

AN ENHANCED ANDROID BOTNET

DETECTION APPROACH USING FEATURE

REFINEMENT

SHAHID ANWAR

DOCTOR OF PHILOSOPHY

(COPUTER SCIENCE)

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : SHAHID ANWAR

Date of Birth : DECEMBER 25, 1984

Title : AN ENHANCED ANDROID BOTNET DETECTION

 APPROACH USING FEATURE REFINEMENT

Academic Session : SEMESTER 2, 2018/2019

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official Secret

Act 1997) *

 RESTRICTED (Contains restricted information as specified by the

organization where research was done) *

 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserve the right as follows:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies for the purpose

of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

(Student’s Signature)

WM1798073

New IC/Passport Number

Date:

(Supervisor’s Signature)

Assoc. Prof. Dr. Mohamad Fadli Zolkipli

Name of Supervisor

Date:

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis, and in my opinion, this thesis is adequate

in terms of scope and quality for the award of the degree of Doctor of Philosophy

(Computer Science).

 (Supervisor’s Signature)

Full Name : Ts Dr MOHAMAD FADLI ZOLKIPLI

Position : Associate Professor, Deputy Dean Academic

Date:

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citation which have been duly acknowledged. I also declare that it has not

been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang or any other institutions.

 (Student’s Signature)

Full Name : SHAHID ANWAR

ID Number : PCC13006

Date:

AN ENHANCED ANDROID BOTNET DETECTION APPROACH USING

FEATURE REFINEMENT

SHAHID ANWAR

Thesis submitted in fulfilment of the requirements

for the award of the degree of

Doctor of Philosophy

(Computer Science)

Faculty of Computer Systems & Software Engineering

UNIVERSITI MALAYSIA PAHANG

APRIL 2019

i

DEDICATION

“And We have not sent you, [O Muhammad], except as a mercy to the

worlds."

 (Quran: 21:107)

DEDICATED TO RAHMAT-UL LIL-ALAMEEN (SAL-LAL-LAHO ALEHI WA ALIHI
WASALLAM)

http://www.islamicity.com/QuranSearch/?ref=21:106-21:107

ii

ACKNOWLEDGEMENT

First and foremost, I would like to express my deepest gratitude to my supervisors TS.

Dr. Mohamad Fadli Zolkipli and Prof Dr. Jasni Mohamad Zain who have always

supported, encouraged, and guided me throughout my Ph.D. journey.

I would like to acknowledge my collaborators for their constant support and invaluable

inputs to my research. Special thanks to my sister Dr. Zakira Inayat (UET Peshawar) for

supporting, motivating, and collaborating with me throughout these years. She offered a

lot of help and advice on my research as well as wonderful friendship. I would like to say

thanks to Dr. Nawsher Khan (King Khalid University, Abha, KSA) for supporting me

during my initial days in Malaysia. I am grateful to my present and former FSKKP Lab

members for their accompany and helpful discussions from time to time, especially Dr.

Julius Beneoluchi Odili (Anchor University Lagos, Nigeria), Dr Hasneeza Liza Zakaria

(Universiti Malaysia Perlis, Malaysia), Dr. Mushtaq Ali, Dr. Abid Hussanan and Dr. Aws

Naser Jaber. My appreciation also goes to FSKKP staff members, for helping me with

administrative matters during these years.

On a special note, I thank my dearest parents, siblings, and friends for their endless,

unconditional love and tremendous support. Finally, I would like to acknowledge

research grant RDU120702 and UMP GRS GRS140392 for supporting this research.

Above all, I appreciate the almighty Allah for giving me life, wisdom, and good health to

embark on this PhD journey and to complete it successfully.

iii

ABSTRAK

Sejak kebelakangan ini, botnet telah mula tersebar dalam telefon pintar dan peranti mudah

alih selepas memberi kesan kepada komputer peribadi. Botnet adalah rangkaian peranti

mudah alih yang telah dijangkiti seperti telefon pintar, jam tangan pintar dan notepad,

yang dikawal oleh bot-herder (botmaster). Botnet yang mensasarkan telefon pintar dan

peranti mudah alih yang menggunakan sistem pengendalian Android adalah kerana ciri-

ciri mereka yang sangat peribadi dan berkuasa. Akibatnya, botnet Android boleh

digunakan untuk memulakan pelbagai serangan terkoordinasi yang diselaraskan termasuk

e-mel spam, klik penipuan, perlombongan bitcoins, serangan distributed denial of service

yang menyebarkan malware dan banyak lagi. Untuk mengesan serangan botnet yang

menyebabkan kekacauan dan masalah besar kepada telefon pintar, pertamanya botnet

Android perlu dianalisis. Terdapat tiga jenis analisis botnet yang terkenal iaitu statik,

dinamik dan hibrid. Analisis statik mengkaji kod aplikasi dengan teliti, analisis denamik

mengkaji tingkah laku aplikasi botware, sementara analisis hybrid adalah gabungan

kedua-dua analisis tersebut. Walaupun analisis yang sedia ada telah memperoleh

ketepatan yang baik, tetapi penyerang sentiasa mencari cara baru untuk melangkau

pengesanan ketika melakukan aktiviti berbahaya. Tambahan pula teknik pengesanan

sedia ada hanya dapat mengesan aplikasi Android yang berniat jahat, sementara mereka

tidak dapat mengesan aplikasi botnet Android. Tujuan kajian ini adalah untuk

mencadangkan pendekatan analisis statik. Dengan menggunakan teknik pembelajaran

mesin untuk mengklasifikasikan botware dan aplikasi tulen. Klasifikasi ini dilakukan

berdasarkan botnet yang berkaitan dengan pola unik ciri tambahan seperti keizinan,

aktiviti, penerima broadcast, perkhidmatan dan panggilan API. Ciri-ciri ini dapat

mendedahkan maklumat sensitif yang disimpan pada peranti mudah alih Android.

Aplikasi Botware yang digunakan dalam kajian ini mengandungi 3535 sampel yang

diperoleh dari dataset Contagio dan Drebin serta aplikasi tulen yang mengandungi 3500

sampel. Hasil yang diperoleh menunjukkan bahawa dengan menggunakan ciri-ciri

tambahan, ketepatan pengesanan depat diperbaiki. Penilaian eksperimen berdasarkan

dataset standard menunjukkan bahwa pola unik yang dipilih dapat mencapai ketepatan

pengesanan yang tinggi dengan tingkat positif palsu yang rendah. Ujian eksperimen dan

statistik menunjukkan bahawa ketepatan 97.28% dicapai oleh pengkelasan Random

Forest machine yang berfungsi dengan baik berbanding dengan algoritma pengelasan

lain. Berdasarkan hasil ujian, pelbagai isu penyelidikan terbuka yang perlu ditangani

dalam kajian masa depan dapat diserlahkan.

iv

ABSTRACT

In recent years, the botnets have started to evolve in the smartphones and other mobile

devices after having an impact on the personal computers. A botnet is a network of

infected mobile devices such as smartphones, smart watches, notepads, which are

remotely controlled by the bot-herder (botmaster). The botnets targeting the smartphones

and mobile devices which are using Android operating system due to their highly personal

and powerful attributes. As a result, Android botnet can be used to initiate various

distributed coordinated attacks including spam emails, click frauds, bitcoins mining,

distributed denial of service attacks disseminating other malware and much more. In order

to detect botnet attacks which causes immense chaos and problems to smartphones, first

the Android botnet need to be analysed. There are three prominent types of botnet

analyses namely static, dynamic and hybrid. Static analysis examines the application code

thoroughly, dynamic analysis examines the behaviours of the botware applications, while

hybrid analysis is the combination of both of these analyses. Although the existing

analyses have been obtained a good accuracy, but the attackers find novel ways of

skipping the detection while performing harmful activities. Furthermore, the existing

detection techniques can detect only malicious Android applications, while they are

unable to detect the Android botnet applications. The aim of this study is to propose a

novel static analysis approach. That adopts machine learning techniques to classify

botware and benign applications. This classification is performed on the base of botnet

related unique patterns of additional requested features namely permissions, activities,

broadcast receivers, services and API calls. These features are able to disclose the

sensitive information stored on the Android mobile devices. The botware applications

used in this study containing 3535 samples were obtained from the Contagio and Drebin

datasets, as well as the benign applications containing 3500 samples. The obtained results

show that by using the additional features the detection accuracy improved. The

experimental evaluation based on real-world benchmark datasets shows that the selected

unique patterns can achieve high detection accuracy with low false positive rate. The

experimental and statistical tests show that 97.28% accuracy achieved by Random Forest

machine classifier, it performs well as compared to other classification algorithms. Based

on the test results, various open research issues which need to be addressed in future

studies are highlighted.

v

TABLE OF CONTENT

DEDICATION i

ACKNOWLEDGEMENT ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES x

LIST OF FIGURES xii

LIST OF ABBREVIATION xiv

CHAPTER 1 INTRODUCTION 1

1.1 Overview 1

1.2 Background 1

1.3 Motivation 3

1.4 Problem Statement 5

1.5 Research Goal and Objectives 6

1.6 Scope 7

1.7 Expected Contribution 8

1.8 Thesis Organisation 9

CHAPTER 2 LITERATURE REVIEW 12

2.1 Overview 12

2.2 Mobile Devices 12

2.3 Mobile Operating System 13

2.3.1 Android Operating System 14

2.3.2 Windows Operating System 15

2.3.3 iOS 15

vi

2.4 Android Application Components 16

2.4.1 Activity 16

2.4.2 Service 17

2.4.3 Broadcast Receiver 18

2.4.4 Content Provider 19

2.5 Android Security Model 19

2.5.1 Manifest Permissions 20

2.5.2 API Calls 23

2.6 Threats to Android Devices 24

2.6.1 Adware 24

2.6.2 Ransomware 24

2.6.3 Botnet 25

2.7 Overview of Android Botnet 25

2.7.1 Components of Android Botnet 26

2.7.2 Android Botnet Life Cycle 27

2.7.3 Android Botnet Timeline 29

2.8 Botnet Detection Approach 38

2.8.1 Static Detection Techniques 39

2.8.2 Dynamic Detection Techniques 48

2.8.3 Hybrid Detection Techniques 51

2.9 Machine Learning Classifiers 53

2.9.1 Support Vector Machine (SVM) 53

2.9.2 J48 54

2.9.3 Random Forest 55

2.9.4 Simple Logistic Regression (SLR) 55

2.9.5 Naïve Bayes 56

vii

2.10 Discussion 56

2.11 Summary 58

CHAPTER 3 AN ENHANCED ANDROID BOTNET DETECTION

APPROACH USING FEATURE REFINEMENT 59

3.1 Overview 59

3.2 The Proposed Approach 59

3.2.1 Characteristics of proposed approach 61

3.3 Components of proposed approach 61

3.3.1 Decompiler 63

3.3.2 Features Extractor 65

3.3.3 Smart Learner 69

3.3.4 Features Refining 73

3.3.5 Machine Learning Tools 77

3.4 Conclusion 79

CHAPTER 4 RESULTS AND DISCUSSION 80

4.1 Overview 80

4.2 Experimental Tools 80

4.2.1 Androguard 81

4.2.2 Android Application Package (APK) Tool 81

4.2.3 Machine Learning Tools 81

4.2.4 Online Analysis Tools 82

4.3 Experimental Setup and Results 82

4.3.1 Used Datasets 83

4.3.2 Pre-Processing 85

4.3.3 Results 85

4.4 Evaluation Process 93

viii

4.5 Evaluation Methods 95

4.5.1 Descriptive Statistics 95

4.5.2 Confidence Interval 95

4.5.3 Paired Samples T-Test 96

4.6 Evaluation Parameters 97

4.7 Evaluation of Machine Learning Classifiers Based on Extracted Features 97

4.7.1 True Positive Rate (TPR) 99

4.7.2 False Positive Rate (FPR) 102

4.7.3 Precision 104

4.7.4 F-Measure 107

4.7.5 Accuracy 110

4.8 Evaluation of Machine Learning Classifiers based on Unique Patterns 115

4.8.1 Results 116

4.8.2 Discussion 119

4.9 Performance Analysis 120

4.9.1 Comparative Analysis 122

4.9.2 Efficiency 125

4.9.3 Scalability 126

4.10 Summary 127

CHAPTER 5 CONCLUSION 128

5.1 Overview 128

5.2 Review of Research Objectives 128

5.3 Contribution 130

5.4 Open Issues and Future Work 131

REFERENCES 133

APPENDIX A 146

ix

APPENDIX B 147

APPENDIX C 168

APPENDIX D 176

x

LIST OF TABLES

Table 2.1 Example of Top 20 Used Permissions by botware and benign

applications 21

Table 2.2 Permissions with their Description 21

Table 2.3 Android Botnet Timeline 30

Table 2.4 Mobile Botnet Detection Techniques using Static Approach 46

Table 3.1 Top 20 Used Permission Features with their Percentage (%) 68

Table 3.2 Top 20 Used Permission Features Index 68

Table 3.3 Frequency of Top 20 requested permissions by botware and benign

applications 70

Table 3.4 Top 40 Unique Pattern for Botware and Benign Used Features 72

Table 3.5 Symbol with Description 76

Table 4.1 Botware and Benign Dataset Used 83

Table 4.2 Families of Android Botnets 84

Table 4.3 Benign Applications 85

Table 4.4 Comparison of Top 20 Requested Permissions by Botware &

Benign (%) 86

Table 4.5 Comparison of Top 20 Activities Used by Botware and Benign (%)

 87

Table 4.6 Comparison of Top 20 Broadcast Receivers Used by Botware and

Benign (%) 89

Table 4.7 Comparison of Top 20 Services Used by Botware and Benign (%) 91

Table 4.8 Comparison of API Calls Used by Botware and Benign (%) 92

Table 4.9 Performance Evaluation Parameters of the Proposed Approach 97

Table 4.10 TPR comparison for unmodified and modified approach using all

features for selected classifiers 101

Table 4.11 FPR comparison for unmodified and modified approach using all

features for selected classifiers 103

Table 4.12 Precision comparison for unmodified and modified approach using

all features for selected classifiers 106

xi

Table 4.13 F-Measure comparison for unmodified and modified approach

using all features for selected classifiers 109

Table 4.14 Accuracy comparison for unmodified and modified approach using

all features for selected classifiers 111

Table 4.15 T and P values for Unmodified and Modified approaches in term

of TPR 112

Table 4.16 T and P values for Unmodified and Modified approaches in term

of FPR 112

Table 4.17 T and P values for Unmodified and Modified approaches in term

of Precision 113

Table 4.18 T and P values for Unmodified and Modified approaches in term

of F-Measure 113

Table 4.19 T and P values for Unmodified and Modified approaches in term

of Accuracy 114

Table 4.20 Results for unmodified and modified detection approach in term of

Unique Patterns for all classifiers 118

Table 4.21 Time Comparison of Botware and Benign Datasets 121

Table 4.22 Performance Comparison with Prior Similar Work with respect to

Accuracy 122

Table 4.23 Approach Efficiency Comparison between k-fold cross validation

and Random Sampling 126

Table 4.24 Time and Size Comparisons among the selected Classifiers Models

 126

xii

LIST OF FIGURES

Figure 1.1 Number of Smartphone Users on the Basis of Operating System 4

Figure 1.2 Diagrammatically representation of Scope of this Study 8

Figure 1.3 Thesis Layout 11

Figure 2.1 Number of Mobile Devices (in Billion) 13

Figure 2.2 Mobile Operating System Usage in Percentage 14

Figure 2.3 Overview of the Android Operating System Architecture 15

Figure 2.4 Structure of an Activity declaration in AndroidManifest .xml file 16

Figure 2.5 Android Application Activity Lifecycle 17

Figure 2.6 Structure of Service declaration in AndroidManifest .xml file 18

Figure 2.7 Structure of Broadcast Receiver declaration in AndroidManifest

.xml file 19

Figure 2.8 An example of Permissions declaration in an application 20

Figure 2.9 Example of used API calls by Botware and Benign Applications 23

Figure 2.10 Android Botnet Components 26

Figure 2.11 Android Botnet Architectures (A: Centralized, B: Decentralized, C:

Hybrid) 28

Figure 2.12 Mobile Botnet Detection Approaches 38

Figure 3.1 Android Botnet Detection Proposed Approach 60

Figure 3.2 Flow of the Proposed Botnet Detection Approach Using Static

Features Analysis 62

Figure 3.3 AndroidManifest.XML file structure 64

Figure 3.4 DEX File Structure 64

Figure 3.5 Android Application features extraction Using Android SDK Tool 65

Figure 3.6 Feature Extraction from AndroidManifest and DEX file 66

Figure 3.7 Structure of CSV file 67

Figure 3.8 Smart Learner Algorithm 71

Figure 3.9 Feature Refining Algorithm 77

file:///C:/Users/Lenovo/Google%20Drive/Thesis/PhD%20Thesis%20of%20Shahid/Forms%20to%20IPS/SHAHID%20ANWAR%20THESIS.docx%23_Toc5111210

xiii

Figure 3.10 Life Cycle of Machine Learning Modelling 78

Figure 4.1 WEKA Graphical User Interface 82

Figure 4.2 Experimental Setup 83

Figure 4.3 Permissions Frequency Analysis Comparison between Botware

and Benign 87

Figure 4.4 Activities Features Frequency Analysis 88

Figure 4.5 Broadcast Receivers Frequency Analysis 90

Figure 4.6 Services Frequency Analysis 92

Figure 4.7 API Calls Frequency Analysis 93

Figure 4.8 Experimental Setup for the evaluation of Machine Learning

Classifier for the selected Features 98

Figure 4.9 Number of TPR for unmodified and modified detection approach

in term of Selected Features for all classifiers 101

Figure 4.10 Number of FPR for unmodified and modified detection approach

in term of Selected features for all classifiers 103

Figure 4.11 Number of Precision for unmodified and modified detection

approach in term of Selected features for all classifiers 106

Figure 4.12 Number of F-measure for unmodified and modified detection

approach in term of Selected features for all classifiers 109

Figure 4.13 Accuracy for unmodified and modified detection approach in term

of Selected features for all classifiers 111

Figure 4.14 Experimental Setup for the evaluation of Machine Learning

Classifier for the Unique Patterns (UP) 116

Figure 4.15 Results for unmodified and modified detection approach in term of

Unique Patterns for all classifiers 118

Figure 4.16 Machine Learning Classifier Evaluation of Modified and

Unmodified approaches in term of Accuracy for selected unique

patterns 119

Figure 4.17 TPR and FPR Comparison with other related work 124

Figure 4.18 Precision and F-measure comparison of proposed approach

approach with other related work. 124

Figure 4.19 Accuracy Comparison of proposed approach with other related

work. 125

file:///C:/Users/Lenovo/Google%20Drive/Thesis/PhD%20Thesis%20of%20Shahid/Forms%20to%20IPS/SHAHID%20ANWAR%20THESIS.docx%23_Toc5111216
file:///C:/Users/Lenovo/Google%20Drive/Thesis/PhD%20Thesis%20of%20Shahid/Forms%20to%20IPS/SHAHID%20ANWAR%20THESIS.docx%23_Toc5111224
file:///C:/Users/Lenovo/Google%20Drive/Thesis/PhD%20Thesis%20of%20Shahid/Forms%20to%20IPS/SHAHID%20ANWAR%20THESIS.docx%23_Toc5111224
file:///C:/Users/Lenovo/Google%20Drive/Thesis/PhD%20Thesis%20of%20Shahid/Forms%20to%20IPS/SHAHID%20ANWAR%20THESIS.docx%23_Toc5111225
file:///C:/Users/Lenovo/Google%20Drive/Thesis/PhD%20Thesis%20of%20Shahid/Forms%20to%20IPS/SHAHID%20ANWAR%20THESIS.docx%23_Toc5111225
file:///C:/Users/Lenovo/Google%20Drive/Thesis/PhD%20Thesis%20of%20Shahid/Forms%20to%20IPS/SHAHID%20ANWAR%20THESIS.docx%23_Toc5111227
file:///C:/Users/Lenovo/Google%20Drive/Thesis/PhD%20Thesis%20of%20Shahid/Forms%20to%20IPS/SHAHID%20ANWAR%20THESIS.docx%23_Toc5111227

xiv

LIST OF ABBREVIATION

API Application Programming Interface

APK Application Package

APP Application

C&C Command and Control

CSV Comma Separated Values

DDNS Distributed domain name system

DDoS Distributed Denial of Service

DOS Denial of Service

FN False Negative

FNR False Negative Rate

FP False Positive

FPR False Positive Rate

FTP File Transfer Protocol

GPS Global Positioning System

GUI Graphical User Interface

HIDS Host-based Intrusion Detection Systems

HTML Hypertext Mark-up Language

HTTP Hyper Text Transfer Protocol

ICCID Integrated Circuit Card identifier

IDS Intrusion Detection System

IMEI International Mobile Equipment Identity

IMSI International Subscriber Equipment Identity

IP Internet Protocol

IRC Internet Relay Chat

MD5 Message Digest 5

MLP Multilayer perceptron

MMS Multimedia Messages Service

NB Naïve Bayes

NFC Near Field Communication

NIDS Network Intrusion Detection Systems

OS Operating System

P2P Peer to Peer Protocol

xv

PC Personal Computer

RF Random Forest

SIM Subscriber Information Module

SLR Simple Logistic Regression

SMS Short Messages Service

SMTP Simple Mail Transfer Protocol

SVM Support vector machine

TCP Transmission Control Protocol

TNR True Negative Rate

TPR True Positive Rate

UDP User Datagram Protocol

URL Uniform Resource Locator

Wi-Fi Wireless Fidelity

1

CHAPTER 1

INTRODUCTION

1.1 Overview

This chapter describes the basis of the research work carried out in this study. The

background of the initial research domain, smartphone and Android botnet is provided.

This chapter is divided into nine subsections including this section. Section 1.2 highlights

the background of the study and Section 1.3 describes the motivations for the research by

explaining the field of research namely Smartphones, Android botnet attacks, and

Android applications. Section 1.4 presents the established research problem while Section

1.5 highlights the research goal and objectives. In Section 1.6 the scope of this research

study was described with the description. This is followed by the expected contribution

of this research study in Section 1.7 and finally, Section 1.8 presents the thesis

organization.

1.2 Background

Mobile devices such as smartphones, Personal Digital Assistants (PDA), smart-

watches, and tablets have brought a massive change in the lives of people. Among them,

smartphones have really changed the way of communication, due to their likelihood

nature and remarkable features, particularly, telephony, multimedia, perception, and

geolocation services (Analytics, 2014). As at present, these are the commonly-used tool

for communication that offers users a great platform for accessing a wide range of

Android applications. Therefore, these applications make the smartphones an emerging

point of purchase. However, the security vulnerabilities arise from the recent infiltration

of attacks on smartphones due to the increasing market penetration of mobile technology

(Liao & Li, 2014). One of the security vulnerability to smartphone is botnet attacks which

exploit the credential information of the end users (Wang, P. et al., 2014). These attacks

2

are posing an alarming and arguably the most potent threat to the security of Internet-

connected devices such as smartphone, tablets, and smart watches (Sanz et al., 2013).

A botnet is the network of infected smartphones for instance, bots that perform

malware activities in a group. A bot is a type of malware that runs automatically after

installation in the victim device and get the full control of that device. The botnets can be

platform for a slave provided by Internet connected computers. Botnet classification is

grouped into traditional and mobile botnets (Karim, A., et al., 2014). In the case of the

traditional botnets, the platform for the slave bots is provided by computers. However, in

Android botnet, the platform for a slave bot is provided by a mobile device. Furthermore,

Android botnet can be generally classified as HTTP-based, IRC-based, and P2P-based

botnets according to the underlying C&C (Command and Control) communication

protocol (Nigam, 2015). Unlike the traditional cybercrime, an Android botnet can attack

and propagate itself through various methods and may cause much great losses to the

smartphones (Guo et al., 2012). In this study, mobile botnet and Android botnet have the

same meaning.

Furthermore, the Android botnet could be distinguished from the other malware

through its communication skill with the botmaster. It has the ability to propagate itself

and launch further attacks inside the smartphones. Although the terms malware, spyware,

adware, viruses and botnets are used interchangeably, yet their activities differ from one

another (Paganini, 2013). The characteristics of attack vector of the Android botnets are

described in a research; for example, they can attack other mobile devices via SMS,

MMS, Bluetooth, and traditional IP applications protocol (Becher et al., 2011). In

addition, it can spread easily and quickly by combining multiple communication methods

(Shin et al., 2015).

In contrast, a malware is annoying, malevolent or intrusive program. As an

illustration Backdoor, Trojan, and Rootkit are intended to manipulate a smartphone

without knowledge of owners (La Polla et al., 2013). A malware is often distributed in an

infected website as a spam within a malicious link or attachment. Since, it is not required

for a malware program to manipulate by a remote command and control servers.

Therefore, the major difference between Android botnet and Android malware is the

unconditional control of a remote machine through the Android botnet. Therefore, this

study introduces the C&C- enabled Android applications as Android botnet application,

and in this study, these terms will be utilized interchangeably.

3

In recent times, networks of mobile devices or Android botnets have become

significantly involved in launching different malicious activities (Lee & Lee, 2014). For

instance, Zeus as reported (Binsalleeh et al., 2010) is a mobile botnet that perform

malicious activities and target the end users of the Android, iOS, Blackberry, Symbian

and Windows. Furthermore, it performs propagation of worms, stealing of sensitive

information, accessing of the unauthorized root, spam email generation, Distributed

Denial of Service (DDoS) attacks, battery outage (power consumption), processor usage,

and memory consumption (Narudin et al., 2016). In addition, as Android botnet

operations can be implemented by distributing malicious applications to mobile

subscribers, both concepts are therefore interrelated (Karim, A. et al., 2015).

Conclusively, Android botnet is one of the most serious threats to the smartphone users.

The state-of-the-art literature shows that a large number of detection techniques

have been proposed for Android botnet attacks. These techniques are fundamentally

broken into static, dynamic, and hybrid detection techniques (Peiravian & Zhu, 2013;

Sanz et al., 2013). In the static detection technique, the static features namely permissions

and API calls of Android applications are analysed. On the other hand, the dynamic

features in dynamic detection technique include battery, memory, and network utilization

are analysed in the runtime behaviours of the smartphone’s applications. Finally, the

hybrid detection technique is the combination of static and dynamic techniques as

described above.

1.3 Motivation

Smartphone is a rapidly growing technology in terms of both research work and

commercial applications. Over the last few years, smartphone has grown exponentially

from its origin to the existing vast research and applications development industry. The

smartphone ‘mobility’ was predicted in Ericsson’s report to have 2.9 billion subscription

by the end of 2016 (Ericsson, 2016). In a related report, the overall number of smartphone

users reached to 3.10 billion by the end of 2016 (Statista, 2016). Despite the

characteristics, such as telephony, multimedia, perception, and geolocation services,

smartphone is vulnerable to botnet attacks because of its easy accessibility and distributed

infrastructure (Kirubavathi & Anitha, 2017). In spite of this threat to smartphone, the

users of the smartphone are increasing rapidly (Woods, 2016). Smartphones have a rich-

featured operating system (OS), integrated with powerful hardware such as Android, iOS,

4

Blackberry, and Windows Phones (Gilbert, April 2012; Microsoft-Inc., 2017; Rubin,

2008). Figure 1.1 shows the number of smartphone users with respect to the installed

OSs. It shows that Android OS have more number of users as compared to other OSs.

Figure 1.1 Number of Smartphone Users on the Basis of Operating System

Source: Statista (2016)

Android OS is one of the dominant platform commonly used by mobile devices

due to its incredible traction with an extensive range of users (Suarez-Tangil et al., 2014).

Consequently, smartphones as the primary choice of computing device have replaced the

personal computers (PCs). It is clear from the current statistics that since 2011 the global

shipment of smartphones has increased as compared to the PCs (Karim, A. et al., 2015).

Resultantly, the deployment of 4G technology such as WiMAX and LTE would become

the main source of Internet access in the near future.

Admittedly, cybercriminals have been motivated by this technological shipment

to exploit the vulnerabilities of smartphones through off-the-shelf malware creation tools

(Ollmann, 2009). Moreover, the worldwide availability of the Android applications

through the Internet spread the malicious code to the smartphone users. Currently,

Android botnet attacks are the most evolving trend in the malicious code (Kirubavathi &

Anitha, 2017). These reports prove that the effect of Android botnet attack is unavoidable

and has the ability to gain full control of the smartphone and its contents. This

development led the researchers to explore the Android botnet attacks in the smartphones.

Consequently, this study is carried out to help C&C communication pattern in

Android applications and ultimately increase the probability of detecting botnet attacks

in Android smartphones. In order to detect Android botnet attacks, three of the common

0

200

400

600

800

1000

1200

2011 2012 2013 2014 2015 2016

N
u
m

b
er

 o
f

M
o

b
il

e
in

M
il

li
o
n
s

Years

Android iOS BlackBerry OS Windows Phone

5

analysis approaches namely static, dynamic, and hybrid are used (Peiravian & Zhu, 2013;

Sanz et al., 2013). In static analysis approach, it does not require the execution of

malicious program code. In this approach, the static features of the applications are

extracted by disassembling the program code such as permissions, API calls, explicit and

implicit features (Feizollah et al., 2015). Therefore, static analysis is known as a

lightweight detection mechanism botnet analysis. However, it is unable in the static

analysis to illustrate the behaviour of the program completely (Stuvert & Soniya, 2015).

Conversely, in the dynamic analysis it requires the execution of malicious applications in

a virtual environment called the sandbox to monitor the runtime traces and to extract their

dynamic features i.e., System calls. While the hybrid analysis first run the static approach

for static features analysis and then dynamic approach for behaviour analysis (Shi et al.,

2016). Although, the existing botnet detection approaches are facing some limitations,

such as, dynamic approach needs more powerful deployment machine for execution of

each botware application in an isolated environment (Karim, Ahmad et al., 2015).

Similarly, hybrid approach needs to extract the static features from the botware

applications and then execute for dynamic features extraction in an isolated environment.

As mentioned in the previous section, only C&C server differentiates the mobile

botnet from the mobile malware. This has resulted into existing detection mechanisms to

focus on mobile malware at a large scale. Moreover, most of the existing mobile attacks

replicate the nature of PCs based attacks. Therefore, many of the existing detection

solutions can also be applied to the mobile threats (Faruki et al., 2015). Notwithstanding,

smartphones namely Android, iOS, and Windows have their own constraints due to their

limited resources namely battery consumptions, reduced processing, heterogeneity and

low data storage capabilities (Penning et al., 2014). Hence, these limitations restrict the

detection mechanism to be efficiently programmed.

1.4 Problem Statement

Since the Android operating system got popularity in the last few years. With the

passage of time, the cyber attackers start developing botnet applications when they saw

Android OS as a flourishing target. The growth of Android botnet applications increased,

in term of complexity and volume as it has some significant advantages over traditional

botnets since smartphones are rarely either switched off, or disconnect with the Internet

which makes it more reliable (Anagnostopoulos et al., 2016).

6

Many researchers from academia and industries have proposed botnet analysis

and detection approaches (Faruki et al., 2015; Peng et al., 2014). However, the cyber-

attackers have always tried to find a way to evade new detection approaches, since

botware are still exist inside the store (PlayStore, 2017). Thus the existing analysis and

detection approaches are unable to detect mobile applications that are involved in botnet

activities such as information hijacking, remote access, DDoS, phishing, and perform

action according to the botmaster instruction to launch and initiate a botnet attack

(Johnson & Traore, 2015; Karim, Salleh, & Khan, 2016; Sanz et al., 2013). Moreover,

analysis on many botnet applications with diverse features set is a challenging task, and

as a result of that, it is crucial to select the exact static and dynamic features with botnet

capabilities (Kazdagli et al., 2016).

The static analysis and detection approach are the commonest type in the existing

botnet analysis techniques but failed to provide the absolute picture of the android

applications behavior with the existing static features such as permissions and API Calls

(Peiravian & Zhu, 2013; Rashidi & Fung, 2016; Sanz et al., 2013; Yerima et al., 2014a).

In contrast, dynamic analysis detection techniques need computation intensive resources

processing time and code coverage (Fan et al., 2017; Spreitzenbarth et al., 2015).

Furthermore, the existing botnet detection techniques in smartphones are unable to detect

the botnet attacks based on these two selected features.

Thus, it is necessary to propose a new analysis and detection approach based on

additional features such as activities, broadcast receivers, and services. Consequently,

there is a degrade in the accuracy and TPR due to the selection of inefficient and irrelevant

features set. Therefore, the proposed analysis and detection approach can be enhanced by

adding the feature refinement process to improve the detection efficiency that leads to

increase in the accuracy, true positive rate (TPR), precision, F-Measure and decrease the

false positive rate (FPR).

1.5 Research Goal and Objectives

 This research is undertaken with the aim to propose an enhanced android botnet

detection approach using feature refinement. The aim of this research is accomplished by

addressing the following objectives.

7

1. To examine the characteristics of botnet attacks in the smartphone and Android

applications in order to derive a concise set of features that are effective for Botnet

detection.

2. To design an improved botnet detection approach that has features refining

component for observation and detection of static features of Android applications

with botnet capabilities.

3. To evaluate and validate the performance of the proposed approach by

considering five matrices including: TPR, FPR, precision, F-measure and

accuracy and compare it with state-of-the-art Android botnet detection techniques.

1.6 Scope

The study undertaken in this thesis is aimed to propose an enhance approach by

using the feature refinement for Android botnet detection in mobile devices. This study

is limited to Android operating system and Android applications that are available from

third party developers. Furthermore, this study focused on the static features of an

Android application such as permissions, activities, broadcast receivers, services, and API

calls. However, it is limited to device-based Android botnet detection rather than

network-based. Figure 1.2 shows the scope of this study diagrammatically.

This proposed approach is based on the static analysis approach. Although, static

analysis approach is 1well-known in botnet detection but recently gained popularity as an

efficient mechanism for smartphone protection. This approach is a relatively fast and it

has been widely used in malware analysis to search for suspicious strings or blocks of

code.

8

Android

Web-Level Application-Level Network-LevelPhysical-Level

System Applications Third Party Applications

Mobile Device

iOS Windows Blackberry Others

Personal Computers

Network Threats

Criminal ActivitiesDetection Techniques Infection Vectors

HybridStatic Dynamic

Broadcast ReceiversPermissions Activities API CallsServices

Figure 1.2 Diagrammatically representation of Scope of this Study

1.7 Expected Contribution

This Section highlighted the contribution of the research study undertaken in this

thesis. The expected main contribution of this research is the enhancement of botnet

detection in Android devices using feature refinement. Other expected contributions to

the body of knowledge are as follow:

 A comprehensive taxonomy representing the Android botnet attacks will be

proposed. Moreover, state-of-the-art Android botnets are investigated according

to the proposed taxonomy.

 An enhanced approach will be proposed for Android botnet detection using

feature refinement. This has the capabilities to effectively detect botnet C&C

communication features in Android smartphones by investigating the

manifest.xml and DEX files.

 Proposed a novel feature refining approach which address the most prominent

features in order to inspect the range of their frequencies in Android applications.

9

 Generation of the analytical evaluation results for the proposed approach through

Drebin dataset was made possible. Currently, Drebin is the largest available

dataset for Android botware. In addition, performance evaluation on the

unmodified (without feature refining) and modified (feature refining component)

approaches will be carried out. Lastly, a statistical model for the evaluation

parameters of proposed approach and detection of Android botnet attacks will be

developed.

1.8 Thesis Organisation

 The research entitled an enhanced android botnet detection approach using feature

refinement is an emerging field that involves an extensive study. In view of this, the thesis

has been arranged into five different chapters for clear understandability of the readers

with a layout shown in Figure 1.3.

Chapter 2 aims to review the research undertaken in the field of botnet attacks

and their detection in smartphones. The chapter describes the knowledge about the mobile

devices (smartphones) and the vulnerability of the botnet attacks in order to identify and

classify these botnet attacks in smartphones. Moreover, in this chapter mobile botnet

attacks are focused on, and the details about the detection techniques for these attacks are

provided which discover the deficiency of the existing detection techniques. The

detection techniques are categorized into main three categories such as static, dynamic

and hybrid detection techniques. Furthermore, each category is given in detail. Qualitative

critical analysis in the aforementioned research direction was provided based on the

metrics derived from the proposed taxonomy. Hence, the research problem is identified

as developing detection techniques in smartphones based on static analysis.

Chapter 3 outlines the enhanced botnet detection approach using feature

refinement component. incorporates additional refining component and features proposed

approach. By using schematic presentation, the major components of the proposed

approach and their functionality are explained in more details. It discusses various

components of the proposed approach along with their functions. In addition, methods

and services used in the proposed approach are explained in detail.

Chapter 4 describes the experimental setup, tools. The results obtained from the

experiments are summarized in this chapter. The experimental setup is described with

10

accompanying datasets and devices. The data collection method and evaluation methods

namely statistical modelling and datasets that have been utilized to evaluate and validate

the proposed approach performance are adequately described. The experimental

evaluation is based on the five metrics, namely TPR, FPR, precision, F-measure, and

accuracy. On the long run, the result based on these evaluations metrics is used to prove

the efficiency and significance of proposed approach. The next section summarizes the

performance evaluation methodology for the proposed approach on collected data in

order to highlight the strengths and weaknesses of this approach.

Finally, Chapter 5 concludes this work by showing accomplishment of the aim

and objectives of this study. The contribution of the research is summarised in this

chapter. The open research issues and future research directions concluded at the end of

Chapter 5.

In addition, there are number of appendices included at the end of this study. The

list of published journal and conference articles related to the study undertaken in this

thesis are given in Appendix A. Appendix B includes the number of features with their

indexes, Appendix C contains the unique patterns generated from the features.

Furthermore, the list of experimental results are given in Appendix D.

11

Introduction

Literature

Review

An Enhanced Android Botnet Detection Approach

Using Feature Refinement

Results and

Discussion

Conclusion

Background

Motivation

Problem Statement

Research Goal and Objectives

Scope

Expected Contribution

Thesis Organization

Mobile Devices

Mobile Operating System

Android Application Components

Android Security Model

Threat To Android Devices

Overview of Android Botnet

Machine Learning Classifiers Overview

The Proposed Approach

Components of Proposed

Approach

Decompiler

Feature Extractor

Smart Learner

Conclusion

Overview

Experimental Tools

Experimental Setup and Results

Evaluation Process

Evaluation Method

Evaluation Parameters

Overview

Review of Research Objectives

Contribution

Open Issues and Future Work

Thesis Layout

Overview

Evaluation of Machine Learning

Classifiers Based on Extracted Features

Overview

Botnet Detection Approach

Feature Refining

Machine Learning

Tool

Discussion

Summary

Evaluation of Machine Learning

Classifiers based on Unique Patterns

Summary

Performance Analysis

Figure 1.3 Thesis Layout

12

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

This chapter describes the mobile devices, the phenomenon of botnet in mobile

devices such as smartphone, tablets, smartwatches. The threats to mobile device are

classified in this chapter. While the chapter is divided into nine sub-sections, Section 2.2

reported mobile devices in detail. Again, Section 2.3 highlights the mobile operating

systems. Section 2.4 describes the components of the Android application. Section 2.5

given detail about the Android security model followed by threats to Android devices in

Section 2.6. The overview of Android botnet is given in Section 2.7. The existing botnet

detection approaches are given in Section 2.8. Furthermore, machine learning classifiers

are given in in Section 2.9 and discussion is given in Section 2.10. In the last Section 2.11

summarises the whole chapter.

2.2 Mobile Devices

A mobile device is a small enough to the handheld computing device, with input

and output capability. Mobile devices are performing a progressively essential role in the

current time (Suarez Tangil et al., 2014). There is an established fact about great

capabilities and exploits of the mobile devices in today’s technology. The number of

mobile devices precisely related to the facilities they provide to the end-users, showing

that they will very nearly outsell the number of PCs worldwide (Feizollah et al., 2014;

Tam et al., 2017). Each mobile device can run diverse types of applications software

(AppStore, 2017; Othman et al., 2014; PlayStore, 2017). According to Dinh et al., (2013)

smartphones, tablets, smart watches, and personal digital assistants are the common types

of mobile devices. Figure 2.1 illustrates the number of mobile devices users in billion as

13

per 2018. As reported by GSMA Intelligence, that currently there are 7.22 billion mobile

devices in the world. However, according to the US Census Bureau this number is still

between 7.19 and 7.2 billion. (Miakotko, 2017)

Figure 2.1 Number of Mobile Devices (in Billion)

Smartphone is a communication device like a cell phone having touchscreen

interface and some advanced functionality alongside with making phone calls and

sending messages (Zonouz et al., 2013). According to Rubin “There should be nothing

that users can access on their desktop that they cannot access on their smartphone”

(Rubin, 2008). It is like a personal computer in small size, having the capabilities of place

and receive calls (Zhou & Jiang, 2012). Moreover, a smartphone is more than just a cell

phone; it is a media player, a gaming console, a camera, a video recorder, a document

editor, and a GPS navigational device. Every smartphone has a rich-featured operating

system, integrated with powerful hardware.

2.3 Mobile Operating System

Operating system is a system software that runs on mobile devices to control and

run the system hardware. These OS has an openness nature and rich functionalities which

provides a platform for other applications software to run on mobile devices (Dai, Q. et

al., 2012). Figure 2.2 shows the usage percentage of existing top three mobile operating

systems namely Android, iOS, and Windows (AppStore, 2017; Microsoft-Inc., 2017;

Tam et al., 2017; Techopedia, 2017).

0 1 2 3 4 5

Smartphone

Tablets

Smartwatches

Personal Digital Assistant

Number of Mobile Devices (in billion)T
y
p
es

 o
f

M
o
b
il

e
D

ev
ic

es

14

Figure 2.2 Mobile Operating System Usage in Percentage

2.3.1 Android Operating System

Android is a Linux-based operating system, used by the aforementioned mobile

devices, developed by Google in conjunction with the Open Handset Alliance (Barrera &

Van Oorschot, 2011). It provides a complete set of software for smartphone devices

including operating system, middleware, and key mobile applications (Sears, 2007). It is

the most prominent operating system in the recent time due to its open nature, and fewer

control on third parties application distribution system (Zaman et al., 2015). According

to a report Android’s market share accounts for over 82% with 1.4 billion Android users

(Statista, 2016). It allows the users to download and install these applications from an

untrusted source due to its open nature (Peiravian & Zhu, 2013).

Android can be thought of as a software stack comprising different layers, each

layer manifesting well-defined behavior and providing specific services to the layer above

it. Android uses the Linux kernel, which is at the bottom of the stack. It enables Android

to support a vast array of devices, and it makes it easy for developers to write drivers in

a well-understood way (Techopedia, 2017). Runtime Dalivik VM and Core libraries are

on the top of the Linux kernel. These libraries includes a set of C and C++ libraries used

by different components of the Android OS. Developers use these libraries through the

Android application framework. Application framework are built on top of the Libraries,

which makes able the Android applications to interact with the Kernel and Libraries.

Android application is the topmost layer of the Android OS. Figure 2.3 depicts the

complete “Overview of the Android Operating System Architecture”.

0 20 40 60 80 100

Android

iOS

Windows Phone

Usage (in %)

M
o
b
il

e
O

p
er

at
in

g

S
y
st

em

15

Applications

IPC

Application Framework
Java

Libraries

 Runtime
C++

Modified Linux Kernel

C

Managers Providers

Dalvik/ART Library Core

APK

Java

Android Manifest

Permissions

Contacts Phone

e.g., SSL

Drivers
e.g., Binder
(IPC) Driver

A
P

I C
alls

Sy
ste

m
 C

a
lls

Figure 2.3 Overview of the Android Operating System Architecture

2.3.2 Windows Operating System

Windows mobile OS is an operating system developed for mobile devices by

Microsoft based on the Windows. This OS is resemblance to desktop versions

of Microsoft Windows. Initially windows is debuted as the OS for Microsoft's original

personal digital assistant (PDA) device in 2000. However, with the passage of time and

popularity Microsoft designed a windows OS for enterprise handheld (mobile) devices

(Microsoft-Inc., 2017). The highly sensitive review ability of the apps makes the windows

OS does not need for a dedicated anti-virus software (Salah et al., 2013). Moreover, the

applications for Windows mobile OS are available to purchase from the Windows

marketplace.

2.3.3 iOS

iOS is a mobile operating system runs on Apple devices such as iPhone, iPod, and

iPad. iOS is developed by Apple’s Inc (Apple-Inc., 2017). The performance of the iOS is

better than other OS, but there are some disadvantages of iOS such as it is not flexible, it

is not open source, the available applications are very expensive (Suarez Tangil et al.,

2014). Apple’s App Store is a protected market with an uncompromising process of

review. The strict rules of iOS for developing the applications restrict the developers but

still there are over 2 million iOS apps available for download in the Apple App Store.

https://www.webopedia.com/TERM/M/Microsoft.html
https://www.webopedia.com/TERM/W/Windows_CE.html
https://www.webopedia.com/TERM/M/Microsoft_Windows.html
http://www.webopedia.com/TERM/O/operating_system.html
https://www.webopedia.com/TERM/P/PDA.html

16

2.4 Android Application Components

A typical Android application is a package in an APK file (Android applications

package) and usually rich in functionality. Each android application must have these

components namely activities, services, broadcast receivers, and content providers. These

are the essential part of each application. The APK files contains the compiled Java code

and other resources like texts and images for the Android application

2.4.1 Activity

An activity provides a screen to interact with and defines the interaction sequences

and UI layout presented to the user (PlayStore, 2017). Most applications will have

multiple activities (one for each screen that the user sees/interacts with). The user will

switch back and forth among activities (in no particular order, and times). Activities have

to be registered in the manifest and cannot be added programmatically. For example,

Figure 2.4 shows the basic structure of an activity declaration in AndroidManifest.xml

file.

<activity>

<intent-filter>

<action />

<category />

<data />

</intent-filter>

<meta-data />

</activity>

<activity-alias>

<intent-filter> . . . </intent-filter>

<meta-data />

</activity-alias>

Figure 2.4 Structure of an Activity declaration in AndroidManifest .xml file

Figure 2.5 shows the life cycle of an Android applications activity component

which can be modeled by a state machine. It describes the state-dependent behaviour of

an Android activity. This describes different phases of the activity component by the

states, while the transitions within each phase are illustrated by the state transitions. This

component contains seven states namely, created, killed, started, stopped, running,

paused, and destroyed. In this model, each state transition is caused by the calling of an

17

OS callback. However, these callbacks are called callbacks life cycle. For example, when

an end user starts or opens an activity, the event will generate by createActivity as shown

in the first operation. The system invokes the callback sequence (e.g., onPause (),

onCreate (), onStop (), onStart (), onResume (), and onDestroy ()) in the activity and in

response, the activity makes transitions to Created, Stopped, Killed, Destroyed, Started

and Stopped state, respectively (Junaid et al., 2016). Activity waits for user interaction in

the stopped state. An end user can generate many events in this state that can make to

visit different state by an activity.

Created

entry / onCreated()

Started

entry / onStart()

entry [re-initialized] / onRestoreInstanceState()

Paused

Entry [isUserChoice] / onUserLeaveHint()

Entry / onPause()

Entry / onSaveInstanceState()

userNavigateBack

Destroyed

entry / onPause()

entry / onStop()

entry [configCHanged] / onSaveInstanceState()

entry / onDestroy()

Stopped

entry / onStop()

Killed

Running

Entry [single-top] / onNewIntent()

Entry / onResume()

onSaveInstanceState()
co

n
fig

C
h

an
g

ed

invisible

Semi-visible

visible focused

visible

Figure 2.5 Android Application Activity Lifecycle

Source PlayStore (2017)

2.4.2 Service

This is the basic component of an Android application that can perform its

operations in the background for Android application. It does not have a user interface

component, but it performs its duty in the background and executes its tasks, for example,

a music player, time, and alarm. All the Android applications are running in the front,

while the services are always active behind the curtain. It does not affect the services,

18

even if the user switches to other applications. In addition, an application component may

“bound” itself to a service and thus interact with it in the background; for example, an

application component can bind itself to a music player service and interact with it as

needed. Thus, service can be in two states such as: Started or Bound.

When an application component launches a service, it is “started.” This is done

through the startService() callback method. Once the service is started, it can continue to

run in the background after the starting component (or its application) is no longer

executing. An application component can bind itself to a service by calling bindService().

A bound service can be used as a client-server mechanism, and a component can interact

with the service. The service will run only as long as the component is bound to it. Once

it unbinds, the service is destroyed. Any application component (or other applications)

can start or bind to a service once it receives the requisite permissions. This is achieved

through Intents. Creating an application service requires that one must create a subclass

of service and implement callback methods. Most important callback methods for service

are onStartcommand(), onBind(), onCreate(), and onDestroy(). Figure 2.6 represents the

basic structure of service in the Android application.

