MODIFIED BOX-JENKINS AND GARCH FOR FORECASTING HIGHLY VOLATILE TIME SERIES DATA

SITI ROSLINDAR BINTI YAZIZ

DOCTOR OF PHILOSOPHY

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT

Author's Full Name : SITI ROSLINDAR BINTI YAZIZ

Date of Birth $: 02$ JUNE 1979
Title
: MODIFIED BOX-JENKINS AND GARCH FOR \qquad FORECASTING HIGHLY VOLATILE TIME SERIES DATA

Academic Session : SEMESTER II 2018/2019

I declare that this thesis is classified as:CONFIDENTIALRESTRICTED

OPEN ACCESS
(Contains confidential information under the Official Secret Act 1997)*
(Contains restricted information as specified by the organisation where research was done)*
I agree that my thesis to be published as online open access (Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang
2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

(Student's Signature)

790602-03-5630
Date: May 2019
(Supervisor's Signature)

Assoc. Prof. Dr. Roslinazairimah Binti Zakaria
Date: May 2019

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy.

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.
(Student's Signature)
Full Name : SITI ROSLINDAR BINTI YAZIZ
ID Number : PSS12001
Date

MODIFIED BOX-JENKINS AND GARCH FOR FORECASTING HIGHLY VOLATILE TIME SERIES DATA

ACKNOWLEDGEMENTS

Alhamdulillah, I am grateful to Allah The Almighty for conferring me the passion, strength, health and the patience to finally complete this thesis.

My deepest appreciation and gratitude to my supervisors, Dr. Roslinazairimah Zakaria (main supervisor) and Assoc. Prof. Dr. Maizah Hura Ahmad (field supervisor-UTM) for enlightening me through the art of writing critically, motivating me, their guidance and continuous support, valuable suggestions and perhaps critically, their patience. Also thanks to Prof. Dr. Noor Azlinna Azizan (co-supervisor) for her marginal contribution.

Special thanks go to Prof. John Boland and Dr. Manju Agrawal from the University of South Australia (UniSA) who gave me their guidance, specifically on the theoretical part, during my 2 -month attachment study. I am greatly indebted to them both for the knowledge and ideas as well as countless support during my presence there.

I also would like to express my deepest gratitude and appreciation to Dr. Suhartono from Institut Teknologi Sepuluh Nopember (ITS), Indonesia for his contribution of ideas, significant assistance and continuous support.

I thank faculty members, Prof. Dr. Mashitah Mohd Yusoff, Assoc. Prof. Dr Hasbi Ab. Rahim, Assoc. Prof. Dr. Mohd Zuki Salleh and all Mathematics staff who granted me the study leave and tolerated my teaching workload. I also wish to express my appreciation to all my friends who helped me directly and indirectly.

I would also like to extend my thanks to the Ministry of Higher Education (Skim Latihan Akademik Bumiputera, SLAB) and UMP research grants (RDU130369 and RDU1703198) for the financial support.

Last but not least, my gratitude goes to my loving family especially to my beloved husband, Dr. Izan Izwan Misnon and our children, Siti Sarah and Luqman Hakim for their extreme understanding, support and encouragement.

Abstract

ABSTRAK

Model Box-Jenkins digunakan secara meluas sama ada sebagai model peramalan, piawaian atau bersepadu dalam kajian terkini siri masa. Pemodelan Box-Jenkins adalah salah satu teknik peramalan paling berkuasa yang digunakan dalam praktis kajian analisis siri masa. Kebanyakan data siri masa contohnya data ekonomi dan sains persekitaran adalah bervarians tidak malar secara semulajadi. Walau bagaimanapun, untuk data siri masa yang bervarians tidak malar yang tinggi, model Box-Jenkins adalah tidak sesuai untuk diaplikasikan kerana andaian ralat varians malar tidak dipenuhi dan ia juga tidak dapat mengendalikan sifat heteroskedastisiti. Menggabungkan model Box-Jenkins dengan model stokastik heteroskedastisiti seperti model generalised autoregressive conditional heteroscedastic (GARCH) merupakan satu kaedah yang berkesan untuk mengatasi kekangan model Box-Jenkins bagi data varians tidak malar. Kajian ini menilai prestasi model kombinasi antara Box-Jenkins dan variasi GARCH dalam pemodelan dan peramalan data univariat siri masa yang bervarians tidak malar yang tinggi dengan pemodelan Box-Jenkins sebagai asas prosedur. Empat prosedur dicadangkan dalam kajian ini dalam menilai prestasi model kombinasi tersebut di mana tiga cadangan prosedur awal adalah menggunakan model Box-Jenkins dengan standard GARCH (or BJG). Prosedur cadangan pertama adalah berdasarkan prosedur asas Box-Jenkins dan ia digunakan sebagai kajian tinjauan awal. Prosedur cadangan kedua adalah berdasarkan prosedur cadangan pertama yang difokuskan untuk mengendalikan data siri masa bervarians tidak malar yang tinggi secara spesifik, menggunakan model BJ-G dengan penekanan kepada pengecaman ciri data bervarians tidak malar yang tinggi pada peringkat awal. Manakala, prosedur cadangan ketiga adalah lanjutan daripada prosedur cadangan kedua, yang digunakan untuk menilai keupayaan model BJ-G untuk peramalan jangka panjang. Prosedur cadangan keempat adalah kombinasi prosedur cadangan kedua dan ketiga yang mana ia merupakan prosedur komprehensif untuk pemodelan dan peramalan data siri masa yang bervarians tidak malar yang tinggi menggunakan model Box-Jenkins - variasi GARCH. Kesemua prosedur cadangan diilustrasikan dengan data harian harga emas dunia kerana data ini adalah data siri masa yang bervarians tidak malar yang tinggi. Berdasarkan kajian awal ke atas 5000 data harian data harian harga emas mengunakan prosedur cadangan pertama BJ-G, nilai ralat yang kecil membuktikan model BJ-G adalah model yang diyakini untuk pemodelan dan peramalan data bervarians tidak malar yang tinggi. Keputusan empirik daripada data harian harga emas dunia menggunakan prosedur cadangan kedua menyatakan prosedur ini adalah lebih praktikal berbanding prosedur cadangan pertama dalam pemodelan data bervarians tidak malar yang tinggi menggunakan model BJ-G dan secara langsung dapat menentukan bilangan data yang optimal. Keputusan empirik mencadangkan 25% daripada data yang terkini atau 1250 data adalah mencukupi untuk model BJ-G dengan prestasi peramalan yang sama seperti menggunakan kesemua data. Manakala, berdasarkan kajian empirik ke atas 1250 data harian harga emas itu menggunakan prosedur cadangan ketiga, didapati model BJ-G berkeupayaan untuk mengikuti pola data sebenar sehingga tujuh hari ke hadapan, khasnya dalam selang peramalan 95\%. Prosedur cadangan keempat diuji ke atas model Box-Jenkins dengan variasi GARCH menggunakan data siri yang sama digunakan untuk prosedur cadangan ketiga. Sebagai kesimpulan, model kombinasi Box-Jenkins dan variasi GARCH mempunyai potensi yang besar, oleh itu prosedur cadangan keempat BJG memberikan satu prosedur peramalan siri masa yang komprehensif, sistematik dan praktikal bagi data siri masa yang bervarians tidak malar yang tinggi.

Abstract

The Box-Jenkins model has widely been used either as the forecasting, benchmarking or as the integrated model in the current research of time series. The Box-Jenkins modelling is one of the most powerful forecasting techniques available in research practice of the time series analysis. Most of the time series data such as in economics and in environmental sciences are volatile in nature. However, for a highly volatile time series data, the Box-Jenkins model is inappropriate to be applied since it violates the errors assumption of constant variance and it is not able to handle the heteroscedasticity property. Combining the model with a heteroscedastic stochastic model such as the generalised autoregressive conditional heteroscedastic model (GARCH) can be an effective way to overcome the limitation of the Box-Jenkins model in handling the nonconstant variance. This study evaluates the performance of the combination model of Box-Jenkins and GARCH-type in modelling and forecasting univariate highly volatile time series data with Box-Jenkins modelling as the base procedure. In evaluating the performance of the model, four procedures are proposed in this study where the first three procedures are using the model of Box-Jenkins and standard GARCH (or BJ-G). The first proposed procedure is developed based on the theoretical Box-Jenkins's procedure and it is used for the preliminary study. The second proposed procedure is developed based on the first proposed procedure to focus on handling the highly volatile time series data specifically, using BJ-G model by emphasizing on the identification of highly volatile characteristic in the data at the early stage. While the third proposed procedure is an extension from the second procedure, which evaluates the multistep ahead forecasting performance of the BJ-G model. The fourth procedure of BJ-G is developed from the second and third procedures and it is a comprehensive procedure for modelling and forecasting highly volatile time series data using Box-Jenkins - GARCH-type model. The proposed procedures are illustrated using the daily world gold price data since it is a highly volatile type of time series. Based on the preliminary study on 5000 world daily gold price data set using the first procedure of BJ-G, the small magnitude of error proves that BJ-G is a reliable model in modelling and forecasting highly volatile data. The empirical results of the world daily gold price using the second proposed procedure indicate that the procedure is more practical than the first propose procedure to be used in modelling a univariate highly volatile data using BJ-G model which simultaneously ensures an optimal number of data in dealing with the model. The empirical results suggested that the latest 25% of data or 1250 data is sufficient to be employed using BJ-G model with similar forecasting performance as by using all data. Meanwhile, based on the empirical results on the 1250 world daily gold prices and by employing the third procedure, it is found that the BJ-G model is able to follow the trend of the actual data up to seven days ahead, specifically within 95% prediction interval. The fourth proposed procedure is also tested on the Box-Jenkins with various GARCH-type models using the same data series as in the third proposed procedure. In conclusion, the combination model of Box-Jenkins and GARCH-type has great potential, thus the fourth proposed procedure of BJ-G provides a comprehensive, systematic and practical procedure of time series forecasting for univariate highly volatile time series data.

