26th International

Symposium on Software Reliability Engineering, IEEE: 69-76.

Kuhn, D. R., J. M. Higdon, J. F. Lawrence, R. N. Kacker and Y. Lei (2012).

Combinatorial Methods for Events Sequence Testing. Proccedings 5th

International Conference on Software Testing, Verification and Validation, IEEE.

Kuhn, D. R. and V. Okum (2006). Pseudo-exhaustive Testing for Software. Proceedings

of the 30th Annual IEEE/NASA Software Engineering Workshop, IEEE.

Kuhn, D. R., D. R. Wallace and A. M. Gallo (2004). "Software Fault Interactions and

Implications for Software Testing." IEEE Transactions on Software Engineering

30(6): 418-421.

Kuliamin, V. V. and A. A. Petukhov (2011). "A Survey of Methods for Constructing

Covering Arrays." Programming and Computer Software 37(3): 121-146.

Lee, K. Y. and J.-B. Park (2006). Application of Particle Swarm Optimization to

Economic Dispatch Problem: Advantages and Disadvantages. Proceedings of the

Power Systems Conference and Exposition, IEEE.

Lei, D., L. Gao and Y. Zheng (2018). "A Novel Teaching-learning-based Optimization

Algorithm for Energy-efficient Scheduling in Hybrid Flow Shop." IEEE

Transactions on Engineering Management 65(2): 330-340.

Lei, Y., R. Kacker, D. R. Kuhn, V. Okun and J. Lawrence (2008). "IPOG-IPOG-D:

Efficient Test Generation for Multi-way Combinatorial Testing." Software

Testing, Verification & Reliability 18(3): 125-148.

Lei, Y. and K.-C. Tai (1998). In-Parameter-Order: A Test Generation Strategy for

Pairwise Testing. The 3rd IEEE International Symposium on High-Assurance

Systems Engineering, IEEE: 254-261.

Leyden, J. (2012). Symantec Update Killed Business PCs in Three-way Software Prang.

The Register.

120

Lim, W. H. and N. A. M. Isa (2014). "Teaching and Peer-Learning Particle Swarm

Optimization." Applied Soft Computing 18: 39-58.

Lin, J., C. Luo, S. Cai, K. Su, D. Hao and L. Zhang (2015). TCA: An Efficient Two-

mode Meta-heuristic Algorithm for Combinatorial Test Generation. Proceedings

of the 30th IEEE/ACM International Conference on Automated Software

Engineering, IEEE.

M. Črepinšek, S.-H. Liu and M. Mernik (2013). "Exploration and Exploitation in

Evolutionary Algorithms: A Survey." ACM Computing Surveys 45(3).

M. Črepinšek, S.-H. Liu, L. Mernik and M. Mernik (2015). "Is a Comparison of Results

Meaningful from the Inexact Replications of Computational Experiments?" Soft

Computing 20(1): 223-235.

M. Črepinšek, S.-H. Liu and M. Mernik (2014). "Replication and Comparison of

Computational Experiments in Applied Evolutionary Computing: Common

Pitfals and Guidelines to avoid them." Applied Soft Computing 19: 161-170.

M. Mernik, S.-H. Liu, D. Karaboga and M. Črepinšek (2015). "On Clarifying

Misconceptions when Comparing Variants of the Artificial Bee Colony

Algorithm by Offering a New Implementation." Information Sciences 291: 115-

127.

Mahmoud, T. and B. S. Ahmed (2015). "An Efficient Strategy for Covering Array

Construction with Fuzzy Logic-based Adaptive Swarm Optimization for

Software Testing Use." Expert Systems with Applications 42(22): 8753-8765.

Mamdani, E. and S. Assilian (1975). "An Experiment in Linguistic Synthesis with a

Fuzzy Logic Controller." International Journal of Man-Machine Studies 7(1): 1-

13.

Mandal, B. and P. K. Roy (2013). "Optimal Reactive Power Dispatch using Quasi-

Oppositional Teaching Learning based Optimization." International Journal of

Electrical Power & Energy Systems 53: 123-134.