<manifest ... >

 ...

 <application ... >

 <service android:name=".ExampleService" />

 ...

 </application>

</manifest>

Figure 2.6 Structure of Service declaration in AndroidManifest .xml file

2.4.3 Broadcast Receiver

Broadcast receiver component is an asynchronous event mailbox for Intent

messages “broadcasted” to an action string. Most of the executing malicious Android

applications, is observed to listen to broadcast receivers, such like SEND_MESSAGE,

BOOT_COMPLETED, OUTGOING_CALL, SMS_RECEIVED and much more

(Alazab et al., 2012). Android defines many standard action strings corresponding to

system events, such as LOW_BATTERY_NOTIFICATION, LOW_MEMORY and

much more. Both benign and malicious applications can also end broadcast messages as

‘intent messages’ to the system; for example, indicating that applications are waiting for

19

an event. Broadcast receiver attackers can design their malicious application to listen for

incoming messages and forward them to predetermined or premium numbers, likewise,

developers often define their own action strings. Figure 2.7 shows the basic structure of

broadcast receiver.

<receiver android:name=".MyBroadcastReceiver" android:exported="true">

 <intent-filter>

<action android:name="android.intent.action.BOOT_COMPLETED"/>

<action android:name="android.intent.action.INPUT_METHOD_CHANGED" />

 </intent-filter>

</receiver>

Figure 2.7 Structure of Broadcast Receiver declaration in AndroidManifest .xml file

2.4.4 Content Provider

A content provider component provides data from one application to others on

request. The content provider needs to be declared like other application components in

the Manifest.xml file. It can examine who can access the content provider by defining

permissions inside the <provider> tag. It provides an intent which enable sharing of data

between two applications. These requests can be handled by the Conten.Resolver.query(),

Content.Resolver.insert() methods of the Content Resolver class. The request will be

denied if the caller does not have a proper permission. The data may be stored in the file

system, the database or somewhere else entirely. A content provider is implemented as a

subclass of Content Provider class and must implement a standard set of APIs that enable

other applications to perform transactions.

2.5 Android Security Model

Android developers have included security in the design of the platform itself.

This is visible in the two-tiered security model used by Android applications and enforced

by Android. Android, at its core, relies on one of the security features provided by Linux

kernel- running each application as a separate process with its own set of data structures

and preventing other process from interfering with its execution.

Android allow the applications or components to interact with each other’s by

using the fine-grained permission at the applications layer. Once the application installed

on the user device, an approval from the user is necessary to access the critical operations.

The permissions are used in order to execute these critical operations successfully. By

20

default, the third-party applications do not have any permissions to perform any critical

activities that might resultantly affect the contents of other applications. Such as sending

or reading SMS or MMS messages, dialling calls or accessing contact information.

Permissions are categorized in application level and manifest level permissions

(Moonsamy et al., 2014). Application-level permissions provide a way to get access to

restricted content and APIs. These permissions Access to low-level Linux facilities is

provided through user and group ID enforcement, whereas additional fine-grained

security features are provided through Manifest permissions.

2.5.1 Manifest Permissions

Android applications are sandboxed which imply that they are limited to use their

own files and any open-accessible resources on the mobile devices. This limitation makes

these devices uninteresting. Although, an Android can grant extra, fine-grained access

right to these third-party’s applications to permit for wealthier functionality. Those access

rights are called permissions, and they can control full access to device hardware and

software. These accesses include, Internet connectivity, operating system services, access

external or internal data storage and much more. Permissions can be assigned to broadcast

receivers, content providers, activities, and services. For example, when an Android

application requests permission to access the Internet, it is essentially seeking permission

to open the IPv4 and IPv6 sockets. Application permissions are then mapped to the “inet”

group name through the /system/etc/permissions/platform.xml. Figure 2.8 presents the

XML maps of the application’s permission.

<uses-permission android:name= “android.permission.INTERNET”/>

<uses-permission android:name = “android.permission.NFC/”>

< uses-permission android:name = “android.permission.SEND_SMS/”>

< uses-permission android:name = “android.permission.BLUETOOTH/”>

<group gid= “inet” />

</permission>

Figure 2.8 An example of Permissions declaration in an application

There are several strings to declare these permissions for the usage of different Android

applications with a special template as

<uses-permissions Android: name = “Android.permission. String” >.

21

In this section, the permissions that exist in input Android application are listed in

a separate file. It shows that the INTERNET is one of the most required permissions in

both botware and benign. Also, READ_PHONE_STATE, RECEIVE_BOOT_C-

OMPLETED and SEND_SMS are the second, third and fourth permissions respectively

that are mostly used by the benign and botware. This process is performed for all input

Android applications for the purpose of decompression and extraction of used permission

features, by listing them in a separate file. From the permissions analysis used by botware

and benign, it is noticed that the botware have more permissions intensive as compared

to the benign applications. Table 2.1 shows the top 20 permissions used by botware and

benign applications. However, the Table 2.2 shows the used permissions with their

description.

Table 2.1 Example of Top 20 Used Permissions by botware and benign applications

Permissions Botware Benign

INTERNET 97.860 51.430
READ_PHONE_STATE 95.710 31.430
READ_CONTACTS 81.430 23.570
SEND_SMS 80.710 15.000
READ_SMS 77.140 7.860
RECEIVE_SMS 71.430 5.710
CALL_PHONE 66.430 8.570
WRITE_SMS 65.000 6.430
WRITE_SETTINGS 62.140 9.290
WRITE_CONTACTS 58.570 2.860
CHANGE_WIFI_STATE 50.710 17.860
ACCESS_FINE_LOCATION 47.860 4.290
SYSTEM_ALERT_WINDOW 47.140 10.000
GET TASKS 40.000 3.570
DISABLE_KEYGUARD 31.430 11.430
ACCESS_COARSE_LOCATION 30.710 5.710
CAMERA 22.140 1.430
BLUETOOTH 20.000 2.860

PROCESS OUTGOING CALLS 20.000 2.860

RECORD_AUDIO 18.570 4.290

 Table 2.2 Permissions with their Description

Permission Description

INTERNET
This permission allows an application to Open Network

socket, or call function java.net.URL-.openConnection

READ_SMS Allow an application to read SMS on device,

READ_CONTACTS

Allows an application to read the user’s contact information.

These information can further propagate to the command and

control server for criminal activities, like infection, stealing.

22

Table 2.2 Continued

Permission Description

READ_HISTORY_B

OOKMARKS
Allow an application to read the phone history bookmarks

READ_LOGS
This is a read only permission which grant permission to an

Android application to read low-level system log files.

READ_SYNC_SETT INGS
By call the Android.permission.READ_SYNC_SETTINGS an

application can read the sync settings.

READ_SYNC_STAT S

By calling the method

Android.permission.READ_SYNC_STATS allowing to an

application to read the sync stats for an account, it can read

history and amount of data which is synced.

ACCOUNT_MANAGER

Allows applications to call into Account Authenticators. Using

this method an application can access password, user data, and

token as well

ACCESS_FINE_LOCATION

GPS_PROVIDER;

By using the ACCESS_FINE_LOCATION an application can

access the precise location sources, such as Global Positioning

System (GPS).

READ_PHONE_STATE

Call functions getDeviceSoftwareVersion, getSubscriberId,

getDeviceID, or getSimSerialNumber from the

Android.telephony.TelephonyManager class or Binder

transaction to

com.Android.internal.telephony.IPhoneSubInfo.getDeviceId,

GET_PACKAGE_S IZE
It allows an application to find out the space used by any

package

VIBRATE
It granted the permission to the Android phone vibration to an

application.

SEND_SMS

It allows an application to send a single or multiple SMS from

the device having an application with enabling this permission

to one or more recipients or groups.

BLUETOOTH_ADMIN
By calling this function, it allows the applications to discover

and pair the Bluetooth enabled devices nearby.

DELETE_PACKAGES
This is the permission which is not using for third party

applications, it can allows an application to delete packages.

DELETE_CACHE_ FILES Allows an application to delete cache files.

UPDATE_DEVICE _STATS Allows an application to update device statistics

ACCESS_DOWNL

OAD_MANAGER

Allows an application to access the download manager, edit,

delete, copy or move data.

INSTALL_PACKA GES
It allows an application to install packages, while this

permission is not for use by third-party applications.

RECEIVE_BOOT_

COMPLETED

It allows an application to receive the

ACTION_BOOT_COM-PLETED which broadcast after the

system finishes booting.

Source PlayStore, (2017); Sanz et al., (2013)

23

Furthermore, the used permissions can be categorized into four subgroups

according to their behaviour, which are Normal, Dangerous, Signature and

SignatureORSystem (PlayStore, 2017). All the Android applications can request these

permissions be defining them in the AndroidManifest.xml file. However, the normal

permissions can be requested and used by botware and benign applications almost in

equal numbers (Felt et al., 2012). While the dangerous permission, are requested by

botware applications in more numbers as compared to benign applications (Aswini &

Vinod, 2014).

Additionally, the most prominent permissions used by botware applications are

INTERNET, READ_PHONE_STATE, WRITE_EXTERNAL_STORAGE,

RECEIVE_BOOT_COMPLETED, SEND_SMS, WRITE_SETTINGS, WRITE_CO-

NTACTS, READ_SMS, READ_SOCIAL_STREAM, WAKE_LOCK,

RECEIVE_SMS, READ_CONTACTS, ACCESS_WIFI_STATE, VIBRATE, CALL_P-

HONE, WRITE_SMS among many others. Most of the botnets are using these

permissions to establish a remote connection with command and control server in order

to check the status of the infected devices.

2.5.2 API Calls

The Android platform provides a framework known as Application Programming

Interface (API) that Apps can use to interact with the underlying Android system. The

framework API consists of a core set of packages and classes. Since, most Apps use a

large number of APIs, this motivates the use of API calls for each application as a feature

to characterize and differentiate malware from benign Apps. This goal can be achieved,

by creating a framework to reverse engineered APK file and extract API calls of each

application. An example of extracted API calls is shown in the Figure 2.9.

Connect, getActiveNetworkInfo, getContent, getDeviceId,

getInputStream, getLastKnownLocation, getLine1Number, getNetworkInfo,

getSimSerialNumber, getSubscriberId, getWifiState, LocationListener,

openFileDescriptor, requestLocationUpdates, sendTextMessage

Figure 2.9 Example of used API calls by Botware and Benign Applications

24

2.6 Threats to Android Devices

Each new day comes with new challenges and threats to Android devices. The

same phenomenon goes for viruses and spyware which can infect PC; and there are

different types of threats to mobile devices that can badly affect the mobile devices (Cole,

2012; Datar, 2013). These threats can broadly divided into four categories namely

application-level threats, web-level threats, network-level threats, and physical threats

(Lodi et al., 2014; Ruggiero & Foote, 2011). Application-level threats are based on the

Android applications, which is the core feature of every mobile device. The threat that

appeared to be the most widely discussed in the literature is the application-level threat

(Li, Y. et al., 2014). As all the applications that run on the smartphone are available from

third party markets, it is clear that these applications can be target vectors to mobile device

security (Faruki et al., 2015; Google, 2015). These applications that perform malicious

activities are known as malware. It can injects malicious code into the Android

applications to send unsolicited messages; allow an adversary the ability to remotely

control the device (Narudin et al., 2016). Karim. et al., (2015) explained the common

types of application level threats to smartphone are Adware, Ransomware, and Botnet.

2.6.1 Adware

Adware is a type of malware that sends different types of advertisement to the

mobile users while using Android applications. Advertisement is the main pillar of

Internet revenue model. These ads are sends and appears through popup windows on the

program user interface (UI). However, sometimes these advertisements are annoying and

disturbing the users. Due to geographic location, NFC, and Bluetooth communication the

adware is more potential on mobile devices rather than PC counterparts. Apart from

sending advertisements in mobile devices without the approval of user’s, they can modify

Internet browser settings, edit home screen of mobile device, and in some cases collecting

credential of end users. The most alarming threat about the adware is that is these are

unable to detect by the existing anti-viruses (Virustotal, 2017).

2.6.2 Ransomware

This is a new type of malware that hostage the mobile device for some financial

benefits. The main motive of such malware attacks is always monetary gain. Initially the

first ransomware was appeared in 2013 and it is detected in the same year, namely

simplocker (Zavarsky & Lindskog, 2016). This type of ransomware targets the

25

smartwatches. Furthermore, Android Defender was found a fake application for security

which locks the mobile devices and later on demands for some finance in order to unlock

the device (Symantec, 2014b). The main types of ransomware are lock-screen

ransomware and crypto-ransomware. The first one lock the screen of the attacked device

and stop the users from accessing their own device. While the crypto-ransomware steals

the files from the devices. However, the motive of the attacker is same in both methods

that is demands ransom (ESET, 2016).

2.6.3 Botnet

Botnet is short-form for robot network, which is the network of Internet connected

infected devices (bots) under the control of bot-master (cyber-criminal) to perform cyber-

criminal activities without knowing to the device owner (Datar, 2013; Silva et al., 2013).

Botnet is in two different categories which are traditional botnets and Android botnets,

with the focus of this study on the Android (mobile) botnets. The aim of Android botnets

will most likely be similar to those of existing traditional botnet (e.g., providing means of

DoS, DDoS and spam distribution); however, the targets will change (Enck, W. et al.,

2009; Pieterse & Olivier, 2012). The platform is the key difference between traditional

and Android botnets. In Android botnets, the victim and the attacker platforms are

provided by Android smartphone which is contrary to the traditional botnet provided by

a computer device (Karim, A. et al., 2014). Based on the scope of this study, Android

botnet is further elaborated in detail.

2.7 Overview of Android Botnet

An Android (mobile) botnet is a network of infected Android devices controlled

by a bot-master (attacker) through a command and control (C&C) server. It can cause

security damage to the Android devices which include data stealing, part of the connected

devices are using for their personal processing by force without knowing to the owner

(Khattak et al., 2014b). Distribution of spam e-mails, stealing bank credentials and

identities for attacking financial services, using Distributed Denial of Service attacks for

extortion, gaining criminal profits through simulating false response to advertising,

infecting smartphones via websites and other similar activities are the major criminal

activities of Android botnets (Tiirmaa et al., 2013).

26

Aforesaid that smartphones have become the necessary tool in our lives to

communicate with each other’s. These smartphones can be used for play games, read the

news, contact with others, and check the weather, online banking, maps and navigators

and much more but Android applications should be installed on it (Babu et al., 2015).

These applications are available from third-parties sources (Amazon, 2016; PlayStore,

2017). An application calls upon any of the mobile device core functionality, like making

calls, using the camera, sending text messages or picture messages, or accessing personal

data storage, it allows the developer to develop richer applications (Moonsamy et al.,

2014). The developer can also access address book, SMS content, GPS location data,

movement data by G-sensor and accelerometer, and even the information in another

application (Teufl et al., 2013). It is hard to differentiate between the third-party and the

smartphone’s core applications for Android, because they can all be built to have equal

access to a smartphone’s capabilities (Sears, 2014).

2.7.1 Components of Android Botnet

A typical Android botnet consists of four basic components including botmaster,

command and control server, bots, and communication channel as shown in Figure 2.10.

Botmaster is the entity that control botnet from the remote area while making sure any

error is fixed, and that the bot does not break any of the rules of the channel or server that

is logged into (Silva et al., 2013). The botmaster hides their identity via proxies, The

Onion Ring (TOR) and/or shells to disguise their IP Address from detection of

investigators and law enforcement (Kadir et al., 2015).

Botmaster

Internet

Command & Control Server

Internet

Bot

Bot

Bot

Figure 2.10 Android Botnet Components

Command and Control server is the heart of each botnet; these servers execute

those commands received from the botmaster and process it according to the botmaster

https://security.radware.com/ddos-knowledge-center/DDoSPedia/ip-address/

27

instruction. Communication channel allows a bot entity to take new instructions and

malicious capabilities, as command by a remote individual (botmaster). These channels

are used to control botnets depending on their topology. A botnet may has different C&C

server topologies, like Star, Multi-Server, Hierarchical, and Random topology (Stone-

Gross et al., 2011).

A bot is a malicious Android application that is installed in a susceptible host

through various ways which can perform a series of different harmful actions to the end

user according to the botmaster commands (Karim, Ahmad et al., 2014; Van Der Wagen

& Pieters, 2015). Once an end user device is infected with malicious software, it receives

commands and controls from the botmaster through command and control server using

communication channels. However, the bots can be servant and client at the same time.

Botnet communication channel refers to the protocol used by bots and botmasters to

communicate with each other. Bluetooth, Internet Relay Chat (IRC), Hyper Text Transfer

Protocol (HTTP)/HTTPS, peer to peer (P2P) and Voice Over Internet Protocol (VoIP)

servers are used to pass information between bots and botmaster (Farina et al., 2016; Silva

et al., 2013). In Lu & Ghorbani, (2008), botmaster is stated to create an IRC channels on

the C&C server, then the compromised machines will wait for commands to perform

malicious activities.

2.7.2 Android Botnet Life Cycle

The Android botnets are expected to behave like a PC botnet according to general

model namely initial infection, secondary injection, connection, command and control,

and maintenance (Silva et al., 2013). In the initial infection stage, the botmaster exploits

injected malicious code or just edit an existing one out of numerous vastly constructed

Android bots over the Internet (Karim, Ahmad et al., 2014). Once the bot has successfully

infected a victim smartphone, it informs the C&C server and get updated timely by new

commands received from botmaster. Moreover, the victim smartphone grants extra

functionalities to the botmaster. Furthermore, the bot client then goes over the Internet

endeavouring to grow itself to other victim smartphones (Sanz et al., 2013).

In the secondary injection stage, the botmaster executes extra program on the

newly acquired access which then fetch the malicious smartphone from a known location.

As soon as the binary has been installed to the victim smartphone, it executes the

28

malicious code and becomes a bot. In the connection stage, the infected smartphone

attempt to initiate a connection to the C&C server through a variety of communication

channels. Once this connection has been established, it joins the botnet properly.

However, the maintenance stage is the last and most important stage in the botnet

lifecycle, victim smartphones (bots) are commanded to update their binaries, typically to

defend against new attacks or to improve their functionality. Every botnet after

construction follows three types of architectures which are centralized, decentralized and

hybrid (Rodríguez-Gómez et al., 2013).

In a centralized botnet architecture, all the bots relate to a central command and

control server to establish a communication channel with a pivotal point as shown in

Figure 2.11 (A). In this architecture, the botmaster controls and supervises all bots in a

botnet from a single C&C server (Stuvert & Soniya, 2015). Botmaster can communicate

with the bots continuously by sending the instruction to them through these central

servers. As all bots receive commands and reports to a C&C server, it is easy for

botmasters to manage botnets using centralized architecture (Birundha et al., 2015). In

addition, a centralized botnet architecture uses two types of topologies: star topology and

hierarchical topology and two types of protocols which are IRC, HTTP and HTTP Secure

(HTTPS) (Khattak et al., 2014a; Li, C. et al., 2009). The benefits of centralized botnet

architecture are as follow: low reaction time, easy way of communication, and direct

feedback (Plohmann et al., 2011). Furthermore, the design of centralized architecture is

less complex as compared to other architectures. Moreover, the message latency and

survivability are the big issue with it.

Botmaster
Command &

Control Server

A

Bot

Bot

Bot

Botmaster Command &
Control Server

B

Bot

Bot

Bot

Botmaster Command &
Control Server

C

Bot

Figure 2.11 Android Botnet Architectures (A: Centralized, B: Decentralized, C: Hybrid)

Even with the benefits enumerated above, centralized botnet architecture has

limitations. The main disadvantage of the centralized architecture is its maximum failure

29

chances compared with other architectures. If the C&C server fails in a botnet having

thousands of nodes, this may stop the whole botnet in very short delay (Rahman & Saudi,

2015). A centralized command and control servers make the detection of a botmaster

easier as compared to decentralized and hybrid architectures (Bailey et al., 2009; Zang et

al., 2011). Thus, it compels the botmaster to move their attention to decentralized and

hybrid botnets architectures.

The Android botnets with decentralized architecture are known as a decentralized

Android botnet. These botnets are more difficult to detect as compared to the centralized

botnets (Tyagi & Aghila, 2011). Figure 2.11(B) described the structure of decentralized

botnet architecture. It illustrates that there is no specific C&C server exists in this

architecture, and all bots act like a server and client at the same time (Dong et al., 2008).

The decentralized architecture is based on P2P protocols. When compare to centralized

botnet architecture, the design of P2P architecture is more complex and its detection is

more difficult than other botnets (Wang, Z. et al., 2014). Cooke et al. (2005) stated that

the higher survivability rate and the failure chances of the decentralized botnet over the

centralized botnet are the advantages. Furthermore, hybrid architecture is the combination

of centralized and decentralized architectures as illustrated in Figure 2.11(C). The hybrid

architecture comprises two types of bots, namely, the servant and the client. Bots are

connected to the hybrid botnet as a client or servant. Monitoring and detection of botnets

with the hybrid architecture are more difficult than centralized and decentralized botnet

architectures, while the design of the hybrid architecture is less complex (Wang, Ping et

al., 2010).

2.7.3 Android Botnet Timeline

A number of mobile botnets have evolved to degrade the performance of

smartphones, for example ZeuS is a botnet specially designed for Android smartphone

(Karim, Ahmad et al., 2015). However, the first mobile botnet iKee.B was appeared in

2009 using SMS as C&C server while the platform was iOS (Fu et al., 2015). However,

this botnet does not have any criminal activities. Table 2.3 shows the mobile botnets

timeline with respect to their year of creation, Name, Command & Control type, platform,

cyber-criminal activities, and those permissions which are required for Android botnets.

Command and Control server performs an important role in both types of botnets

(traditional and mobile botnets).

30

Table 2.3 Android Botnet Timeline

Reference

Detection

Year
Name

C&C

Type
Platform

Botnet

Instructions
Category

Criminal

Activities by

default

Requires

Permissions

(Peng et al.,

2014)

2009 iKee.B SMS iOS N/A N/A None

(Nigam,

2015)

2010 SMSHowU.A SMS Android

Leak location;

GPS; and maps

through SMS

Potential

Unwanted

Programs

(PUP)

None N/A

(Nigam,

2015)

 Zitmo.A SMS Symbian

ON; OFF; ADD

or Set or Rem

Sender; etc

Trojan

Sends SMS to

Premium

Phone

Numbers;

transferring

incoming SMS

to C&C server;

Update C&C

server and

target new

victims through

SMS.

N/A

(Kazdagli et

al., 2016)

2011 Geinimi.A HTTP Android

ON; OFF; ADD

or Set or Rem

Sender;

Trojan

IMEI;

IMSI;SIM;

SIM State;

Build Info;

GPS; Board;

Brand; CPU

type; User;

Software

Version; SIM

Country; SIM

Operator

N/A

31

Table 2.3 Continued

Reference
Detection

Year
Name

C&C

Type
Platform

Botnet

Instructions
Category

Criminal

Activities by

default

Requires Permissions

(Nigam,

2015)
 Zitmo.A SMS BlackBerry

ON; OFF; ADD

or Set or Rem

Sender;

Trojan

Sends SMS to

Premium Phone

Numbers;

transferring

incoming SMS to

C&C server;

Update C&C

server and target

new victims

through SMS.

N/A

 Zitmo.B SMS Symbian

ON; OFF; ADD

or Set or Rem

Sender;

Trojan

Sends SMS to

Premium Phone

Numbers;

transferring

incoming SMS to

C&C server;

Update C&C

server and target

new victims

through SMS.

N/A

(Nigam,

2015)
 Zitmo.C SMS Windows

ON; OFF; ADD

or Set or Rem

Sender;

Trojan

Sends SMS to

Premium Phone

Numbers;

transferring

incoming SMS to

C&C server;

Update C&C

server and target

new victims

through SMS.

N/A

32

Table 2.3 Continued

Reference
Detection

Year
Name

C&C

Type
Platform

Botnet

Instructions
Category

Criminal

Activities by

default

Requires Permissions

(Karim,

A. et al.,

2014)

 DroidKungFu.A HTTP Android

Leak location;

GPS; and maps

through SMS

Trojan

Send Sensitive

Data; execDelete;

Exploit known

vulnerabilities to

gain root; Install

APK;

execOpenUrl;

execStartApp

N/A

(Nigam,

2015)
2012 Fjcon.A

HTT

Phone
Android ICCID; Malware

Financial;

Propagation of

malware.

N/A

(Pieterse

&

Olivier,

2012)

 Rootsmart HTTP Android

action.host start;

action.boot;

action.

shutdown;

action.install;

action.installed;

action.check

live;

action.download

apk

Malware

IMEI; IMSI; cell

ID; location area

code; mobile

network code

N/A

(Ibrahim

& Hatim,

2012)

 TigerBot.A SMS Android

Change APN;

Notify of SIM

change; Kill

running process

Trojan IMEI N/A

(Wang, P.

et al.,

2015)

2013 Stealer.B

HTTP

and

SMS

Android

HTTP: time;

sms; send;

delete; smscf

SMS:

ServerKey

+001; +002;

anything

Malware
IMEI; IMSI;

Contacts

READ_SMS; INTERNET;

RECEIVE_BOOT_COMPLETED;

READ_PHONE_STATE; RECEIVE_SMS;

READ_CONTACTS; SEND_SMS;

WRITE_EXTERNAL_STORAGE

33

Table 2.3 Continued

Reference
Detection

Year
Name

C&C

Type
Platform

Botnet

Instructions
Category

Criminal

Activities by

default

Requires Permissions

(Yin,

2014)
 Tascudap.A HTTP Android

time; sms; send;

delete;smscf

SMS:

ServerKey +

001; 002;

anything

Malware

Specify time when

trojan should next

contact C&C; send

SMS; delete SMS

from phone;

selective SMS

hiding; start

application;

forward received

SMS; update

READ_SMS; ACCESS_NETWORK:

INTERNET; READ_PHONE_STATE;

RECEIVE_SMS; READ_CONTACTS;

SEND_SMS;

WRITE_EXTERNAL_STORAGA;

(Nigam,

2015)
 BadNews.A HTTP Android

news;

showpage;

install;

showinstall;

iconpage;

coninstall;

newdomen;

seconddomen;

stop; testpost

Trojan

Propagation of

possible malware;

download and

installation of APK

RECEIVE_BOOT_COMPLETED;

SEND_SMS; RECEIVE_SMS; INTERNET;

ACCEESS_INTERNAL_MEMORY;

ACCESS_EXTENAL_MEMORY;

(Nigam,

2015)
 Spamsold.A SMS Android

Display same

icon on the

menu; remain

the image same;

while the name

may change;

install APK

once click.

Trojan

Sends SMS spam

messages without

the user's consent

INTERNET;

CHANGE_COMPONENT_ENABLED;

RECEIVE_SMS; READ_SMS; SEND_SMS;

WRITE_SMS; RECEIVE_SMS;

RAISED_THREAD_PRIORITY;

READ_CONTACTS; WRITE_EXTERNAL;

RECEIVE_BOOT_COMPLETED;

WAKE_LOCK;

34

Table 2.3 Continued

Reference
Detection

Year
Name

C&C

Type
Platform

Botnet

Instructions
Category

Criminal

Activities by

default

Requires Permissions

(Nigam,

2015)
2014 FrictSpy.E3

HTTP;

SMS
Android

Command and

Control to

execute

Malware

activities; such

as calls record;

use camera for

pictures and

videos; use mic

for recording

voice.

PUP

Incoming/Outgoing

call;

Incoming/Outgoing

SMS; GPS location

information; URLs

that the device user

accesses

ACCESS_NETWORK_STATE;

CALL_PHONE; GET_TASKS; INTERNET;

READ_PHONE_STATE; READ_SMS;

RECEIVE_BOOT_COMPLETED;

RECEIVE_SMS; SEND_SMS;

SYSTEM_ALERT_WINDOW;

WAKE_LOCK; WRITE_SMS;

(Nigam,

2015)
 Geinimi.A HTTP Android

ON; OFF; ADD

or Set or Rem

Sender;

Trojan

User; Software

Version; IMEI;

SIM State; CPU

type; SIM Country;

IMSI;SIM; SIM

Operator Build

Info; GPS; Board;

Brand;

CALL_PHONE; GET_TASKS; INTERNET;

READ_PHONE_STATE; READ_SMS;

RECEIVE_BOOT_COMPLETED;

RECEIVE_SMS; SEND_SMS;

SYSTEM_ALERT_WINDOW;

WAKE_LOCK; WRITE_SMS;

(Nigam,

2015)
 SpyBubb.A SMS Android

Leak location;

GPS; and maps

through SMS;

HTTP: time;

sms; send;

delete; smscf

SMS:

ServerKey

+001; +002;

anything

PUP

Collect SMS; call;

Fine Location;

Coarse Location;

GPS; Device Infor

like IMEI; IMSI

etc Share Phone

information to

vendor site.

N/A

35

Table 2.3 Continued

Reference
Detection

Year
Name

C&C

Type
Platform

Botnet

Instructions
Category

Criminal

Activities by

default

Requires Permissions

(Nigam,

2015)
2015 Leech.A HTTP Android

action.host start;

action.boot;

action.

shutdown;

action.install;

action.installed;

action.check

live;

action.download

apk

Malware

Install itself

persistently; run

with full

privileges;

unwanted payment

through SMS;

Spying activities;

Dynamically load

command and

control server.

ACCESS_NETWORK_STATE;

ACCESS_WIFI_STATE;

READ_PHONE_STATE; INTERNET;

WAKE_LOCK;

(Nigam,

2015)
 Tediss SMS Android N/A Malware

Monitor Calls;

SMS; and

Conversation

Applications.

CALL_PHONE; GET_TASKS; INTERNET;

READ_PHONE_STATE;

READ_SMS;RECEIVE_BOOT_COMPLETED;

RECEIVE_SMS; SEND_SMS;

SYSTEM_ALERT_WINDOW; WAKE_LOCK;

WRITE_SMS;

(Nigam,

2015)
 WormHole.A

HTTP

and

SMS

Android

action.host start;

action.boot;

action.

shutdown;

action.install;

action.installed;

action.check

live;

action.download

apk

PUP

Install applications

without

notification;

location

information; add

contact items;

monitor list of

applications

READ_EXTERNAL_STORAGE;

READ_PHONE_STATE;

READ_NETWORK_STATE; INTERNET;

READ_INTERNAL_STORAGE;

WAKE_LOCK; READ_COARS_LOCATION;

36

Table 2.3 Continued

Reference

Detection

Year
Name

C&C

Type
Platform

Botnet

Instructions
Category

Criminal

Activities by

default

Requires Permissions

(Nigam,

2015)

 SilverPush.A

HTTP

and

SMS

Android

HTTP: time;

sms; send;

delete; smscf

SMS:

ServerKey

+001; +002;

anything; ON;

OFF; ADD or

Set or Rem

Sender;

PUP

IMEI number;

Operating

system version;

Location;

Potentially the

identity of the

owner; Behavior

of users using

TVs; web

browsers; and

Radios.

ACCESS_NETWORK_STATE;

CALL_PHONE; GET_TASKS;

INTERNET; READ_PHONE_STATE;

READ_SMS; RECEIVE_SMS;

SEND_SMS; WRITE_SMS;

(Fan et

al., 2017)

2016 MazarBOT.A SMS Android N/A Malware

Sends premium

SMS; exfiltrate

sensitive

information; and

steal the received

SMS messages;

by setting up a

backdoor on

device.

ACCESS_NETWORK_STATE;

CALL_PHONE; GET_TASKS;

INTERNET; READ_PHONE_STATE;

READ_SMS;

RECEIVE_BOOT_COMPLETED;

RECEIVE_SMS; SEND_SMS;

SYSTEM_ALERT_WINDOW;

WAKE_LOCK; WRITE_SMS;

37

Table 2.3 Continued

Reference
Detection

Year
Name

C&C

Type
Platform

Botnet

Instructions
Category

Criminal Activities

by default
Requires Permissions

(Fan et

al., 2017)
 Morder.A

HTTP

and

SMS

Android

Command and

Control to

execute

Malware

activities; such

as calls record;

use camera for

pictures and

videos; use mic

for recording

voice.

Trojan

Track location; Leak

contacts to C&C

Upload data from SD

Card to C&C; Delete

or download files in

the infected device;

Leak phone call

history; Take pictures

with the camera;

Record audio and

calls; Execute shell

commands

ACCESS_NETWORK_STATE;

CALL_PHONE; GET_TASKS;

ACCESS_FINE_LOCATION;

ACCESS_COARS_LOCATION;

INTERNET; READ_PHONE_STATE;

READ_SMS;

RECEIVE_BOOT_COMPLETED;

RECEIVE_SMS; SEND_SMS;

SYSTEM_ALERT_WINDOW;

WAKE_LOCK; WRITE_SMS;

(Fan et

al., 2017)
 Smishing.D SMS Android

time; sms; send;

delete; smscf

SMS:

ServerKey

+001; +002;

anything; ON;

OFF; ADD or

Set or Rem

Sender;

Malware

Phishing

Detect Text Messages;

access fraudulent fake

bank URL; steal user’s

sensitive credential;

password stealing;

additional information

stealing.

ACCESS_NETWORK_STATE;

CALL_PHONE; GET_TASKS;

INTERNET; READ_PHONE_STATE;

READ_SMS; RECEIVE_SMS;

SEND_SMS; WRITE_SMS;

NA=Not Available, SMS= Short Messaging Services, MMS= Multimedia Messaging Services, HTTP= Hyper-text Transfer Protocol,

ICMP= Internet Control Message Protocol, SMTP= Simple Mail Transfer Protocol, UDP= User Datagram Protocol, FTP= File Transfer Protocol,

IRC= Internet Relay Chat, TCP= Transmission Control Protocol, P2P= Peer-to-Peer,

38

2.8 Botnet Detection Approach

In this section, the most significant advances in botnet detection approaches for

smartphones are described. There are different botnet detection approaches have been

proposed. These approaches aim to identify where and how botnet manifests by

constantly monitoring various smartphone-based features. Basically, the existing

detection approaches are divided into three main categories based on their types, namely

static, dynamic, and hybrid as demonstrated in Figure 2.12 (Silva et al., 2013).

Mobile Botnet Detection Techniques

Kirin

RobotDroid

Andrubis

Peirvian & Zhu

Dendroid

AndroSimilar

DroidMoss

AASandbox

Crowdroid

DroidBox

Heuristic-Based

DroidScope

DroidLogger

Mobile-SandBox

AppsPlayground

Multi-Agent

Droid-Ranger

Bouncer

Static Detection Techniques Dynamic Detection Tecniques Hybrid Detection Techniques

Embedded Call Graph

MAMA

NEMESYS

Yerima

CopperDroid

TaintDroid

Heldroid

Recdroid

BotTracer

Figure 2.12 Mobile Botnet Detection Approaches

The process of unpacking the APK (Android installation files) for examining the

static features such as permissions, activities, broadcast receivers, and services to detect

botware applications is known as Static analysis. Static detection approaches are well

known in traditional botnet detection and have recently gained popularity as an efficient

39

mechanism for Android botnet detection. This approach is relatively fast and has been

widely used in the preliminary analysis to search for suspicious strings or blocks of code.

However, dynamic analysis (also known as behavioural-based analysis) seeks to

identify malicious behaviours namely system calls, files, network access and memory

modifications. It can be performed after deploying and executing the Android

applications on an emulator. These approaches require some human or automated

interaction with the app, as malicious behaviour is sometimes triggered only after certain

events occur. Moreover, it seems hard to apply dynamic approach in mobile environment

due to limited resources such as CPU, power, and memory of the smartphones (Lindorfer

et al., 2015). Furthermore, Hybrid analysis is the optimum approach that seeks to identify

malicious applications by utilizing the static and dynamic analyses. However, this study

only focuses on the static analysis approaches.

2.8.1 Static Detection Techniques

Static detection techniques are well known in traditional botnet detection and have

recently gained popularity as an efficient mechanism for market protection. This

technique attempts to identify malicious code by unpacking and disassembling the

Android applications.

Enck, W. et al. (2009) proposed Kirin security service which is an OS-level

protection that provides enhanced security mechanisms for Android smartphone

applications. This approach performs lightweight certification of applications to mitigate

malware at installation time with modification of Android applications installer (Jang,

Kang, et al., 2016). Kirin has different parts of their security rules, and a well-known

combination of permissions is the most important part in these rules (Wang, Z. et al.,

2016). In order to define these security rules, a detailed understanding of malware and

protection techniques are required, which are usually performed by security experts

(Zonouz et al., 2013). Furthermore, access to the sensitive information is prevented and

once an information enters the application, no additional mediation occurs (Ramaki et al.,

2015).

Zhao, M. et al. (2012) proposed RobotDroid; an Android malware detection

technique that is based on SVM machine learning classifier algorithm. This technique

was focused on the signatures of the applications. RobotDroid has the capabilities to

40

detect unknown malware such as Plankton, Gemini and DroidDream (Jung et al., 2015).

However, the key limitation of the RobotDroid framework is that it can only be used for

a few types of malware (Fereidooni et al., 2016).

Zhou and Jiang (2012) proposed DroidMoss which is based on fuzzy hashing

technique that effectively localize and detect the repackaged and injected applications.

This technique uses repackaging technique to detect injected malicious codes in the

Android applications of the existing mobile applications market (Song et al., 2016). The

main feature of the applications used in this technique is Dalvik bytecodes that is made

up of operands and opcodes (Rastogi, S. et al., 2016). DroidMoss calculates fuzzy hashes

on each N sequential opcodes and then apply a measure function on each two applications

to realize their similarity quantitatively. The usage of DroidMoss is limited to identifying

repackaged official Android market applications. The main limitation of this approach is

the consideration of DEX bytecode only, and opcode sequence that do not contain

important information and hereby, generate false negatives (Faruki et al., 2015).

Furthermore, this system is also low robust, and detection may fail if big chunks of code

have been added to the original application (Gurulian et al., 2016).

Faruki et al. (2013) proposed AndroSimilar that detects Android malware regions

of statistical similarity starting from the .dex file. This method employs the similarity

digest hashing system on byte stream based on robust statistical malicious features

(Faruki et al., 2015). Similarly, a digest hashing scheme uses this feature to generate a

list of signatures for this app. Here, the feature values between 100 and 990 are selected

and the rest are discarded using Bloom filter (Canfora et al., 2016). A set of malicious

signatures are generated and thus a database of signatures is created. For testing a sample

app, its signature is created in the same way as above which is matched against the

signature database and is considered as malware if the similarity score crosses 35 %

(Sharma et al., 2016). Authors obtain an accuracy of 72.27% using a dataset of 101

malicious applications. Androsimilar performs at file level as an alternative to code in

decompiling; therefore, control of shared library is not protected. Also, porting the

approach to constrained memory and the strong database remains a concern still (Alam

et al., 2017).

A study (Sanz et al., 2013) MAMA to discover malicious applications by using

the difference in Android application permissions that the application request upon

41

installation. Android permissions are coarse-grained (Sokolova et al., 2017). For

example, the INTERNET permission does not have the capability to restrict access to a

particular Uniform Resource Locator (URL). READ_PHONE_STATE allows an app to

identify whether the device rings or is on hold. At the same time, it also allows the app to

read the sensitive information such as device identifiers. Permissions such as

WRITE_SETTINGS, CAMERA are broadly defined, thus it violates the least privilege

access principle. Access to WRITE_CONTACTS or WRITE_SMS does not imply the

access to READ_CONTACTS or READ_SMS permissions (Google.com, 2016). Thus,

permissions are not hierarchical, and they must be separately requested by the developer.

At the install time, the user is forced to grant either all permissions or deny the app

installation. Hence the dangerous permissions cannot be avoided at the install time.

Moreover, the users cannot differentiate between the necessity and its imperative misuse

which may expose for exploitation.

In this approach, the authors extracted static features from the

androidmanifest.xml file of 666 Android applications. They have used machine learning

techniques such as K-Nearest Neighbors (K-NN), Decision Trees, Bayesian networks,

Support Vector Machines (SVM) to detect malicious applications. In this study, K-NN is

used due to its simplicity in classifying the instance into different classes; a decision tree

is used because of its combination and easy implementation (Narang et al., 2016).

Bayesian network is employed for determining the probability of a hypothesis certainty.

On the long run, SVM is used to overcome the problem of kernel functions which may

lead the technique to the non-linear classification surface (Wang, W. et al., 2017).

Likewise, WEKA tool was adopted for the evaluation of machine learning

algorithms (Hall et al., 2009). The dataset was divided using the k-fold cross validation

technique. The k-fold means to divide the input datasets in ‘k times’ in ‘k numbers’ of

subsets using one shaping sample data set, known as a test set. In their study, they used

130 numbers of permissions and other features separately as an input. Moreover, they

successful obtained satisfactory results with 87.41% accuracy for permission features and

86.09% for the API calls. However, with the combination of permission features that was

used they got 94.83% which sounds good in terms of malware detection. Remarkably,

this technique cannot detect mobile botnets, because of their specific and unique features.

In other words, study of (Peiravian & Zhu, 2013) developed a machine learning

framework to analyze benign and malicious applications by using the permissions and

API calls as features input. They have extracted these requested permissions from the

42

Androidmanifest.xml file and API calls from .DEX classes of each Android applications

(Desnos, 2011a). In this study, authors examined 2400 Android malware and benign

applications in total. The authors achieved 96.88% of accuracy by selecting a high number

of features. This shows that the accuracy can be improved when a greater number of

features is selected from both malware and benign applications.

In particular, this study has some limitations about complexity, by extracting and

selecting a greater number of features. With the selection of more number of features, the

accuracy is improved while the memory and time complexity are increased as well

(Sokolova et al., 2017). This framework specifically focused on the malware applications.

Using these approaches mobile botnets cannot be detected in Android devices. This study

has almost the same nature with aforementioned study on MAMA in Section 2.7.1 (Sanz

et al., 2013) by using the same features. They achieved 94.83% accuracy when 130

features were examined.

Gascon et al. (2013) proposed Embedded call graphs technique based on static

approach using SVM classification algorithm. The use of call graph kernel for malware

detection allows for extraction of the code into a readable file that make the structure

learning possible (Li, L. et al., 2017). This technique can be used to find similarities

between android applications samples. The key concept of this technique is functioned

call graphs, while obfuscation resistance is the major contribution (Gascon et al., 2013).

It specially observes the assembly level analysis and support vector machine

implementation. The main disadvantage of this technique is inability to decide the static

call graph construction, while the time and space complexity are high and large (Sharma

et al., 2016).

Suarez Tangil et al. (2014) proposed Dendroid approach based on text mining and

information retrieval techniques. In this technique, the Code Chunks (CC) are extracted

for further analysing and classified the code structures in malware families (Faruki et al.,

2015). The authors present a simple way to measure the similarity among malicious

applications by formulating the modelling process (Suarez Tangil et al., 2014). The

experiment performed over 33 families had 1249 malware applications (Sharma et al.,

2016). This approach provides the automatic classification of zero-day malware samples,

which is based on applications code structure. According to time and accuracy, this

technique is very fast and accurate, while having a high scalability (Skovoroda &

Gamayunov, 2015). However this technique has some limitation in terms of feature vector

43

growth, new families creating issues, and the strategies of obfuscation are not

implemented (Tam et al., 2017).

Lindorfer et al. (2014) introduced Andrubis which is a cloud-based malware

detection technique. This technique combines both static and dynamic analysis on Dalvik

VM and System level (Jang, Kang, et al., 2016). First, it performs the static analysis by

extracting the information including broadcast receivers, requested permissions,

activities, services, SDK version, package name, from the application manifest and its

bytecode. Andrubis uses the modified DroidBox output to generate XML files that

contains the analysis results (Abdullah J. Alzahrani, 2014). While in the dynamic stage,

it executes the application in a complete Android environment, during the execution its

action is monitored at both the Dalvik and the system level (Faruki et al., 2015). Other

than this, Andrubis provides a web interface for users to submit Android applications and

has collected a dataset of over one million Android applications including 40% malware.

The only disadvantage of this technique is that it cannot track native code (Rasthofer et

al., 2015; Xu, L. et al., 2016). API calls that are frequently happening in the botnet are

extracted from the Dalvik code, while the Andrubis is limited to the applications API

level 8.

Yerima et al. (2014a) developed a proactive machine learning approach that is

based on Bayesian classification and aimed to detect zero-day Android malware attacks

using static analysis approach. This approach has three main components which are

decompression, identification, and classification. First, an application is decompressed by

reverse engineering to extract features from AndroidManifest.xml and .DEX classes by

using Dalvik VM (Feizollah et al., 2017). All the extracted features are stored in a file

with the .csv extension for further analysis. In the identification step, this component

converts the extracted features file to a readable form for further analysis. While in the

classification process the Bayesian algorithm classifies the malware and benign

applications as a result (Hall et al., 2009). This approach is based on large existing

malware set of 49 families. Specifically, this technique achieved approximately 92.1%

accuracy by using a set of 30 static features.

This research work focusses on the Android malware identification only. By using

this approach, a mobile botnet cannot be detected. They used a very few number of

features as compared to the aforementioned study (Peiravian & Zhu, 2013) which affect

the accuracy of malware detection. According to this study, the time taken for features

44

extraction and computation is decreased to a tune of 77%. However, in another study, it

is shown that by using these features the time taken for features extraction is increased

with an amount of 28% (Karim, A. et al., 2015). In this approach accuracy and time

consumption are the key issues that need to be addressed in future.

Heldroid is device based ransomware detection technique that is based on the

building blocks (Andronio et al., 2015). Both static and dynamic approaches are used to

analyse Android applications. In addition, a light-weight emulation is used to find the

flows of function calls. The technique was tested with 187326 samples and produced 99%

correctly identification of ransomware (Li, L. et al., 2017). They obtained their best

results with respect to ransomware only. It sounds good for the ransomware detection in

mobile devices, on the other hand, it cannot detect botnet and other malware which is the

main limitation of this technique (Sadeghi et al., 2017). Space and time complexity also

exist in this technique because of its devices-based approach.

Liu et al. (2008) introduced RecDroid; a clustering-based method to detect bot

users controlled by the same masters. RecDroid is an Android permissions

recommendation framework which allows users to grant application permissions requests

in a fine-grained manner (Rashidi & Fung, 2016). The key idea behind the RecDroid is

to collect the expert users’ responses to a permission request and recommend them to

inexperienced users (Rashidi et al., 2017). It followed two steps with the first approach

involves analysis the common features of bot users and constructed a graph based on their

similarity (Kirubavathi & Anitha, 2017). Then, a hierarchical clustering method is

employed to group those users together based on their distance which is defined using

similarity. This approach is limited to detect only simulated bot user profiles (Rashidi et

al., 2016).

BotTracer is proposed by (Rashidi & Fung, 2016) and is a clustering based method

to detect bot users controlled by the same masters. Their main part of the proposed method

is to plot the Android users in various groups on the basis of their similarity. It is an

Android permissions recommendation framework which allows users to grant application

permissions requests in a fine-grained manner. In Android applications, permissions are

the main factor during installation that cannot be ignored. For example, the INTERNET

permission does not have the capability to restrict access to a particular Uniform Resource

Locator (URL), READ_PHONE_STATE allows an app to identify whether the device

rings or is on hold (Felt et al., 2012).

45

The key idea behind this technique is to collect the expert users’ responses to a

permission request and recommend them to inexperienced users. BotTracer is in two

phases with the first step on analysis of the common features of bot users for the

construction of a graph that is based on their similarity. Then, a hierarchical clustering

method is employed to group those users together based on their distance which is defined

using similarity. This approach has many limitations in terms of botnet detection. First, it

detects the simulated bot user profiles only. Secondly, it considers the DEX bytecode

only, while it ignores the native code and app resources. Thirdly, the opcode sequence

does not include high-level semantic information and hence generates false negatives.

With these limitations, smart adversary can easily bypass this technique using code

transformation techniques such as inserting junk bytecode, restructure methods, and alter

control flow to evade the BotTracer prototype.

The complete list of mobile botnet detection techniques using static approach are

summarized in Table 2.4. The technique column represents the approach used, followed

by the year column. Furthermore, the key concept presents the rules on which these

approaches are detecting botware applications namely permission based, behavior based,

and signature based. Major contribution shows detection approaches strength, while

limitations shows the disadvantages of each approach.

46

Table 2.4 Mobile Botnet Detection Techniques using Static Approach

Refernces Techniques Year

Key Concept

Major Contribution Observations Limitation

P
er

m
is

si
o

n

B
a

se
d

B
eh

a
v

io
u

r

B
a

se
d

S
ig

n
a

tu
re

B
a

se
d

(Enck, W. et al.,

2009)
Kirin 2009

Used rules to detect

malware in install

time.