TABLE OF CONTENTS

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS
ABSTRAK iii
ABSTRACTiv
vTABLE OF CONTENTSix
xi
LIST OF FIGURES xivxvii
LIST OF ABBREVIATIONS
CHAPTER 1 INTRODUCTION 1
1.1 Background of Study 1
1.2 Problem Statement 5
1.3 Objectives of the Study 7
1.4 Scope of the Study 8
1.5 Significance of the Study 10
1.6 Thesis Organisation 11
CHAPTER 2 LITERATURE REVIEW 12
2.1 Introduction 12
2.2 Box-Jenkins Modelling and Highly Volatile Time Series Data 12
2.3 ARCH/GARCH Model and Volatility 16
2.4 A Review of Some Studies on Box-Jenkins - GARCH Model 18
2.5 Gap of Knowledge in the Study 23
2.6 Concluding Remarks 27
CHAPTER 3 METHODOLOGY AND STATISTICAL TOOLS 28
3.1 Introduction 28
3.2 Box-Jenkins Modelling 29
3.3 The Combination of Box-Jenkins and GARCH Model 33
3.4 The Proposed Modified Procedure of Box-Jenkins - GARCH Model for Modelling and Forecasting Highly Volatile Time Series Data 38
3.4.1 Stage I: Model Identification 40
3.4.1.1 Moments of a Random Variable 43
3.4.1.2 Stationarity in Time Series 45
3.4.1.3 Preliminary Linearity Test in Time Series 64
3.4.1.4 Portmanteau Test 65
3.4.1.5 Extended Autocorrelation Function 65
3.4.2 Stage II: Parameter Estimation 66
3.4.3 Stage III: Diagnostic Checking 69
3.4.3.1 Serial Correlation Tests 72
3.4.3.2 Heteroscedasticity Test 74
3.4.3.3 Linearity Test for Mean Model 76
3.4.3.4 Normality Test 77
3.4.3.5 Distribution of Errors 78
3.4.4 Stage IV: Forecasting 81
3.4.4.1 Time Series Cross-Validation 83
3.4.4.2 Forecasting Evaluations 83
3.4.4.3 Prediction Intervals 84
3.5 The Modified Procedure for Univariate Highly Volatile Data using BJ-G 85
3.6 Multistep Forecasting for Highly Volatile Data using Modified BJ-G Procedure 88
3.7 Modified BJ-G Procedure for GARCH-type Models 90
3.8 Concluding Remarks 94
CHAPTER 4 GOLD PRICE FORECASTING USING MODIFIED PROCEDURE OF BOX - JENKINS - GARCH FOR HIGHLY VOLATILE TIME SERIES: A CASE STUDY 95
4.1 Introduction 95
4.2 Preliminary Analysis on Gold Price Forecasting using Modified BJ-G 96
4.2.1 Stage I: Gold Price Data Identification 96
4.2.1.1 Data Stationarity 98
4.2.1.2 Preliminary of Linearity Test 103
4.2.1.3 Portmanteau Test 104
4.2.1.4 Box-Jenkins Model Identification 105
4.2.2 Stage II: Parameter Estimation of the Box-Jenkins Model 107
4.2.3 Stage III: Diagnostic Checking of the Box-Jenkins Model 109
4.2.4 Modelling Gold Price using Box-Jenkins - GARCH 112
4.2.4.1 Stage I: Model Identification of ARIMA-GARCH 113
4.2.4.2 Stage II: Parameter Estimation of ARIMA-GARCH 113
4.2.4.3 Stage III: Diagnostic Checking of ARIMA-GARCH 114
4.2.4.4 Stage IV: Forecasting of ARIMA-GARCH 119
4.2.5 Comparison of the Box-Jenkins, GARCH and the Box-Jenkins - GARCH Model Performance in Forecasting Gold Price 121
4.3 The Empirical Results of Gold Price on the Second Proposed Procedure of BJ-G 122
4.4 Simulation study on the Multistep Forecasting for Highly Volatile Data using the Third Proposed Procedure of BJ-G 137
4.5 The Empirical Results of the Box-Jenkins with GARCH-type Models using the Fourth Proposed Procedure of BJ-G 142
4.6 Conclusion 150
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 152
5.1 Introduction 152
5.2 Conclusions 152
5.3 Recommendations 156
REFERENCES 157
APPENDIX 1 RESEARCH ACHIEVEMENT 167
APPENDIX 2 ANALYSIS OF CHAPTER 4 SECTION 4.2 170
APPENDIX 3 ANALYSIS OF CHAPTER 4 SECTION 4.3 193
APPENDIX 4 ANALYSIS OF CHAPTER 4 SECTION 4.4 219
APPENDIX 5 ANALYSIS OF CHAPTER 4 SECTION 4.5 236

LIST OF TABLES

Table 2.1 Top ten research areas related to time series data using Box- Jenkins model between 2000 and 2018 generated from ISI web of science on 23 January 2018 15
Table 2.2 Top ten research areas related to highly volatile time series data between 2000 and 2018 generated from ISI web of science on 23 January 2018 16
Table 2.3 Top ten research areas related to time series data using ARCH/GARCH - type model between 2000 and 2018 generated from ISI web of science on 23 January 2018 17
Table 2.4 Review on the selected studies on Box-Jenkins - GARCH-type model 19
Table 2.5 Review on procedure of Box-Jenkins modelling for univariate data 24
Table 2.6 The knowledge gaps in the study 26
Table 3.1 Test of hypothesis for mean, skewness and kurtosis for a data series 45
Table 3.2 Some commonly used values of λ and its associated transformation 52
Table 3.3 Behaviour of the ACF and PACF for the $d^{\text {th }}$ difference of an ARIMA process of first and second order 61
Table 3.4 Theoretical EACF table for an ARMA(1,1) model 66
Table 3.5 Jarque-Bera test statistic 77
Table 4.1 Descriptive statistics for in-sample series 97
Table 4.2 Descriptive statistics for the transformed data series 99
Table 4.3 Augmented Dickey-Fuller unit root test on transformed data 101
Table 4.4 Augmented Dickey-Fuller unit root test on first differenced log data 101
Table 4.5 Descriptive statistics for stationary series 103
Table 4.6 The simplified EACF table for the differenced \log series 106
Table 4.7 The results of estimation stage of the possible ARIMA models 107
Table 4.8 Estimation result for ARIMA ($0,1,0$) model 108
Table 4.9 Heteroscedasticity test using ARCH test for $\operatorname{ARIMA}(0,1,1)$ 111
Table 4.10 Descriptive statistics for the residuals of ARIMA($0,1,0$) 111
Table 4.11 Estimation results of the significant ARIMA-GARCH models 114
Table 4.12 Diagnostic tests on ARIMA($0,1,0$)-GARCH(1,1) model 115
Table 4.13 Descriptive statistics of standardised residuals of ARIMA($0,1,0$)- $\operatorname{GARCH}(1,1)$ 116

Table 4.14 Parameter estimation and diagnostic testing on $\operatorname{ARIMA}(0,1,0)$ GARCH $(1,1)$ model for t, skewed- t, GED and SGED innovations118

Table 4.15 Forecast evaluations of $\operatorname{ARIMA}(0,1,0)-\operatorname{GARCH}(1,1)$ with t
innovations 119
Table 4.16 The actual and forecast prices using ARIMA $(0,1,0)-\operatorname{GARCH}(1,1)$ 120
Table 4.17 Estimation evaluations for ARIMA and ARIMA-GARCH 121
Table 4.18 Classification of sample data series 123
Table 4.19 Descriptive statistics for in-sample original data of Sample 1 to 6 124
Table 4.20 The transformed and stationary data for Sample 1 to 6 125
Table 4.21 Checking the stationarity of the transformed series at level (if needed) 126
Table 4.22 Checking the stationarity at the first differenced series 127
Table 4.23 Descriptive statistics for in-sample stationary series of Sample 1 to 6 129
Table 4.24 Annual simple return for Sample 1 and 2 129
Table 4.25 Portmanteau test of LBQ-test for Sample 1 to 6 130
Table 4.26 The preliminary analysis of heteroscedasticity test for the Box- Jenkins model of the stationary series for the samples considered 132
Table 4.27 Results from Stage II to III of the proposed framework for the preferred Box-Jenkins - GARCH model for stationary series of Sample 1 to 3 134
Table 4.28 Forecast evaluations for the preferred Box-Jenkins - GARCH model for daily gold price series of Sample 1 to 3 134Table 4.29 The comparison between actual and forecast gold prices for thelast ten days out-of-sample simulation period of Sample 3 usingthe model of $\operatorname{ARIMA}(0,1,1)-\operatorname{GARCH}(1,1)$ with t innovations136
Table 4.30 Forecast evaluation with prediction intervals for the considered forecast horizon 140
Table 4.31 Actual price and the seven-step ahead forecast price using the model of ARIMA $(0,1,0)-\operatorname{GARCH}(1,1)$ with t innovations 142
Table 4.32 Estimation results for $\operatorname{ARIMA}(0,1,0)$ with selected GARCH-type models 144
Table 4.33 Model diagnostics for ARIMA with significant GARCH-type models 146
Table 4.34 Multistep forecast evaluation of ARIMA with significant GARCH-type models under consideration 148

LIST OF FIGURES

Figure 1.1 Overview of methodologies and models in univariate time series forecasting 3
Figure 1.2 Framework of study 11
Figure 2.1 Number of papers published in the time series research using Box-Jenkins model between 2000 and 2018 generated from ISI web of science on 23 January 2018 14
Figure 2.2 Number of papers published related to highly volatile time series between 2000 and 2018 generated from ISI web of science on 23 January 2018 15
Figure 2.3 Number of papers published using BJ-G model between 2000 and 2017 generated from ISI web of science on 23 January 2018 18
Figure 3.1 General Box-Jenkins's framework 28
Figure 3.2 Schematic diagram for the procedure in choosing the appropriate Box-Jenkins Model 29
Figure 3.3 Theoretical procedure of the Box-Jenkins modelling 34
Figure 3.4 Procedure of combination of BJ-G, specifically with standard GARCH 37
Figure 3.5 Proposed procedure of BJ-G for highly volatile time series data (Note: Box-Jenkins is abbreviated as BJ) 39
Figure 3.6 Detail procedures in Stage I of the procedure of BJ-G for highly volatile data 41
Figure 3.7 ACF plot 48
Figure 3.8 Stationary series 48
Figure 3.9 Graphical representations for several cases of nonstationary series 50
Figure 3.10 The plots of nonstationary series to obtain stationary series after transforming and differencing 51
Figure 3.11 Procedures in Stage II of the procedure of BJ-G for highly volatile data 68
Figure 3.12 Detail procedures in Stage III of the procedure of BJ-G for highly volatile data 70
Figure 3.13 Detail procedures in Stage IV of the procedure of BJ-G for highly volatile data 82
Figure 3.14 New proposed procedure of BJ-G in forecasting highly volatile data 87
Figure 3.15 Proposed procedure of BJ-G for multistep ahead forecasting 88
Figure 4.1 In-sample series of daily gold price 97
Figure 4.2 Histogram for in-sample series 98
Figure 4.3 The transformed data of daily gold price for in-sample period 99
Figure 4.4 Histogram for in-sample transformed series 99
Figure 4.5 The ACF and PACF of the log series 100
Figure 4.6 ACF and PACF for first differenced log series 102
Figure 4.7 The first order difference of daily log gold price series 102
Figure 4.8 Histogram for stationary series 103
Figure 4.9 The plot of the first differenced log price and its previous deviations 104
Figure 4.10 Residuals plot for $\operatorname{ARIMA}(0,1,0)$ 109
Figure 4.11 LBQ-test on residuals for $\operatorname{ARIMA}(0,1,0)$ 110
Figure 4.12 Ljung-Box Q-test on squared residuals for $\operatorname{ARIMA}(0,1,0)$ 111
Figure 4.13 Normal QQ-plot for $\operatorname{ARIMA}(0,1,0)$ 112
Figure 4.14 Standardised residuals plot for ARIMA($0,1,0)-\operatorname{GARCH}(1,1)$ 115
Figure 4.15 The normal QQ-plot of standardised residuals of ARIMA(0,1,0)- $\operatorname{GARCH}(1,1)$ 116
Figure 4.16 Histogram for standardised residuals of ARIMA($0,1,0$)- $\operatorname{GARCH}(1,1)$ 117
Figure 4.17 The QQ-plot of standardized residuals of ARIMA($0,1,0$)- $\operatorname{GARCH}(1,1)$ model for innovations of t, skewed- t, GED and SGED, respectively 118
Figure 4.18 Graph of the actual and forecast data using ARIMA($0,1,0$)- $\operatorname{GARCH}(1,1)$ model with t innovations for out-of-sample period 120
Figure 4.19 In-sample time series plot of original data for Sample 1 to 6 124
Figure 4.20 Histogram for in-sample original series of Sample 1 to 6 125
Figure 4.21 In-sample time series plot for transformed data of Sample 1 to 6 126
Figure 4.22 Time plot for stationary series of Sample 1 to 6 128
Figure 4.23 Plot of the stationary series and its lagged series 130
Figure 4.24 EACF table and its Box-Jenkins model for stationary series ofSample 1, 2, 3 and 6131Figure 4.25 The sample ACF and the sample PACF for squared residuals ofthe ARIMA model considered for Sample 1 to 3133
Figure 4.26 Plot of the actual and forecast data using ARIMA($0,1,0$)-$\operatorname{GARCH}(1,1)$ with t innovations for out-of-sample period of theseries of Sample 3136
Figure 4.27 Plot of actual data and seven-step ahead forecast using ARIMA($0,1,0$)-GARCH(1,1) with 80% (in green dashed line) and 95\% (in black dashed line) PIs141

