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ABSTRAK 

Penggunaan algoritma meta-heuristik sebagai asas untuk strategi t-cara (di mana t menunjukkan 

kekuatan interaksi) dan ujian kekuatan bercampur adalah perkara lumrah dalam kajian masa kini. 

Kebanyakan strategi penjanaan data ujian adalah berdasarkan algoritma meta-heuristik seperti 

Simulasi Penyepuhlindapan (SA), Pencarian Tabu  (TS), Algoritma Genetik (GA), 

Pengoptimuman Koloni Semut (ACO), Pengoptimuman Gerombolan Zarah (PSO), Pencarian 

Harmoni (HS), Pencarian Burung Kedasih (CS), Algoritma Kelawar (BA) dan Algoritma Lebah 

yang telah dibangunkan pada tahun-tahun kebelakangan ini. Walaupun banyak kemajuan telah 

dicapai, penyelidikan ke atas strategi baru masih relevan kerana tiada strategi tunggal dapat 

mendominasi strategi sedia ada (seperti yang diramalkan oleh Teori Makan Tengahari Percuma). 

Di samping itu, kajian meta-heuristik bebas parameter tidak diterokai sepenuhnya dalam literatur 

saintifik. Oleh kerana prestasinya yang terbukti dalam banyak masalah pengoptimuman lain, 

penggunaan algoritma Pengoptimuman berasaskan Pembelajaran Pembelajaran (TLBO) yang 

bebas parameter sebagai strategi t-cara baru dirasakan amat berguna. Tidak seperti algoritma 

meta-heuristik yang sedia ada, TLBO adalah bersifat bebas parameter, dan tidak mempunyai 

sebarang kawalan parameter tertentu. Oleh itu, TLBO menghindarkan keperluan untuk proses 

penalaan khusus yang rumit dan tertumpu hanya pada bermasalah tertentu. Walau bagaimanapun, 

TLBO mengambil pendekatan yang mudah untuk melakukan carian global dan setempat secara 

berurutan pada setiap lelaran. Memandangkan proses eksplorasi (iaitu mencari lokasi baru yang 

berpotensi di ruang carian) dan eksploitasi (iaitu memanipulasi kejiranan setempat) adalah 

bersifat dinamik dan bergantung kepada ruang carian semasa, mana-mana pembahagian tetap 

antara keduanya boleh menjadikan proses carian kurang berkesan. Menangani isu-isu ini, tesis 

ini mencadangkan variasi TLBO baru berdasarkan sistem inferensi kabur Mamdani, yang 

dikenali sebagai Adaptif TLBO (ATLBO), untuk membolehkan pemilihan operasi carian global 

dan carian tempatan yang adaptif. Sistem inferensi kabur Mamdani mempunyai tiga masukan: 

pengukur kualiti, pengukur eksplorasi, pengukur eksploitasi  dan satu keluaran pemilihan. Tiga 

masukan ini merekod keperluan bagi mencapai nilai optimum dengan membimbing prosess 

carian ke arah yang betul.Pengukuran kualiti dan explorasi digunakan untuk mencapai 

kepelbagaian penyelesaian, sedangkan langkah Intensifikasi digunakan untuk memudahkan 

penumpuan. Output sistem inferensi kabur Mamdani bertindak sebagai suis berselang-seli untuk 

pemilihan antara operasi carian global dan carian tempatan. Penerapan ATLBO untuk strategi 

penjanaan kekuatan ujian t-cara campuran menunjukkan prestasi yang kompetitif dari segi saiz 

sut ujian yang diperolehi berbanding TLBO asal dan algorithma meta-heuristik yang lain. Secara 

kesimpulannya, ATLBO menunjukan pencapaian secara purata terbaik sebanyak 39 untuk sut 

ujian yang dijalankan dengan mengunakan data eksperimen penanda aras dan merupakan strategi 

bebas parameter pertama boleh menghasilkan kedua-dua bentuk sut ujian iaitu keseragaman dan 

kekuatan bercampur parameter t-cara. 
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ABSTRACT 

The use of meta-heuristic algorithms as the basis for t-way (where t indicates the interaction 

strength) and mixed strength testing strategies is common in recent literature. Many test data 

generation strategies based on meta-heuristic algorithms such as Simulated Annealing (SA), Tabu 

Search (TS), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Particle Swarm 

Optimization (PSO), Harmony Search (HS), Cuckoo Search (CS), Bat Algorithm (BA) and Bees 

Algorithm have been developed in recent years. Although much progress has been achieved, 

research into new strategies is still relevant owing to the fact that no single strategy can claim 

dominance over other existing ones (i.e., as stipulated by the No Free Lunch Theorem). 

Additionally, the adoption of new parameter-free meta-heuristic-based t-way strategies has not 

been sufficiently explored in the scientific literature. Owing to its proven performance in many 

other optimization problems, the adoption of the parameter-free Teaching Learning-based 

Optimization (TLBO) algorithm as a new t-way strategy is deemed useful. Unlike most existing 

meta-heuristic algorithms, and by virtue of being parameter-free, TLBO does not have any 

specific parameter controls. Thus, TLBO avoids the need for cumbersome and problem specific 

tuning process. However, on the negative note, TLBO takes a simplistic approach of performing 

both global and local search sequentially per iteration. Given that exploration (i.e., globally 

finding the new potential region in the search space) and exploitation (i.e., locally manipulating 

best-known neighbourhood) are dynamic in nature depending on the current search space region, 

any preset division between the two can be counter-productive. Addressing these issues, this 

thesis proposes a new TLBO variant based on a Mamdani-type fuzzy inference system, called 

adaptive TLBO (ATLBO), to permit adaptive selection of its global and local search operations. 

The Mamdani-type fuzzy inference system of ATLBO has three inputs: Quality measure, 

Diversification measure and Intensification measure and one output: Selection. The three input 

measures capture necessary details so as to achieve optimality by guiding the search process in 

the right direction. Quality and Diversification measures are used to achieve solution diversity, 

whereas the Intensification measure is used to facilitate convergence. The Selection output of the 

Mamdani-type fuzzy inference system acts as an intermittent switch between global search and 

local search in ATLBO. The adoption of ATLBO for the mixed strength t-way test generation 

strategy demonstrates competitive performances in terms of obtained test suite sizes against the 

original TLBO and other meta-heuristic counterparts. To conclude, ATLBO-based strategy 

contributes to 39 new best average test suit sizes on benchmarking experiments and is the first 

parameter-free strategy that addresses generation for both uniform and mixed strength t-way test 

suites. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Overview  

Errors in the life cycle of software are unavoidable. The action of any stakeholder 

involves in software development that leads to an unwanted result is called error. In the 

source code, design or resources of software, errors represent mistakes. When 

programmers commit mistakes while coding, they are known as bugs. The dynamic 

reliability of software such as correctness (the software expected behavior) is intensely 

affected by errors. Errors create defects, also known as faults. A faulty software 

component upon use causes software failures. A software system, from its requirements 

to maintenance, may either provide expected outcome (i.e., observing specifications) or 

encounter failures as shown in Figure 1.1. Errors and faults are associated with software 

artifacts such as use cases, unified modeling language (UML) models, hierarchy charts, 

etc. including source code. Failures happen to executable artifacts only, which is normally 

considered to be source code (Jorgensen 2016). The relationship between these terms is 

shown in Figure 1.2. When users encounter failure while using a software system or 

testers provoke failure during testing, it is reported as a problem or incident.  

With the increasing complexity of today’s software, the nature of faults has now 

become more challenging too. This is evident from the IEEE Standard Classification for 

Software Anomalies reported in (Zubrow 2009) that lists a range of faults such as 

input/output faults, logic faults, computation faults, interface faults, data faults, etc. (The 

document defines anomaly in software as “departure from the expected”). Large, 

configurable and other software applications, in addition to the above-mentioned faults, 

encounter a different kind of fault known as interaction fault. Such a fault can appear to 

be elusive. It may cause interaction failure when different software systems interact 



 

2 

(within an environment) or due to the combination of different features of same 

configurable software. 

 

Figure 1.1 Failure and Software System 

Interaction faults caused several Windows XP machines to crash. The incident 

resulted in the Blue Screen of Death (BSOD) problem and was reported in the Register 

news article (Leyden 2012). The problem occurred owing to the three-way interaction 

between Windows XP Cache manager, Symantec’s security software and third-party 

encryption software. In GCC (GNU Compiler Collection), a framework for compilation, 

some interaction faults (configuration dependent) have been identified (Garvin and 

Cohen 2011). According to (Yin, Ma et al. 2011), 23.4%∼61.2% faults in 5 software 

systems (COMP-A, CentOS, MySQL, Apache, and OpenLDAP) involved some 

combinations of parameters. Similarly, (Kuhn, Wallace et al. 2004) reported that in a 

variety of software systems faults could be triggered, though fewer, when three, four, five 

or six parameters interact. In essence, interaction faults can lead even to system crash 

owing to incompatibility problems of various factors or parameters of the system. (Niu, 

N et al. 2018). Therefore, exploring these faults is crucial for the success of a software 

system. 

Interaction faults can be of two types: configuration faults and combination of 

parameter values faults. The former type may occur when various software systems 

interact. The latter one may arise when various parameters of the same software system 

are used in combination. Windows XP, Mozilla Firefox, and Apache Tomcat is a single 

configuration of an environment where three different software systems: Operating 

System, Web Browser and Web Server, respectively, are used. Similarly, Arial, Bold, 10 
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and Western is one combination of input values for the Font, Font Style, Font Size, and 

Script parameters in the Microsoft Notepad Font window. 

 

Figure 1.2 Relationship of Errors, Faults and Failures 

It is common for today’s software to have an exorbitant amount of combinations 

of input parameters or configurations. For example, the recent version of Apache server 

software has 172 input parameters. Of these, 158 are two-valued, 8 are three-valued, 4 

are four-valued, 1 is five-valued and the final 1 is six-valued. This results in 1.8x1055 

unique input combinations. Testing the web server exhaustively is infeasible even if only 

one second would reserve for each combination. It is even equally important to reduce 

testing efforts in case of software having a small number of input parameters.  

Software testers wish to test Software Under Test (SUT) exhaustively. However, 

it is infeasible as almost every software today, like the Apache server software mentioned 

before, comes with dozens or even hundreds of input parameters. An appropriate solution 

point, known as combinatorial t-way (where t defines interaction strength) testing, is a 

collection of sampling strategies that efficiently sift out only selected input parameters 

sufficient for testing the large input space (Nie and Leung 2011). Combinatorial t-way 

testing represents a SUT as a model that contains the SUT’s factors (configuration options 

or input parameters) each of which can be assigned values from a specific domain. This 

model is then used by a combinatorial t-way testing strategy to generate, for example, a 

combinatorial object called t-way covering array or simply covering array (CA). 

Specifically, a CA is a mathematical representation of a t-way test suite. In CA, each 

possible combination of input parameters values must appear at least once for each and 

every t (which is known as the interaction strength) input parameters’ combinations. The 
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SUT is finally tested with CA by executing its test cases (i.e., each row in the CA) on 

each combination (Yilmaz, Fouch et al. 2014). An abstract level representation of 

combinatorial t-way testing is shown in Figure 1.3. 

 

Figure 1.3 Abstract Level Representation of Combinatorial t-way Testing 

In general, most t-way test suite generation strategies can be classified into three 

categories based on how CAs are generated: 

i. One-test-at-a-time (OTAT): Strategies in this category repeatedly 

generate one test case as a single row of the CA until all required 

interactions are covered (Cohen, Dalal et al. 1997).  

ii. One-set-at-a-time (OSAT): Strategies in this category generate a set of test 

cases at the end of each iteration. The strategy optimizes the coverage by 

mutating values of selected parameters of some test cases in the set. The 

size of the test set is decreased or even increased so as to achieve full 

coverage (Cohen, Colbourn et al. 2003, Nurmela 2004).  

iii. One-parameter-at-a-time (OPAT): Strategies in this category initially do 

not generate complete test cases. Instead, they first assign values to some 

part of the input parameters to cover their interactions and subsequently 

set up the remaining part to generate complete test cases (Lei, Kacker et 

al. 2008). 

The most flexible and efficient are the OTAT strategies as compared with the 

other two categories (Niu, N et al. 2018).   

Generally, it is good enough to test only uniform interactions i.e., same interaction 

strength among all parameters of a SUT. However, only covering uniform interactions 

may not be sufficient in case of many contemporary real applications (Yilmaz, Cohen et 

al. 2006, Afzal, Torkar et al. 2009). For example, for some SUT there may be 100% two-
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way interactions among all its parameters but may also be a 100% three-way (or higher) 

interactions among some subset(s) of its parameters. Such cases support the argument 

that while testing the SUT, the interaction strength might be variable instead of fixed. 

Therefore, t-way testing when t varies (variable or mixed strength interactions) be 

preferred than simple t-way testing (uniform strength interactions) owing to its flexible 

and practical nature (Nie and Leung 2011).  

The problem of mixed strength test suites generation is a Nondeterministic 

Polynomial time (NP)-hard problem (Lei and Tai 1998). Significant research efforts have 

been made to investigate this problem. Recent efforts have focused on the adoption of 

meta-heuristic algorithms as the basis for the test suite generation strategies (Mahmoud 

and Ahmed 2015, Timaná-Peña, Cobos-Lozada et al. 2016) because these algorithms can 

achieve better results in terms of sizes compared with other computational strategies. 

Meta-heuristic based strategies often start with a generation of random 

solution(s). One or more search operators are then iteratively applied to the solution(s) 

for improving the overall objective function evaluation (i.e., for greedy coverage of 

interaction combinations). Although several variations exist, the main difference among 

meta-heuristic strategies lies on each individual search operator and on the manipulation 

of exploration and exploitation. Owing to their success, many new t-way strategies based 

on meta-heuristic algorithms have been introduced in the literature.  

Fuzzy control is widely adopted for tuning control parameters of meta-heuristic 

algorithms so as to balance exploration and exploitation. It is an active and useful research 

area that contributes to the applications of fuzzy logic and fuzzy sets (Castillo, Neyoy et 

al. 2015). Fuzzy controllers appear more effective in analyzing complex processes than 

conventional quantitative approaches. Similarly, the methodology followed by fuzzy 

controllers can be useful when the interpretation tools of available sources of information 

are qualitatively inaccurate or uncertain (Yen and Langari 1999).      

1.2 Problem Statement 

Software complexity and its operating environments may cause its behavior to be 

dependent on many factors. One important factor is unwanted interactions that can 

increase the occurrence of faults in software. Though useful, traditional software testing 

methods may not handle interaction faults owing to large input spaces of today’s software 
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(Cohen, Dwyer et al. 2007). From last two decades, t-way test suite generation strategies 

effectively test software by sampling only required interactions. The t-way test suites 

generated successfully by these strategies cover interactions based on the required 

interaction strength at least once from typically a large number of parameter values or 

configuration options.  

The problem of generating t-way test suites or mixed strength test suites is a 

computationally hard problem (Lei and Tai 1998, Yilmaz, Cohen et al. 2006, Afzal, 

Torkar et al. 2009, Kuliamin and Petukhov 2011). To be specific, searching for test suites 

with fewer possible test cases is an NP-hard problem (Lei, Kacker et al. 2008). Thus, it 

can be painstakingly difficult to search optimum mixed strength test suites. After being 

formulated as an optimization problem, several research studies emerged in the literature 

adopting meta-heuristic algorithms for the generation of near-optimal test suites. Meta-

heuristic algorithms adopted by t-way test suite generation strategies include Simulated 

Annealing (SA) (Cohen, Colbourn et al. 2003), Tabu Search (TS) (Nurmela 2004), 

Genetic Algorithm (GA) (Shiba, Tsuchiya et al. 2004), Ant Colony Algorithm (ACA) 

(Shiba, Tsuchiya et al. 2004), Particle Swarm Optimization (PSO) (Ahmed and Zamli 

2011c, Ahmed, Zamli et al. 2012), Harmony Search (HS) (Alsewari and Zamli 2012), 

Cuckoo Search (CS) (Ahmed, Abdulsamad et al. 2015), Bat algorithm (BA) (Alsariera 

and Zamli 2015), and Bees Algorithm (Mohd Hazli, Zamli et al. 2012). Although much 

progress has been achieved (Timaná-Peña, Cobos-Lozada et al. 2016), research into new 

strategies is still relevant owing to the fact that no single strategy can claim dominance 

over other existing ones (i.e., as stipulated by the No Free Lunch Theorem (Wolpert and 

Macready 1997)).  

Most meta-heuristic algorithms introduce specific parameter controls so as to 

search optimum solutions (i.e., t-way test suites). For example, GA exploits crossover 

probability, mutation probability, selection operator, etc.; PSO introduces inertia weight 

and social/cognitive parameters; HS relies on the consideration rate of harmony memory 

and pitch adjustment; ACO exploits evaporation rate, pheromone influence, and heuristic 

influence; SA uses temperature and cooling rate; TS introduces short-term memory and 

long-term memory, CS relies on switching probability; BA exploits frequency, loudness 

and pulse emission rates; and Bees Algorithm uses the number of scout bees, the number 

of patches, the number of elite patches, etc. Tuning such control parameters accordingly 
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ensures a suitable quality solution. However, the tuning of these parameters is often time 

consuming and problem specific because there is no one-size-fits-all strategy. Therefore, 

it is necessary to design new t-way strategies based on parameter-free meta-heuristic 

algorithms as the adoption of the same has not been explored in the scientific literature 

as depicted in Figure 1.4. 

 

Figure 1.4  Strategies with/without Parameter Tuning for the Problem of t-way Test 

Suite Generation 

Owing to its proven performance in many other optimization problems, the 

adoption of the parameter-free Teaching Learning-based Optimization (TLBO) (Rao, 

Savsani et al. 2011, Rao, Savsani et al. 2012) algorithm as a basis for a new t-way strategy 

is deemed useful. Unlike most existing meta-heuristic algorithms, and by virtue of being 

parameter-free, TLBO does not have any specific parameter controls. Thus, TLBO 

avoids the need for cumbersome and problem specific tuning process. However, on the 

negative note, TLBO takes a simplistic approach of performing both global search and 

local search sequentially per iteration. Given that exploration (i.e., globally finding new 

potential region in the search space) and exploitation (i.e., locally manipulating best-

known neighborhood) are dynamic in nature depending on the current search space 

region, any preset division between the two or their 50-50 probability as in TLBO can be 

counter-productive (M. Črepinšek, Liu et al. 2013, Yang, Deb et al. 2013). For instance, 

Figure 1.5 (a) shows that the search needs to be intensified as convergence to the global 

minimum is near. Local search may complete its turn at this point of the search process 

and is immediately followed by global search. This causes TLBO to miss the global 

minimum as shown in Figure 1.5 (b). Similarly, Figure 1.5 (c) requires more exploration 

than exploitation as the illustrated problem has more than one optimal solutions (i.e., 
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multimodal). On the other hand, exploitation is required in case of the search space for a 

unimodal problem depicted in Figure 1.5 (d). 

 

 

Figure 1.5  Performance Issues with the Original TLBO Algorithm 

To address these issues, this thesis presents a new TLBO variant called adaptive 

TLBO (ATLBO) integrated with the Mamdani-type fuzzy inference system (Cordón 

2011, Camastra, Ciaramella et al. 2015) for the problem of generating mixed strength t-

way test suites. ATLBO adaptively selects either local search operation or global search 

operation per iteration. This new capability enables ATLBO to have a good balance 

between exploration and exploitation. Experimental results reveal that ATLBO exhibits 

competitive performances in terms of obtained mixed strength test suite sizes against 

original TLBO and other meta-heuristic counterparts. In essence, the hypothesis of this 

thesis suggests that ATLBO is very effective for the problem of generating mixed 

strength t-way test suites owing to its improved search mechanism and a good balance 

between global search and local search. 
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1.3 Aim and Objectives 

The quest for new or enhanced meta-heuristic algorithms to effectively and 

efficiently solve the mixed strength t-way test suite generation problem is the main 

motivation of this research work. Therefore, this thesis aims to propose an enhanced 

TLBO variant called adaptive TLBO (ATLBO) using a Mamdani-type fuzzy inference 

system for the mixed strength test suite generation problem. For fulfilling this aim, the 

objectives of the research are: 

i. To design a new variant of TLBO called ATLBO based on a Mamdani-type 

fuzzy inference system for adaptively selecting exploration (i.e., global 

search) and exploitation (i.e., local search). 

ii. To implement ATLBO for addressing generation for both uniform and mixed 

strength t-way test suites.  

iii. To evaluate the performance of ATLBO in terms of generated test suite sizes 

against the original TLBO and other meta-heuristic algorithms.  

1.4 Research Scope 

Following points highlight the scope of this research work.  

• The focus of this thesis is the test case generation phase in the software 

testing life cycle. Specifically, the mixed strength t-way test suite 

generation/sampling for test execution is addressed in this research work. 

• The methodology adopted by a t-way strategy can either be exact, 

algebraic, greedy, or meta-heuristic. Strategies based on meta-heuristic 

algorithms have generated most optimal test suites to date. Therefore, only 

meta-heuristic-based strategies for t-way testing are considered in this 

thesis. 

• Meta-heuristic algorithms with no algorithm-specific parameters (i.e., 

parameter-free) have been recently introduced in the optimization 

literature. Besides TLBO, Jaya (Rao 2016) and Symbiotic Organisms 

Search (SOS) (Cheng and Prayogo 2014) are some other examples of 
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parameter-free meta-heuristic algorithms. This research has adopted 

TLBO owing to its successful applications for solving a wide range of 

optimization problems in many fields of science and engineering. 

• The scope of this thesis is limited to the design and implementation of a 

mixed strength t-way test suite generation strategy based on ATLBO. The 

current interaction strength support is set at t = 4 which is empirically 

consistent with evidence in the literature (where 70-90% of the faults can 

be detected). 

• Two main types of fuzzy inference systems, namely Mamdani (Mamdani 

and Assilian 1975) and Sugeno (Sugeno 1985) have broad acceptance and 

applications for solving many real-world problems. This work integrates 

the well-known Mamdani-type fuzzy inference system with ATLBO so as 

to achieve a suitable performance. Sugeno as well as other types of fuzzy 

inference systems are outside the scope of this thesis.  

• This thesis focuses only on the test generation and not on the test 

execution. As a result, the performance of ATLBO for the mixed strength 

t-way test suite generation is gauged in terms of obtaining the most 

minimum test suite size.  

1.5 Research Activities  

Overall, the research activities encompass three main phases, namely the 

literature review, methodology and evaluation. The first phase is the literature review that 

leads to a complete understanding of the domain of interest via the available state-of-the-

art literature. The research problem and proposed research contribution are formulated 

from this phase. The second phase constitutes the methodology of this work where 

initially the general ATLBO with its new search mechanism is presented followed by 

giving the complete details of adopting ATLBO for addressing generation for both 

uniform and mixed strength t-way test suites. Finally, the evaluation/benchmarking phase 

investigates the performance of ATLBO in terms of the generated test suite sizes against 

referenced strategies based on original TLBO and other well-established meta-heuristic 

algorithms. To illustrate how the phases are related, the research activities are 

summarized in Figure 1.6. The following subsections elaborate these phases further. 



 

11 

 

Figure 1.6 Research Activities 

1.5.1 Literature Review  

In this phase, the literature survey is carried out to understand the current state of 

research on the uniform and mixed strength t-way testing. Software testing is considered 

as general research area which is then narrowed down to test data generation strategies 

owing to their alluring prospects. The literature review starts by reviewing existing 

foundation test case design strategies along with newly establishing strategies for 

exploring software interaction faults. After identifying the importance of the 

complementary test case design strategies, existing strategies in the literature for t-way 

testing are reviewed in order to identify their features and possible limitations. The 

research statement is formulated after the literature review survey. This phase provided 

the foundation for the methodology of this research study.  



 

12 

1.5.2 Methodology  

In this phase, TLBO is adopted owing to its simple design for optimization. A 

new variant of TLBO, called ATLBO is designed that intelligently applies the local and 

global search operations using a Mamdani-type fuzzy inference system. After presenting 

the general structure of ATLBO, the details of its implementation for addressing the 

problem of mixed strength t-way test suite generation are given. Other more optimized 

supporting algorithms are also designed and developed in this phase. Detailed 

methodology of this research study for addressing the problem of mixed strength t-way 

test suites will be discussed in Chapter 3. 

1.5.3 Benchmarking 

Initially, ATLBO is benchmarked against the original TLBO for a predefined set 

of example systems to evaluate its performance (in terms of time) and efficiency (in terms 

of generated test suite sizes). Then, the results of ATLBO are benchmarked against the 

well-known results of other state-of-the-art meta-heuristic based strategies to further 

investigate and evaluate its efficiency.  