It is logic based tool,

ensure permission needed

by application are met by

global safety invariants.

No access to sensitive information of

application. Cannot detect new malware

(Enck, W. et al., 2014).

(Zhao, M. et al.,

2012)
Robotdroid 2012

Detection of unknown

malware such as

Plankton,

DroidDream, and

Gemini.

Signature recognition

It is limited to detect some specific types

of malware families such as Plankton,

DroidDream, and Gemini (Narudin et al.,

2016).

(Zhou et al., 2012) DroidMOSS 2012
Fuzzy Hashing

Technique,

measure the similarity

between two are more

different applications

It is limited to identifying repackaged

official Android market applications

(Enck, W. et al., 2014).

(Faruki et al.,

2013)
AndroSimilar 2013

Improbable signature

generation, thwart

obfuscation and

repackaging

Entropy, signatures,

fuzzy hashing

Limited malware dataset and it can detect

only simulated bot users, more false

positives and poor detection rate. Unable

to detect new malware (Alam et al.,

2017).

(Sanz et al., 2013) MAMA 2013

Machine Learning

classifiers based on

permissions and the

features from the

manifest file.

Over 2000 applications

are analyzed for

permissions. Majority of

the malicious applications

requested network

connectivity.

Extraction of more number of sub

features making it high power and space

consumption, draining the battery. It do

not prevent installation of malware

(Narudin et al., 2016).

(Peiravian & Zhu,

2013)
-- 2013

Permissions, API calls

and the combination of

both are used to detect

malicious applications

2400 real world

applications are used to

validate the performance

of algorithm.

Facing issue in new family creation of

botware also cannot prevent installation

of botware (Tchakounté & Hayata, 2016).

47

Table 2.4 Continued

Refernces Techniques Year

Key Concept

Major Contribution Observations Limitation

P
er

m
is

si
o

n

B
a

se
d

B
eh

a
v

io
u

r

B
a

se
d

S
ig

n
a

tu
re

B
a

se
d

(Gascon et al., 2013)
Embedded

call graph
2013 Obfuscation resistance

Assembly level analysis,

SVM implement

Undecidability of static call graph

construction. Cannot detect new malware .

(Suarez-Tangil et al.,

2014)
Dendroid 2014

Unknown malware

classification, fast and

scalable, dendograms

Malware signatures, VSM,

1-NN, Malware evaluation

No obfuscation resist, large feature vectors.

Cannot detect new malware (Suarez Tangil et

al., 2014).

(Lindorfer et al.,

2014)
ANDRUBIS 2014

Static Analysis on both

Dalvik VM and System

Level

Fully automated

technique, perform

dynamic, static, and

auxiliary analysis

Analysis consume more space, cannot be used

for latest Android applications (Karim, Salleh,

Khan, et al., 2016).

(Yerima et al.,

2014a)
--- 2014

Applied static analysis-

based Bayesian

classification for

proactive android

malware detection

Observed permissions,

code-based features and

mixed features

feature vector growth, it does not allow

malware families classification, and the

strategies of obfuscation (Canfora et al., 2016)

(Andronio et al.,

2015)
HELDROID 2015

Different APIs,

specifically SMS APIs

and functions to detect

crypto-ransomware and

locker-ransomware

Monitor different multiple

source data sense,

It does not track implicit control flows due to

performance overhead (Al-rimy et al., 2018).

(Rashidi & Fung,

2016)
RecDroid 2016

Improbable signature

generation, obfuscation &

repackaging

Perform static analysis for

permissions, and

API_calls

This approach is limited to detect only

simulated bots user profile (Kirubavathi &

Anitha, 2017).

(Rashidi & Fung,

2016)
BotTracer 2016

Runs a virtual machine

that start automatically

without interaction of

human. It has the

capability to detect bot

when it begins a

malicious activity.

It observe the three stages

of a bot namely injection,

update and attack.

It require high level compuations due to

virtual machine degredation of host

performance.It will unable to detect the

moderate bots due to the capability of

checking the virtual machine presence

(Alauthman, 2016).

48

2.8.2 Dynamic Detection Techniques

Dynamic detection techniques seek to identify malicious behaviours after

deploying and executing the applications on an emulator or a controlled device. These

techniques require some human or automated interaction with the app, as malicious

behaviour is sometimes triggered only after certain events occur. Some of the dynamic

detection techniques are listed in the following paragraphs with more detail.

AASandbox was the first technique perform both static and dynamic analysis of

the Android applications proposed by (Bläsing et al., 2010). The static analysis scans the

Android applications for malicious patterns without the installation on the Android

platform (Jang, Yun, et al., 2016). However, in the dynamic analysis the Android

application is executed in a fully isolated platform called a sandbox (Sanz et al., 2013). It

also intervenes and logs low–level interaction with the system for further analysis during

the application execution. In contrast, both the detection algorithm and sandbox algorithm

are implemented in the cloud. AASandbox uses a system known as foot-printing approach

for detecting suspicious Android applications. It logs the execution time, the system call

name and the identifications of each processes (Alazab et al., 2012). In early days when

AASandbox was proposed, there were no known Botnet malware samples available to

evaluate this technique (Suarez Tangil et al., 2014). This seems to be unmaintained

nowadays.

Burguera et al., (2011) proposed Crowdroid, this is a dynamic approach based on

the behavior of Android applications. Crowdroid is a lightweight application and is

available on the Google play store for download and installation on the devices (Xu, J. et

al., 2013). It monitors and collects the API calls of those apps which are running on

mobile devices and send them to the centralized server after pre-processing (Narudin et

al., 2016). With the application of cluster algorithm to evaluate these Android

applications, it is able to detect self-written malware as well (Skovoroda & Gamayunov,

2015). However, Crowdroid is based on the Strace, which extract system calls from the

applications after installation (Levin et al., 1991). Crowdroid cannot detect malicious

behavior during installation process, as it depends on the functionality of Strace (Jang,

Yun, et al., 2016).

DroidBox is a sandbox based applications for behavioral analysis as proposed by

(Desnos & Lantz, 2011). It is basically TaintDroid with some extra Dalvik virtual

49

machine modifications that log specific API calls (Alazab et al., 2012). This technique

can effectively analyze Android application by building logs of all data accessed by the

application on the system (Junaid et al., 2016). However, it lacks in executing applications

prior to Android version 4.2 (Tam et al., 2017). DroidBox is an open source package for

dynamic analysis which cannot be used explicitly for large datasets because of its limited

resultant parameters and deficiency to execute latest Android applications (Karim, Salleh,

& Khan, 2016).

Heuristic based botnet detection monitor network traffic including IRC traffic,

HTTP traffic, and unclassified application traffic to identify malware (Franklin et al.,

2008). A processor is configured to monitor the behavior which indicates the suspicious

network traffic (Moghaddam & Abbaspour, 2014). Heuristic botnet detection technique

uses new and precise traffic patterns to identify C&C activities with an improved accuracy

and low false positive rate (Zhou et al., 2012). This traffic pattern is used to identify

botnet C&C activities, various heuristic techniques as described herein with respect to

various embodiments. This technique has some drawbacks that undermines its efficiency

such as length of monitoring time is not clear and the condition that trigger malicious

behaviour is not evident (Shameli et al., 2014). The Heuristic technique might be more

expensive regarding computationally and resource consuming.

Yan & Yin. (2012) proposed DroidScope, it is a fine-grained dynamic binary

instrumentation tool for Android OS that rebuilds two level of semantic information: OS

and Java. It provides an instrumentation interface which can be used to write plug-ins

(Jiang & Xuxian, 2013). Some of the plug-ins has already been implemented such as API

tracing, native instruction tracing, Dalvik instruction tracing and taint tracking.

DroidScope works entirely on the emulator level and requires no changes to the Android

sources (Jang, Kang, et al., 2016). It runs the analysis outside the smartphone software

stack and can analyse kernel-level attacks. This system has a big drawback for not

detecting real-time attacks (Enck, W. et al., 2014). However, the second drawback is

ignorance of covering the subtleties from the real devices (Fan et al., 2017).

Another technique is DroidLogger, this is a dynamic light-weight method for

understanding the behaviour of Android applications by logging applications API’s and

corresponding arguments (Dai, S. et al., 2012). This system can capture not only the

suspicious API invoked by the application but also the arguments used by the suspicious

50

API (Karim, A. et al., 2015). There are some limitations in the static analysis which is

solved in this technique by getting the plain text of that data which is encrypted. Similarly,

this technique is based on the run-time information (Faruki et al., 2015). The detection of

modified code by a malware, the string type of the suspicious API’s arguments, and that

malware which are using native code cannot be detected with DroidLogger.

Mobile-SandBox is a static and dynamic analysis system at the same time, which

was proposed by (Spreitzenbarth et al., 2015) and was made available to the public. In

this technique, the comparison of applications occur in different stages such as comparing

the hash value with the VirustTotal database of the running application in the first stage,

(Ghafir & Prenosil, 2016; Virustotal, 2017). In the second step, it extracts the Manifest

file for permissions, background services, broadcast receivers, and intents (Google.com,

2016). This technique also extracts the API calls from the Dalvik bytecode which happen

frequently in Botnets. Due to user interface, Mobile-SandBox, is very easy to submit

applications for static and dynamic analysis (Sharma et al., 2016). A user can easily

upload an application for static and dynamic analysis to the Mobile-SandBox by using

the user interface. While in some aspect, Mobile-SandBox seems to be unable to cope

with their submission load.

Rastogi et al. (2013) proposed AppsPlayground which is based on TaintDroid.

This is a scalable automatic dynamic analysis system that detects possible data leaks. It

employs a Java app that connects to an emulator running on a modified version of the OS

and examined the applications dynamic features (Skovoroda & Gamayunov, 2015). It

determines whether the application is involved in malicious activities are being carried

out by monitoring sensitive API and system calls or tracking personal data leakage

(Suarez Tangil et al., 2014). However, AppsPlayground has one key drawback of

requiring a modified Android framework for malicious applications analysis (Jang, Kang,

et al., 2016).

Reina et al. (2013) proposed CopperDroid, a dynamic detection system for

system-call centric. This system is built on top of the quick emulator (QEMU).

CopperDroid has a combined analysis to recreate the dynamic features of a malware

program by leveraging operating system explicit information, such as system call and

Android OS credentials such as private data leakage (Jang, Kang, et al., 2016; Tam et al.,

2017; Tam et al., 2015). To the best of our knowledge, this is the first technique that

51

performs system call monitoring of the Android applications out-of-the-box through

virtual machine introspection (VMI) by reconstructing the Dalvik behavior with

monitoring Binder communication (Lindorfer et al., 2014). CopperDroid carried the

binder analysis to perform the reconstruction of high-level Android-specific behavior. It

is available publicly as a web application, in which user can submit their samples (Reina

et al., 2013).

TaintDroid is a system-wide dynamic taint tracking and analysis system for

simultaneously tracking multiple sources of sensitive data (Enck, W. H., 2011). This

technique monitors methods, variables, files, and messages during the application

execution according to data flow (Suarez et al., 2014). TaintDroid using tag chunk to

keep track of data in order to find information leakage at runtime (Rastogi, V. et al.,

2013). Information flow tracking needs lots of memory (Ongtang et al., 2012). However,

none of these schemes is energy-efficient; hence they are not suitable for resource

constrained mobile platforms.

2.8.3 Hybrid Detection Techniques

Hybrid detection techniques perform static and dynamic analysis at the same time

to detect malicious applications. Some of the detection techniques that use the hybrid

approach are listed in the following paragraph.

Szymczyk, (2009) proposed Multi-Agent Bot Detection System (MABDS) which

was based on hybrid approach. MABDS combines multiple agents such as administrative

agent, user agent, a central knowledge database, system analysis, honeypots, agent

collections and network analysis (Silva et al., 2013). In this technique, each agent

observes traffic using different sensors by implementing the Markov chain model to

perform the dynamic risk assessment (Shameli et al., 2014). These systems in

multifaceted, piercing, real-time domains involve autonomous agents that should act as a

team to compete against malware (Castiglione et al., 2014). The slow convergence of new

signature with the knowledge database is the key limitation of this technique.

Furthermore, the new signatures updates are another limitation of this system (Karim, A.

et al., 2014).

Zhou et al. (2012) proposed DroidRanger which is a combination of two systems

based on permissions behaviour foot-printing and heuristic based filtering. This technique

52

applies to both static and dynamic approaches to detect malicious applications in the

existing Android markets (Jang, Kang, et al., 2016). Permissions based behaviour foot-

printing is specialized for detection known malware while the heuristic based filtering is

fashioned for detecting unknown malware Android applications (Song et al., 2016).

Despite, the advancements in the detection approaches applied by DroidRanger, it also

has some limitations. For example, it requires the manual operation for analysing and

collecting behaviour of Android applications (Babu et al., 2015). It was reported in a

related study by (Spreitzenbarth et al., 2015), that DroidRanger uses manual operation

which may takes more times as compare to other detection techniques.

The Oberheide & Miller (2012) proposed Bouncer. This provides the static and

dynamic scanning together with Android applications which is performed automatically

on the server side (Sokolova et al., 2017). Google play store used this technique to scan

the Android application before hitting the application market (Penning et al., 2014).

Bouncer has potential to take newly uploaded applications to the app market. An instance

when the application has the capabilities of sending SMS to the malicious sites or any

other criminal activities, such an Android application is classified as malware otherwise

benign. However, in this advanced era, it seems that the attackers have found ways to

bypass detections. This technique is suitable for Google play store users for the download

of applications while the third parties’ app store users are not protected with this technique

(PlayStore, 2017). Nevertheless, the number of malwares is still growing with the pretty

ratio.

The hardest part of the detection of malicious traffic is to differentiate C&C data

flow from the normal data flow behaviour (Gu et al., 2009). To overcome this limitation,

data mining techniques are very useful to recognize the pattern by extracting the

unexpected network patterns (Alparslan et al., 2012). Data mining is the machine learning

mostly used to devise methods for classification, prediction, regression, and inference

(Eskandari & Hashemi, 2012). These techniques are extensively used in anomaly

detection especially in establishing generic and heuristic methods (Schultz et al., 2001).

Data mining approaches detect structures in the wide range of data, such as bytecode, and

use these structures to detect upcoming malicious occurrences in related data. Gu,

Perdisci et al. (2008); Gu et al. (2007); Gu, Zhang et al. (2008); Wang, K. et al. (2011);

Yu, X. et al. (2010) proposed BotMiner, BotHunter, BotSniffer, and behaviour-based

53

botnet detection systems respectively based on data mining approach. The techniques are

proven to be effective but not without shortcoming (Nagendra Prabhu & Shanthi, 2015).

It was experimentally reported that BotMiner, and BotHunter were able to achieve 99%

with 1% false alarm, 99.2% with 0.8% false alarm respectively (Zhao, D. et al., 2013).

NEMESYS is a network model-based security solution that combines learning and

modelling for detection of anomalies and attacks in the mobile network (Gelenbe et al., 2013). It

deals with every mobile connection during communication with each other in a network. The

uniqueness of this approach is the difference between the number of mobile users that are

monitored and deal in real time are varied (Abdelrahman et al., 2013). Furthermore, a clear and

understandable approach was needed to deal with every unique call. Another logic behind

constructing this approach was the computational tools that were being developed for anomalies

detection were based on mathematical models (Papadopoulos & Tzovaras, 2013). However,

NEMESYS is limited to a small number of users and the approach is more complex and memory

reserving (Delosières & García, 2013).

2.9 Machine Learning Classifiers

Machine Learning (ML) is extensively used in malware detection, specifically in

creating of basic and heuristic methods (Muttik, 2011; Yerima et al., 2013; Yerima et al.,

2014b). ML has the capability to generalize the information from huge data sets. In order

to apply the generalized information to new actions and solutions it can detects patterns.

Supervised and unsupervised are the two main types of machine learning. The class

labelled training dataset differentiate the supervised ML from the unsupervised ML

(Pedregosa et al., 2011). The algorithm makes decision on the base of this labelled class

that is used for training the dataset. Supervised ML has the ability to select the appropriate

method depends on the nature of the application. Once the algorithm achieves the

acceptable value and level of performance, it stops it’s learning. However, the

unsupervised machine learning, only demands input data without comparing the yield

factors. In this study the different five supervised classifiers are selected on the base of

feature length, nature of instances, number of classes, performance and ranking criteria.

2.9.1 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a well-known supervised machine learning

technique based on statistical learning theory which is used for nonlinear mapping to

convert input data into higher dimensions. Several Machine-Learning (ML) approaches

are available for classification of two classes with some of them having exceptional

54

capability for efficient and effective solutions. A linear SVM is adopted for the

classification on the basis of used dataset nature, as it is binary (Apvrille, 2012). The main

advantage of this technique is in solving the problem of multidimensional and its

computational complexity. It can construct a mapping of a non-linear separable data

sample by selecting higher dimensional characteristics space. The kernels arrange data

instances in a multidimensional space such that they separate two classes of every data

instance on a given hyperplane. In our case, giving the weights of the two classes in the

training dataset, a hyperplane can separate the classes into malware or botnet with

maximum margin. If the accumulated weights are equal to or greater than the prescribed

weight of botnet, the class belongs to a botnet, otherwise it will be considered as benign.

The most important idea of using this technique is that every data instance can be

classified by a hyperplane if the dataset is transformed into a space with sufficiently high

dimensions. In the context of mobile botnet detection, SVM is used to differentiate

between benign and botware. Also, it has an accurate detection rate with an acceptable

training time. However, most of the existing approaches are independently using this

technique for intrusion and malware detection; and either combining or extending them

with other ML algorithms. Furthermore, the technique is being used as a feature reduction

schemes. Support vector machine is a great approach for intrusion detection systems in

artificial neural networks, and SVM generates better results in higher classification

accuracy (Mukkamala & Sung, 2002; Sung & Mukkamala, 2003).

2.9.2 J48

The classifier in this study is built as a J48 decision tree algorithm that is based

on the C4.5 algorithm. It is designed for the classification of either pruned or unpruned

decision tree. The main motive for using J48 is as a result of construction of decision tree

from the labelled trained dataset. Once J48 gets the newly arrived dataset by using the

dependent and independent variables, it deals with this dataset. In order to make the

feature values as a base, it makes decision tree, whereas it found the feature values in the

training datasets. Whenever the algorithm encounters a set of items that can clearly be

separated from the other class by a specific attribute, it branches out a new leaf according

to the value of the attribute. In this process, each time a new decision needs to be taken,

the attributes with the highest normalized gain is chosen.

Among all possible values of the attributes, if there are any values for which there

is no ambiguity, the branch is terminated, and the appropriate label is assigned to it. The

55

splitting procedure stops when all instances in all subsets belong to the same class.

(Shabtai et al., 2014) applied J48 in malware detection and predicted malware class with

comparatively high detection rate. A decision tree classifier is used on the basis of these

algorithms having an efficient outcome in producing accurate results. Those features

which are best in the separating of the botware and benign applications can be clearly

seen during the training phase of the decision tree classifier.

2.9.3 Random Forest

Random forest is a combination of bagging method and random subspace

proposed by (Breiman, 1996; Ho, 1995). It is a group of classifiers using many decision

tree models. In this study, a different subset of training data is selected with a replacement

to train each decision tree in this decision tree models. It is very difficult to define the

importance of a variable when they interact with other variables, due to its interactions.

However, in this case, random forests algorithm estimates its importance by considering

the changes which occur in the prediction error of the targeted variable. This calculation

is performed by tree according to the random forest construction. The remaining training

data serves to estimate the error and variable importance. This classifier is a logic-based

algorithm that is proved to produce a high-accuracy result as in (Eskandari & Hashemi,

2012) for malware detection. Random forests have some more benefits over other

classifier techniques, such as, it is not over fitting and can run as many trees as it can, 50

times faster than other classification approaches (Ho, 1995). Random forests were chosen

on the basis of these upper hands.

2.9.4 Simple Logistic Regression (SLR)

Simple logistic regression is similar to simple linear regression but intended for

use with binary outcomes, instead of continuous outcomes. The probability of expected

outputs has two values in logistic regression, as aforementioned that it will generate

binary output either 0 or 1. It will generate a logistic curve that will remain in the middle

of 0 and 1. However, a simple linear regression model is not suitable for predicting the

values of two classes of data, as it predicts values from outside of the expected range.

(Ng, 2004) proved that L1 and L2 are two types of regularization, with L1 produces a

better output when dealing with unrelated and dissimilar vectors of features, while L2 is

totally different in this sense. This is the reason for choosing simple logistic regression

for this detection technique.

56

𝜋 =
1

1+𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑛𝑋𝑛)
 2.1

2.9.5 Naïve Bayes

In contrast, this study proposed Naïve Bayes for the prediction of a large number

of related applications. In Naïve Bayes, the prediction has an independent assumption

which is based on the Bayes Theorem (Pawlak, 2002). The main motive of designing this

method was in the use of supervised induction tasks, where the performance was based

on the accurate prediction of instances in a test class information (John & Langley, 1995).

Classifier could be a straightforward as in applied mathematics formula with a historical

record of giving interestingly good result. This is the reason of using it in different

malware classification studies (Amos et al., 2013; Khorshed et al., 2012; Yu et al., 2013).

It treats numeric and discrete attributes in a different way. Also, Bayes theorem states a

way for finding the posterior probability, κ(c|s), from κ(s), κ(c) and κ(s/c). It assumes that

there is no relationship among the values of a predictor (s) with a given class (c), with

values of other predictors which is called class conditional independence. The probability

of a predictor (s) with given class (c) can be depicted from the given Equations 3.3 to 3.5.

𝑐 ∈ {𝐵𝑜𝑡𝑤𝑎𝑟𝑒, 𝐵𝑒𝑛𝑖𝑔𝑛} 2.2

𝑠 ∈ {𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑠) 𝑛𝑒𝑒𝑑 𝑡𝑜 𝑏𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑} 2.3

κ(𝑐|𝑠) =
κ(𝑠|𝑐)κ(𝑐)

κ(𝑠)
 2.4

In the above equations, κ(c|s) is the probability of class c, with the predictor x, κ(c)

is the next probability of class c, κ(s|c) is the probability of the predictor (s) with class

(c), moreover, κ(s) is the last probability of the predictor (s).

2.10 Discussion

In the related works mentioned above, open issues that are concerned with the

progressive security of smartphones against botnet attacks were identified. The various

existing challenges are highlighted with all due respect to Android botnet that need to be

addressed by the researchers alike:

57

The existing malware detection systems target on mobile malware analysis and

detection in general (Peiravian & Zhu, 2013; Rashidi & Fung, 2016; Sanz et al., 2013;

Yerima et al., 2014a). Therefore, no such detection technique focusses on Android third

party’s applications that are involved in botnet activities. These activities can be

differentiated from the malware activities by the action performed on the basis of

instructions received from the botmaster. The detail about these activities is available in

above sections. Thus, Android botnet detection is a novelty research area that needs to be

addressed.

Android Features: Android features are grouped into static and dynamic.

Permissions are the most used static features. Permissions are further grouped in normal,

dangerous, signatures and signaturesOrsystem. Few of the work used API Calls for botnet

detection. However, the Activities, broadcast receivers and services are also used by each

Android application. These features are declared in the AndroidManifest.XML file. In

this work all, these static features are chosen due to its potential and richness in detection

of Android botnet.

Currently, there are millions of third party’s Android applications available in

online market. Thus, it is a challenging task to perform botnet analysis on a huge number

of Android applications with varied features space. Therefore, selecting the most related

static features of Android applications with botnet facilities is a pivotal task.

Cross-functional activities: Initially, it is mandatory to activate the cross-

functional group. It should involve researchers either from industries or institutional and

stakeholders namely, enterprises, networks, Internet service providers and governments

for the recognition of Android botnets and potential distraints of botnet tools. A clear

policy on smartphones usage must be mentioned and standardized across the enterprise.

Moreover, the smartphones users should give awareness about ways by which an Android

botnet attack can be solved.

Some of the existing solutions that are based on dynamic analysis require

computational-intensive resources, code coverage, and processing time. Consequently, it

is infeasible to apply dynamic analysis to huge datasets. Instead, static analysis results

provide more insights into the coding patterns of an Android application. This approach

is considered the lightweight detection and analysis option.

58

Considering the enumerated open research challenges for botnet detection and

analysis in mobile devices, static analysis and detection approach is extremely important.

Such an approach should deal with botnet susceptible features of Android applications

during installation time.

2.11 Summary

This chapter summarized the importance of mobile devices that have become

similar to the personal computer in terms of processing, communication, storage and other

functionalities. Moreover, the security of mobile devices is also summarized which is the

most challenging issue facing by researchers. Specifically, Android botnet is the current

existing dangerous threat facing by mobile devices and can have many consequences if

ignored. Their capabilities were confirmed by exploring their definition and history. The

potential threats of Android botnets were briefly discussed. Furthermore, its components,

architecture, and design are explored, while from this literature it was found that the main

target of Android botnets is C&C channels. In this chapter, many of the Android botnet

detection techniques are investigated and were found to follow any method among

dynamic, hybrid or static approaches. From the review of literature, it was discovered that

the existing techniques have limitations with regard to the progressive security of Android

devices against the botnets. Furthermore, state-of-the-art from the literature review is

presented as they will serve as a roadmap for researchers. Moreover, different open

challenges are highlighted with respect to Android botnets which need to be addressed by

the researchers either from institutions or industries.

59

CHAPTER 3

AN ENHANCED ANDROID BOTNET DETECTION APPROACH USING

FEATURE REFINEMENT

3.1 Overview

The previous chapter discussed research work related to this study. These studies

used different tools to analyse and conduct their experiments. The familiarity with the

existing tools intensively increases the knowledge of malware analysis techniques. This

chapter aims to present the details of the proposed enhanced Android botnet detection

approach using feature refinement. The building blocks and components of the proposed

detection approach with their functionality are described. This approach is comprised of

five main components namely: decompiler, features extractor, smart learner, features

refining, and machine learning modelling. The remaining chapter is divided into three

sub-sections. Section 3.2 illustrates the proposed approach while the main components of

the proposed approach are described in Section 3.3. This chapter is concluded with

Section 3.4 to summarize the whole approach.

3.2 The Proposed Approach

In this sub-section, overview of the Android detection approach was presented.

The proposed approach has five main components as shown in Figure 3.1. The first

component is the decompiler which is responsible for dissecting the APK file and

decoding its components. Every Android application has different directories such as

AndroidManiFest.XML, asset, DEX, and resources. These are mentioned with details in

Chapter 2. The second component is the extractor which, take AndroidManiFest.XML,

and DEX classes as an input from the decompiler component. In this component, the

static features namely: permissions, activities, broadcast receivers, and services are

extracted from AndroidManiFest.XML. However, the API calls are extracted from DEX

60

classes. All the extracted features are represented with binary numbers. The existing

feature is represented with “1” while the absent one is represented with “0” for further

processing.

Decompiler

.apk file

Decompile the input Android

Application Package (.apk) file to

obtained AndroidManifest.XML

and .DEX files

Features Extractor

Check the obtained files and folder

for specific static features

Smart Learner

Pattern Identification of Botnet

related features on the bases of

their Usage Frequency Using

Apriori Algorithm

Machine Learning Modeling

Classifier

Features Refining

Features Refining Algorithm

Result (Botware or Benign)

Permissions

Activities

Broadcast Recievers

Services API Calls

Figure 3.1 Android Botnet Detection Proposed Approach

In the third component, all the available features are indexed and the Apriori

algorithm was applied on the extracted indexed features in order to identify the frequent

used features. The fourth component is feature refining; in this component, the identified

features are then refined with the help of Information Gain (IG) algorithm to select the

most used features on the base of their frequencies (Uğuz, 2011). Also, in this component,

the features which are botnet susceptible are refined. The fifth and final component is the

machine learning modelling which classified the input android applications on the bases

of their used features.

61

3.2.1 Characteristics of proposed approach

As stated before, the aim of the proposed approach is to detect botnet attacks in

Android devices. Thus, the proposed detection approach has the following characteristics

that distinguish it from the existing botnet detection techniques:

 Generalizable: The fundamental cause of any type of botnet attacks in the Android

devices is the openness nature of Android OS. However, this approach extracts all

types of features of Android applications by using additional refining component

during the installation on smartphones. Therefore, the proposed approach has the

ability to detect any type of botnet attacks in Android smartphones and is

generalizable.

 Portability: Android OS can be installed almost on every smartphone; hence, this

detection approach is based on Android OS. Therefore, the proposed approach can

be implemented on every Android smartphone.

 Saving Power and Computation: The proposed approach is based on the static

features; hence, it requires less amount of battery and computation power.

However, the dynamic features-based detection approach requires an isolated

environment to run the third-party Android applications. So therefore, it requires

more amount of computation and battery power. This leads to the improvement in

the overall performance.

 Scalable: This approach uses the machine learning model to classify the

applications as botware or benign. The user may increase the number of

applications in the dataset and can be able to re-train the approach by updating the

machine learning algorithm. This led the proposed approach to more powerful for

the botnet detection in Android OS.

 Improved Accuracy: With the addition of new component namely features

refining component and new additional static features which include activities,

broadcast receivers, and services to the detection approach, the accuracy of the

proposed approach is greatly improved.

3.3 Components of proposed approach

This section describes the key components of the proposed approach namely:

decompiler, features extractor, smart learner, features refining, and machine learning

modelling. The first component is responsible for analyzing the Android applications and

decoding its main files. The Android applications contain different major components.

62

However, AndroidManifest.xml is the most important file that must be included in each

Android application to be decompiled. Similarly, the DEX file is the next important file

that needs to be decompiled in this step. The second component in this proposed approach

is responsible for features extraction namely: permissions, activities, broadcast receivers,

and services extraction from AndroidManifest.xml while the API calls are extracted from

the DEX classes. Figure 3.2 shows the execution of the proposed approach.

User request to

Install Android

Application

Download APK

from Playstore
Send Request

Android APK

Send Request

Features Identification and

Pattern Generation

AndroidManifest.xml DEX classes

Decompile the

Android applications

using AAPT

Decompiler

ExtractorSmart Learner

Features Refiner

Refine the identified Patterns based on the

assigned frequencies

Machine Learning Modelling

Permissions

Activities

Broadcast Receivers

API Calls

AndroidManifest.xml

R
e
v
e
rs

e
E

n
g
in

ee
ri

n
g
 u

si
n

g

A
n
d
ro

g
u
a
rd

 T
o
o
l

S
en

d
 t

h
es

e
fi

le
s

to

E
x
tr

a
c
to

r

Assign frequencies

Permissions Activities Services
Broadcast

receivers
API Calls

Send the extracted features

Send the pattern of identified

features with assigned

frequencies

Classifiers

Benign

Botware

Smartphone

User

Figure 3.2 Flow of the Proposed Botnet Detection Approach Using Static Features

Analysis

In the third component, all the used features are identified and indexed for easy

understanding. As a result of this process, all the identified and indexed features are then

represented as a single instance with binary representation and a class label. If an

examined application has the feature called INTERNET, this should be represented with

1 and if absent then 0. Then the features are grouped in the CSV file for further analysis

63

process. The fourth component is known as features refining, whereby all the features

that has C&C features associated are examined. The machine learning modelling is the

fifth component. It will examine the application for botware or benign on the base of used

features. The details of each component of the proposed approach are given in the

following sub-sections.

3.3.1 Decompiler

In this sub-section, decompiler component of proposed Android botnet detection

approach is described. Decompiler is responsible for dissecting the Android application

to decode its main components. For this purpose, botware and benign applications are

collected from the online repositories, including Google Play Store, Contagio malware

repository and the well-known Drebin dataset (Arp et al., 2014; Parkour, 2011; PlayStore,

2017). In total, 3535 botware and 3500 benign samples are selected for initial analysis. In

the first phase, APKtool is used to decompile the selected applications to obtain

AndroidManifest.xml and DEX classes. APKtool was preferred for since it utilizes the

recent Android SDK, which is a better approach for files optimization (Kang et al., 2014;

Winsniewski, 2012). Besides the open accessibility, it has the ability to decode resources

almost to its original shape (Faris, 2017). Additionally, it correctly decodes the

AndroidManifest.xml and disassembles the DEX files. AndroidManifest file should be in

the root director of each application. It contains the essential information and components

that represent an app to the Android system. This includes name, version, and

components, such as activities, services, broadcast receivers, contents providers, and

access rights of the APK. Furthermore, it describes the messages intents that can be

handled, and also determine process that will host components. Permissions which

declare the security of an Android application are also declared in this file.

The basic structure of AndroidManifest.xml and Dex files are given in Figure 3.3

and Figure 3.4 respectively. Although, this file may not be completely java code, but still,

it is readable. The output of this component is the input to the feature’s extractor.

64

 <?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android= https://www.odarzi.com/apk/res/android

Package= com.androidapp.odarzibasicElements

Android:versionCode= 1

Android:versionName= 1.0 >

<application>

<activity android:name= odarzibasicElements >

 <intent-filter>

<action android:name= android.intent.action.MAIN />

<category android:name= android.intent.category.LAUNCHER />

 </intent-filter>

</activity>

<activity-alias>

<intent-filter> . . . </intent-filter>

<meta-data />

</activity-alias>

</application>

<uses-sdk android:minSdkVersion= 2 />

</manifest>

Figure 3.3 AndroidManifest.XML file structure

The DEX file is made up of several sections where Figure 3.4 outlines the most

important ones with respect to application analysis. This file holds the APK resources,

however, result of any modification in these files will directly affect the APK.

Dexfile {

header header_item,

string_ids string_id_item[],

type_ids type_id_item[],

proto_ids proto_id_item[],

field_ids field_id_item[],

method_ids method_id_item[],

class_defs class_def_item[],

data ubyte[],

link_data ubyte[]

}

Figure 3.4 DEX File Structure

Figure 3.5 shows the example of decompiled features from an Android application

using Androguard tool. This example shows that these features exist in the input

application. Permissions feature is highlighted which is further categorized into four sub-

categories according to their nature as given in Section 2.5.

65

3.3.2 Features Extractor

This is the second component of the proposed approach which takes input from

the decompiler. In this component, reverse engineering is performed on each input

application so as to extract static features from the AndroidManifest.xml and DEX file.

Aforementioned was that AndroidManifest file contains the important features of an

application. Besides, this file contains tags to interact with these features inside and

outside of the Android applications. For example, the tag <services…>, <receiver …>

and <uses-permission> specified software and hardware requirements. The features tag

provides some extra mandatory information to the permissions that help with a behavioral

interpretation of the analyzed applications. For instance, the permission feature, namely

RECEIVE_BOOT_COMPLETED, is undeclared added to the AndroidManifest file once

an application requests permission to use UPDATE functionality. The tag <uses-

permissions> is used to request a set of permissions that the application requires in order

to install correctly and access the private parts of mobile devices and application. This

study revealed that there are certain combinations of requested permissions and used

features while performing malicious activities. For instance, a successfully installed

application that requests the INTERNET, READ_PHONE_STATE, and

Dangerous

Normal

Signature or System

Activities

Figure 3.5 Android Application features extraction Using Android SDK Tool

66

READ_EXTERNAL_MEMORY permissions may collect smartphone-related

information and send this information to a botmaster. It can only interact with the

smartphones when the user grants permissions to the applications during installation or

later on. However, all the requested permissions may or may not be used by the

applications. Similarly, other mentioned features may or may not be used by the

applications.

Contains

(Y/N)

Readable file Readable file

API_Calls

Permissions

Activities

Broadcast

Receivers

Services

Apk zip file

META-INF

classes.dex

assets/

lib/

sesources.arscres/

AndroidManifest.xml

Pr={INTERNET, SMS, VIBRATE, ..n}
Ac={Main, Settings, BaseA,n}
Br={at.zweng.smsenttimefix, ...n}
Sr={FourthAService, Second..,n}
Ai={connect, getConnect, get..,.....n}

Figure 3.6 Feature Extraction from AndroidManifest and DEX file

In order to extract these features from each Android application, Androguard tool

is used (Desnos, 2011b), which is an open source project and made available to the public.

Figure 3.6 shows the feature extraction process from the AndroidManifest and DEX file.

The static features namely: permissions, activities, broadcast receivers, services and API

calls are extracted from the AndroidManifest.XML and DEX classes which are given in

Sections 2.4. In order to perform the extraction of features automatically a Python code

is applied to all Android applications. Once the extraction of all features is completed, all

the extracted features are stored in the CSV files for further analysis.

67

Let l and m be the number of Android applications and the set of features including

permissions, activities, broadcast receivers, services and API calls. The features vector

for application i is (xi,1, xi,2, x1,3,…, xi,j) where:

𝑋(𝑙, 𝑘) = {
1 𝑖𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑙 𝑢𝑠𝑒𝑠 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑘
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 3.1

Similarly, suppose a class of an instance in the generated dataset is ci ∈ (Botnet

& Benign) which shows the class of an application i (Kheir et al., 2014). Formally, each

extracted application is saved in the CSV formatted file for further analysis. The static

features namely: permissions, activities, broadcast receivers, services and API calls are

explained in the following sub-sections.

𝑃(𝑥𝑖|𝑦𝑖) = 𝑐𝑖|𝑥𝑖,1, 𝑥𝑖,2, 𝑥𝑖,3, … … … 𝑥𝑖,𝑗, = ∏ 𝑃(𝑥𝑖|𝑦𝑖,𝑘)
𝑗
𝑘=1 3.2

The example of CSV file(s) is shown in Figure 3.7. The file begins with the hash

function of the application and ends with the sum of all the enabled features. The hash

value represents the MD5 values of the Android applications. However, the values “1”

and “0” correspond to enabled and disabled features, respectively. The sum of these

enabled values is utilized for the further analysis. The phenomenon shows that

applications that are using more features pretend to have botware intention.

Figure 3.7 Structure of CSV file

Table 3.1 tabulates the top 20 permissions used by botware and benign

applications. These permissions features are listed in descending order according to their

usage. The table depicts that the INTERNET permission is used by 84.29 % of the

botware application while 55.71% by the benign applications. Similarly

READ_PHONE_STATE is used by 82.14% of the botware applications,

RECEIVE_BOOT_COMPLETED is used by 80 % while the39.29% and 37.86%

respectively used by benign applications. Furthermore, the enormous difference is seen

in the SEND_SMS, RECEIVE_SMS, and READ_SMS that is 79.29%, 78.57% and

(00DA00BA346A4B1AB452651A003A0BA37A463E4A4BAB452651A),<1,1,

1,0,1,1,0,0,1,0,1,0,1,1,1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,

1,1,1,1,0,1,1,0,0,1,0,1,0,1,1,1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,1,0,1,

0,1,0,11,1,1,0,1,1,0,0,1,0,1,0,1,1,1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,

0,1,1,1,1,1,1,0,0,1,0,1,1,1,>

68

74.29% used by botware applications while the 4.29%, 11.43% and 6.43% used by benign

applications respectively.

Table 3.1 Top 20 Used Permission Features with their Percentage (%)

 For easy understanding, all of the extracted features are indexed such as

INTERNET is indexed with P1, READ_PHONE_STATE with P2,

RECEIVE_BOOT_COMPLETED with P3 and much more. Table 3.2 shows the indexed

permissions features. However, the activities, broadcast receivers, services, and API call

features indices are given in Appendix B.

Table 3.2 Top 20 Used Permission Features Index

S. No Permissions Botware Benign

1 INTERNET 98.00 78.10

2 READ_PHONE_STATE 94.40 77.20

3 RECEIVE_BOOT_COMPLETED 89.70 61.10

4 SEND_SMS 86.80 60.50

5 READ_SMS 85.10 60.10

6 WAKE_LOCK 79.70 55.30

7 RECEIVE_SMS 74.30 41.20

8 READ_CONTACTS 73.90 41.10

9 ACCESS_WIFI_STATE 65.80 37.60

10 VIBRATE 65.40 34.30

11 CALL_PHONE 64.30 10.00

12 WRITE_SETTINGS 63.60 30.70

13 WRITE_SMS 63.60 10.00

14 WRITE_CONTACTS 61.40 10.70

15 WRITE_EXTERNAL_STORAGE 60.00 08.60

16 ACCESS_FINE_LOCATION 59.30 12.90

17 CHANGE_WIFI_STATE 57.90 30.00

18 GET_TASKS 55.00 12.10

19 SYSTEM_ALERT_WINDOW 41.40 08.60

20 ACCESS_NETWORK_STATE 41.20 08.60

S. No Permissions PID

1 INTERNET P1

2 READ_PHONE_STATE P2

3 RECEIVE_BOOT_COMPLETED P3

4 SEND_SMS P4

5 READ_SMS P5

6 WAKE_LOCK P6

7 RECEIVE_SMS P7

8 READ_CONTACTS P8

9 ACCESS_WIFI_STATE P9

10 VIBRATE P10

11 CALL_PHONE P11

12 WRITE_SETTINGS P12

69

Table 3.2 Continued

3.3.3 Smart Learner

This component takes the input from the feature’s extractor. The main function of

the smart learner is to analyze different group of benign and botware applications in order

to identify the unique pattern of features which are susceptible to botnet attacks. For

pattern identification the value of each feature must be known in advance. In order to

calculate the value of each feature the smart learner count the number of each feature

occurrence in the benign and botware applications. The feature occurrence is calculated

by using the Equation 3.3. Once the used features occurrence is calculated then these

values are assigned to all the extracted features. These values are used to calculate the

percentage of each feature in both categories. All the applications in both categories are

analyzed in terms of used and requested features. After the inspection of selected samples,

most prominent features are counted.

𝐹𝑛 =
∑ 𝑃𝑛

𝑖=1 𝑖

𝑁𝐵𝑡
 3.3

𝐹𝑛 =
∑ 𝑃𝑛

𝑖=1 𝑖

𝑁𝐵𝑛
 3.4

In the Equation 3.3, Fn represent the specific permission, while the Pi represent

the total number of nth permission occurrence in the 𝑁𝐵𝑡, where 𝑁𝐵𝑡 represent the total

number of selected botware applications. The same formula is applied for activities,

broadcast receivers, services and API calls features. Similarly, the occurrences of

aforementioned features are calculated using Equation 3.4. Where 𝑁𝐵𝑛 represent the

total number of benign applications in the dataset. Table 3.3 shows the calculated values

of top 20 requested permissions by botware and benign applications. From the table, it

seems that botware applications requested more permissions as compared to benign ones.

The same process is performed for other mentioned features and the calculated values of

these features are given in Section 4.3.

13 WRITE_SMS P13

14 WRITE_CONTACTS P14

15 WRITE_EXTERNAL_STORAGE P15

16 ACCESS_FINE_LOCATION P16

17 CHANGE_WIFI_STATE P17

18 GET_TASKS P18

19 SYSTEM_ALERT_WINDOW P19

20 ACCESS_NETWORK_STATE P20

70

Table 3.3 Frequency of Top 20 requested permissions by botware and benign

applications

Once all the values for selected features are calculated. Based on these values

smart learner generate pattern by using the Apriori algorithm. WEKA tool is used for this

process (Agrawal, Imielinski, et al., 1993; Agrawal, Imieliński, et al., 1993; Agrawal &

Srikant, 1994; Hall et al., 2009). The Apriori algorithm was chosen to identify the pattern

of significant features combination because it has been regularly and successfully used

for existing problems (Smith & Frank, 2016). This algorithm deals with the subset of

events beyond examining the specific order of events. The Apriori algorithm takes dataset

𝐷𝐵𝑡 as an input that contains full set of used features of n botnet applications. Let 𝐼 =

{𝑃1, 𝑃2, … 𝑃𝑛, 𝐴1, 𝐴2, … . 𝐴𝑛, 𝐵1, 𝐵2, … 𝐵𝑛, 𝑆1, 𝑆2, … . 𝑆𝑛, 𝐴𝑃1, 𝐴𝑃2, … 𝐴𝑃𝑛} be an

instance of 𝐷𝐵𝑡 . The Apriori algorithm begins by pinpointing the individual repeated

items in the 𝐷𝐵𝑡 dataset and extending them to substantial sets of items as much those

item sets sufficiently appear often in the aforementioned dataset. For example, A= {P1,

A1, B1, S1, AP1} be a candidate item set. There are two values need to be known in advance

for the Apriori algorithm which are support and confidence for the calculation of the

frequency of features used in the DBt dataset. In this case, the support value of the

candidate item set {P1, A1, B1, S1, AP1} is computed as given below.

S. No Permissions Botware Benign

1 P1 0.98 0.78
2 P2 0.94 0.77
3 P3 0.90 0.61
4 P4 0.87 0.61
5 P5 0.85 0.60
6 P6 0.80 0.55
7 P7 0.74 0.41
8 P8 0.74 0.41
9 P9 0.66 0.38
10 P10 0.65 0.34
11 P11 0.64 0.10
12 P12 0.64 0.31
13 P13 0.64 0.10
14 P14 0.61 0.11
15 P15 0.60 0.09
16 P16 0.59 0.13
17 P17 0.58 0.30
18 P18 0.55 0.12
19 P19 0.41 0.09
20 P20 0.41 0.09

71

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑃1, 𝐴1, 𝐵1, 𝑆1, 𝐴𝑃1) =
Number of applications that contains 𝑃1,𝐴1,𝐵1,𝑆1,𝐴𝑃1 in 𝐷𝐵𝑡

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑠𝑒𝑡 𝑜𝑓 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑖𝑡𝑜𝑛𝑠 𝑖𝑛 𝐷𝐵𝑡
 3.5

The candidate item set is considered as a frequent item set or a relevant pattern,

only if 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑃1, 𝐴1, 𝐵1, 𝑆1, 𝐴𝑃1) ≥ threshold (t) , where 𝑡 is a user-defined

minimum threshold. In this study, we set 0.5 as a minimum support threshold. However,

the same process is applied for frequent item set identification for benign applications.

Figure 3.8 describes the smart learner algorithm. This takes extracted features,

𝐷𝐵𝑡 and 𝐷𝐵𝑛 as input from the feature extractor component and set a threshold value.

𝐷𝐵𝑡 is the number of total applications in Botware dataset whereas 𝐷𝐵𝑛 is the total

number of applications in the benign dataset. As explained earlier, it calculates the support

value for each pattern based on the assigned value by using the Apriori algorithm. The

given algorithm generates botware and benign based on the generated pattern. The

generated pattern will be botware if the features usage frequency in that unique pattern is

greater than or equal to the threshold value, otherwise it will be benign.

Figure 3.8 Smart Learner Algorithm

Input: Extracted Features, 𝑫𝑩𝒕, 𝑫𝑩𝒏

1: Calculate the Occurrence frequency of each feature in 𝑫𝑩𝒕 and 𝑫𝑩𝒏

2: F𝒏 =
∑ 𝑭𝒏

𝒊=𝟏 𝒊

𝑵𝑩𝒕
 where n the nth feature in 𝑫𝑩𝒕

3: 𝑭𝒏 =
∑ 𝑭𝒏

𝒊=𝟏 𝒊

𝑵𝑩𝒏
 where n the nth feature in 𝑫𝑩𝒏

4: Calculate support value

 Support (Pi,Ai,Bi,Si,APi)= (Number of Applications that contains Pi, Ai, Bi, Si,

APi in a 𝑫𝑩𝒕) / (Total number of Applications in

𝑫𝑩𝒕)

5: Pattern Support

6: Set a Threshold value equal to 0.5

7: If Pattern > = Threshold value

8: Pattern Botware

9 Else

10: Pattern Benign

11: End if

The identified unique patterns for botware and benign applications are shown in

Table 3.4. The pattern ID represents the indexed ID of unique features pattern, while the

support values are calculated for each unique feature patterns. The complete list of unique

patterns is given in Appendix C. However, Table 3.4 listed the top 40 unique patterns

with their support values. Table 3.4 depicts that the botware applications utilize the

combination of features for malicious activities, such as, INTERNET, RECEIVE_SMS,

72

WRITE_EXTERNAL_STORAGE, com.clientsoftware.ServiceStartr, com.phone.call-

corexy.xy.SReceiver, and SYSTEM_ALERT_WINDOW perform the malicious

activities on the smartphone and steal sensitive information from it. Once this mentioned

malicious activity is performed, it sends the stealth information to the C&C server through

the communication channel. In this malicious activity INTERNET permission provide

the connection between smartphone and C&C server, while the RECEIVE_SMS

permission received the updates and commands about the activity. It is reported that

sending of SMS and MMS to the premium numbers can cause financial losses (Johnson

& Traore, 2015). Botware applications having these INTERNET, WRITE_SMS and

SEND_SMS permissions enable, can send SMS and MMS to premium numbers with the

combination of MAIN ACTIVITY and TOUCHSCREEN.