Figure 4.28 Standardised residual plot for in-sample stationary series of gold prices using $\operatorname{ARIMA}(0,1,0)$ and (a) $\operatorname{GARCH}(1,1)$ with $\varepsilon_{t} \sim t$, (b)
$\operatorname{EGARCH}(1,1)$ with $\varepsilon_{t} \sim \operatorname{Normal}$, (c) $\operatorname{TGARCH}(1,1)$ with $\varepsilon_{t} \sim$ Normal
Figure 4.29 QQ-plot for in-sample stationary series of gold prices using $\operatorname{ARIMA}(0,1,0)$ and (a) $\operatorname{GARCH}(1,1)$ with $\varepsilon_{t} \sim t$, (b)
$\operatorname{EGARCH}(1,1)$ with $\varepsilon_{t} \sim \operatorname{Normal}$, (c) $\operatorname{TGARCH}(1,1)$ with $\varepsilon_{t} \sim$ Normal

Figure 4.30 Plot of actual data and one-step ahead forecast of gold prices using $\operatorname{ARIMA}(0,1,0)$ and (a) $\operatorname{GARCH}(1,1)$ with $\varepsilon_{t} \sim t$, (b) $\operatorname{EGARCH}(1,1)$ with $\varepsilon_{t} \sim \operatorname{Normal}$, (c) $\operatorname{TGARCH}(1,1)$ with $\varepsilon_{t} \sim$ Normal; with 80% (in green dashed line) and 95% (in black dashed line) PIs

Figure 4.31 Plot of actual data and the seven-step ahead forecast of daily gold price using $\operatorname{ARIMA}(0,1,0)$ (a) $\operatorname{GARCH}(1,1)$ with $\varepsilon_{t} \sim t$, (b) $\operatorname{EGARCH}(1,1)$ with $\varepsilon_{t} \sim \operatorname{Normal}$, (c) $\operatorname{TGARCH}(1,1)$ with $\varepsilon_{t} \sim$ Normal; with 80% (in green dashed line) and 95% (in black dashed line) PIs

LIST OF SYMBOLS

y_{t}	The original series or the observed data at time t period
y_{t}^{*}	The transformed data at time t
s_{t}	The stationary series at time t
h	The forecasting horizon
\hat{y}_{T+h}	The forecast data for h-step ahead
\hat{s}_{T+h}	The simulated stationary series for forecasting horizon h
T	The number of data in-sample series; the origin
n	The number of data in out-of-sample series
k	The number of lag
$k_{\text {max }}$	The maximum number for lag k
w	The number of series
m	The number of auxiliary regressors
μ	The mean data (or model)
μ_{t}	The conditional mean of s_{t}
σ^{2}	The variance data (or model)
σ_{X}^{2}	The variance of X
σ_{t}^{2}	The conditional variance of y_{t}
σ_{t}	The volatility of a_{t}
a_{t}	The random errors at time t period
$\left\{\hat{a}_{t}\right\}$	The residuals of data
\hat{a}_{t}	The residual at time t
v_{t}	The error in the squared returns, that is $a_{t}^{2}-\sigma_{t}^{2}$
ε_{t}	The standardised error (innovations) of model
$e_{T}(h)$	The h-step ahead forecast error at origin T
γ_{k}	Autocovariance coefficient at lag k
$\left\{\gamma_{k}\right\}$	The plot of γ_{k} versus lag k or the autocovariance function
ρ_{k}	Autocorrelation coefficient at lag k

$\left\{\rho_{k}\right\}$	The plot of ρ_{k} versus lag k or the autocorrelation function
r_{k}	The sample ρ_{k}
$\phi_{k k}$	Partial autocorrelation coefficient at lag k
$r_{k k}$	The sample $\phi_{k k}$
p	The order of the autoregressive model
q	The order of the moving average model
φ_{p}	The autoregressive parameters with order p
θ_{q}	The moving average parameters with order q
d	The order of differencing
P	The order of seasonal autoregressive
Q	The order of the seasonal moving average
D	The order of seasonal differencing
S	The seasonal period
B	The backward shift operator
r	The order of the generalised autoregressive conditional heteroskedastic model
s	The order of the autoregressive conditional heteroskedastic model
α_{i}	The coefficient of the parameters ARCH
β_{i}	The coefficient of the parameters GARCH
c	The constant
C_{i}	The coefficient for the Δy_{t-i}
X	The continuous random variable
$f(x)$	The probability density function of X
$K(x)$	The kurtosis of X
$S(x)$	The skewness of X
m_{ℓ}^{\prime}	The ℓ th moment of a continuous random variable X about the origin
m_{ℓ}	The ℓ th central moment of X about the mean
λ	The minimum residual mean square error value
$\hat{\lambda}$	The estimated λ
$J(\lambda ; y)$	The Jacobian of the transformation

$S(\lambda)$	The residual sum of squares in the analysis of variance of y_{t}^{*}
v_{λ}	The number of independent components in λ
v	The degrees of freedom
ξ	The skewness parameter
κ	The shape parameter
$\Gamma(\cdot)$	The gamma function
a	The ($T \times T$) matrix
θ	The $(T \times 1)$ vector of unknown parameters associated with the transformed data
Γ_{T}	The covariance matrix of symmetric form
P_{T}	The autocorrelation matrix
L	The likelihood function
$\ln L$	The log likelihood function
$\ln L_{\text {max }}$	The maximised log likelihood function
Z	The integers
x_{t}^{\prime}	The deterministic time trend
ϕ_{a}	The parameter that defines the relationship between successive values of a_{t} and a_{t-1}
$\phi_{d f}$	The parameter to be estimated in DF-test and ADF-test
π	The parameter to be estimated in DF-test and ADF-test where
\hat{b}	The estimated coefficient for ARCH-LM
$T D_{t}$	The deterministic terms
M	The risk premium parameter
N_{t-i}	The indicator for negative a_{t-i}
g_{i}	The leverage effect term of a_{t-i}
δ	The positive real number

LIST OF ABBREVIATIONS

AR	Autoregressive model
MA	Moving average model
ARMA	Autoregressive moving average model
ARIMA	Autoregressive integrated moving average model
SARIMA	Seasonal autoregressive integrated moving average model
ACF	Autocorrelation function
PACF	Partial autocorrelation function
MLE	Maximum likelihood estimation
OLS	Ordinary least squares
ARCH	Autoregressive conditional heteroskedastic
GARCH	Generalised autoregressive conditional heteroskedastic
ARCH LM	ARCH Lagrange Multiplier
EACF	Extended autocorrelation function
IID	Independent identically distributed
NID	Normal independently distributed
pdf	Probability density function
AIC	Akaike Information Criteria
SIC	Schwarz Information Criterion
ADF	Augmented Dickey-Fuller
SSR	Residual sum of squares
dof	Degrees of freedom
MAE	Mean absolute error
MSE	Mean square error
RMSE	Root mean square error
MAPE	Mean absolute percentage error
PIs	Prediction intervals
CV	Cross-validation
LBQ-test	Ljung-Box Q-test
DW-test	Durbin-Watson test
JB-test	Jarque-Bera test

CHAPTER 1

INTRODUCTION

1.1 Background of Study

A time series is a set of sequential observations with respect to time. Hence, time series analysis is the study about the data collected through time. Many data sets appear as time series, such as commodity price, exchange rate, electricity load demand and weekly rainfall data. Therefore, time series analysis covers various fields of study that attracts high interest among the researchers since the 1960s. The development of fourstage iterative procedure of time series i.e. identification, estimation, diagnostic checking and forecasting developed by Box and Jenkins (1968), known as the Box-Jenkins modelling, is considered as the catalyst for the time series research (De Gooijer \& Hyndman, 2006). The Box-Jenkins modelling is one of the most powerful forecasting methods available in research practice of the time series analysis.

A forecasting method is a procedure for computing forecasts from present and past values. Forecasting methods can be broadly classified into three, which are judgemental forecasts, univariate methods and multivariate methods, and can be a combination of more than one of the three methods. The judgemental forecasts are based on subjective judgement, intuition, commercial knowledge and any other relevant information. The Delphi technique is one of the famous judgemental methods. The univariate and the multivariate methods are the statistical-based method. According to Chatfield (2001), the statistical methods tend to be superior than judgemental methods in general.

The univariate methods deal with forecasts, which depend only on present and past values of the single series, while the multivariate methods deal with forecasts of a given variable depend, at least partly, on values of one or more additional time series
variables. The multivariate models include multiple regression, transfer function and distributed lag models, econometric models and multivariate versions of autoregressive (AR) and autoregressive moving average (ARMA) models, including vector autoregressive (VAR) models. This study only focuses on the statistical method, specifically univariate methods, and does not attempt to cover judgemental forecasting and multivariate forecasting.