Mirjalili, S., S. Z. Mohd Hashim and H. Moradian Sardroudi (2012). "Training

Feedforward Neural Networks using Hybrid Particle Swarm Optimization and

Gravitational Search Algorithm." Applied Mathematics and Computation

218(22): 11125-11137.

Mohd Hazli, M. Z. and K. Z. Zamli (2013). "Implementing a t-Way Test Generation

Strategy using Bees Algorithm." International Journal of Advances in Soft

Computing & Its Applications 5(3): 116-126.

Mohd Hazli, M. Z., K. Z. Zamli and R. R. Othman (2012). Sequence-based Interaction

Testing Implementation using Bees Algorithm. Proceedings of the IEEE

Symposium on Computers and Informatics, IEEE.

Myers, G. J., C. Sandler and T. Badgett (2011). The Art of Software Testing, John Wiley

& Sons.

121

Neyoy, H., O. Castillo and J. Soria (2013). Dynamic Fuzzy Logic Parameter Tuning for

ACO and its Application in TSP Problems. Recent Advances on Hybrid

Intelligent Systems, Springer: 259-271.

Nie, C. and H. Leung (2011). "A Survey of Combinatorial Testing." ACM Computing

Surveys 43(2): 1-29.

Niknam, T., R. Azizipanah-Abarghooee and J. Aghaei (2013). "A New Modified

Teaching-learning Algorithm for Reserve Constrained Dynamic Economic

Dispatch." IEEE Transactions on Power Systems 28(2): 749-763.

Niu, P., Y. Ma and S. Yan (2018). "A Modified Teaching–learning-based Optimization

Algorithm for Numerical Function Optimization." International Journal of

Machine Learning and Cybernetics: 1-15.

Niu, X., c. N, H. K. N. Leung, Y. Lei, X. Wang, J. Xu and Y. Wang (2018). "An

Interleaving Approach to Combinatorial Testing and Failure-inducing Interaction

Identification." IEEE Transactions on Software Engineering 13(9): 1-33.

Nurmela, K. J. (2004). "Upper Bounds for Covering Arrays by Tabu Search." Discrete

Applied Mathematics 138(1-2): 143-152.

Pappis, C. P. and C. I. Siettos (2014). Fuzzy Reasoning. Search Methodologies. E. K.

Burke and G. Kendall, Springer: 519-556.

Pedersen, M. E. H. (2010). "Good Parameters for Particle Swarm Optimization." Hvass

Lab., Copenhagen, Denmark, Tech. Rep. HL1001.

Pérez, J., F. Valdez and O. Castillo (2015). A New Bat Algorithm with Fuzzy Logic for

Dynamical Parameter Adaptation and its Applicability to Fuzzy Control Design.

Fuzzy Logic Augmentation of Nature-Inspired Optimization Metaheuristics,

Springer: 65-79.

Pérez, J., F. Valdez and O. Castillo (2017). Modification of the Bat Algorithm using

Type-2 Fuzzy Logic for Dynamical Parameter Adaptation. Nature-Inspired

Design of Hybrid Intelligent Systems, Springer: 343-355.

Pham, D. T., A. Ghanbarzadeh, E. Koç, S. Otri, S. Rahim and M. Zaidi (2006). The Bees

Algorithm — A Novel Tool for Complex Optimisation Problems. Intelligent

Production Machines and Systems. D. T. Pham, E. E. Eldukhri and A. J. Soroka,

Elsevier Science: 454-459.

Prud’homme, C., J.-G. Fages and X. Lorca (2017). Choco Documentation.

Rao, R. (2016). "Jaya: A Simple and New Optimization Algorithm for Solving

Constrained and Unconstrained Optimization Problems." International Journal of

Industrial Engineering Computations 7(1): 19-34.

Rao, R. and V. Patel (2012). "An Elitist Teaching-learning-based Optimization

Algorithm for Solving Complex Constrained Optimization Problems."

International Journal of Industrial Engineering Computations 3(4): 535-560.