1.6 Thesis Structure 

This thesis is organized into five chapters. The organization outlined in this 

section is as follows. Chapter 2 reviews the foundation knowledge relevant to software 

interaction testing and meta-heuristic based test case generation strategies. The chapter 

starts with the introduction of basic test case design strategies with examples that 

illustrate how each strategy selects test cases. Then, a simple online gaming architecture 

is presented as a configuration software system to illustrate uniform and mixed strength 

interaction testing. Thereafter, the chapter explains the formulation for interaction 

elements and how these elements are covered by test cases. This is followed by a 

theoretical background of t-way testing. The chapter then overviews meta-heuristic 

algorithms. Then, it briefly describes and investigates uniform and mixed strength 

interaction test suite generation strategies based on meta-heuristic algorithms such as SA, 

TS, GA, ACA, PSO, HS, CS, BA and Bees Algorithm available in the existing literature. 

Here, the search process and algorithm structure of these meta-heuristic based strategies 

are described. Following this, strategies based on meta-heuristic algorithms for t-way 

testing are categorized into standard, adaptive and hybrid strategies. The chapter then 
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presents an overview of TLBO and reviews its different variants with their applications. 

Hereafter, the chapter identifies the research gap in the application of these meta-

heuristic-based strategies for t-way testing.  

Chapter 3 presents the methodology that justifies how ATLBO is designed and 

implemented for addressing the t-way test suite generation problem. After the overview 

of original TLBO, the detailed design of ATLBO is given. Specifically, the Mamdani-

type fuzzy inference system is briefly discussed which ATLBO uses for the global search 

and local search selection as per search requirement. Finally, the implementation of 

ATLBO for mixed strength t-way test suites is presented with thorough explanations on 

how it can be used for automated test data generation. 

Chapter 4 evaluates performance of ATLBO against other strategies based on 

meta-heuristic algorithms in terms of the generated test suite sizes. ATLBO’s 

performance is first evaluated in terms of both time and generated test suite size against 

original TLBO. Similarly, the generated test suite sizes by ATLBO are benchmarked 

against the results available in the high-impact literature. All experimental results are 

reported in the form of best and mean solutions. Similarly, the chapter also includes 

statistical analysis conducted for all the obtained results to ensure better comparison. For 

every test generation problem, the chapter depicts the percentage distribution pattern of 

exploration and exploitation adopted by ATLBO. The chapter then briefly discusses the 

observations based on the obtained results. At the end, the chapter presents the identified 

threats to validities and elaborates how to mitigate their effects on the results.  

Finally, chapter 5 concludes this research study with a summary of achievements 

and contributions. Moreover, it revisits the main research hypothesis and debates on the 

effectiveness of ATLBO. Eventually, the chapter derives conclusions based on 

conducting this research and its findings and presents future work. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

The foundation for this work has been laid out in chapter 1. The area of interest 

has been elaborated in the chapter followed by a brief description of the problem 

statement. The aim and the objectives that drive this study have been stated. Finally, the 

structure of the thesis has given in the chapter. 

Complementing chapter 1, this chapter reviews the body of knowledge in the area 

of automatic test case design to understand it, and subsequently identifies the research 

problem. Firstly, the chapter explains the basic test case design techniques. Secondly, the 

chapter presents the fundamentals of combinatorial mixed strength and t-way testing. 

Thirdly, the chapter comprehensively reviews the state-of-the-art meta-heuristic-based t-

way strategies along with their novel division into three categories, namely standard, 

adaptive and hybrid strategies. Fourthly, the chapter presents an overview of original 

TLBO and briefly reviews its variants and their applications. Fifthly, the chapter 

identifies the research gap in the existing works of the application of meta-heuristic 

algorithms for t-way test suite generation. Lastly, the chapter concludes the presented 

contents in the summary section.  

2.1 Test Case Design Techniques  

Effective testing is based on efficient test case design techniques. These 

techniques enable testers to select test cases that best suit the system. Some of the well-

known test case design techniques are explained with examples in the following 

subsections.  
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2.1.1 Equivalence Partitioning  

Equivalence partitioning tests the Software/System Under Test (SUT) with 

equally partitioned classes of its input/output domains (Hass 2014). With such a 

technique, testing the SUT using a selected test case in a class is sufficient to test it with 

all other possible test cases in that class partition. To put it differently, the value of any 

test case in a class is supposedly equivalent to the value of any other test case in that class 

partition. Thus, if a test case is successful in fault detection in a class, it is equivalently 

attributed to the other test cases as well in the same class partition (Myers, Sandler et al. 

2011). To clearly illustrate this concept, a simple example is given in Figure 2.1. 

 

Figure 2.1 A Simple Application to Illustrate Equivalence Partitioning 

A simple application that calculates the total amount of a customer bill after 

discount based on the purchase amount is presented. For example, if the purchase amount 

is between RM30.00-RM99.00, the discount will be 5%. For the purchase amount above 

RM99.00, the offered discount is 10%. It can be observed here that there is no discount 

for the purchase amount below RM30.00. Testing all the possible values of the purchase 

amount field is infeasible. Hence, the values of the purchase amount can be partitioned 

into classes using equivalence partitioning that determine the discount. Clearly, in case 

of the running example, there are three classes of the purchase amount, i.e., purchase 

amount below RM30.00, purchase amount above RM99.00, and purchase amount 

between RM30.00-RM99.00. To test the Amount after Discount field of the application, 

only one value (possibly the value at the mid) needs to be selected from each class 

partition. Therefore, 14.00, 49.00, and 200.00 are required to test the system using 

equivalence partitioning.  
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2.1.2 Boundary Value Analysis 

Boundary value analysis uses the class partitions of equivalence partitioning for 

the selection of test cases. Test cases selected using boundary value analysis include the 

values exactly on, below and above the edges of the class partitions as many faults could 

also occur using such values (Burnstein 2006, Myers, Sandler et al. 2011).  

In the case of example depicted in Figure 2.1, the boundaries of the three class 

partitions are 1.00, 29.00, 99.00 and 100.00, respectively. To undertake the boundary 

value analysis, testers for this example would use (0.00, 1.00, 2.00), (28.00, 29.00, 30.00) 

and (99.00, 100.00, 101.00) as test cases.  

2.1.3 Cause and Effect Graphing 

Cause and Effect Graphing (CEG) is another specification-based test design 

technique for validating the functionality of a given SUT. CEG is more effective for 

control centric SUTs as compared to the previously discussed techniques which are used 

with data-centric SUTs (Srivastava, Patel et al. 2009). By using a graph, CEG visualizes 

the SUT’s inputs (or causes) with their corresponding outputs (or effects) (Hass 2014). 

The cause corresponds to an input condition from the specification that may influence the 

result of the SUT, whereas the effect corresponds to the response of the SUT to any set 

of input conditions (Srivastava, Patel et al. 2009).  

Initially causes, effects and constraints are identified from the SUT’s 

specifications when tests adopt CEG. This is followed by the construction of cause and 

effect graph as a combinatorial logic network graph. The nodes of the graph represent 

causes, effects and constraints whereas its edges represent Boolean operators (AND, OR, 

NOT) between causes and effects. After the graph construction, a unique identifier is 

assigned to each cause and effect and their relationships are marked on the graph. The 

next step transforms the graph into a decision table to design test cases. 

For the example application shown in Figure 2.1, suppose that the SUT’s 

specification requires that the Purchase Amount field needs not be negative and that its 

value should not contain any alphabets or special symbols. The SUT should display an 

error message if the value of Purchase Amount field is negative, and if it contains 

alphabet(s) or special symbol(s); the “Invalid value” message needs to appear. Otherwise, 
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the Total Amount after Discount value should appear. In this case, the input conditions 

or causes are C1: The value of Purchase Amount > 0.00 and C2: The value without 

alphabets or special symbols. Similarly, the output conditions or effects are E1: The value 

is negative; E2: The Total Amount after Discount value and E3: An Invalid value. CEG 

visualizes the relationships between these causes and effects in Figure 2.2.  

 

Figure 2.2 The CEG for the Example in Figure 2.1 

In the decision table, shown in Table 2.1, rows represent causes and effects 

whereas columns represent test cases (three test cases T1, T2 and T3 for the running 

example). The entry of each cell of the table may be ‘0’, ‘1’, or ‘+’. If a cell entry is ‘0’, 

it indicates the absence of cause or effect. If a cell entry is ‘1’, it indicates the presence 

of cause or effect. The entry ‘+’ indicates ‘don’t care’. 

Table 2.1  Decision Table for the Example in Figure 2.2 

 

The above-discussed techniques are useful to discover and prevent faults. 

However, such techniques are unable to detect faults due to interactions of input 
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components (Cohen, Dwyer et al. 2007). Combinatorial t-way testing among other 

techniques is found most effective to avoid the otherwise impossible exhaustive testing. 

2.2 Theoretical Background: Mixed Strength and t-way Testing 

It has been proved empirically that only a small number of inputs (usually from 3 

to 6) causes faults in certain classes of software (Kuhn and Okum 2006). If t or fewer 

input parameters involved in the occurrence of a fault, a smaller set of test cases can be 

designed on some t-way combinations. These test cases appear to be very effective as 

they can detect 50% to 75% of the faults in a SUT (Kuhn, Wallace et al. 2004). 

2.2.1 Mixed Strength and t-way Testing: A Motivating Example 

To illustrate the generation problem of both mixed strength and t-way test suites, 

a simple model of online gaming architecture is presented as shown in Figure 2.3.  

 

Figure 2.3 Online Gaming Architecture 

The online gaming architecture is composed of five parameters or components. 

There are two types of clients (i.e., parameters are ‘Client Browser’ and ‘Smart Phone 

OS’) where parameter ‘Client Browser’ represents a normal PC user whereas parameter 

‘Smart Phone OS’ represents a mobile user. Both parameters have different 

configurations or values. On the server side, there are three types of parameters, namely 

‘Server’, ‘Game Server’ and ‘Database Server’. Each of these parameters carries different 

values. Thus, the online gaming architecture depicted in Figure 2.3 can be summarized 
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(see Table 2.2) as a system of five parameters where three parameters carry two values 

while two parameters carry three values. 

Table 2.2  The Online Gaming Architecture: Parameters and Values 

 

This system can be tested with different testing methods, but one of the common 

sources of software faults may be some unexpected interaction between the system’s 

parameters or configurations (Williams and Probert 2001). The chances of failure of a 

system increase with the increase in number of parameters. To mitigate such chances, 

and ensure the quality of a SUT, testers may require to perform exhaustive testing (i.e., 

test all combinations or interactions among parameters). For the system discussed here, 

exhaustive testing yields a total 72 test cases (i.e., 2x2x2x3x3). However, there can only 

be 9 test cases to execute if two-way interactions of the system parameters are considered 

as shown in Table 2.3 (first 9 test cases). Though this will give a minimum number of 

test cases and will cover all the two-way combinations but may miss some interaction 

faults. For example, the parameters; Server, Game Server, and Smart Phone OS need to 

be tested collectively to avoid possible faults because of their interactions. One way of 

achieving this is to first prepare two-way test cases for all five parameters followed by 

preparing three-way test cases for the three stated parameters. This will result in 21 test 

cases. However, the testing cost will be increased due to a large number of test cases, 

particularly in cases where the system is highly configurable or has large input 

parameters.  

Another way of designing test cases for two- and three-way interactions 

simultaneously is combining them in a single test suite. This method not only maintains 

minimal coverage across the parameters but also avoids testing all the 71 or 21 test cases. 

Table 2.3 shows the test suite that covers the variable or mixed strength interactions 

among the parameters of the system shown in Figure 2.3. There are now only 10 test 
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cases to cover pairwise or two-way interactions of all the five parameters of the system 

and three-way interactions of the three parameters mentioned above.  

Table 2.3  Pairwise and Mixed Strength Test Suite for the System in Figure 2.3 

 

The above discussion signifies the importance of defining and creating test suites 

that cover both t-way and mixed strength interactions, particularly when interactions 

grow. To save testing cost and time, it is unavoidable to search for effective and efficient 

ways for creating test suites with minimum possible test cases, specifically for systems 

with large configurations or with large number of input parameter values. 

2.2.2 Basics of Interaction Coverage 

In this section, a simplified example is presented to comprehend the process of 

test suites creation and interaction elements coverage. In Table 2.4, a system with three 

parameters (a, b, c) each with two values is presented.  
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Table 2.4 A Simplified Example of a System with three Parameters two Values 

 

For this example, as illustrated in the previous section, the test suite with total 8 

(i.e., 2x2x2 or 23) test cases as shown in Table 2.5 can test the system exhaustively (i.e., 

at full strength t = 3).   

Table 2.5  The Exhaustive Test Suite for the System in Table 2.4 

 

With the increase in number of parameters and values, the size of exhaustive test 

suites increases exponentially. Pairwise test suites are helpful as they significantly reduce 

the number of test cases and achieve complete coverage of the interaction elements or 

tuples. Mathematically, the total number of these interaction tuples can be calculated 

exactly using Eq. 2.1 (Colbourn and Dinitz 2006).  

Total Interaction Tuples or Elements =  (𝑃
𝑡
)𝑣𝑡 =  𝑃!

𝑡!(𝑃−𝑡)!
𝑣𝑡 2.1 

Eq. 2.1 calculates the total number of interaction tuples using the number of 

system’s parameters (P), the required interaction strength (t) and the number of values 

(v) each parameter carries. For cases where P, t, and v vary, the total number of interaction 

elements is equal to the sum of products of each individual interaction sets. The first step 

that any t-way testing strategy takes is to determine all the possible combinations of the 

system parameters or interaction sets using Eq. 2.2. 
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Total Parameters Combinations = (𝑃
𝑡
) =  𝑃!

𝑡!(𝑃−𝑡)!
 2.2 

For P = 3 and t = 2, Eq. 2.2 results in the value three. Therefore, for the example 

in Table 2.4, there are three possible parameter combinations, namely ab, ac and bc.  

After this calculation, the t-way strategy assigns related values to every 

combination of the parameters to form interaction elements or tuples. The strategy then 

attempts to generate test suite with fewer possible test cases in order to cover all these 

tuples. Figure 2.4 shows parameters combinations (total three) and interaction elements 

(total 12) for the system in Table 2.4.  

 

Figure 2.4 Total Pairwise Interaction Tuples for the System in Table 2.4 

The final test suite covers all the interaction tuples at least once to ensure that all 

tuples are tested at least once. The process of constructing test cases demonstrates the 

coverage of interaction elements. A test case, based on its arrangement, could be 

sufficient for testing either one or more interaction elements.  If a test case covers more 

elements, it is the more suitable candidate to be added to the final test suite. Figure 2.5 

illustrates how only four test cases (a reduction of 50% testing efforts) cover all the 12 

interaction tuples shown in Figure 2.4. 

Although, 100% coverage is achieved with only four test cases for the running 

example, the same percentage of tuples can be covered by more than four test cases if 

other test cases were chosen instead of those shown in Figure 2.5. The first test case (a1, 

b1, c1) in Figure 2.5 achieves 25% coverage of the total pairwise interaction tuples as it 

covers three interactions. With the addition of the second test case i.e., (a1, b2, c2), 

coverage percentage reaches 50 as three more interactions have been covered now. The 

addition of the last two test cases in the test suite completes 100% coverage as they cover 
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the remaining six interactions. Interaction elements are removed once they are covered 

by a test case.  

 

Figure 2.5 Interaction Elements/Tuples Coverage for the System in Table 2.4 

The process of interaction coverage explained above is usually followed by most 

of the greedy t-way test suite generation strategies. However, test case selection and test 

suite generation differentiate one t-way strategy from another. 

As the problem of t-way test generation is NP-hard, a strategy can only predict an 

approximate number of test cases using the lower bound. For uniform t-way test suites, 

the lower bound is computed as the interaction strength times values (i.e., vt). When the 

test suite size reaches the lower bound, it is called an absolute minimal. A strategy cannot 

produce test suite size minimum than the lower bound. In a SUT with different P and v 

while only a single interaction strength t, the lower bound here can be computed by 

multiplying interaction strength t times the first maximum values of the parameters in 

descending order. For mixed strength t-way test suites, the lower bound is the sum of 

products of the first maximum values in descending order times the main and sub 

interaction strengths.  

2.2.3 Mathematical Objects for Test Suites Representation 

There are seven different mathematical objects reported in the literature for the 

mathematical representation of t-way test suites (See Table 2.6). Covering array (CA) is 
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the most common type of mathematical object used by strategies in t-way test suite 

generation. CAs were initially used for interaction testing by Williams and Probert 

(Williams and Probert 1996) and Cohen et al. (Cohen, Dalal et al. 1997). With CAs, the 

input space and its domain of values (or configurations options) of a software system can 

be modeled efficiently. Moreover, CAs are the foundation mathematical objects for other 

types such as sequence covering arrays (SCAs). CAs are widely accepted owing to their 

ability of cost-effectively executing every behavior of a system caused by the interaction 

of t or fewer input values and efficient representation of optimized t-way test suites. In 

CA, it is assumed that the array contains all required interactions among the parameters’ 

values at least once. CA is originated from another mathematical object called orthogonal 

array (OA) (Federer and Mandeli 1986). All the mathematical objects reported in the 

literature for the representation of test suites are defined as follows. 

Table 2.6  Mathematical Objects for t-way Test Suites and their Notations  

# Mathematical Objects Notations 

1 Orthogonal Array (OA) OAλ(N; t, P, v) 

2 Covering Array (CA) CAλ(N; t, P, v) 

3 Mixed Covering Array (MCA) 
MCA(N; t, P, (v1, v2, … vP}) or      

MCA(N; t, vP) 

4 Variable Strength Covering Array (VCA) VCA(N; t; P, v, {CA1… CAj}) 

5 Constrained Covering Array (CCA) CCA(N; t, P, v) 

6 Sequence Covering Array SCA(N; t, P, v) 

7 Cost-Aware CA CTCA(N; t, P, Cost(CA)) 

Definition 2.1. An OAλ(N; t, P, v) is an array of N  P dimensions where it is 

needed that every N  t sub-array contains each t-tuple exactly λ times where λ = N/vt; t 

is the interaction strength, P is the number of parameters (P ≥ t); and v is the number of 

values corresponding to each parameter. 

For instance, OA(9; 3, 4, 3) contains only nine rows in the array to cover 3-way 

interactions (t) among a system of four parameters (P) each with three values (v). The use 

of OA is discontinued in t-way test suite generation owing to the requirement of the exact 

repetition of the t-elements when parameters’ values grow. As an alternative version of 

the OA, the CA notation is presented. CA can handle an increasing number of parameters 

and values (Kacker, Kuhn et al. 2013) and is defined as: 

Definition 2.2. CAλ(N; t, P, v) is the general form of CA which represents an N  

P array on values (0, 1, …, v-1) | every X where X = {x0, …, xt-1} ∈ λ-covered and every 
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N  t sub-array consists of all ordered t size subsets over v values at least λ times, where 

the set of columns (parameters) X = {x0, …, xt-1} ⊇ {0, …, P-1}. 

For λ=1, the notation reduces simply to CA(N; t, P, v) which indicates that all the 

t-tuples or elements of the values of system’s parameters appear in the array at least once 

(Hartman and Raskin 2004). A CA with fewer possible rows (i.e., with smallest N) 

corresponds to an optimal CA which is represented mathematically using Eq. 2.3.  

𝐶𝐴(𝑡, 𝑃, 𝑣) = min  { 𝑁: ∃ 𝐶𝐴  (𝑁; 𝑡, 𝑃, 𝑣)} 2.3  

The notation of CA assumes that the value 𝑣  (number of values) for each 

parameter 𝑃 needs to be uniform which is not common in real applications. Usually, 

parameters of many real-world systems have varying number of values. Such systems 

can be modelled by another general mathematical structure called mixed covering array 

(MCA) which is defined below: 

Definition 2.3. MCA(N; t, P, (v1, v2, … vP}) represents an N  P array over v 

values, where the rows of every N  t sub-array contain all t interactions of values at least 

once from the t columns.    

The notation has the flexibility to be presented as MCA(N; t, vP) that can also be 

used for a CA with fixed-level, such as CA(N; t, vP}. Both the abovementioned objects 

define a fixed strength t across all parameters. However, normally certain groups of 

parameters require much stronger testing (i.e., higher interaction strength for certain 

groups of parameters). This is particularly beneficial in cases, for example, when 

increasing t across all parameters is expensive or when developers/testers can identify 

that certain groups of parameters can cause failures (Yilmaz, Fouch et al. 2014). In a 

nutshell, mixed or variable strength covering array (VCA) offers the flexibility of varying 

coverage strength across the input space and is defined as: 

Definition 2.4. VCA(N; t; P, v, {CA1… CAj}) is also a mathematical structure 

generated as an array of N rows and P columns on v values, but every N  t array contains 

one or more sub-covering arrays, namely CA1..CAi with interaction strengths t1…tj, 

respectively, all larger than t. 
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All these objects are called traditional mathematical objects for t-way testing. 

Although the objects explained so far support many applications, they still may not suit 

the requirements of many other current applications.  

The involvement of constraints in the usage of modern day software systems is 

now customary. Constraints dictate that certain combination of values must either be 

present or absent in the array. A constraint can make many of the CA or MCA rows 

invalid to test. To this end, another definition of constrained covering array (CCA) can 

be derived from the previous definitions (Ahmed, Gambardella et al. 2017):  

Definition 2.5. In its standard form, CCA(N; t, P, v) can be defined as an N   P 

sub-array on v values with constraints C, where every N   t sub-array satisfies constraints 

of all ordered subset of size t over values v at least once.  

To accommodate varying or mixed number of values, the notation CMCA(N; t, 

P, (v1, v2, … vP)) is used.  

To test a system with traditional mathematical objects, it is assumed that ordering 

of parameter values in a given row of the object has no effect on its ability of exploring 

fault. Any permutation of the parameter values in a row covers similar set of parameter 

value combinations, and need to detect similar interaction faults. However, this is not the 

case particularly in event-driven systems such as graphical user systems and device 

drivers where processing of an event is often dependent on prior events. Therefore, 

different permutations of the same group of events can detect different interaction faults 

(Ahmed and Zamli 2011b). This new mathematical object can be defined as follows 

(Kuhn, Higdon et al. 2012): 

Definition 2.6. A sequence covering array, SCA(N; t, P, v) is an N  P array where 

each row contains v values from parameters P with every t-length permutation of the 

values v at least once. Adjacency of the values in the t-length permutations is not required. 

Normally different testing cost is associated with every configuration (or test run). 

For instance, software installation or compilation costs more than other configurations 

(Yilmaz, Fouch et al. 2014). In such testing scenarios, minimizing the number of 

configurations or test runs may not reduce the overall cost of testing.  With this, another 

object can be defined as follows (Demiroz and Yilmaz 2016): 
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Definition 7. A cost-ware covering array, CTCA(N; t, P, Cost(CA)) is a t-way 

covering array that minimizes the cost of each row of the CA. 

In this work, only CA, MCA and VCA are considered. Most of the t-way testing 

literature focused on these objects. CCA is also a very important construct as constraints 

are common in today’s complex software systems. CTCA is a recently introduced object 

that attempts to minimize the number of costly interaction elements in the array.   

As stated earlier, the CA notation can efficiently abstract t-way test suites. For 

example, Figure 2.6 (a) shows a test suite of size N = 8 (i.e., eight test cases) with three-

way (t = 3) interactions for a system that has four parameters (P), namely a, b, c, and d 

each with two values (v). This test suite can simply be represented by the notation CA(8; 

3, 24). Figure 2.6 (b) is another test suite of size N = 12 with three-way interactions for a 

system that has four parameters (a, b, c, d) where three parameters (a, b, and c) carry two 

values and one parameter (d) carries three values. For this test suite, the notation MCA(12; 

3, 23 31) can be used. 

Similarly, Figure 2.6 (c) shows a test suite of size N = 9 with two-way (the main 

strength tm) interactions for a system having four parameters (a, b, c, and d) of which two 

have three values (a and b) and two have two values (c and d). The suite also covers 

three-way interactions (sub-strength ts) of the system’s three parameters (b, c, and d) 

where the first one (b) has three values, whereas the last two (c and d) have two values. 

For the representation of this complex structure, the simple notation VCA(9; 2, 32 22, {CA 

(3, 31 22)}) can be used. 