The study is limited to the univariate method and model as it is very useful for many purposes, including forecasting large number of series and providing a benchmark in comparative forecasting studies (Chatfield, 2001; De Gooijer \& Hyndman, 2006). Figure 1.1 presents the overview of all related univariate time series methodology and the corresponding models, which are graphically drawn using freemind software from the input of the studies of Bisson and Gurpinar (2017), Hyndman and Athanasopoulos (2014), Adhikari and Agrawal (2013), Tsay (2013), Box, Jenkins and Reinsel (2008), De Gooijer and Hyndman (2006) and Chatfield (2001). The Box-Jenkins modelling and its models are highlighted in the figure.

The practicality of the Box-Jenkins modelling and its good performance in analysing time series data makes the Box-Jenkins model continuously considered as the forecasting, the benchmark or as the integrated model in current research. Furthermore, the popularity of this model is also due to its capability to analyse almost any set of time series data either for profit or non-profit applications (Christodoulos, Michalakelis \& Varoutas, 2010). Some of its profit applications, for example in business and economics, the model is extensively used in exchange rate forecasting (Allen \& Taylor, 1990; Giddy \& Dufey, 1975; Khashei \& Bijari, 2010; Singh \& Jain, 2018; Zhang, 2003) and commodity prices (Darekar \& Reddy, 2017; Ho, Xie \& Goh, 2002; Yaziz, Ahmad, Nian \& Muhammad, 2011). For non-profit application, such as in environmental sciences area, the Box-Jenkins model has been applied in ozone concentrations (Awang, Kar Yong \& Yin Hoeng, 2017; G. Liu, Tarasick, Fioletov, Sioris \& Rochon, 2009; Robeson \& Steyn, 1990), air quality (Polydoras, Anagnostopoulos \& Bergeles, 1998; Taneja, Ahmad, Ahmad \& Attri, 2016) and hydrological study (Castellano-Méndez, González-Manteiga, Febrero-Bande, Manuel Prada-Sánchez \& Lozano-Calderón, 2004; Fouli, Fouli, Bashir \& Loni, 2017).

Figure 1.1 Overview of methodologies and models in univariate time series forecasting
Source: Bisson and Gurpinar (2017), Hyndman and Athanasopoulos (2014), Adhikari and Agrawal (2013), Tsay (2013), Box et al. (2008), De Gooijer and Hyndman (2006) and Chatfield (2001).

Most of the time series data are volatile in nature where the data varies over time. If the volatility in a data series is low, the Box-Jenkins model is appropriate as it assumes that the variance of the errors is constant, known as homoscedasticity property. However, for highly volatile data, the variance for errors is non-constant and the Box-Jenkins model is found inappropriate since it violates the errors assumption of constant variance. The characteristic of non-constant errors in variance is known as heteroscedasticity or autoregressive conditional heteroscedastic (ARCH) effects.

The ARCH effects in a highly volatile data are commonly seen in economics and financial data. The highly volatile characteristic initially detected using time series plot where it shows large variation and the volatility cluster (i.e. data is high for certain time period and low for certain time period) in the plot. However, it is hard to detect accurately the ARCH effects in a data series using graphical presentation. Hence, a statistical test namely the heteroscedasticity test, is needed to confirm the highly volatile characteristic in a time series data. Therefore, if the decision of the test rejects the null hypothesis of no ARCH effect in the residuals of the model, then the series is classified as a highly volatile data.

Hence, the Box-Jenkins model should not be applied to highly volatile data since it fails to handle the heteroscedasticity property that is present in the data series. Therefore, if a study wants to use the Box-Jenkins model to analyse a highly volatile data because of its good reputation in research practice, then a modification on the model needs to be done. Combining the model with a heteroscedastic stochastic model or a well-known volatility model can be an effective way to overcome the limitations of the Box-Jenkins model in handling ARCH effects in the data series.

Previous studies have shown that generalised autoregressive conditional heteroscedastic (GARCH)-type model is widely applied to handle volatility in a data series (S. Hammoudeh \& Yuan, 2008; Qadan \& Yagil, 2012; Trück \& Liang, 2012). In recent years, many studies proposed the incorporation of GARCH-type model into the Box-Jenkins model due to its good performance in dealing with highly volatile data. Some of the studies that incorporate the Box-Jenkins model with GARCH-type are ARIMAGARCH (Babu \& Reddy, 2015; Chen, Hu, Meng \& Zhang, 2011; Girish, 2016; Liu \& Shi, 2013; Loi \& Ng, 2018; Tan, Zhang, Wang \& Xu, 2010; Zhou, He \& Sun, 2006), AREGARCH (Ahmed, 2017; Ferenstein \& Gasowski, 2004; Girish, 2016; Walid, Chaker,

Masood \& Fry, 2011), AR-GARCH (Ferenstein \& Gasowski, 2004; Gaglianone \& Marins, 2017; Harrison \& Paton, 2004; Sohn \& Lim, 2007), ARIMA-PARCH (Girish, 2016), ARIMA-TGARCH (Ahmad, Ping, Yaziz \& Miswan, 2015; Freedi, Shamiri \& Isa, 2012), ARMA-GARCH (Liu \& Shi, 2013; Pham \& Yang, 2010; Wang, Gelder, Vrijling \& Ma, 2005), ARMA-EGARCH (Ord, Koehler, Snyder \& Hyndman, 2009) and ARIMA-GARCH-M (Liu, Erdem \& Shi, 2011; Liu \& Shi, 2013; Liu, Shi \& Qu, 2013). An extensive discussion on the model of Box-Jenkins with GARCH-type is provided in Chapter 2.

Although these studies obtain promising results by applying the Box-Jenkins model with GARCH-type, there is no study that focuses on the development of procedure or procedure on the combination model of Box-Jenkins and GARCH-type to deal with highly volatile data. Hence, this motivates a study to develop a procedure in modelling and forecasting a highly volatile time series data with the Box-Jenkins as the base model by incorporating GARCH-type model to capture the heteroscedasticity in the data series.

However, this study focuses on the standard GARCH at first, or simply called as GARCH, due to its popularity and parcimonious characteristics, in developing a basic procedure of the combination model of Box-Jenkins and GARCH-type. The procedure is then applied to other GARCH-type models that work practically for highly volatile data. The combination model of Box-Jenkins and GARCH (or BJ-G) has great potential, thus the proposed procedure in this study would give significant procedural contribution to the basis for research that deals with highly volatile data. Not only that, the development of procedure in this study will also provide useful guidelines for using the combination model to address highly volatile data which is in line with big data analytics and support the $4^{\text {th }}$ industrial revolution (IR 4.0).

1.2 Problem Statement

Improving forecasting method is one of the main issues in time series research. Therefore, the research continues to improve the effectiveness of the forecasting models. According to Chatfield (2001), the forecasting literatures concentrate on how to implement particular forecasting method, whereas most forecasters probably need much more help with the strategy of forecasting. There is plenty of software available to make it easy to fit the model to the data series, however it is still hard to decide when to use the
model and how to choose the appropriate model for the data series. The recent publications in time series such as Loi and Ng (2018), Ahmed (2017), Hyndman and Athanasopoulos (2017) and Tsay (2013) are still lacking in demonstrating a clear strategy of forecasting. Therefore, this study would present a comprehensive strategy of forecasting in the form of a procedure, specifically for forecasting highly volatile time series data, which will assist the researcher in forecasting. The proposed procedure will complement the existing procedure in time series modelling and forecasting, specifically the Box-Jenkins modelling.

One of the established time series methods in many research practices is the BoxJenkins modelling (De Gooijer \& Hyndman, 2006; Christodoulos, Michalakelis \& Varoutas, 2010). In this study, the focus is modelling and forecasting the univariate highly volatile time series data by applying the Box-Jenkins as the base model. It is vital for a model to be able to analyse and predict data which reflects the data series pattern. Therefore, in this study, the GARCH model is considered to be incorporated with the Box-Jenkins model due to its capability in handling heteroscedasticity in the data series.

Hence, the main issue in this study is how to develop an appropriate procedure in modelling and forecasting a univariate highly volatile time series data using Box-Jenkins - GARCH (BJ-G) model, or simply called as procedure of BJ-G. The proposed procedure is based on the standard Box-Jenkins's procedure, which consists of four stages. This proposed procedure will be used to justify and evaluate the performance of the BJ-G model in analysing and forecasting (at one-step ahead) the data series.

If the first proposed procedure of BJ-G has shown promising results, then the next issue that needs to be considered is how to develop a procedure of BJ-G model in handling univariate highly volatile time series data specifically. This proposed procedure of BJ-G emphasizes on the identification of highly volatile characteristics in the data at the early stage before further analysis is conducted. Therefore, the first proposed procedure should be improved by introducing the steps of heteroscedasticity test and the BJ-G model identification in Stage I of the second proposed procedure of BJ-G instead of in Stage III in the first proposed procedure. The second proposed procedure would simultaneously ensure the optimal number of data required for practical application in handling univariate highly volatile time series data using BJ-G model. Determination of the optimal number of data using a statistical model for practical application is one of the main issues in time
series forecasting (Chatfield,2001; Hyndman \& Athanasopoulos, 2014; Hyndman \& Konstenko, 2017).

However, the second proposed procedure of BJ-G is only applied for one-step ahead forecasting performance, which is not practical for real data due to its limitation of the prediction period (Babu \& Reddy, 2015; Pham \& Yang, 2010; Byström, 2005). Therefore, the third issue that needs to be considered in this study is how to develop a procedure of BJ-G that can be used for multistep forecasting. It is observed that many statistical software only provides the analysis and forecasting results for one-step ahead forecast. Hence, in evaluating the forecasting performance for multistep ahead using BJG model, a set of codes using programming language needs to be constructed to analyse the data up to n-step ahead forecasting. The codes will be associated with the third proposed procedure of BJ-G.

Since the combination model of Box-Jenkins and GARCH has great potential for research that deals with univariate highly volatile time series data, the comprehensive procedure of BJ-G is considered in the study. Therefore, the fourth procedure is developed from the second and third procedures. The fourth procedure is then applied to all GARCH-type models related to highly volatile data. Hence, this study proposes a comprehensive procedure using Box-Jenkins with GARCH-type model in improving forecasting method specifically for forecasting univariate highly volatile time series data.

1.3 Objectives of the Study

The objectives of this study are:

1. To propose a procedure using Box-Jenkins as the base model in modelling and forecasting univariate highly volatile time series data.
2. To propose a procedure of BJ-G in specifically handling univariate highly volatile time series data.
3. To propose a procedure of $\mathrm{BJ}-\mathrm{G}$ in evaluating the multistep forecasting performance for the univariate highly volatile time series data.
4. To propose a comprehensive procedure of BJ-G for all GARCH-type models in modelling and forecasting univariate highly volatile time series data.