122

Rao, R. V., V. J. Savsani and D. P. Vakharia (2011). "Teaching-learning-based

Optimization: A Novel Method for Constrained Mechanical Design Optimization

Problems." CAD Computer Aided Design 43(3): 303-315.

Rao, R. V., V. J. Savsani and D. P. Vakharia (2012). "Teaching-learning-based

Optimization: An Optimization Method for Continuous Non-linear Large Scale

Problems." Information Sciences 183(1): 1-15.

Robinson, J. and Y. Rahmat-Samii (2004). "Particle Swarm Optimization in

Electromagnetics." IEEE Transactions on Antennas and Propagation 52(2): 397-

407.

Rodriguez-Cristerna, A. and J. Torres-Jimenez (2012). "A Simulated Annealing with

Variable Neighborhood Search Approach to Construct Mixed Covering Arrays."

Electronic Notes in Discrete Mathematics 39: 249-256.

Rodriguez-Cristerna, A., J. Torres-Jimenez, W. Gómez and W. C. A. Pereira (2015).

"Construction of Mixed Covering Arrays Using a Combination of Simulated

Annealing and Variable Neighborhood Search." Electronic Notes in Discrete

Mathematics 47: 109-116.

Rodriguez-Tello, E. and J. Torres-Jimenez (2009). Memetic Algorithms for Constructing

Binary Covering Arrays of Strength Three. International Conference on Artificial

Evolution (Evolution Artificielle), Springer.

Roeva, O., S. Fidanova and M. Paprzycki (2013). Influence of the Population Size on the

Genetic Algorithm Performance in Case of Cultivation Process Modelling.

Proceedings of the Federated Conference on Computer Science and Information

Systems IEEE.

Sabharwal, S., P. Bansal and N. Mittal (2016). "Construction of t-way Covering Arrays

using Genetic Algorithm." International Journal of System Assurance

Engineering and Management 8(2): 264-274.

Satapathy, S. C. and A. Naik (2013). "Cooperative Teaching-Learning based

Optimization for Global Function Optimization." International Journal of Applied

Research on Information Technology and Computing 4(1): 1-17.

Shabanpour-Haghighi, A., A. R. Seifi and T. Niknam (2014). "A Modified Teaching–

Learning Based Optimization for Multi-Objective Optimal Power Flow

Problem." Energy Conversion and Management 77: 597-607.

Sheikhan, M. and S. A. Ghoreishi (2013). "Application of Covariance Matrix Adaptation-

evolution Strategy to Optimal Control of Hepatitis B Infection." Neural

Computing and Applications 23(3-4): 881-894.

Shiba, T., T. Tsuchiya and T. Kikuno (2004). Using Artificial Life Techniques to

Generate Test Cases for Combinatorial Testing. Proceedings of the 28th Annual

International Conference on Computer Software and Applications, IEEE

123

Singh, R., H. Chaudhary and A. K. Singh (2017). "Defect-free Optimal Synthesis of

Crank-rocker Linkage using Nature-inspired Optimization Algorithms."

Mechanism and Machine Theory 116: 105-122.

Solano-Aragón, C. and O. Castillo (2015). Optimization of Benchmark Mathematical

Functions using the Firefly Algorithm with Dynamic Parameters. Fuzzy Logic

Augmentation of Nature-Inspired Optimization Metaheuristics, Springer: 81-89.

Srivastava, P. R., P. Patel and S. Chatrola (2009). "Cause Effect Graph to Decision Table

Generation." ACM SIGSOFT Software Engineering Notes 34(2): 1-4.

Sugeno, M. (1985). "An Introductory Survey of Fuzzy Control." Information Sciences

36(1): 59-83.

Talatahari, S., M. Kheirollahi, C. Farahmandpour and A. H. Gandomi (2013). "A Multi-

stage Particle Swarm for Optimum Design of Truss Structures." Neural

Computing and Applications 23(5): 1297-1309.

Talbi, E.-G. (2009). Metaheuristics: From Design to Implementation, John Wiley & Sons.