Mathematically, the t-way test generation can be expressed as an optimization 

problem using Eq. 2.4 and Eq. 2.5: 

Maximize 𝑓(𝑥)  =  ∑ 𝑥𝑖
𝑁
1  2.4  

Subject to 𝑥 ∈  𝑥𝑖   , 𝑖 =  1, 2, … . , 𝑁 2.5  

where 𝑓(𝑥) is an objective function capturing the weight of the test case in terms of the 

number of covered interactions; 𝑥 is the set of each decision variable 𝑥𝑖  ;  𝑥𝑖   is the set of 

possible range of values for each decision variable, that is,  𝑥𝑖  = {𝑥i (1), 𝑥𝑖(2),

. . . ,  𝑥𝑖(𝐾)}  for discrete decision variables (𝑥i (1) <  𝑥𝑖(2) < . . .  <  𝑥𝑖(𝐾)); N is the 
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number of decision parameters; and 𝐾 is the number of possible values for the discrete 

variables. 

 

Figure 2.6 Representation of CA, MCA, and VCA 

So far, this section presented the preliminaries of mixed strength and t-way testing 

that included the background and mathematical notations of the same. The next section 

presents state-of-the-art meta-heuristic based strategies for t-way test suites generation.  

2.3 Meta-heuristic Algorithms  

Problems are considered hard optimization problems if any deterministic 

algorithm fails to solve them satisfactorily within an acceptable time limit. These hard 

problems are everywhere, from computer science to engineering and from management 

to finance. There can be different categories of hard optimization problems based on 

whether they are single or multi-objective, discrete or continuous, static or dynamic, 

constrained or unconstrained. In order to solve these problems to near optimality, meta-

heuristic algorithms can be used. Meta-heuristic algorithms solve approximately many 

hard optimization problems without the need of adapting deeply to each problem. This is 

clearly indicated in the name with the Greek prefix “meta” that they are “higher-level” 

heuristics contrary to problem-specific heuristics. Meta-heuristic algorithms are 

generally used for problems which have no problem-specific algorithms for their solution 

(Boussaïd, Lepagnot et al. 2013). They have successfully solved complex problems in 

many fields of study such as forecasting (Cheng, Firdausi et al. 2014, Cheng, Wibowo et 

al. 2015), economics (Arifovic 1996), medicine (Sheikhan and Ghoreishi 2013), 
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computer science (Mirjalili, Mohd Hashim et al. 2012), and engineering (Talatahari, 

Kheirollahi et al. 2013, Cheng, Prayogo et al. 2014), to name a few. 

Characteristics common in almost all meta-heuristics algorithms include 

inspiration from nature (simulate laws from biology or ethology, physics or sociology); 

the application of stochastic constructs (involving randomness); no use of gradient or 

Hessian matrix of the fitness function; adaptation of several specific parameters to the 

optimization problem (Boussaïd, Lepagnot et al. 2013). Some of the new algorithms 

claim to be parameter-free (i.e., they do not use algorithm-specific parameters).    

Different classifications for meta-heuristic algorithms are reported in the 

literature. Two well-known classifications are based on the inspiration of an algorithm 

from a natural phenomenon such as swarm intelligence, evolution theory, physics, etc., 

and the number of random solutions generated by an algorithm in each iteration during 

optimization. This last classification has two categories: single-solution based also 

known as trajectory algorithms and population-based meta-heuristic algorithms. 

Algorithms in the former category generate only one random solution and subsequently 

improve it stochastically till the end of optimization. Simulated Annealing (SA), the 

Iterated Local Search (ILS), the Tabu Search (TS), the Guided Local Search (GLS), the 

GRASP method, the Variable Neighborhood Search (VNS) and their variants are some 

meta-heuristic algorithms in this category. The focus of this work is on the latter category 

in which algorithms mostly generate many random solutions and improve them in each 

stage of optimization. Some popular algorithms in this category include Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), 

Artificial Bee Colony (ABC), Harmony Search (HS), Cuckoo Search (CS) and Teaching 

Learning-based Optimization (TLBO).    

Exploration and exploitation (or diversification and intensification) lie at the heart 

of every meta-heuristic algorithm (Talbi 2009). Exploration finds potential areas of 

solutions in the entire random search space, whereas exploitation focuses on the 

neighborhood of potential solutions. Excessive or limited use of any of the two can 

degrade the performance of a meta-heuristic algorithm. Therefore, a meta-heuristic 

algorithm needs to have a proper balance between exploration and exploitation so as to 

search high-quality solutions (M. Črepinšek, Liu et al. 2013, Yang, Deb et al. 2013).   
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2.4 Meta-heuristic-based t-way Strategies  

Generally, meta-heuristic-based strategies start by creating lists that consist of all 

mixed strength and t-way interaction elements. The strategy employs an efficient 

algorithm for this purpose. A meta-heuristic algorithm such as PSO adopted by the 

strategy then searches an optimal test case based on the maximum coverage of interaction 

elements in the randomly generated population of test cases. Afterwards, the strategy 

removes the covered interaction elements from the list. The strategy continues this 

process till full coverage of all the interaction elements i.e., when the list is empty. Figure 

2.7 depicts the steps common in most meta-heuristic based t-way test suite generation 

strategies. 

 

Figure 2.7 General Meta-heuristic-based Strategy for t-way Test Suite Generation 

This section briefly reviews the mixed strength and t-way test suite strategies 

reported in the literature. As the focus of this thesis is the generation of mixed strength 

test suites via a meta-heuristic algorithm, the strategies based on meta-heuristic 

algorithms are discussed only from the related literature. Initially, t-way strategies based 

on each meta-heuristic algorithm such as PSO are reviewed. Based on this review, the 

test suite generation strategies are then divided into three different categories by 

considering the application of meta-heuristic algorithm in a strategy. Finally, the pros and 

cons of test data generation strategies based on each individual meta-heuristic algorithm 

are outlined. For an objective assessment, issues such as parameter tuning and how each 

meta-heuristic algorithm in a strategy balances exploration and exploitation are critically 

analysed. 
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2.4.1 Simulated Annealing-based t-way Strategies  

Simulated Annealing (SA) is a single-solution-based meta-heuristic algorithm 

inspired by the physical annealing process of metals. The algorithm starts by initializing 

its temperature parameter and then generating an initial solution. Next, SA randomly 

selects a new solution in neighborhood of the current solution in each iteration. Based on 

the temperature and fitness function evaluations for the new and current solutions, SA 

either accepts or rejects the new solution. SA updates the current solution with the new 

one based on better fitness evaluation, otherwise, it uses probability to accept the new 

solution (Eaarts and Korst 1989). At the end of each iteration, SA decreases the 

temperature by using a cooling rate to gradually decrease the probability of accepting 

poor solutions. Moreover, the acceptance probability, 𝑝(𝑇, 𝑓(𝑋𝑡+1), 𝑓(𝑋𝑡)) =

𝑒
(

𝑓(𝑋𝑡+1) ≥ 𝑓(𝑋𝑡) 

𝑇
)

 of SA enables it to balance exploration and exploitation. The 

performance of SA depends on the tuning of its two control parameters, namely the 

temperature 𝑇and the cooling rate 𝑟 (Busetti 2003).  

As for as t-way testing is concerned, SA is the most widely used meta-heuristic 

algorithm. It has successfully generated most optimal CAs and its variants. Cohen et al. 

(Cohen, Colbourn et al. 2003) first employed SA for the construction of CAs. The 

strategy built optimal CAs as compared to algebraic methods only in the cases when 

interaction strength 𝑡 ≤ 3. In (Cohen, Gibbons et al. 2003a), VCAs are introduced and 

generated with SA-based strategy. The interaction strength is still smaller i.e., 𝑡 ≤ 3. SA 

is used in combination with algebraic constructions to generate the most optimal CAs, 

MCAs and VCAs (Cohen, Colbourn et al. 2003). Similarly, SA is hybridized with a 

greedy algorithm in (Bryce and Colbourn 2007) and is proved faster than a hybrid 

approach based on TS and greedy algorithm for the generation of CAs. Cohen et al. 

(Cohen, Colbourn et al. 2008) proposed a hybrid strategy based on SA and algebraic 

constructions to generate the smallest sizes strength 𝑡 = 3 CAs. However, the strategy 

failed when no algebraic construction was possible for an array. The SA search is 

reformulated in (Garvin, Cohen et al. 2009) so that it can work better on both constrained 

and unconstrained problems. However, even offering better results (25% fewer 

configurations on average), run time of the SA is longer. The binary search of the strategy 

suffered from a faulty assumption and was less efficient. Binary CAs of strength 𝑡 ≤ 5 

are generated by SA based strategy integrated with binary composite functions in (Torres-
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Jimenez and Rodriguez-Tello 2010). The strategy generated the most optimal binary CAs 

in many cases.  

CASA (Covering Arrays by Simulated Annealing) is the most successful SA-

based constrained test suite generation strategy. The eight modifications (where 

modifying the global strategy for selecting the sample size and changing the neighboring 

of the search being the most promising) enabled CASA to be more efficient. The strategy 

outperformed, with these modifications, even greedy based strategy in terms of 

performance in certain cases. Another SA-based strategy called Improved Simulated 

Annealing (ISA) proposed in (Rodriguez-Cristerna and Torres-Jimenez 2012) 

successfully generated binary CAs of strength 3 ≤ 𝑡 ≤ 6. The number of parameters that 

ISA can support is between 4 and 1712. To generate MCAs of strength 2 ≤ 𝑡 ≤ 3, Avila-

George et al. (Avila-George, Torres-Jimenez et al. 2013) proposed SA based strategy that 

showed competitive results as far as performance is concerned. The strategy used the 

Diophantine equation to fine tune its control parameters.  

SA-VNS (Rodriguez-Cristerna and Torres-Jimenez 2012) generated quality 

MCAs of strength 2 ≤ 𝑡 ≤ 3  and is based on two meta-heuristic algorithm: SA and 

Variable Neighborhood Search (VNS). The generation time of SA-VNS was longer than 

those strategies selected from references. In another similar research (Rodriguez-

Cristerna, Torres-Jimenez et al. 2015), SA and VNS are again collectively used for the 

generation of MCAs. In this hybrid implementation, SA is responsible to control 

acceptance moves, whereas VNS is mainly responsible to avoid local optimal arrays by 

searching neighbourhoods at various distances. The strategy required to fine tune seven 

different parameters. SA is used as a hyper-heuristic for the selection of six search 

operators as low-level heuristics to generate CCAs by Jia et al. (Jia, Cohen et al. 2015). 

This is the first hyper-heuristic methodology proposed for the generation of combinatorial 

test suites. Apart from showing effectiveness in terms of both efficiency and 

performance, the hyper-heuristic based strategy is general as it learns the nature of the 

problem by selecting the appropriate search operator. More recently, the SA-based 

strategy (Demiroz and Yilmaz 2016) is used to generate cost-aware covering arrays 

CTCAs that not only minimizes the number of test cases but also the associated 

interaction test cost. The empirical evidence suggested that the proposed strategy 



 

33 

outperformed existing strategies. SA based strategy for the test suite generation is shown 

in Figure 2.8. 

 

Figure 2.8 SA-based Strategy for t-way Test Suite Generation 

Source: Garvin, Cohen et al. (2011) 

SA has been reported as one of the most effective meta-heuristic algorithms for 

the generation of CAs and MCAs. Its application for test suit generation in stand-alone 

or hybrid form will further be explored by the research community (Timaná-Peña, Cobos-

Lozada et al. 2016). However, SA is not only a single-solution based meta-heuristic but 

also rely hugely on the neighborhood structures while such structures are not available 

(Beasley, Martin et al. 1993). 

2.4.2 Tabu Search-based t-way Strategies 

Tabu search (TS) (Glover 1989) is another single-solution meta-heuristic 

algorithm inspired by the human memory. TS conducts the searching process by using 

neighborhood structures equivalent to short-term and long-term human memories. 

Different neighborhood structures are used to remember the path visited by the algorithm 

during the search. A tabu list is maintained by TS to remember recently encountered 

solutions and subsequently forbid their regeneration. The list acts as a short-term memory 

of the algorithm, prevents endless repetition and forces TS to accept worse moves. To 
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balance exploitation and exploration, the algorithm can introduce short-term memory and 

long-term memory.  

TS is adopted by many test suite generation strategies. Nurmela (Nurmela 2004) 

proposed a TS-based strategy that improved many available results i.e., sizes of CAs at 

the expense of longer run time. In (Bryce and Colbourn 2007), TS is combined with a 

greedy algorithm for t-way test suite generation. However, this hybrid strategy was 

slower in covering t-tuples than the SA-based hybrid strategy. The covering perfect hash 

families (CPHF) based representation of CAs enable the TS-based strategy by (Walker Ii 

and Colbourn 2009) to generate optimal arrays of higher strengths (𝑡 ≥ 5). Gonzalez-

Hernandez et al. (Gonzalez-Hernandez, Rangel-Valdez et al. 2010) proposed first TS-

based strategy that can generate MCAs with more parameters (from 2 to 11), values (from 

2 to 20) and t (from 2 to 6). However, the strategy suffers from extensive tuning of 

configuration probabilities for TS to achieve optimal results. MiTS (Gonzalez-Hernandez 

and Torres-Jimenez 2010) is a TS-based strategy applied to a limited set of MCAs (10 

only) of strength 2 ≤ 𝑡 ≤ 3. In addition, it requires tuning of several components of its 

three neighborhood functions. 

Tabu Search Algorithm (TSA) (Gonzalez-Hernandez, Rangel-Valdez et al. 2012) 

is a TS-based strategy with four neighborhood functions. The strategy successfully 

generated most optimal sizes 20 MCAs of strength 2 ≤ 𝑡 ≤ 6 out of total 23 MCAs used 

as benchmarks. TSA requires rigorous two steps fine tuning process to find the best 

configurations for its three main components. TCA (Lin, Luo et al. 2015) used a two-

mode local search framework that combines TS with the random walk to generate CCAs. 

The strategy outperformed its meta-heuristic based and greedy based competitors on 3-

way and 2-way CCAs. Smaller sizes MCAs of strength 2 ≤ 𝑡 ≤ 3 are generated by a TS-

based strategy (Gonzalez-Hernadez 2015). The novelty of the proposed strategy is its 

application of statistical tests to fine tune related parameters. The hyper-heuristic strategy 

(Zamli, Alkazemi et al. 2016) adopted TS as its high-level heuristic. As a selection and 

acceptance hyper-heuristic, the strategy generated CAs and MCAs of strength 2 ≤ 𝑡 ≤

6. This TS-based hyper-heuristic strategy outperformed many strategies based on meta-

heuristic algorithms and other tools on a wide range of benchmarks as far as efficiency is 

concerned. Statistical evidence also showed the effectiveness of the strategy. The pseudo 

code of a TS-based strategy (MiTS) is shown in Figure 2.9. 



 

35 

 

Figure 2.9 TS-based Strategy (MiTS) for t-way Test Suite Generation 

Source: Gonzalez-Hernadez (2015) 

2.4.3 Genetic Algorithm-based t-way Strategies 

Genetic algorithm (GA) (Holland 1975) is a well-known population-based meta-

heuristic algorithm inspired by the process of natural selection. The population of 

solutions generated by GA evolves through generations (i.e., iterations). Best solutions 

survive for next generations based on objective function evaluations. Future generations 

are created by the successive applications of genetic operators such as crossover, 

mutation, and selection. During evolution, GA preserves the diverse solutions of the 

population to ensure adequate exploration of the search space and to escape local optimal 

(Boussaïd, Lepagnot et al. 2013). To balance exploration and exploitation, however, GA 

requires proper tuning of mutation rate, crossover rate, number of generations, and 

population size. 

Population size is one of the main issues in GA that needs proper attention. GA 

with small population size could easily trap in local optima, whereas require more 

computation time in the case of large population size. It is observed that a population of 

100 chromosomes or candidate solutions for 200 iterations or generations is an optimal 

population size. Increasing the population size, for example to over 1000, could not make 

any difference in the results (Roeva, Fidanova et al. 2013). Other research findings 

regarding the population size suggest that a population of 30 chromosomes are sufficient 

for most optimization problems (Grefenstette 1986).  
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In the GA-based strategy (Shiba, Tsuchiya et al. 2004), a chromosome is similar 

to a test case. The strategy starts by initializing a random population of m test cases. These 

test cases then undergo selection, crossover and mutation operations repeatedly till 

satisfaction of termination criteria. The algorithm of the strategy selects σ number of elite 

chromosomes based on the fitness evaluation for the next generations. The remaining m- 

σ chromosomes are used to generate the next population. Tournament selection is used 

for selecting two chromosomes randomly and then adding the winner to the mating pool 

for reproduction. The crossover enables two chromosomes to generate a new 

chromosome by independently exchanging values between them with probability 0.5. 

The mutation process replaces one position value with another value selected at random. 

Finally, the strategy performs a massive mutation at the end of a specified number of 

generations when there is no improvement. The pseudo code of GA-based strategy is 

presented in Figure 2.10. 

 

Figure 2.10  GA-based Strategy for t-way Test Suite Generation 

Source: Shiba, Tsuchiya et al. (2004) 

Few strategies adopted GA for t-way test suite generation. The work of (Shiba, 

Tsuchiya et al. 2004) based on GA provided competitive results but the optimality of the 

obtained results is not always true. To generate binary CAs of strength 3, a GA-based 

(i.e., memetic algorithm) strategy is introduced in (Rodriguez-Tello and Torres-Jimenez 

2009). This strategy outperformed the referenced strategies by generating the most 

optimal CAs than known previously. The GA based strategy of (Sabharwal, Bansal et al. 

2016) is an extension of the open source pairwise test generation tool called PWiseGen. 
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A modified binary search operator is used to overcome the restriction of using N (test 

size) as input to the tool in advance. Owing to the complex crossover and mutation 

operations, the proposed strategy takes a long time to generate higher strength CAs and 

MCAs which is, however, compensated by the smaller sizes of the obtained arrays. More 

recently, Genetic Strategy (GS) (Esfandyari and Rafe 2018) adopted GA as its backbone 

algorithm for generation of CAs, MCAs and VCAs. GS supports highest strength (i.e., t 

= 20). Based on the extensive experimental results, GS showed competitive performance 

(time) and efficiency (generated test suites sizes) against its competitors. Moreover, the 

strategy minimized the running time of the objective function evaluation by introducing 

an efficient bit structure.   

2.4.4 Ant Colony Algorithm-based t-way Strategies 

Ant colony algorithm (ACA) is a swarm-based meta-heuristic algorithm inspired 

by the foraging behavior of ants. A given optimization problem in ACA is encoded as a 

construction graph. The paths between the food source and ants’ nest represent candidate 

solutions in ACA. The deposited amount of pheromone by an ant on each vertex or edge 

of the path determines the quality of a candidate solution. At a given point (vertex), the 

probability to choose an edge out of several edges is highest for the edge with the greatest 

concentration of pheromone.  

Edge selection and pheromone update are two key operations in ACA. The first 

operation is based on probability, whereas the second operation is based on the 

movements of ants from one node to the next. For optimality, several control parameters 

of ACA such as pheromone amount (Ʈ), pheromone coefficient (α), heuristic coefficient 

(β), and pheromone evaporation rate (ρ) need to be tuned properly.  

For test suite generation, ACA represents values by food sources, whereas their 

locations represent parameters (Shiba, Tsuchiya et al. 2004). Test cases are represented 

by paths to the food sources. The amount of pheromones deposited by ants on each path 

determines its quality. The density of pheromones gets higher for some paths as more and 

more ants choose these paths over time. After comparing objective functions of these 

paths, the comparison algorithm of the strategy selects best test cases to be part of the 

final test suite. Figure 2.11 summarizes the ACA-based test suite generation strategy. 
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Figure 2.11 ACA-based Strategy for t-way Test Suite Generation 

Source: Shiba, Tsuchiya et al. (2004) 

The strategy proposed by (Shiba, Tsuchiya et al. 2004) first adopted ACA for the 

generation of CAs and MCAs of strength 2 ≤ 𝑡 ≤ 3. The proposed ACA based strategy 

showed competitive performance against GA-based strategy and other referenced 

strategies except the SA-based strategy. The strategy (Chen, Gu et al. 2009) adopted ACA 

for the generation of VCAs. Compared to the referenced SA-based and greedy-based 

strategies and tools, the proposed strategy showed acceptable performance. 

2.4.5 Particle Swarm Optimization-based t-way Strategies         

Particle swarm optimization (PSO) is a swarm-based meta-heuristic algorithm 

inspired by the flocking behavior of birds or fishes. PSO stochastically generate many 

candidate solutions in the search space known as particles. Each particle has a velocity, 

a position in the search space, and memory for remembering its last best position. PSO 

uses two topologies known as gBest (i.e., global best) and lBest (i.e., local best). The 

gBest evaluate a target particle against the best particle in the entire population. The lBest, 

on the other hand, checks the optimality of a target particle against its neighbouring 

particles. To balance exploration and exploitation, inertia weight ω is introduced in PSO. 

A large value of ω encourages more global search, whereas a smaller ω encourages more 

local search. For optimal results, PSO needs tuning of its five different parameters 

including cognitive parameters (C1 and C2), ω, population size and number of iterations 

(Ahmed and Zamli 2011c). PSO has widespread applications in many fields of research.  
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Initially, Ahmed et al. adopted PSO for t-way test suite generation by proposing 

Particle Swarm-based Test Generator (PSTG) (Ahmed and Zamli 2010) and Variable 

Strength PSTG (VS-PSTG). PSTG successfully generated CAs and MCAs, whereas VS-

PSTG generated VCAs. Both the strategies supported interaction strength up to 2 ≤ 𝑡 ≤

6. The strategies, however, required extensive tuning of the related parameters to obtain 

optimal results. Similarly, both the strategies suffered from the problem of falling in local 

minima. 

A set based discrete PSO (DPSO) and conventional PSO (CPSO) (Wu, Nie et al. 

2015) generated a wide range of CAs, MCAs and VCAs. The systematic guidelines for 

tuning the parameters of both DPSO and CPSO enable the strategies to obtain optimal 

results. CPSO showed better performance than DPSO, whereas in efficiency DPSO 

produced quality t-way test suites. DPSO suffered from the overhead of the two auxiliary 

methods (re-initialization of the particles and an extended evaluation of the gBest). More 

recently, the multi-objective PSO-based strategy proposed by (Ahmed, Gambardella et 

al. 2017) generated CCAs of comparable sizes. For efficient performance, the strategy 

used multi-threading to operate all the algorithms in parallel. 

Concerning t-way test suite generation, test cases are represented as particles in 

PSO-based strategies (Ahmed, Zamli et al. 2012, Ahmed, Zamli et al. 2012). A PSO 

based strategy starts by randomly generating a population of particles with random initial 

velocities. At each cycle of the search process, PSO uses the best test case to update the 

velocities of the particles as they fly around the search space. Based on these updated 

velocities, current test cases move to new test cases. These movements are continued 

until all interactions are covered (i.e., termination criteria for the strategy). Finally, the 

strategy adds the best test case in the population to the final test suite and subsequently 

removes the number of interactions covered by it from the list of all interactions. The 

pseudocode of PSO for generating test suites is shown in Figure 2.12. 

One of the main disadvantages of PSO is its frequent interaction with the 

environment as it continuously updates the particles’ velocities in the swarm until the 

search for a quality solution is successful. Similarly, PSO requires proper tuning of its 

various parameters before obtaining optimal solutions of a given optimization problem 

(Pedersen 2010). Moreover, the time cost of PSO is higher for practical usage (Lee and 

Park 2006). 
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Figure 2.12 PSO-based Strategy for t-way Test Suite Generation 

Source: Ahmed, Zamli et al. (2012) 

2.4.6 Harmony Search-based t-way Strategies 

Harmony search (HS) is a population-based meta-heuristic algorithm inspired by 

the improvisation procedure of professional jazz musicians (Geem and Kim 2001). 

Solutions in HS are represented by harmonics. HS uses three main parameters to search 

perfect harmonics i.e., global optimal solutions. The harmony memory accepting rate 

corresponding to the usage of the harmony memory parameter in HS ensures the selection 

of best harmonics for the new harmony memory. Pitch adjustment enables HS to generate 

a new solution by slightly modifying the current solution. Pitch adjustment rate and pitch 

bandwidth control this parameter in HS. The randomization parameter of HS increases 

the diversity of solutions. HS provides balance between exploration and exploitation with 

the help of these parameters. 
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HS, like PSO, interacts frequently with the environment during the search 

process. It probabilistically uses values of harmony memory accepting rate 𝑟𝑎𝑐𝑐𝑒𝑝𝑡  and 

Pitch adjustment rate 𝑟𝑝𝑎 in order to select solutions from the Harmony Memory (HM). 

Some disadvantages of HS include its minimal application of mathematics and use of 

some kind of elitism and/or selection like GA (Yang 2010a). Moreover, the performance 

of HS is dependent on proper tuning of its four algorithm specific parameters, namely 

iterations/improvisations, harmony memory size (HMS), 𝑟𝑎𝑐𝑐𝑒𝑝𝑡 , and 𝑟𝑝𝑎. 