1.4 Scope of the Study

This study focuses on parametric-based models, namely Box-Jenkins and GARCH in modelling and forecasting highly volatile time series data. These two models are combined to form a BJ-G model, which is a combination of both linear and nonlinear models. The data used in this study is the world daily gold price obtained from www.kitco.com which is reliable in the market. The data in this website is used by many related companies and in research articles. Scope of this research is to undertake a comprehensive investigation on the proposed procedure of the BJ-G model in forecasting univariate highly volatile time series data only. Itemised research activities of each objective are as follows:

1. To propose a procedure as Box-Jenkins as the base model in modelling and forecasting univariate highly volatile time series data.
a. The proposed procedure of BJ-G is based on the standard Box-Jenkins's procedure, which consists of four stages, that are Stage I (Model identification), Stage II (Parameter estimation), Stage III (Diagnostic checking) and Stage IV (Forecasting).
b. In the proposed procedure of BJ-G, the best Box-Jenkins model to analyse the data series is identified first. The heteroscedasticity in a highly volatile data series is detected in the diagnostic checking stage. The proposed procedure is meant for a combination of Box-Jenkins model with standard GARCH (GARCH) model.
c. New steps and methods are suggested for the proposed procedure of BJ-G including data descriptive, the improvement of autocorrelation function (ACF) and partial autocorrelation function (PACF) methods, the use of Box-Cox transformation method, linearity test, portmanteau test, extended autocorrelation function (EACF) method, the Ljung-Box Q-test and the ARCH test.
d. The proposed procedure of BJ-G investigates the appropriateness of distribution of innovations for the BJ-G model by considering Normal, t, skewed- t, generalised error distribution (GED) and Skewed-GED.
e. A 5000 daily world gold price starting from $24^{\text {th }}$ November 1993 to $17^{\text {th }}$ December 2013 is used in the proposed procedure of BJ-G as a case study.
2. To propose a procedure of BJ-G in specifically handling univariatehighly volatile time series data.
a. The proposed procedure is a modification from the first proposed procedure of BJ-G.
b. In the proposed procedure, the heteroscedasticity in a data series is detected in the model identification stage since the study focuses on highly volatile data.
c. The data used in the first proposed procedure of BJ-G is divided into six different sets of data based on previous literatures (Babu \& Reddy, 2015; Ferenstein \& Gasowski, 2004; Gaglianone \& Marins, 2017; García-Ferrer et al., 2012; Harrison \& Paton, 2004; Koopman et al., 2007; Sohn \& Lim, 2007) and each sample is tested using the new proposed procedure in determining the optimal number of data for BJ-G model.
3. To propose a procedure of BJ-G model in evaluating the multistep forecasting performance for the univariate highly volatile time series data.
a. The proposed procedure of BJ-G is an extension from the proposed procedure of BJ-G in the second objective, specifically in Stage IV.
b. In this proposed procedure, sets of codes in R language are constructed.
c. The multistep forecasting performance for the combination model using the new proposed procedure is considered with 80% and 95% prediction intervals as suggested by Hyndman and Athanasopoulos (2013).
d. The data used in this procedure is the data series of the optimal sample based on the procedure of BJ-G in objective 2.
4. To propose a comprehensive procedure of BJ-G for all GARCH-type models in modelling and forecasting univariate highly volatile time series data.
a. The proposed procedure of BJ-G is limited to apply for univariate time series data.
b. The proposed procedure is applied to all GARCH-type models that are used previously for highly volatile data including the standard GARCH (GARCH), the GARCH in the mean (GARCH-M), the exponential GARCH (EGARCH), the threshold GARCH (TGARCH) and the asymmetric power ARCH (APARCH)).

1.5 Significance of the Study

This study will evaluate the performance of the combination model of BJ-G in forecasting univariate highly volatile time series data. As one of the established method in time series analysis, the Box-Jenkins model is used as the base model in the combination model. The good reputation of Box-Jenkins in handling univariate time series data and the practicality of GARCH in handling heteroscedasticity in a data series will contribute to a new potential approach in forecasting highly volatile time series data.

This study will propose four procedures of BJ-G to cater the four objectives in this doctorate research. The first proposed procedure of BJ-G is developed based on the standard Box-Jenkins's procedure since it will be used in evaluating the performance of the combination model to forecasting univariate highly volatile data for the preliminary study. The second proposed procedure of BJ-G model is developed specifically dealing for univariate highly volatile data at the early stage which simultaneously ensure the optimal number of data required for BJ-G model. While the third proposed procedure of BJ-G is an extension from the second one, which is applied in evaluating the multistep ahead forecasting performance of the BJ-G model. The fourth proposed procedure is developed from the second and third procedures and it is a comprehensive BJ-G procedure for modelling and forecasting univariate highly volatile time series data using the Box-Jenkins with GARCH-type model.

The proposed procedures are illustrated using the daily world gold price data since it is expected to be a highly volatile type of time series data. The original data series of the gold price is applied to the first and second proposed procedures of BJ-G, while the data series from an optimal number of data (based on the empirical results from the second procedure of BJ-G) would be used in evaluating the third and fourth proposed procedures. It is expected that the empirical results would demonstrate a good result in forecasting evaluations using the proposed procedures of BJ-G.

At the final stage, this study would contribute to a comprehensive procedure in modelling and forecasting up to n-step ahead for highly volatile time series data using Box-Jenkins with all GARCH-type models, as proposed by the fourth procedure of BJG. This study indirectly enhances the capability of the Box-Jenkins model in forecasting data series for further improvement of procedures and results. The guidelines given by
the proposed procedures of BJ-G package with R codes developed would provide a good tool to demonstrate an element of data science which support IR 4.0.

1.6 Thesis Organisation

This thesis comprises of five (5) chapters with summary drawn for each study as the last section in the respective chapters. Chapter 1 (this chapter) presents a general introduction and motivation behind the research. Chapter 2 provides the literature reviews of highly volatile time series with a focus on univariate modelling, specifically the BoxJenkins models, the heteroscedastic stochastic model especially GARCH-type and the combination of BJ-G model. Chapter 3 outlines the research methodology and concepts used in the study; theory of the Box-Jenkins modelling, the procedure for the combination of BJ-G model and the proposed procedures of BJ-G as in the objectives in this study with theoretical explanations for methods and tests used in each stage of the procedures. Chapter 4 presents the analysis of the data series, by taking daily world gold prices as a case study, using the four procedures of BJ-G as proposed in Chapter 3. Chapter 5 provides an overall summary of this thesis and highlights future research prospects. It is then followed by reference and appendices to facilitate a better understanding of this thesis. In general, the framework of this study is outlined in Figure 1.2.

Step 1: Literature reviews

Step 2: Development of procedure using Box-Jenkins as the based model in modelling and forecasting univariate highly volatile time series data

Step 3: Development of BJ-G procedure in identifying the highly volatile characteristic at the early stage by modifying the proposed procedure in Step 2

Step 4: Development of procedure of BJ-G model for multistep forecasting

Step 5: Development of new comprehensive procedure of BJ-G model in modelling and forecasting univariate highly volatile time series data
\square
Step 6: Conclusions
Figure 1.2 Framework of study

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter provides a brief review of Box-Jenkins modelling and the research scenario for the highly volatile time series data. The statistics for the number of publications in the related study from ISI web of science are provided. The modelling of Box-Jenkins and Box-Jenkins - GARCH (BJ-G) model in terms of procedure in the present study are critically reviewed to determine the gap for further development and contributions.

2.2 Box-Jenkins Modelling and Highly Volatile Time Series Data

Box-Jenkins modelling is proposed by Box and Jenkins in 1968 by introducing a procedure of four iterative stages namely model identification, parameter estimation, diagnostic checking and forecasting (Box \& Jenkins, 1968). The modelling provides a systematic methodology for identifying and estimating models that incorporate autoregressive (AR) and moving average (MA) models. The AR, MA, autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA) and seasonal autoregressive integrated moving average (SARIMA) are the models under consideration of the Box-Jenkins modelling, or so-called as the Box-Jenkins model.

The Box-Jenkins model is essentially a model for transforming the original series y_{t} into a series that consists of random errors component a_{t}; or $y_{t} \rightarrow a_{t}$, where y_{t} is often highly correlated series and a_{t} is an uncorrelated series. In general, the random errors component will exist in all construction of Box-Jenkins models. In the Box and Jenkins modelling, the principle of parsimony is an important principle in the choice of
models, meaning that a simpler (having fewer parameters) model whilst adequately representing the data should be selected (Box \& Jenkins, 1968; Box, et. al, 2008).

In the modelling, Box and Jenkins developed the class of stochastic models that are capable to represent stationary and nonstationary behaviour in obtaining the appropriate stochastic models since they believed that the optimal forecasts of future values of time series are determined by the stochastic model that describes the series. Their main effort then goes to statistical analysis in the stochastic model for the series that is directed to forecasting. In their initial study, Box and Jenkins employed significant relationships of two main univariate time series models, namely autoregressive and moving average which are given by Equation 2.1 and 2.2, respectively (Box \& Jenkins, 1968). These models originally developed by Yule (Yule, 1927).

$$
\begin{align*}
& y_{t}-\mu=\phi_{1}\left(y_{t-1}-\mu\right)+\phi_{2}\left(y_{t-2}-\mu\right)+\ldots+\phi_{p}\left(y_{t-p}-\mu\right)+a_{t} \\
& y_{t}-\mu=a_{t}-\theta_{1} a_{t-1}-\theta_{2} a_{t-2}-\ldots-\theta_{q} a_{t-q}
\end{align*}
$$

Equation 2.1 is the mathematical expression for the autoregressive model which shows that the deviation $y_{t}-\mu$ is linearly dependent on previous deviations and on a_{t}, where μ is the mean of data. Meanwhile, in the moving average model, the $y_{t}-\mu$ is made linearly dependent on a_{t} and on one or more previous random errors, as expressed in Equation 2.2. The forms in Equation 2.1 and 2.2 have linear relationships.

By definition, a univariate time series is a single random variable at time t, y_{t} while a univariate model describes the distribution of y_{t} in terms of its relationship with past values of y_{t} with a series of random errors, a_{t}. Hence, the Box-Jenkins models are able to handle linear stochastic series and is considered as one of the linear stochastic models. In general, the linear stochastic models often work well and able to provide an adequate approximation for modelling and forecasting data series (De Gooijer \& Hyndman, 2006). Due to its capability, linear stochastic model as well as the corresponding linear method provides a useful benchmark for comparison of the results with alternative models. According to Tsay (2013), the univariate linear time series model covers simple econometric models that are useful in business, finance and economics.

The practicality of the Box-Jenkins model in handling linear stochastic series either as forecasting, the benchmark or as the integrated model makes the Box-Jenkins modelling is one of the established method in time series analysis. A book of Time Series Analysis: Forecasting and Control by Box and Jenkins in 1970 sparks a significant contribution in time series forecasting studies using the Box-Jenkins models. The book has had an enormous impact on the theory and practice of modern time series forecasting, specifically on univariate time series (De Gooijer \& Hyndman, 2006).