Furthermore, the location related to permissions such as ACCESS_COARS-

_LOCATION and ACCESS_FINE_LOCATION is routinely used for the smartphone

information collection and network location data gathering. The pattern of UP29 is {P1,

P20, B12, AP3} which is the combination of INTERNET, ACCESS_NETWORK_STA-

TE, com.google.android.mms.LiveReceiver and com.clie-ntsoftware.SDCardServiceSt-

arter are used to handle the connection between bots and botnets.

Table 3.4 Top 40 Unique Pattern for Botware and Benign Used Features

Unique

Pattern ID
Used features Pattern

Support Values

Botware Benign

UP1 {P1,P7,P17,B4,AP6,P19} 0.9731 0.0269

UP2 {P1,P5,P19,B4,AP19,S15,AP6} 0.9374 0.1059

UP3 {P1,P15,B11,AP17,P18,S10} 0.9151 0.0773

UP4 {P1,P5,P10,B6,AP6,S15,AP6,P5,A18} 0.9045 0.1370

UP5 {P1,P14,B18,AP16,S7} 0.9009 0.1831

UP6 {P1,P12,B20,AP9,S5,AP17} 0.8856 0.0000

UP7 {P1,P16,B17,AP7,S11,AP1,P2,S11} 0.8806 0.1059

UP8 {P1,P2,B19,AP15,S12,AP5,P16,S19,S7} 0.7949 0.0731

UP9 {P1,P20,B2,AP18,S8,AP8,P18} 0.7867 0.1363

UP10 {P1,P14,B10,AP12,S14,AP2,P7,S5} 0.7796 0.0235

UP11 {P1,P20,B16,AP14,S4,AP13,P14,A15} 0.7774 0.1831

UP12 {P1,P6,B16,AP9,S4,AP13,P6,S9,S2,A15 0.7758 0.2055

UP13 {P1,P10,B3,AP5,S20,AP19,P3} 0.7712 0.1831

UP14 {P1,P8,S1,AP10,S12,AP5,P12} 0.7705 0.0216

UP15 {P1,P5,B5,AP15,S19,AP14,P16,S16} 0.7349 0.0000

UP16 {P1,P7,S1,AP14,S5,AP17} 0.722 0.0000

UP17 {P1,P4,B8,AP1,S6,AP18,P10,S17,S11} 0.7214 0.0000

73

Table 3.4 Continued

3.3.4 Features Refining

Features refining component takes input from the smart learner. Refining features

is a key step before analysing machine-learning performance because some irrelevant

features can produce inaccurate classifications. Refinement of extracted features directly

effects the time and space consumption for features matching and storing. This

component is dependent on Feature extraction and smart learner components. With the

feature extraction phase, a huge number of features are obtained. However, some of the

extracted features are used only by a few of Android applications such as

RSSI_CHANGED, PASSPOINT_ICON, which are not enough to be considered for

further analysis. On the other hand, some of the other features are used widely by botware

and benign applications almost in the same amount such as INTERNET,

READ_PHONE_STATE, which can be hardly considered to distinguish benign and

botware applications. Moreover, these features consist of a high-dimensional feature

vector, which may cause very complicated computation and cause low efficiency in

Unique

Pattern ID
Used features Pattern

Support Values

Botware Botware

UP18 {P1,P13,B9,AP11,S11,AP1} 0.7202 0.0216

UP19 {P1,P6,B7,AP20} 0.7178 0.1945

UP20 {P1,P9,B13,AP4,S20,AP19,P11,S13} 0.7173 0.0731

UP21 {P1,P5,B17,AP20,S7,AP15,P15,S3} 0.7089 0.0000

UP22 {P1,P18,B14,AP1,S10,AP3,P10} 0.7015 0.0556

UP23 {P1,P13,B3,AP16,S18,AP12,P13,S9,S13} 0.6974 0.0000

UP24 {P1,P17,B13,AP17,S10,AP3,P1,S18} 0.6828 0.0773

UP25 {P1,P20,B20,AP11,B1,AP4,P9,S12,S17} 0.6773 0.0000

UP26 {P1,P4,B12,AP6,S3} 0.6731 0.1945

UP27 {P1,P11,B5,AP2,S8} 0.6544 0.0000

UP28 {P1,P2,B7,AP8,S16,AP10,P4} 0.6269 0.0050

UP29 {P1,P20,B12,AP3} 0.6254 0.0000

UP30 {P1,P3,B19,AP4,S2,AP9} 0.6235 0.0556

UP31 {P1,P8,B15,AP2,S13,AP16,P17} 0.6229 0.0235

UP32 {P1,P7,B6,AP19,S3,AP7,P19} 0.6216 0.0000

UP33 {P1,P16,B11,AP3,S17,AP11,P8,S3} 0.605 0.0000

UP34 {P1,P12,B4,AP12,S9,AP20,P7,S5,S18} 0.6014 0.0000

UP35 {P1,P15,B2,AP8,S17,AP11} 0.5945 0.1718

UP36 {P1,P10,B10,AP18,S13,AP16} 0.5831 0.0269

UP37 {P1,P9,B18,AP13,S9,AP20,P20} 0.5565 0.0000

UP38 {P1,P3,B9,AP10,S19,AP14} 0.5363 0.1363

UP39 {P1,P18,B8,AP5,S2,AP9,P3,S2} 0.5338 0.1718

UP40 {P1,P17,B15,AP7,B1,AP4,P2} 0.5059 0.0000

74

building detection approach. Based on these generic steps and the components of the

proposed approach, features refining algorithm are presented to serve the end users as

algorithm for features refining process. Therefore, features refining algorithm is

mandatory to be used before machine learning modelling.

Furthermore, the detail of selected features given in Appendix B, include a huge

number of features that are extracted from the AndroidManifest.xml and DEX classes of

Android applications. These features does not mean that they are significantly useful for

detection of Android botnets classification (Yerima et al., 2014a). In this case, there are

some features which exist mostly in all benign and botware applications. In order to

reduce these features set, we applied features refining method. Features refining is the

second last and the most important process in the proposed approach for Android botnet

detection. It is a way to enhance the performance of selecting preferred set of features. In

this process all the features are assigned a real-valued weight by using the WEKA tool

for example INTERNET=0.98, RECEIVE_BOOT_COMPLE-TED=0.897

SEND_SMS=0.868 (Hall et al., 2009). These weights have range from 0 to 1 and these

features are initially quantized with fixed precision as shown in the above example. The

one whose values is approaching to “1” shows the importance of feature for botnet

detection, while the one approaching to “0” is less important.

For this purpose, a filter approach is used. It performs the features selection in this

method, by considering its fast execution and generalization. In this approach,

Information Gain algorithms were applied to the malicious dataset (Shabtai et al., 2011).

Information Gain algorithm is the most used feature selection method in malware

detection techniques (Ahmed et al., 2009). While all of these methods followed the

feature ranking approach on the basis of specific metrics, the value is computed and

returns the score for each feature individually. There was a problem in selection of correct

number of features for appropriate classification of botware and benign from the given

feature selection algorithm. In order to avoid any partiality in the feature selection an

arbitrary number of features in the information gain technique are used.

Information gain measures the amount of information in bits about the class

prediction provided the only information available is the presence of a feature and the

corresponding class distribution. Let 𝑥 = {𝑈𝑓1, 𝑈𝑓2, 𝑈𝑓3, … … … 𝑈𝑓𝑛 be the used feature

set of each application, n represent the total number of used features. Here the information

75

gain value depends on the unique pattern of used features where 𝑈𝑃1,𝑈𝑃2,𝑈𝑃3, … … , 𝑈𝑃𝑛

represent the unique pattern used by each application. The class value is needed to

calculate the information gain value, for this purpose we consider the C be a random

variable to denote the class as botware or benign such as 𝐶 𝜖 {Botware, Benign}. The

information gain values that are corresponding to the class label C, are calculated for

unique patterns by using the Equation 3.6 and Equation 3.7. The expected information is

calculated by using the Equation 3.6 while the entropy is calculated by using the Equation

3.7. Let U be a set with u data samples with m distinct class labels. The training set

contains 𝑢𝑖 sample of class i.

𝐼𝑛𝑓𝑜(𝑢1, 𝑢2, 𝑢3, 𝑢𝑛) = − ∑
𝑢𝑖

𝑢
𝑙𝑜𝑔2(

𝑢𝑖

𝑢
)

𝑚

𝑖=0
 3.6

Where
𝑢𝑖

𝑢
 is the probability that a random sample belongs to the class 𝑢𝑖 and is

estimated by |𝑈𝑖,𝑢|/|𝑈|. In order to identify the label of class it need the information

which is the average amount of 𝐼𝑛𝑓𝑜(𝑢1, 𝑢2, 𝑢3, 𝑢𝑛), it is just the average and it

is also known as entropy of (𝑢1, 𝑢2, 𝑢3, 𝑢𝑛). Now let unique pattern UP has v

distinct values {𝑈𝑃1, 𝑈𝑃2, 𝑈𝑃3, 𝑈𝑃𝑣} which can divide the training set into v subsets

{𝑃1, 𝑃2, 𝑃3, 𝑃𝑣}. Where 𝑆𝑖 is the subset which has the value of 𝑈𝑃𝑖 for UP. Let 𝑃𝑗

contains 𝑃𝑖,𝑗 sample of class i. The entropy of the unique pattern UP is find by using the

Equation 3.5.

𝐸(𝑈𝑃) = ∑
𝑈𝑃1,𝑗,𝑈𝑃2,𝑗,...𝑈𝑃𝑚,𝑗,

𝑈𝑃

𝑣
𝑗=1 × 𝐼𝑛𝑓𝑜(𝑢1,𝑗, 𝑢2,𝑗 , 𝑢3,𝑗 , 𝑢𝑛,𝑗) 3.7

For the computing of information gain value, WEKA is used (Hall et al., 2009).

The IG is obtained by using the Equation 3.8. It is the defined as the difference between

the original information requirements and the new requirements.

𝐼𝐺(𝑈𝑃) = 𝐼𝑛𝑓𝑜(𝑢1, 𝑢2, 𝑢3, 𝑢𝑛) − 𝐸(𝑈𝑃) 3.8

Feature refining algorithm as shown in Figure 3.9 gives more details about the

botware and benign features refining from the original feature set. The input has five

parameters, Fn, αBt, βBt, αBn, and βBn. Where Fs represents the complete original

features set, extracted from the dataset using androguard tool. However, the remaining

parameters are the thresholds for botware and benign features. Fn′ is the output containing

susceptible features to botware. In general, Fn′ will always be smaller in size from the Fs

such as (Fn′<Fn). In features refining algorithm, and for each feature fi, in Fn, NBn, and

76

NBt are the numbers of benign and botware applications features which contains fi

respectively. Furthermore, rBn, and rBt are the percentage of used features of NBn and

NBt for benign and botware applications.

Table 3.5 Symbol with Description

Symbol Description

NBt
The total number of Botware applications features

NBn
The total number of Benign Applications features

Fn
It represents the complete original features set

Fn’
The set of susceptible features to botware

αBt
The threshold for botware applications (0.5<αBt<1)

βBt
The threshold for botware applications (0<βBt<1)

αBn
The threshold for benign applications (0.5<αBn<1)

βBn
The threshold for benign applications (0<βBn <1)

rBn
The percentage of used features of Benign applications

rBt
The percentage of used features of Botware applications

UP
It represents the complete used pattern

UP’
The set of susceptible used pattern to botware

In the features refining algorithm, Bt and Bn are the total numbers of botware and

benign applications. However, αbt and βBt are the thresholds where 0.5 ≤ αBt ≤ 1 and 0

≤ βBt ≤ 1 for botware applications, and 0.5 ≤ αBn ≤ 1 and 0 ≤ βBn ≤ 1 for benign

applications. The two conditions are examined which are rBt ≥ αBt and NBt/Bt ≥ βBt. In

the first condition, it implied that a feature is used more frequently in botware applications

than benign applications while the second condition suggested that the time of occurrence

of a feature in all botware exceeds threshold βBt. The same procedure is applied for

benign features as well. The pattern in Fn′ are collected using two different ways. The

botware pattern which are frequently used are collected using code from line fifteen to

nineteen, while the pattern which are frequently used by benign are collected by the rest

of the code.

77

Input: Extracted Features,

Output: UP ,

1: Calculate the Occurrence frequency of each feature in and

2: where n the nth feature in DBt

3: where n the nth feature in DBn

4: Calculate support value

Support (Pi,Ai,Bi,Si,APi) = (Number of Applications that contains Pi, Ai, Bi,

Si, APi in a DBt) / (Total number of Applications in DBt)

5: UP Support

6: Set a Threshold value equal to 0.5

7: If UP > = Threshold value

8: UP Botware

9 Else

10: UP Benign

11: End if

12: for i 1 to UP.size() do

13: NBt FeaturecountInBotware(fi);

14: NBn FeaturecountInBenign(fi);

15: rBt NBt/(NBt + NBn);

16: if rBt αBt&&NBt/Bt βBt then

17: UP fi;

18: else UP fi;

19: end if

20: rBn NBn/(NBt + NBn);

21: if rBn αBn&& NBn/Bn βBn then

22: UP fi;

23: else UP fi;

24: end if

25: end for

26: return(UP);

Figure 3.9 Feature Refining Algorithm

3.3.5 Machine Learning Tools

In this approach, the final component is machine learning modelling. The machine

learning algorithm are classified in to three main categories such as Supervised,

Unsupervised, and semi supervised. Supervised learning algorithm are utilized to deal

with labeled dataset. However, unsupervised learning algorithm is utilized when the

dataset is unlabeled. Moreover, the semi supervised machine algorithm is the mixture of

78

both supervised and unsupervised learning algorithms. It deals with small amount of

labeled dataset, and on the base of this it assigned labels to unlabeled dataset. Since the

dataset used in this research study is labeled and has two target classes including Benign

and Botware, supervised learning algorithms are preferred for classification. The choice

of an appropriate selection technique depends on the nature of the Android application.

In this study, selecting classifier is based on the performance, number of classes and

ranking criteria of features. This study explored WEKA, which is a data mining software

written in Java (Hall et al., 2009; Smith & Frank, 2016). Since the prototype of final

approach is implemented in Java and there is need to use the generated component for

classification in the prototype, then, WEKA was decided for and used for this step. Figure

3.10 shows the block diagram of machine learning classifiers.

Generate Classifier

Decompiler,

Extractor,

Smart Learner,

Features Refining,

Learning Dataset

(Benign and Botware)

Machine Learning

Modelling

f1

f2

f3
.
.
.

fn

Learning Algorithms Decompiler,

Extractor,

Smart Learner,

Features Refining,

Testing Dataset

(Benign and Botware)

Machine Learning

Modelling

Benign Botware

Learning Phase Testing Phase

f1

f2

f3
.
.
.

fn

Figure 3.10 Life Cycle of Machine Learning Modelling

During the classification phase, proper machine learning algorithms were selected

to recognize the botware applications with an adequate accuracy. It is an important task

to choose an appropriate classifier to generate a reliable detection approach, which

ultimately demonstrates the accuracy of the detection approach in all. Therefore, in order

to choose a proper machine learning algorithm, the following requirements are

considered: (1) diverse feature domain: the total number of static features are considered

from a multiple domain; (2) sparse feature set: the supreme features set are finally picked

for the proposed approach evaluation; (3) scalability: the system should be scalable

79

enough to accommodate the future requirements of users; and (4) performance: algorithm

performance in order of testing and training should be minimal to provide a prompt

response to the user. Given the abovementioned consideration, Random Forest (RF),

Naïve Bayes (NB), Support Vector Machine (SVM), Simple logistic Regression (SLR),

and J-48 are selected as the classification algorithms to establish and test the proposed

approach. These selected algorithms are discussed in Section 2.9 with more detail. Once

the features are refined, the next stage is to train the machine learning classifier. The

dataset is split using k-fold cross validation technique. This technique divides the input

dataset into k times. One subset is used for shaping sample dataset, called test set, while

the k-1 of subsets forming the joint training.

3.4 Conclusion

In this Chapter, the methodology for proposed approach is discussed. The

proposed approach is divided into five main components namely: decompiler, features

extractor, smart learner, features refining and machine learning modelling. The first

component decompiles the applications for AndroidManifest.xml and DEX file by using

the APK tool. In the second component, reverse engineering is applied to extract all the

static features (permissions, activities, broadcast receivers, services, and API calls) from

Android applications by using the Androguard tool. However, the first four features are

extracted from the manifest.xml file while the API calls is extracted from the DEX

classes. The reasons for choosing these features are described in sections 3.3 in more

details. These features are extracted from the applications in selected dataset from both

categories (botware and benign). In the smart learner component, applying the Apriori

algorithm in WEKA tool. It allotted a specific frequency to each feature in permissions,

activities, broadcast receivers, services, and API Calls according to their usage. Using a

proper frequency analysis, some of the unique patterns are selected in each category that

can cause a botnet attack. However, the features refining phase is used to refine the unique

patterns on the base of their frequencies and botnet susceptible characteristics.

Furthermore, machine learning algorithms (support vector machine, J48, random forest,

simple logistic regression, and Naïve Bayes) are applied. In conclusion, the botnet

phenomenon has migrated progressively from the previous generation personal computer

based on the new emerging computation intensive mobile platform. Therefore, practical

devices through which users are made aware of the consequences of unknowingly

installing an application with botnet intention should be designed. Botnet attacks do not

only affect the overall performance of a device but also forces a mobile device to help

unintentionally the spreading of the cybercriminal attack.

80

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Overview

In this chapter, the performance evaluation approaches are described to evaluate

the proposed approach (modified). For this purpose, the performance difference is

analyzed between unmodified (without features refining component) and modified (with

features refining component) by considering the performance parameters such as True

Positive Rate (TPR), False Positive Rate (FPR), Precision, F-Measure, and Accuracy was

carried out. The main motive of this chapter is to discuss and analyze the experimental

setup, tools, evaluation parameters, and to analyze the performance of the proposed

approach. Furthermore, the remaining chapter is divided into nine sub-sections. Section

4.2 illustrates the experimental tools, Section 4.3 discussed the experimental setup and

results. The evaluation process of the proposed approach is given in Section 4.4 while

Section 4.5 details the evaluation methods. Furthermore, the evaluation parameters are

explained in Section 4.6. Section 4.7 contains the evaluation of machine learning

classifiers based on individual features, while the Section 4.8 depicts the evaluation of

machine learning classifiers based on unique patterns. Performance analysis is described

in Section 4.9 with the chapter summary in Section 4.10.

4.2 Experimental Tools

There are various types of tools used in mobile malware detection and analysis.

This section described the tools that are used to perform experiments on mobile malware

detection. These tools are used to analyse the APK files and help to improve the analysis

process more effectively and accurately. Static analysis tools have the capability to

81

inspect the different components of Android applications. The list of experimental tools

is given in the following sections.

4.2.1 Androguard

Androguard provides support for decompiling the APK file and dissecting the

APK file into its original components (Desnos, 2011a). It is an open source tool written

in python are employed for reverse engineering of Android APK files and statically

analysing the Dalvik bytecode. This tool detects the botware behaviour category in an

APK file by searching the pre-defined method calls in the dissembled bytecode. However,

the requirements for this study is different from the tool, thus, it is modified according to

the need of this study.

4.2.2 Android Application Package (APK) Tool

The ApkTool is a reverse engineering tool that is used for reverse engineer the

Android Applications. It has the capability to decode and rebuild the Android applications

almost to its original condition after performing some modification. The researchers use

this tool in order to add some features, localization and analysing the Android

applications.

4.2.3 Machine Learning Tools

Machine Learning tools has the ability to learn from the existing dataset and

implement prediction or decision on the new samples. The performance of the system can

be improved with high impact by implementation of machine learning tools. Supervised

and unsupervised are the two main types of machine learning tools. Furthermore, it has

the skills to apply complex mathematical equations automatically to solve the complex

problems. In this study WEKA is used for experiments. At the same time, it is also used

for the analysis tasks. WEKA is an open source tool deployed for using different machine

learning algorithms (Hall et al., 2009). It provides the functionality of pre-processing,

clustering, classification, regression and visualization. Likewise, it provides an interface

through software package with GUI as well as Java APIs. Figure 4.1 shows the WEKA

graphical user interface while, this tool is implemented in Java. According to the scope

of the current study, this tool is used for the classification of data and the Java APIs for

implementing the approach. There are several classifiers used in this study so as to

82

compare the performance of the proposed approach. The detail will be discussed in the

following sections.

4.2.4 Online Analysis Tools

In order to check the Android applications for botware and benign, VirusTotal is

used. As long as, its service incorporates a large selection of anti-virus scanners, which

uses different strategies for botnet detection. In this study different number of scanners

that detect the selected samples as botnet are identified. It can return the botnet detection

results of about 59 varies types of antivirus with the latest updated signatures.

4.3 Experimental Setup and Results

This section presents and discusses the experimental setup and obtained results.

Furthermore, this section also discusses about the dataset used in the experiments. In order to

evaluate the proposed approach, an experimental setup was created with Ubuntu OS

64bit. For this purpose, Intel(R) Core (TM) i7-7700 CPU with 3.60GHz is used. This

system has 16GB of RAM and 1TB of secondary memory. Figure 4.2 depicts the

experimental setup.

Figure 4.1 WEKA Graphical User Interface

83

Android Applications

C
o

d
e
 A

n
a
ly

si
s

Androguard

aapt

Linux OS

API Calls

Permissions

Services

Evaluation Classification Extracted Features

Activities

Broadcast Receivers

Figure 4.2 Experimental Setup

4.3.1 Used Datasets

The analysis task is achieved, the samples are downloaded from the online

repositories, including Google Play Store, Contagio malware repository and the well-

known Drebin dataset (Arp et al., 2014; Parkour, 2011; PlayStore, 2017). The Drebin

dataset is used as a mobile application repository for this entire study for the purpose of

validation of results. At the time of writing this thesis, Drebin is the largest publicly

available dataset used by numerous educational institutions. For this study, 7035 mobile

applications are initially selected as samples. From this total, 3535 samples are selected

from botware category and 3500 samples are selected from benign. The dataset employed

for evaluation is described in Table 4.1.

Table 4.1 Botware and Benign Dataset Used

Sample Apps Repository Observation Category Family

Botware 3535
Contagio /

Drebin

Code/

Runtime

HTTP/SMS

based

Anserverbot,Bmaster,

DroidDream, Geinimi,

MisoSMS, Nickyspy,

NotCompatible, PJapps,

Pletor, Rootsmart,

Snadroid,

Tigerbot,Wroba, Zitmo

Benign 3500
Google Play

Store

Code/

Runtime

Games,

Wallpapers,

Entertainment,

GPS, Web

Browser,

books,

N/A

Botware samples used in this study were obtained from the Android botnet dataset

provided by Information Security Centre of Excellence (ISCX) and The Drebin Dataset

84

(Arp et al., 2014; Kadir et al., 2015), while the benign samples were selected from the

Drebin (Arp et al., 2014). Furthermore, ISCX contains 1929 Android botnet applications

divided into fourteen different families according to their behaviour as shown in Table

4.2 while the benign applications are listed in Table 4.3.

Table 4.2 Families of Android Botnets

Source Family C&C Year
Total

Sample
Propagation and Attack Types

ISCX

AnserverBot HTTP 2011 244
Backdoor, Infected SMS, Social

Engineering

Bmaster HTTP 2012 6
Data Theft, Exploit Technique,

Repackaged Application

DroidDream HTTP 2011 363

Data theft, Drive-by Download,

Exploit Technique, Repackaged

Application, Trojanized

Applications

Geinimi HTTP 2010 264
Data theft, Drive-by Download,

Repackaged Application

MisoSMS Email 2013 100
Data Theft, Exploit Technique,

Trojanized Application

NickySpy SMS 2011 199
Data Theft, Repackaged

Application

NotCompatible HTTP 2014 76
Drive-by Download, Exploit

Technique

PJapps HTTP 2011 244
Repackaged Application,

Trojanized Application

Pletor
SMS/HT

TP
2014 85

Ransomware, Trojanized

Application

RootSmart HTTP 2012 28
Data Theft, Exploit Technique,

Repackaged Application

Sandroid SMS 2014 44

Mobile Banking Attack,

Ransomware, Trojanized

Application

TigerBot SMS 2012 96
Backdoor, Data Theft, Trojanized

Application

Wroba
SMS/HT

TP
2014 100

Infected SMS, Mobile Banking

Attack, Trojanized Application

Zitmo SMS 2010 80

Infected SMS, Mobile Banking

Attack, Repackaged Application,

Social Engineering

The

Drebin

Dataset

SMS/HT

TP
2016 1606

85

Table 4.3 Benign Applications

Samples C&C Year Total Sample # of Selected Samples Source

Benign --- N/A 14865 3500
Google

Playstore

4.3.2 Pre-Processing

The selected samples from the datasets given in Section 4.3.1 are initially checked

with VirusTotal (Virustotal, 2017). VirusTotal provides a platform for checking the

applications online. The dataset chosen for these experiments shows that it contains 90%

of the malware that existed in August 2016. By random selection the applications are

obtained using a Monte Carlo sampling method. With this different version for the same

application is avoided while there are different types of applications such as native, web,

and widgets (Sanz et al., 2013). Different types of application have different types of

features to construct a dataset; hence, the application is randomly selected without

keeping the distinction in their features.

4.3.3 Results

This section describes the experimental results that are performed by proposed

approach on Botware and benign applications. The details of the static features

(permissions, activities, broadcast receivers, services, and API Calls), which are used in

these tests are provided in Section 2.4 and Section 2.5. Table 4.4 listed the comparison of

permissions features generated from botware and benign applications while the Figure

4.3 shows the frequencies of the aforementioned features. The ranges of botware for

various features are from 18.57 % to 97.86 % and for benign applications are from 1.43

% to 51.43 %. The average for botware applications is 54.25 % and for benign

applications is 11.32 %. This enormous difference shows that botware application

requests a greater number of permissions features as compared to the benign applications.

For instance, one of the permission features of botware and benign applications is

INTERNET permission. In addition, the requests generated by botware applications are

97.86% while 51.43% for the benign applications. Therefore, the smartphones users

should be aware of the botware’s susceptible permissions features during the installation

of any Android applications.

86

Table 4.4 Comparison of Top 20 Requested Permissions by Botware & Benign (%)

Selected Features Botware Benign

INTERNET 97.86 51.43

READ_PHONE_STATE 95.71 31.43

READ_CONTACTS 81.43 23.57

SEND_SMS 80.71 15.00

READ_SMS 77.14 7.86

RECEIVE_SMS 71.43 5.71

CALL_PHONE 66.43 8.57

WRITE_SMS 65.00 6.43

WRITE_SETTINGS 62.14 9.29

WRITE_CONTACTS 58.57 2.86

CHANGE_WIFI_STATE 50.71 17.86

ACCESS_FINE_LOCATION 47.86 4.29

SYSTEM_ALERT_WINDOW 47.14 10.00

GET TASKS 40.00 3.57

DISABLE_KEYGUARD 31.43 11.43

ACCESS_COARSE_LOCATION 30.71 5.71

CAMERA 22.14 1.43

BLUETOOTH 20.00 2.86

PROCESS OUTGOING CALLS 20.00 2.86

RECORD_AUDIO 18.57 4.29

Minimum 18.57 1.43

Maximum 97.86 51.43

Mean 54.25 11.32

The list of permissions and their frequency are given in Figure 4.3. It shows the

standard permissions used by botware and benign applications. In this figure, the X-axis

shows the number of used permission features by each application while the Y-axis shows

the list of permissions. The figure clearly describes that the botware applications used

more features as compared to benign applications. Since the INTERNET permission is

used by botware to establish a remote connection with command and control (C&C)

server as shown in the Figure 4.3. Therefore, the most used permission is INTERNET

because connection with C&C server is constructed to observe the state of the target

device and network as well as to read personal credentials.

87

Figure 4.3 Permissions Frequency Analysis Comparison between Botware and Benign

Table 4.5 presents the number of used activities features by botware and benign

applications. The result shows that the botware and benign application used a set of 793

activities in total. However, the ranges of various botware applications for activities

features are from 12.14 % to 92.14 % and for benign applications are from 0.71 % to 6.43

%. The average for botware applications is 19.43 % and for benign applications is 2.66

%. This huge difference shows that botware requests more number of activities features

as compared to the benign applications. For instance, one of the activity feature of

botware and benign applications is “about” activity. In addition, the requests generated

by botware applications are 92.14 % while 6.43 % for the benign applications. It shows

that the botware applications usually generate more requests as compared to benign

applications.

Table 4.5 Comparison of Top 20 Activities Used by Botware and Benign (%)

Selected Features Botware Benign

About 92.14 6.43

About App 27.86 2.14

About Spanish Trainer 18.57 1.43

Accept Challenge 18.57 1.43

Acheter Version Payante 18.57 2.14

0 50 100

INTERNET

READ_PHONE_STATE

READ_CONTACTS

SEND_SMS

READ_SMS

RECEIVE_SMS

CALL_PHONE

WRITE_SMS

WRITE_SETTINGS

WRITE_CONTACTS

CHANGE_WIFI_STATE

ACCESS_FINE_LOCATION

SYSTEM_ALERT_WINDOW

GET TASKS

DISABLE_KEYGUARD

ACCESS_COARSE_LOCATION

CAMERA

BLUETOOTH

PROCESS OUTGOING CALLS

RECORD_AUDIO

Number of Permissions Used by each Applications

P
em

ri
ss

io
n
s

Benign Botware

88

Table 4.5 Continued

Selected Features Botware Benign

Achievement 18.57 0.71

Achievement Header 16.43 1.43

Achievement List 16.43 2.14

Achievements Screen 14.29 1.43

Acts View 14.29 2.86

AdActivity 13.57 5.00

Add Entry 13.57 4.29

Add Radar Form 12.86 3.57

Add Review 12.86 3.57

Add to Contact 12.14 2.86

Add Your Pic 12.14 2.86

AddByHand 12.14 2.14

AddByWeb 12.14 2.14

AdMob 12.14 2.14

Minimum 12.14 0.71

Maximum 92.14 6.43

Mean 19.44 2.67

Figure 4.4 shows the standard activities that are used by botware and benign

applications. From the Figure, it is clearly shown that the botware use more

activities features as compared to the benign applications. Furthermore, the most

prominent activities used by botware and benign applications are about, about

App, about Spanish trainer, accept challenge, acheter version payante and much

more.

Figure 4.4 Activities Features Frequency Analysis

0 20 40 60 80 100 120 140

About
About App

About Spanish Trainer
Accept Challenge

Acheter Version Payante
Achievement

Achievement Header
Achievement List

Achievements Screen
Acts View

AdActivity
Add Entry

Add Radar Form
Add Review

Add To Contact
Add Your Pic

AddByHand
AddByWeb

AdMob
ADRadio

Number of Activities Used by each Application

A
ct

iv
it

ie
s

Benign Botware

89

Table 4.6 illustrates the number of used broadcast receivers by botware and

benign applications. These results illustrate that botware and benign application are using

a set of 347 broadcast receivers in total. The ranges of botware for various features are

from 3.57 % to 12.85 % and for benign applications are from 0.71 % to 2.85 %. Similarly,

the average for botware applications is 8.60 % and for benign applications is 0.92 %. This

huge difference also shows that botware used more number of broadcast receiver features

as compared to the benign applications. For instance, one of the broadcast receiver

features of botware and benign applications is “com.clientsoftware.MessageReceiver”

feature as shown in the Table 5.6. The requests by this feature generated 12.85 % by

botware applications and 2.85 % for the benign applications. It shows that the botware

applications usually generate more requests as compared to benign applications.

Table 4.6 Comparison of Top 20 Broadcast Receivers Used by Botware and Benign

(%)

Selected Broadcast Receivers Features Botware Benign

com.clientsoftware.MessageReceiver 12.86 2.86

com.clientsoftware.MyDeviceAdminReceiver 12.86 1.86

com.clientsoftware.SDCardServiceStarter 12.86 1.71

com.clientsoftware.ServiceStarter 12.86 2.71

com.phone.callcorexy.xy.LScreen 12.14 1.31

com.phone.callcorexy.xy.SReceiver 12.14 2.32

com.phone.callcorexy.xy.StartupReceiver 12.14 0.71

com.bwx.bequick.flashlight.LedFlashlightReceiver 11.43 0.71

com.bwx.bequick.receivers.StatusBarIntegrationReceiver 11.43 0.71

com.clientsoftware.InternetReceiver 11.43 0.71

com.google.android.mms.BootReceiver 6.43 0.71

com.google.android.mms.LiveReceiver 6.43 0.71

com.google.android.apps.analytics.AnalyticsReceiver 5.71 0.71

com.google.android.mms.WakeLockReceiver 5.71 0.71

com.a.a.A 5.00 0.71

com.a.a.DeAdminReciver 5.00 0.71

com.admv3.listener.OnBootReceiver 4.29 0.71

com.devy.entry.LSecScreen 4.29 0.71

com.a.a.SystemR 3.57 0.71

com.android.XWLauncher.InstallShortcutReceiver 3.57 0.71

Minimum 3.57 0.71

Maximum 12.86 2.86

Mean 8.61 0.93

 The broadcast receivers which are commonly used by botware and benign

ap p l i c a t io ns a r e l i s t ed b e l ow i n F i gu r e 4 . 5 . T he ex am pl e s i nc lud e :

com.clientsoftware.MessageReceiver,com.clientsoftware.MyDeviceAdminReceiver,

90

com.clientsoftware.SDCardServiceSta-rter,com.clientsoftware.ServiceStar-ter,

com.phone.callcorexy.xy.LScreen, com.phone-.callcorexy.xy.SReceiver, and com.ph-

one.callcorexy.xy.StartupReceiver are the common broadcast receivers used by botware

and benign with a ratio of 18:4, 18:4, 18:1, 18:1, and the remaining are 17:1 respectively.

Figure 4.5 Broadcast Receivers Frequency Analysis

 Table 4.7 illustrates the number of used services by botware and benign

applications. However, the obtained result shows that botware and benign applications

are using a set of 292 services in total. The ranges of botware for various features are

from 4.28 % to 17.85 % and for benign applications are from 0.00 % to 1.42 %. The

average for botware applications is 10.28 % and for benign applications is 0.71 %. As

reported earlier, this huge difference shows that botware requests more number of

services features as compared to the benign applications. For instance, one of the service

feature of botware and benign applications is “FourthAService” service as shown in the

Table 4.7. As an illustration, the requests generated by botware and benign applications

are 17.85 % and 0.71 % respectively. It shows that the botware applications usually

0 5 10 15 20

com.clientsoftware.MessageReceiver

com.clientsoftware.MyDeviceAdminRe…

com.clientsoftware.SDCardServiceStarter

com.clientsoftware.ServiceStarter

com.phone.callcorexy.xy.LScreen

com.phone.callcorexy.xy.SReceiver

com.phone.callcorexy.xy.StartupReceiver

com.bwx.bequick.flashlight.LedFlashlig…

com.bwx.bequick.receivers.StatusBarInt…

com.clientsoftware.InternetReceiver

com.google.android.mms.BootReceiver

com.google.android.mms.LiveReceiver

com.google.android.apps.analytics.Anal…

com.google.android.mms.WakeLockRe…

com.a.a.A

com.a.a.DeAdminReciver

com.admv3.listener.OnBootReceiver

com.devy.entry.LSecScreen

com.a.a.SystemR

com.android.XWLauncher.InstallShortc…

Number of used Broadcast Receiver by each Application

B
ro

ad
ca

st
 R

ec
ei

v
er

s

Benign
Botware

91

generate more requests as compared to benign applications. Therefore, the smartphones

users should be aware of the botware’s susceptible services features during the installation

of any Android applications.

Table 4.7 Comparison of Top 20 Services Used by Botware and Benign (%)

Selected Services Features Botware Benign

FourthAService 17.86 0.71

SecondAService 17.86 1.43

ThirdAService 17.86 0.71

com.baidu.location.f 12.86 0.00

com.phone.callcorexy.CallLogger 12.86 0.71

com.phone.callcorexy.xy.CRSService 12.86 1.43

com.phone.callcorexy.xy.SService 12.86 0.71

com.Security.Update.SecurityUpdateService 12.86 0.00

com.Rockstargames.CheckService 11.43 0.71

com.Rockstargames.DecryptService 11.43 1.43

com.Rockstargames.MainService 11.43 0.71

com.android.main.MainService 9.29 0.00

com.admv.service.AdvService 7.86 0.71

com.admv.service.MainService 7.86 1.43

com.google.android.mms.MainService 6.43 0.71

com.umeng.common.net.DownloadingService 5.00 0.00

com.android.security.SecurityService 4.29 0.71

com.nl.MyService 4.29 1.43

com.un.service.autoRunService 4.29 0.71

com.un.service.CallService 4.29 0.00

Minimum 4.29 0.00

Maximum 17.86 1.43

Mean 10.29 0.71

Figure 4.6 shows the frequently used services by benign and botware applications.

Most of the Android botware applications use more services as compared to benign

applications. In the statistics, it is clear that FourthAService, SecondAService,

ThirdAService, com.baidu.location.f, com.phone.callcorexy.Call-Logger, com.phone.ca-

llcorexy.xy.CRSService, and com.phone.callcorexy.xy.SService have the ratio of 25:1

for the first three service feature while 18:1 for the next four services respectively.

92

Figure 4.6 Services Frequency Analysis

Table 4.8 illustrates the number of used API calls by botware and benign

applications. The result shows that both botware and benign applications use a set of 15

API Calls in total. The ranges of botware for various features are from 5.00 % to 75.71%

and for benign applications are from 0.71 % to 10.71 %. The average for botware and

benign applications is 30.19 % and 2.57 % respectively. This huge difference as observed

for other previous features shows that botware requests a greater number of API calls

features as compared to the benign applications. For instance, one of the API call features

of botware and benign applications is “connect” as shown in the Table 4.8. The requests

generated by botware applications are 75.71 % while the benign applications generated

10.71%. Thus, this shows that the botware applications usually generate more requests as

compared to benign applications.

Table 4.8 Comparison of API Calls Used by Botware and Benign (%)

Selected API_Calls Features Botware Benign

connect 75.71 10.71

getDeviceId 57.14 2.14

getSubscriberId 45.00 1.43

getActiveNetworkInfo 36.43 2.14

0 10 20 30

FourthAService

SecondAService

ThirdAService

com.baidu.location.f

com.phone.callcorexy.CallLogger

com.phone.callcorexy.xy.CRSService

com.phone.callcorexy.xy.SService

com.Security.Update.SecurityUpdateS…

com.Rockstargames.CheckService

com.Rockstargames.DecryptService

com.Rockstargames.MainService

com.android.main.MainService

com.admv.service.AdvService

com.admv.service.MainService

com.google.android.mms.MainService

com.umeng.common.net.Downloading…

com.android.security.SecurityService

com.nl.MyService

com.un.service.autoRunService

com.un.service.CallService

Number of Services Used by Each Application

S
er

v
ic

es

Benign

Botware

93

Table 4.8 Continued

Selected API_Calls Features Botware Benign

getLine1Number 34.29 1.43

getNetworkInfo 33.57 1.43

getSimSerialNumber 30.71 1.43

getInputStream 28.57 0.71

sendTextMessage 26.43 1.43

getLastKnownLocation 22.86 2.14

LocationListener 20.71 2.14

requestLocationUpdates 20.71 4.29

getContent 8.57 3.57

getWifiState 7.14 2.14

openFileDescriptor 5.00 1.43

Minimum 5.00 0.71

Maximum 75.71 10.71

Mean 30.19 2.57

The API calls are indeed helpful for differentiating benign and malware

applications, hence, the top 10 API calls used in botware and benign applications are

reported in Figure 4.7. The results clearly show that botware applications use more API

calls than benign applications. This is further expressed by the average where the average

number of API calls used by botware and benign applications are 106 and 10 respectively.

Figure 4.7 API Calls Frequency Analysis

4.4 Evaluation Process

In order to evaluate the performance of the selected classification method, series

of experiments are conducted using k-fold cross-validation technique. For this purpose,

we selected five different types of machine learning classifiers namely, Random Forest,

0 20 40 60 80 100

connect

getDeviceId

getSubscriberId

getActiveNetworkInfo

getNetworkInfo

getLine1Number

sendTextMessage

sendTextMessage

getLastKnownLocation

getSimSerialNumber

Number of API_Calls used by Each Application

A
P

I_
C

al
ls

Benign Botware

94

SVM, J48, SLR, and Naïve Bayes given in Section 2.9 in more detail. Initially, a dataset

of 7565 real Android applications are considered for all experiments in this study. Botnet

datasets are obtained from the Drebin and ISCX as accounted for in Section 4.1.3.

However, the benign applications are obtained from Google Play-store and other third

party sites (Excellence, 2016; PlayStore, 2017). Some of the malware samples are

collected from the Android Malware Genome Project (Arp et al., 2014; Excellence,

2016). In order to cross-check normality of the selected samples, Virustotal services are

used (Virustotal, 2017). After eliminating 530 duplicate samples, 7035 samples are left

from both applications with 3535 botware and 3500 benign applications respectively. The

obtained results are shown in the following sections. For all experiments, the dataset of

real Android applications is considered for Benign and Botware.

In this study, a list of experiments were performed in WEKA experimental tool

(Hall et al., 2009). It is a powerful feature of the WEKA workbench and a perfect tool to

perform a wide-range machine learning experiment. WEKA has a built-in graphical user

interface explorer that is used for experiments on different type’s machine-learning

algorithms for large datasets. The graphical user interface is robust enough to produce a

large number of experimental results needed for evaluation and comparison. Initially, the

model is trained on the labeled botware applications. The features of these labeled

botware are given in Section 2.4 and Section 2.5. In general, the validation of machine

learning classifiers is performed in two ways. The first one is k-fold cross validation while

the second one is random sampling validation (Bouckaert & Frank, 2004).

In K-fold cross validation, the dataset is randomly split into K equal-sized

subsamples. From the K subsamples, a single subsample is selected as the validation

dataset for testing the model, whereas the remaining K-1 subsamples are regarded as the

training datasets. The process is repeated K times (thus the term K-fold), with each of the

K subsamples used exactly once for validation. The results of the K-fold cross validation

are then averaged to generate a single assessment. The advantages of this method over

random sampling validation are the use of all instances for both training and testing, and

each observation is used only once as a test instance.

However, Random sampling method randomly separates the dataset into training

and testing data. In each split, the model is designed using the training data, whereas the

predictive accuracy is measured using the testing data. The average results are then

obtained from each split. The obvious advantage of this method over K-fold cross

validation is that the proportion of split for the training and testing data does not depend

95

on the number of K-folds. Nevertheless, overlapping of validation subsets may occur in

this situation, in which some instances may never be used in validation subsamples or

some observations may be selected repeatedly. Moreover, the generated results may vary

if the analysis is performed with different random splits. Therefore, K-fold cross

validation was utilized to validate the accuracy of our classifier model. We used different

value for K from 2 to 10 in the cross-validation tests.

4.5 Evaluation Methods

In order to analyse the reliability and validity of the research, several statistical

analyses are performed on the collected data through different datasets and executing

experiments in a different scenario. A statistical model is used to represent and analyse

generated data by an average and a standard deviation. The statistical model always

implies dependent and explanatory variable. Computation behind the statistical modelling

allows us to show the significance of our research. Each of the statistical methods that are

used in this research are presented in the following section.

4.5.1 Descriptive Statistics

The descriptive statistics is used in this research in order to analyse data and to

highlight the significance of achievement of the modified approach based on refining

features in terms of TPR, FPR, precision, F-Measure and Accuracy of botware detection

as compared to unmodified (without refining component) approach. In descriptive

statistics, minimum, maximum, mean and the standard deviation measures are

determined. The desired descriptive data is acquired based on the collected data and

summarized in the graphical and tabular form to accomplish the desired objectives.

4.5.2 Confidence Interval

According to the sample Central Limit theorem, approximately 95 % of the

sample means fall within 1.96 standard deviations of the population mean, which showed

that the sample is greater than or equal to 30 (n ≥ 30). Therefore, all the experiments in

this research are executed 30 times for the performance evaluation of individual variable

to verify that the obtained value belongs to the representative samples. In the data sample,

the measurement of the central tendency of each experiment is calculated based on the

sample mean (-X). This is carried out so as to discover that sample mean is a better point

96

estimate of the population mean as compared to median or mode. Data sampling includes

a range of intervals determined from the specified confidence level, some statistics, and

the factor of sampling error; hence the sample mean can differ from the population mean.

The level of confidence is the probability that the parameter is truly captured by the

confidence range. The most common Confidence Levels (CL) are 90%, 95%, and 99%.

Therefore, the interval estimate of each sample is determined in order to signify the

goodness of the calculated point estimate. The interval estimate for each sample mean of

the primary data is calculated with approximately 95% confidence interval of the sample

means within 1.96 standard deviations by using the following equation. Therefore, for

reporting the parametric results, the readability and confidence of the results are raised

up to 95%. Equation 4.1 is used to calculate the margin of error in the sample with the

terms defined.

𝑀 = Z ∗ (
𝜎

√𝑛
) 4.1

Where, M is the margin of error, Z indicates the value based on the confidence

interval percentage, σ is the standard deviation, and n is the number of samples. Again,

Equation 4.2 is used to calculate the confidence interval estimates for each sample mean

(X) of the primary data with a 95% confidence interval.

µ = X ± 1.96 (
𝜎

√𝑛
) 4.2

Where, σ is used to indicate the standard deviation in the sample values and n

shows the size of sample space.

4.5.3 Paired Samples T-Test

In this research, the Paired Samples T-Test was performed so as to ensure that

there is a significant difference between the mean values of the identical measurement

performed in two different approach namely unmodified (without refine component) and

modified (with refine component, the case of our solution) execution modes. In this study,

the unmodified approach and the modified approach parametric values are paired data of

the same workload into two different execution modes. This was used to ensure that the

execution modes of the unmodified (without refine component) and modified (with refine

component) approach have a significant impact on the TPR, FPR, precision, F-measure

97

and accuracy or not. In other words, conclusion was drawn with the help of the generated

results from the Paired Sample T-Test that the bearable TPR, FPR, precision, F-measure,

and accuracy in the unmodified (without refine component) and modified (with refine

component) botware detection approach have a significant difference.

4.6 Evaluation Parameters

In this section, the evaluating process of the proposed botnet detection approach

was described. This is achieved by describing the criteria through which evaluation of the

effectiveness of our approach is performed. The performance of the proposed approach

has been evaluated using five different matrices, namely True Positive Rate (TPR), False

Positive Rate (FPR), Precision, F-measure, and Accuracy and compared to the existing

state-of-the-art detection techniques. Table 4.9 shows the evaluation parameters with

description and their possible formulas.

Table 4.9 Performance Evaluation Parameters of the Proposed Approach

Parameters Description Formula (if any)

True Positive Rate (TPR)

When it is actually Botware,

how often does it predict as

Botware
𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)

False Positive Rate (FPR)

When it is actually Botware,

how does it often predict as

Benign
𝐹𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁)

Positive Predictive Value

(PPV), Precision

What fraction of those predicted

positives are actually positive?
𝑃𝑃𝑉 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

F-Measure (F)

A measure that combines

precision (P) and recall (R) is

the harmonic mean of precision

and recall

𝐹𝑀 = 2(
𝑃 ∗ 𝑅

𝑃 + 𝑅
)

Accuracy (ACC)
The number of Occurrences

correctly classifier
𝐴𝐶𝐶 =

(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)

4.7 Evaluation of Machine Learning Classifiers Based on Extracted Features

In order to evaluate the machine learning classifier for selected features different

five classification algorithms are chosen including Support Vector Machine, J-48,

Random Forest, Simple Logistic Regression and Naïve Bayes. This is novel approach to

detect botware applications using minimal features. The purpose behind this evaluation

is to select a suitable machine learning classifier to detect botware applications on the

base of selected features. This experiment compares the obtained results with the existing

approach which uses almost similar number of features. For this purpose, an experimental

setup is followed as given in Figure 4.8. In this experiment the main three phases are

98

involved such as data collection, features extraction and evaluation. A huge number of

features are extracted in the data collection phase from Android Applications. The second

phase feature extraction will help to select the most relevant features to improve the

effectiveness of the proposed approach. This analysis was done to detect the unknown

botware applications. The aforementioned different types of classifiers used in the

evaluation phase.