Concerning t-way test suite generation, (Alsewari and Zamli 2012) adopted HS 

in their proposed strategy called Harmony Search-based Strategy (HSS). HSS generated 

CAs, MCAs and VCAs with constraints support and interaction strength support of up to 

2 ≤ 𝑡 ≤ 15, the highest after the recently introduced GA based strategy (Esfandyari and 

Rafe 2018). However, HSS required extensive experimentation to fine tune its various 

algorithm-specific parameters before generating optimal arrays. The pseudo code of HSS 

is presented in Figure 2.13. 

2.4.7 Cuckoo Search-based t-way Strategies         

Cuckoo search (CS) (Yang and Deb 2009) is a relatively new population-based 

meta-heuristic algorithm inspired by the aggressive reproduction method of some cuckoo 

birds. Solutions in CS are represented by cuckoos’ eggs or nests. To balance between 

exploration and exploitation, CS intensifies the search through the use of local random 

walk for solutions near potential optimal solutions, whereas it employs global random 

walk by using Lévy flights to efficiently explore the entire search space. A switching 

parameter 𝑝𝑎 controls both these walks which is the only parameter of CS that requires 

proper tuning. 
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Figure 2.13 HS-based Strategy (HSS) for t-way Test Suite Generation  

Source: Alsewari and Zamli (2012)  

Most recently, (Ahmed, Abdulsamad et al. 2015, Ahmed 2016) adopted CS for 

the generation of CAs and MCAs of strength 2 ≤ 𝑡 ≤ 6. Both the CS-based strategies 

showed comparable performance and efficiency against the referenced tools and other 

meta-heuristic-based strategies. At the beginning, the CS-based strategy randomly 

generates an initial population of nests. Here, each nest represents a candidate test case. 

In each cycle during the search, CS first generates a new nest by employing a Lévy flight 

and then replaces it with the current nest based on better objective function evaluation. 

Afterwards, CS identifies and subsequently removes the worse nests with probability 𝑝𝑎. 

Similar to GA, remembering and considering previous best solutions (i.e., the elitism 

mechanism) can also be noticed in CS. Figure 2.14 shows a simple framework of CS 
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based strategy proposed by Ahmed et al. for the problem of generating uniform t-way test 

suites. 

 

Figure 2.14 CS-based Strategy for t-way Test Suite Generation 

Source: Ahmed, Abdulsamad et al. (2015) 

2.4.8 Bat Algorithm-based t-way Strategies  

Bat algorithm (BA) is a population-based meta-heuristic algorithm inspired by 

the echolocation qualities of microbats (Yang 2010b). It is one of the most simple, easy 

to implement, and flexible optimization algorithms that guarantees global convergence 

under the appropriate settings of its parameters (Huang, Zhao et al. 2013). The use of 

frequency-tuning enables BA to increase solutions diversity in the search space, whereas 

variations in loudness and pulse emission rate enable it to intensify the search into the 

regions with potential solutions. To be specific, BA balances between exploration and 

exploitation by using these parameters. Some capabilities of BA are, however, similar to 

SA such as the use of a constant in loudness α is similar to the cooling factor used by SA 

in a cooling schedule. Moreover, BA uses frequencies and locations for updating 

solutions like PSO.  

The test suite generation strategy called BTS (Alsariera and Zamli 2015) adopted 

BA as its backbone meta-heuristic algorithm. BTS generated small CAs with interaction 

strength support of 2 ≤ 𝑡 ≤ 6. It has shown competitive performance against the publicly 

available t-way test suite generation tools. Test cases in BTS are represented as bats. The 
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strategy starts by initializing the BA parameters (i.e., frequency 𝑄𝑖 , loudness 𝐴𝑖 , and 

pulse rate 𝑟𝑖) and randomly generating the population of bats with initial velocities 𝑣𝑖. At 

each iteration, BTS selects the best test case based on the maximum coverage of 

interaction tuples and updates the frequencies, locations, and velocities of others in the 

population. Upon searching a best test case, the strategy removes the interaction tuples 

covered by it from the interaction elements list (IEL). Figure 2.15 presents BTS for the 

generation of CAs. 

 

Figure 2.15 BA-based Strategy (BTS) for t-way Test Suite Generation 

 Source: Alsariera and Zamli (2015) 

2.4.9 Bees Algorithm-based t-way Strategies 

Bees Algorithm (Pham, Ghanbarzadeh et al. 2006) is a population-based meta-

heuristic algorithm inspired by the foraging behavior of honey bees. To balance 

exploration and exploitation, the Bees Algorithm divides the search space into patches 

based on the objective function evaluations. The algorithm intensifies search by 

recruiting more bees for patches with better objective function values. Generally, the 

Bees Algorithm favors local search more than global search. For optimal results, six 

different parameters of the algorithm need to be tuned which are the number of scout bees 
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(n), the number of patches (m), the number of elite patches (e) out of m, the number of 

non-elite patches (nsp), the number of bees recruited for elite patches (nep), and an initial 

size of patches (ngh).  

The strategy proposed by (Mohd Hazli, Zamli et al. 2012) adopted Bees 

Algorithm to generate optimal SCAs. Test cases are represented by patches. The strategy 

showed competitive results against the only available SCAs generation framework for a 

small number of systems. Bees Algorithm based strategy (Mohd Hazli and Zamli 2013) 

successfully generated CAs of strength 3 ≤  𝑡 ≤ 10. Figure 2.16 presents the pseudo 

code of the strategy based on Bees Algorithm.  

 

Figure 2.16 Bees Algorithm-based Strategy for t-way Test Suite Generation 

Source: Mohd Hazli, Zamli et al. (2012) 

2.5 Categories of Meta-heuristic-based t-way Strategies 

Based on the review in the previous section, meta-heuristic-based test suite 

generation strategies can be classified into three categories: standard strategies, hybrid 

strategies, and adaptive strategies.  

A strategy is categorized as a standard strategy if it generates t-way test suites by 

employing only a single meta-heuristic algorithm. For instance, Ahmed et al. (Ahmed, 

Zamli et al. 2012) and Wu et al. (Wu, Nie et al. 2015) adopted only PSO for generating 
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test suites. Moreover, Cohen et al. (Cohen, Gibbons et al. 2003a) and Alsewari et al. 

(Alsewari and Zamli 2012) employed SA and HS, respectively, to generate VCAs and 

CCAs. These and others standard meta-heuristic-based strategies have successfully 

generated CAs and its variants of competitive sizes. Some of the most widely cited earlier 

standard meta-heuristic-based strategies in t-way test suite generation are Tabu search 

(TS) (Nurmela 2004), SA (Cohen, Gibbons et al. 2003a) and so forth. More recently, 

PSO (Ahmed and Zamli 2011c, Wu, Nie et al. 2015, Ahmed, Gambardella et al. 2017), 

HS (Alsewari and Zamli 2012), CS (Ahmed, Abdulsamad et al. 2015) and BA (Alsariera 

and Zamli 2015) have been adopted by t-way strategies. Table 2.7 summarizes these 

strategies reported in the literature between 2003 and 2018.  

Table 2.7  Standard Meta-heuristic-based Strategies 

# Reference 

Adopted meta-

heuristic 

algorithm 

Generated CAs 

and its variants 

Interaction 

strength support 

(t) 

1 (Cohen, Gibbons et al. 2003b) SA CAs only 2 ≤ 𝑡 ≤ 3 

2 (Cohen, Gibbons et al. 2003a) SA 
CAs, MCAs, 

VCAs 
2 ≤ 𝑡 ≤ 3 

3 (Nurmela 2004) TS CAs only 2 ≤ 𝑡 ≤ 3 

4 
(Rodriguez-Tello and Torres-

Jimenez 2009) 
GA Binary CAs only 2 ≤ 𝑡 ≤ 3 

5 (Garvin, Cohen et al. 2009) SA 
CAs, MCAs, 

CCAs 
2 ≤ 𝑡 ≤ 3 

6 (Ahmed and Zamli 2010) PSO CAs, MCAs 2 ≤ 𝑡 ≤ 6 

7 (Ahmed and Zamli 2011c) PSO 
CAs, MCAs, 

VCAs 
2 ≤ 𝑡 ≤ 6 

8 
(Mohd Hazli, Zamli et al. 

2012) 
Bees Algorithm SCAs only 2 ≤ 𝑡 ≤ 10 

9 (Ahmed, Zamli et al. 2012) PSO 
CAs, MCAs, 

VCAs 
2 ≤ 𝑡 ≤ 6 

10 (Alsewari and Zamli 2012) HS 
CAs, MCAs, 

VCAs, CCAs 
2 ≤ 𝑡 ≤ 15 

11 (Mohd Hazli and Zamli 2013) Bees Algorithm CAs 4 ≤ 𝑡 ≤ 10 

12 (Wu, Nie et al. 2015) PSO 
CAs, MCAs 

VCAs 
2 ≤ 𝑡 ≤ 4 

13 
(Ahmed, Abdulsamad et al. 

2015) 
CS CAs, MCAs 2 ≤ 𝑡 ≤ 4 

14 (Alsariera and Zamli 2015) BA CAs 2 ≤ 𝑡 ≤ 6 

15 
(Sabharwal, Bansal et al. 

2016) 
GA CAs, MCAs 2 ≤ 𝑡 ≤ 4 

16 (Ahmed 2016) CS CAs, MCAs 2 ≤ 𝑡 ≤ 6 

17 (Demiroz and Yilmaz 2016) SA CTCAs 2 ≤ 𝑡 ≤ 3 

18 
(Ahmed, Gambardella et al. 

2017) 

Multi-objective 

PSO 
CCAs 2 ≤ 𝑡 ≤ 3 

19 (Esfandyari and Rafe 2018) GA 
CAs, MCAs, 

VCAs 
2 ≤ 𝑡 ≤ 20 
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Hybrid meta-heuristic-based strategies is the second category that combines a 

meta-heuristic with another algorithm (meta-heuristic or otherwise) to further increase 

the efficiency of t-way strategies. Table 2.8 presents these t-way strategies. 

Table 2.8  Hybrid Meta-heuristic-based Strategies 

# Reference 

Adopted meta-heuristic 

algorithm (s) and/or other 

methods 

Generated 

CAs and its 

variants 

Interaction 

strength 

support (t) 

1 (Cohen, Colbourn et al. 2003) SA, algebraic constructions CAs, MCAs 2 ≤ 𝑡 ≤ 3 

2 (Shiba, Tsuchiya et al. 2004) 
GA, ACA, test case 

minimization algorithm 
CAs, MCAs, 2 ≤ 𝑡 ≤ 3 

3 (Bryce and Colbourn 2007) 
SA, TS, HC, Great Flood, 

greedy algorithm 
CAs, MCAs 2 ≤ 𝑡 ≤ 4 

4 (Cohen, Dwyer et al. 2007) 
SA, greedy algorithm, SAT 

solver 
CAs, CCAs 2 ≤ 𝑡 ≤ 3 

5 
(Walker Ii and Colbourn 

2009) 

TS, Covering Perfect Hash 

Families (CPHF) 
CAs 2 ≤ 𝑡 ≤ 7 

6 (Chen, Gu et al. 2009) 
ACA, tests minimization 

algorithm 

CAs, MCAs, 

VCAs 
2 ≤ 𝑡 ≤ 3 

7 
(Gonzalez-Hernandez, 

Rangel-Valdez et al. 2010) 

TS, two neighbourhood 

functions 
CAs, MCAs 2 ≤ 𝑡 ≤ 6 

8 
(Gonzalez-Hernandez and 

Torres-Jimenez 2010) 

TS, three neighbourhood 

functions 
CAs, MCAs 2 ≤ 𝑡 ≤ 3 

9 
(Torres-Jimenez and 

Rodriguez-Tello 2010) 

SA, composite 

neighbourhood functions 
Binary CAs 2 ≤ 𝑡 ≤ 5 

10 (Garvin, Coehn et al. 2011) 
SA, efficient one-sided 

narrowing algorithm 

CAs, MCAs, 

CCAs 
2 ≤ 𝑡 ≤ 3 

11 
(Rodriguez-Cristerna and 

Torres-Jimenez 2012) 

SA, Variable 

Neighbourhood Search 

(VNS) 

CAs, MCAs 2 ≤ 𝑡 ≤ 3 

12 
(Rodriguez-Cristerna and 

Torres-Jimenez 2012) 

SA, neighbourhood 

functions 
Binary CAs 2 ≤ 𝑡 ≤ 3 

13 
(Rodriguez-Cristerna, Torres-

Jimenez et al. 2015) 

SA, variable neighbourhood 

search (VNS) 
CAs, MCAs 2 ≤ 𝑡 ≤ 3 

14 (Jia, Cohen et al. 2015) 
SA, six search operators as 

low level heuristics 
CCAs 2 ≤ 𝑡 ≤ 3 

15 (Lin, Luo et al. 2015) TS, random walk CCAs 2 ≤ 𝑡 ≤ 3 

16 (Zamli, Alkazemi et al. 2016) 
TS, four low-level meta-

heuristic search operators 
CAs, MCAs 2 ≤ 𝑡 ≤ 6 

17 
(Avila-George, Torres-

Jimenez et al. 2018) 
SA, algebraic method CAs 2 ≤ 𝑡 ≤ 6 

For instance, augmented annealing (Cohen, Colbourn et al. 2008) combined SA 

with algebraic construction to find much smaller arrays faster. The hybrid t-way strategy 

(Bryce and Colbourn 2007) initially employed a greedy algorithm and then TS to generate 

CAs. Similarly, two strategies by (Rodriguez-Cristerna and Torres-Jimenez 2012, 
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Rodriguez-Cristerna, Torres-Jimenez et al. 2015) hybridized SA with VNS to generate 

MCAs and CAs. Finally, (Jia, Cohen et al. 2015, Zamli, Alkazemi et al. 2016) explored 

hybridization of meta-heuristic algorithms based on hyper-heuristic methodology. These 

strategies employed SA and TS, respectively as their high-level heuristics to select an 

appropriate low-level meta-heuristic algorithm or search operator from a pool of available 

meta-heuristic algorithms or search operators.  

The third category is named adaptive meta-heuristic algorithms-based strategies. 

Strategies in this category employ meta-heuristic algorithm(s) for test suite generation 

with an additional method to further improve the performance of the employed meta-

heuristic algorithm by dynamic tuning of its control parameters. 

A strategy proposed by Mahmoud and Ahmed (Mahmoud and Ahmed 2015) is 

one example in this category. To generate smaller CAs and MCAs, this strategy adopted 

fuzzy inference system to automate the parameter tuning of PSO. MiTS (Gonzalez-

Hernadez 2015) generates smaller MCAs of uniform strength, is also an example of 

adaptive meta-heuristic-based t-way strategy. To achieve optimal results, the tuning 

procedure of the strategy uses statistical tests to identify best values for the search 

parameters. Table 2.9 lists these adaptive t-way strategies.  

Table 2.9  Adaptive Meta-heuristic-based Strategies 

# Reference 

Adopted meta-

heuristic 

algorithm and 

other method 

Generated CAs 

and its variants 

Interaction 

strength 

support (t) 

1 
(Avila-George, Torres-Jimenez 

et al. 2013) 

SA, neighbourhood 

two functions, 

Diophantine 

equation for tuning 

control parameters 

CAs, MCAs 2 ≤ 𝑡 ≤ 3 

2 (Gonzalez-Hernadez 2015) 

TS, neighbourhood 

functions, 

statistical method 

for parameter 

tuning 

CAs, MCAs 2 ≤ 𝑡 ≤ 6 

3 (Mahmoud and Ahmed 2015) 

PSO, Mamdani 

fuzzy inference 

system 

CAs, MCAs 2 ≤ 𝑡 ≤ 4 

The motivation behind standard meta-heuristic-based strategies is to avoid the 

restrictions or requirement of priori knowledge by algebraic methods for generating CAs 

and its variants. In practical testing scenarios, fulfilling all the CAs generation 
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requirements is often not feasible (Wu, Nie et al. 2015). Parameter tuning or the 

application of appropriate search operator is a common challenge for the majority of 

meta-heuristic algorithms. In the case of t-way testing, customization of the algorithmic 

parameters of the adopted meta-heuristic algorithms is required prior to obtaining optimal 

test suite. This is especially essential when the nature of the problem changes. For 

instance, different search operators need to be applied when constraints are involved in 

the data set (Kitsos, Simos et al. 2015).  

Standard meta-heuristic-based t-way strategies have successfully created optimal 

arrays in many cases. Unfortunately, the creation time of these optimal arrays is 

considerably high. The motivation behind hybrid strategies is to reduce this time and 

enhance the efficiencies of the strategies. The challenge for this category is its 

confinement to only smaller interaction strengths i.e., support t up to 3 only in most cases. 

The motivation behind adaptive meta-heuristic-based t-way strategies is to 

overcome the parameter tuning problem of standard meta-heuristic based strategies. Such 

strategies introduce additional methods for automatic tuning of algorithmic parameters 

or search operators of the standard strategies. However, the challenge for adaptive 

strategies is performance degradation owing to the overhead of the additional methods 

for tuning. These methods, such as fuzzy logic further affect the performance of adaptive 

strategies. 

2.6 Overview of Teaching Learning-based Optimization (TLBO) Algorithm 

The adoption of TLBO since its appearance by researchers in a variety of domains 

proves its effectiveness and efficiency in the field of optimization. Following are some 

advantages of TLBO (Singh, Chaudhary et al. 2017, Gandomi and Kashani 2018, Wang, 

Li et al. 2018): 

i. TLBO has no algorithm-specific parameters to tune for achieving good 

performance. 

ii. TLBO is easy to implement.   

iii. TLBO is computationally more efficient than other well-established meta-

heuristic algorithms.  
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2.6.1 TLBO Variants and their Applications 

Since its inception, many TLBO variants have been put forward to improve its 

performance. Apart from the original TLBO, the main TLBO variants available in the 

literature can be divided into three categories: modified-based, hybrid-based, and 

cooperative-based (see Figure 2.17). A discussion with some examples of each category 

is presented as follows. 

 

Figure 2.17 Types of TLBO Variants 

As the names suggest, the modified-based category refers to variants that enhance 

TLBO’s performance by modifying its parameter (e.g., elitism feature and adaptive 

behaviour) or altering the teacher and/or the learner phases. Rao and Patel (Rao and Patel 

2012) introduced elitism feature within TLBO and demonstrate its efficiency for tackling 

35 constrained benchmark functions. In other early work, Niknam et al. (Niknam, 

Azizipanah-Abarghooee et al. 2013) introduced an additional phase, termed modified 

phase, whereby four adaptive search operators are defined and probabilistically selected 

during runtime. The work has been successfully adopted for dynamic economic dispatch 

in power systems. Based on the same work, Amin et al. (Shabanpour-Haghighi, Seifi et 

al. 2014) also exploited the modified phase within TLBO and introduced an adaptive 

search operator based on Morlet wavelet function. With the fuzzy decision support (i.e., 

to select the best Pareto-optimal solution), the modified TLBO is then adopted for multi-

objective optimal power flow problems. Although not introducing new phase, Hoseini et 

al. (Hoseini, Hosseinpour et al. 2014) adopted a similar approach for addressing multi-

objective optimal location of automatic voltage regulators in the distribution system. 

Mandal and Roy (Mandal and Roy 2013) solved the multi-objective optimal reactive 

power dispatch problems by incorporating quasi-opposition based learning (QOBL) 

concept in the original TLBO algorithm to accelerate the convergence speed. In their 

work, Xia et al. (Xia, Gao et al. 2014) presented a modified TLBO for disassembly 

sequence planning problems. They modified the teacher–learner operator apart from 

introducing a feasible solution generator operator to satisfy the constraints of a 

disassembly sequence.  
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Most recently, Lei et al. (Lei, Gao et al. 2018) proposed teacher’s teaching-

learning-based optimization (TTLBO) algorithm for scheduling in hybrid flow shop to 

minimize energy consumption. The learner phase is replaced with self-learning of 

teachers and a crossover operator for global search. In other recent work, Niu et al. (Niu, 

Ma et al. 2018) proposed a modified TLBO called MTLBO for global optimization. 

MTLBO divides the learners into two groups based on the mean results in both the phases. 

The group of learners having best mean results increases their knowledge by interaction 

among themselves, whereas the group of learners with average mean results increases 

their knowledge by learning from their teacher. MTLB has shown better solution quality 

as well as faster convergence speed. Wang et al. (Wang, Li et al. 2018) proposed 

improved TLBO (ITLBO) for constrained optimization problems that modifies both the 

phases of TLBO. The teacher phase is divided into sub-population to enhance diversity, 

whereas the learner phase is based on the ranking differential vector to promote 

convergence.  

Although producing sound results, modified-based TLBO algorithm is often 

applicable to specific problems and not sufficiently general (i.e., owing to problem 

domain assumption). As such, the performance of modified TLBO cannot be guaranteed 

even with the slight modification of the same problem instances.   

Complementing the modified-based category, the hybrid-based category refers to 

the integration of one or more meta-heuristic algorithms (or their search operators) within 

TLBO. To date, TLBO has been used to form a hybrid model from many meta-heuristic 

algorithms. Jiang and Zhou (Jiang and Zhou 2013) explored the adoption of hybrid TLBO 

with differential evolution (DE) to solve the short-term optimal hydro-thermal 

scheduling. Tuo et al. (Tuo, Yong et al. 2013) implemented an improved harmony search 

based TLBO (HSTL) to balance between convergence speed and population diversity for 

general constrained optimization problems. Lim and Mat Isa (Lim and Isa 2014) 

integrated particle swarm optimization (PSO) with TLBO as an alternative strategy to 

cater for the local optimum problem within constrained benchmark functions. Recently, 

Huang et al. (Huang, Gao et al. 2015) integrated TLBO with the cuckoo search algorithm 

for the parameter optimization in structure designing and machining problem.  

Indeed, while hybrid-based algorithm can be useful to capitalize on TLBO 

strengths and compensate on its deficiencies, the actual implementation can be bulky and 
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computationally heavy. Additionally, achieving a good balance between exploration and 

exploitation (of the hybrid search operators) can still be problematic. 

Last but not least, the cooperative-based category refers to variants of TLBO that 

address large optimization problems with multiple-swarm populations. In this case, tasks 

are split into k sub-problems for simultaneous optimization before combining the results. 

Biswas et al. (Biswas, Kundu et al. 2012) highlighted the earliest work that exploits 

cooperative co-evolutionary TLBO with modified exploration strategy for large-scale 

optimization problems. Similarly, Satapathy and Naik (Satapathy and Naik 2013) 

explored cooperative TLBO (Co-TLBO) which allows cooperative behavior via the 

adoption of multiple swarm populations. In other work, Zou et al. (Zou, Wang et al. 2013) 

proposed the adoption of multiple swarm populations for the dynamic optimization 

problem. 

Despite its potential, the key challenges of cooperative-based TLBO algorithm 

are twofold. The first challenge is to identify the best sub-problem size (and the multiple 

swarm populations). The second challenge is to model the independent variables to be 

placed in different sub-problems. 

These and many other variants of TLBO suggest that its solution diversity and 

convergence speed can be improved further. This research work attempts to enhance 

original TLBO further by proposing a modified type variant that selects the appropriate 

phase in each iteration as per search requirements with the help of fuzzy logic. Moreover, 

neither original TLBO nor its variants solve the problem of t-way test suite generation 

before this work as per the review presented here. 

2.7 Fuzzy Logic and Meta-heuristic Algorithms 

Fuzzy logic (FL) encompasses fuzzy sets theory and possibility theory. The idea 

of FL was first coined by Zadeh in 1965 for representing and manipulating imprecise or 

fuzzy data. As a Soft Computing methodology, FL can effectively analyze complex 

systems, particularly when the data can be modeled with several linguistic parameters. 

Fuzziness is an essential feature of the language. The human brain is capable to interpret 

incomplete, vague or ambiguous sensory information accumulated by perceptive organs. 

Fuzzy set theory offers a systematic way to manipulate such information linguistically 
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and supports numerical computation through the use of linguistic labels which are 

specified by membership functions (Yen and Langari 1999). 

In the recent literature, the use of FL for performance improvement of meta-

heuristic algorithms appeared very effective. To date, two major forms of FL application 

in evolutionary and swarm-based optimization algorithms are: (a) performance 

enhancement by tuning parameters dynamically and (b) performance enhancement by 

hybridizing meta-heuristic algorithms (Ameli, Alfi et al. 2016). With the help of FL, these 

algorithms can obtain dynamic adaptation features. Dynamic tuning of parameters is a 

typical approach adopted for meta-heuristic algorithms to achieve further improvement. 