Since the Box-Jenkins models contribute a significant effect to univariate time series data, hence the study on the Box-Jenkins modelling and its models still receives great interest till today. Figure 2.1 shows a trend in citation indexed journal papers for Box-Jenkins model during the years 2000 to early 2018 in various research areas. The top ten research areas related to time series data using Box-Jenkins model between year 2000 and 2018 is given in Table 2.1. The data was generated from the ISI web of science (Thompson Reuters, http:apps.webofknowledge.com/) using the keywords 'time series', 'Box-Jenkins model' and all related Box-Jenkins models on 23 January 2018. It can be observed that the number of publications has been continuously increasing year after year, thereby opening new ideas and opportunities for researchers to develop better understanding on the methods and procedures of the Box-Jenkins modelling.

Figure 2.1 Number of papers published in the time series research using BoxJenkins model between 2000 and 2018 generated from ISI web of science on 23 January 2018

Despite the fact that the Box-Jenkins model is popular and practical to be used, it is not able to handle the non-constant variance that are present in a data series. In general, the Box-Jenkins models assume that the variance of the error, $\sigma_{a_{t}}^{2}$ is constant. Note that, the error term a_{t} in the Box-Jenkins model is usually assumed normal and having mean
zero and constant variance $\sigma_{a_{t}}^{2}$, or can be written as $a_{t} \sim N\left(0, \sigma_{a_{t}}^{2}\right)$ (Box, Jenkins \& Reinsel, 2008). However, for a highly volatile time series, the error term does not satisfy the homoscedastic assumption of constant variance.

Table 2.1 Top ten research areas related to time series data using Box-Jenkins model between 2000 and 2018 generated from ISI web of science on 23 January 2018

Research area	Number of papers	Percentage (\%)
Mathematics \& Statistics	1598	22.0
Engineering	1519	20.9
Business \& Economics	1157	15.9
Computer science \& Artificial intelligence	1115	15.3
Geology	616	8.5
Environmental sciences ecology	564	7.8
Mathematical methods in social sciences	399	5.5
Water resources	294	4.0
Geochemistry geophysics	285	3.9
Energy fuels	266	3.6

The time series studies for highly volatile is reportedly rapidly increasing in recent years, which indicates that the nature of current data is highly volatile especially in the commodity markets. This statement is supported by the statistics data generated from ISI web of science using the keywords "time series" and "volatility" or "highly volatile" on 23 January 2018, as shown graphically in Figure 2.2 and tabulated in Table 2.2. Therefore, a good forecasting method that is able to handle well a highly volatile time series data is vital to study in providing a useful forecasting tool especially for applications in economics and other related areas.

Figure 2.2 Number of papers published related to highly volatile time series between 2000 and 2018 generated from ISI web of science on 23 January 2018

Table 2.2 Top ten research areas related to highly volatile time series data between 2000 and 2018 generated from ISI web of science on 23 January 2018
 heteroscedasticity) which depends on the observations of the immediate past, is called conditional variance. The autoregressive conditional heteroscedastic (ARCH) model as introduced by Engle is used to model the conditional variance of the innovations, σ_{t}^{2} (Engle, 1982). An ARCH model is the first model that provides a systematic framework for univariate volatility modelling to detect heteroscedasticity in financial time series in understanding volatility in time series data (Engle, 1982; Tsay, 2005). However, the ARCH models are difficult to estimate since they often produce negative estimates of the coefficient of ARCH parameters. Note that, all ARCH parameters must be positive. To solve this problem, Bollerslev proposed an extended form of heteroscedastic model known as the generalised autoregressive conditional heteroscedastic (GARCH) (Bollerslev, 1986).

In general, GARCH-type models can easily accommodate volatility clustering in a data series and being used in research practice of time series modelling and forecasting (refer Figure 1.1). Previous studies showed that GARCH-type models such as standard GARCH, GARCH-M and asymmetric GARCH (EGARCH, APARCH) are widely applied in time series forecasting to handle volatility in a data series (Ahmed, 2017; Chen et al., 2011; Girish, 2016; Loi \& Ng, 2018; Liu \& Shi, 2013; Pham \& Yang, 2010). Table 2.3 presents the top ten research areas using ARCH/GARCH-type model between 2000 and 2018 generated from ISI web of science on 23 January 2018. From the statistics,
it is shown that GARCH-type models have widely been used in forecasting economic or financial related data, where estimation of variance is important in the assessment of risk.

Table 2.3 Top ten research areas related to time series data using ARCH/GARCH type model between 2000 and 2018 generated from ISI web of science on 23 January 2018

Research area	Number of papers	Percentage (\%)
Business \& Economics	388	40.7
Mathematics \& Statistics	376	39.4
Computer science \& Artificial intelligence	150	15.7
Mathematical methods in social sciences	139	14.6
Engineering	117	12.3
Operations research management science	47	4.9
Energy fuels	37	3.9
Environmental sciences ecology	35	3.7
Science technology other topics	21	2.2
Energy fuels	266	3.6

Due to its homoscedastic assumption of constant variance, the Box-Jenkins model is found inappropriate for modelling and forecasting highly volatile time series data. However, because of the good reputation of Box-Jenkins model in research practice, the model is worth considering in forming a forecasting model for the highly volatile time series. Since the forecasting model must reflect its structure and pattern, the conditional variance in a highly volatile data series should be considered in forming a reliable forecasting model. Hence, the incorporation of GARCH model to Box-Jenkins model can be an effective way to overcome the limitation of the Box-Jenkins model in forecasting highly volatile time series.

There are various forecast models in dealing with highly volatile time series data such as support vector machines (SVMs) (Villegas, Pedregal \& Trapero, 2018), artificial neural networks (ANNs) (Alasali, Haben, Becerra \& Holderbaum, 2018; Chakravarty, Mohapatra \& Dash, 2016; Chen et al., 2012; Chitsaz, Shaker, Zareipour, Wood \& Amjady, 2015; Jun, Lingyu, Yuyan \& Peng, 2017; Panapakidis, 2016; Pandey, Jagadev, Dehuri \& Cho, 2019; Yu, Choi \& Hui, 2012), hybrid ANNs and Box-Jenkins (Weerathunga \& Silva, 2018), artificial intelligence (AI) (Yang, Zhang \& Wang, 2019), dynamic window size algorithm (DyWiSA) (Dalmazo, Vilela \& Curado, 2017), hybrid fuzzy system and ANNs (Barros \& de Medeiros, 2017), dynamic model averaging (DMA) (Naser, 2016), bootstrapped regime switching (BRS) (Gel, Lyubchich \& Ahmed,
2016), wavelet smoothing method (Michis, 2015), sparse modelling (Tzagkarakis, Caicedo-Llano \& Dionysopoulos, 2015), value-at-risk (VaR) estimation method (Liu, Chung \& Wen, 2014), hybrid of ANNs and SVMs (Hu, Wang \& Zeng, 2013) and Taguchi method (Wang \& Huang, 2007). Although these models achieve a certain effect in forecasting highly volatile data, many studies in recent years applied the combination models of Box-Jenkins with GARCH-type to time series data in various fields for their good performance.

Data generated from ISI web of science on 23 January 2018, as presented in Figure 2.3, shows the number of papers published using the combination model between 2000 and 2017. It shows that the number of publications is increasing significantly especially since year 2009, which indicates that the model of Box-Jenkins - GARCH-type is a promising one in forecasting highly volatile time series data. However, the information about the procedure in applying the combination model is not documented clearly. Hence, the development of a comprehensive procedure of BJ-G would provide useful basic guidelines for using the combination model of Box-Jenkins - GARCH-type to address univariate highly volatile data.

Figure 2.3 Number of papers published using BJ-G model between 2000 and 2017 generated from ISI web of science on 23 January 2018

2.4 A Review of Some Studies on Box-Jenkins - GARCH Model

The study on highly volatile time series for modelling and forecasting purposes using Box-Jenkins with GARCH-type model is supported by many researchers. Some of the recent studies, specifically for univariate data, are summarised in Table 2.4. To the best of our knowledge, although these studies achieve a certain effect in modelling and forecasting highly volatile time series data, very limited studies or literatures focus on the development of BJ-G model procedure.

Table 2.4 Review on the selected studies on Box-Jenkins - GARCH-type model

Researcher	Data	Model	Methods/Procedure
Loi and Ng, 2018	- electricity prices - 524 weekly wholesale prices (6/5/06-20/4/16) - ratio 503:21 (or 96:4)	ARIMAGARCH	i) Descriptive statistics and volatility checking (use standard deviation at level and log price) ii) Stationarity test: differenced, Perron/Voselgang breakpoint unit root tests iii) Identify model: ACF, PACF iv) Parameter estimate: MLE, AIC v) Diagnostic test: ARCH test, ACF on \hat{a}_{t}^{2} vi) Forecast evaluation: 1-step, MAPE, MAE, RMSE, TIC *Handling outlier *Apply structural breaks to ARIMA-GARCH *Provides brief procedure
Gaglianone and Marins, 2017	- exchange rate - 183 monthly data (Jan 00-Mac 2015) with ratio 72:111 (or 40:60) - 3977 daily data (3/1/00$31 / 3 / 2015$) with ratio 1565: 2412 (or 40:60)	AR-GARCH	i) Analysis on exchange rate ii) Diagnostic test: t innovations iii) Forecasting: Point forecast (RMSE), multiple step ahead up to $h=20$ (70\% PIs, LPDS, Knüppel test, Berkowitz test) iv) Model ranking: local analysis, risk analysis *AR-GARCH is 1 of 14 model *more on multiple step forecasting *Brief procedure for AR-GARCH
Ahmed, 2017	- stock market index prices - energy commodity prices: oil and natural gas 541 weekly closing data (1/28/6/2016)	AR-EGARCH - for univariate data VAREGARCH -for bivariate data	i) Stationarity: ADF, PP, KPSS ii) Properties for volatility: Mean, standard deviation, skewness, kurtosis, JB-test, LBQ-test, ARCH test iii) lag order: SIC iv) Parameter estimate: AIC, SIC, QMLE v) Diagnostic Test: JB, LBQ, LBQ2, ARCH *No discussion on forecasting part *No framework is proposed
Girish, 2016	```- Spot electricity prices - 27384 hourly data (1/10/10- 15/11/13) - ratio 26304:1080 (or 96:4)```	ARIMAGARCH, ARIMAPARCH, ARIMAEGARCH	i) Data stationarity: first differenced price ii) Heteroscedasticity test: White test (for data) iii) Identify model: ACF and PACF iv) Diagnostic test: SIC, ACF, PACF, LBQ, LBQ^{2}, ARCH test v) Forecasting evaluation: 1-step ahead forecast (RMSE, MAE, MAPE and TIC) *Not discuss on parameter estimate

Table 2.4 Continued

Researcher	Data	Model	Methods/Procedure
Liu and Shi, 2013	```- short term real time electricity prices - }18960\mathrm{ hourly data (1/1/08- 28/2/2010) - ratio 17544:1416 (or 92:8)```	ARMAGARCH, ARMA-GARCH-M	i) Descriptive statistics on price ii) ARMA model: use EACF method iii) Parameter estimation: MLE iv) Diagnostic test: adjusted R^{2}, F test, AIC, SIC, ACF and PACF on residuals v) Forecasting evaluation: 1-step ahead forecast (RMSE, MAE, MAPE, TIC) *no discussion on data stationarity *no test on heteroscedasticity *no graphical framework on the procedure