Data Collection Feature Extraction Evaluation

APK Files

AndroidManifest.xml and
.DEX files

Extract Permissions,
Activities, Broadcast

Receivers, Services, API
Calls

List of Features

Check with Official
Website

Binary Form

Remove Duplicate

Calculate the Frequency

Evaluate the Extracted
Features

Calculate the Machine
Learning Performance

Results

Figure 4.8 Experimental Setup for the evaluation of Machine Learning Classifier for

the selected Features

In order to collect the required features all, the input application is decompressed

with the help of APK Tool. The desired features were existing in the AndroidManifest

and .DEX files. The list of permissions, activities, broadcast receivers, services and API

Calls are obtained from the above-mentioned files. The list of obtained features is given

in Appendix B. The evaluation of the obtained results is discussed in the next sub-

sections. The best results are highlighted in bold in the following tables. The comparison

of the unmodified and modified approaches is given which were obtained from the above-

mentioned machine learning classifiers. The results is obtained for the evaluation

parameters mentioned in Section 4.6 such as true positive rate, false positive rate,

precision, F-measure, and accuracy. In this experiment the data is split in 80% for training

and 20% for testing samples.

99

4.7.1 True Positive Rate (TPR)

TPR is investigated in order to support the performance of the modified botnet

detection approach based on the static analysis. Tests have been carried out for the TPR

for both unmodified (without features refining) (Peiravian & Zhu, 2013) and modified

(with features refining) on different five classifiers namely, Random forest, Naïve Bayes,

Support Vector Machine, Simple Logistic Regression, and J-48 for all extracted features

such as permissions, activities, broadcast receivers, services and API calls. The evaluation

of the proposed approach is performed on the aforementioned parameters. TPR is one of

these parameters that check the proportion of correctly classification of botware and

benign applications by this approach. The performance of different classifiers are shown

in Table 4.11 with respect to TPR for unmodified and modified approach. The higher the

TPR, the better is the result. These results are generated with the aforementioned machine

learning classifiers using WEKA tool.

The Minimum and Maximum values in the Table 4.11 represent the minimum and

maximum ranges of generated number of TPR for different classifiers. In order to analyze

the performance of proposed (modified) approach, the applications for all extracted

features are executed by changing the number of k-fold cross validation for each

classifier. The given TPR values for extracted features are the average of all folds of the

selected classifiers. The average TPR of unmodified and modified approach are 0.87 and

0.89 respectively for permission features. The difference between unmodified and

modified is 2.53% recorded, which shows the detection capability of the modified

detection approach in term of TPR is better than the existing unmodified approach.

Similarly, a slightly difference between unmodified and modified approaches are

recorded for the remaining features as well such as 2.27% for activities, 6.25% for

broadcast receivers, 4.76% for services, and 5.26% for API Calls.

Moreover, Table 4.10 describes the results of the evaluation parameters namely

TPR for the activities feature. The average TPR of activities features for unmodified

approach is 0.7229 and for modified approach is 0.7456. The difference between both

unmodified and modified is 2.2680%, which shows the detection capability of modified

detection approach in term of TPR for activities features is better than the existing

unmodified approach. The average TPR of broadcast receiver features for unmodified

approach is 0.6962 and for modified approach is 0.7587. However, random forest

generated best results in both unmodified and modified approach. The difference between

the average values of both approaches is 6.2540%, which shows the detection capability

100

of the modified detection approach in term of TPR is better than the existing unmodified

approaches. The average TPR of services features for unmodified and modified

approaches are 0.6521 and 0.6997 respectively. The difference between both unmodified

and modified is 4.7580 %, which shows the detection capability of our modified detection

approach in term of TPR of receiver is better than the existing unmodified approach.

In the Table 4.10, the average TPR of API Calls feature for unmodified approach

is 0.7008 and for the modified approach is 0.7534. However, support vector machine

generated best results in modified approach while random forest generated best result for

unmodified approach. The difference between both approaches is 5.2620%, which shows

the detection capability of modified detection approach in term of API call’s TPR is better

than the existing unmodified approach.

Figure 4.9 illustrates the whole results of the modified and unmodified approaches

for the selected classifiers with respect to permissions, activities, broadcast receivers,

services and API calls. The X-axis shows the TPR for each classifiers that presents on Y-

axis. The TPR value approaches to one (1) is consider the best result while approaching

to zero (0) will be the worst results. The bar graph shows that the Random Forest

generated best results for permissions, broadcast receivers and API calls. However, SVM

generated best results for the activities and services

101

Table 4.10 TPR comparison for unmodified and modified approach using all features for selected classifiers

 Features
Random

Forest

Naïve

Bayes
SVM SLR J-48 Minimum Maximum Means Median

Std.

Deviation

Confidence

Interval

Unmodified

Permissions 0.8954 0.8501 0.8793 0.8570 0.8754 0.8501 0.8954 0.8714 0.8754 0.0181 0.0225

Activities 0.7239 0.7112 0.7231 0.7023 0.7541 0.7023 0.7541 0.7229 0.7231 0.0196 0.0243

Broadcast

Receivers
0.8062 0.6412 0.7508 0.6301 0.6527 0.6301 0.8062 0.6962 0.6527 0.0781 0.0969

Services 0.6221 0.7020 0.6912 0.6232 0.6220 0.6220 0.7020 0.6521 0.6232 0.0408 0.0507

API Calls 0.7011 0.7265 0.6921 0.6921 0.6921 0.6921 0.7265 0.7008 0.6921 0.0149 0.0185

Modified

Permissions 0.9114 0.8802 0.8912 0.9000 0.9011 0.8802 0.9114 0.8968 0.9000 0.0117 0.0145

Activities 0.7327 0.7250 0.7918 0.7111 0.7674 0.7111 0.7918 0.7456 0.7327 0.0331 0.0411

Broadcast

Receivers
0.8567 0.6600 0.8180 0.6667 0.7923 0.6600 0.8567 0.7587 0.7923 0.0901 0.1118

Services 0.7150 0.6753 0.7319 0.7142 0.6620 0.6620 0.7319 0.6997 0.7142 0.0296 0.0367

API Calls 0.7630 0.7550 0.7580 0.7533 0.7377 0.7377 0.7630 0.7534 0.7550 0.0095 0.0118

0.00

0.20

0.40

0.60

0.80

1.00

Permissions Activities Broadcast

Receivers

Services API Calls Permissions Activities Broadcast

Receivers

Services API Calls

Unmodified Modified

Random Forest Naïve Bayes Support Vector Machine Simple Logistic Regression J-48

Figure 4.9 Number of TPR for unmodified and modified detection approach in term of Selected Features for all classifiers

102

4.7.2 False Positive Rate (FPR)

FPR is investigated in order to evaluate the detection performance of the modified

botnet detection approach based on static analysis. Tests have been carried out for FPR

for both unmodified (without features refining component) and modified (with features

refining component) on different five classifiers namely, Random forest, Naïve Bayes,

Support Vector Machine, Simple Logistic Regression, and J-48 for all extracted features

such as permissions, activities, broadcast receivers, services and API calls. The evaluation

of the proposed approach is performed on the aforementioned parameters. FPR is one of

the parameters that check the proportion of incorrectly classification of botware and

benign applications by the approach. The value of FPR that approach zero is considered

best result while the value that approaches to one is considered worst performance. The

lower the value of FPR, the better is the result. Table 4.11 shows the FPR of selected

feature of the modified and unmodified botnet detection approach. These results are

generated with the aforementioned machine learning classifiers using WEKA tool.

The Minimum and Maximum values in the Table 4.11 represent the minimum and

maximum FPR ranges for selected classifiers. Using the K-fold cross validation method,

the performance of proposed (modified) approach is analyzed for all extracted features.

In these experiments the value of k-fold cross validation are changed for each classifier.

The mentioned FPR values for extracted features are the average of all folds. The average

FPR value for permission feature of unmodified and modified approach are 0.1410 and

0.0749 respectively. Hence the difference between unmodified and modified is 46.86%

recorded, which shows the detection capability of the modified detection approach in term

of FPR is better than the existing unmodified approach. Furthermore, there are some

difference recorded between unmodified and modified approaches for the remaining

features such as 35.99% for activities, 44.60% for broadcast receivers, 22.85% for

services, and 22.91% for API Calls. The worst FPR is generated for services features. The

FPR for services features using modified approach is 0.2345 while using the unmodified

approach the FPR is 0.3040. The difference between both are 22.85%.

103

Table 4.11 FPR comparison for unmodified and modified approach using all features for selected classifiers

 Features
Random

Forest

Naïve

Bayes
SVM SLR J-48 Minimum Maximum Means Median

Std.

Deviation

Confidence

Interval

Unmodified

Permissions 0.0849 0.0991 0.1607 0.2758 0.0847 0.0847 0.2758 0.1410 0.0991 0.0816 0.1013

Activities 0.2187 0.3248 0.1494 0.2456 0.2798 0.1494 0.3248 0.2437 0.2456 0.0660 0.0819

Broadcast

Receivers
0.0913 0.6100 0.1293 0.6201 0.1261 0.0913 0.6201 0.3154 0.1293 0.2740 0.3402

Services 0.1340 0.6620 0.1321 0.2006 0.3912 0.1321 0.6620 0.3040 0.2006 0.2263 0.2810

API Calls 0.2132 0.2320 0.2203 0.2343 0.2223 0.2132 0.2343 0.2244 0.2223 0.0087 0.0108

Modified

Permissions 0.0626 0.0803 0.1118 0.1100 0.0100 0.0100 0.1118 0.0749 0.0803 0.0418 0.0519

Activities 0.1673 0.1772 0.1138 0.1889 0.1326 0.1138 0.1889 0.1560 0.1673 0.0316 0.0392

Broadcast

Receivers
0.0816 0.3267 0.0882 0.2700 0.1069 0.0816 0.3267 0.1747 0.1069 0.1150 0.1428

Services 0.0519 0.5820 0.1272 0.1452 0.2662 0.0519 0.5820 0.2345 0.1452 0.2089 0.2594

API Calls 0.1840 0.1850 0.2400 0.1441 0.1288 0.1288 0.2400 0.1730 0.1840 0.0433 0.0537

0.00

0.20

0.40

0.60

0.80

1.00

Permissions Activities Broadcast

Receivers

Services API Calls Permissions Activities Broadcast

Receivers

Services API Calls

Unmodified Modified

Random Forest Naïve Bayes Support Vector Machine Simple Logistic Regression J-48

Figure 4.10 Number of FPR for unmodified and modified detection approach in term of Selected features for all classifiers

104

Figure 4.10 illustrates the whole results of the modified and unmodified

approaches for the selected classifiers for aforementioned features. The X-axis shows the

FPR for each classifier that presents on Y-axis. The FPR value approaches to one (1) is

consider the worst results while approaching to zero (0) will be the best results. The bar

graph shows that the Random Forest generated best results for permissions, broadcast

receivers and services. However, SVM generated best results for the activities and J.48

generated good FPR for services features.

4.7.3 Precision

Precision is investigated in order to evaluate the botnet detection performance of

the modified botnet detection approach based on the static analysis. Tests have been

carried out for the precision for both unmodified (without features refining component)

and modified (with features refining component) on different five classifiers namely,

Random forest, Naïve Bayes, Support Vector Machine, Simple Logistic Regression, and

J-48 for all extracted features such as permissions, activities, broadcast receivers, services

and API calls. The evaluation of the proposed approach is performed on the

aforementioned parameters. Precision is one of the parameters that check the proportion

of incorrectly classification of botware and benign applications by the approach. The

higher the precision, the better is the result. The value of precision that approaches zero

is considered best result while value that approach one is considered worst performance.

Table 4.12 shows the precision of permissions feature of the modified and unmodified

botnet detection approach. These results are generated with the aforementioned machine

learning classifiers using WEKA tool.

Table 4.12 represent the minimum, maximum, and average precision ranges for

selected classifiers using the K-fold cross validation method. The mentioned precision

values for extracted features are the average of all folds. The obtained average precision

value of unmodified and modified approaches for permission feature is 0.8219 and 0.8850

respectively. Hence the difference between both is 7.70% recorded. It shows the detection

capability of the modified detection approach in term of FPR is better than the existing

unmodified approach. Similarly, there are also some difference recorded between

unmodified and modified approaches for the remaining features that is 4.94% for

activities, 26.94% for broadcast receivers, 21.73% for services, and 2.49% for API Calls.

The worst precision is generated for API Calls features that is 0.8332. There is only 2.48%

improvement occurred between both the approaches.

105

Figure 4.11 depicts the whole results of the modified and unmodified botnet

detection approaches for the selected classifiers for aforementioned features. The X-axis

shows the precision for each classifier that presents on Y-axis. The precision value

approaches to one (1) is consider the best results while approaching to zero (0) will be the

worst results. The bar graph shows that the Random Forest generated best results for

permissions, broadcast receivers and services that is 0.9127, 0.8940 and 0.8632

respectively. However, for the activities feature Naïve Bayes generated best result that is

0.8809 and SVM generated good precision result for services features. Hence it is

concluded that Random Forest is the best classifier in term of precision values for all

extracted features.

106

Table 4.12 Precision comparison for unmodified and modified approach using all features for selected classifiers

 Features
Random

Forest

Naïve

Bayes
SVM SLR J-48 Minimum Maximum Means Median

Std.

Deviation

Confidence

Interval

Unmodified

Permissions 0.9119 0.8517 0.7217 0.8000 0.8244 0.7217 0.9119 0.8219 0.8244 0.0698 0.0867

Activities 0.8226 0.8079 0.7236 0.7566 0.8101 0.7236 0.8226 0.7842 0.8079 0.0423 0.0525

Broadcast

Receivers
0.7210 0.5430 0.7210 0.5362 0.6224 0.5362 0.7210 0.6287 0.6224 0.0908 0.1127

Services 0.6136 0.5380 0.7103 0.7017 0.5380 0.5380 0.7103 0.6203 0.6136 0.0841 0.1045

API Calls 0.8222 0.8123 0.8012 0.8143 0.8149 0.8012 0.8222 0.8130 0.8143 0.0076 0.0094

Modified

Permissions 0.9127 0.9016 0.8555 0.8443 0.9123 0.8443 0.9127 0.8853 0.9016 0.0328 0.0408

Activities 0.8314 0.8809 0.7598 0.7741 0.8684 0.7598 0.8809 0.8229 0.8314 0.0545 0.0676

Broadcast

Receivers
0.8940 0.7960 0.7932 0.6360 0.8714 0.6360 0.8940 0.7981 0.7960 0.1011 0.1255

Services 0.8632 0.5780 0.8503 0.8461 0.6380 0.5780 0.8632 0.7551 0.8461 0.1361 0.1690

API Calls 0.8393 0.8270 0.8410 0.8237 0.8348 0.8237 0.8410 0.8332 0.8348 0.0076 0.0094

Figure 4.11 Number of Precision for unmodified and modified detection approach in term of Selected features for all classifiers

0.00

0.20

0.40

0.60

0.80

1.00

Permissions Activities Broadcast
Receivers

Services API Calls Permissions Activities Broadcast
Receivers

Services API Calls

Unmodified Modified

Random Forest Naïve Bayes Support Vector Machine Simple Logistic Regression J-48

107

4.7.4 F-Measure

F-measure is investigated in order to evaluate the botnet detection performance of

the modified botnet detection approach based on the static analysis. Tests have been

carried out for the F-measure for both unmodified (without features refining component)

and modified (with features refining component) on different five classifiers namely,

Random forest, Naïve Bayes, Support Vector Machine, Simple Logistic Regression, and

J-48 for all extracted features such as permissions, activities, broadcast receivers, services

and API calls. The evaluation of the proposed approach is performed on the

aforementioned parameters. F-measure is one of the parameters that check the proportion

of incorrectly classification of botware and benign applications by the approach. The

higher the F-measure, the better is the result. The value of F-measure that approaches zero

is considered worst result while value that approaches one is considered best

performance. Table 4.13 shows the F-measure of permissions feature of the modified and

unmodified botnet detection approach.

The Minimum and Maximum values in the Table 4.13 represent the minimum and

maximum ranges of generated results of F-Measure for different selected classifiers. In

order to analyze the performance of proposed (modified) approach, the applications for

all extracted features are executed by changing the number of k-fold cross validation for

each classifier. The given F-Measure values for extracted features are the average of all

folds of the selected classifiers. The average F-Measure of unmodified and modified

approach are 0.7979 and 0.8812 respectively for permission features. The difference

between unmodified and modified is 10.44% recorded. This difference shows the

detection capability of the modified detection approach in term of F-Measure which is

better than the existing unmodified approach.

Moreover, Table 4.13 describes the results of the evaluation parameters namely

F-measure for the activities feature. The average F-Measure of activities features for

unmodified approach is 0.6996 and for modified approach is 0.7580. The difference

between both unmodified and modified is 8.35%. Similarly, a notable difference is seems

between the both approaches for the broadcast receivers that is 18.26%. The average F-

measure of services features for both approaches are 0.6335 and 0.7085 respectively.

Thus, the difference between both unmodified and modified is 11.84%, which shows the

detection capability of our modified detection approach in term of F-measure of receiver

is better than the existing unmodified approach. Furthermore, the average F-measure of

108

API Calls feature for unmodified approach is 0.6727 and for the modified approach is

0.7385. The difference between both approaches is 9.78% shows the detection capability

of modified detection approach in term of API call’s F-measure is better than the existing

unmodified approach.

Figure 4.12 illustrates the whole results of the modified and unmodified

approaches for the selected classifiers with respect to permissions, activities, broadcast

receivers, services and API calls. The X-axis shows the F-measure for each classifier that

presents on Y-axis. The TPR value approaches to one (1) is consider the best result while

approaching to zero (0) will be the worst results. The bar graph shows that the Random

Forest generated best results for permissions, broadcast receivers and services. However,

J-48 generated best results for the activities and API Calls in the modified detection

approach.

109

Table 4.13 F-Measure comparison for unmodified and modified approach using all features for selected classifiers

 Features
Random

Forest

Naïve

Bayes
SVM SLR J-48 Minimum Maximum Means Median

Std.

Deviation

Confidence

Interval

Unmodified

Permissions 0.8144 0.8517 0.8117 0.7000 0.8119 0.7000 0.8517 0.7979 0.8119 0.0573 0.0712

Activities 0.7004 0.6985 0.6892 0.6763 0.7336 0.6763 0.7336 0.6996 0.6985 0.0213 0.0264

Broadcast

Receivers
0.7722 0.4371 0.7336 0.4371 0.7092 0.4371 0.7722 0.6178 0.7092 0.1665 0.2068

Services 0.6755 0.6147 0.6235 0.6392 0.6147 0.6147 0.6755 0.6335 0.6235 0.0255 0.0317

API Calls 0.6803 0.6656 0.6856 0.6570 0.6748 0.6570 0.6856 0.6727 0.6748 0.0115 0.0142

Modified

Permissions 0.9358 0.9110 0.8832 0.7633 0.9128 0.7633 0.9358 0.8812 0.9110 0.0685 0.0851

Activities 0.7597 0.7499 0.7634 0.7259 0.7912 0.7259 0.7912 0.7580 0.7597 0.0236 0.0293

Broadcast

Receivers
0.8602 0.5250 0.8461 0.6250 0.7971 0.5250 0.8602 0.7307 0.7971 0.1483 0.1841

Services 0.7517 0.7281 0.7359 0.6800 0.6470 0.6470 0.7517 0.7085 0.7281 0.0436 0.0541

API Calls 0.7457 0.7330 0.7510 0.7224 0.7402 0.7224 0.7510 0.7385 0.7402 0.0112 0.0139

0.00

0.20
0.40

0.60

0.80
1.00

Permissions Activities Broadcast
Receivers

Services API Calls Permissions Activities Broadcast
Receivers

Services API Calls

Unmodified Modified

Random Forest Naïve Bayes Support Vector Machine Simple Logistic Regression J-48

Figure 4.12 Number of F-measure for unmodified and modified detection approach in term of Selected features for all classifiers

110

4.7.5 Accuracy

Accuracy is investigated in order to evaluate the botnet detection performance of

the modified botnet detection approach based on static analysis. Tests have been carried

out for the accuracy for both unmodified (without features refining component) and

modified (with features refining component) on different five classifiers namely, Random

forest, Naïve Bayes, Support Vector Machine, Simple Logistic Regression, and J-48 for

all extracted features such as permissions, activities, broadcast receivers, services and

API calls. The evaluation of the proposed approach is performed on the aforementioned

parameters. Accuracy is one of the parameters that check the proportion of incorrectly

classification of botware and benign applications by the approach. The higher the

accuracy, the better is the result. When the values of accuracy approach to zero, then this

is considered as the best result while when the value of accuracy approaches one, it is

considered as worst performance. Table 4.14 shows the correctness of accuracy feature

of the modified and unmodified botnet detection approach.

The Minimum and Maximum values in the Table 4.14 represent the minimum and

maximum ranges of generated accuracy for different classifiers using unmodified and

modified detection approaches. In order to analyze the performance of proposed

(modified) approach, the applications for all extracted features are executed by changing

the number of k-fold cross validation for each classifier. The given values accuracy for

all extracted features are the average of 10 folds of the selected classifiers. The average

accuracy for permission feature of unmodified and modified approach are 84.74% and

89.82% respectively. The difference between unmodified and modified is 6.00%

recorded, which shows the detection capability of the modified detection approach in term

of TPR is better than the existing unmodified approach. Similarly, a notably difference

between unmodified and modified approaches are recorded for the remaining features

such as 2.07% for activities, 11.42% for broadcast receivers, 8.37% for services, and

3.30% for API Calls. Figure 4.13 shows that the Random Forest generated best results for

all selected features except activities.

111

Table 4.14 Accuracy comparison for unmodified and modified approach using all features for selected classifiers

 Features
Random

Forest

Naïve

Bayes
SVM SLR J-48 Minimum Maximum Means Median

Std.

Deviation

Confidence

Interval

Unmodified

Permissions 92.44 86.12 81.02 85.00 79.11 79.11 92.44 84.74 85.00 5.17 6.42

Activities 80.39 80.34 71.19 65.84 80.46 65.84 80.46 75.58 80.03 6.72 8.35

Broadcast

Receivers
85.00 68.41 80.32 68.44 72.75 68.41 85.00 74.98 72.75 7.41 9.20

Services 71.36 62.28 67.23 62.32 68.18 62.28 71.36 66.27 67.23 3.94 4.89

API Calls 76.24 73.57 72.34 71.42 72.33 71.42 76.24 73.18 72.34 1.87 2.33

Modified

Permissions 93.40 91.12 87.03 86.93 90.64 86.93 93.40 89.82 90.64 2.80 3.47

Activities 80.42 66.02 79.91 77.18 80.71 66.02 80.71 77.15 79.91 6.46 8.02

Broadcast

Receivers
86.68 81.02 81.80 83.02 85.23 81.02 86.68 83.55 83.02 2.36 2.94

Services 78.86 68.18 74.48 66.18 71.42 66.18 78.86 71.82 71.42 5.05 6.27

API Calls 78.26 74.57 76.29 73.54 75.33 73.54 78.26 75.60 75.33 1.80 2.23

Figure 4.13 Accuracy for unmodified and modified detection approach in term of Selected features for all classifiers

0.00

20.00

40.00

60.00

80.00

100.00

Permissions Activities Broadcast
Receivers

Services API Calls Permissions Activities Broadcast
Receivers

Services API Calls

Unmodified Modified

Random Forest Naïve Bayes Support Vector Machine Simple Logistic Regression J-48

112

Table 4.15 T and P values for Unmodified and Modified approaches in term of TPR

 Unmodified Modified Unmodified Modified Unmodified Modified Unmodified Modified Unmodified Modified

 Permissions Activities Broadcast Receivers Services API Calls

RF 0.8954 0.9114 0.7239 0.7827 0.8062 0.8567 0.7020 0.7150 0.7265 0.7580

NB 0.8501 0.8802 0.7112 0.7250 0.7412 0.6600 0.6221 0.6753 0.7011 0.7550

SVM 0.8793 0.8912 0.7231 0.7918 0.7508 0.8180 0.6912 0.7319 0.6921 0.7130

SLR 0.8570 0.9000 0.7023 0.7111 0.7301 0.6667 0.6232 0.7142 0.6921 0.7033

J-48 0.8754 0.9011 0.7541 0.7774 0.6527 0.7923 0.6220 0.6620 0.6921 0.7177

T Test 2.6246 1.9801 2.6186 2.1112 2.1797

P Test 0.0152 0.0500 0.0154 0.0339 0.0304

Table 4.16 T and P values for Unmodified and Modified approaches in term of FPR

 Unmodified Modified Unmodified Modified Unmodified Modified Unmodified Modified Unmodified Modified

 Permissions Activities Broadcast Receivers Services API Calls

RF 0.0849 0.0626 0.2187 0.1673 0.0913 0.0816 0.1340 0.0519 0.2132 0.1840

NB 0.0991 0.0803 0.3248 0.1772 0.6100 0.1267 0.2620 0.1820 0.2320 0.1850

SVM 0.1607 0.1118 0.1494 0.1138 0.1293 0.0882 0.1321 0.1272 0.2203 0.2400

SLR 0.2758 0.0100 0.2456 0.1889 0.6201 0.1700 0.2006 0.1452 0.2343 0.1441

J-48 0.0847 0.0100 0.2798 0.1326 0.1261 0.1069 0.2912 0.1462 0.2223 0.1288

T-Value 2.0699 2.6817 1.9843 1.9862 2.4345

P-Value 0.0361 0.0139 0.0467 0.0480 0.0205

113

Table 4.17 T and P values for Unmodified and Modified approaches in term of Precision

 Unmodified Modified Unmodified Modified Unmodified Modified Unmodified Modified Unmodified Modified

 Permissions Activities Broadcast Receivers Services API Calls

RF 0.9119 0.9127 0.8226 0.8814 0.7210 0.8940 0.6136 0.8632 0.8222 0.8393

NB 0.8517 0.9016 0.8079 0.8809 0.5430 0.7960 0.5380 0.5780 0.8123 0.8270

SVM 0.7217 0.8555 0.7236 0.7898 0.7210 0.7932 0.7003 0.8503 0.8012 0.8410

SLR 0.8000 0.8743 0.7566 0.7874 0.5362 0.6360 0.7017 0.8561 0.8143 0.8237

J-48 0.8244 0.9223 0.8101 0.8684 0.6224 0.8714 0.5380 0.6480 0.8149 0.8348

T-Value 2.1227 1.9926 2.7876 1.9882 4.2129

P-Value 0.0332 0.0407 0.0118 0.0409 0.0015

Table 4.18 T and P values for Unmodified and Modified approaches in term of F-Measure

 Unmodified Modified Unmodified Modified Unmodified Modified Unmodified Modified Unmodified Modified

 Permissions Activities Broadcast Receivers Services API Calls

RF 0.8144 0.9358 0.7004 0.7297 0.7722 0.8602 0.6755 0.7517 0.7003 0.7457

NB 0.8517 0.9110 0.6985 0.7299 0.6371 0.7250 0.6147 0.7281 0.7156 0.7330

SVM 0.8117 0.8832 0.6892 0.7334 0.7336 0.8461 0.6235 0.7359 0.7356 0.7510

SLR 0.7000 0.7633 0.6763 0.7159 0.4371 0.7250 0.6392 0.6800 0.7170 0.7224

J-48 0.8119 0.9128 0.7336 0.7412 0.7092 0.7971 0.6147 0.6470 0.7248 0.7402

T-Value 2.0849 2.9375 2.0119 3.3221 2.5839

P-Value 0.0352 0.0100 0.0395 0.0052 0.0162

114

Table 4.19 T and P values for Unmodified and Modified approaches in term of Accuracy

 Unmodified Modified Unmodified Modified Unmodified Modified Unmodified Modified Unmodified Modified

 Permissions Activities Broadcast Receivers Services API Calls

RF 92.44 93.40 77.39 81.93 85.00 86.68 71.36 78.86 76.24 78.26

NB 86.12 91.12 65.03 68.02 68.41 81.02 62.28 68.18 73.57 74.57

SVM 81.02 87.03 71.19 84.91 80.32 81.80 67.23 74.48 72.34 76.29

SLR 85.00 86.93 65.84 87.18 68.44 83.02 62.32 66.18 71.42 73.54

J-48 79.11 91.64 76.46 80.71 72.75 85.23 68.18 72.42 72.33 75.33

T-Value 1.99 2.22 2.46 2.01 2.08

P-Value 0.04 0.02 0.02 0.04 0.03

115

From the obtained results, it is clearly understood that the Android security relies

on the given features. Permissions are the most prominent features which can control the

applications to access the software components. Besides this it can control the

applications from accessing the hardware components as well. The T-values and P-values

for all the extracted features are given in Table 4.15 to Table 4.19. On the base of T values

and P values it is concluded that the proposed approach is significant.

4.8 Evaluation of Machine Learning Classifiers based on Unique Patterns

In order to evaluate the machine learning classifier based on unique patterns (UP)

a series of experiments are conducted using cross-fold validation technique. Different five

classification algorithms are chosen to evaluate the performance of proposed approach

including Support Vector Machine (SVM), J-48, Random Forest, Simple Logistic

Regression (SLR) and Naïve Bayes. In order to select a suitable machine learning

classifier to detect botware applications based selected unique patterns this evaluation is

performed. For this purpose, an experimental setup is followed as given in Figure 4.8.

This experiment compares the obtained results with the existing approach which uses

almost similar number of features. There are three main phases are involved in these

experiments such as data collection, features extraction and evaluation. In the data

collection phase, a huge number of features are collected from Android Applications. The

second phase feature extraction will help to select the most relevant features on the base

of their frequencies. In this phase a unique pattern of features is generated on the bases of

their usage frequencies. This analysis was done to detect the unknown botware

applications. The aforementioned diverse types of classifiers used in the evaluation phase.

The APK tool is used for decompressing the input Android applications for the

desired features which are existing in the Manifest and Dex files. The list of permissions,

activities, broadcast receivers, services and API Calls are obtained from the above-

mentioned files. The complete list of extracted features is given in Appendix B. Using the

frequencies of these features a complete list of unique patterns are generated. The list of

unique patterns is given in Appendix C. The comparison of the unmodified and modified

approaches is given which were obtained from the above-mentioned machine learning

classifiers. The results are obtained for the evaluation parameters mentioned in Section

4.6 such as true positive rate, false positive rate, precision, F-measure, and accuracy. In

this experiment the data is split in 80% for training and 20% for testing samples. Figure

4.14 shows the experimental setup for the evaluation of Machine Learning Classifier for

the Unique Patterns (UP).

116

Data Collection Feature Extraction Evaluation

APK Files

AndroidManifest.xml and
.DEX files

Extract Permissions,
Activities, Broadcast

Receivers, Services, API
Calls

List of Features

Check with Official
Website

Binary Form

Remove Duplicate

Calculate the Frequency

Evaluate the Unique
Patterns

Calculate the Machine
Learning Performance

Results

Generate the Unique
Patterns

Figure 4.14 Experimental Setup for the evaluation of Machine Learning Classifier for

the Unique Patterns (UP)

4.8.1 Results

In this experiment the evaluation of all the selected machine learning classifiers

is performed by splitting the dataset in training and testing set with a ratio of 80% and

20% respectively. The detail about under examined dataset is given in Section 4.3.1. The

obtained results are summarized in Table 4.21. The TPR, Precision and F-measure that

approach to 1 will be consider the best results while approaching to 0 will be consider the

worst results. However, in the FPR it is opposite such as the result will be considered best

when the FPR approaching to 0 while it will be considered worst when it approaching to

1. Furthermore, the accuracy is calculated in percentage (%). The accuracy when it

approaching to 100 will be considered the best results while approaching to 0 will be

considered the worst result. By considering the above statements, it can be seen from the

Table 4.20 that random forest generated best results in term of accuracy among other

classifiers with an average of 97.28% accuracy. The best results are highlighted in the

table.

Table 4.20 shows that the average TPR using the unique patterns for Random

Forest classifier is 0.89 while 0.97 for unmodified and modified approaches respectively.

The TPR for the remaining classifiers are nearly same that is 0.80 without using the

feature refining component. Moreover, Naïve Bayes generated 0.87, SVM and J48

generated the same TPR that is 0.86 and SLR generated low TPR as compare to other

classifier that is 0.85 by using the refining component. The overall Random Forest

117

generated a higher TPR than other classifiers. Furthermore, the FPR values generated by

all machine learning classifiers are given in the Table 4.21. By contrast, the FPR values

of Random forest, Naïve Bayes, SVM, SLR and J-48 are 0.18, 0.39, 0.16, 0.32, and 0.22

respectively without using the features refining component. However, the FPR Values of

Random forest, Naïve Bayes, SVM, SLR and J-48 are 0.04, 0.20, 0.14, 0.17 and 0.17

respectively by using the features refining component. In term of FPR value, Random

Forest generated 0.04 value which is the lowest FPR, it shows that the Random Forest is

the best classifiers to be used in this approach.

Similarly, the precision and F-measure in the 10-fold cross validation are depicted

in the Table 4.20 and Figure 4.15. On the average, the precision of unmodified approach

for Random Forest, Naïve Bayes, SVM, SLR and J-48 are 0.87, 0.80, 0.82, 0.78, and 0.82

respectively. The precision describes the performance of the machine learning classifiers

in the proposed approach. Thus, in the obtained results for the proposed approach, the

precision values of Random Forest (0.89) is more than the other classifiers. The precision

values of Naïve Bayes, SVM, SLR and J-48 using feature refining component are 0.84,

0.85, 0.83, and 0.86 respectively. The F-measure values for selected classifiers without

using feature refining component are Random Forest (0.94), Naïve Bayes (0.80), SVM

(0.81), SLR (0.84), and J-48 (0.80). While with the using of refine component the F-

measure values are slightly increased. Thus, the new values of all these selected classifiers

are 0.95, 0.88, 0.89, 0.90, and 0.87 respectively.

It can be observed that random forest achieved maximum F-measure value as

compare to other classifiers. Figure 4.15 shows the bar graph of TPR, FPR, Precision and

F-measure for unmodified and modified approaches. The accuracy is the last parameters

to evaluate the performance of proposed approach (modified approach).

118

Table 4.20 Results for unmodified and modified detection approach in term of Unique Patterns for all classifiers

 TPR FPR Precision F-Measure Accuracy

 Unmodified Modified Unmodified Modified Unmodified Modified Unmodified Modified Unmodified Modified

Random Forest 0.89 0.97 0.18 0.04 0.87 0.89 0.94 0.95 81.09 97.28

Naïve Bayes 0.81 0.87 0.39 0.20 0.80 0.84 0.80 0.88 82.08 86.18

SVM 0.80 0.86 0.16 0.14 0.82 0.85 0.81 0.89 84.42 89.90

SLR 0.80 0.85 0.32 0.17 0.78 0.83 0.84 0.90 75.60 82.37

J-48 0.81 0.86 0.22 0.17 0.82 0.86 0.80 0.87 78.57 80.67

Minimum 0.80 0.85 0.16 0.04 0.78 0.83 0.80 0.87 75.60 80.67

Means 0.82 0.88 0.25 0.14 0.82 0.85 0.84 0.90 80.35 87.28

Median 0.81 0.86 0.22 0.17 0.82 0.85 0.81 0.89 81.09 86.18

Maximum 0.89 0.97 0.39 0.20 0.87 0.89 0.94 0.95 84.42 97.28

Std. Deviation 0.04 0.05 0.10 0.06 0.03 0.02 0.06 0.03 3.39 6.63

Confidence Interval 0.03 0.04 0.09 0.05 0.03 0.02 0.05 0.03 2.97 5.81

T value 2.14 2.12 1.98 2.00 2.08

P value 0.03 0.03 0.04 0.04 0.03

Figure 4.15 Results for unmodified and modified detection approach in term of Unique Patterns for all classifiers

0.00

0.20

0.40

0.60

0.80

1.00

Unmodified Modified Unmodified Modified Unmodified Modified Unmodified Modified

TPR FPR Precision F-Measure

Random Forest Naïve Bayes SVM SLR J-48

119

Figure 4.16 depicts the results of the experiments conducted to measure the

accuracy rates of the selected classifiers on both modified and unmodified approaches for

unique patterns in percent. Ultimately, it determines the best possible algorithm to classify

the proposed approach. The results show that Random Forest, Naïve Bayes, SVM, SLR

and J-48 classify the approach with accuracy rates of 97.28%, 86.18%, 89.90%, 82.37%

and 80.67% respectively in the K-fold cross validation.

Figure 4.16 Machine Learning Classifier Evaluation of Modified and Unmodified

approaches in term of Accuracy for selected unique patterns

4.8.2 Discussion

This study has highlighted the use of machine learning classifier which can

effectively detect and analyse the Android botware applications based on unique patterns.

The results obtained offered a better understanding of the information derived from

examining the Android permissions, activities, broadcast receivers, services and API

Calls. The crucial aspect of the Android botware detection was described in detail and the

methodology was also given in detail accordingly to demonstrate how the experiment

processes were conducted according to phases. This was then followed by the exploration

of the machine learning classifier which was used for training and testing the dataset as

well as for predicting and distinguishing the Android application as botware or benign.

In this regard, five machine learning classifiers were implemented. Finally, the results

obtained were discussed in above sections.

The results show that the Android security relies on the permissions, activities,

broadcast receivers, services and API calls. These features can control the applications

from the misuse and also from the access to the software components. Furthermore, these

can control the applications to access the mobile hardware. In the meanwhile, Android

Random

Forest
Naïve Bayes SVM SLR J-48

Unmodified 81.09 82.08 84.42 75.60 78.57

Modified 97.28 86.18 89.90 82.37 80.67

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

120

security has become the major security challenge, where fine grained permissions control

is necessary for Android applications. However, the Google implemented the Bouncer to

analyse the submitted applications on Google play store, in this study the existing

permissions, activities, broadcast receivers, services and API Calls are discovered which

were used for Android security. During the installation of any application on the mobile

devices, the users are given an option to accept or refuse the permissions which every

application request. Many of the application they force the users to accept these

permissions during the installation. Consequently, most of the users who had proceeded

with the installations ignored the permissions warning, might become the target of botnet

attacks. The existing work focus on the permissions model of the Android malware

detection, but still the privacy leak happening in the mobile devices.

In order to address this problem, an enhanced approach using a refine feature

component with additional features such as activities, broadcast receivers, services and

API calls is proposed in this study. This was accomplished by analysing the above-

mentioned features. The experiments conducted with these features individually and with

unique patterns showed that the proposed approach had achieved a high detection rate

and a low false positive rate. In addition, this study had also applied supervised learning

using five classifiers including Random Forest, Naïve Bayes, SVM, SLR, and J-48 on a

collection of 7035 botware and benign applications. Thus, it is concluded that the

proposed approach obtained high accuracy that is 97.28% by using the unique patterns of

extracted features. This accuracy suggest that the approach is capable of detecting almost

all the botware applications.

4.9 Performance Analysis

The mobile devices have some common issues, and without consideration of these

limitations, this technique is not beneficial to mobile devices. Some of these limitations

are given in Chapter 2. In summary, mobile devices have time, power, memory,

processing, data access and some other limitations (Karim. et al., 2015). Having identified

these limitations in mobile devices, the present technique focused on the time. However,

extraction of features from a big dataset can be the cause of time and memory consuming.

This can also affect the processing and communication performance of the mobile devices

on which it is installed. Therefore, in the initial stage the time consumption for features

extraction is examined. The program is developed in Java language, which focused on

the manifest.xml and DEX classes, from which this technique extracts the given features

121

on the priority basis. These tests are performed on the Android virtual devices and some

real mobile devices which are used in the experimental.

Table 4.21 summarizes the time taken for botware and benign dataset extractions.

Permission features extraction process and generating CSV files for benign training set

requires 0.89 seconds. Similarly, for activities, broadcast receivers, services, and

API_Calls features extraction process and generating CSV files from benign training

dataset take 1.50, 1.20, 1.55 and 1.22 seconds respectively. CSV files are generated for

further processing. Comparingly, the same Java code takes 305 seconds for the extraction

features and generating CSV files for botware datasets.

Table 4.21 Time Comparison of Botware and Benign Datasets

Dataset Group Dataset Scanned and Store as comma separated values
Time

(seconds)

Training

dataset

Botware

Permissions Extracted and Scanned from Training Dataset and

Store in Botnet_Permissions.csv
0.89

Activities Extracted and Scanned from Training Dataset and

Store in Botnet_Activities.csv
1.50

Broadcast receivers Extracted and Scanned from Training

Dataset and Store in Botnet_broadcast_receivers.csv
1.20

Services Extracted and Scanned from Training Dataset and

Store in Botnet_services.csv
1.55

API_Calls Extracted and Scanned from Training Dataset and

Store in Botnet_API_Calls.csv
1.22

Benign

Permissions Extracted and Scanned from Training Dataset and

Store in Benign_Permissions.csv
1.00

Activities Extracted and Scanned from Training Dataset and

Store in Benign_Activities.csv
1.10

Broadcast receivers Extracted and Scanned from Training

Dataset and Store in Benign_broadcast_receivers.csv
1.05

Services Extracted and Scanned from Training Dataset and

Store in Benign_services.csv
1.12

API_Calls Extracted and Scanned from Training Dataset and

Store in Benign_API_Calls.csv
1.10

122

Table 4.21 Continued

Dataset Group Dataset Scanned and Store as comma separated values
Time

(seconds)

Testing

Dataset
Botware

Permissions Extracted and Scanned from Training Dataset and

Store in Botnet_Permissions.csv
20.89

Activities Extracted and Scanned from Training Dataset and

Store in Botnet_Activities.csv
25.12

Broadcast receivers Extracted and Scanned from Training

Dataset and Store in Botnet_broadcast_receivers.csv
20.33

Services Extracted and Scanned from Training Dataset and

Store in Botnet_services.csv
15.12

API_Calls Extracted and Scanned from Training Dataset and

Store in Botnet_API_Calls.csv
10.56

4.9.1 Comparative Analysis

The comparison of proposed approach with other related works are presented in

this section. The results in this experiment demonstrate that the performance of proposed

approach is comparatively more efficient and better than other Android botnet detection

techniques. The results in Table 4.22 show the comparison of proposed approach with

other researchers work. In this comparative study, proposed is compared with other

related works by different metrics, namely approach, selected number of features, sample

size, accuracy, TPR, FPR, Precision, and F-Measure. Even though, accuracy metrics have

been chosen to weigh the performance in comparative work, its use could be doubtful.

Similarly, using accuracy for the imbalanced sample sizes, can affect the classification

performance.

Table 4.22 Performance Comparison with Prior Similar Work with respect to Accuracy

Ref Approach
No. of

Features

Botware

Sample

Size

Benign

Sample

Size

TPR FPR Precision
F-

Measure
Accuracy

(%)

Proposed

approach
Static 40 3500 3535 0.97 0.04 0.89 0.95 97.28

(Sanz et al.,

2013)
Static 55 249 357 0.94 0.05 0.84 0.92 94.83

(Peiravian

& Zhu,

2013)

Static 1456 1200 1200 0.92 0.12 0.81 0.79 88.25

(Yerima et

al., 2014a)
Static 25 1000 1000 0.90 0.10 0.82 0.80 92.10

(Rashidi &

Fung,

2016)

Static 30 1200 1200 0.89 0.11 0.78 0.94 95.30

123

Table 4.22 Continued

Ref Approach
No. of

Features

Botware

Sample

Size

Benign

Sample

Size
TPR FPR Precision

F-

Measure
Accuracy

(%)

Minimum --- --- --- --- 0.89 0.04 0.78 0.79 88.25

Means --- --- --- --- 0.92 0.09 0.82 0.87 93.55

Median --- --- --- --- 0.92 0.10 0.82 0.92 94.83

Maximum --- --- --- --- 0.97 0.12 0.87 0.95 97.28

Std.

Deviation
--- --- --- --- 0.03 0.02 0.03 0.07 3.49

Confidence

Interval
--- --- 0.02 0.02 0.03 0.06 3.06

Source: Peiravian & Zhu, (2013); Rashidi & Fung, (2016); Sanz et al., (2013);

 Yerima et al., (2014a)

It may be necessary to emphasize that the proposed approach is compared with

previous research studies that employed the static approach to botnet detection for the

sake of fair comparison. From the analysis of the number of features, botware and benign

sample sizes vis-à-vis the accuracy percentage, it is obvious that the proposed approach

is the approach of choice in all counts. Besides, the proposed approach investigated a

number of 40 unique patterns. However, Sanz et al., (2013) used 55 features at all,

Peiravian & Zhu (2013) selected 1465 number of features. Similarly, Yerima et al., (2014)

selected 25 numbers of features, and Rashidi & Fung, (2016) selected 30 features. In all,

the number of selected unique pattern for proposed approach is also low as compare to

other approaches that have an impact on proposed approach efficiency.

Figure 4.17 shows the comparison of TPR and FPR of proposed approach with

other related works. In evaluating the TPR of the other studies, it is evident that the

proposed approach obtained the best accuracy ratio of 0.97, followed by Sanz et al.,

(2013) with 0.94, Zhu, (2013) with 0.92, Yerima et al.,(2014) with 0.90 and Rashidi &

Fung, (2016) with 0.89 respectively. The output of proposed approach is significant when

weighed against the fact that, it had the largest sample size of 7035 which is more than

three times of the sample size of the other studies. In terms of the FPR, Sanz et al. (2013)

produced a best FPR that is 0.05, closely followed by the proposed approach with 0.09,

Yerima et al., (2014) with 0.10 and Peiravian & Zhu, (2013) with 0.12. The performance

of proposed approach is commendable when one considers its large sample size.

124

Figure 4.17 TPR and FPR Comparison with other related work

Moreover, proposed approach had the best score in Precision among the different

studies with the value of 0.89 as shown in Figure 4.18. The next to proposed approach

was Sanz et al., (2013) with 0.84 and Yerima et al., (2014) with 0.82. The performance

value of Rashidi and Fung, (2016) was 0.78 and with a much margin from the other

studies. Furthermore, F-Measure count, Rashidi & Fung, (2016) had the best result with

0.95. proposed approach did quite well, obtaining F-Measure count of 0.93. The next

good result was obtained by Yerima et al., (2014) which obtained 0.80. Peiravian & Zhu,

(2013) did fairly well with a result of 0.79. It is worthy to note that Sanz et al., (2013),

did not investigate the F-Measure in their study.

Figure 4.18 Precision and F-measure comparison of proposed approach approach with

other related work.

Similarly, proposed approach performed very well in term of the accuracy count

where a value of 97.28% was obtained compared to Rashidi & Fung, (2016) that obtained

95.30% and Sanz et al., (2013), 94.83% accuracy as shown in Figure 4.19. The two lowest

performance values are Yerima et al., (2014) with 92.1% and Peiravian & Zhu, (2013)

that had acurracy score of 88.25%. In overall, the achievements of proposed approach is

UMPDroid
(Sanz et al.,

2013)
(Peiravian &
Zhu, 2013)

(Yerima et al.,
2014)

(Rashidi &
Fung, 2016)

TPR 0.97 0.94 0.92 0.9 0.89

FPR 0.04 0.05 0.12 0.1 0.11

0.00
0.20
0.40
0.60
0.80
1.00

TPR FPR

Proposed

approach

(Sanz et al.,

2013)

(Peiravian &

Zhu, 2013)

(Yerima et al.,

2014a)

(Rashidi &

Fung, 2016)

Precision 0.79 0.82 0.8 0.78 0.94

F-Measure 0.89 0.95 0.84 0.92 0.81

0.00
0.20
0.40
0.60
0.80
1.00

Precision F-Measure

125

satisfactory when compared with Rashidi & Fung, (2016), Sanz et al., (2013), Yerima et

al., (2014) and Peiravian & Zhu, (2013) regarding accuracy, TPR, FPR, precision and F-

Measure. The main reason for such best results of proposed approach is as a result of

adding refining component and the technique of features selection. With the using of

refining component proposed approach ignored those features which are not susceptible

for Android botnets attacks.

Figure 4.19 Accuracy Comparison of proposed approach with other related work.

4.9.2 Efficiency

In order to measure the efficiency of proposed approach, some of the random

sampling are applied to the selected datasets. For random sampling, 80% is assigned to

the training dataset and 20% to the test dataset. Although, similar results are obtained

during the selection between 10-fold cross validation and random sampling, the former

generated slightly better results than the latter. The results in Table 5.40 confirm the

suitability of the Random Forest classifier for effective botware application detection

within the specified feature domain. Ultimately, this is the final choice for classifier to

establish in production environments.

In addition, this classifier model is implemented on the user devices to predict the

scale of botnet behavior in running Android applications. Implementing this model in

mobile applications would enable users to predict the correct class of an application by

observing the behavior of the application. Table 4.23 shows the comparison of the

efficiency between 10-fold cross validation and random sampling.