Here, a fuzzy-based system is employed with the goal for setting some parameters of a 

meta-heuristic algorithm (Neyoy, Castillo et al. 2013, Avila and Valdez 2015, Castillo, 

Meléndez et al. 2015, Pérez, Valdez et al. 2015, Solano-Aragón and Castillo 2015, Ameli, 

Alfi et al. 2016, Pérez, Valdez et al. 2017, Valenzuela, Valdez et al. 2017). For better 

performance and further optimal results, meta-heuristic algorithms have also been 

hybridized. Maintaining a balance between exploration and exploitation is required in 

hybrid algorithms so as to find acceptable solutions. Apart from parameter tuning and 

algorithm hybridization, FL has also been used with an algorithm to improve its 

performance (Cheng and Prayogo 2016). In this thesis, FL has applied in a new way as it 

selects either the exploration (i.e., global search) or the exploitation (i.e., local search) in 

the proposed adaptive TLBO (ATLBO). 

2.8 Research Gap 

The review of meta-heuristic-based strategies for t-way test suite generation and 

their categorization in previous sections served as useful tools to identify the research gap 

in the existing literature. Apparently, meta-heuristic algorithms appear suitable for t-way 

testing. However, a critical look unfolds some limitations of these algorithms as far as 

the complexity of both the algorithm structure and search process are concerned. For 

instance, although SA has been adopted by 15 out of 39 total reviewed strategies, it may 

need extensive computations owing to its update rule in the large random search space. 

This is especially true in case of either higher interaction strength (i.e., t > 3) or more 

complex system configuration (Cohen 2004, Afzal, Torkar et al. 2009). SA, being a single 

solution meta-heuristic, can be overly sensitive to its initial starting point in the search 

space, hence, suffers from early convergence. Moreover, the performance of SA depends 
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on properly scheduling the decrease in the temperature. Most SA based strategies, thus, 

are limited to small configurations with maximum interaction strength support of only t 

= 3.  

TS (adopted by 8 strategies) also needs heavy computations in order to keep and 

update arrays in the tabu list (Ahmed, Zamli et al. 2012). TS requires more iterations in 

covering interaction tuples as compared to other meta-heuristic algorithms such as SA 

and PSO (Ahmed and Zamli 2011a). Similarly, no TS based strategy support the 

generation of VCAs. In GA, representation of problem via chromosomes can be 

troublesome. The crossover and mutation processes of GA make it computationally 

expensive. These processes slow down the array generation by GA as it takes more time 

than SA and TS while generating various CAs (Kuliamin and Petukhov 2011).  

ACA, owing to its distributed nature, requires more computational power. 

Similarly, the complex algorithm structure of ACA limits its application for CAs and 

VCAs generation to smaller interaction strengths of t = 2 and t = 3. PSO (adopted by 6 

strategies) despite of supporting interaction strength greater than 3, requires extensive 

parameter tuning before generating optimal results. Moreover, PSO suffers from other 

limitations such as falling in local minima and premature convergence which lead to poor 

optimization (Ahmed, Abdulsamad et al. 2015). HS-based strategy (Alsewari and Zamli 

2012) not only generates CAs, MCAs, VCAs and CCAs but also supports higher 

interaction strength (t = 15). However, like PSO, HS has many parameters to tune prior 

to generating smallest arrays. Similarly, HS is computationally heavy owing to its 

frequent interaction with the environment. CS-based t-way strategy generated only CAs 

and MCAs for a small number of parameters and values with interaction strength support 

of up to t = 4. Although useful for t-way test suite generation, aggressive Lévy flight 

motion leads to poor exploitation in CS. Apart from the parameter tuning problem, BA 

suffers from the problem of early convergence and then followed by a slow convergence 

rate (Fister, Fister et al. 2014). Despite low algorithm complexity, it is difficult to divide 

the roles of bees as workers in the Bees Algorithm. Table 2.10 provides a comparison of 

the meta-heuristic-based strategies for the t-way test suite generation problem. 

Based on the above discussion and comparison of meta-heuristic-based strategies 

for generating t-way test suites given in Table 2.10, it can be observed that: 
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Table 2.10 Existing Straetegies based on Meta-Heuristic Algorithms for t-way Test 

Suite Generation: Strengths and Weaknesses  

Strategy Strengths Weaknesses 

SA 

• Adopted by most research studies in 

the literature   

• Offers most optimal t-way test suites 

• Generates CAs and all its variants  

• Performance depends on its control 

parameters (i.e., initial temperature and 

cooling rate) 

• Computationally heavy particularly in 

case of complex configurations 

• Relies on standard structures to 

generate optimal test suites while it is 

difficult to have such structures 

TS 

• Supports configurations with many 

input parameters or configuration 

options 

• Avoids solutions that are already 

generated using the tabu list 

• Needs tuning of its various parameters 

such as tabu list size, long term and 

short term memories 

• No support for generating mixed 

strength t-way test suites 

• Computationally heavy for large 

configurations 

GA 

• Supports generation test suites with 

highest interaction strength (i.e., t = 

20). 

• Maintains a good balance between 

exploration and exploitation 

• Needs to tune its different control 

parameters such as mutation rate, 

crossover rate and selection strategy 

• Computationally heavy owing to 

continuous interaction with peers and 

the environment 

ACO 

• Supports generation of both CAs 

and VCAs 

• Achieves optimal balance of 

exploration and exploitation 

• Relies on several control parameters 

such as pheromone amount, pheromone 

coefficient, pheromone evaporation 

rate, etc. 

• Computationally heavy owing to its 

inherent parallel nature 

PSO 

• Offers optimal sizes CAs, MCAs, 

VCAs and CCAs 

• Supports generation of higher 

strength (i.e., t ≤ 6) test suites 

• Performance depends on many 

algorithm-specific parameters (i.e., 

social and cognitive parameters) 

• Frequent interaction with the 

environment as particles’ velocities 

need to be updated continuously  

HSS 

• Supports generation of CAs, MCAs, 

VCAs and CCAs  

• Offers test suites with interaction 

strength support of t = 15 

• Needs extensive tuning of its four 

control parameters 

• Computationally expensive because of 

the frequent interaction with the 

environment  

CS 

• Introduces Lévy flight motion to 

tackle entrapment in local optima 

• Supports generation of CAs and 

MCAs of competitive sizes with 

interaction strength support of t = 6 

• Needs proper tuning of its single control 

parameter called switching probability  

• No support for generating mixed 

strength t-way test suites 

BA 

• Achieves a good balance between 

exploration and exploitation via 

unique features inherited from 

microbats  

• Offers smaller sizes CAs with 

interaction strength support of t = 6 

• Relies on extensive tuning of its several 

control parameters 

• Tested on a limited set of benchmarks 

 

Bees 

Algorithm 

• Supports generation of both CAs and 

SCAs 

• Generates test suites of interaction 

strength support up to t = 10 

• Relies on proper tuning of its six 

different control parameters 

• Faces challenge of assigning roles to 

worker bees 
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i. No single strategy based on meta-heuristic algorithm can generate optimal t-

way test suite for all configurations. In line with the No Free Lunch Theorem 

(Wolpert and Macready 1997), this implies that the search for new and 

efficient strategies based on meta-heuristic algorithms, particularly newly 

developed ones, is still an active and open research topic. 

ii. Most of the existing well-known strategies are not only computationally 

heavy but also require many parameters to be tuned for achieving good results. 

The number of tuned parameters, thus, needs strong consideration when 

developing new strategies. 

iii. The adaptive meta-heuristic based strategies through dynamic tuning have 

been successfully explored. However, there is a lack of study on adopting 

parameter-free meta-heuristic algorithms such as TLBO. 

iv. Although useful, TLBO has preset exploration and exploitation. For better 

performance, exploration and exploitation need to be dynamic.  

The aim of this thesis is to fill these gaps by designing and implementing a t-way 

strategy based on an efficient and parameter-free meta-heuristic algorithm called 

adaptive TLBO (ATLBO) for addressing the problem of generating mixed strength t-way 

test suites. A Mamdani-type fuzzy inference system is integrated with the original TLBO 

in this research to adaptively select the search operations (global or local) on the basis of 

search need at that particular time of searching. ATLBO-based strategy is the first 

strategy based on a parameter-free meta-heuristic in the related literature for t-way test 

suite generation. Figure 2.18 summarizes the discussion given here.  

 

Figure 2.18 Research Problems in the Existing Related Literature 
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2.9 Chapter Summary 

In essence, testers can use test case design techniques as a basis for the creation 

of test cases. Combinatorial t-way testing is complementing these techniques and has 

been proved effective in testing software applications with huge configuration spaces or 

input parameters. CAs and its variants abstract this type of testing by efficiently 

representing t-way test suites. As CAs generation is an optimization problem, several 

meta-heuristic based strategies have been proposed in the literature. These include t-way 

strategies based on meta-heuristic algorithms such as SA, TS, GA, ACA, PSO, HS, CS, 

BA and Bees Algorithm. Exiting strategies can be divided into three categories: standard, 

hybrid and adaptive. These strategies have produced best test suites (in terms of sizes) to 

date. However, all these strategies suffer from several problems such as extensive tuning 

of parameters, heavy computation, etc. before able to obtain optimal results. Moreover, 

only few strategies while no adaptive strategy in the literature generate VCAs of strength 

greater than 3.  

Owing to these limitations of existing strategies, there is a need to propose an 

efficient strategy based on a newly developed parameter-free meta-heuristic algorithms 

for the generation of optimal test suites. TLBO is one such meta-heuristic algorithm. 

TLBO and its variants (modified, hybrid and cooperative) are found effective for the 

optimization problems in different fields of engineering and science. The algorithm offers 

demanding features: simple computational characteristics, ease of implementation and 

free of parameter tuning. Fuzzy set theory as a mathematical foundation of fuzzy logic 

has given computers the power to think and reason like humans. Fuzzy inference systems 

have been found effective for performance enhancement of meta-heuristic algorithms. 

Considering the features of original TLBO, an improved variant of TLBO called ATLBO 

based on the Mamdani-type fuzzy inference system, proposed in this research, is 

supposed to be effective for the problem of mixed strength test suite generation. Building 

upon this chapter, the next chapter presents the methodology adopted in this research for 

the design of ATLBO and its implementation for the mixed strength test suite generation 

as an effort to prepare optimal test suites. 
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CHAPTER 3 

 

 

METHODOLOGY 

In the previous chapter, a review of some well-known test case design techniques 

is presented. The importance of t-way and mixed strength interaction testing is elaborated 

using a simplified model of an online gaming architecture. Foundation terminologies and 

objects related to t-way interaction testing are defined. An extensive review of meta-

heuristic based t-way strategies is given with their novel categorization. Teaching 

Learning-based Optimization (TLBO) algorithm and its variants with their applications 

are investigated. Fuzzy logic in the context of meta-heuristic algorithms is overviewed. 

Finally, research gap is identified in the existing literature so as to fill it with required 

new contributions.  

This chapter starts by presenting an overview of the original TLBO with critically 

analyzing its searching capabilities. The design of the proposed ATLBO is presented next 

with detailed elaboration of its Mamdani-type fuzzy inference system. Hereafter, the 

chapter presents the pseudo code of the general ATLBO algorithm. After justifying the 

effectiveness of ATLBO, this chapter focuses on its implementation in a strategy to 

address the problem of mixed strength test suite generation. This chapter also discusses 

the implementation of t-way and mixed-strength interaction elements generation 

algorithm.  

3.1 The Original Teaching Learning-based Optimization (TLBO) Algorithm 

Teaching Learning-based Optimization (TLBO) (Rao, Savsani et al. 2011, Rao, 

Savsani et al. 2012) algorithm is a novel nature-inspired meta-heuristic algorithm for 

unconstrained and constrained optimization problems. In TLBO, the entire optimization 

process is equated with the teaching and learning methodology inside a classroom. 
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Students or learners are simulated as solutions whereas their subjects are represented as 

dimensions of the solutions (see Figure 3.1). The result of the class is regarded as the 

objective function value. TLBO exhibits competitive performances owing to its 

promising characteristics such as no algorithm-specific parameters, ease of 

implementation, computationally lightweight, and effective search ability (Singh, 

Chaudhary et al. 2017, Gandomi and Kashani 2018, Wang, Li et al. 2018). 

 

Figure 3.1 Concepts of TLBO for Optimization 

The analogy adopted by TLBO from teaching and learning process between a 

teacher and his or her students or learners is further elaborated here. Basically, a teacher 

has more knowledge than the students. He or she tries to impart this knowledge to the 

students so as to take their knowledge to his/her competency level as shown in Figure 3.2 

(a). As teachers have different competency levels, there could also be potential 

improvements when students learn from other teachers. At the same time, students can 

also learn from other students or peers with more knowledge to improve their competency 

levels as depicted in Figure 3.2 (b). 

Within TLBO, the solution is represented in the population X. An individual Xi 

within the population represents a single possible solution. Specifically, Xi is a vector 

with D elements where D is the dimension of the problem representing the subjects taken 

by the students or taught by the teacher.  

TLBO divides the whole searching process into two main phases; the teacher 

phase and the learner phase. In order to perform the search, TLBO undergoes both phases 

sequentially one-after-the-other per iteration. The teacher phase involves invoking the 

global search operation (i.e., exploration). At any instance of the search process, the 

teacher is always assigned to the best individual 𝑋𝑖. The algorithm attempts to improve 

other individual 𝑋𝑖  by moving their position towards 𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟  taking into account the 

current mean value of the population, 𝑋𝑚𝑒𝑎𝑛 as follows: 
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𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑟(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − 𝑇𝐹𝑋𝑚𝑒𝑎𝑛) 3.1  

where 𝑋𝑖
𝑡+1 is the new updated 𝑋𝑖

𝑡, 𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 is the best individual in the population 𝑋, 

𝑋𝑚𝑒𝑎𝑛 is the mean of 𝑋, 𝑟 is the random number from [0,1] and 𝑇𝐹 is a teaching factor 

which can either be 1 or 2 and meant for emphasizing the quality of teaching. It is tested 

with various values but TLBO is more successful when it is either 1 or 2 (Chikh, Belaidi 

et al. 2018). 

 

Figure 3.2 TLBO's Teaching and Learning Analogy 

Source: (Rao, Savsani et al. 2011) 

The learner phase exploits the local search operation (i.e., exploitation).  

Specifically, the learner 𝑋𝑖
𝑡 increases its knowledge by interacting with its random peer 

𝑋𝑗
𝑡 within the population 𝑋 such that 𝑖 ≠ 𝑗. A learner learns if and only if the other learner 
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has more knowledge than he does. At any iteration i, if 𝑋𝑖
𝑡 is better than 𝑋𝑗

𝑡, then  𝑋𝑗
𝑡 

moves toward 𝑋𝑖
𝑡 (refer to Eq. 3.2). Otherwise, 𝑋𝑖

𝑡 moves toward 𝑋𝑗
𝑡 (refer to Eq. 3.3). 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑟 ( 𝑋𝑗
𝑡 −  𝑋𝑖

𝑡  ) 3.2 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑟 ( 𝑋𝑖
𝑡 −  𝑋𝑗

𝑡  ) 3.3 

where 𝑋𝑖
𝑡+1 is the new updated 𝑋𝑖

𝑡 , 𝑋𝑗
𝑡 is the random peer, and r is the random number 

from [0,1]. The original TLBO can be summarized in Figure 3.3. 

 

Figure 3.3  The Original TLBO Algorithm 

In line 1, the algorithm initializes a random population of learners and evaluates 

them. Line 2 starts the main loop of the algorithm where the termination condition is 

specified. The termination condition can be the number of iterations, objective function 

evaluations, etc. In the case of t-way test suite generation problem, the termination 

condition is the coverage of all the interaction tuples or elements. Line 3 starts the sub-
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loop which is repeated till the evaluation of all the learners. The algorithm selects the best 

candidate solution (i.e., the teacher) in the population and calculates the population mean 

in line 4. With this, the algorithm commences the teacher phase. The teaching factor 𝑇𝐹 

is computed in line 5. The main equation of the teacher phase (Eq. 3.1) is evaluated in 

line 6 which attempts to enhance the learning capabilities of each learner in the population 

through teaching. Finally, the learner’s knowledge is checked and subsequently updated 

in the case of improvement (lines 7-9). Lines 4-9 constitute the teacher phase.  

The learner phase follows the teacher phase immediately. Line 10 starts the 

learner phase. A learner is randomly selected from the population such that its roll number 

does match with the roll number of the current learner. If the knowledge level of the 

current learner is better than the newly selected learner, Eq. 3.2 is evaluated in line 12, 

otherwise Eq. 3.3 is computed in line 15. Here, a new learner with some knowledge level 

comes whether Eq. 3.2 or Eq. 3.3 is evaluated. Lines 17-19 update the knowledge of the 

current learner if his knowledge is poor than the new learner. Lines 10-19 constitute the 

learner phase. Line 20 ends the sub-loop after evaluating all the learners. A best so far 

learner (i.e., solution) is returned by the algorithm in line 21. These steps are repeated 

until the satisfaction of the termination criteria specified in the main loop. The final Xbest 

is the global optimum solution offered by TLBO. Line 22 ends the algorithm. 

3.2 The Proposed Fuzzy Adaptive TLBO (ATLBO)  

This section presents the general design of the proposed fuzzy adaptive TLBO 

(ATLBO). The section first briefly describes the Mamdani-type fuzzy inference system 

of ATLBO and then explains the ATLBO algorithm by presenting its pseudo code. 

3.2.1 The Mamdani-type Fuzzy Inference System of ATLBO   

A fuzzy inference system is often defined as a system that represents human 

knowledge mapped in the form of a set of fuzzy rules to produce some approximate 

decision (Iancu 2012). Classical logic (crisp value) is differentiated from fuzzy sets by 

the introduction of membership functions. According to Zadeh (Zadeh 1965), μ(A(x)) 

denotes the membership of element x of the fuzzy set A, and can gradually transform 

from μ(A(x)) = 1 (full membership) to μ(A(x)) = 0 (full non-membership). Consequently, 

it can take all possible values from the interval [0, 1], and is therefore not restricted to 

only two truth values (0 or 1) of classical logic. This thesis adopted a Mamdani-type 
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fuzzy inference system (Mamdani and Assilian 1975, Cordón 2011, Camastra, 

Ciaramella et al. 2015) for the proposed fuzzy adaptive TLBO (ATLBO) owing to its 

effectiveness for performance enhancements of meta-heuristic algorithms in the related 

literature. 

The methodology of the Mamdani fuzzy inference systems captures the process 

behaviours by using linguistic variables and then uses these variables as input to the 

linguistic control rules (Dadios 2012). The fuzzy model based on the Mamdani fuzzy 

inference systems involves defining membership functions and subsequently describing 

the rules. The rules act as a bridge between input and output variables and are based on 

the description of the fuzzy behaviour that is obtained by defining linguistic variables 

(Zimmermann 1996).  

A Mamdani fuzzy inference system encompasses the fuzzification, rule base with 

its inference system and defuzzification as its basic components. The general structure of 

a Mamdani fuzzy inference system, however, include the membership functions, 

input/output variables and the rules. The Mamdani-type fuzzy inference system designed 

for ATLBO is shown in Figure 3.4. 

The fuzzy system is composed of three components, namely the fuzzification, 

fuzzy rules inference evaluation, and defuzzification (refer to Figure 3.4). There are three 

input parameters and one output parameter of the system. The three input parameters are: 

Quality Measure (𝑄𝑚), Intensification Measure (𝐼𝑚), and Diversification Measure (𝐷𝑚) 

and the one output parameter is: Selection. 

The choice of selecting and using these three input parameters is new for 

improving the performance of a meta-heuristic algorithm. These parameters capture all 

the necessary details related to a potential solution so as to achieve optimality by guiding 

the search in the right direction. The 𝑄𝑚 takes into account the number of interaction 

elements covered by a candidate test case. The other two parameters (𝐼𝑚 and 𝐷𝑚) are 

based on Hamming distance. The quality and diversification measures are used to achieve 

solution diversity, whereas the intensification measure is used to facilitate convergence. 

The first input parameter or crisp input 𝑄𝑚  is the normalized fitness value 

capturing the quality of the current potential solution 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 in terms of covering the 
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number of interaction tuples or elements. The value of the 𝑄𝑚 will be high for a test case 

that covers a maximum number of interaction tuples. Eq. 3.4 formally defines 𝑄𝑚. 

𝑄𝑚 = [
𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠  − 𝑚𝑖𝑛 𝑓𝑖𝑡𝑛𝑒𝑠𝑠

𝑚𝑎𝑥 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 − 𝑚𝑖𝑛 𝑓𝑖𝑡𝑛𝑒s𝑠
] ∙  100 3.4 

The second parameter or crisp input 𝐼𝑚  is the Hamming distance normalized 

value measuring the proximity of the 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 against 𝑋𝑏𝑒𝑠𝑡.. 𝐼𝑚 can be formally defined 

as: 

𝐼𝑚 = [
|𝑋𝑏𝑒𝑠𝑡 −  𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡|

𝐷
] ∙ 100 3.5 

where D is the dimension of the given problem. 

The third and final crisp input 𝐷𝑚 is also the Hamming distance normalized value. 

Unlike 𝐼𝑚  which measures intensification of the search against the global best, 𝐷𝑚 

measures diversity of 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡  against the overall population 𝑋 . 𝐷𝑚  can be formally 

defined as follows: 

𝐷𝑚 = [
∑ |𝑋𝑗 −  𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡| 

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒
𝑗=1   

𝐷
]  ∙ 100 3.6 

First, fuzzification starts the fuzzy inference process by transforming the crisp 

inputs into fuzzy inputs with the help of membership functions. All crisp inputs have 

universes of discourse, i.e., set of possible values that crisp inputs can assume. The 

universes of discourse for all the linguistic variables of the proposed fuzzy inference 

system are between 0 and 100. The fuzzification process of all the input variables is based 

on three defined trapezoidal membership functions with linguistic terms, namely Low, 

Medium and High (see Figure 3.5Figure 3.5). It is worth noting that the trapezoidal 

membership functions for the linguistic variables Quality Measure and Diversification 

Measure are identical as shown in Figure 3.5 (a) and Figure 3.5 (c). Similarly, the 

fuzzification process of the output variable Selection is based on two defined trapezoidal 

membership functions with linguistic terms, namely Global_Search and Local_Search as 

shown in Figure 3.6.
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Figure 3.4 Fuzzy Inference System for ATLBO  
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The values in the range of 0-20 are considered as absolute Low; the values in the 

range of 20-40 are considered as partial Low and Medium; the values in the range of 40-

60 are considered as absolute Medium; the values in the range of 60-80 are considered as 

partial Medium and High; the values in the range of 80-100 are considered as absolute 

High. The High and Low ranges in the case of Intensification Measure are exchanged 

(refer to Figure 3.5 (b)). Conversely, change did not occur in the Medium range. The 

Selection values taking the range of 0-20 are considered as absolute Local_Search; the 

Selection values in the range of 20-80 are considered as partial Local_Search and 

Global_Search; the Selection values in the range of 80-100 are considered as absolute 

Global_Search.  

 

Figure 3.5  Membership Functions of the three Input Measures 

 

 

Figure 3.6  Membership Functions of the Selection Output Linguistic Variable 

Decision making logic is the next step after finalizing the membership functions 

for fuzzy inputs and output of the system. The Mamdani-type fuzzy inference evaluation 

of the proposed system performs this step, where IF-THEN rules contain fuzzy 

prepositions in both IF (known as antecedent or premise) and THEN (known as 

consequent or conclusion) parts (Iancu 2012). An ith rule in the Mamdani-type fuzzy 

inference system can be written as follows: 

Rule ith: IF x IS Ai AND y IS Bi THEN O IS Ci   3.7 

where x and y denote input linguistic variables, O denotes the output variable linguistic 

variable, and Ai, Bi, and Ci denote the linguistic terms defined for the fuzzy variables.   
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The fuzzy rule base of ATLBO consists of only four fuzzy rules as shown in Table 

3.1. These rules guide ATLBO to select the appropriate search operation. The total 

number of fuzzy rules r for a fuzzy inference system is calculated using Eq. 3.8. 

Table 3.1  Fuzzy Rule Base of the ATLBO Fuzzy Inference System 

Rule #: Rule 

Rule 1: IF Quality IS NOT High THEN Selection IS Global_Search 

Rule 2: 
IF Quality IS High AND Diversification IS NOT High AND Intensification IS 

High THEN Selection IS Global_Search 

Rule 3: 
IF Quality IS High AND Diversification IS High AND Intensification IS NOT 

High THEN Selection IS Local_Search 

Rule 4: 
IF Quality IS High AND Diversification IS High AND Intensification IS High 

THEN Selection IS Local_Search 

 

r =  ∏ 𝑓𝑖

𝑛

𝑖

 3.8 

where n is the total number of crisp variables and 𝑓𝑖 is the number of linguistic terms 

defined for each input linguistic variable.  