Babu and Reddy, 2015	- Stock price - daily closing data (Jan 2010-Dec 2011)	Hybrid ARIMAGARCH	i) Pre-processing step: decompose series to highly and low volatile using MA filter. ii) The highly volatile data is partitioned and interpolated to apply ARIMA-GARCH model iii) Check volatility (use standard deviation), volatility clustering, fat tail distribution. iv) Forecasting evaluation: MAPE, MaxAPE, MAE, RMSE, 20-step ahead *no discussion on how to choose the model order, diagnostic test. *discussion more on k-fold cross validation in choosing model and forecasting.
García-Ferrer, GonzálezPrieto and Peña, 2012	- stock price - 1250 daily closing data $\begin{gathered} -(1 / 1 / 00- \\ 31 / 12 / 04) \end{gathered}$ - ratio 1000:250 (or 80:20)	AR-GARCH, ARMA-GARCH	i) Analysis on log return, descriptive statistics, JB-test and LBQ-test, LBQ ${ }^{2}$-test ii) ARMA model: SIC, GARCH: QMLE iii) Innovations: normal, t, GED iv) Forecast error: MSE, 1-step ahead *Propose procedure using GICAGARCH to fit a ARMA-GARCH model

Table 2.4 Continued

Researcher	Data	Model	Methods/Procedure
Liu, Erdem and Shi, 2011	- wind speed data - hourly data (1/1/02-31/12/08)	ARMAGARCH, ARMA-GARCH-M	i) ARMA model: use EACF method ii) Parameter estimation: MLE iii) Diagnostic test: adjusted R^{2}, F-test, AIC, SIC, LBQ-test, BG-test *no test on heteroscedasticity, show data volatility using time plot * no discussion on stationarity data *no discussion on forecasting part *no graphical framework/procedures
$\begin{aligned} & \hline \text { Chen et al., } \\ & 2011 \end{aligned}$	- Short-time traffic flow (transportation) - 3-min, 5-min, 10min and $15-\mathrm{min}$ traffic flow - (1/10-30/11/09) - Ratio 50:50	Hybrid ARIMAGARCH	i) Stationary data: differenced ii) Model identification: ACF, PACF iii) Diagnostic test: LBQ, ARCH-test, LBQ^{2} iv) Forecast evaluation: MAE, MSE, MRE, 1-step ahead *no discussion on data transformation, parameter estimate *provides graphical framework on procedure
Walid, Chaker, Masood and Fry, 2011	- stock market index prices - exchange rate - weekly closing data - (Dec 1994-March 2009)	AR-EGARCH	i) Return price and rate, descriptive statistics, JB-test, LBQ, LBQ ${ }^{2}$-test ii) Stationarity test: ADF, PP, KPSS iii) Lag order: AIC, Hannan and Quinn iv) Diagnostic test: LBQ, LBQ^{2} * no discussion on forecasting part *no framework/procedure is proposed
Harrison and Paton, 2004	```- Stock market price - }1384\mathrm{ daily data (7/5/97 -16/9/00)```	AR-GARCH	i) Analysis on stock market return ii) Descriptive statistics, Shapiro-Wilk for normality test iii) Parameter estimation: MLE iv) Model selection: AIC v) Diagnostic test: ARCH-test, LBQ-test *no discussion on forecasting

Table 2.4 Continued

Researcher	Data	Model	Methods/Procedure
Pham and Yang, 2010	- Vibration signal (highly volatile time series) for fault prediction - 470 of 6-hour data - (Sept - Nov 2005) - ratio 250:220 (or 53:47)	$\begin{aligned} & \hline \text { ARMA(1,1)- } \\ & \operatorname{GARCH}(1,1) \end{aligned}$	i) Stationarity: ACF plot ii) Identify model: ACF and PACF iii) Parameter estimate: MLE iv) Forecasting: MSE, 1-step to 10-step ahead *not emphasis on diagnostic checking *no checking on the existence of heteroscedasticity in the data. *no transformation data step. *shows framework, but not enough details on method used.
Ord, Koehler, Snyder and Hyndman, 2009	- gasoline price - monthly data - (Jan 1991 - Nov 2006) - ratio 132:59 (or 70:30)	ARMA(1,1)EGARCH $(1,1)$	i) Analyse log gas price ii) Parameter estimation: MLE iii) Forecasting: up to h-step ahead *use the model in monitoring heteroscedastic processes *no procedure is given on identification stage and diagnostic test
Koopman, Ooms and Carnero, 2007	- daily electricity spot prices - 4480 daily data (4/1/93 10/4/05)	periodic seasonal Reg-ARFIMAGARCH	i) Analyse log data, first difference of log prices, descriptive statistics ii) Parameter estimation: MLE, AIC iii) Diagnostic test: residual plot, LBQ, LBQ ${ }^{2}$-test, histogram and ACF for residuals, ACF of squared residuals, t innovations *no discussion on forecasting * provides basic modelling framework in sentence form, no graphical framework
Byström, 2005	- electricity spot prices (highly volatile) - 41665 hourly data (1/1/96 1/10/00) - Ratio 17472:24193 (or 40:60)	$\begin{aligned} & \text { AR- } \\ & \text { GARCH(1,1) } \end{aligned}$	i) Analysis on return price, descriptive statistics, LBQtest, LBQ^{2}-test ii) Parameter estimation: MLE iii) Diagnostic test: descriptive statistics on residuals, LBQtest, LBQ^{2}-test, normal and t iv) Forecasting: 1 -step to 24step, use tail quantiles at different probability *no explanation on how to choose order of GARCH model. *procedure/procedure used is not clear presented

Table 2.4 Continued

Researcher	Data	Model	Methods/Procedure
Sohn and Lim, 2007	- rates of Dow Jones Industrial Average - data stock price - (24/9/01- 10/11/03)	AR-GARCH	i) Analysis on log return rates ii) Forecasting evaluation: h step ahead, MRE *no procedure to choose the order of the model, assume data follows AR(2)-GARCH $(1,1)$
Ferenstein and Gasowski, 2004	- stock price - Daily closing price $\begin{gathered} -(26 / 3 / 92- \\ 9 / 12 / 02) \end{gathered}$	$\begin{aligned} & \text { AR-GARCH, } \\ & \text { AR-EGARCH } \end{aligned}$	i) Analysis on log returns of prices ii) Identification: use PACF of \log return for AR model, LBQ-test iii) Parameter estimation: QMLE, AIC, SIC iv) Diagnostic test: LBQ-test, LM ARCH-test, QQ-plot, innovations distribution (normal, t, GED, hyperbolic) v) Forecasting evaluation: MSE, MAE, MAPE, MMEO, MMEU, 1-step and 2-step *the ratio of estimate: forecast is not stated

2.5 Gap of Knowledge in the Study

In this study, the Box-Jenkins modelling is used as the basic approach in forecasting highly volatile time series data. There are four iterative stages in the modelling, Stage I (Model identification), Stage II (Parameter estimation), Stage III (Diagnostic checking) and Stage IV (Forecasting). In finding the gap of knowledge in the study, specifically in the development of the procedure in the Box-Jenkins modelling in handling highly volatile time series data, published books that have been highly influential which were written by experts on the topic of time series forecasting that is related to the Box-Jenkins modelling for univariate data have been referred. The four main references used are for theoretical and application of Box-Jenkins modelling. Table 2.5 presents the review of the procedure of Box-Jenkins modelling from the publications.

Table 2.5 Review on procedure of Box-Jenkins modelling for univariate data

Publication	Contribution on Procedure	Limitation/Remarks
Time Series Analysis: Forecasting and Control $4^{\text {th }}$ and $5^{\text {th }}$ ed. (Box, et al., 2008; Box, Jenkins, Reinsel \& Ljung, 2015)	Stage I: (i) Stationarity test: ACF and PACF, unit root test, use differenced method; (iii) Identify model: ACF and PACF ($k_{\max }=20$); (iv) Model selection: AIC, SIC. The Box-Cox transformation is suggested for seasonal series. Stage II: MLE, OLS Stage III: autocorrelation check on residual, LBQ-test at $k_{\text {max }}=20$) Stage IV: MSE for 1-step ahead, PIs 50\% and 95% for multiple step. - Provide thorough explanation of the theoretical parts on the methods used. - Provide a brief graphical presentation on the stages in the procedure. - Provide some basic concepts of ARCH/GARCH in errors part of BJ. - To detect ARCH/GARCH effect: ACF and PACF of squared errors, LBQ-test on squared errors, ARCH LM test. - Illustrate the procedures using R software in the latest publication.	- The procedure to combine the BoxJenkins model with ARCH/GARCH is not well explained. - No detailed graphical presentation (include methods and tests) on the procedure of BJ modelling either for BJ models or BJ-G. - The steps in each stage is not clearly explained. - No discussion on the procedure to determine the optimal sample size either for BJ models or BJ-G. - Lack of discussion on distribution of errors which is important in Stage III.
Forecasting: Principles and Practice $1^{\text {st }}-2^{\text {nd }}$ online edition (OText) Athanasopoulos, Athanasopoulos, 2017)	Stage I: (i) Stationarity: time plot, data transformation, differencing (ACF, $\text { ADF-test }\left(k=(T-1)^{1 / 3}\right) \text {, LBQ-test at }$ $k=10 \text {; (ii) Identify model: ACF, PACF }$ Stage II: MLE, AIC and SIC Stage IV: 80% and 95% PIs, 1 to n-step Steps in forecasting: define problem, collect info, preliminary analysis, choose and fit models, forecasting evaluation. - Forecasting tools:(i) Graphics: time plot, lag plot, scatter plot, ACF (ii) data transformation: Box-Cox, calendar adjustments; (iii) residual diagnostics: plot, histogram, ACF, LBQ-test; (iv) forecast accuracy: in-sample to out-ofsample (80:20), forecast error (MAE, RMSE, MAPE, scaled error, MASE), cross-validation, 80% and 95% PIs. Provides a framework of general process of forecasting using ARIMA. - Emphasise graphical methods to explore, analyse and forecast the data. - Provides data analysis using R language specifically forecast package. - Provides a general idea to determine the optimal sample size for time series.	- The procedures (steps, methods) using BJ model is not structured well in the stages of BJ modelling. - Unclear stages of the Box-Jenkins modelling in the framework of general process of forecasting using ARIMA. - Did not provide thorough discussion on the theoretical details behind each method. - No discussion on GARCH, suggest to use data transformation (Box-Cox) to address heteroscedasticity. - No discussion on BoxJenkins model and GARCH in handling volatility in data series