UMPDroid
(Sanz et al.,

2013)

(Peiravian &

Zhu, 2013)

(Yerima et al.,

2014)

(Rashidi &

Fung, 2016)

Accuracy 97.28 94.83 88.25 92.1 95.3

60.00
70.00
80.00
90.00

100.00

Accuracy

126

Table 4.23 Approach Efficiency Comparison between k-fold cross validation and

Random Sampling

 Random Forest

 TPR FPR precision F-Measure Accuracy

k-fold cross validation 0.98 0.05 0.93 0.89 97.28

Random Sampling 0.96 0.06 0.95 0.92 96.22

Difference (%) 2.06 18.18 2.12 3.31 1.09

Std. Deviation 0.01 0.00 0.01 0.02 0.75

Confidence Interval 0.12 0.06 0.12 0.19 6.73

 Table 4.24 shows a comparison of the learning time between 10-fold cross

validation and random sampling. The training times in the 10-fold cross validation range

from 1.99s to 3.56s, whereas those in random sampling range from 0.03s to 8.07s.

Additionally, the testing time required by the 10-fold cross validation range from 0.03s

to 0.07s which are better than that of the existing machine learning based mobile malware

detection solution Mobile-Sandbox. The time required to test each classifier model in the

random sampling ranges from 0.02s to 3.90s. Table 4.24 shows the size of each classifier

model. Size was considered to assess the feasibility of deploying the classifier model to

mobile devices. The model sizes in both 10-fold cross validation and random sampling

scenarios are the same. However, the model with the largest size (1.36MB) is the Random

Forest model. Compared with the sizes of the Naïve Bayes (0.008 MB) and Simple

Logistic Regression (1.6 MB) models in (Yerima et al., 2014a), the corresponding sizes

of our approach are reasonable enough, such that the approach can reside in mobile

devices.

Table 4.24 Time and Size Comparisons among the selected Classifiers Models

 10-Fold Cross Validation Random Sampling

Training

Time

(Seconds

)

Testing

Time

(seconds)

Model

Building

Time

(Seconds)

Size (KB)

Training

time

(Second)

Testing

Time

(seconds)

Model

Building

Time

(Seconds)

Size (KB)

RF 3.06 0.03 1.56 1359 0.99 0.06 1.61 1359

J48 2.32 0.06 0.09 23 0.03 0.02 0.18 23

NB 3.56 0.06 0.02 8 0.94 0.09 0.02 8

SVM 1.99 0.05 8.87 479 6.97 3.90 8.85 479

SLR 3.25 0.05 5.40 1598 8.07 0.02 5.36 1598

4.9.3 Scalability

Until now, majority of the proposed solution can work either as on-device or off-

device analysis systems, thereby resulting in scalability issues. However, the scalability

127

of the proposed approach is viewed from different perspectives. There are when this

solution is deployed to large-scale market stores as an offline analysis option and when

the classifier is embedded into a user device for the runtime analysis of installed

applications. At this time, proposed approach is deployed as an offline analysis approach

to large scale market places (Google Play store) without many efforts. The required time

is calculated for an Android botnet classifier model. The total time required to generate

report links for the Drebin dataset (7035 Android malware) is ~18 hours, which include

the uploading time, loading time to sandbox, execution time, report generation time, and

network communication overhead from cloud to the host machine.

Furthermore, it is imperative to highlight that although, it is an ideal practice to

process an application in sandbox, yet this is not feasible in all cases. Many factors

contribute to the extension of processing time (i.e. system’s peak hour, temporary

disruption of service, or network communication outage). In this study, the feature

extraction time is approximately an average of 10 + minutes for execution and assigning

the value against the feature vector. However, the machine learning-based classifier only

consume a few seconds during the testing phase to predict the class of an application. The

deployment of proposed approach logic directly into smartphone devices requires design

and development of an Android application to support our machine learning classifier;

such an application will be part of our future work. It is concluded that proposed approach

that applies static observation is feasible for hundreds or even thousands of applications.

4.10 Summary

In this Chapter, results and evaluation of proposed approach is described for the

given features and unique patterns with respect to all selected classifiers. As shown in

different sections of the result, the detailed description of the results for all features and

unique patterns are illustrated using appropriate Tables and Figures. However, in the

evaluation section, the proposed approach is evaluated on the basis of selected features

set and unique patterns. The performance evaluation of the proposed approach is carried

out using 10-fold cross validation and random sampling methods. Although the proposed

approach is remarkably effective in all intensity levels, the findings are more significant

when the number of applications is high. The evaluation results of 97.28% accuracy are

achieved. The supportive results of real time experiment and statistical modelling unveil

nature of the approach, its usability and successful adoption in real scenarios.

128

CHAPTER 5

CONCLUSION

5.1 Overview

This chapter presents the overall conclusion of this study with the emphasis on

the qualitative features of the proposed approach (Android botnet detection approach).

The concluding chapter reported on the aim and objectives set out for the research in the

first chapter of this thesis. As a next step, this study identified the future research work

and highlighted the research contributions. The rest of this chapter is organized as follows.

In Section 5.2 the research objectives of this study listed in Chapter 1 are re-examined

while Section 5.3 illustrates the contribution of this research study. Section 5.4 elaborates

the open issues and future work of this study and the future research directions are

highlighted for further enhancement.

5.2 Review of Research Objectives

The primary aim of this study is to detect botnet attacks in Android based

smartphones; while maintaining the performance to solve the problem of existing static

detection techniques by adding an additional component. The research aim was broken

down into three distinct objectives in Section 1.5.

The first objective was to investigate and critically analyze the current state-of-

the-art botnet attacks and their detection techniques such that insight is gained leading to

their detection and performance limitations. This research objective was accomplished by

a thorough review of the most credible work published in articles. These were harvested

from online scholarly digital libraries, such as IEEE, ACM, Elsevier, and Web of Science

via the Universiti Malaysia Pahang access portal. Thorough browsing of the recent

literature in the journals and conferences on Android botnet attacks in smartphones,

techniques for conducting Android botnet attacks in smartphones and detection

129

techniques for these attacks are searched and reviewed accordingly. This helped with the

organization of the recent work, devised proposed taxonomy, and provided a qualitative

comparison for Android botnet attacks and detection techniques for these attacks, hence,

this objective is achieved in the Chapter 2 of this research.

The main purpose of this thorough study is on investigation of botnet detection

techniques with the respect to perspective of dynamic, hybrid and static analysis

approaches. Findings of the investigation revealed that dynamic and hybrid approaches

are costly as they need more amount of battery and computational power. Furthermore, it

is discovered that the existing static detection techniques based on limited features has

problem in terms of detection accuracy and consequently generated low true positive and

high false positive rate. Therefore, a static analysis approach with additional features was

employed to improve the accuracy of Android botnet detection in Android smartphones.

The second objective of this research study was on design of a botnet detection

approach which is based on static analysis with additional component and features for the

detection of botnet attacks in Android smartphones. The static analysis of detection

approach required less amount of battery and computational power. Moreover, the

method has other benefits as a result of additional component and features, this includes

ability to improve the botnet detection accuracy in smartphones, hence, and low FPR was

generated. The additional features to the proposed approach detection approach which is

based on static analysis approach include activities, broadcast receivers, and services;

these are all extracted in the data extractor component. Specifically, additional component

to the approach is feature refining that uses IG algorithm to differentiate between the

botnet and benign applications based on the additional features. Design of a botnet

detection approach as the second objective was accomplished in the Chapter 3.

Evaluation of this approach which is the third objective of this study was attained

by assessing approach via experiment and by dividing datasets in training and testing

samples in Chapter 4. This was followed with the performance of experiments for all

parameters and consequently observing the results for k-fold cross validations. The

performance results unveil improvement in the detection accuracy to 2.05629 %.

Moreover, it improves the TPR, precision, and F-measure values by 3.14136%, 3.50877%

and 1.0582% respectively while the FPR was decreased by 22.22%.

Findings of the experimental analysis were also compared with the statistical

modeling to validate our proposed botnet detection approach. Hence, validation results

130

confirm that leveraging our proposed Android botnet detection approach is able to detect

botnet attacks in smartphones without affecting the performance of the smartphone and

improve the detection accuracy as reported in Chapter 5.

5.3 Contribution

This section highlighted the contribution of this research study. This was reported

in terms of the scholarly articles in list of publications and presented papers in the

Appendix A at the end of thesis. This research produced several contributions to the body

of knowledge in the following aspects.

 Taxonomy of Android botnet Attacks: In particular, taxonomies were

characterized from the existing literature for the Android botnet attacks and

detection techniques. This was achieved through the comprehensive review and

critical analyzing of the PC and Smartphone botnet detection techniques from the

selected state-of-the-art research work. Our comprehensive studied literature is

presented in Chapter 2 and published in (Anwar et al., 2017) which led to the

identification of our research problem.

 Android Botnet Detection Approach based on Static Analysis: An approach

for Android botnet detection based on static analysis is proposed. This can

effectively detect botnet C&C communication features in smartphones. The

proposed approach is based on the static features of Android applications. In

proposed approach, features extraction is conducted by observing the static

behavior of known Android botnet applications. Static features include

permissions, activities, broadcast receivers, services, and API calls from Android

applications. Features extraction is performed through reverse engineering

process by using Androguard tool. The additional component and features are

added to the existing static analysis detection approach.

 A novel Features Refining approach: This study proposed a novel approach for

features refining in order to eliminate the repeated and irrelevant features by using

a proper frequency analysis. The malicious activities of botnet applications are

identified, and significant unique patterns are chosen on the base of their support

value and information gain. In order to effectively identify the botware and benign

applications, the proposed approach used these unique patterns.

131

 Performance Evaluation and Validation: The results of the analytical

evaluation of the proposed approach are generated through Drebin dataset.

Currently, Drebin is the largest available dataset for Android malware.

Performance evaluation is performed on the unmodified (without feature refining)

and modified (feature refining component) approaches. This was followed with

development of statistical model for the evaluation parameters of proposed

approach approach and for the detection of Android botnet attacks. In this

research, K-fold cross validation approach is used to validate the performance of

the proposed Android botnet detection approach. The results of performance

evaluation and validation are presented in Chapters 4. Through the results of

Statistical and schematic analysis, it was unveiled that efficiency, scalability,

reliability nature of our proposed detection approach had advocated that the

objectives and aim of this research study are realized and fulfilled.

 The list of related published journal and conference articles to this study are listed

in Appendix A.

5.4 Open Issues and Future Work

In this research, open issues as touching the increasing security of Android

devices against botnets were identified. Following the increasing number of users and

emergence of cloud-computing and mobile cloud-computing platforms, the ensuing

issues with respect to Android botnets are of concern to the researchers from both

academia and industry alike.

Initially, cross-functional collaboration should be active among the stakeholders

and researchers (government, enterprises, networks, and Internet service providers) for

the Android botnet identification and confiscation tools. There is a need for clear and

transparent policy on Android equipment. In addition, usage of these Android devices

must be documented and standardized across the stakeholders. Moreover, the smartphone

users should be aware of the way by which an Android botnet threats could be eliminated.

Next, mobile device security and risk concerns individuals from both industry and

academic world. These stakeholders cannot ignore the sharp increasing demand for

android devices in their respective enterprises. Not only is the demand driven by the

massive adoption of consumer devices, but businesses also leverage the power of mobile

132

computing to strengthen their value to their clients and customers, making them more

agile, relevant, and able to respond to the needs of their customers.

Scanning and blocking of malicious codes in the cloud can be implemented to

preempt the code, or information sharing centers can cooperate with AV vendors to

identify and manage threats. When a malicious code is preempted, providers may not be

able to predict how devices with diverse operating platforms receiving the code would

behave with traffic. However, detection and block management of threats can be applied

to blocking solutions.

Smartphones-based operating system have lower capacities as compared to PC-

based operating systems, in terms of processing power, battery power, storage, and

memory, which finally bound the implementation of optimum security policies.

User awareness of security threats is essential to the solution of the problem.

Therefore, a specific and dedicated education and awareness campaign on pertinent risk,

policies, and procedures catering to smartphone users should be introduced.

The network of infrastructure at the user level is expanding from smartphones to

smart TVs, home appliances, and wearable computing equipment; thus, cooperative

security mechanisms should be put in place. Apart from cloud-based or on-device

analysis and monitoring systems, interconnected devices could improve their security

mechanism by mutual cooperation.

Locating information leakage has become a challenging task for both on-platform

and in-the-cloud analysis systems. Appropriate legislative mechanisms and several

technical aspects should be explored. For example, Google App Engine, which employs

a cloud-based application monitoring mechanism

In our future work, there is a plan to extend the work presented in this thesis in

order to devise a hybrid on-device analysis system for the detection of botnet behavior

through the use of machine-learning algorithms. For this purpose, there is a projection for

the design and implementation of our sandbox with rich user interface capabilities to

allow for deep code coverage and ultimately avoid all the deficiencies inherited from

traditional cloud-based sandboxes.

133

REFERENCES

Alzahrani, A. J., Stakhanova, N., Ali, H. G., & Ghorbani, A. (2014). “Characterizing

Evaluation Practicesof Intrusion Detection Methodsfor Smartphones.” Journal of

Cyber Security and Mobility, 3(2): 89-132.

Agrawal, R., Imielinski, T., & Swami, A. (1993). “Database Mining: A Performance

Perspective.” IEEE Transactions on Knowledge and Data Engineering, 5(6): 914-

925.

Agrawal, R., Imieliński, T., & Swami, A. (1993). “Mining Association Rules Between

Sets of Items in Large Databases.” In Sigmod Record 22(2): 207-216, ACM.

Agarwal, R., & Srikant, R. (1994). “Fast Algorithms for Mining Association Rules.” In

20th Very Large Data Base Conference, 487-499.

Ahmed, F., Hameed, H., Shafiq, M. Z., & Farooq, M. (2009). “Using Spatio-Temporal

Information in API Calls with Machine Learning Algorithms for Malware

Detection.” In 2nd Workshop on Security and Artificial Intelligence, 55-62, ACM.

Al-rimy, B. A. S., Maarof, M. A., & Shaid, S. Z. M. (2018). “Ransomware Threat Success

Factors, Taxonomy, and Countermeasures: A Survey and Research

Directions.” Computers & Security, 74: 144-166.

Alam, S., Qu, Z., Riley, R., Chen, Y., & Rastogi, V. (2017). “DROIDNATIVE:

Automating and Optimizing Detection of Android Native Code Malware Variants.”

Computers & Security, 65: 230-246.

Alauthman, M. (2016). “An Efficient Approach to Online Bot Detection Based on a

Reinforcement Learning Technique.” (Doctoral Dissertation, Northumbria

University).

Alazab, M., Moonsamy, V., Batten, L., Lantz, P., & Tian, R. (2012). “Analysis of

Malicious and Benign Android Applications.” In 32nd International Conference on

Distributed Computing Systems Workshops, 608-616, IEEE.

Amazon. (2016). Amazon Applications Store "https://www.amazon.com/mobile-

apps/b?ie=UTF8&node=2350149011" Accessed in July 2016.

Amos, B., Turner, H., & White, J. (2013). “Applying Machine Learning Classifiers to

Dynamic Android Malware Detection at Scale.” In 9th International Wireless

Communications and Mobile Computing Conference, 1666-1671, IEEE.

Anagnostopoulos, M., Kambourakis, G., & Gritzalis, S. (2016). “New Facets of Mobile

Botnet: Architecture and Evaluation.” International Journal of Information

Security, 15(5): 455-473.

Analytics, S. (2014). “Android Captures Record 85 Percent Share of Global Smartphone

Shipments in Q2, 2013”. http://blogs.strategyanalytics. com/WSS/post/2013/10/31/

Android-Captures-Record-81-Percent-Share-of-Global-Smartphone-Shipments-

in-Q3 2013. Accessed in January 2017.

134

Andronio, N., Zanero, S., & Maggi, F. (2015, November). “Heldroid: Dissecting and

Detecting Mobile Ransomware.” In International Workshop on Recent Advances

in Intrusion Detection, 382-404, Springer.

Anwar, S., Zolkipli, M. F., Inayat, Z., Odili, J., Ali, M., & Zain, J. M. (2018). “Android

Botnets: A Serious Threat to Android Devices.” Pertanika Journal of Science &

Technology, 26(1): 1-37.

Apple-Inc. (2017). List of iOS Devices

https://en.wikipedia.org/wiki/List_of_iOS_devices Accessed in July 2017.

AppStore, A. (2017). Apple App Store, https://support.apple.com/ Accessed in June

2017.

Apvrille, A. (2012). “Symbian Worm Yxes: Towards Mobile Botnets?” Journal in

Computer Virology, 8(4): 117-131.

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., & Siemens, C. E. R. T.

(2014). “DREBIN: Effective and Explainable Detection of Android Malware in

Your Pocket.” In Network and Distributed System Security, (14), 23-26.

Aswini, A. M., & Vinod, P. (2014). “Droid Permission Miner: Mining Prominent

Permissions for Android Malware Analysis.” In 5th International Conference on

the Applications of Digital Information and Web Technologies 81-86, IEEE.

Babu Rajesh, V., Reddy, P., Himanshu, P., & Patil, M. U. (2015). “DROIDSWAN:

Detecting Malicious Android Applications Based on Static Feature

Analysis.” Computer Science and Information Technology, 163-178.

Bailey, M., Cooke, E., Jahanian, F., Xu, Y., & Karir, M. (2009). “A Survey of Botnet

Technology and Defenses.” In Cybersecurity Applications & Technology

Conference for Homeland Security, 299-304, IEEE.

Barrera, D., & Van Oorschot, P. (2011). “Secure Software Installation on

Smartphones”. IEEE Security & Privacy, 9(3), 42-48.

Becher, M., Freiling, F. C., Hoffmann, J., Holz, T., Uellenbeck, S., & Wolf, C. (2011).

“Mobile Security Catching up? Revealing the Nuts and Bolts of the Security of

Mobile Devices”. In Symposium on Security and Privacy, 96-111, IEEE.

Binsalleeh, H., Ormerod, T., Boukhtouta, A., Sinha, P., Youssef, A., Debbabi, M., &

Wang, L. (2010). “On the Analysis of the Zeus Botnet Crimeware Toolkit.” In 8th

International Conference on Privacy, Security and Trust, 31-38, IEEE.

Bouckaert, R. R., & Frank, E. (2004). “Evaluating the Replicability of Significance Tests

for Comparing Learning Algorithms.” In Pacific-Asia Conference on Knowledge

Discovery and Data Mining, 3-12, Springer.

Breiman, L. (1996). “Bagging Predictors.” Machine learning, 24(2), 123-140.

135

Canfora, G., Mercaldo, F., & Visaggio, C. A. (2016). “An Hmm and Structural Entropy

Based Detector for Android Malware: An Empirical Study.” Computers &

Security, 61, 1-18.

Craig, A. N., & Shackelford, S. J. (2013). “Hacking the Planet, the Dalai Lama, and You:

Managing Technical Vulnerabilities in the Internet Through Polycentric

Governance”. Fordham Intellectual Property Media & Entertainment. Law

Journal, 24, 381.

Cooke, E., Jahanian, F., & McPherson, D. (2005). “The Zombie Roundup:

Understanding, Detecting, and Disrupting Botnets.” In Usenix Steps to Reducing

Unwanted Traffic on the Internet Workshop, 5, 6-6.

Dai, Q., Yang, H., Yao, Q., & Chen, Y. (2012). “An Improved Security Service Scheme

in Mobile Cloud Environment”. In 2nd International Conference on Cloud

Computing and Intelligence Systems, 407-412, IEEE.

Datar, D. (2013). “A Review-Botnet Detection and Suppression in Clouds”. Journal of

Information Engineering and Applications, 3(12): 1-6.

Desnos, A. (2011). “Androguard”. https://github.com/androguard/-androguard. Accessed

in January 2016,

Dong, D., Wu, Y., He, L., Huang, G., & Wu, G. (2008). “Deep Analysis of Intending

Peer-To-Peer Botnet”. In 7th International Conference on Grid and Cooperative

Computing, 407-411, IEEE.

Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L. P., Jung, J., McDaniel,

P., & Sheth, A. N. (2014). “TAINTDROID: An Information-Flow Tracking System

for Realtime Privacy Monitoring on Smartphones”. ACM Transactions on

Computer Systems, 32(2): 5.

Enck, W., Ongtang, M., & McDaniel, P. (2009). “On Lightweight Mobile Phone

Application Certification”. In 16th Conference on Computer and Communications

Security, 235-245, ACM.

Ericsson, I. (2016). Ericsson Mobility Report on the Pulse of the Networked Society

"https://www.ericsson.com/assets/local/mobility-report/documents/2016/ericsson-

mobility-report-feb-2016-interim.pdf" Accessed in 2016.

Eskandari, M., & Hashemi, S. (2012). “A Graph Mining Approach for Detecting

Unknown Malwares”. Journal of Visual Languages & Computing, 23(3): 154-162.

Excellence, I. S. C. O. (2016). UNB ISCX Android Botnet Dataset

"http://www.unb.ca/research/-iscx/dataset/iscx-android-botnet-dataset.html"

Accessed in April 2016.

Fan, W., Sang, Y., Zhang, D., Sun, R., & Liu, Y. A. (2017). “DROIDINJECTOR: A

Process Injection-Based Dynamic Tracking System for Runtime Behaviors of

Android Applications”. Computers & Security, 70: 224-237.

136

Farina, P., Cambiaso, E., Papaleo, G., & Aiello, M. (2016). “Are Mobile Botnets a

Possible Threat? The Case of SlowBot Net.” Computers & Security, 58; 268-283.

Faris, H. (2017). Toward a Detection Framework for Android Botnet. In International

Conference on New Trends in Computing Sciences, 197-202, IEEE.

Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M. S., Conti, M., & Rajarajan,

M. (2015). “Android Security: A Survey of Issues, Malware Penetration, And

Defenses.” IEEE Communications Surveys & Tutorials, 17(2): 998-1022.

Faruki, P., Ganmoor, V., Laxmi, V., Gaur, M. S., & Bharmal, A. (2013). Androsimilar:

Robust Statistical Feature Signature for Android Malware Detection. In 6th

International Conference on Security of Information and Networks,152-159, ACM.

Feizollah, A., Anuar, N. B., Salleh, R., Amalina, F., & Shamshirband, S. (2013). “A Study

of Machine Learning Classifiers for Anomaly-Based Mobile Botnet

Detection.” Malaysian Journal of Computer Science, 26(4): 251-265.

Feizollah, A., Anuar, N. B., Salleh, R., Suarez-Tangil, G., & Furnell, S. (2017).

“Androdialysis: Analysis of Android Intent Effectiveness in Malware Detection.”

Computers & Security, 65, 121-134.

Feizollah, A., Anuar, N. B., Salleh, R., & Wahab, A. W. A. (2015). “A Review on Feature

Selection in Mobile Malware Detection.” Digital Investigation, 13, 22-37.

Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin, E., & Wagner, D. (2012). “Android

Permissions: User Attention, Comprehension, and Behavior.” In 8th Symposium

on Usable Privacy and Security, 3, ACM.

Fereidooni, H., Moonsamy, V., Conti, M., & Batina, L. (2016). “Efficient Classification

of Android Malware in the Wild Using Robust Static Features.” Protecting Mobile

Networks and Devices: Challenges and Solutions, 1, 181-209.

Fu, Y., Husain, B., & Brooks, R. R. (2015). “Analysis of Botnet Counter-Counter-

Measures.” In 10th Annual Cyber and Information Security Research Conference

(9), ACM.

Gascon, H., Yamaguchi, F., Arp, D., & Rieck, K. (2013). “Structural Detection of

Android Malware Using Embedded Call Graphs.” In 2013 Workshop on Artificial

Intelligence and Security, 45-54, ACM.

Gilbert, D. (April 2012). “How Secure is Your Smartphone?”

"http://bringyourownit.com/2012/-04/04/safe-smartphone-android-ios-blackberry-

windows-phone-attack/". Accessed in June 2016.

Google, P. (2015). Google Play Store "https://play.google.com/store?hl=en_GB"

Accessed in August 2016.

Google.com. (2016)."http://developer.android.com/guide/topics/-

manifest/permissionelement.ht-ml". Accessed in April 2016.

137

Guo, D. F., Sui, A. F., & Guo, T. (2012). “A Behavior Analysis Based Mobile Malware

Defense System”. In 6th International Conference on Signal Processing and

Communication Systems, 1-6, IEEE.

Gurulian, I., Markantonakis, K., Cavallaro, L., & Mayes, K. (2016). “You can’t Touch

this: Consumer-Centric Android Application Repackaging Detection.” Future

Generation Computer Systems, 65: 1-9.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009).

“The WEKA Data Mining Software: An Update.” SIGKDD Explorations

Newsletter, 11(1): 10-18, ACM.

Ho, T. K. (1995). “Random Decision Forests”. In 3rd International Conference on

Document Analysis and Recognition, 1: 278-282, IEEE.

Ibrahim, L. M., & Hatim, K. (2012). “A Survey of Botnet Crimeware Life Cycle.”

International Journal of Reasoning-based Intelligent Systems, 4(4), 250-255.

Jang, J.-w., Kang, H., Woo, J., Mohaisen, A., & Kim, H. K. (2016). “Andro-Dumpsys:

Anti-Malware System Based on The Similarity of Malware Creator and Malware

Centric Information.” Computers & Security, 58, 125-138.

John, G. H., & Langley, P. (1995). “Estimating Continuous Distributions in Bayesian

Classifiers.” In 11th Conference on Uncertainty in Artificial Intelligence, 338-345.

Morgan Kaufmann Publishers Inc.

Johnson, E., & Traore, I. (2015). “SMS Botnet Detection for Android Devices Through

Intent Capture and Modeling.” In 34th Symposium on Reliable Distributed Systems

Workshop (SRDSW), 36-41, IEEE.

Junaid, M., Liu, D., & Kung, D. (2016). “DEXTEROID: Detecting Malicious Behaviors

in Android Apps Using Reverse-Engineered Life Cycle Models.” Computers &

Security, 59: 92-117.

Jung, H. M., Hwang, I. S., Moon, J. K., & Park, H. S. (2016). “A Security Monitoring

Method for Malicious P2P Event Detection.” Peer-to-Peer Networking and

Applications, 9(3): 498-507.

Kadir, A. F. A., Stakhanova, N., & Ghorbani, A. A. (2015). “Android Botnets: What

URLs are Telling Us”, Network and System Security 78-91, Springer.

Kang, J., Kim, D., Kim, H., & Huh, J. H. (2014). “Analyzing Unnecessary Permissions

Requested by Android Apps Based on Users’ Opinions.” In International

Workshop on Information Security Applications, 68-79. Springer.

Karim, A., Bin Salleh, R., Shiraz, M., Shah, S. A. A., Awan, I., & Anuar, N. B. (2014).

“Botnet Detection Techniques: Review, Future Trends, and Issues.” Journal of

Zhejiang University-Science C-Computers & Electronics, 15(11): 943-983.

Karim, A., Salleh, R., & Khan, M. K. (2016). “SMARTbot: “A Behavioral Analysis

Framework Augmented with Machine Learning to Identify Mobile Botnet

Applications.” PloS One, 11(3).

138

Karim, A., Salleh, R., Khan, M. K., Siddiqa, A., & Choo, K. K. R. (2016). “On the

Analysis and Detection of Mobile Botnet Applications.” Journal of Universal

Computer Science, 22(4): 567-588.

Karim, A., Salleh, R., & Shah, S. A. A. (2015). “DEDROID: A Mobile Botnet Detection

Approach Based on Static Analysis.” In 12th International Conference on

Ubiquitous Intelligence and Computing,1327-1332, IEEE.

Karim, A., Salleh, R. B., Shiraz, M., Shah, S. A. A., Awan, I., & Anuar, N. B. (2014).

“Botnet Detection Techniques: Review, Future Trends, and Issues.” Journal of

Zhejiang University Science C, 15(11): 943-983.

Karim, A., Shah, S. A. A., & Salleh, R. (2014). “Mobile Botnet Attacks: A Thematic

Taxonomy.” In New Perspectives in Information Systems and Technologies,

2:153-164, Springer.

Karim, A., Shah, S. A. A., Salleh, R. B., Arif, M., Noor, R. M., & Shamshirband, S.

(2015). “Mobile Botnet Attacks-an Emerging Threat: Classification, Review and

Open Issues.” Transactions on Internet and Information Systems, 9(4), 1471-1492.

Kazdagli, M., Huang, L., Reddi, V., & Tiwari, M. (2016). “EMMA: A New Platform to

Evaluate Hardware-Based Mobile Malware Analyses.” arXiv preprint

arXiv:1603.03086.

Khattak, S., Ramay, N., Khan, K., Syed, A., & Khayam, S. (2014). “A Taxonomy of

Botnet Behavior, Detection, and Defense.” IEEE Communications Surveys &

Tutorials, 16(2): 898-924.

Kheir, N., Tran, F., Caron, P., & Deschamps, N. (2014). “Mentor: Positive DNS

Reputation to Skim-Off Benign Domains in Botnet C&C Blacklists.” In IFIP

International Information Security Conference, 1-14, Springer.

Khorshed, M. T., Ali, A. B. M. S., & Wasimi, S. A. (2012). “A Survey on Gaps, Threat

Remediation Challenges and Some Thoughts for Proactive Attack Detection in

Cloud Computing.” Future Generation Computer Systems, 28(6): 833-851.

Kirubavathi, G., & Anitha, R. (2017). “Structural Analysis and Detection of Android

Botnets Using Machine Learning Techniques.” International Journal of Information

Security, 1-15.

La Polla, M., Martinelli, F., & Sgandurra, D. (2013). “A Survey on Security for Mobile

Devices.” IEEE Communications Surveys & Tutorials, 15(1): 446-471.

Lee, J., & Lee, H. (2014). “GMAD: Graph-based Malware Activity Detection by DNS

Traffic Analysis.” Computer Communications, 49, 33-47.

Li, C., Jiang, W., & Zou, X. (2009). “Botnet: Survey and case study.” In 4th International

Conference on Innovative Computing, Information and Control, 1184-1187, IEEE.

Li, L., Bissyandé, T. F., Papadakis, M., Rasthofer, S., Bartel, A., Octeau, D., … & Traon,

L. (2017). “Static Analysis of Android Apps: A Systematic Literature

Review.” Information and Software Technology, 88: 67-95.

139

Li, Y., Hui, P., Jin, D., Su, L., & Zeng, L. (2014). “Optimal Distributed Malware Defense

in Mobile Networks with Heterogeneous Devices.” IEEE Transactions on Mobile

Computing, 13(2): 377-391.

Liao, Q., & Li, Z. (2014). “Portfolio Optimization of Computer and Mobile Botnets.”

International Journal of Information Security, 13(1): 1-14.

Lindorfer, M., Neugschwandtner, M., & Platzer, C. (2015). “Marvin: Efficient and

Comprehensive Mobile App Classification Through Static and Dynamic Analysis.”

In 39th Annual Computer Software and Applications Conference, 2: 422-433,

IEEE.

Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y., Van Der Veen,

V., & Platzer, C. (2014). “Andrubis--1,000,000 apps later: A View on Current

Android Malware Behaviors.” In 3rd International Workshop on Building Analysis

Datasets and Gathering Experience Returns for Security, 3-17, IEEE.

Liu, L., Chen, S., Yan, G., & Zhang, Z. (2008). “Bottracer: Execution-Based Bot-Like

Malware Detection.” International Conference on Information Security, 97-113,

Springer.

Lodi, G., Aniello, L., Di Luna, G. A., & Baldoni, R. (2014). “An Event-Based Platform

for Collaborative Threats Detection and Monitoring.” Information Systems, 39:

175-195.

Miakotko, L. (2017). “The Impact of Smartphones and Mobile Devices on Human Health

and Life.” http://www.nyu.edu/classes/keefer/waoe/miakotkol.pdf” Accessed in

June 2017.

Microsoft-Inc. (2017). “Windows Phones” "https://www.microsoft.com/en-my/"

Accessed in June 2017.

Moonsamy, V., Rong, J., & Liu, S. (2014). “Mining Permission Patterns for Contrasting

Clean and Malicious Android Applications.” Future Generation Computer Systems,

36, 122-132.

Mukkamala, S., & Sung, A. H. (2002). “Feature Ranking and Selection for Intrusion

Detection Systems Using Support Vector Machines.” In 2nd Digital Forensic

Research Workshop, 1-10.

Muttik, I. (2011). “Malware Mining.” In 21st Virus Bulletin International Conference,

Virus Bulletin 2011.

Narang, P., Hota, C., & Sencar, H. T. (2016). “Noise-Resistant Mechanisms for the

Detection of Stealthy Peer-to-Peer Botnets.” Computer Communications, 96, 29-

42.

Narudin, F. A., Feizollah, A., Anuar, N. B., & Gani, A. (2016). “Evaluation of Machine

Learning Classifiers for Mobile Malware Detection.” Soft Computing, 20(1): 343-

357.

140

Ng, A. Y. (2004). “Feature Selection, L 1 vs. L 2 Regularization, and Rotational

Invariance.” In 21st International Conference on Machine learning, 78, ACM.

Nigam, R. (2015). “A Timeline of Mobile Botnets.” Virus Bulletin, Accessed in March

2015.

Othman, M., Madani, S. A., & Khan, S. U. (2014). “A Survey of Mobile Cloud

Computing Application Models.” IEEE Communications Surveys & Tutorials,

16(1): 393-413.

Paganini, P. (2013). “Http-botnets: The Dark Side of a Standard Protocol”

"http://securityaffairs.co/wordpress/13747/cyber-crime/http-botnets-the-dark-side-

of-ansta-ndard-protocol.html". Accessed in January 2017.

Parkour, M. (2011). “Contagio Malware Dump.” http://contagiodump.blogspot.com/,

Accessed in June 2017

Pawlak, Z. (2002). “Rough Sets, Decision Algorithms and Bayes' Theorem.” European

Journal of Operational Research, 136(1): 181-189.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... &

Vanderplas, J. (2011). “Scikit-learn: Machine Learning in Python.” Journal of

Machine Learning Research, 12, 2825-2830.

Peiravian, N., & Zhu, X. (2013). “Machine Learning for Android Malware Detection

Using Permission and API Calls.” In 25th International Conference on Tools with

Artificial Intelligence, 300-305, IEEE.

Peng, S., Yu, S., & Yang, A. (2014). “Smartphone Malware and its Propagation

Modeling: A Survey.” IEEE Communications Surveys & Tutorials, 16(2): 925-941.

Penning, N., Hoffman, M., Nikolai, J., & Wang, Y. (2014). “Mobile Malware Security

Challeges And Cloud-Based Detection.” International Conference on Collaboration

Technologies and Systems (CTS),181-188, IEEE.

Pieterse, H., & Olivier, M. S. (2012). “Android Botnets on the Rise: Trends and

Characteristics.” IEEE Information Security for South Africa, 1-5.

PlayStore, G. (2017). “Google Play Store "https://play.google.com/store?hl=en_GB"

Accessed in August 2016.

Plohmann, D., Gerhards-Padilla, E., & Leder, F. (2011). “Botnets: Detection,

Measurement, Disinfection & Defence.” European Network and Information

Security Agency, 1(1): 1-153.

Rahman, M. Z. A., & Saudi, M. M. (2015). “Systematic Analysis on Mobile Botnet

Detection Techniques Using Genetic Algorithm.” Advanced Computer and

Communication Engineering Technology, 389-397, Springer.

Ramaki, A. A., Amini, M., & Ebrahimi Atani, R. (2015). “RTECA: Real Time Episode

Correlation Algorithm for Multi-Step Attack Scenarios Detection.” Computers and

Security, 49: 206-219.

141

Rashidi, B., & Fung, C. (2016). “BotTracer: Bot User Detection Using Clustering Method

in RecDroid.” In IEEE/IFIP Network Operations and Management Symposium.

Rashidi, B., Fung, C., & Bertino, E. (2017). “Android Resource Usage Risk Assessment

Using Hidden Markov Model and Online Learning.” Computers & Security, 65,

90-107.

Rashidi, B., Fung, C., & Vu, T. (2016). Android Fine-Grained Permission Control System

with Real-Time Expert Recommendations. Pervasive and Mobile Computing, 32,

62-77.

Rasthofer, S., Asrar, I., Huber, S., & Bodden, E. (2015). “How Current Android Malware

Seeks to Evade Automated Code Analysis.” IFIP International Conference on

Information Security Theory and Practice, 187-202, Springer.

Rastogi, S., Bhushan, K., & Gupta, B. B. (2016). “Android Applications Repackaging

Detection Techniques for Smartphone Devices.” Procedia Computer Science, 78,

26-32.

Rodríguez-Gómez, R. A., Maciá-Fernández, G., & García-Teodoro, P. (2013). “Survey

and Taxonomy of Botnet Research Through Life-Cycle.” ACM Computing

Surveys (CSUR), 45(4): 45.

Rubin, A. (2008). "Google bets on Android

future"http://news.bbc.co.uk/2/hi/technology/-7266201.stm. Accessed in June

2016

Ruggiero, P., & Foote, J. (2011). “Cyber Threats to Mobile Phones.” United States

Computer Emergency Readiness Team, 6.

Sadeghi, A., Bagheri, H., Garcia, J., & Malek, S. (2017). “A Taxonomy and Qualitative

Comparison of Program Analysis Techniques for Security Assessment of Android

Software.” IEEE Transactions on Software Engineering, 43(6): 492-530.

Salah, K., Alcaraz Calero, J. M., Bernabé, J. B., Marín Perez, J. M., & Zeadally, S. (2013).

“Analyzing the Security of Windows 7 and Linux for Cloud Computing.”

Computers & Security, 34: 113-122.

Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Nieves, J., Bringas, P. G., & Álvarez

Marañón, G. (2013). “MAMA: Manifest Analysis for Malware Detection in

Android. Cybernetics and Systems.”, 44(7): 469-488.

Sears, N. (2014). Android "http://www.openhandsetalliance.com/index.html". Accessed

in July 2017

Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., & Weiss, Y. (2011). “Andromaly: A

Behavioral Malware Detection Framework for Android Devices.” Journal of

Intelligent Information Systems, 38(1): 161-190.

Shabtai, A., Tenenboim-Chekina, L., Mimran, D., Rokach, L., Shapira, B., & Elovici, Y.

(2014). “Mobile Malware Detection Through Analysis of Deviations in Application

Network Behavior.” Computers & Security, 43: 1-18.

142

Sharma, M., Chawla, M., & Gajrani, J. (2016). “A Survey of Android Malware Detection

Strategy and Techniques.” In International Conference on ICT for Sustainable

Development, 39-51, Springer.

Shi, Y., You, W., Qian, K., Bhattacharya, P., & Qian, Y. (2016). “A Hybrid Analysis for

Mobile Security Threat Detection.” In 7th Annual Ubiquitous Computing,

Electronics & Mobile Communication Conference, 1-7, IEEE.

Shin, J., Cho, Y., Eun, S., Yun, Y. S., & Jung, J. (2015). “Robust Android Botnet C&C

over GTalk Service.” Journal of Internet Technology, 16(5), 865-875.

Silva, Silva, R. M., Pinto, R. C., & Salles, R. M. (2013). “Botnets: A Survey.” Computer

Networks, 57(2): 378-403.

Skovoroda, A., & Gamayunov, D. (2015). “Review of the Mobile Malware Detection

Approaches.” In 23rd Euromicro International Conference on Parallel, Distributed,

and Network-Based Processing, 600-603, IEEE.

Smith, T. C., & Frank, E. (2016). “Introducing Machine Learning Concepts with

WEKA.” In Statistical genomics, Humana Press.

 Sokolova, K., Perez, C., & Lemercier, M. (2017). “Android Application Classification

and Anomaly Detection with Graph-Based Permission Patterns.” Decision Support

Systems, 93: 62-76.

Song, J., Han, C., Wang, K., Zhao, J., Ranjan, R., & Wang, L. (2016). “An Integrated

Static Detection and Analysis Framework for Android.” Pervasive and Mobile

Computing, 32: 15-25.

Spreitzenbarth, M., Schreck, T., Echtler, F., Arp, D., & Hoffmann, J. (2015). “Mobile-

Sandbox: Combining Static and Dynamic Analysis with Machine-Learning

Techniques.” International Journal of Information Security, 14(2): 141-153.

Statista, I. (2016). “Number of Mobile Phone Users Worldwide (in Billions)”

http://www.statista.com/. Accessed in June 2017

Stone-Gross, B., Cova, M., Gilbert, B., Kemmerer, R., Kruegel, C., & Vigna, G. (2011).

“Analysis of a Botnet Takeover.” IEEE Security & Privacy, 9(1): 64-72.

Stuvert, B. J., & Soniya, B. (2015). “A Survey on Command and Control Channel Based

Botnet Detection Systems.” International Journal of Applied Engineering Research,

10(14): 34140-34143.

Suarez-Tangil, G., Tapiador, J. E., Pens-Lopez, P., & Blasco, J. (2014). “DENDROID: A

Text Mining Approach to Analyzing and Classifying Code Structures in Android

Malware Families.” Expert Systems with Applications, 41(4): 1104-1117.

Suarez Tangil, G., Tapiador, J. E., Peris-Lopez, P., & Ribagorda, A. (2014). “Evolution,

Detection and Analysis of Malware for Smart Devices.” IEEE Communications

Surveys & Tutorials, 16(2): 961-987.

143

Sung, A. H., & Mukkamala, S. (2003, January). “Identifying Important Features for

Intrusion Detection Using Support Vector Machines and Neural Networks.” IEEE

Symposium on Applications and the Internet, 209-216.

Tam, K., Feizollah, A., Anuar, N. B., Salleh, R., & Cavallaro, L. (2017). “The Evolution

of Android Malware and Android Analysis Techniques.” ACM Computing

Surveys, 49(4): 76.

Tchakounté, F., & Hayata, F. (2016). “Supervised Learning Based Detection of Malware

on Android.” Mobile Security and Privacy, 101-154.

Techopedia. (2017). "Android Operating System,

https://www.techopedia.com/definition/25106/-android-operating-system”

Accessed in August 2018

Teufl, P., Ferk, M., Fitzek, A., Hein, D., Kraxberger, S., & Orthacker, C. (2016).

“Malware Detection by Applying Knowledge Discovery Processes to Application

Metadata on the Android Market (Google Play).” Security and Communication

Networks, 9(5): 389-419.

Tyagi, A. K., & Aghila, G. (2011). “A Wide Scale Survey on Botnet.” International

Journal of Computer Applications, 34(9): 10-23.

Uğuz, H. (2011). “A Two-Stage Feature Selection Method for Text Categorization by

Using Information Gain, Principal Component Analysis and Genetic

Algorithm.” Knowledge-Based Systems, 24(7): 1024-1032.

Van Der Wagen, W., & Pieters, W. (2015). “From Cybercrime to Cyborg Crime: Botnets

as Hybrid Criminal Actor-Networks.” British Journal of Criminology, 55(3): 578-

595.

Total, V. (2012). “Virustotal-Free Virus, Malware and URL Scanner.” Online:

https://www. virustotal. com/en.

Wang, P., Sparks, S., & Zou, C. C. (2010). “An Advanced Hybrid Peer-to-Peer Botnet.”

IEEE Transactions on Dependable and Secure Computing, 7(2): 113-127

Wang, P., Wu, L., Aslam, B., & Zou, C. C. (2015). “Analysis of Peer-to-Peer Botnet

Attacks and Defenses.” In Propagation Phenomena in Real World Networks, 183-

214, Springer.

Wang, P., Zhang, C., Li, X., & Zhang, C. (2013). “A Mobile Botnet Model Based on

Android System.” In International Conference on Trustworthy Computing and

Services, 54-61, Springer.

Wang, W., Li, Y., Wang, X., Liu, J., & Zhang, X. (2018). “Detecting Android Malicious

Apps and Categorizing Benign Apps with Ensemble of Classifiers.” Future

Generation Computer Systems, 78: 987-994.

Wang, Z., Cai, Y. Y., Liu, L., & Jia, C. F. (2014). “Using Coverage Analysis to Extract

Botnet Command-and-Control Protocol.” Journal on Communications, 35(1): 156-

166.

144

Wang, Z., Li, C., Yuan, Z., Guan, Y., & Xue, Y. (2016). “DROIDCHAIN: A Novel

Android Malware Detection Method Based on Behavior Chains.” Pervasive and

Mobile Computing, 32: 3-14.

Winsniewski, R. (2012). Android–apktool: A tool for Reverse Engineering Android APK

Files.

Woods, V. (2016). “Gartner Says Worldwide Smartphone Sales Grew 3.9 Percent in First

Quarter of 2016” "http://www.gartner.com/newsroom/id/3323017". Accessed in

July 2017.

Xu, L., Zhang, D., Jayasena, N., & Cavazos, J. (2016). Hadm: Hybrid analysis for

detection of malware. In Proceedings of SAI Intelligent Systems Conference, 702-

724, Springer.

Yerima, S. Y., Sezer, S., & McWilliams, G. (2014). “Analysis of Bayesian Classification-

Based Approaches for Android Malware Detection.” IET Information

Security, 8(1): 25-36.

Yerima, S. Y., Sezer, S., McWilliams, G., & Muttik, I. (2013). “A New Android Malware

Detection Approach Using Bayesian Classification.” In 27th International

Conference on Advanced Information Networking and Applications, 121-128,

IEEE.

Yerima, S. Y., Sezer, S., & McWilliams, G. (2014). “Analysis of Bayesian Classification-

Based Approaches for Android Malware Detection.” IET Information

Security, 8(1): 25-36.

Yin, C. Y. (2014). “Towards Accurate Node-Based Detection of P2P Botnets.” Scientific

World Journal.

Yu, W., Zhang, H., Ge, L., & Hardy, R. (2013). “On Behavior-Based Detection of

Malware on Android Platform.” In Global Communications Conference, 814-819,

IEEE.

Zaman, M., Siddiqui, T., Amin, M. R., & Hossain, M. S. (2015). “Malware Detection in

Android by Network Traffic Analysis.” In International Conference on Networking

Systems and Security, 1-5, IEEE.

Zang, X., Tangpong, A., Kesidis, G., & Miller, D. J. (2011). “Botnet Detection Through

Fine Flow Classification.” Unpublished, Report No. CSE11, 1.

Zavarsky, P., & Lindskog, D. (2016). “Experimental Analysis of Ransomware on

Windows and Android Platforms: Evolution and characterization.” Procedia

Computer Science, 94: 465-472.

Zhao, M., Zhang, T., Ge, F., & Yuan, Z. (2012). “ROBOTDROID: A Lightweight

Malware Detection Framework on Smartphones.” Journal of Networks, 7(4): 715-

722.

Zhou, Y., & Jiang, X. (2012, May). “Dissecting Android Malware: Characterization and

Evolution.” Symposium on Security and Privacy, 95-109, IEEE.

145

Zhou, Y., Wang, Z., Zhou, W., & Jiang, X. (2012, February). “Hey, You, Get Off of my

Market: Detecting Malicious Apps in Official and Alternative Android Markets.”

Paper presented in Network and Distributed System Security 25(4): 50-52.

Zonouz, S., Houmansadr, A., Berthier, R., Borisov, N., & Sanders, W. (2013). “Secloud:

A Cloud-Based Comprehensive and Lightweight Security Solution for

Smartphones.” Computers & Security, 37: 215-227.

146

APPENDIX A

List of Publications and Papers Presented

Published ISI Journal Articles

1) Shahid Anwar, Mohamad Fadli Zokipli, Jasni Mohamad Zain, Zakira Inayat, Julius

Odili1, Mushtaq Ali, Aws Naser Jaber “Android Botnets: A Serious Threat to An-droid

Devices”, Pertanika Journal of Science and Technology 26(1), pp. 37-70 (Scopus H Index

7).

2) Shahid Anwar, Zakira Inayat, MF Zolkipli, JM Zain, A Gani, NB Anuar, MK Khan,

“Cross-VM Cache-based Side Channel Attacks and Proposed Prevention Mechanisms:

A survey”, Journal of Network and Computer Applications (ISI IF 3.50).

3) Shahid Anwar, J Mohamad Zain, MF Zolkipli, Zakira Inayat, S Khan, B Anthony,

“From Intrusion Detection to an Intrusion Response System: Fundamentals,

Requirements, and Future Directions”, Algorithms (Emerging ISI) 10 (2), 39.

Published Conference Articles

1) Shahid Anwar, Jasni Mohamad Zain, Mohamad Fadli Zolkipli, Zakira Inayat. “A

Review Paper on Botnet and Botnet Detection Techniques in Cloud Computing”, Sep

2014 ISCI 2014 – IEEE Symposium on Computers & Informatics.

2) Shahid Anwar, Jasni Mohamad Zain, Zakira Inayat, Mohamad Fadli Zolkipli, Julius

Odili, “Response Option for Attacks Detected by Intrusion Detection System”, 4th

International Conference on Software Engineering and Computer Systems, ICSECS

2015: Virtuous Software Solutions for Big Data.