In the case of ATLBO’s fuzzy inference system, there can be a total of 33 or 27 

rules as each input linguistic variable takes three linguistic terms. However, it is observed 

that the rules can be reduced to four only as shown in Table 3.1. Minimum possible rules 

not only simply the processing logic but may also improve the fuzzy system performance.  

Concerning the fuzzy rules inference evaluation, the fuzzy rules are defined based 

on the following scenarios: 

• Rule 1: Quality measure is Low regardless of intensification and 

diversification measures. The search is trapped in the local minima region, 

thus requiring global search. 

• Rule 2: Quality measure is High but lacks diversity. The search is trapped 

in the local minima region because of excessive local search.   

• Rule 3: Quality measure is High but lack of convergence because of 

excessive global search. 
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• Rule 4: Search is near convergence. Local search is required. 

The max-min inference method is adopted in the proposed fuzzy system. The 

method interprets the fuzzy operator AND by considering the minimum value of the 

antecedents while adopting maximum value for aggregating them (see Figure 3.7).  

Finally, the defuzzification step transforms the fuzzy conclusions of the inference 

scheme into the crisp output. As described earlier, a single output linguistic variable 

called Selection is defined for the defuzzification. Eventually, the actual selection 

depends on the output of the deffuzzification process based on the center of gravity 

(COG). COG is the most commonly adopted method in fuzzy systems owing to its 

accurate computation of results on the basis of weighted values of many output 

membership functions (Pappis and Siettos 2014). The result of defuzzification is assigned 

to the Selection crisp variable after the evaluation of COG formula according to Eq. 3.9.  

 

3.9 

where μ(A(x)) denotes the membership function value of the output fuzzy set. 

Suppose quality, intensification and diversification parameters have values 65, 70 

and 80, respectively, as shown in Figure 3.7.  

 

Figure 3.7  Max-min Inference Method and Defuzzification 

With 𝑄𝑚= 65, rule # 1 will be activated as Quality Measure is only partially 

associated with the fuzzy set High. Similarly, rule # 3 will be fired on the subset partial 
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High, partial Medium and Low, and absolute High of input linguistic variables Quality 

Measure, Intensification Measure and Diversification Measure, respectively. By using 

Eq. 3.9, the defuzzification step can imply the crisp output of the fuzzy inference system 

for the selection variable as Selection = 62.08. 

A number of design choices such as triangular memberships, the number of 

linguistic terms, etc., have been relevant in the implementation of the fuzzy inference 

system of ATLBO. However, the proposed fuzzy inference system is easy to understand, 

functional and sufficiently efficient owing to the adoption of the basic design choices.  

It is evident from the overview of the original TLBO where both global search 

and local search operations get equal opportunity (50%) in each iteration during the 

search process. Therefore, when the defuzzification output of the fuzzy system assigned 

to the Selection crisp out is greater than 50%, the proposed algorithm selects global search 

or teacher phase. Otherwise, it selects local search or learner phase. 

3.2.2 The General ATLBO Algorithm 

Based on the proposed fuzzy inference system along with the TLBO description 

given in the previous section, Figure 3.8 highlights the newly developed adaptive TLBO 

(ATLBO) based on the TLBO description provided in the previous section. The boxes 

mark where ATLBO code differs from original TLBO code.   

Line 1 defines trapezoidal membership functions for the three input parameters 

and one output parameter to obtain the linguistic variables. Line 2 defines the four fuzzy 

rules as explained previously. The algorithm initializes a random population of learners 

and evaluates them in line 3. Line 4 sets the Selection variable to 100 in order to run 

teacher phase in the first iteration similar to the original TLBO. Line 5 starts the main 

loop of the algorithm. Line 6 starts the for loop so as to search all learners and improve 

their competency levels in either teacher phase or learner phase. Line 7 checks whether 

the Selection variable is greater than 50. Based on this condition, the algorithm either 

runs teacher phase (lines 8-13) or learner phase (lines 16-25). 
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Figure 3.8 ATLBO based on Fuzzy Inference System 

Line 27 computes the three crisp measures or input parameters (𝑄𝑚, 𝐼𝑚, and 𝐷𝑚) 

for the current obtained solution. Line 28 fuzzifies these crisp measures using simple 

membership functions. After inference evaluation process, line 29 performs 

defuzzification to obtain crisp output and assigns it to the Selection variable. The value 

of the Selection variable will decide whether to run the teacher phase or the learner phase 

in the next for loop iteration. In line 31, the algorithm returns the current best result. 
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3.3 Computation of the Measures for t-way Testing 

This section describes how the three measures (𝑄𝑚, 𝐼𝑚 and 𝐷𝑚) are computed 

with an example in case of t-way testing as the case study. For this purpose, the online 

gaming architecture model discussed in Chapter 2, Section 2.2 is reconsidered as shown 

in Figure 3.9. It is a system with 5 parameters where 3 parameters carry 2 values whereas 

2 parameters carry 2 values. 

Maximum fitness (max_fitness in Eq. 3.4) is equal to the value of Eq. 2.2. For the 

running example, max_fitness is 10. Minimum fitness (min_fitness in Eq. 3.4) is 0. 

Current fitness (current_fitness in Eq. 3.4) is calculated in terms of interaction tuples’ 

coverage. For instance, the 𝑄𝑚 for a test case tc1 = {0 1 0 2 1} is computed below if it 

covers 9 interaction tuples (i.e., it current fitness is 9). The value 90 is the normalized 

value for the fuzzy inference system. 

𝑄𝑚 = [
𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠  − 𝑚𝑖𝑛 𝑓𝑖𝑡𝑛𝑒𝑠𝑠

𝑚𝑎𝑥 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 − 𝑚𝑖𝑛 𝑓𝑖𝑡𝑛𝑒s𝑠
] ∙  100 

= [
9 − 0

10 − 0
] . 100 = 90 

 

 

Figure 3.9  Pairwise Test Suite for the Online Gaming Architecture 

As far as the intensification measure (𝐼𝑚) is concerned, it is the Hamming distance 

between the current test case and the best case in the population divided by the vector D, 

which is equal to P, the total number of parameters. If tc2 = {1 1 1 0 1} is considered as 

the current test case and tc3 = {1 1 1 2 2} is the best case in the population as shown in 

Figure 3.10, the Hamming distance for this case is 2 as all the values of both the test cases 

differ by 2. The 𝐼𝑚 for this case is (which is its normalized value): 

𝐼𝑚 = [
|𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡|

𝐷
] ∙ 100 
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= [
2

5
] . 100 = 40 

Finally, diversification measure (𝐷𝑚) is the Hamming distance between a current 

test case and the entire population divided by D which is computed using Eq. 3.10.  

𝐷 = (𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 − 1) ∗ 𝑃 3.10 

 

Figure 3.10 Hamming Distance Calculation for Intensification and Diversification 

The population size for the current example is 3, whereas P is 5. If tc1={0 1 0 2 

1} is considered as the current test case from Figure 3.10, then the Hamming distance 

between tc1 and tc2 is 3 and the same between tc1 and tc3 is 3. The accumulative Hamming 

distance from the rest of the population for tc1 is 3+3 = 6 (see Figure 3.10) as it differs 

by 2 values from tc2 and tc3. The normalized value of 𝐷𝑚 is computed as follows: 

𝐷𝑚 = [
∑ |𝑋𝑗 −  𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡|𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒

𝑗=1   

𝐷
]  ∙ 100 

=  [
  6  

10
] . 100 = 60 

3.4 Implementation of ATLBO for the Mixed Strength t-way Test Suite 

Generation 

Having given an overview of TLBO and its adaptive variant (ATLBO), the 

following section outlines its application to address the problem of generating mixed 

strength t-way test suite. In general, ATLBO based strategy is a composition of two main 

algorithms: (i) an interaction elements generation algorithm, which generates 

combinations of parameter values that are used in the test suite generator for optimization 

purposes; (ii) an ATLBO based test suite generator algorithm. The next sub-sections, 

explain these two algorithms in detail. 
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3.4.1 Interaction Elements Generation Algorithm 

The interaction elements generation algorithm involves generating the parameter 

(P) combinations and the values (v) for each parameter combination based on the 

interaction strength (t). The parameter generation adopts binary digits, whereby 0 

indicates the exclusion of a referred parameter and 1 indicates the inclusion of the 

parameter.  

As an illustration, consider an example involving VCA(N; 2, 23 31, CA(3; 23)) as 

shown in Figure 3.11.  

 

Figure 3.11 The Hash Map and Interaction Elements for the VCA  

The mixed strength covering array VCA can be composed of two parts: the main 

configuration MCA(N; 2, 23 31) and the sub-configuration CA(3; 23), respectively. The 

main configuration, MCA(N; 2, 23 31), requires a 2-way interaction (as main strength) for 

a system of four parameters. The algorithm first generates all binary number possibilities 

up to four digits. Subsequently, the binary numbers that contain two 1 s are selected, 

indicating that a pairwise interaction (i.e., t = 2) exists. For example, the binary number 

1100 refers to P1.P2 interaction. P1 has two values (0 and 1); P2 has two values (0 and 1); 

P3 has two values (0 and 1), and P4 has three values (0, 1, and 2). The 2-way parameter 

interaction has six possible combinations based on the parameter generation algorithm. 
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For combination 1001, whereby P1 and P4 are available, there are 2×3 possible interaction 

elements between P1 and P4. For each parameter in the combination (i.e., with two 1 s), 

the value of the corresponding parameter is included in the interaction elements. Here, 

the excluded values are marked as “x”. This process is iteratively repeated for the other 

five interactions: (P1, P2), (P1, P3), (P2, P3), (P2, P4), and (P3, P4). In a similar manner, 

the sub-configuration, CA (3; 23), requires a 3-way interaction (as sub-strength) for a 

system of 3 parameters. A 3-way interaction yields the (P1, P2, P3) interaction. 

Revisiting the overall VCA(N; 2, 23 31, CA(3; 23)), the complete interaction 

elements are the combinations from both MCA(N; 2, 23 31) and CA(3; 23). The hash map 

list of mixed interaction elements Hs, which employs the binary representation of the 

interaction as the map retrieval key, is implemented to ensure efficient indexing for 

storage and retrieval. The complete algorithm for the interaction elements generation is 

highlighted in Figure 3.12. 

 

Figure 3.12 Algorithm for Interaction Elements Generation 

Line 1 initializes an empty hash map Hs. Line 2 sets variable m to the number of 

parameters. The set of values of parameters are stored in a data structure called p (see 

line 3). The main loop of the algorithm starts at line 4 which runs 2m times. The body of 

this loop generates interaction elements between parameters based on the given 

interaction strength t along with the generation of their hash key in the hash map. A binary 

type array b is declared to hold the binary form of the index variable (lines 5-6). The sub-
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loop (lines 7-14) generates the interaction elements to be added to the hash map. The hash 

key for the added interaction element is inserted into the hash map (see lines 15-18). Line 

20 returns the hash map containing all the interactions elements for a given configuration. 

3.4.2 Test Suite Generation Algorithm based on ATLBO 

ATLBO first initializes the population search space as a D-dimensional vector, 

𝑋𝑗 = [𝑋𝑗,1, 𝑋𝑗,2, … … … , 𝑋𝑗,𝐷], where each dimension represents a parameter and contains 

integer numbers between 0 and (vi) (i.e., the number of values of the ith parameter). TLBO 

requires both local search and global search to be summoned per iteration. Conversely, 

ATLBO permits the adaptive selection of the local search and global search through the 

fuzzy inference selection. The net effect is that ATLBO has less fitness function 

evaluations than the original TLBO for the same number of iterations. 

For the mixed strength test suite generation problem, this research deals with the 

discrete version of ATLBO. As such, to deal with discrete parameters and values, each 

individual 𝑋𝑗 needs to capture the parameters as a valid range of integer numbers (i.e., 

based on the user inputs). Local search and global search updates in ATLBO may result 

into necessary rounding off of floating point values.  

The rounding off of floating point values should be addressed, as well as the out-

of-range values. The clamping rule at the boundary within ATLBO is established to 

restrict both lower and higher bounds. At least three possibilities exist in dealing with 

boundary conditions used in the literature for discrete problems, i.e., invisible walls, 

reflecting walls, absorbing walls (Robinson and Rahmat-Samii 2004). In the invisible 

walls, when a current value goes outside the boundary, the corresponding fitness value is 

not computed. In the reflecting walls, when a value reaches the boundary, it is reflected 

back to the search space (i.e., mirroring effects). The boundary condition returns the 

current value to the search space when the value moves out-of-range in the absorbing 

walls. For example, if a parameter value is in the range from 1 to 4, the position is reset 

to 1 when it reaches a value larger than 4. In this study, the absorbing walls approach is 

used as the clamping rule in the implementation of ATLBO. 

The local and global search processes of ATLBO are iteratively continued until 

convergence has been achieved (i.e., if and only if all the interaction elements from the 

Hs are completely removed), in relation to the stopping criteria.  
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Two approaches are considered for storing and locating the interaction elements: 

array list and hash map. The array list approach is fast for a small number of values but 

is not scalable for large parameters, because it must iterate the entire lists to fetch the 

required interaction values. Given that the process of fetching and locating the required 

interaction values are fundamentally important for fitness function evaluation, the array 

list approach can introduce time performance penalty. Alternatively, the hash map offers 

an effective approach of locating the required interaction values using only the unique 

key based on the binary interaction value itself. For this reason, the hash map approach 

is favored for the ATLBO. The ATLBO test suite generator is summarized in Figure 3.13 

based on the aforementioned design choices. 

Line 1 calls the interaction elements generation algorithm to enumerate the 

interaction elements in the hash map 𝐻𝑠 based on the interaction strength, the number of 

parameters and their values. Line 2 defines the trapezoidal membership functions for the 

input and output linguistic variables. Line 3 defines the fuzzy rules of the fuzzy inference 

system. Line 4 initializes a random population of learners and evaluates them. Lines 5 is 

meant to run the teacher phase in the first iteration. The algorithm enters into its main 

loop in line 6 which will terminate on coverage of all the interaction elements or tuples. 

The algorithm enters into the for loop in line 7 to update the members of the population 

using the teacher or learner search operators. As the Selection variable is set to 100 (line 

8), the algorithm runs the teacher phase in the first iteration (see lines 9-14). Line 28 

computes the three measures for the current best test case. Line 29 converts the crisp 

input into fuzzy input. Line 30 defuzzify the linguistic variables by using the COG 

defuzzification method and assigns the crisp output to the Selection variable. ATLBO 

uses the value of this variable in the next iteration to run either the teacher phase (lines 

9-14) or the learner phase (lines 17-27). Line 32 accumulates the best test case and stores 

it in the final test suite list Fs. The algorithm then removes the interaction elements or 

tuples from the hash map Hs covered by the current test case in line 33. Finally, line 35 

displays the obtained optimal test suite Fs. 
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Figure 3.13 ATLBO for Generating Mixed Strength t-way Test Suite 

For further details, an illustration of the test suite generation process by ATLBO 

is shown in Figure 3.14.  
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Figure 3.14 Graphical Representation of Test Suite Generation by ATLBO  
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Initially, ATLBO-based strategy receives Hs for a given CA or VCA. The strategy 

then randomly generates the search space as a population of learners. After this, the 

strategy activates either the teacher phase or the learner phase that updates each learner 

based on the maximum number of interaction elements coverage. For each of the learner 

in the population, ATLBO computes 𝑄𝑚, 𝐼𝑚 and 𝐷𝑚. Taking these measures as input 

linguistic variables, the Mamdani-type fuzzy inference system generates the crisp output 

Selection. This value is then used in the next run to decide whether to use the teacher 

phase or the learner phase. This procedure is repeated for all the learners in the 

population. Following this, the strategy selects the best test case from the updated 

population and check it for the maximum number of interaction elements coverage. If the 

test case covers more interaction elements, the strategy adds it to Fs. Finally, all the 

covered interaction elements are removed from Hs. Figure 3.15 illustrates an example of 

the generation of test suite and the removal of interaction elements or tuples from Hs.  

 

Figure 3.15 Example for Illustrating Generation of Test Suite and Removal of 

Interaction Elements from Hs  

3.5 Chapter Summary 

Summing up, the chapter has provided the complete technical details of this work 

by elaborating the design and implementation of all the algorithms. In the beginning, the 
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chapter has discussed TLBO which is a population-based optimization algorithm that 

mimics the classroom environment to produce optimal solutions. It has two main phases; 

the teacher phase and the learner phase, which are implemented sequentially. The teacher 

phase launches the global search operation, whereas the learner phase invokes the local 

search operation. Next, the chapter discusses the design of the proposed fuzzy inference 

system for ATLBO. The system has three inputs (𝑄𝑚 , 𝐼𝑚  and 𝐷𝑚 ) and one output 

(Selection). Trapezoidal member functions and four fuzzy inference rules have been used 

in the system. Afterward, the chapter has integrated the fuzzy inference system to present 

the general adaptive TLBO (ATLBO).   

In the final part of the chapter, ATLBO is adopted for the problem of mixed 

strength t-way test suite generation. Here, the two main algorithms (i.e., interaction 

elements generation algorithm and ATLBO based test suite generator algorithm) are 

discussed in detail. The first algorithm initially generates the parameter (P) combinations 

and then the values (v) for each parameter combination based on interaction strength (t). 

Hash map approach, for storing and locating interaction elements, is preferred over the 

array list approach owing to its efficiency. The discrete version of ATLBO is used, and 

the clamming rule (absorbing walls) is established. ATLBO summons local and global 

search processes till all the interaction elements from Hs are completely removed (i.e., 

the stopping criteria for the processes). In the end, the chapter has illustrated how the 

ALBO automate the mixed strength test suite generation process. After design and 

implementation of ATLBO, the next chapter presents the experimental setup and detailed 

results to investigate and evaluate its performance and effectiveness against the original 

TLBO and other state-of-the-art meta-heuristic algorithms for addressing the problem of 

generating mixed strength test suite.  



 

81 

CHAPTER 4 

 

 

RESULTS AND DISCUSSION  

In the last chapter, design details of the general ATLBO, as well as its 

implementation for mixed strength test suite generation problem, have been provided. At 

the beginning, an overview of original TLBO has given. The Mamdani-type fuzzy 

inference system of ATLBO has been discussed in detail. ATLBO algorithm based on 

the fuzzy inference system has given. Finally, the implementation of ATLBO for the 

problem of generating mixed strength test suites has been given after explaining the 

interaction elements generation algorithm.   

This chapter presents the evaluation process of ATLBO. For this purpose, the 

experiments are divided into three parts. The first part characterizes ATLBO and TLBO 

on a set of CAs and VCAs. The test suite generation time and sizes are used for the 

characterization. The second part adopts viable results from the literature for comparison 

with the results of both ATLBO and TLBO in terms of the generated test suite sizes. All 

other results are obtained by strategies based on meta-heuristic algorithms. The third part 

of the chapter presents the statistical analysis of the results obtained in the previous two 

parts. Moreover, the chapter also illustrates adaptive exploitation and exploration 

distribution pattern of ATLBO for each CA and VCA included in the experiments. 

Hereafter, the chapter thoroughly discusses the experimental observations. Finally, the 

chapter sheds light on the related threats to validities to the obtained experimental results.  

4.1 Experimental Setup 

For the effective evaluation of ATLBO, the experiments conducted in this study 

focuses on the following three related goals. 
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• To characterize the generation efficiency and performance of ATLBO 

against the original TLBO (i.e., the efficiency is characterized by the size 

of the generated test suite while the performance is characterized by the 

execution time of each strategy). 

• To gauge the adaptive distribution pattern of the exploration and 

exploitation of ATLBO. 

• To benchmark ATLBO against other meta-heuristic based test suite 

generation strategies including the original TLBO.  

Both original TLBO and the proposed ATLBO are implemented using the same 

programming language and data structures as well as executed on the same hardware 

platform, their characterization is acceptable. Tracking the exploration and exploitation 

of ATLBO for all experiments is helpful to know how it carries search for different 

problems. The third goal ensures the performance evaluation of ATLBO against existing 

t-way strategies based on state-of-the-art meta-heuristic algorithms.   

The experiments are divided into three parts to achieve the aforementioned goals. 

In the first part, 3 selected CAs: CA(N; 2, 105), CA(N; 2, 42 55), CA(N; 2, 23 35), and 3 

selected VCAs: VCA(N; 2, 52 42 32, CA (3,42 32)), VCA(N; 2, 57, CA (3,53)), VCA(N; 2, 

313, CA(3, 33)) are adopted based on the interaction strength t = 2. In doing so, the aim is 

to highlight the time and size performance of the implemented ATLBO and the original 

TLBO. In the second part, the generated test suite sizes of the proposed ATLBO and the 

original TLBO implementations are benchmarked against each other as well as against 

existing meta-heuristic based strategies based on the benchmark experiments published 

in (Wu, Nie et al. 2015). To be specific, the benchmark experiments involve CA(N; t, 3p) 

with varying t from 2 to 4 and p from 2 to 12, CA(N; t, v7) along with CA(N; t, v10) with 

varying t from 2 to 4, and v varying from 4 to 6, VCA(N; 2, 315, {C}), VCA(N; 3, 315, {C}), 

and VCA(N; 2, 43 53 62, {C}). In the third part, statistical analysis of the obtained results 

is carried out to further ensure an acceptable comparison.  

It is noted that a fair comparison between each meta-heuristic based strategy (M. 

Črepinšek, S.-H. Liu et al. 2014, Draa 2015, M. Črepinšek, S.-H. Liu et al. 2015, M. 

Mernik, S.-H. Liu et al. 2015) is impossible owing to potentially different number of 
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fitness function evaluations, variation in the data structures, programming language 

implementation and running environment. Furthermore, each meta-heuristic may require 

the specific control parameter settings (e.g., PSO based strategies rely on inertia weight, 

social and cognitive parameters as parameters, whereas CS relies on its elitism 

probability). Given that the implementations of other meta-heuristic-based strategies are 

not available publicly, the algorithm internal settings cannot be modified so as to fairly 

run the adopted experiments in the experimental setup for this work. A t-way strategy 

based on the original TLBO for test suite generation is also implemented for comparative 

purposes. It is also observed that direct comparative performance of ATLBO with the 

original TLBO (i.e., even with the same number of iterations) can also be unfair. With 

the same number of iterations, the original TLBO has twice as much fitness function 

evaluations as compared to ATLBO owing to the serial execution of both exploration and 

exploitation steps. Thus, the number of iterations within TLBO must always be half of 

ATLBO for a fair comparison.  

For ATLBO the population size is set to 40 and the maximum number of iterations 

is set to 100 in all the experiments. For the original TLBO, the population size is the same 

but the maximum number of iterations is set to 50. Both the ATLBO and TLBO 

implementations are based on the Java programming language. Table 4.1 presents the 

parameter settings for all the competing meta-heuristic algorithms. The experimental 

platform used for this work comprises of a PC running Windows 10, CPU 2.9 GHz Intel 

Core i5, 16 GB 1867 MHz DDR3 RAM and a 512 MB of flash HDD. ATLBO and TLBO 

are run 30 times in all the experiments to ensure statistical significance.  

The best and the mean time (whenever applicable), as well as the best test sizes 

and the mean test sizes for each experiment, are reported side-by-side. The best cell 

entries are marked as “*”, whereas the best mean cell entries are marked in bold font. 

Cell entries that are not available are marked with a dash “-“. This study also tracks the 

mean percentage of exploration (i.e., global search) and exploitation (i.e., local search) 

for each experiment that involves ATLBO to highlight how the actual search progresses 

for different CAs and VCAs. 
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Table 4.1  Parameter Settings for the Competing Meta-heuristic Algorithms 

Algorithm Parameters Values 

SA 

Starting temperature 20 

Cooling schedule 0.9998 

Iteration 1000 

ACA 

Pheromone control 1.6 

Heuristic control 0.2 

Pheromone amount 0.01 

Pheromone persistence 0.5 

Initial pheromone 0.4 

Elite ants 2 

Max stale period 5 

Population size 20 

Iteration 1000 

PSTG (PSO) 

Inertia weight 0.3 

Acceleration coefficients 1.375 

Population size 80 

Iteration  100 

HS 

Harmony memory consideration rate 0.7 

Pitch adjustment rate 0.2 

Harmony memory size Population size 100 

Iteration (improvisation) 100 

CS 

Probability 0.25 

Population size 100 

Iteration 100 

DPSO 

Inertia weight  0.5 

Acceleration coefficients 1.3 

Pro1 0.5 

Pro2 0.3 

Pro3 0.7 

Population size 80 

Iteration 250 

 

4.2 Characterizing Time and Size Performances for TLBO and ATLBO 

Given that both implementations are based on the same data structure, same 

language implementation, same running environment and same fitness function 

evaluations, a fair comparison of test suite sizes and time performance for TLBO and 

ATLBO is possible now. Table 4.2 highlights the obtained results, whereas Figure 4.1 

depicts the mean exploration and exploitation percentage for ATLBO based on the 

provided CAs and VCAs. Moreover, box plots (see Figure 4.2) are constructed for each 

of the CA and VCA given in Table 4.2. These plots are helpful to visually show whether 

the implemented ATLBO and TLBO generate consistent results. 
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4.3 Benchmarking with other Meta-Heuristic Strategies 

Unlike the experiments in the previous section, the benchmark experiments in this 

section also include the performance of ATBLO against all other strategies. However, 

the execution is omitted because of the differences in the parameter control settings (e.g., 

maximum iteration, unequal evaluation of fitness function, etc.) and implementation 

(e.g., data structure, implementation language, etc.). Despite these differences, it is the 

comparison is still valid as the published best and mean test sizes are obtained utilizing 

the best control parameter settings. 