Timaná-Peña, J. A., C. A. Cobos-Lozada and J. Torres-Jimenez (2016). "Metaheuristic

Algorithms for Building Covering Arrays: A Review." Revista Facultad de

Ingeniería 25(43): 31-45.

Torres-Jimenez, J. and E. Rodriguez-Tello (2010). Simulated Annealing for Constructing

Binary Covering Arrays of Variable Strength. Proceedings of the IEEE Congress

on Evolutionary Computation, IEEE.

Tuo, S., L. Yong and T. Zhou (2013). "An Improved Harmony Search based on Teaching-

Learning Strategy for Unconstrained Optimization Problem." Mathematical

Problems in Engineering.

Valdez, F., P. Melin and O. Castillo (2010). Fuzzy Control of Parameters to Dynamically

Adapt the PSO and GA Algorithms. Proceedings of the IEEE International

Conference on Fuzzy Systems, IEEE.

Valenzuela, L., F. Valdez and P. Melin (2017). Flower Pollination Algorithm with Fuzzy

Approach for Solving Optimization Problems. Nature-Inspired Design of Hybrid

Intelligent Systems, Springer: 357-369.

Walker Ii, R. A. and C. J. Colbourn (2009). "Tabu Search for Covering Arrays using

Permutation Vectors." Journal of Statistical Planning and Inference 139(1): 69-

80.

Wang, B.-C., H.-X. Li and Y. Feng (2018). "An Improved Teaching-Learning-Based

Optimization for Constrained Evolutionary Optimization." Information Sciences

456: 131-144.

Williams, A. W. and R. L. Probert (1996). A Practical Strategy for Testing Pair-wise

Coverage of Network Interfaces. Proceedings of the 7th International Symposium

on Software Reliability Engineering, IEEE

124

Williams, A. W. and R. L. Probert (2001). A Measure for Component Interaction Test

Coverage. Proceedings of the ACS /IEEE International Conference on Computer

Systems and Applications, IEEE.

Wolpert, D. H. and W. G. Macready (1997). "No Free Lunch Theorems for

Optimization." IEEE Transactions on Evolutionary Computation 1(1): 67-82.

Wu, H., C. Nie, F.-C. Kuo, H. Leung and C. J. Colbourn (2015). "A Discrete Particle

Swarm Optimization for Covering Array Construction." IEEE Transactions on

Evolutionary Computation 19(4): 575-591.

Xia, K., L. Gao, W. Li and K.-M. Chao (2014). "Disassembly Sequence Planning using

a Simplified Teaching–learning-based Optimization Algorithm." Advanced

Engineering Informatics 28(4): 518-527.

Yang, X.-S. (2010a). Nature-Inspired Metaheuristic Algorithm, Luniver Press.

Yang, X.-S. (2010b). A New Metaheuristic Bat-inspired Algorithm. Nature Inspired

Cooperative Strategies for Optimization. J. R. González, D. A. Pelta, C. Cruz, G.

Terrazas and N. Krasnogor, Springer: 65-74.

Yang, X.-S. and S. Deb (2009). Cuckoo Search via Lévy Flights. Proceedings of the

World Congress on Nature & Biologically Inspired Computing, IEEE.

Yang, X. S., S. Deb and S. Fong (2013). "Metaheuristic Algorithms: Optimal Balance of

Intensification and Diversification." Applied Mathematics & Information

Sciences 8(3): 977-983.

Yen, J. and R. Langari (1999). Fuzzy Logic: Intelligence, Control, and Information,

Prentice Hall Upper Saddle River, NJ.

Yilmaz, C., M. B. Cohen and A. Porter (2006). "Covering Arrays for Efficient Fault

Characterization in Complex Configuration Spaces." IEEE Transactions on

Software Engineering 32(1): 20-34.

Yilmaz, C., S. Fouch, M. B. Cohen, A. Porter, G. Demiroz and U. Koc (2014). "Moving

Forward with Combinatorial Interaction Testing." Computer 47(2): 37-45.

Yin, Z., X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram and S. Pasupathy (2011). An

Empirical Study on Configuration Errors in Commercial and Open Source

Systems. Proceedings of the 23rd ACM Symposium on Operating Systems

Principles, ACM: 159-172.