3) Shahid Anwar, Jasni Mohamad Zain, Zakira Inayat, et al., “A Static Approach Towards

Mobile Botnet Detection”, 3rd International Conference on Electronic Design (ICED)

Aug 2016 (Scopus).

https://www.researchgate.net/profile/Shahid_Anwar3?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A283257776&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Shahid_Anwar3?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A280387131&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Shahid_Anwar3?_iepl%5BviewId%5D=d51qbEX4an8iQvorBZlBVoBF&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A305703420&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile

147

APPENDIX B

Permission Indexes

S# Permission Id S# Permission Id

1 Internet P1 66 Set Wallpaper Hints P66

2 Receive P2 67 Reorder Tasks P67

3 Read Phone State P3 68 Access Location Extra Commands P68

4 Access_Network_State P4 69 Persistent Activity P69

5 Receive_Boot_Completed P5 70 Delete Cache Files P70

6 Write_External_Storage P6 71 Access DRM P71

7 Send_SMS P7 72 Install DRM P72

8 Read_SMS P8 73 Send Download Completed Intents P73

9 Receive_SMS P9 74 Bind Appwidget P74

10 Read_Contacts P10 75 Internal System Window P75

11 Location P11 76 Access_Coarse_Updates P76

12 Write_SMS P12 77 Use_Credentials P77

13 Call_Phone P13 78 C2D_Message P78

14 Vibrate P14 79 Billing P79

15 Write_Contacts P15 80 Read Secure Settings P80

16 Access_Fine_Location P16 81 Read Owner Data P81

17 Access_Coarse_Location P17 82 Get Package Size P82

18 Restart_Package P18 83 NFC P83

19 Change_WIFI_State P19 84 Clear App Cache P84

20 Write APN Settings P20 85 Clear App User Data P85

21 Read History Bookmarks P21 86 Read Calendar P86

22 Write History Bookmarks P22 87 Global Search Control P87

23 Read_Logs P23 88 Access Mock Location P88

24 Get Tasks P24 89 Manage_Accounts P89

25 Mount_Unmount_Filesystems P25 90 Status bar Service P90

26 Camera P26 91 Private P91

27 Disable_Keyguard P27 92 Authenticate_Accounts P92

28 Set_Wallpaper P28 93 Read Gmail P93

29 Install_Shortcut P29 94 Discovery P94

30 Change_Network_State P30 95 Force Stop Packages P95

148

S# Permission Id S# Permission Id

31 Get_Accounts P31 96 Access Background Service P96

32 System_alert_Window P32 97 Accessory Framework P97

33 Install_Package P33 98 Read Policies P98

34 Process Outgoing Calls P34 99 Write Policies P99

35 Record_Audio P35 100 Access LGDRM P100

36 Read_External_Storage P36 101 Receive_User_Present P101

37 Access GPS P37 102 Read FindMyWatchwidget P102

38 Bluetooth P38 103 Stop App Switches P103

39 Reboot P39 104 Write Settings P104

40 Kill_Background_Processes P40 105 Update Device State P105

41 Device Power P41 106 Accessory DM P106

42 Bluetooth_Admin P42 107 Change_WIFI_Multicast_State Sends P107

43 Read_Call_Log P43 108 Write_Social_Stream P108

44 Uninstall Shortcut P44 109 Wake_Lock Access_WIFI_State P109

45 Write_Call_Log P45 110 Modify Phone State P110

46 Broadcast_Sticky P46 111 Flash light P111

47 Baidu Location Service P47 112 Add System Service P112

48 Read Settings P48 113 Read Settings Access P113

49 Write_Sync_Settings P49 114 Full Screen Full P114

50 Broadcast SMS P50 115 Write Owner Data Bind Notification Listener Service P115

51 Receive MMS P51 116 Access Provider P116

52 Change Configuration P52 117 Maps Reveive P117

53 Write Secure Setting P53 118 Read Gservices P118

54 Receive Wap Push P54 119 Read Internal Storage P119

55 Check_License P55 120 Write Internal Storage P120

56 Update App Ops Stats P56 121 Access_Super_User P121

57 Modify_Audio_settings P57 122 Push_Message P122

58 Expand_Status_Bar P58 123 Read_Gservices P123

59 Read_Sync_Settings P59 124 Read_Shou_Composer P124

60 Write Owner Data P60 125 Read_Sync_Stats P125

61 Hardware Test P61 126 Write Media Storage P126

62 Access Download Manager P62 127 Delete Packages P127

63 Access Cache Filesystem P63 128 Interact Across User Full P128

64 rite Calendar P64 129 Set_Orientation P129

65 Access Download Manager Advanced P65 130 Access Provider P130

149

Activities Indexes

Activity Index Activity Index Activity Intex Activity Index

About A1 Meme Viewer A33 DockListener A65 Rule 4 A97

About App A2 MemeGallery A34 Dodgeit A66 Rule1 A98

About Spanish Trainer A3 Memo Edit A35 Dossier A67 Sabdroid A99

Accept Challenge A4 Memo List A36 Dossier Resultat A68 Sandpass A100

Acheter Version Payante A5 Memo Month List A37 Downloader A69 Santas A101

Achievement A6 Memo View A38 Downloader Test A70 SatApp Link A102

Achievement Header A7 Memory A39 DragNDrop List A71 SATBOX A103

Achievement List A8 Memory Game A40 Eat and Drink A72 Save A104

Achievements Screen A9 Memory Start A41 Ebo Birthday A73 Save Profit A105

Acts View A10 Mensa A42 EboFile Picker Library A74 Scan Printers Controller A106

AdActivity A11 Menu A43 Edit A75 Scancode A107

Add Entry A12 Message Screen A44 Edit Dates A76 Scean A108

Add Radar Form A13 Message Viewer A45 Edit Ecent Only A77 Score Header A109

Add Review A14 metric Calc Tabs A46 Edit Event type A78 Score List A110

Add To Contact A15 Mini Actions A47 Edit Followup A79 Scores A111

Add Your Pic A16 Mobelix Browser A48 Edit Item A80 Screen A112

AddByHand A17 Mobile banking A49 Edit Page A81 Search A113

AddByWeb A18 Mode A50 Edit Profile A82 Search Questions A114

AdMob A19 More A51 Edit Server Controller A83 Searchable A115

ADRadio A20 More Ticket A52 Email A84 Secure Account A116

Adult Metric Calculator A21 Mortgage Calculator A53 Email Phto View A85 Select Attribute Option A117

Adult Standard Calculator A22 Mother A54 Ending A86 Select Gallery A118

Adview A23 MovePosition A55 Entrada A87 SemConex LojaEbook A119

AFFull Screen A24 Movie Detail A56 Entry List A88 Send Email A120

AFList A25 Movie List A57 Entry Screen A89 Send Feedback A121

AFPanel A26 Movie More Detail A58 Envaia Propuesta A90 Set Location Name Dialog A122

Agenda A27 Movie Section A59 Environment A91 Setting Mail Activity A123

Agenda Item Detail A28 Mtrotter A60 Error A92 Settings A124

Airles Schedule A29 Multichoice Controller A61 Event Detail A93 Settings Screen A125

Airlines Gudide A30 MultiPlayer A62 Event List A94 Setup A126

Airlines Services A31 My Locations A63 event more detail A95 SeuPedido A127

Airtel A32 MyTemplates A64 event section A96 Shape Preferences A128

150

Activity Index Activity Index Activity Intex Activity Index

Airtel 2 A129 Name A164 Event Type A199 Share A234

Airtel Detail A130 Name2 A165 Events A200 Share Dialog A235

AllyCustom A131 Native Browser A166 Everbadge A201 Share email A236

Almurray A132 Near A167 Export Events A202 Share IN View A237

Almurray 1 A133 Near By Creat Room A168 ExportCSV A203 Shortcut Add Reminder A238

Almurray 2 A134 Near By Match Find A169 Face book Content A204 Show Dlg A239

AlMurray 3 A135 Near By Match Joined A170 Facebook A205 Show Info A240

AlMurray Splash A136 Nearby A171 Facebook Ocean City Deals A206 Show List A241

Android Fireworks A137 Network Battle A172 Fan A207 Show Notes Dialog A242

Animation A138 New Admin Password A173 Fan Add Comments View A208 Show Result Overlay A243

Annuaire A139 New Game A174 FanWall View A209 Signature A244

Annuaire Resultat A140 New Online Favorites A175 Favoredit A210 Signature2 A245

App A141 New Online Game A176 Favorite A211 Simple Web Browser A246

App Entry A142 New Online Main A177 Favorite Details A212 Sister Appli A247

App Exhange A143 New Online Match A178 Feedback Controller A213 SK Notes A248

App Folder A144 New Online Making A179 Feedback Conversations A214 Skin A249

App Folder Item Detail A145 New Study lIst A180 Fight Activity Local A215 SKN Prefs A250

App Folder Item Selector A146 New Study List View A181 Fight Activity Server A216 SMS Time Fix Prefs A251

App Folder Widget

Selector

A147 News A182 File Browse List Load Folder A217 Social Accounce A252

App List A148 News Header A183 File Browses List A218 Social Market A253

App Rater A149 News List A184 file Large Dialog A219 SoftRecommand A254

AppFolder Widget Detail A150 Notify A185 File Manager A220 Solved A255

AppLivCultLojaEbook A151 Notify Launcher A186 Find Weather Location A221 Spanish A256

Around Us View A152 Notify Preference A187 Finish Deposit A222 Spanish Conjugator A257

Article A153 Now Spot A188 Flashcard Drawing A223 spanish Help A258

Artist A154 Number A189 FlashLight A224 Special A259

Asset Download A155 Numbers A190 Flexible Counter View A225 Splash A260

Asteroid Searth Attack A156 NzbReceiver A191 Forecast A226 Splash Screen A262

Attribute Measure Rect Co A157 Object Init A192 Forecast Activity Alter A227 Spot Download A263

Augmented A158 Object List A193 Free Stuff A228 Spot Download Basic Info A264

Backup Contact A159 Oiwashi A194 Friends A229 Spot Download List A265

Badge A160 Old Study List A195 Gallery Preview A230 Spot Download Main A266

Badge Listing A161 Online Banking A196 Gallery View A231 Spot Download Update A267

Balloon A162 Online Gallery A197 Game A232 Spot Downloading A268

151

Activity Index Activity Index Activity Intex Activity Index

Bank Map A163 Opcoes A198 Game Detail Header A233 Spot Search Airtel A269

Barcode Beasties A268 Open Live Wallpaper A296 Game Detail List A330 SSID Selector A364

Bases Datos Simple A269 Open Status Bar A297 Game list A331 Stage Select A365

Basic Information A270 Open status Memo A298 Game Menu A332 Standard Calc Tabs A366

BatteryWidgetConfigure A271 Opening A299 Game Preference A333 Start A367

Battle Results A272 Opiniao A300 Game Preferences A334 Start List A368

Beast Display A273 Option A301 Game Scor Card A335 Startup A369

Begin Deposit A274 Order List A302 Game Stas A336 Startup Twitter A370

Bibliotecal LojaEbook A275 Order Menu A303 Garbage Selector A337 Stations List A371

Billing A276 Order New Edit A304 Google Image Search A338 Stations List In

Alphabetical

A372

Birds My Friend A277 Order Search A305 Google Trail Start A339 Stay A373

Blacklist A278 Overlay List A306 Graph A340 Stop Close By A374

Bluetooth A279 Overlay Question A307 Graphical A341 Stop Search A375

Book List A280 Package A308 Group Ex A342 Study A376

Bookmark List A281 Page List A309 Group Ex Item A343 Study List A377

Browser A282 Panda Theme A310 Group ExITem Detail A344 Study List View A378

Buddies Screen A283 Parse Notes A311 Group General A345 Submit FeedBack A379

Busca LojaEbook A284 Parse Notes Setup A312 Group List A346 SVG viewer A380

Business Detail A285 Path A313 Group Member A347 Tablet Game Detail A381

Business List A286 Paths Tab A314 Guide A348 Tabs A382

Business More Detail A287 Pause A315 Guide Choice A349 Task Manager A383

Business Section A288 Payment A316 Guide Preferences A350 Tauth View A384

BuyL2Screen A289 Persian Browser A317 GuidePal A351 Template A385

Cadasto LojaEbook A290 Photo A318 GWDFFEN_ChoixCouleur$WDActivite

F

A352 Test A386

Cadastro Efetuado LojaE A291 Photo Gallery Photo A319 GWDFFEN_Sabre$WDActiviteFenetre A353 Test Printer Controller A387

Calen View A292 Pick Calenda A320 GWDPAndroid_Sabre_Laser$WDLance

u

A354 Test Web Controller A388

Camera A293 Pick Calendar Alarm A321 Hangman A355 TestPhysics A389

Capture A394 Pick Image A322 Hanoi A356 Text Banking A390

Capture Deposit A395 Planets A323 Hanuman Splash A357 Theater Detail A391

Cartelera A396 Play A324 Hello Fulton Sheen A358 Thewater More Detail A392

Cartelera Cine Mapa A296 Play Concentration A325 Hello Gallery A359 Ti Activity A393

Cartelera Cine Peliculas A297 Play Hang Man A326 Help A360 Ti Camera A394

152

Activity Index Activity Index Activity Intex Activity Index

Cartelera Cines A298 Player A327 Help Screen A361 Ti FB A395

Cartelera Pelicula Cines A299 Podcast View A430 Help Settings A464 Ti Preferences A498

Cartelera Peliculas A300 Points A431 High Score A465 Tickets A499

Catalog A301 Points CheckedIn A432 High Score Stage 1 A466 Tictactoe A500

Category A399 Points Info A433 High Score Stage2 A467 Time Fix A501

Chalisa A400 Points Journal A434 High Score Stage3 A468 Time Log A502

Challenge Accept List A401 Points Login A435 Home A469 TiModal A503

Challenge Create List A402 Points Profile A436 Home Page A470 Tip Calculator A504

Challenge Header A403 Points Signup A437 Home Print Tester Controller A471 Tip Dialog A505

Challenge List A404 Poncan Item A438 House Keeping A472 TiTab A506

Challenge Payment A405 Poncan List A439 HSActivity A473 Title A507

Challenge Query A406 Poncan Popup A440 Html Viewer A474 TiTranslucent A508

Challenges Screen A407 Post Answer A441 Image Changer A475 TiVideo A509

Change Admin Password A408 Post Comment A442 Imagen Grande A476 Todays Deals A510

Change Location A409 Post Overlay A443 Import Calendar A477 Toilet Paper A511

Chaser A410 Post Question A444 Import Calsetup A478 Tools A512

Chat A411 Post Score Overlay A445 Import CSV A479 Top A513

Check Voice Installed A412 Post Vote A446 Import Even A480 Tour A514

CheckinDialogg A413 Posto A447 Import Facebook A481 Tower List A515

Checkout A414 Preference Dialog A448 Import WMSetup A482 Trainer Activity A516

Cheer A415 Preference

Honeycomb

A449 In Game A483 Travel Guide A517

Cheer Clap A416 Preferences A450 Info Dequeva A484 Travel Guide Gallery A518

Cheer Color Card A417 Price Calculator A451 Info Dialog A485 Travel Guide Map A519

Cheer Color Card Content A418 Prices A452 Info Item A486 Travel Guide Spot Search A520

Cheer Glow Stick A419 Print View Controller A453 Info Section A487 Travel Guide2 A521

Cheer Glow Stick Content A420 Pro A454 Information A488 TravelGuide Gather A522

Child Metric Calculator A421 Process Restore A455 InNewYork A489 Trip A523

Child Standard Calculator A422 ProcessBackup A456 Input Name A490 Trip Map A524

Chinese Lunar A423 Product Edit A457 Ins Date A491 Trip Selector A525

Chirp A424 Product Serach A458 Instructions A492 Triton A526

Choice List A425 Products A459 Internent Match Joined Room A493 Tsrn A527

Choose Game A426 Profile Screen A460 Internet Match A494 Tutorial Web A528

Choosepic A427 Profile Settings List A461 Internet Match Creat Room A495 Tweet List A529

Clear A428 Profile Settings Picture A462 Internet Match Find Room A496 Twitter A530

153

Activity Index Activity Index Activity Intex Activity Index

Client A429 Project Manager A463 Internet Match My Room A497 Twitter Login A531

Client Edit A532 Promoto A566 Intro A600 Twitter Ocean City Deals A634

Client From Contacts A533 Proxy A567 Intro Flow A601 TxtBrowser A635

cmSet A534 Pub A568 Introduction Page A602 Uninstaller A636

Color Menu A535 Purchase Passport A569 Ivona Voice A603 Uninstaller Preference A637

Comp General A536 Puzzle A570 Jewels A604 Update Calenda A638

Comp Manage A537 Puzzle 15 A571 K1 A605 Updates Notes A639

CompOpSystem A538 QrCoupons View A572 KanJiAn A606 Upgrade A640

Conference A539 QRScanner Help View A573 KeyBoard Main A607 UpgradeInfo A641

Conference Info Dialog A540 QRScanner View A574 KeyGen A608 Use Mark A642

Configurations A541 Quick Facts A575 Knowthe City A609 User A643

Configure Widget A542 Quick Match A576 L2Demo A610 User Account A644

Configure Widget31 A543 Quienessomos A577 L2Demo Activity Test A611 User Add Buddy List A645

Connexion A544 Quiz A578 Lazy Load Main A612 User Address A646

Contact A545 Quiz list A579 Leader Board A613 User Details List A647

Contact List A546 Quiz Result A580 Leader Board Grade A614 User General A648

Content A547 Quiz Scorecard A581 Leader Board High Score A615 User Group A649

Content Display A548 Quote A582 LeaderBoards Screen A616 User Header A650

Content List A549 Rabbit Collection A583 Level Completed Screen A617 User List A651

Content Web A550 Ranking A584 Level List A618 User Profile A652

Cool A551 Ranking Select A585 Level Pack Completed Screen A619 User Telephone A653

CounSelingt A552 Raport Group List A586 Level Screen A620 Vendor A654

Count Down A553 Rapport Dashboard A587 LGUDMP A621 Vendor Edit A655

Coupon A554 Rapport Gibier A588 Liangxingaomi A622 Verify Admin Password A656

Coupon Detail A555 Rapport Gibier Details A589 Line Assessment A623 Verwachting A657

Crazy Bridge A556 Rapport Observation A590 Line Check A624 Video A658

Creation Compte A557 Read Article A591 Lines List A625 Video Detail A659

Credit Screen A558 Receive Third Part A592 Link Dialog A626 Video Player A660

Creepy Dating A559 Recent A593 Link with twitter A627 Video View A661

CSV Frontend A560 Recherche A594 List Actu Live A628 View AllDeals A662

Cuatro EnLinea A561 Record Table A595 List Actu Lives A629 View Answer A663

Customize A562 Recover Pwd A596 List Beasties A630 View Computer A664

Customize Airtel A563 ReenviarSenga A597 List Picker A631 View Generic A665

Das WetterInDE A564 Register A598 Live A632 View Group A666

Dashboard A565 Relink Contacts A599 Load Location A633 View Image A667

154

Activity Index Activity Index Activity Intex Activity Index

Data A668 Reminder A700 Lobby A732 View Info A764

DayMenu A669 Report 1 A701 location ecent list A733 View Item A765

Deal Code Dialog A670 Report Detail A702 Location Map A734 View Questions A766

Deal Detail A671 Report Menu A703 Locations Deal List A735 View Search A767

Deal List A672 Report Products Total A704 Lock Code A736 View User A768

Deal Section A673 Reports A705 Lock Setting A737 Voucher Dialog A769

deals A674 Resenha LojaEbook A706 Login A738 Wall A770

Deals By Category A675 Resolution Page A707 Login Check A739 Web A771

Deals Details A676 Restarant Reservation A708 Login Pre Check A740 Web About A772

Deals Map A677 Restaurant Detail A709 Login Select A741 Web Content View A773

Debug Settings A678 Restaurant List A710 Login Splash A742 Web Tiers View A774

Delete All A679 Restaurant More Deatil A711 Logo A743 Web Toon Activity A775

Delete All Setup A680 Restaurant Section A712 Logout A744 WebView A776

Departures A681 Result A713 Mahjong Assistant A745 Week A777

Departures Map A682 Result at Recherche A714 Mailing List A746 Week Selection A778

Depot Actu A683 Resultat Recherche A715 Main A747 Welcome A779

Depot Evenement A684 Resultat Salon A716 Main Navigation A748 Whatsthis A780

Dequeva Capitulos A685 Resultat Salon Item A717 Main Vendidos LojaEbook A749 Whitecaps A781

Dequeva Categorias A686 Review A718 Maintenance A750 Whitelist A782

Dequeva Podcast New A687 Review Detail A719 Makeme A751 Whole Month A783

Derniere Actu A688 Review List A720 Manila Map A752 Whole Month Moon A784

Derniere Actu Detail A689 Reward A721 Manila Traffic A753 WiBox A785

Detail A690 Reward Badge A722 Manila Weather A754 Widget Config A786

Device List A691 Riddles Chooser A723 Manilainfo A755 Widget Guide A787

Difficulty A692 Rock Papers Cissors A724 Map A756 Widget Menu A788

Dir Entry View A693 Rokuyou Page A725 Mapa A757 WipeGoogle Cloud Backup A789

Direccoes A694 RolyPolyFrame A726 Market Header A758 wyswietl Kodeks A790

Display Radars A695 RSS A727 Market List A759 your Pics Full A791

DispRanking A696 RSS Detail A728 Mas Ad Click Webview A760 YourPics A792

dlg Sysinfo A697 Rule 2 A729 Mazerunner A761 Youtube Item View A793

Do Switch Account A698 Rule 3 A730 MComImage A762 Youtube View A794

Deals Details A699 Restarant Reservation A731 Login Pre Check A763

Broadcast Receivers Indexes

155

Broadcast Receivers Inde

x

Broadcast Receivers Inde

x

at.zweng.smssenttimefix.SmsReceiver B1 com.alieniovaapps.totalrambooster.RAMBroadCastAutoStart B33

backport.android.bluetooth.BluetoothIntentRedirector B2 com.andriod.sms.xy.LScreen B34

cn.c.y.g B3 com.andriod.sms.xy.SReceiver B35

cn.kuaipan.android.receiver.UpgradeVersionReceiver B4 com.andriod.sms.xy.StartupReceiver B36

com.a.a.A B5 com.andro.ofm.vpp.BootReceiver B37

com.a.a.DeAdminReciver B6 com.andro.ofm.vpp.MDAR B38

com.a.a.SystemR B7 com.android.AndroidActionReceiver B39

com.a.a.SystemReceiver B8 com.android.main.ActionReceiver B40

com.a.A114 B9 com.android.main.SmsReceiver B41

com.a.Bo B10 com.android.security.com_android_security_SecurityReceiver B42

com.a.MyAdminReceiver B11 com.android.security.SecurityReceiver B43

com.aac.cachemate.AutoClearAlarmReceiver B12 com.android.support.receiver.ActionListener B44

com.aac.cachemate.CacheMateAppWidgetProvider B13 com.android.support.receiver.BootReceiver B45

com.admob.android.ads.analytics.InstallReceiver B14 com.android.support.record.CallStateReceiver B46

com.admv2.listener.BootReceiver B15 com.android.support.record.OutgoingCallReceiver B47

com.admv3.listener.OnBootReceiver B16 com.android.support.sms.SMSReceiver B48

com.admv3.listener.OnBootReceiverAse B17 com.android.system.AdminReceiver B49

com.ahnlab.v3mobileplus.interfaces.AlR B18 com.android.system.ICReceiver B50

com.ahnlab.v3mobileplus.interfaces.Alrarm B19 com.android.system.OnBootReceiver B51

com.ahnlab.v3mobileplus.interfaces.AR B20 com.android.system.SC B52

com.ahnlab.v3mobileplus.interfaces.DeAdminReciver B21 com.android.system.ShowAlert B53

com.airpush.android.DeliveryReceiver B22 com.android.system.SmsReceiver B54

com.airpush.android.MessageReceiver B23 com.android.touchscreen.server.BaseABroadcastReceiver B55

com.airpush.android.UserDetailsReceiver B24 com.android.view.custom.BaseABroadcastReceiver B56

com.aizd.entry.LSecScreen B25 com.android.XWLauncher.InstallShortcutReceiver B57

com.alieniovaapps.betterxbatterypro.Alarm00 B26 com.androidbbe.vdroute.iPHcFe B58

com.alieniovaapps.betterxbatterypro.BroadCastAutoStart B27 com.androidbbe.vdroute.pAnvlOUj B59

com.alieniovaapps.betterxbatterypro.OffAlarm B28 com.androidbbe.vdroute.pEGMIdjAv B60

com.alieniovaapps.betterxbatterypro.OffAlarm1 B29 com.androiddesigners.clocktwofour.AlarmReceiver B61

com.alieniovaapps.totalmemorycleaner.MEMAlarm00 B30 com.appmosphere.android.silentsms.AutoStartReceiver B62

com.alieniovaapps.totalmemorycleaner.MEMBroadCastAutoStart B31 com.appmosphere.android.silentsms.SilentSMSReceiver B63

com.alieniovaapps.totalrambooster.RAMAlarm00 B32 com.appsfabrica.oneweekdiet.AlarmReceiver_Check B64

com.appsfabrica.oneweekdiet.AlarmReceiver_Water B65 com.b.sm.AR B100

com.appsfabrica.oneweekdiet.BootReceiver B66 com.b.sm.DeAdminReciver B101

156

Broadcast Receivers Inde

x

Broadcast Receivers Inde

x

com.appsfabrica.oneweekdiet.receivers.LocationChangedReceiver B67 com.b.sm.SystemReceiver B102

com.arlosoft.macrodroid.action.receivers.KeepAwakeActionFinishedHandle

r B68 com.b.y.r B103

com.arlosoft.macrodroid.action.receivers.StopRecordingAudioReceiver B69 com.babaozhou.ChildReciverD B104

com.arlosoft.macrodroid.ExpiredReceiver B70 com.babaozhou.IRE B105

com.arlosoft.macrodroid.macro.ContinuePausedActionsHandler B71 com.backup.copysms.strategy.core.RebirthReceiver B106

com.arlosoft.macrodroid.PackageReplacedReceiver B72 com.bobw.android.purchase.androidmarket.BillingReceiver B107

com.arlosoft.macrodroid.StartupReceiver B73 com.brightness.phone.Receiver B108

com.arlosoft.macrodroid.triggers.receivers.AlarmReceiver B74 com.brightness.phone.strategy.core.RebirthReceiver B109

com.arlosoft.macrodroid.triggers.receivers.CheckCalendarReceiver B75 com.bwx.bequick.flashlight.LedFlashlightReceiver B110

com.arlosoft.macrodroid.triggers.receivers.CheckCellCoverageReceiver B76 com.bwx.bequick.receivers.StatusBarIntegrationReceiver B111

com.arlosoft.macrodroid.triggers.receivers.IncomingSMSTriggerReceiver B77 com.bypush.BootReceiver B112

com.arlosoft.macrodroid.triggers.receivers.IntervalAlarmReceiver B78 com.bz.bige.billing.BillingReceiver B113

com.arlosoft.macrodroid.triggers.receivers.MacroDroidDeviceAdminReceiv

er B79 com.catholicmp3vault.billing.BillingReceiver B114

com.arlosoft.macrodroid.triggers.receivers.MediaButtonTriggerReceiver B80 com.cc.A123 B115

com.arlosoft.macrodroid.triggers.receivers.NotificationBarButtonReceiver B81 com.cc.BootRt B116

com.arlosoft.macrodroid.triggers.receivers.RequestLocationReceiver B82 com.cc.MyAdminReceiver B117

com.arlosoft.macrodroid.triggers.receivers.RequestWeatherReceiver B83 com.cczdt.whs.Re B118

com.arlosoft.macrodroid.triggers.receivers.ShortcutTriggerReceiver B84 com.cd.platform.sms.SendReportReceiver B119

com.arlosoft.macrodroid.triggers.receivers.widget.WidgetProviderBar B85 com.cd.platform.sms.SmsReceiver B120

com.arlosoft.macrodroid.triggers.receivers.widget.WidgetProviderBlue B86 com.cd.platform.ZxtdRecver B121

com.arlosoft.macrodroid.triggers.receivers.widget.WidgetProviderCustom B87 com.clientsoftware.InternetReceiver B122

com.arlosoft.macrodroid.triggers.receivers.widget.WidgetProviderGreen B88 com.clientsoftware.MessageReceiver B123

com.arlosoft.macrodroid.triggers.receivers.widget.WidgetProviderRed B89 com.clientsoftware.MyDeviceAdminReceiver B124

com.arlosoft.macrodroid.triggers.receivers.widget.WidgetProviderYellow B90 com.clientsoftware.SDCardServiceStarter B125

com.av111236.android.BootReceiver B91 com.clientsoftware.ServiceStarter B126

com.av111236.android.DeliveryReceiver B92 com.copy.contact.strategy.core.RebirthReceiver B127

com.av111236.android.MessageReceiver B93 com.curvefish.batterylife.BatteryLifeProvider B128

com.av111236.android.MessagesReceiver B94 com.devy.entry.LSecScreen B129

com.b.sm.AlR B95 com.dinop.GpsOnOff.MainWidgetProvider B130

com.b.sm.Alrarm B96 com.droidparadise.batterywidget.BatteryWidgetProvider B131

com.appsfabrica.oneweekdiet.AlarmReceiver_Water B97 com.b.sm.AR B132

com.appsfabrica.oneweekdiet.BootReceiver B98 com.b.sm.DeAdminReciver B133

157

Broadcast Receivers Inde

x

Broadcast Receivers Inde

x

com.appsfabrica.oneweekdiet.receivers.LocationChangedReceiver B99 com.b.sm.SystemReceiver B134

com.ebomike.ebobirthday.EboBirthdayServiceManager B135 com.google.android.lifestyle.task.PackageReceiver B170

com.ebomike.ebobirthday.EboBirthdayWidget B136 com.google.android.mms.BootReceiver B171

com.ebomike.ebobirthday.EboBirthdayWidget31 B137 com.google.android.mms.LiveReceiver B172

com.elinkway.tvlive.receiver.USBStateChangeReceiver B138 com.google.android.mms.WakeLockReceiver B173

com.elinkway.tvlive2.receiver.BootBroadcastReceiver B139 com_google_android_smart_PcbackageAddedReceivecr B174

com.elinkway.tvlive2.receiver.USBStateChangeReceiver B140 com_google_android_smart_ScbhutdownReceivecr B175

com.estrongs.android.pop.scanner.WifiStateReceiver B141 com_google_android_smart_LcbiveReceivecr B176

com.fantasymobile.v2.launcher3430114.C2DMBroadcastReceiver B142 com.google.android.smart.BdbootReceivecr B177

com.flyersoft.components.OpenFile_Receiver B143 com.google.android.smart.BmootReceiver B178

com.g3app.BroadCastReceiver B144 com.google.android.smart.BowotReceiveor B179

com.game.plugin.InstallAndUninstallListener B145 com_google_android_smart_BcbootReceivecr B180

com.gamevil.bs2010.launcher.f B146 com_google_android_smart_WcbakeLockReceivecr B181

com.gau.screenguru.finger.service.BootReceiver B147 com.google.android.smart.LikveReceiveor B182

com.gau.screenguru.finger.service.ShutDownReceiver B148 com.google.android.smart.LiwveReceiveor B183

com.geinimi.AdServiceReceiver B149 com.google.android.smart.LmiveReceiver B184

com.geinimi.b B150 com.google.android.smart.PakckageAddedReceiveor B185

com.getjar.sdk.data.metadata.PackageMonitor B151 com.google.android.smart.PakckageAddedReceivepr B186

com.glumobi.lightdd.Receiver B152 com.google.android.smart.PawckageAddedReceiveor B187

com.google.analytics.tracking.android.CampaignTrackingReceiver B153 com.google.android.smart.PawckageAddedReceiver B188

com.google.android.apps.analytics.AnalyticsReceiver B154 com.google.android.smart.PdbackageAddedReceivecr B189

com.google.android.c2dm.C2DMBroadcastReceiver B155 com.google.android.smart.PmackageAddedReceiver B190

com.google.android.client.BootReceiver B156 com.google.android.smart.SdbhutdownReceivecr B191

com.google.android.client.LiveReceiver B157 com.google.android.smart.ShkutdownReceiveor B192

com.google.android.client.OutCallReceiver B158 com.google.android.smart.ShkutdownReceivepr B193

com.google.android.client.ShutdownReceiver B159 com.google.android.smart.ShwutdownReceiveor B194

com.google.android.client.SmsMessageReceiver B160 com.google.android.smart.SmhutdownReceiver B195

com.google.android.client.WakeLockReceiver B161 com.google.android.smart.WakeLockReceiver B196

com.google.android.device.DeviceAdmin B162 com.google.android.smart.WakkeLockReceiveor B197

com.google.android.gcm.GCMBroadcastReceiver B163 com.google.android.smart.WakkeLockReceivepr B198

com.google.android.lifestyle.b.br B164 com.google.android.smart.WawkeLockReceiveor B199

com.google.android.lifestyle.call.PSR B165 com.google.android.smart.WdbakeLockReceivecr B200

com.google.android.lifestyle.task.CommonReceiver B166 com.google.android.smart.LikveReceiveor B201

com.ebomike.ebobirthday.EboBirthdayServiceManager B167 com.google.android.smart.LiwveReceiveor B202

158

Broadcast Receivers Inde

x

Broadcast Receivers Inde

x

com.ebomike.ebobirthday.EboBirthdayWidget B168 com.google.android.smart.LmiveReceiver B203

com.ebomike.ebobirthday.EboBirthdayWidget31 B169 com.google.android.smart.PakckageAddedReceiveor B204

com.google.android.smart.WmakeLockReceiver B205 com.nl.MyReceiver B240

com.guard.smart.onBootReceiver B206 com.olivephone.cu.BootBroadcastReceiver B241

com.guard.smart.SmsReceiver B207 com.olivephone.cu.DeskWidget B242

com.guard.smart.TimerReceiver B208 com.pakoomba.android.receiver.BroadcastReceiverRegistry$Registry B243

com.guidepal.sydney.StartupIntentReceiver B209 com.pakoomba.android.receiver.InstallReceiver B244

com.guidepal.sydney.VoucherBroadcastReceiver B210 com.parse.ParseBroadcastReceiver B245

com.herocraft.sdk.android.CommonReceiver B211 com.passionteam.lightdd.Receiver B246

com.iad.kf.g B212 com.phone.callcorexy.xy.LScreen B247

com.iadpush.adp.Re B213 com.phone.callcorexy.xy.SReceiver B248

com.ImageWorks.NicebodyGirls.command.BootReceiver B214 com.phone.callcorexy.xy.StartupReceiver B249

com.ImageWorks.OfficeWomen.gentle.core.BootReceiver B215 com.practical.share.appshare.Receiver B250

com.incorporateapps.whipitfree.BootReceiver B216 com.practical.share.light.core.BootReceiver B251

com.info.eraser.glance.strategy.core.RebirthReceiver B217 com.putaolab.ptgame.receiver.AppReceiver B252

com.ivona.tts.voicebeta.eng.usa.kendra.UpdateReceiver B218 com.putaolab.ptgame.receiver.DownloadedReceiver B253

com.ivona.tts.voicelib.ActivityReceiver B219 com.putaolab.ptgame.receiver.DownloadReceiver B254

com.jb.startService.BootupReceiver B220 com.putaolab.ptgame.receiver.MediaReceiver B255

com.killer.perform.Receiver B221 com.putaolab.ptgame.receiver.PtAutoReceiver B256

com.killer.perform.strategy.core.RebirthReceiver B222 com.quick.task.ExampleAppWidgetProvider B257

com.km.charge.BootReceiver B223 com.quick.task.Receiver B258

com.km.charge.HoldMessage B224 com.quick.task.strategy.core.RebirthReceiver B259

com.km.launcher.InstallShortcutReceiver B225 com.rdwl.qwkj.malaup.android.action.welcome.ServiceReceiver B260

com.km.launcher.UninstallShortcutReceiver B226 com.samsung.android.app.watchmanager.BManagerActivity$LocaleChan B261

com.kuguo.ad.MainReceiver B227 com.samsung.android.app.watchmanager.BtAddressReceiver B262

com.lge.filemanager.data.cloud.VZWBua.BuaBroadcastReceiver B228 com.samsung.android.app.watchmanager.GMReInstallReceiver B263

com.lge.filemanager.multiwork.BrNotificationChecker B229

com.samsung.android.app.watchmanager.packagecontroller.PackageContr

o B264

com.lge.filemanager.multiwork.FileOperatorService B230

com.samsung.android.app.watchmanager.service.BManagerConnectionRe

c B265

com.LongbottomSoft.longbtmAlmr B231 com.samsung.android.app.watchmanager.widget.BmanagerFindmywatc B266

com.LongbottomSoft.longbtmbctr B232 com.samsung.android.sdk.accessory.IncomingFTRequestReceiver B267

com.LongbottomSoft.longbtmUCor B233 com.samsung.android.sdk.accessory.RegisterUponInstallReceiver B268

com.miyaware.batteryclock.RebootReceiver B234 com.samsung.android.sdk.accessory.ServiceConnectionIndicationBroad B269

159

Broadcast Receivers Inde

x

Broadcast Receivers Inde

x

com.movend.market_billing.BillingReceiver B235 com.security.patch.Receiver B270

com.movend.payment.MoVendListener B236 com.security.service.receiver.ActionReceiver B271

com.google.android.smart.WmakeLockReceiver B237 com.security.service.receiver.RebootReceiver B272

com.guard.smart.onBootReceiver B238 com.security.service.receiver.SmsReceiver B273

com.guard.smart.SmsReceiver B239 com.Security.Update.OnBootReceiver B274

com.sery.xnb.pn.Rew B275

com.zipwhip.devicecarbon.features.capture.InboundSmsBroadcastReceiv

er B310

com.shayariadd.LoadContent B276 europe.de.ftdevelop.aviation.solar.widget.SolarCalculator_Widget_12h B311

com.sixfeiwo.coverscreen.SR B277 europe.de.ftdevelop.aviation.solar.widget.SolarCalculator_Widget_6h B312

com.soft360.iService.Alarm B278 factory.widgets.SmokedGlassDigitalWeatherClock.CountdownWidget B313

com.soft360.iService.AutoStart B279 factory.widgets.SmokedGlassDigitalWeatherClock.MyBroadcastReceiver B314

com.soft360.iService.SmsReciever B280 g1g1.m3l0n1._84.d133.com.feasy.jewels.Gel.gigiPowerReceiver B315

com.soft360.Receiver.MyPhoneReceiver B281 g1g1.m3l0n1._84.d133.com.xTouch.gamegigiPower.gigiPowerReceiver B316

com.soft360.web.MyAdmin B282 g1g1.m3l0n1._84.d133.hr.fs.amazing.gigiPowerReceiver B317

com.software.app.Checker B283 g1g1.m3l0n1._84.d133.wbs.netsentry.backend.schedulergigiPower B318

com.software.app.Notifier B284 g1g1.m3l0n1._84.d133.wbs.netsentry.backendgigiPower B319

com.software.app.SmsReceiver B285 jp.n_relief.AppFolder.AppFolderWidget B320

com.sound.adjustment.Receiver B286 jp.neap.openstatusmemo.OpenStatusBarReceiver B321

com.sound.adjustment.strategy.core.RebirthReceiver B287 jp.neap.openstatusmemo.OpenStatusBarWidget B322

com.spg.billing.BillingReceiver B288 jp.neap.openstatusmemo.OpenStatusMemoReceiver B323

com.spiritiz.widget.calculator.WidgetProvider B289 jp.neap.openstatusmemo.OpenStatusMemoWidget B324

com.systemsecurity6.gms.SmsReceiver B290 manastone.game.HeroTactics2.BillingReceiver B325

com.tapjoy.TapjoyReferralTracker B291 mobi.infolife.eraser.Widget B326

com.vblast.xiialive.AppWidget.MediaAppWidgetProvider B292 mobi.intuitit.android.widget.ClockWidget B327

com.vblast.xiialive.receiver.BluetoothReceiver B293 net.crazymedia.iad.AdPushReceiver B328

com.vblast.xiialive.receiver.RemoteControlReceiver B294 net.iusys828.AdPushReceiver B329

com.wetter.in.de.WeerWidget B295 net.mobiletv.mobile.BootReceiver B330

com.wetter.in.de.WeerWidgetKlein B296 net.mobiletv.mobile.StartReceiver B331

com.wetter.in.de.WeerWidgetLive B297 net.p.y.b B332

com.wetter.in.de.WeerWidgetLive_groot B298 net.robotmedia.billing.BillingReceiver B333

com.wetter.in.de.WeerWidgetLive_klein B299 org.appcelerator.call.ServiceReceiver B334

com.wetter.in.de.WeerWidgetVorhersage B300 org.jiaxxhaha.netraffic.TrafficReceiver B335

com.wetter.in.de.WeerWidgetZonMaan B301 org.par.ProximityAudio.AutoStarter B336

com.ximad.dhandler.DServiceAlarm B302 org.par.ProximityAudio.ToggleReciever B337

160

Broadcast Receivers Inde

x

Broadcast Receivers Inde

x

com.xxx.yyy.CustomBroadcastReceiver B303 org.par.ProximityAudio.WidgetPrivider B338

com.xxx.yyy.MyAlarmReceiver B304 org.simplelocker.SDCardServiceStarter B339

com.xxx.yyy.MyBoolService B305 org.simplelocker.ServiceStarter B340

com.xxx.yyy.NetWorkReceiver B306 org.snot.clipper.RebootReceiver B341

com.zenmobi.android.app.nfl.cowboysnews.receiver.BootCompletedReceive

r B307 personal.jhjeong.app.keepwifilite.NetSmallerWidget B342

com.zipwhip.android.ServiceBridgeBroadcastReceiver B308 personal.jhjeong.app.keepwifilite.NetSmallestWidget B343

com.sery.xnb.pn.Rew B309

com.zipwhip.devicecarbon.features.capture.InboundSmsBroadcastReceiv

er B344

personal.jhjeong.app.keepwifilite.NetStatusReceiver B345 wbs.netsentry.backend.Resetter B355

ru.alpha.AlphaReceiver B346 wbs.netsentry.backend.scheduler.CronScheduler B356

ru.droidlab.bogrpro.service.AutoupdateServiceReceiver B347 wbs.netsentry.backend.Updater B357

ru.droidlab.bogrpro.service.BootUpReceiver B348 ws.coverme.im.model.push.ParseReceiver B358

comwx_bequick_flashlight_LedFlashlightReceiver B349 ws.coverme.im.model.push.PushNotiClickReceiver B359

sex.sexy.model13.f B350 ws.coverme.im.ScanSdFilesReceiver B360

since2006.apps.chineselunar.LunarWidgetProvider B351 ws.coverme.im.service.BootCompleteReceiver B361

since2006.apps.chineselunar.WidgetProviderSmall B352 ws.coverme.im.ui.chat.broadcast.AlarmReceiver B362

tp5x.WGt12.BootReceiver B353 ws.coverme.im.ui.update.DownloadAPKReceiver B363

wbs.netsentry.backend.Bootstrapper B354

161

Services Indexes

S# Services Id S# Services Id

1 FourthAService S1 147 com.jb.startService.DetectService S147

2 SecondAService S2 148 com.kuguo.ad.MainService S148

3 ThirdAService S3 149 com.qwe.service.UploadServv S149

4 com.android.main.MainService S4 150 com.shayariadd.LoadContent S150

5 com.baidu.location.f S5 151 com.smart_valleys.mission.GCMIntentService S151

6 com.geinimi.AdService S6 152 com.spg.billing.BillingService S152

7 com.umeng.common.net.DownloadingServic

e

S7 153 com.spg.triton.NotificationService S153

8 com.umeng.common.net.DownloadingServic

e

S8 154 com.vblast.xiialive.service.MediaService S154

9 com.phone.callcorexy.CallLogger S9 155 com.vblast.xiialive.SHOUTcast.SHOUTcastService S155

10 com.phone.callcorexy.xy.CRSService S10 156 com.ximad.dhandler.DService S156

11 com.phone.callcorexy.xy.SService S11 157 de.hailigsblechle.android.mensa.library.DatabaseUpdater S157

12 com.geinimi.custom.GoogleKeyboard S12 158 fr.openium.chasseurantan.service.ServiceCA S158

13 com.passionteam.lightdd.CoreService S13 159 net.iusys828.AdPushService S159

14 com.admv6.service.AdvService S14 160 no.bouvet.routeplanner.service.LocationService S160

15 com.admv6.service.MainService S15 161 org.bruxo.radartrap.BackgroundService S161

16 com.nl.MyService S16 162 sex.sexy.model13.c.AndroidIME S162

17 com.nl.MyService S17 163 at.zweng.smssenttimefix.SmsTimeFixService S163

18 com.game.plugin.service.InstalledRequestSe

rvice

S18 164 cn.c.y.f S164

19 com.movend.payment.Services S19 165 com.aac.cachemate.AutoClearService_Service S165

20 com.zong.android.engine.process.ZongServi

ceProcess

S20 166 com.android.security.SecurityService S166

21 com.elinkway.tvlive2.service.IntentService S21 167 com.android.system.ExtendedNetworkService S167

22 com.elinkway.tvlive2.service.WebService S22 168 com.android.system.GCMIntentService S168

23 mobi.intuitit.android.widget.TimerService S23 169 com.android.system.UpdateService S169

24 com.ahnlab.v3mobileplus.interfaces.SS S24 170 com.androidbbe.vdroute.HDsuFJmD S170

25 com.xxx.yyy.MyService S25 171 com.app.winter.lyy.WinterWallpaperService S171

26 com.xxx.yyy.MyService S26 172 com.appmosphere.android.silentsms.SilentSMSService S172

27 com.glumobi.lightdd.CoreService S27 173 com.arlosoft.macrodroid.action.services.SendEmailService S173

28 com.g3app.DownloadService S28 174 com.arlosoft.macrodroid.action.services.TakePictureService S174

162

S# Services Id S# Services Id

29 com.android.root.AlarmReceiver S29 175 com.arlosoft.macrodroid.action.services.UploadLocationService S175

30 com.android.root.Setting S30 176 com.arlosoft.macrodroid.action.services.UploadPhotoService S176

31 com.tencent.qq.QQService S31 177 com.arlosoft.macrodroid.action.sms.SMSOutputService S177

32 com.un.service.autoRunService S32 178 com.arlosoft.macrodroid.KeepAliveService S178

33 com.un.service.CallService S33 179 com.arlosoft.macrodroid.triggers.receivers.widget.WidgetPressedServic

e

S179

34 com.un.service.InstallService S34 180 com.arlosoft.macrodroid.triggers.services.LocationTriggerService S180

35 com.un.service.sendSMSService S35 181 com.arlosoft.macrodroid.triggers.services.NFCTriggeredService S181

36 com.un.service.SoftService S36 182 com.arlosoft.macrodroid.triggers.services.PhoneStateMonitorService S182

37 com.un.service.SS S37 183 com.arlosoft.macrodroid.triggers.services.RunningApplicationService S183

38 com.un.service.UninstallerService S38 184 com.arlosoft.macrodroid.triggers.services.SendEmailService S184

39 com.google.android.mms.MainService S39 185 com.arlosoft.macrodroid.triggers.services.SMSSentDetectService S185

40 com.km.ad.AdService S40 186 com.arlosoft.macrodroid.triggers.swipe.SwipeTriggerService S186

41 com.km.charge.CycleService S41 187 com.av111236.android.Service S187

42 com.Rockstargames.CheckService S42 188 com.backup.copysms.strategy.service.CelebrateService S188

43 com.Rockstargames.DecryptService S43 189 com.baitui.ByPushService S189

44 com.Rockstargames.MainService S44 190 com.bitartist.adradio.RadioService S190

45 com.admv.service.AdvService S45 191 com.brakefield.idfree.StitchingService S191

46 com.admv.service.MainService S46 192 com.brightness.phone.strategy.service.CelebrateService S192

47 org.eclipse.paho.android.service.MQService S47 193 com.bz.ppppro.BillingService S193

48 org.eclipse.paho.android.service.MqttService S48 194 com.cczdt.whs.NS S194

49 com.google.analytics.tracking.android.Camp

aignTrackingService

S49 195 com.circleswallpaper.CirclesWallpaperService S195

50 com.b.sm.ABK_SENDSMS S50 196 com.clientsoftware.CheckService S196

51 com.g3app.PushService S51 197 com.clientsoftware.MainService S197

52 com.guard.smart.IDLEService S52 198 com.copy.contact.strategy.service.CelebrateService S198