Tables 4.3-4.8 highlight the results for each CA and VCA considered in this study. 

Figures 4.3-4.8 depict the mean exploration and exploitation percentage for ATLBO 

based on the given CAs and VCAs. 

4.4 Statistical Analysis 

All the obtained results are analyzed statistically on the basis of 1xN pair 

comparisons with 95% confidence level (α=0.05) and 90% confidence level (α=0.10). 

The reason for using two values of α is that the competing strategies are not only well-

tuned but also have reported their best-obtained test suite sizes. The Wilcoxon Rank-Sum 

test is adopted to prove the statistical significance of ATLBO-based strategy as the 

control strategy against other strategies in the comparison. The nature of the obtained 

results (being not normally distributed) justifies the selection of a non-parametric test 

such as the adopted Wilcoxon Rank-Sum test for the statistical analysis. 

The null hypothesis 𝐻0 demonstrates that the test suite size for the ATLBO-based 

strategy is statistically smaller than for the other competing strategy. In this case, ATLBO 

has a lower population median. The alternative hypothesis 𝐻1  shows that there is no 

significant difference between ATLBO-based strategy and its counterpart in terms of test 

suite size. 

The Bonferroni-Holm correction is adopted for the Family-Wise Error Rate 

(FWER) because of the multiple comparisons. It adjusts the α value by its step down 

procedure that sequentially rejects poor strategies than the control strategies until a better 

strategy arrives. To be specific, the α is adjusted by using Eq. 4.1 after sorting the p-

values in ascending order such that 𝑝1 <  𝑝2 <  𝑝3 … < 𝑝𝑖 … < 𝑝𝑘. 
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α𝐻𝑜𝑙𝑚 =
α

𝑘−𝑖+1
  4.1  

where 𝑘 represents the total number of paired samples and 𝑖 represents the current test 

number. 

If 𝑝1 < α𝐻𝑜𝑙𝑚, the hypothesis for the comparison is rejected and a subsequent 

comparison for 𝑝2 is then allowed. In case of rejection of the second hypothesis, the test 

proceeds to the third comparison. The procedure continues until a null hypothesis cannot 

be rejected. Tables 4.9-4.15 presents the complete statistical analyses. 

4.5 Discussion 

Reflecting on the experiments undertaken, several observations can be elaborated 

based on the obtained results. 

Table 4.2 shows the size and time performance of ATLBO and the original TLBO. 

In terms of the best test size, ATLBO outperforms TLBO in two out of six entries. 

ATLBO outperforms TLBO in four out of six entries in terms of the mean test sizes. 

ATLBO and TLBO have similar execution times for small parameter values for time 

performances. However, TLBO significantly outperforms ATLBO as the parameter 

number increases (with fixed t = 2) because of the overhead introduced by the fuzzy 

inference selection. Figure 4.1 shows that the search gradually favours exploration over 

exploitation as parameter p increases (with constant t = 2, and a small variant of v). 

The box plots analysis of Table 4.2 in Figure 4.2 (a)-(f) reveals some salient 

features of the searching process of ATLBO and TLBO. Considering Figure 4.2 (a) for 

CA(N; 2, 105), the distribution of box plot results is asymmetric for both strategies. TLBO 

has the largest range of results as well as has largest interquartile range than ATLBO. 

Moreover, the median of ATLBO is also lower than TLBO. Referring to Figure 4.2 (b) 

for CA(N; 2, 42 55), ATLBO has again the lower range of results than that of TLBO. 

However, both ATLBO and TLBO share the same interquartile range and median for the 

given CA. The distribution of box plot results for CA(N; 2, 23 35) shown in Figure 4.2 (c) 

is again asymmetric as both strategies have different ranges of results as well as different 

medians. ATLBO has a lowest range of results and median than TLBO. In this case, 

however, both have same interquartile range. Figure 4.2 (d) for VCA(N; 52 42 32, CA(3, 

52 42) again demonstrates the dominance of ATLBO over TLBO as far as range of results, 
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median and interquartile range are concerned. Considering the box plots for the last two 

VCAs in Figure 4.2 (e) and Figure 4.2 (f), both ATLBO and TLBO have similar 

performances. 

Unlike Table 4.2, Tables 4.3-4.8 account for the size performance of the proposed 

ATLBO and the original TLBO against other meta-heuristic-based strategies. The 

execution time measures are omitted in this case as the experiments are conducted 

unfairly based on unequal fitness function evaluation (e.g., different maximum number 

of iterations and control parameters). 

ATLBO outperforms all other strategies with the best entries in 17 out of 24 cells 

in terms of the best test sizes as shown in Table 4.3. TLBO and DPSO also provide 

competitive performance with 14 and 12 best entries, respectively. APSO offers 7 best 

entries, whereas CS provides 5 best entries. PSTG performs the poorest with only 3 best 

entries. ATLBO also outperforms the rest of the strategies in terms of the mean test sizes 

(i.e., with 16 cells). The next closest rival is TLBO (i.e., with 5 cells) and DPSO (i.e., 

with 4 cells). From Figure 4.3 (a) till (c), it is observed that increasing the parameter value 

p for the same interaction strength t and values v causes ATLBO to favour exploration. 

Increasing t similarly also causes ATLBO to favour exploration. 

DPSO outperforms other strategies with 12 out of 18 cell entries in terms of the 

best test sizes in Table 4.4. ATLBO comes as the runner up with total 8 best cells. Both 

APSO and CS offer 3 best cells, whereas TLBO offers 2 cells.  PSTG again performs the 

poorest with only 1 best cell. DPSO also outperforms other strategies with 7 out of 18 

best cell entries in terms of the mean test sizes. ATLBO is again the runner up with 6 best 

entries. APSO offers 2 best cell entries. TLBO, CS and PSTG perform the worst with 

only 1 best cell entry. Referring to Figure 4.4 (a) till (c), it is observed that increasing the 

values v for the same interaction strength t and parameters p have small effects in terms 

of exploration and exploitation. However, increasing t tends to cause ATLBO to increase 

exploration. 
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Table 4.2  Characterizing TLBO and ATLBO 

 

ID CA and VCA 

Original TLBO ATLBO 

Size Time (sec) Size Time (sec) 
% Mean Exploit %Mean Explore 

Best Mean Best Mean Best Mean Best Mean 

CA1 CA(N; 2, 105) 117 118.60 28.92 42.30 116* 118.40 23.76* 29.23 79.85 20.16 

CA2 CA(N; 2, 4255) 33 34.20 9.22* 10.27 32* 33.90 12.77 13.98 61.75 38.25 

CA3 CA(N; 2, 2335) 13* 14.77 5.12* 6.15 13* 14.16 6.64 8.07 32.20 67.80 

VCA1 VCA(N; 2, 524232, CA (3,4232)) 105* 108.05 43.46* 48.42 105* 107.60 68.31 74.73 13.01 86.99 

VCA2 VCA(N; 2, 57, CA (3,53)) 125* 125.00 66.63* 69.10 125* 125.00 125.02 131.42 18.69 81.31 

VCA3 VCA(N; 2, 313, CA (3,33)) 27* 27.00 45.94* 49.60 27* 27.00 64.37 69.98 23.43 76.57 

 

 

 

Figure 4.1 Mean Exploration and Exploitation Percentage of ATLBO for Table 4.2  

Entries with * indicate best sizes, entries in bold indicate best mean sizes  
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Figure 4.2 Box Plots for Table 4.2 
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Table 4.3  CA(N; t, 3p) 

t p 

PSTG (Ahmed, 

Zamli et al. 

2012) 

DPSO  (Wu, 

Nie et al. 2015) 

APSO (Mahmoud 

and Ahmed 2015) 

CS (Ahmed, 

Abdulsamad et 

al. 2015) 

Original  

TLBO 
ATLBO 

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean % Mean Exploit % Mean Explore 

2 

4 9* 10.15 9* 9.00 9* 9.95 9* 10.0 9 9.00 9* 9.00 96.36 3.64 

5 12 13.81 11* 11.53 11* 12.23 11* 11.80 11* 11.43 11* 11.33 55.14 44.86 

6 13 15.11 14 14.50 12* 13.78 13 14.20 13 14.60 13 14.33 53.49 46.51 

7 15* 16.94 15* 15.17 15* 16.62 14* 15.60 15* 15.07 15* 15.05 52.71 47.29 

8 15* 17.57 15* 16.00 15* 16.92 15* 15.80 15* 15.70 15* 15.90 40.88 59.12 

9 17 19.38 15* 16.43 16 18.31 16 17.20 15* 16.23 15* 15.03 41.46 58.54 

10 17 19.78 16* 17.30 17 18.12 17 17.80 16* 17.40 16* 17.37 37.02 62.98 

11 17 20.16 17 17.70 - - 18 18.60 16* 17.73 16* 17.67 36.77 63.23 

12 18 21.34 16* 17.93 - - 18 18.80 17 18.10 17 17.80 37.14 62.86 

3 

5 39 41.37 41 43.17 41 42.20 38* 39.20 38* 42.53 38* 42.37 61.59 38.41 

6 45 46.76 33* 38.30 45 46.51 43 44.20 33* 38.87 33* 38.43 55.86 44.14 

7 50 52.20 48* 50.43 48* 51.12 48* 50.40 50 50.53 49 50.00 40.27 59.73 

8 54 56.76 52 53.83 50* 54.86 53 54.80 52 53.17 52 53.33 38.39 61.61 

9 58 60.30 56 57.77 59 60.21 58 59.80 56 57.77 55* 57.50 35.01 64.99 

10 62 63.95 59* 60.87 63 64.33 62 63.60 60 60.93 59* 60.73 34.09 65.91 

11 64 65.68 63 63.97 - - 66 68.20 62* 63.70 62* 63.57 32.17 67.83 

12 67 68.23 65* 66.83 - - 70 71.80 65* 66.70 65* 66.53 29.93 70.07 

4 

6 133 135.31 131 134.37 129* 133.98 132 134.20 130 133.63 130 134.10 50.50 49.50 

7 155 158.12 150 155.23 154 157.42 154 156.80 146* 155.77 152 156.03 40.22 59.78 

8 175 176.94 171* 175.60 178 179.70 173 174.80 171* 175.83 171* 175.50 33.85 66.15 

9 195 198.72 187 192.27 190 194.13 195 197.80 187 190.33 156* 189.60 31.76 68.24 

10 210 212.71 206 219.07 214 212.21 211 212.20 205* 208.80 207 208.43 27.20 72.80 

11 222 226.59 221 224.27 - - 229 231.00 221* 224.12 221* 223.43 24.65 75.35 

12 244 248.97 237 239.83 - - 253 255.80 236 239.29 235* 237.83 22.41 77.59 

Entries with * indicate best sizes, entries in bold indicate best mean sizes and entries with ‘– ‘indicate ‘Not Available’  
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Table 4.4  CA(N; t, v7) 

t v 

PSTG (Ahmed, 

Zamli et al. 2012) 

DPSO  (Wu, Nie 

et al. 2015) 

APSO 

(Mahmoud and 

Ahmed 2015) 

CS (Ahmed, 

Abdulsamad et 

al. 2015) 

Original TLBO ATLBO 

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean 
% Mean 

Exploit 

% 

Mean 

Explore 

2 

2 6* 6.82 7 7.00 6* 6.73 6* 6.80 7 7.00 7 7.00 50.87 49.13 

3 15 15.23 14* 15.00 15 15.56 15 16.20 15 15.10 14* 14.93 51.60 48.40 

4 26 27.22 24 25.33 25 26.36 25 26.40 24 25.27 23* 25.17 57.74 42.26 

5 37 38.14 34* 35.47 35 37.92 37 38.60 34* 35.43 34* 35.47 63.82 36.18 

6 - - 47* 49.23 - - - - 47* 48.91 47* 48.80 70.29 29.71 

7 - - 64* 66.37 - - - - 65 66.21 64* 66.10 68.82 31.18 

3 

2 13 13.61 15 15.06 15 15.80 12* 13.80 15 15.12 15 15.12 48.42 51.58 

3 50 51.75 49 50.60 48* 51.12 49 51.60 49 50.38 48* 50.33 39.60 60.40 

4 116 118.13 112 115.27 118 120.41 117 118.40 112 115.37 111* 115.67 43.16 56.84 

5 225 227.21 216* 219.20 239 243.29 223 225.40 217 219.90 217 218.80 44.77 55.23 

6 - - 365* 370.57 - - - - 369 372.50 369 372.20 45.87 54.13 

7 - - 574* 577.67 - - - - 579 583.50 576 581.20 46.56 53.44 

4 

2 29 31.49 34 34.00 30 31.34 27* 29.60 31 33.70 31 33.68 46.04 53.96 

3 155 157.77 150* 154.73 153 155.20 155 156.80 151 155.25 150* 155.24 39.42 60.58 

4 487 489.91 472* 481.53 472* 478.90 487 490.20 480 485.53 478 484.69 39.90 60.10 

5 1176 1180.63 1148* 1155.63 1162 1169.94 1171 1175.20 1166 1173.17 1159 1173.40 40.14 59.86 

6 - - 2341* 2357.73 - - - - 2401 2406.35 2394 2404.25 40.47 59.53 

7 - - 4290* 4309.6 - - - - 4419 4421.40 4407 4417.60 37.38 62.62 

 

 

Entries with * indicate best sizes, entries in bold indicate best mean sizes and entries with ‘– ‘indicate ‘Not Available’  
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Table 4.5  CA(N; t, v10) 

t v 

PSTG 

(Ahmed, 

Zamli et al. 

2012) 

DPSO  (Wu, 

Nie et al. 2015) 

CS (Ahmed, 

Abdulsamad et 

al. 2015) 

Original TLBO ATLBO 

Best Mean Best Mean Best Mean Best Mean Best Mean 
%Mean 

Exploit 

%Mean 

Explore 

2 

4 - - 28* 29.20 - - 28* 28.73 28* 28.69 42.42 57.58 

5 45 48.31 42 43.67 45 47.8 41* 43.30 42 43.53 46.92 53.08 

6 - - 58* 59.23 - - 58* 59.47 58* 59.33 50.27 49.73 

3 

4 - - 141 143.70 - - 140* 142.57 140* 142.80 30.77 69.23 

5 287 298.00 273 276.20 297 299.20 273 275.70 272* 275.23 31.04 68.96 

6 - - 467 470.50 - - 467 470.47 466* 469.90 31.53 68.47 

4 

4 - - 664 667.00 - - 663 668.12 661* 664.06 25.68 74.32 

5 1716 1726.72 1618* 1620.80 1731 1740.20 1621 1621.80 1619 1620.91 22.32 77.68 

6 - - 3339 3342.50 - - 3338* 3343.81 3338* 3342.10 21.13 78.87 

 

 

 

 

Entries with * indicate best sizes, entries in bold indicate best mean sizes and entries with ‘– ‘indicate ‘Not Available’  
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Table 4.6  VCA(N; 2, 315, {C}) 

ID VCA 

PSTG (Ahmed, 

Zamli et al. 

2012) 

DPSO  (Wu, 

Nie et al. 

2015) 

ACS (Shiba, 

Tsuchiya et 

al. 2004) 

SA (Cohen, 

Colbourn et 

al. 2003) 

Original 

TLBO 
ATLBO 

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean 
%Mean 

Exploit 

%Mean 

Explore 

VCA1 Ø 19 20.92 18 18.63 19 - 16* - 19 19.67 18 18.60 31.30 68.70 

VCA2 CA(3, 33) 27* 27.50 27* 27.27 27* - 27* - 27* 27.33 27* 27.00 22.26 77.74 

VCA3 CA(3, 33)2 27* 27.94 27* 27.83 27* - 27* - 27* 27.47 27* 27.53 21.46 78.54 

VCA4 CA(3, 33)3 27* 28.13 27* 28.00 27* - 27* - 27* 27.93 27* 27.43 22.00 78.00 

VCA5 CA(3, 34) 30 31.47 27* 31.43 27* - 27* - 27* 32.73 27* 27.00 22.26 77.74 

VCA6 CA(3, 35) 38 39.83 38 40.93 38 - 33* - 38 40.97 38 40.60 16.25 83.75 

VCA7 CA(3, 36) 45 46.42 43 45.70 45 - 34* - 43 43.73 43 43.67 18.05 81.95 

VCA8 CA(3, 37) 49 51.68 47 49.87 48 - 41* - 49 50.03 47 49.83 17.96 82.04 

VCA9 CA(4, 34) 81* 82.21 81* 81.03 - - - - 81* 81.03 81* 81.03 7.44 92.56 

VCA10 CA(4, 35) 97 99.31 85* 94.50 - - - - 89 97.53 87 96.90 7.26 92.74 

VCA11 CA(4, 37) 158 160.31 152* 156.83 - - - - 153 156.51 152* 156.33 10.74 89.26 

 

 

 

Entries with * indicate best sizes, entries in bold indicate best mean sizes and entries with ‘– ‘indicate ‘Not Available’  
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Table 4.7  VCA(N; 3, 315, {C}) 

ID VCA 

PSTG (Ahmed, 

Zamli et al. 

2012) 

DPSO  (Wu, Nie 

et al. 2015) 

HSS (Alsewari 

and Zamli 2012) 

Original 

TLBO 
ATLBO 

Best Mean Best Mean Best Mean Best Mean Best Mean 
%Mean 

Exploit 

%Mean 

Explore 

VCA1 Ø 75 78.69 72* 73.97 75 75.00 73 74.47 73 73.60 24.64 75.36 

VCA2 CA(4, 34) 91 91.80 86 89.83 87 87.00 90 90.03 85* 89.23 20.36 79.64 

VCA3 CA(4, 34)2 91 92.21 88 90.77 90 90.00 86* 89.76 87 90.10 20.24 79.76 

VCA4 CA(4, 35) 114 117.30 107 111.17 112 112.00 106* 111.90 107 112.13 16.44 83.56 

VCA5 CA(4, 37) 159 162.23 152* 158.57 159 160.10 155 158.40 153 158.30 12.11 87.89 

VCA6 CA(4, 39) 195 199.28 193 196.00 199 199.80 190 193.40 189* 193.29 11.15 88.85 

VCA7 CA(4, 311) 226 230.64 225* 227.50 242 243.00 226 229.51 225* 227.48 10.01 89.99 

 

 

 

 

 

 

Entries with * indicate best sizes, entries in bold indicate best mean sizes and entries with ‘– ‘indicate ‘Not Available’  
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Table 4.8  VCA(N; 2, 43 53 62, {C}) 

ID CA 

PSTG 

(Ahmed, 

Zamli et al. 

2012) 

DPSO  (Wu, 

Nie et al. 

2015) 

HSS (Alsewari 

and Zamli 

2012) 

ACS (Shiba, 

Tsuchiya et al. 

2004) 

SA (Cohen, 

Colbourn et 

al. 2003) 

Original 

TLBO 
ATLBO 

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean 
%Mean 

Exploit 

%Mean 

Explore 

VCA1 Ø 42 43.60 40 42.30 42 43.50 41 - 36* - 40 42.03 39 41.63 43.47 56.53 

VCA2 CA(3, 43) 64* 65.50 64* 64.00 64* 64.00 64* - 64* - 64* 64.03 64* 64.00 31.11 68.89 

VCA3 
CA(3, 43 

52) 
124 126.60 119 124.70 116 120.90 104 - 100* - 121 125.67 122 124.50 18.31 81.69 

VCA4 
CA(3, 43), 

CA(3, 53) 
125* 127.90 125* 125.00 125* 125.00 125* - 125* - 125* 125.00 125* 125.00 15.88 84.12 

VCA5 
CA(3, 43 

53 61) 
206 210.20 203 207.50 212 214.00 201 - 171* - 203 208.77 203 208.68 14.42 85.58 

VCA6 

CA(3, 43), 

CA(4,53 

61) 

750* 755.70 750* 750.80 750* 750.00 - - - - 750* 750.00 750* 750.00 12.70 87.30 

VCA7 
CA(4, 43 

52) 
472 478.10 440* 450.60 453 454.3 - - - - 459 466.70 451 459.10 6.52 93.48 

 

 
Entries with * indicate best sizes, entries in bold indicate best mean sizes and entries with ‘– ‘indicate ‘Not Available’  
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Figure 4.3 Mean Exploration and Exploitation Percentage of ATLBO for Table 4.3 
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Figure 4.4 Mean Exploration and Exploitation Percentage of ATLBO for Table 4.4 
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Figure 4.5 Mean Exploration and Exploitation Percentage of ATLBO for Table 4.5 
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Figure 4.6 Mean Exploration and Exploitation Percentage of ATLBO for Table 4.6 

 

 

Figure 4.7 Mean Exploration and Exploitation Percentage of ATLBO for Table 4.7 
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Figure 4.8 Mean Exploration and Exploitation Percentage of ATLBO for Table 4.8 

 

 

Table 4.9 Wilcoxon Rank-Sum Test for Table 4.2 

Pair 

Comparison 

p-value in 

ascending order 

Bonferroni-Holm Correction p holm 

(95% confidence level) 

Bonferroni-Holm 

Correction p holm (90% 

confidence level) 

ATLBO vs 

TLBO 
0.0215 

p holm = 0.05, p-value < p holm,Reject 

Ho 

p holm = 0.10, p-value 

< p holm, Reject Ho 

 

Table 4.10 Wilcoxon Rank-Sum Test for Table 4.3 

Pair 

Comparison 

p-value in 

ascending order 

Bonferroni-Holm Correction p holm 

(95% confidence level) 

Bonferroni-Holm 

Correction p holm (90% 

confidence level) 

ATLBO vs 

PSTG 
0.0000 

p holm = 0.0125, p-value < p holm, 

Reject Ho 

p holm = 0.025, p-

value < p holm, Reject Ho 

ATLBO vs 

CS 
0.0005 

p holm = 0.016667, p-value < p holm, 

Reject Ho 

p holm = 0. 