Zadeh, L. A. (1965). "Fuzzy Sets." Information and Control 8(3): 338-353.

Zamli, K. Z., B. Y. Alkazemi and G. Kendall (2016). "A Tabu Search Hyper-heuristic

Strategy for t-way Test Suite Generation." Applied Soft Computing 44: 57-74.

Zimmermann, H.-J. (1996). Fuzzy Control. Fuzzy Set Theory—and Its Applications,

Springer: 203-240.

125

Zou, F., L. Wang, X. Hei, D. Chen and B. Wang (2013). "Multi-Objective Optimization

using Teaching-Learning based Optimization Algorithm." Engineering

Applications of Artificial Intelligence 26(4): 1291-1300.

Zubrow, D. (2009). "IEEE Standard Classification for Software Anomalies." IEEE

Computer Society.

126

APPENDIX A

LIST OF PUBLICATIONS

Published Journal Papers:

Zamli, K. Z., F. Din, S. Baharom and B. S. Ahmed (2017). "Fuzzy Adaptive Teaching

Learning-based Optimization Strategy for the Problem of Generating Mixed

Strength t-way Test Suites." Engineering Applications of Artificial Intelligence

59: 35-50.

Journal Impact Factor: 2.819 (Q1)

Zamli, K. Z., F. Din, G. Kendall and B. S. Ahmed (2017). "An Experimental Study of

Hyper-heuristic Selection and Acceptance Mechanism for Combinatorial t-way

Test Suite Generation." Information Sciences 399: 121-153.

Journal Impact Factor: 4.305 (Q1)

Zamli, K. Z., F. Din, B. S. Ahmed and M. Bures (2018). "A Hybrid Q-learning Sine-

cosine-based Strategy for Addressing the Combinatorial Test Suite Minimization

Problem." PLoS ONE 13(5).

Journal Impact Factor: 2.766 (Q1)

Din, F. and K. Z. Zamli (2018). "Hyper-Heuristic Based Strategy for Pairwise Test Case

Generation." Advanced Science Letters 24(10): 7333-7338.

Published Conference Papers:

Din, F. and K. Z. Zamli (2017). Fuzzy Adaptive Teaching Learning-based Optimization

Strategy for Pairwise Testing. Proceedings of the 7th International Conference on

System Engineering and Technology, IEEE.

Din, F. and K. Z. Zamli (2018). Pairwise Test Suite Generation Using Adaptive Teaching

Learning-Based Optimization Algorithm with Remedial Operator. Proceedings of

the International Conference of Reliable Information and Communication

Technology, Springer.

Din, F. and K. Z. Zamli (2018). Fuzzy Adaptive Teaching Learning-based Optimization

Strategy for GUI Functional Test Cases Generation. The ACM 7th International

Conference on Software and Computer Applications., ACM: 92-96.

127

Din, F., A. R. A. Alsewari and K. Z. Zamli (2017). A Parameter Free Choice Function

based Hyper-heuristic Strategy for Pairwise Test Generation. Proceedings of the

International Conference on Software Quality, Reliability and Security

Companion, IEEE.

Zamli, K. Z., N. Safieny and F. Din (2018). Hybrid Test Redundancy Reduction Strategy

based on Global Neighborhood Algorithm and Simulated Annealing. The ACM

7th International Conference on Software and Computer Applications., ACM: 87-

91.

Accepted Conference Papers:

Zamli, K. Z., F. Din, N. Ramli and B. S. Ahmed (2018). Software Module Clustering based

on the Fuzzy Adaptive Teaching Learning based Optimization Algorithm. Proceedings

of the 2nd International Conference on Intelligent and Interactive Computing, Springer

128

APPENDIX B

BEST PAPER AWARD

129

APPENDIX C

MALAYSIAN INTERNATIONAL SCHOLARSHIP

130

APPENDIX D

Q1 PAPERS

First Q1 Paper:

131

Second Q1 Paper:

132

Third Q1 Paper:

	Fakhruddin_Final_Thesis_1-3-2019