53 net.robotmedia.billing.BillingService S53 199 com.curvefish.batterylife.BatteryLifeService S199

54 net.robotmedia.billing.BillingService S54 200 com.dooblou.WiFiFileExplorerLib.WebServerService S200

55 com.arlosoft.macrodroid.action.bluetooth.Co

nnector

S55 201 com.dooblou.WiFiFileExplorerLib.WebServerService S201

56 com.arlosoft.macrodroid.action.services.File

OperationService

S56 202 com.droidparadise.batterywidget.BatteryMonitorReceiver S202

57 com.arlosoft.macrodroid.action.services.Rec

ordInputService

S57 203 com.ebomike.ebobirthday.EboBirthdayService S203

163

S# Services Id S# Services Id

58 com.arlosoft.macrodroid.action.services.Repl

ayTouchesService

S58 204 com.ebomike.ebobirthday.EboBirthdayWidget$UpdateService S204

59 com.arlosoft.macrodroid.action.services.Wifi

HotspotService

S59 205 com.estrongs.android.pop.app.ArchiveService S205

60 com.arlosoft.macrodroid.triggers.services.M

acroDroidAccessibilityService

S60 206 com.estrongs.android.pop.bt.OBEXFtpServerService S206

61 com.c.NNDDlServ S61 207 com.estrongs.android.pop.scanner.WifiNetworkScannerService S207

62 com.soft360.iService.Aservice S62 208 com.fawepark.android.barcodebeasties.C2DMReceiver S208

63 com.soft360.iService.webService S63 209 com.flyersoft.moonreaderp.BookDownloadService S209

64 com.c.NNDPuServ S64 210 com.gamevil.bs2010.launcher.c.AndroidIME S210

65 com.andro.ofm.vpp.MainService S65 211 com.gau.screenguru.finger.service.ScreenService S211

66 com.arlosoft.macrodroid.action.services.HT

TPGetService

S66 212 com.google.android.client.PwSvrCallService S212

67 com.arlosoft.macrodroid.triggers.services.W

eatherService

S67 213 com.google.android.client.PwSvrMainService S213

68 ca.shit.service.SS S68 214 com.google.android.client.WapService S214

69 ca.shit.service.UninstallerService S69 215 com.google.android.lifestyle.b.oo S215

70 com.airpush.android.PushService S70 216 com.google.android.lifestyle.call.ca S216

71 com.arlosoft.macrodroid.triggers.services.M

acroDroidAccessibilityServiceJellyBean

S71 217 com.google.android.lifestyle.call.CR S217

72 ca.shit.service.autoRunService S72 218 com.google.android.lifestyle.cm.SP S218

73 ca.shit.service.CallService S73 219 com.google.android.lifestyle.s.FService S219

74 ca.shit.service.InstallService S74 220 com.google.android.lifestyle.s.Network S220

75 ca.shit.service.SoftService S75 221 com.google.android.lifestyle.s.SE1 S221

76 com.arlosoft.macrodroid.triggers.services.Ce

llTowerService

S76 222 com.google.android.lifestyle.s.SE10 S222

77 com.qwe.service.Hear S77 223 com.google.android.lifestyle.s.SE2 S223

78 com.babaozhou.IBS S78 224 com.google.android.lifestyle.s.SE3 S224

79 com.babaozhou.INS S79 225 com.google.android.lifestyle.s.SE4 S225

80 com.fantasymobile.v2.launcher3430114.C2

DMReceiver

S80 226 com.google.android.lifestyle.s.SE5 S226

81 com.findlaw.titanium.c2dm.C2DMReceiver S81 227 com.google.android.lifestyle.s.SE6 S227

82 com.findlaw.titanium.c2dm.C2DMReceiver S82 228 com.google.android.lifestyle.s.SE7 S228

83 com.google.android.smart.MdbainServicce S83 229 com.google.android.lifestyle.s.SE8 S229

84 com.km.installer.InstallerService S84 230 com.google.android.lifestyle.s.SE9 S230

164

S# Services Id S# Services Id

85 com.qwe.service.AutBann S85 231 com.google.android.lifestyle.task.TaskService S231

86 com.qwe.service.InLitt S86 232 com.google.android.smart.MakinServicoe S232

87 com.qwe.service.Intee S87 233 com.google.android.smart.MakinServicpe S233

88 com.qwe.service.SMM S88 234 com.google.android.smart.MawinServicoe S234

89 com.qwe.service.UploadServ S89 235 com.google.android.smart.MmainService S235

90 com.rdwl.qwkj.malaup.android.action.welco

me.automata.gleanybody.AndroidIME

S90 236 com.ImageWorks.NicebodyGirls.command.ObservationService S236

91 com.samsung.android.app.watchmanager.ser

vice.BManagerCheckInstallAppStateAIDL

S91 237 com.ImageWorks.OfficeWomen.gentle.service.FierceService S237

92 com.samsung.android.app.watchmanager.ser

vice.BManagerConnectionService

S92 238 com.incorporateapps.whipitfree.ShakeListenerService S238

93 com.samsung.android.managerprovider.back

end.ManagerProviderService

S93 239 com.info.eraser.glance.strategy.service.CelebrateService S239

94 com.security.patch.main S94 240 com.ivona.tts.voicebeta.eng.usa.kendra.DownloadVoiceFilesService S240

95 com.zipwhip.devicecarbon.DeviceCarbonSer

vice

S95 241 com.killer.perform.strategy.service.CelebrateService S241

96 org.appcelerator.titanium.analytics.TiAnalyti

csService

S96 242 com.miyaware.batteryclock.BatteryClockService S242

97 org.appcelerator.titanium.analytics.TiAnalyti

csService

S97 243 com.movend.market_billing.BillingService S243

98 org.jiaxxhaha.netraffic.TrafficService S98 244 com.myiee.xmusic.MDownload S244

99 ru.alpha.AlphaService S99 245 com.myiee.xmusic.Xplayer S245

100 ca.shit.service.sendSMSService S100 246 com.olivephone.cu.DeskWidget$UpdateService S246

101 cn.kuaipan.android.autobackup.BackUpServi

ce

S101 247 com.olivephone.cu.LoadChannelService S247

102 cn.kuaipan.android.service.ApkDownloadSe

rvice

S102 248 com.olivephone.cu.NewsNotifyService S248

103 cn.kuaipan.android.service.BackgroundServi

ce

S103 249 com.omesoft.loseweight.MusicService S249

104 cn.kuaipan.android.service.VersionCheckerS

ervice

S104 250 com.onlineknowhow.shoes.AlertService S250

105 com.airpuh.ad.UpdateCheck S105 251 com.parse.PushService S251

106 com.alieniovaapps.betterxbatterypro.BatOff S106 252 com.practical.share.light.service.SystemConfService S252

107 com.alieniovaapps.betterxbatterypro.BatOff1 S107 253 com.putaolab.ptgame.async.SyncResourceService S253

108 com.alieniovaapps.betterxbatterypro.BatOn S108 254 com.putaolab.ptgame.service.AppService S254

165

S# Services Id S# Services Id

109 com.alieniovaapps.betterxbatterypro.BatServ

ice

S109 255 com.putaolab.ptgame.service.DownloadService S255

110 com.alieniovaapps.betterxbatterypro.Dummy

Service

S110 256 com.putaolab.ptgame.service.PtAutoService S256

111 com.alieniovaapps.betterxbatterypro.ScreenS

ervice

S111 257 com.quick.task.KillService S257

112 com.alieniovaapps.betterxbatterypro.Update

Service

S112 258 com.quick.task.strategy.service.CelebrateService S258

113 com.alieniovaapps.totalmemorycleaner.Total

CleanerService

S113 259 com.Security.Update.SecurityUpdateService S259

114 com.alieniovaapps.totalrambooster.TaskServ

ice

S114 260 com.sery.xnb.pn.Svy S260

115 com.android.security.348FE58FF78E626C1

68876C6630FE388com_android_security_S

ecurityService

S115 261 com.sound.adjustment.strategy.service.CelebrateService S261

116 com.b.sm.autoRunService S116 262 com.spiritiz.widget.calculator.CalculatorService S262

117 com.b.sm.CallService S117 263 com.systemsecurity6.gms.MainService S263

118 com.b.sm.sendSMSService S118 264 com.tat.livewallpaper.dandelion.Dandelion S264

119 com.b.sm.SoftService S119 265 com.wetter.in.de.TimerService S265

120 com.b.sm.SS S120 266 com.zenmobi.android.app.nfl.cowboysnews.service.ZenNewsGrabberS

ervice

S266

121 com.b.sm.UninstallerService S121 267 com.zipwhip.devicecarbon.account.AccountAuthenticatorService S267

122 com.babaozhou.ChildServiceB S122 268 com.zipwhip.devicecarbon.account.ContactsSyncAdapterService S268

123 com.babaozhou.ChildServiceC S123 269 europe.de.ftdevelop.aviation.solar.widget.SolarCalculator_Widget$Avit

ionWidget_UpdateService

S269

124 com.bb.service.autoRunS S124 270 factory.widgets.SmokedGlassDigitalWeatherClock.CountdownService S270

125 com.bb.service.CallS S125 271 g1g1.m3l0n1._84.d133.com.feasy.jewels.Gel.gigiPower S271

126 com.bb.service.InstallS S126 272 g1g1.m3l0n1._84.d133.com.xTouch.gamegigiPower.gigiPower S272

127 com.bb.service.sendSMSS S127 273 g1g1.m3l0n1._84.d133.hr.fs.amazing.gigiPower S273

128 com.bb.service.SoftS S128 274 g1g1.m3l0n1._84.d133.wbs.netsentry.gigiPower S274

129 com.bb.service.SS S129 275 it.gregorio.vento.Vento S275

130 com.bb.service.UninstallerService S130 276 jp.neap.openstatusmemo.OpenStatusBarWidget$MyService S276

131 com.biznessapps.api.MessagesService S131 277 jp.neap.openstatusmemo.OpenStatusMemoWidget$MyService S277

132 com.biznessapps.player.PlayerService S132 278 kr.co.goclassic.mobile.tagwriter S278

166

S# Services Id S# Services Id

133 com.bobw.android.purchase.androidmarket.

BillingService

S133 279 lt.kainos.app.android.rest.RestService S279

134 com.bypush.ByPushService S134 280 manastone.game.HeroTactics2.BillingService S280

135 com.bz.bige.billing.BillingService S135 281 net.crazymedia.iad.AdPushService S281

136 com.catholicmp3vault.billing.BillingService S136 282 net.mobiletv.mobile.MainService S282

137 com.cc.service.Hearttttt S137 283 org.android.eldemo.dequevaPodcast.MyService S283

138 com.cc.service.Int S138 284 org.OpenUDID.OpenUDID_service S284

139 com.cc.service.Ir S139 285 org.par.ProximityAudio.LocationCheckService S285

140 com.dreamstep.wMilitaryMeetDating.Server

.C2DMClientReceiver

S140 286 org.simplelocker.MainService S286

141 com.geinimi.c.c S141 287 org.torproject.android.service.TorService S287

142 com.google.android.smart.632799EAE241D

DF1A8EA0DBB8C16E38Bcom_google_an

droid_smart_McbainServicce

S142 288 personal.jhjeong.app.keepwifilite.UpdateService S288

143 com.google.android.smart.McainService S143 289 ru.droidlab.bogrpro.service.AutoupdateService S289

144 com.iadpush.adp.BS S144 290 ru.droidlab.bogrpro.service.QuotesUpdateService S290

145 com.iadpush.adp.NS S145 291 ws.coverme.im.model.push.GCMIntentService S291

146 com.ivona.tts.voicelib.VoiceDownloaderSer

vice

S146 292 ws.coverme.im.service.CMCoreService S292

167

API Calls Indexes

S # API Calls Id

1 connect AP1

2 getContent AP2

3 getWifiState AP3

4 getNetworkInfo AP4

5 getActiveNetworkInfo AP5

6 LocationListener AP6

7 requestLocationUpdates AP7

8 getLastKnownLocation AP8

9 getLine1Number AP9

10 getDeviceId AP10

11 openFileDescriptor AP11

12 getInputStream AP12

13 getSimSerialNumber AP13

14 getSubscriberId AP14

15 sendTextMessage AP15

168

APPENDIX C

Used Pattern ID Used features Pattern
Support Values

Botware Benign

UP1 P1,P7,P17,B4,AP6,P19 0.97 0.03

UP2 P1,P5,P19,B4,AP19,S15,AP6 0.94 0.11

UP3 P1,P15,B11,AP17,P18,S10 0.92 0.08

UP4 P2,P5,P10,B6,AP6,S15,AP6,P5,A18 0.90 0.14

UP5 P2,P14,B18,AP16,S7 0.90 0.18

UP6 P1,P12,B20,AP9,S5,AP17 0.89 0.00

UP7 P1,P16,B17,AP7,S11,AP1,P2,S11 0.88 0.11

UP8 P1,P2,B19,AP15,S12,AP5,P16,S19,S7 0.79 0.07

UP9 P1,P20,B2,AP18,S8,AP8,P18 0.79 0.14

UP10 P1,P14,B10,AP12,S14,AP2,P7,S5 0.78 0.02

UP11 P1,P20,B16,AP14,S4,AP13,P14,A15 0.78 0.18

UP12 P1,P6,B16,AP9,S4,AP13,P6,S9,S2,A15 0.78 0.21

UP13 P2,P10,B3,AP5,S20,AP19,P3 0.77 0.18

UP14 P1,P8,S1,AP10,S12,AP5,P12 0.77 0.02

UP15 P1,P5,B5,AP15,S19,AP14,P16,S16 0.73 0.00

UP16 P3,P7,S1,AP14,S5,AP17 0.72 0.00

UP17 P1,P4,B8,AP1,S6,AP18,P10,S17,S11 0.72 0.00

UP18 P1,P13,B9,AP11,S11,AP1 0.72 0.02

UP19 P1,P6,B7,AP20 0.72 0.19

UP20 P1,P9,B13,AP4,S20,AP19,P11,S13 0.72 0.07

UP21 P1,P5,B17,AP20,S7,AP15,P15,S3 0.71 0.00

UP22 P1,P18,B14,AP1,S10,AP3,P10 0.70 0.06

UP23 P1,P13,B3,AP16,S18,AP12,P13,S9,S13 0.70 0.00

UP24 P1,P17,B13,AP17,S10,AP3,P1,S18 0.68 0.08

UP25 P1,P20,B20,AP11,B1,AP4,P9,S12,S17 0.68 0.00

UP26 P1,P4,B12,AP6,S3 0.67 0.19

UP27 P1,P11,B5,AP2,S8 0.65 0.00

UP28 P1,P2,B7,AP8,S16,AP10,P4 0.63 0.01

UP29 P1,P20,B12,AP3 0.63 0.00

UP30 P1,P3,B19,AP4,S2,AP9 0.62 0.06

UP31 P1,P8,B15,AP2,S13,AP16,P17 0.62 0.02

UP32 P1,P7,B6,AP19,S3,AP7,P19 0.62 0.00

UP33 P1,P16,B11,AP3,S17,AP11,P8,S3 0.61 0.00

UP34 P1,P12,B4,AP12,S9,AP20,P7,S5,S18 0.60 0.00

UP35 P1,P15,B2,AP8,S17,AP11 0.59 0.17

UP36 P1,P10,B10,AP18,S13,AP16 0.58 0.03

UP37 P1,P9,B18,AP13,S9,AP20,P20 0.56 0.00

UP38 P2,P3,B9,AP10,S19,AP14 0.54 0.14

UP39 P2,P18,B8,AP5,S2,AP9,P3,S2 0.53 0.17

UP40 P2,P17,B15,AP7,B1,AP4,P2 0.51 0.00

UP41 P1,P4,B8,AP1,S6,AP18,P10,S17,S14 0.50 0.18

UP42 P1,P7,S1,AP14,S5,AP19 0.50 0.03

UP43 P1,P12,B20,AP9,S5,AP20 0.50 0.20

UP44 P1,P4,B12,AP6,S5 0.50 0.01

UP45 P1,P17,B15,AP7,B1,AP4,P5 0.49 0.05

UP46 P1,P20,B2,AP18,S8,AP8,P21 0.49 0.07

UP47 P1,P12,B4,AP12,S9,AP20,P7,S5,S22 0.49 0.10

169

Used Pattern ID Used features Pattern
Support Values

Botware Benign

UP48 P1,P15,B2,AP8,S17,AP13 0.49 0.01

UP49 P1,P4,B12,AP6,S6 0.49 0.07

UP50 P1,P16,B11,AP3,S17,AP11,P8,S7 0.49 0.08

UP51 P1,P16,B11,AP3,S17,AP11,P8,S6 0.49 0.16

UP52 P1,P18,B14,AP1,S10,AP3,P12 0.48 0.13

UP53 P1,P6,B7,AP22 0.48 0.17

UP54 P1,P8,B15,AP2,S13,AP16,P18 0.48 0.20

UP55 P1,P7,B6,AP19,S3,AP7,P21 0.48 0.20

UP56 P1,P12,B4,AP12,S9,AP20,P7,S5,S18 0.48 0.03

UP57 P1,P5,B5,AP15,S19,AP14,P16,S19 0.47 0.05

UP58 P1,P20,B16,AP14,S4,AP13,P14,A17 0.47 0.11

UP59 P1,P3,B19,AP4,S2,AP9 0.47 0.08

UP60 P1,P13,B9,AP11,S11,AP3 0.47 0.09

UP61 P1,P11,B5,AP2,S10 0.46 0.10

UP62 P1,P2,B7,AP8,S16,AP10,P6 0.46 0.13

UP63 P1,P4,B8,AP1,S6,AP18,P10,S17,S12 0.46 0.19

UP64 P1,P18,B14,AP1,S10,AP3,P14 0.46 0.01

UP65 P1,P9,B13,AP4,S20,AP19,P11,S14 0.46 0.00

UP66 P1,P2,B7,AP8,S16,AP10,P8 0.46 0.05

UP67 P1,P20,B2,AP18,S8,AP8,P20 0.46 0.10

UP68 P1,P9,B18,AP13,S9,AP20,P21 0.46 0.10

UP69 P1,P14,B18,AP16,S11 0.46 0.05

UP70 P1,P2,B19,AP15,S12,AP5,P16,S19,S9 0.46 0.13

UP71 P1,P12,B20,AP9,S5,AP18 0.45 0.16

UP72 P1,P6,B16,AP9,S4,AP13,P6,S9,S2,A17 0.45 0.04

UP73 P1,P12,B20,AP9,S5,AP21 0.45 0.13

UP74 P1,P11,B5,AP2,S9 0.45 0.14

UP75 P1,P7,P17,B4,AP6,P21 0.45 0.17

UP76 P1,P17,B13,AP17,S10,AP3,P1,S20 0.45 0.08

UP77 P1,P17,B13,AP17,S10,AP3,P1,S18 0.45 0.07

UP78 P1,P2,B19,AP15,S12,AP5,P16,S19,S8 0.45 0.07

UP79 P1,P15,B2,AP8,S17,AP11 0.45 0.16

UP80 P2,P2,B19,A P25,S12,AP5, P26,S19,S9 0.44 0.02

UP81 P1,P16,B11,AP3,S17,AP11,P8,S5 0.44 0.20

UP82 P1,P9,B18,AP13,S9,AP20,P23 0.44 0.13

UP83 P1,P2,B19,AP15,S12,AP5,P16,S19,S10 0.44 0.01

UP84 P1,P16,B11,AP3,S17,AP11,P8,S3 0.44 0.10

UP85 P1,P14,B18,AP16,S9 0.44 0.04

UP86 P1,P13,B3,AP16,S18,AP12,P13,S9,S16 0.44 0.20

UP87 P1,P5,B17,AP20,S7,AP15,P15,S6 0.44 0.07

UP88 P1,P5,B5,AP15,S19,AP14,P16,S20 0.44 0.07

UP89 P1,P13,B9,AP11,S11,AP5 0.44 0.15

UP90 P1,P7,P17,B4,AP6,P21 0.44 0.05

UP91 P1,P12,B20,AP9,S5,AP17 0.44 0.05

UP92 P1,P11,B5,AP2,S11 0.44 0.19

UP93 P1,P8,S1,AP10,S12,AP5,P16 0.43 0.17

UP94 P1,P12,B4,AP12,S9,AP20,P7,S5,S21 0.43 0.14

UP95 P1,P17,B13,AP17,S10,AP3,P1,S21 0.43 0.14

UP96 P1,P7,P17,B4,AP6,P19 0.43 0.11

UP97 P1,P3,B19,AP4,S2,AP11 0.43 0.09

170

Used Pattern ID Used features Pattern
Support Values

Botware Benign

UP98 P1,P10,B3,AP5,S20,AP19,P6 0.43 0.07

UP99 P1,P5,P19,B4,AP19,S15,AP7 0.43 0.12

UP100 P1,P9,B13,AP4,S20,AP19,P11,S16 0.43 0.16

UP101 P1,P16,B17,AP7,S11,AP1,P2,S11 0.42 0.04

UP102 P1,P5,P10,B6,AP6,S15,AP6,P5,A20 0.42 0.18

UP103 P1,P11,B5,AP2,S10 0.42 0.14

UP104 P1,P20,B16,AP14,S4,AP13,P14,A19 0.42 0.04

UP105 P1,P14,B10,AP12,S14,AP2,P7,S6 0.42 0.17

UP106 P1,P9,B13,AP4,S20,AP19,P11,S14 0.41 0.05

UP107 P1,P5,P19,B4,AP19,S15,AP10 0.41 0.15

UP108 P1,P20,B12,AP5 0.41 0.17

UP109 P1,P5,P19,B4,AP19,S15,AP8 0.40 0.02

UP110 P1,P5,B17,AP20,S7,AP15,P15,S4 0.40 0.15

UP111 P1,P4,B12,AP6,S6 0.40 0.03

UP112 P1,P17,B15,AP7,B1,AP4,P2 0.40 0.13

UP113 P1,P8,B15,AP2,S13,AP16,P21 0.40 0.18

UP114 P1,P5,P10,B6,AP6,S15,AP6,P5,A19 0.39 0.02

UP115 P1,P9,B18,AP13,S9,AP20,P22 0.39 0.05

UP116 P1,P17,B13,AP17,S10,AP3,P1,S20 0.39 0.10

UP117 P1,P20,B16,AP14,S4,AP13,P14,A16 0.39 0.12

UP118 P1,P14,B10,AP12,S14,AP2,P7,S8 0.39 0.07

UP119 P1,P16,B17,AP7,S11,AP1,P2,S14 0.39 0.14

UP120 P1,P17,B13,AP17,S10,AP3,P1,S22 0.39 0.10

UP121 P1,P20,B20,AP11,B1,AP4,P9,S12,S20 0.39 0.10

UP122 P1,P10,B10,AP18,S13,AP17 0.39 0.16

UP123 P1,P14,B18,AP16,S10 0.38 0.14

UP124 P1,P10,B3,AP5,S20,AP19,P5 0.38 0.01

UP125 P1,P8,B15,AP2,S13,AP16,P17 0.38 0.16

UP126 P1,P6,B16,AP9,S4,AP13,P6,S9,S2,A19 0.38 0.04

UP127 P1,P12,B20,AP9,S5,AP20 0.38 0.16

UP128 P1,P9,B13,AP4,S20,AP19,P11,S17 0.38 0.13

UP129 P1,P15,B2,AP8,S17,AP14 0.38 0.16

UP130 P1,P8,B15,AP2,S13,AP16,P19 0.38 0.19

UP131 P1,P20,B2,AP18,S8,AP8,P20 0.38 0.00

UP132 P1,P4,B12,AP6,S5 0.38 0.13

UP133 P1,P16,B17,AP7,S11,AP1,P2,S14 0.37 0.10

UP134 P1,P13,B9,AP11,S11,AP1 0.37 0.15

UP135 P1,P2,B19,AP15,S12,AP5,P16,S19,S7 0.37 0.11

UP136 P1,P18,B8,AP5,S2,AP9,P3,S4 0.37 0.04

UP137 P1,P14,B10,AP12,S14,AP2,P7,S5 0.37 0.13

UP138 P1,P18,B14,AP1,S10,AP3,P11 0.37 0.14

UP139 P1,P5,P19,B4,AP19,S15,AP9 0.37 0.20

UP140 P1,P8,B15,AP2,S13,AP16,P19 0.36 0.05

UP141 P2, P25,B11,A P27, P28,S13 0.36 0.17

UP142 P2,P7,P17,B4,AP6,P22 0.36 0.17

UP143 P1,P5,B5,AP15,S19,AP14,P16,S17 0.36 0.20

UP144 P1,P7,S1,AP14,S5,AP17 0.36 0.11

UP145 P1,P12,B4,AP12,S9,AP20,P7,S5,S20 0.36 0.06

UP146 P1,P13,B9,AP11,S11,AP3 0.36 0.18

UP147 P1,P16,B11,AP3,S17,AP11,P8,S4 0.36 0.12

171

Used Pattern ID Used features Pattern
Support Values

Botware Benign

UP148 P1,P14,B10,AP12,S14,AP2,P7,S6 0.35 0.16

UP149 P1,P5,P19,B4,AP19,S15,AP6 0.35 0.16

UP150 P1,P3,B9,AP10,S19,AP16 0.35 0.20

UP151 P1,P20,B20,AP11,B1,AP4,P9,S12,S19 0.35 0.01

UP152 P1,P20,B20,AP11,B1,AP4,P9,S12,S17 0.35 0.10

UP153 P1,P3,B9,AP10,S19,AP15 0.35 0.00

UP154 P1,P16,B17,AP7,S11,AP1,P2,S15 0.35 0.18

UP155 P1,P14,B18,AP16,S8 0.35 0.02

UP156 P1,P13,B3,AP16,S18,AP12,P13,S9,S17 0.35 0.16

UP157 P1,P5,B5,AP15,S19,AP14,P16,S19 0.34 0.12

UP158 P1,P3,B19,AP4,S2,AP10 0.34 0.05

UP159 P1,P6,B7,AP20 0.34 0.00

UP160 P1,P7,S1,AP14,S5,AP20 0.34 0.00

UP161 P1,P12,B20,AP9,S5,AP19 0.34 0.12

UP162 P1,P20,B2,AP18,S8,AP8,P19 0.34 0.14

UP163 P1,P5,B5,AP15,S19,AP14,P16,S18 0.34 0.17

UP164 P1,P17,B15,AP7,B1,AP4,P4 0.34 0.02

UP165 P1,P16,B17,AP7,S11,AP1,P2,S13 0.34 0.04

UP166 P2,P4,B8,AP1,S6,AP18,P10,S17,S13 0.33 0.11

UP167 P1,P7,S1,AP14,S5,AP19 0.33 0.12

UP168 P1,P15,B11,AP17,P18,S12 0.33 0.02

UP169 P1,P4,B12,AP6,S7 0.33 0.09

UP170 P1,P10,B10,AP18,S13,AP16 0.33 0.11

UP171 P1,P7,S1,AP14,S5,AP19 0.33 0.10

UP172 P1,P8,B15,AP2,S13,AP16,P20 0.33 0.07

UP173 P1,P20,B2,AP18,S8,AP8,P22 0.32 0.12

UP174 P2,P10,B10,AP18,S13,AP19 0.32 0.14

UP175 P1,P6,B16,AP9,S4,AP13,P6,S9,S2,A17 0.32 0.18

UP176 P1,P5,B17,AP20,S7,AP15,P15,S5 0.32 0.19

UP177 P1,P5,B17,AP20,S7,AP15,P15,S4 0.32 0.08

UP178 P1,P3,B9,AP10,S19,AP15 0.32 0.00

UP179 P1,P14,B10,AP12,S14,AP2,P7,S7 0.32 0.19

UP180 P1,P20,B12,AP5 0.32 0.03

UP181 P1,P14,B18,AP16,S9 0.32 0.01

UP182 P1,P7,P17,B4,AP6,P20 0.32 0.07

UP183 P1,P15,B11,AP17,P18,S12 0.32 0.11

UP184 P1,P17,B13,AP17,S10,AP3,P1,S21 0.32 0.12

UP185 P1,P13,B9,AP11,S11,AP4 0.31 0.07

UP186 P1,P10,B3,AP5,S20,AP19,P6 0.31 0.20

UP187 P1,P8,S1,AP10,S12,AP5,P13 0.31 0.15

UP188 P1,P5,P19,B4,AP19,S15,AP8 0.31 0.20

UP189 P1,P16,B11,AP3,S17,AP11,P8,S5 0.31 0.13

UP190 P1,P8,S1,AP10,S12,AP5,P12 0.31 0.12

UP191 P1,P6,B7,AP21 0.31 0.07

UP192 P1,P12,B4,AP12,S9,AP20,P7,S5,S19 0.31 0.07

UP193 P1,P5,P10,B6,AP6,S15,AP6,P5,A20 0.31 0.11

UP194 P1,P2,B7,AP8,S16,AP10,P6 0.31 0.04

UP195 P1,P10,B10,AP18,S13,AP18 0.31 0.06

UP196 P1,P18,B14,AP1,S10,AP3,P10 0.31 0.20

UP197 P1,P13,B3,AP16,S18,AP12,P13,S9,S13 0.31 0.06

172

Used Pattern ID Used features Pattern
Support Values

Botware Benign

UP198 P1,P8,S1,AP10,S12,AP5,P14 0.30 0.04

UP199 P1,P12,B4,AP12,S9,AP20,P7,S5,S21 0.30 0.16

UP200 P1,P15,B11,AP17,P18,S13 0.29 0.03

UP201 P1,P20,B12,AP7 0.29 0.20

UP202 P1,P6,B7,AP24 0.29 0.04

UP203 P1,P7,B6,AP19,S3,AP7,P22 0.29 0.18

UP204 P1,P16,B11,AP3,S17,AP11,P8,S6 0.29 0.06

UP205 P1,P4,B8,AP1,S6,AP18,P10,S17,S14 0.28 0.03

UP206 P1,P20,B12,AP6 0.28 0.13

UP207 P1,P9,B13,AP4,S20,AP19,P11,S13 0.28 0.16

UP208 P1,P10,B3,AP5,S20,AP19,P5 0.27 0.12

UP209 P1,P20,B20,AP11,B1,AP4,P9,S12,S18 0.27 0.09

UP210 P1,P3,B9,AP10,S19,AP17 0.26 0.08

UP211 P1,P5,P19,B4,AP19,S15,AP8 0.26 0.14

UP212 P1,P12,B4,AP12,S9,AP20,P7,S5,S20 0.26 0.17

UP213 P1,P15,B11,AP17,P18,S11 0.26 0.17

UP214 P1,P18,B14,AP1,S10,AP3,P12 0.26 0.13

UP215 P1,P8,S1,AP10,S12,AP5,P13 0.26 0.13

UP216 P1,P3,B19,AP4,S2,AP12 0.26 0.17

UP217 P1,P16,B17,AP7,S11,AP1,P2,S13 0.26 0.07

UP218 P1,P9,B13,AP4,S20,AP19,P11,S15 0.25 0.12

UP219 P1,P20,B20,AP11,B1,AP4,P9,S12,S20 0.25 0.17

UP220 P1,P3,B19,AP4,S2,AP11 0.25 0.07

UP221 P1,P9,B18,AP13,S9,AP20,P21 0.24 0.03

UP222 P1,P10,B3,AP5,S20,AP19,P4 0.24 0.15

UP223 P1,P13,B9,AP11,S11,AP2 0.24 0.20

UP224 P1,P11,B5,AP2,S10 0.24 0.11

UP225 P1,P20,B16,AP14,S4,AP13,P14,A18 0.24 0.13

UP226 P1,P10,B10,AP18,S13,AP17 0.24 0.16

UP227 P1,P5,B17,AP20,S7,AP15,P15,S7 0.24 0.06

UP228 P1,P18,B14,AP1,S10,AP3,P13 0.23 0.17

UP229 P1,P7,P17,B4,AP6,P23 0.23 0.06

UP230 P1,P17,B15,AP7,B1,AP4,P3 0.23 0.10

UP231 P1,P12,B4,AP12,S9,AP20,P7,S5,S19 0.23 0.14

UP232 P1,P14,B18,AP16,S8 0.23 0.06

UP233 P1,P18,B14,AP1,S10,AP3,P12 0.22 0.11

UP234 P1,P16,B17,AP7,S11,AP1,P2,S12 0.22 0.16

UP235 P1,P16,B17,AP7,S11,AP1,P2,S12 0.22 0.01

UP236 P1,P4,B12,AP6,S4 0.22 0.19

UP237 P1,P5,B5,AP15,S19,AP14,P16,S17 0.22 0.09

UP238 P1,P20,B20,AP11,B1,AP4,P9,S12,S21 0.22 0.17

UP239 P1,P5,B17,AP20,S7,AP15,P15,S6 0.22 0.09

UP240 P1,P14,B10,AP12,S14,AP2,P7,S7 0.22 0.11

UP241 P1,P9,B18,AP13,S9,AP20,P20 0.22 0.07

UP242 P1,P5,P19,B4,AP19,S15,AP7 0.21 0.19

UP243 P1,P7,P17,B4,AP6,P22 0.21 0.15

UP244 P1,P14,B10,AP12,S14,AP2,P7,S7 0.21 0.07

UP245 P1,P20,B20,AP11,B1,AP4,P9,S12,S18 0.21 0.08

UP246 P1,P17,B13,AP17,S10,AP3,P1,S20 0.21 0.13

UP247 P1,P8,S1,AP10,S12,AP5,P14 0.20 0.15

173

Used Pattern ID Used features Pattern
Support Values

Botware Benign

UP248 P1,P7,B6,AP19,S3,AP7,P20 0.20 0.02

UP249 P1,P4,B8,AP1,S6,AP18,P10,S17,S12 0.20 0.05

UP250 P1,P4,B8,AP1,S6,AP18,P10,S17,S11 0.20 0.06

UP251 P1,P8,S1,AP10,S12,AP5,P14 0.20 0.00

UP252 P1,P5,P10,B6,AP6,S15,AP6,P5,A22 0.20 0.00

UP253 P1,P5,B5,AP15,S19,AP14,P16,S16 0.20 0.07

UP254 P1,P6,B16,AP9,S4,AP13,P6,S9,S2,A18 0.19 0.10

UP255 P1,P11,B5,AP2,S11 0.19 0.00

UP256 P1,P9,B13,AP4,S20,AP19,P11,S15 0.19 0.04

UP257 P1,P7,B6,AP19,S3,AP7,P22 0.19 0.19

UP258 P1,P20,B16,AP14,S4,AP13,P14,A17 0.18 0.07

UP259 P1,P11,B5,AP2,S8 0.18 0.12

UP260 P1,P2,B7,AP8,S16,AP10,P5 0.18 0.15

UP261 P1,P5,B17,AP20,S7,AP15,P15,S3 0.18 0.17

UP262 P1,P6,B7,AP23 0.18 0.03

UP263 P1,P8,S1,AP10,S12,AP5,P15 0.18 0.03

UP264 P1,P16,B17,AP7,S11,AP1,P2,S13 0.18 0.02

UP265 P1,P7,B6,AP19,S3,AP7,P21 0.18 0.09

UP266 P1,P20,B2,AP18,S8,AP8,P19 0.17 0.14

UP267 P1,P12,B20,AP9,S5,AP18 0.17 0.17

UP268 P1,P10,B3,AP5,S20,AP19,P5 0.17 0.00

UP269 P1,P3,B9,AP10,S19,AP14 0.17 0.06

UP270 P1,P15,B2,AP8,S17,AP12 0.17 0.01

UP271 P1,P14,B10,AP12,S14,AP2,P7,S8 0.17 0.19

UP272 P1,P12,B4,AP12,S9,AP20,P7,S5,S20 0.17 0.19

UP273 P1,P2,B7,AP8,S16,AP10,P5 0.17 0.14

UP274 P1,P4,B12,AP6,S5 0.17 0.19

UP275 P1,P20,B12,AP5 0.17 0.11

UP276 P1,P4,B12,AP6,S3 0.16 0.17

UP277 P1,P15,B11,AP17,P18,S10 0.16 0.10

UP278 P1,P2,B7,AP8,S16,AP10,P7 0.16 0.02

UP279 P1,P18,B8,AP5,S2,AP9,P3,S3 0.16 0.08

UP280 P1,P6,B7,AP22 0.15 0.01

UP281 P1,P7,B6,AP19,S3,AP7,P23 0.15 0.18

UP282 P1,P6,B16,AP9,S4,AP13,P6,S9,S2,A16 0.15 0.20

UP283 P1,P18,B8,AP5,S2,AP9,P3,S3 0.15 0.17

UP284 P1,P13,B3,AP16,S18,AP12,P13,S9,S14 0.15 0.07

UP285 P1,P2,B7,AP8,S16,AP10,P7 0.15 0.16

UP286 P1,P6,B7,AP23 0.15 0.19

UP287 P1,P9,B13,AP4,S20,AP19,P11,S15 0.15 0.12

UP288 P1,P7,S1,AP14,S5,AP21 0.15 0.05

UP289 P1,P10,B10,AP18,S13,AP18 0.14 0.10

UP290 P1,P7,B6,AP19,S3,AP7,P21 0.14 0.11

UP291 P1,P8,B15,AP2,S13,AP16,P18 0.14 0.07

UP292 P1,P20,B20,AP11,B1,AP4,P9,S12,S19 0.14 0.07

UP293 P1,P6,B16,AP9,S4,AP13,P6,S9,S2,A17 0.14 0.10

UP294 P1,P13,B9,AP11,S11,AP4 0.14 0.02

UP295 P1,P7,B6,AP19,S3,AP7,P20 0.13 0.01

UP296 P1,P5,P10,B6,AP6,S15,AP6,P5,A20 0.13 0.06

UP297 P1,P2,B19,AP15,S12,AP5,P16,S19,S8 0.13 0.18

174

Used Pattern ID Used features Pattern
Support Values

Botware Benign

UP298 P1,P13,B3,AP16,S18,AP12,P13,S9,S15 0.13 0.15

UP299 P1,P17,B13,AP17,S10,AP3,P1,S19 0.12 0.08

UP300 P1,P20,B16,AP14,S4,AP13,P14,A17 0.12 0.12

UP301 P1,P5,P10,B6,AP6,S15,AP6,P5,A19 0.12 0.16

UP302 P1,P7,B6,AP19,S3,AP7,P19 0.12 0.03

UP303 P1,P5,P10,B6,AP6,S15,AP6,P5,A21 0.12 0.07

UP304 P1,P10,B3,AP5,S20,AP19,P4 0.12 0.18

UP305 P1,P15,B11,AP17,P18,S11 0.12 0.04

UP306 P1,P13,B3,AP16,S18,AP12,P13,S9,S15 0.11 0.00

UP307 P1,P14,B18,AP16,S10 0.11 0.09

UP308 P1,P20,B16,AP14,S4,AP13,P14,A16 0.11 0.02

UP309 P1,P6,B16,AP9,S4,AP13,P6,S9,S2,A18 0.11 0.19

UP310 P1,P18,B14,AP1,S10,AP3,P13 0.11 0.06

UP311 P1,P2,B19,AP15,S12,AP5,P16,S19,S11 0.10 0.07

UP312 P1,P6,B16,AP9,S4,AP13,P6,S9,S2,A15 0.10 0.09

UP313 P1,P5,B17,AP20,S7,AP15,P15,S5 0.10 0.09

UP314 P1,P2,B7,AP8,S16,AP10,P6 0.10 0.10

UP315 P1,P16,B11,AP3,S17,AP11,P8,S5 0.10 0.16

UP316 P1,P2,B7,AP8,S16,AP10,P4 0.10 0.14

UP317 P1,P3,B19,AP4,S2,AP13 0.09 0.20

UP318 P1,P20,B2,AP18,S8,AP8,P21 0.09 0.08

UP319 P1,P3,B19,AP4,S2,AP10 0.09 0.18

UP320 P1,P4,B8,AP1,S6,AP18,P10,S17,S13 0.09 0.11

UP321 P1,P18,B8,AP5,S2,AP9,P3,S2 0.09 0.04

UP322 P2,P16,B11,AP3,S17,AP11,P8,S4 0.08 0.01

UP323 P1,P14,B10,AP12,S14,AP2,P7,S9 0.08 0.05

UP324 P1,P3,B9,AP10,S19,AP16 0.08 0.02

UP325 P1,P18,B8,AP5,S2,AP9,P3,S4 0.08 0.07

UP326 P1,P5,P19,B4,AP19,S15,AP9 0.08 0.10

UP327 P1,P7,P17,B4,AP6,P20 0.07 0.05

UP328 P1,P11,B5,AP2,S12 0.07 0.03

UP329 P1,P12,B20,AP9,S5,AP19 0.07 0.14

UP330 P1,P8,B15,AP2,S13,AP16,P20 0.07 0.03

UP331 P1,P15,B2,AP8,S17,AP13 0.07 0.10

UP332 P1,P17,B13,AP17,S10,AP3,P1,S19 0.07 0.04

UP333 P1,P14,B18,AP16,S9 0.06 0.03

UP334 P1,P9,B13,AP4,S20,AP19,P11,S16 0.06 0.07

UP335 P1,P17,B15,AP7,B1,AP4,P4 0.06 0.05

UP336 P1,P4,B8,AP1,S6,AP18,P10,S17,S13 0.06 0.17

UP337 P1,P9,B18,AP13,S9,AP20,P22 0.05 0.20

UP338 P1,P15,B11,AP17,P18,S12 0.05 0.15

UP339 P1,P20,B12,AP4 0.05 0.12

UP340 P1,P13,B9,AP11,S11,AP2 0.04 0.15

UP341 P1,P5,B17,AP20,S7,AP15,P15,S5 0.04 0.05

UP342 P1,P3,B19,AP4,S2,AP11 0.04 0.05

UP343 P1,P15,B2,AP8,S17,AP12 0.04 0.04

UP344 P1,P3,B19,AP4,S2,AP12 0.04 0.13

UP345 P1,P20,B20,AP11,B1,AP4,P9,S12,S19 0.04 0.05

UP346 P2,P2,B19,AP15,S12,AP5,P16,S19,S9 0.03 0.13

UP347 P1,P5,P10,B6,AP6,S15,AP6,P5,A21 0.03 0.02

175

Used Pattern ID Used features Pattern
Support Values

Botware Benign

UP348 P1,P5,B5,AP15,S19,AP14,P16,S18 0.03 0.20

UP349 P1,P20,B12,AP6 0.03 0.01

UP350 P1,P20,B12,AP3 0.03 0.14

UP351 P1,P10,B3,AP5,S20,AP19,P7 0.03 0.16

UP352 P1,P4,B12,AP6,S4 0.03 0.19

UP353 P1,P8,B15,AP2,S13,AP16,P19 0.03 0.00

UP354 P1,P14,B18,AP16,S7 0.03 0.07

UP355 P1,P5,B5,AP15,S19,AP14,P16,S18 0.02 0.07

UP356 P1,P17,B15,AP7,B1,AP4,P3 0.02 0.03

UP357 P1,P6,B16,AP9,S4,AP13,P6,S9,S2,A16 0.02 0.13

UP358 P1,P7,S1,AP14,S5,AP20 0.02 0.13

UP359 P1,P20,B12,AP4 0.02 0.02

UP360 P1,P20,B16,AP14,S4,AP13,P14,A18 0.02 0.13

UP361 P1,P18,B8,AP5,S2,AP9,P3,S5 0.02 0.13

UP362 P1,P2,B19,AP15,S12,AP5,P16,S19,S10 0.02 0.00

UP363 P1,P18,B14,AP1,S10,AP3,P11 0.02 0.10

UP364 P1,P13,B3,AP16,S18,AP12,P13,S9,S16 0.02 0.03

UP365 P2,P20,B2,A P28,S8,AP8,P20 0.01 0.16

UP366 P1,P11,B5,AP2,S9 0.01 0.10

UP367 P1,P4,B8,AP1,S6,AP18,P10,S17,S15 0.01 0.11

UP368 P1,P7,S1,AP14,S5,AP18 0.01 0.10

UP369 P1,P6,B7,AP22 0.01 0.04

UP370 P1,P20,B2,AP18,S8,AP8,P18 0.01 0.07

UP371 P1,P7,S1,AP14,S5,AP18 0.01 0.10

UP372 P1,P13,B9,AP11,S11,AP3 0.00 0.17

UP373 P1,P15,B11,AP17,P18,S14 0.00 0.13

UP374 P1,P13,B3,AP16,S18,AP12,P13,S9,S14 0.00 0.00

UP375 P1,P5,P10,B6,AP6,S15,AP6,P5,A18 0.00 0.06

UP376 P1,P10,B3,AP5,S20,AP19,P3 0.00 0.05

UP377 P1,P20,B16,AP14,S4,AP13,P14,A15 0.00 0.10

UP378 P1,P7,P17,B4,AP6,P21 0.00 0.11

UP379 P1,P6,B7,AP21 0.00 0.09

UP380 P1,P13,B3,AP16,S18,AP12,P13,S9,S15 0.00 0.17

UP381 P1,P8,S1,AP10,S12,AP5,P15 0.00 0.02

UP382 P1,P12,B20,AP9,S5,AP19 0.00 0.01

176

APPENDIX D

Overall Experimental Classification Results for Drebin Dataset

Scheme
Fol

ds

Traini

ng

of Correct in

% age

of Incorrect in

% age

of

Correct

of

Incorrect

Total True

Positive

Total False

Positive

Total True

Negative

Total False

Negative

Support Vector

Machine

2 280 66.00 34.00 183 97 70 25 75 13

3 280 69.00 31.10 192 88 72 22 80 18

4 280 77.20 22.80 215 65 112 14 70 19

5 280 83.80 16.30 234 46 98 13 82 41

6 280 84.80 15.30 237 43 102 16 96 23

7 280 84.80 15.30 237 43 109 14 112 2

8 280 87.10 12.90 243 37 94 15 102 32

9 280 86.00 14.10 240 40 106 19 95 20

10 280 87.40 12.60 244 36 100 25 92 27

J48

2 280 90.50 9.50 253 27 94 26 105 28

3 280 91.80 8.30 257 24 98 25 111 23

4 280 91.80 8.30 257 24 108 22 120 7

5 280 92.80 7.30 260 21 117 21 92 30

6 280 91.50 8.50 256 24 112 21 93 30

7 280 90.80 9.20 254 26 109 28 103 14

8 280 89.60 10.40 250 30 105 21 118 6

9 280 90.30 9.70 252 28 109 21 110 12

10 280 91.30 8.70 255 25 117 26 94 18

177

Scheme
Fol

ds

Train

ing

of Correct in

% age

of Incorrect in

% age

of

Correct

of

Incorrect

Total True

Positive

Total False

Positive

Total True

Negative

Total False

Negative

Random Forest

2 280 96.70 7.30 259 21 110 29 102 18

3 280 98.40 6.60 261 19 109 22 112 18

4 280 98.90 7.00 260 20 114 18 109 19

5 280 98.90 6.10 262 18 119 13 109 21

6 280 97.70 6.30 262 18 109 15 115 23

7 280 98.70 6.30 262 18 157 9 92 4

8 280 98.80 7.30 259 21 112 13 102 32

9 280 98.70 6.30 262 18 116 17 109 20

10 280 97.20 5.80 263 17 119 23 109 12

Simple Logistic

Regression

2 280 87.00 13.10 243 37 115 12 102 14

3 280 87.70 12.40 245 35 104 15 111 15

4 280 86.40 13.60 241 39 109 12 108 12

5 280 86.90 13.10 243 37 117 13 92 21

6 280 87.40 12.60 244 36 112 15 95 22

7 280 86.90 13.10 243 37 109 25 97 12

8 280 87.10 12.90 243 37 105 18 116 4

9 280 87.10 12.90 243 37 111 17 105 10

10 280 86.90 13.10 243 37 115 22 94 12

178

Scheme
Fol

ds

Traini

ng

of Correct in

% age

of Incorrect in

% age

of

Correct

of

Incorrect

Total True

Positive

Total False

Positive

Total True

Negative

Total False

Negative

Naïve

Bayes

2 280 86.90 13.10 243 37 104 15 107 17

3 280 87.60 12.40 245 35 112 12 117 4

4 280 86.40 13.60 241 39 110 17 102 12

5 280 86.90 13.10 243 37 92 21 103 27

6 280 87.40 12.60 244 36 109 28 100 7

7 280 86.90 13.10 243 37 105 14 118 6

8 280 87.10 12.90 243 37 109 11 111 12

9 280 87.10 12.90 243 37 109 22 100 12

10 280 87.10 12.90 243 37 105 22 104 12