0.033333, p-value < p 

holm, Reject Ho 

ATLBO vs 

DPSO 
0.0005 

p holm = 0.025, p-value < p holm, 

Reject Ho 

p holm = 0.05, p-

value < p holm, Reject Ho 

ATLBO vs 

TLBO 
0.0025 

p holm = 0.05, p-value < p holm, 

Reject Ho 

p holm = 0.10, p-

value < p holm, Reject Ho 

Owing to incomplete sample (i.e., with one or more NA entries), the contribution APSO are ignored 
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Table 4.11  Wilcoxon Rank-Sum Test for Table 4.4  

Pair 

Comparison 

p-value in 

ascending order 

Bonferroni-Holm Correction p holm 

(95% confidence level) 

Bonferroni-Holm Correction 

p holm (90% confidence 

level) 

ATLBO vs 

TLBO 
0.017 

p holm = 0.025, p-value < p holm, 

Reject Ho 

p holm = 0.02, p-value < p 

holm, Reject Ho 

ATLBO vs 

DPSO 
0.1025 

p holm = 0.05, p-value > p holm, Cannot 

Reject Ho 

p holm = 0.10, p-value > p 

holm,  Cannot Reject Ho 

Owing to incomplete sample (i.e., with one or more NA entries), the contributions of PSTG, CS and 

APSO are ignored 

 

 

 

Table 4.12  Wilcoxon Rank-Sum Test for Table 4.5  

Pair 

comparison 

p-value in 

ascending order 

Bonferroni-Holm correction p holm 

(95% confidence level) 

Bonferroni-Holm 

correction p holm (90% 

confidence level) 

ATLBO vs 

DPSO 
0.0105 

p holm = 0.025, p-value < p holm, 

Reject Ho 

p holm = 0.05, p-value 

< p holm, Reject Ho 

ATLBO vs 

TLBO 
0.033 

p holm = 0.05 , p-value < p holm, 

Reject Ho 

p holm = 0.10, p-value 

< p holm, Reject Ho 

Owing to incomplete sample (i.e., with one or more NA entries), the contributions of PSTG and CS are 

ignored 

 

 

 

Table 4.13  Wilcoxon Rank-Sum Test for Table 4.6  

Pair 

comparison 

p-value in 

ascending order 

Bonferroni-Holm correction p holm 

(95% confidence level) 

Bonferroni-Holm 

correction p holm (90% 

confidence level) 

ATLBO vs 

TLBO 
0.004 

p holm = 0.016667, p-value < p holm, 

Reject Ho 

p holm = 0.033333, p-

value < p holm, Reject Ho 

ATLBO vs 

PSTG 
0.005 

p holm = 0.025 , p-value < p holm, 

Reject Ho 

p holm = 0.05 p-value 

< p holm, Reject Ho 

ATLBO vs 

DPSO 
0.0295 

p holm = 0.05 , p-value < p holm, 

Reject Ho 

p holm = 0.10, p-value 

< p holm, Reject Ho 

Owing to incomplete sample (i.e., with one or more NA entries), the contributions of ACS and SA are 

ignored 
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Table 4.14  Wilcoxon Rank-Sum Test for Table 4.7  

Pair 

comparison 

p-value in 

ascending order 

Bonferroni-Holm correction p holm 

(95% confidence level) 

Bonferroni-Holm 

correction p holm (90% 

confidence level) 

ATLBO vs 

PSTG 
0.009 

p holm = 0.0125, p-value < p holm, 

Reject Ho 

p holm = 0.025, p-value 

< p holm, Reject Ho 

ATLBO vs 

HSS 
0.009 

p holm = 0.016667, p-value < p holm, 

Reject Ho 

p holm = 0.033333, p-

value < p holm, Reject Ho 

ATLBO vs 

TLBO 
0.118 

p holm = 0.025 , p-value > p holm, 

Cannot Reject Ho 

p holm = 0.05 p-value > 

p holm, Cannot Reject Ho 

ATLBO vs 

DPSO 
0.199 

p holm = 0.05 , p-value > p holm, 

Cannot Reject Ho 

p holm = 0.10, p-value 

> p holm, Cannot Reject Ho 

 

Table 4.15  Wilcoxon Rank-Sum Test for Table 4.8 

Pair 

comparison 

p-value in 

ascending order 

Bonferroni-Holm correction p holm 

(95% confidence level) 

Bonferroni-Holm correction 

pholm (90% confidence level) 

ATLBO vs 

PSTG 
0.009 

p holm = 0.0125, p-value < p holm, 

Reject Ho 

p holm = 0.025, p-value < 

p holm, Reject Ho 

ATLBO vs 

TLBO 
0.0215 

p holm = 0.016667, p-value > p 

holm, Cannot Reject Ho 

p holm = 0.033333, p-

value < p holm, Reject Ho 

ATLBO vs 

DPSO 
0.343 

p holm = 0.025 , p-value > p holm, 

Cannot Reject Ho 

p holm = 0.05 p-value > p 

holm, Cannot Reject Ho 

ATLBO vs 

HSS 
0.50 

p holm = 0.05 , p-value > p holm, 

Cannot Reject Ho 

p holm = 0.10, p-value > 

p holm, Cannot Reject Ho 

Owing to incomplete sample (i.e., with one or more NA entries), the contributions of ACS and SA are 

ignored 

Given the lack of published results, few observations can be made for PSTG and 

CS in Table 4.5. ATLBO offers the best results in almost all configurations in terms of 

the best test sizes with the exception of CA(N; 2, 510) and CA(N; 4, 510). As the runner 

up, TLBO (i.e., 5 out of 9 best cell entries) outperforms DPSO (i.e., 3 out of 9 best cell 

entries). ATLBO outperforms both DPSO and TLBO with 5 out 9 best entries in terms 

of the mean test sizes. Both DPSO and TLBO share the same number of best mean test 

sizes (i.e., 2 out of 9 best cell entries). The exploration and exploitation of ATLBO in 

Figure 4.5 (a) till (c), show that increasing the values v for the same interaction strength 

t and parameters p causes a small increase in exploitation. Increasing t tends to cause 

ATLBO to increase exploration, which is similar to an earlier case.  

Table 4.6 indicates that SA outperforms all other strategies in terms of the best 

test sizes with 8 out of 11 best cell entries. DPSO is the runner up with 7 best cell entries. 

Except SA and DPSO, ATLBO outperforms all other strategies with 6 best cells. TLBO 

outperforms PSTG and ACS with 5 best cells. PSTG and ACS perform the worst with 4 
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cells. ATLBO outperforms all other strategies with 8 out of 11 best cells in terms of the 

mean test sizes. Although DPSO has the best results, it has a poorer mean value compared 

with ATLBO with 3 out of 11 cells. TLBO offers 2 cells with the best mean test sizes. 

PSTG has one entry with the best mean value. Given the lack of published results, 

information cannot be inferred for ACS and SA. Figure 4.6 shows that increasing sub-

configurations causes ATLBO to further increase exploration than exploitation for the 

fixed VCA(N; 2, 315, {C}} with sub-configurations {C}. 

Both DPSO and ATLBO outperform all other strategies in Table 4.7 in terms of 

the best test sizes with 3 out of 7 cell entries, followed by TLBO with 2 cells. HSS and 

PSTG perform the worst without a single best cell entry. ATLBO outperforms all existing 

strategies with 4 out 7 entries in terms of the mean test sizes. TLBO, HSS and DPSO 

offer only 1 best cell entry. PSTG performs the poorest with no best mean value. The 

chart in Figure 4.7 shows that increasing sub-configurations also tend to increase 

exploration further for the fixed VCA(N; 2, 315, {C}} with sub-configurations {C}. 

SA outperforms all other strategies in all VCA configurations in terms of the best 

test sizes with 5 entries, as shown in Table 4.8. DPSO follows with 4 best cell entries, 

which performs better than ATLBO, TLB, HSS and PSTG (all with three cell entries, 

respectively). ACS has the poorest performance with 2 cell entries. DPSO and HSS yield 

the best results with 4 out of 7 entries for the mean test sizes. ATLBO is the runner up 

with 3 cell entries. TLBO has 2 best entries, whereas PSTG has none. Information cannot 

be inferred for ACS and SA because of the lack of published results. Finally, the chart in 

Figure 4.8 shows consistent observation noted for the last two findings. In particular, 

increasing sub-configurations {C} also tend to increase exploration further for the fixed 

VCA(N; 2, 43 53 62, {C}). 

Considering both comparisons (best and mean test suite sizes), ATLBO offers 

competitive performance against existing strategies (with the closest competitors are 

DPSO and SA). Despite its competitive performance, there appears to be some overhead 

for ATLBO as far as execution time is concerned, that is, in order to accommodate the 

processes related to fuzzy inference rules (i.e., calculating the quality measure (𝑄𝑚), 

intensification measure (𝐼𝑚), and diversification measure (𝐷𝑚)).  
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Recall that this work modifies the sequential nature of exploration and 

exploitation within TLBO. Specifically, this work enhances the original TLBO with the 

adaptive selection – local search and global search are decided at run-time based on the 

progress of the search. In fact, the core feature of TLBO has been maintained, that is, the 

proposed ATLBO is still parameter-free. Typically, existing meta-heuristics adopts 

specific control parameters and requires explicit (problem domain) tuning to ensure a 

balance between exploration and exploitation. Explicit tuning is unnecessary for ATLBO 

because the balance between exploration and exploitation is adaptively handled by the 

implemented fuzzy inference system. 

The search pattern of the original TLBO is straightforward, wherein both 

exploration and exploitation are always at 50%. However, to understand the searching 

pattern of ATLBO, there is a need to track the mean percentage of exploration and 

exploitation taking the mixed strength t-way test generation problem as the case study. 

Within the problem of generating mixed t-way test suites, VCA(N; t, vp, {C}), four main 

variables of interest exist (i.e., interaction strength t, values v, parameter p, and sub-

configuration {C}). Based on the conducted experiments, the following conclusions have 

been derived. 

• For small value of p, t and v, ATLBO favours exploitation over exploration 

(i.e., with typical values p ≤ 6, t ≤ 3, v ≤ 2).  

• For a fixed t and v, when the parameter p increases, ATLBO favours 

exploration over exploitation. 

• For a fixed p and v, when the interaction strength t increases, ATLBO favours 

exploration over exploitation. 

• For a fixed p and t, when the value v increases, ATLBO favours exploration 

over exploitation. However, the rate of exploration increment is smaller as 

compared to the effect of increasing p or t. 

• Given VCA(N; t, vp, {C}), and for a fixed p, v, and t, when {C} increases, 

ATLBO favours exploration over exploitation.  
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As the search space grows (i.e. horizontally with the increase of p and t, or 

vertically with the increase of v), ATLBO needs to explore more promising regions to 

obtain good quality solutions. The findings of this work are consistent with intuition 

indicating the effectiveness of the developed fuzzy rules. 

ATLBO-based strategy demonstrated acceptable statistical dominance against the 

competing state-of-the-art strategies as shown in Tables 4.9-4.15 by the conducted 

statistical tests for all the obtained test sizes. Statistical analysis of Table 4.2 presented in 

Table 4.9 clearly indicates statistical significance of ATLBO-based strategy in 

performance against the original TLBO at both values of α (i.e., 95% confidence level 

and 90% confidence level).  

According to the statistical analysis of Table 4.3 in Table 4.10, ATLBO is 

statistically significant than PSTG, CS, DPSO and TLBO while ignoring the contribution 

of APSO owing to missing results. Table 4.11 shows the statistical analysis of Table 4.4, 

indicating that statistically, ATLBO has better performance than TLBO-based strategy, 

whereas similar performance to DPSO-based strategy. Here, the contributions of PSTG, 

CS and APSO are ignored due to the unavailability of complete samples for these 

strategies. Referring to the statistical analysis of Table 4.5 in Table 4.12, ATLBO is 

statistically better than DPSO and TLBO at both 95% confidence level and 90% 

confidence level, whereas the contributions of PSTG and CS are excluded because of the 

incomplete samples. At both 95% confidence level and 90% confidence level, ATLBO-

based strategy has statistically significant performance than PSTG, TLBO and DPSO 

according to statistical analysis of Table 4.6 in Table 4.13. ATLBO has outperformed 

PSTG and HSS statistically at both 95% confidence level and 90% confidence level, 

whereas showed similar performance against TLBO and DPSO (see statistical analysis 

of Table 4.7 in Table 4.14). Statistical analysis of Table 4.8 in Table 4.15 indicates that 

statistically ATLBO has better performance than PSTG and TLBO at 90% confidence 

level, whereas it has similar performance to other strategies at both 95% and 90% 

confidence levels.  
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4.6 Threats to Validity  

Many threats to validities could be associated with the experimental studies. Few 

threats have been identified in this research and subsequently elaborated so as to mitigate 

their effects on the obtained results.  

First, the choice of the benchmarks represents an essential threat. The 

experimental benchmarks adopted in this work are from other well-known studies and 

experiments in the literature. However, it cannot be guaranteed that these benchmarks 

represent the actual software configurations in real world. Nevertheless, the benchmarks 

are derived from configurations of different software programs. 

Second, a comparison with other strategies is another threat. Many strategies and 

tools for generating the t-way test suite exist. Given the unavailability of these strategies 

for implementation within the experimental environment set up for this work, ALTBO 

cannot be compared with all the available strategies. To eliminate this threat, recently 

published results in a reputable journal for those highest related strategies which are 

closed to ALTBO ( e.g., (Wu, Nie et al. 2015)) have chosen. In the case of this work, the 

tuning of the parameters of those strategies is out of the control. Nevertheless, the 

comparison here is valid because the published results were obtained with the best tuning 

parameters.  

Third, the number of fitness function evaluations can be considered a threat. The 

original TLBO has twice as much fitness function evaluations as ATLBO, which can also 

be a significant threat to the experimentations, rendering unfair comparisons. Both the 

teacher and student phase processes are serially executed per iteration in the original 

TLBO. In contrast, only one process is selected per iteration in ATLBO based on the 

adaptive measure of the searching process. Given that both of the implementations have 

been done for this research, straightforwardly these threats can be eliminated. To be 

specific, it can be ensured that the number of iterations within TLBO is always half of 

that of the ATLBO. 

Fourth, the randomness of the search operators within the meta-heuristic 

strategies can also be an issue. Here, the best test size results can potentially be obtained 

at this point by chance and only once out of many runs. Reporting and comparing only 

the best test size results might not provide a fair indication of the size performance of a 
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particular strategy. Thus, this work also relied on the mean results rather than merely 

focusing on the best test size results. 

Fifth, the choice of fuzzy implementation is another important threat. Using 

different fuzzy implementation and inference system may lead to different results (with 

different membership functions). It is recognized that at least two different fuzzy 

inference systems variations exist in the literature (e.g., the Mamdani-type versus 

Sugeno-type fuzzy inference systems). Previous studies that adopt fuzzy systems to 

control various parameters within meta-heuristic algorithm apply the Mamdani-type 

inference utilizing the centre of gravity for the output defuzzification (Mamdani and 

Assilian 1975). In fact, most studies often employ either trapezoidal (i.e., a variant of 

triangular) or Gaussian membership functions. In one such study by Valdez et al. (Valdez, 

Melin et al. 2010), it was reported that empirical analysis using both types of membership 

functions concluded that trapezoidal membership functions give better performance over 

Gaussian ones. Hence, this work adopts the Mamdani type fuzzy inference system with 

the centre of gravity and trapezoidal membership functions to obtain a suitable 

performance. 

Sixth, tuning of the fuzzy inference system can also be an issue. For example, 

triangular or Gaussian membership functions can be used instead of trapezoid 

membership functions. Similarly, the centre of gravity (COG) defuzzification method can 

be replaced with the maximum method. The performance of the fuzzy inference system 

can also be enhanced by changing the rule premises or actions, changing the centers of 

membership functions for input and/or output linguistic variables, or adding additional 

linguistic terms to the fuzzy variables. However, the most widely adopted design choices 

are selected and used successfully so as to propose a functional and efficient fuzzy 

inference system.   

Lastly, the choices of efficiency and performance metrics can also pose as threats. 

Other metrics that evaluate the efficiency and performance utilizing the internal algorithm 

structure can exist. However, this work adopts the generated size of mixed strength t-way 

test suites for efficiency and generation time for performance because these metrics are 

well-known in the literature (i.e., for mixed strength t-way test suite generation).   
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4.7 Chapter Summary 

To sum up, this chapter has provided the overall evaluation process of the ATLBO 

for the optimal generation of mixed strength t-way test suites. In the beginning, the 

chapter has elaborated how the experimental setup is laid out to achieve the predefined 

goals for the effective evaluation of ATLBO. In the three-part experiments, the first part 

adopts a set of CAs and VCAs to highlight the time and size performance of ATLBO and 

the original TLBO. The second part benchmarks the generated test suite sizes of ATLBO 

against the results obtained from the implementation of the original TLBO, as well as 

against the results of other meta-heuristic-based strategies adopted from a high-impact 

journal paper. The third part presents the statistical analysis of all the obtained results 

with 95% confidence level and 90% confidence level utilizing the Wilcoxon Rank Sum 

test. The chapter furnishes details about the control parameters for all the competing 

meta-heuristic-based strategies and the experimental platform.  

The chapter then discusses the performance of ATLBO based on the experimental 

observations. Regarding the first part of the experiments, ATLBO has mostly 

outperformed TLBO in terms of the best and mean test suite sizes. However, TLBO 

outperformed ATLBO in terms of test suite generation time. In the second part of the 

experiments, ATLBO showed competitive performance against the two meta-heuristic 

based strategies (DPSO and SA), whereas outperformed all other referenced strategies in 

terms of test suite sizes. The tendency of ATLBO towards exploration and exploitation 

is also tracked. It is observed that ATLBO favours exploration with the increase in p, t 

and sub-configurations for VCAs. The Wilcoxon Rank Sum tests of the obtained results 

showed significant statistical performance of ATLBO against its counterparts. The null 

hypothesis was favoured in most tests for ATLBO against all other strategies except only 

DPSO. Finally, the chapter identifies the threats to validities encountered by the 

experiments. The threats include the choice of benchmarks, comparison with the selected 

strategies, twice fitness function evaluations per iteration in TLBO compared to once in 

ATLBO, randomness of search operators, choice of fuzzy implementation, tuning the 

inference system and the choices of efficiency and performance metrics. Detailed steps 

are undertaken to reduce the effects of all the threats (total seven) on the results. After 

completing the evaluation process of the ATLBO based on the experimental results, the 

next chapter concludes this work and provides possible future directions.  
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CHAPTER 5 

 

 

CONCLUSION AND FUTURE WORK 

The previous chapter has gauged performance and effectiveness of ATLBO on a 

number of experiments against the original TLBO and other meta-heuristic-based t-way 

test suite generation strategies. Based on all the presented materials in the earlier chapters, 

this chapter summarizes the impact of the proposed ATLBO algorithm for the problem 

of generating mixed strength t-way test suite with directions for future work.  

5.1 Objectives Revisited  

The aim of this research work was to design, implement and evaluate ATLBO for 

addressing the problem of mixed strength t-way test suite generation. The objectives of 

this research effort for fulfilling the stated aim were as follow: 

• To design a new variant of TLBO called ATLBO based on a Mamdani-type fuzzy 

inference system for adaptively selecting exploitation (i.e., local search) and 

exploration (i.e., global search). 

• To implement ATLBO for addressing the problem of generating both uniform 

and mixed strength t-way test suites.  

• To evaluate the performance of ATLBO in terms of generated test suite sizes 

against the original TLBO and other meta-heuristic algorithms. 

Addressing the first objective, a new improved variant of TLBO called adaptive 

TLBO (ATLBO) is designed. A Mamdani-type fuzzy inference system is introduced in 

ATLBO so as to further improve efficiency and stability in search of original TLBO. 

Using this fuzzy system, ATLBO summons, based on the current search requirement, 
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either teacher phase (i.e., global search) or learner phase (i.e., local search) per iteration 

rather than both as in original TLBO.  

The proposed Mamdani-type fuzzy inference system of ATLBO has three input 

parameters: Quality Measure (𝑄𝑚), Intensification Measure (𝐼𝑚), and Diversification 

Measure (𝐷𝑚) and one output parameter Selection. Trapezoidal membership functions 

are used to fuzzify these linguistic variables. The rule based of the system is composed 

of four fuzzy linguistic rules with max-min fuzzy inference method. Finally, the center 

of gravity (COG) is used as the defuzzification method to obtain the Selection as a single 

value crisp output. This value acts as an intermittent switch in ATLBO that decides when 

to perform global search or when to perform local search.  

The successful implementation of ATLBO for mixed strength test suite 

generation satisfies the key aspect of the second objective. ATLBO offers the first more 

efficient and completely adaptive strategy for the problem of generating mixed strength 

test suite with interaction strength support of t = 4. The ATLBO strategy accepts test 

configurations for software-under-test in the form of covering array notation as input. 

The strategy automatically minimizes the test suite after processing the test specification 

requirement. 

The ATLBO strategy incorporates an efficient interaction elements generation 

algorithm in order to generate and search for the required interaction elements. The 

algorithm adopts hash map approach instead of the array list. With this approach, the 

algorithm is able to generate interaction elements based on the given number of input 

parameters, their values and interaction strength faster. Moreover, searching for the 

interaction elements is now also faster owing to the implementation of the algorithm in 

the proposed strategy. 

Concerning the final objective, ATLBO has been successfully subjected to a wide 

range of well-known benchmarking experiments so as to highlight its performance for 

optimal test suite generation. The evaluation against existing state-of-the-art meta-

heuristic based strategies has seamlessly revealed the size performance of ATLBO. In the 

experimentation, the results of ATLBO are successfully compared against the results of 

other meta-heuristic algorithms as far as test suite sizes are concerned. Experimental 
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results of the ATLBO have been encouraging as it has obtained several new minimal test 

suite sizes. 

Considering interaction test configurations represented using CAs and VCAs with 

higher interaction strength t ≥ 2, the ATLBO often generates minimal test suite sizes. For 

uniform test suites, ATLBO obtains 70.37% (i.e., 38 out of total 54 entries) best sizes and 

61.11% (i.e., 33 out of total 54 entries) mean best sizes for all the benchmarked 

experiments reported in Table 4.2 and Tables 4.3-4.8. In the case of mixed strength test 

configurations represented using VCAs, the ATLBO strategy consistently produces best 

optimal test suite sizes. For mixed strength test suites, ATLBO obtains 53.57% (i.e., 15 

out of total 28 entries) best sizes and 64.29% (i.e., 18 out of total 28 entries) mean best 

sizes (see Table 4.2 and Tables 4.6-4.8). Overall, ATLBO generates 53.42% (i.e., 39 out 

of total 73 entries) new mean best sizes as provided in Table 4.2 and Tables 4.3-4.8. For 

each experiment, the distribution pattern of ATLBO’s exploration and exploitation 

operations is reported to determine how much it favors each operation. Statistical 

analyses reported in Tables 4.9-4.15 confirm the strong statistical performance of 

ATLBO against most existing strategies for t-way test suite generation. Based on these 

results, this research work concludes that the proposed ATLBO algorithm is another 

useful alternative for addressing the problem of generating both uniform and mixed 

strength t-way test suites. 

In essence, the main focus of this thesis is to design ATLBO and combine it with 

the interaction elements generation algorithm so as to optimize mixed strength interaction 

test suites. ATLBO with its Mamdani-type fuzzy inference system successfully improves 

the efficiency and stability in search of its predecessor i.e., TLBO. The implementation 

of ATLBO is successful for generating optimal uniform and mixed strength t-way test 

suites for highly configurable software systems.  

5.2 Contributions 

In a nutshell, the earlier discussion relates the main contribution of ATLBO to its 

ability for generating minimal uniform and mixed strength t-way test suites. The research 

contributions of this work can be highlighted from different aspects as follows: 



 

112 

• ATLBO as an improved variant of original TLBO employs its Mamdani-type 

fuzzy inference system to adaptively select either exploration or exploitation, 

and hence, explores the search space more efficiently for optimal test suites. 

• ATLBO introduces the first parameter-free meta-heuristic strategy in the 

literature for addressing the problem of generating mixed strength test suites 

with higher interaction strength t = 4. 

• ATLBO contributes to the benchmarking test configurations available in the 

published literature with 39 new mean best test suite sizes.  

5.3 Future Work 

Given the competitive performance of ATLBO for mixed strength test suites, its 

adaptation for the generation of other types of mathematical objects is considered as the 

scope for future work. Specifically, the applicability of ATLBO will be investigated for 

the generation of cost-aware coverings arrays (CTCAs), constrained covering arrays 

(CCAs) and sequence covering arrays (SCAs). 

Implementing ATLBO for CTCAs is one area for exploration in the future. 

CTCAs are recently introduced t-way testing objects that represent an interesting and 

novel research direction. The ATLBO strategy can be modified to compute CTCA for a 

given cost function associated with the CA. The fitness function, in this case, will be 

comprised of two objectives, namely covering all required t-way interaction elements and 

minimizing the cost function. Further minimization can be achieved as CTCAs ensure 

the accumulation of test cases with minimum possible costly interaction elements. 

The generation of CCAs particularly for software product line will be undertaken 

as a future endeavor. Constrained interaction testing is gaining much research attention 

because most of the modern day software systems are subjected to constraints. A naive 

way of handling constraints is to exclude them from the final test suites. ATLBO will be 

combined with Choco Solver (Prud’homme, Fages et al. 2017) for handling constraints. 

Incorporating support for generating SCAs via ATLBO could be another area for 

exploration. Sequences of input parameters in some domain implementations such as 
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Graphical User Interfaces (GUIs) do matter. Therefore, it is desirable that the proposed 

algorithm be able to generate sequence-based t-way test suites.     

Currently, ATLBO only supports automated test suite generation. The addition of 

automated test execution can further improve the applicability of ATLBO. Test cases 

generated by ATLBO can be automatically translated into the actual executable form 

using some scripting language. The burden of test engineers of dealing with complex 

manual test execution can be alleviated by incorporating this useful feature in ATLBO.  

Finally, the applicability of ATLBO with its powerful search ability will be 

investigated for other related optimization problems. Some of these problems include 

wireless sensor network localization and generation of Substitution boxes (S-boxes) in 

contemporary symmetric ciphers. Similarly, ATLBO will be used for solving search- 

based optimization problems in software engineering such as software module clustering 

problem, software effort estimation models and software redundancy reduction.    
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