Table 2.5 Continued

Publication	Contribution on Procedure	Limitation/Remarks
An Introduction to Analysis of Financial Data with R (Tsay, 2013)	Stage I: (i) time plots, stationarity (scatter plot, ACF, PACF, differencing, ADFtest), LBQ-test at $k=\ln T$, (ii) Identify model: AR (use ACF, AIC, SIC), MA (use PACF), ARMA and ARIMA (use EACF, AIC, SIC)) Stage II: OLS, MLE Stage III: ACF, LBQ-test on residuals, DW-test, LBQ-test on squared residuals, LMARCH-test, error distribution. Stage IV: Backtesting (MSE, RMSE, MAE, Bias), 1 to n-step (95% PIs). - Properties of financial data: asset return, simple return, compounded return. - Statistical tool: moments, graphics (time plot, histogram, scatter plot), JB-test. - linear models in financial time series: AR, MA, ARMA, ARIMA, SARIMA, random walk, random walk with drift. - Provides steps in ARCH/GARCH model - Discuss ARCH and GARCH-type model - Demonstrate analysis using R language.	- The procedures (steps, methods) using BJ model is not structured well. - No detailed graphical presentation (include methods and tests) on the procedure of BJ modelling either for BJ models or BJ-G. - No discussion on the combination of BoxJenkins model with GARCH-type handling volatility data series - No discussion on the procedure to determine the optimal sample size either for BJ models or BJ-G.
Time Series Forecasting (Chatfield, 2001)	Stage I: (i) Model formulation: preliminary analysis; (ii) Model selection: ACF and PACF, AIC and SIC. Stage III: residual plot, autocorrelation check, LBQ-test ($k=20$). Stage IV: forecast evaluation (RMSE, MAE, MSE, PMSE, ME, MAPE), 80% or 90\% PIs - objectives in time series analysis: data description, modelling, forecasting, control. - Preliminary part: (i) Data description: time plot, descriptive statistics, histogram; (ii) Box-Cox transformation when series has severe changes in variance; (iii) data cleaning: outlier, errors, missing; (iv) emphasise on ACF - Stationarity: differencing - in-sample (Stage I - Stage III) and out-of-sample (Stage IV), ratio 90:10 - Nonlinearity checking: plot y_{t} vs y_{t-1} - Brief discussion on sample size - Discuss briefly on ARCH/GARCH. - Provides details on prediction intervals.	- No detailed graphical presentation (include methods and tests) on the procedure of BJ modelling either for BJ models or BJ-G. - No discussion on the procedure to determine the optimal sample size. - A brief discussion on Stage II (MLE, OLS). - No discussion on the distribution of errors which is important in model forecasting. - No detailed discussion on models in dealing with univariate highly volatile data.

[^0]The books of Time Series Analysis: Forecasting and Control $4^{\text {th }}$ ed. by Box et al. (2008) have been cited 44241 times, as generated in Google Scholar up to 23 January 2018. Hence, it shows that the Box-Jenkins modelling has been very influential in the development of time series modelling. Since the study focuses on the development of the Box-Jenkins modelling, the books have been used as the main reference for the basic theories and procedures in this study. Other than that, the books by Hyndman and Athanasopoulos $(2014,2017)$ and Chatfield (2001) and have also been used as key references in the development of the procedures for practical application of univariate highly volatile. Whereas, the book by Tsay has been used as the main reference for financial tools since the study focuses on highly volatile data that is closely related to financial data (Tsay, 2013). Therefore, based on the critical reviews on books presented in Table 2.5 and the existing publications, the knowledge gaps are identified, as the details are given in Table 2.6.

Table 2.6 The knowledge gaps in the study

New contribution

Limitation/Remarks

1. Proposed a modified procedure in modelling and forecasting \bullet For univariate data univariate highly volatile data series using BJ-G model based on time series only. the Box-Jenkins modelling, by considering the methods and tests \bullet Consider the model used in Stage I to Stage IV as suggested in the key publications of Box-Jenkins for used.
2. Proposed a modified BJ-G procedure in dealing specifically with univariate highly volatile time series data which simultaneously ensure the number of data required for practical application using BJ-G model.
3. Proposed a modified procedure in evaluating the multistep forecasting performance using BJ-G model.
4. Proposed a comprehensive procedure of Box-Jenkins with all GARCH-type model in forecasting highly volatile time series up to n-step ahead.
5. Provides a well-structured graphical presentation of each BJ-G stage (Stage I - Stage IV) for each proposed procedure.
6. Evaluate the performance of the proposed procedures and the corresponding graphical presentations for world gold price.
7. The procedures and the corresponding graphical presentation are also applicable when applying the Box-Jenkins model to data series, by ignoring the parts of heteroscedasticity test.

The knowledge gaps identified are focused on the development of time series forecasting model in handling univariate highly volatile time series data using

Box-Jenkins modelling by incorporating the Box-Jenkins with GARCH-type model. The positioning of Box-Jenkins and the GARCH models in the univariate time series forecasting can be referred to in Figure 1.1 in Chapter 1.

2.6 Concluding Remarks

The current study aims to develop a new procedure for modelling and forecasting highly volatile time series data with the Box-Jenkins as the base model. Since the focus in this study is to develop the procedure of Box-Jenkins that deals with univariate highly volatile time series data, then the GARCH-type model is considered in the proposed procedures, namely the Box-Jenkins - GARCH's procedure or procedure of BJ-G. The proposed procedure of BJ-G is demonstrated using the world gold prices as the case study.

CHAPTER 3

METHODOLOGY AND STATISTICAL TOOLS

3.1 Introduction

This chapter theoretically describes the concepts and methodologies used in the study. Based on these concepts and methodologies, the current study aims to develop a conceptual procedure for modelling and forecasting highly volatile time series data with the Box-Jenkins as the base model. The world gold prices will be the case study. A general Box-Jenkins framework in modelling and forecasting is illustrated in Figure 3.1.

Figure 3.1 General Box-Jenkins's framework

However, the framework can be enhanced for further improvement of procedures and results to develop a new procedure. In our work, while a new Box-Jenkins's procedure is developed, its two important principles which are stationarity and parsimony will not be violated. This chapter starts with the discussion on Box-Jenkins modelling and forecasting procedures. Since the focus in this study is to develop a procedure of Box-Jenkins that deals with highly volatile time series data, then the theory of the GARCH models is considered in developing the combination model of Box-Jenkins -

GARCH, simply called as BJ-G. In the final section, a procedure of BJ-G developed by the current study is presented.

3.2 Box-Jenkins Modelling

Box-Jenkins modelling involves five types of models (Box et al., 2008). The models are autoregressive (AR), moving average (MA), autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA) and seasonal autoregressive integrated moving average (SARIMA). The models which are associated with stationary behaviours are AR, MA and ARMA. Stationary models assume that the process remains in equilibrium statistically with probabilistic properties that do not change over time, in particular varying about a fixed constant mean level and with constant variance. ARIMA is the only model that handles nonstationary time series with nonseasonal characteristics, meanwhile, SARIMA is the only model of Box-Jenkins that is dedicated to nonstationary with seasonal time series. The procedure in choosing the appropriate Box-Jenkins model is shown in Figure 3.2.

Figure 3.2 Schematic diagram for the procedure in choosing the appropriate BoxJenkins Model
Source: Box, et al. (2008).

Figure 3.2 shows how to identify different types of time series data as either stationary or nonstationary. The general forms of the Box-Jenkins's stationary and nonstationary models are given as follows.

i) Stationary Models

Let y_{t} and a_{t} be the observed value and random error at time period t, respectively; with c is a constant, μ is the mean of the model, $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{p}$ are the autoregressive parameters with order $p, \theta_{1}, \theta_{2}, \ldots, \theta_{q}$ are the moving average parameters with order q, d is the order of differencing and B is the backward shift operator. The operator of $\varphi_{p}(B)=1-\sum_{i=1}^{p} \varphi_{i} B^{i}$ and $\theta_{q}(B)=1-\sum_{j=1}^{q} \theta_{j} B^{j}$ are polynomials in terms of B of degree p and q. Note that p, q and d are integers. The stationary Box-Jenkins models have the form given in Equation 3.1 to 3.3. In these models, the random errors a_{t} are assumed to be independently and identically distributed (IID) with mean zero and constant variance of σ^{2}.

The autoregressive model of order p, or $\operatorname{AR}(p)$ is expressed as in Equation 3.1,

$$
y_{t}=c+\varphi_{1} y_{t-1}+\varphi_{2} y_{t-2}+\ldots+\varphi_{p} y_{t-p}+a_{t} \text { for }\left|\varphi_{1}\right|,\left|\varphi_{2}\right|, \ldots,\left|\varphi_{p}\right|<1
$$

or equivalently to

$$
\left(1-\varphi_{1} B-\varphi_{2} B^{2}-\ldots-\varphi_{p} B^{p}\right)\left(y_{t}-\mu\right)=a_{t}
$$

where $c=\left(1-\varphi_{1}-\varphi_{2}-\ldots-\varphi_{p}\right) \mu$. Meanwhile, the moving average model of order q, or abbreviated as MA (q), is expressed as in Equation 3.2.

$$
y_{t}=\mu+a_{t}-\theta_{1} a_{t-1}-\theta_{2} a_{t-2}-\ldots-\theta_{q} a_{t-q} \text { for }\left|\theta_{1}\right|,\left|\theta_{2}\right|, \ldots,\left|\theta_{q}\right|<1
$$

or can be written as $y_{t}=\mu+\left(1-\theta_{1} B-\theta_{2} B^{2}-\ldots-\theta_{q} B^{q}\right) a_{t}=\mu+\theta(B) a_{t}$.

The autoregressive moving average model of order p and q, or particularly an $\operatorname{ARMA}(p, q)$, is a model that mixes the $\operatorname{AR}(p)$ and $\operatorname{MA}(q)$ models as in Equation 3.3.

$$
y_{t}=c+\varphi_{1} y_{t-1}+\varphi_{2} y_{t-2}+\ldots+\varphi_{p} y_{t-p}+a_{t}-\theta_{1} a_{t-1}-\theta_{2} a_{t-2}-\ldots-\theta_{q} a_{t-q}
$$

or can be written as $\varphi(B) y_{t}=\theta_{0}+\theta(B) a_{t}$, where $c=\left(1-\varphi_{1}-\varphi_{2}-\ldots-\varphi_{p}\right) \mu$.

ii) Nonstationary Models

The autoregressive integrated moving average model of order p and q, $\operatorname{ARIMA}(p, d, q)$ is the extended model of $\operatorname{ARMA}(p, q)$ with order of differencing, d. This model suggests that in a nonstationary case, the series need to be differenced in order to form a stationary series. The general form of $\operatorname{ARIMA}(p, d, q)$ has the form as in Equation 3.4,

$$
\varphi_{p}(B)(1-B)^{d}\left(y_{t}-\mu\right)=\theta_{q}(B) a_{t} \quad \text { for }\left|\varphi_{1}\right|,\left|\varphi_{2}\right|, \ldots,\left|\varphi_{p}\right|<1,\left|\theta_{1}\right|,\left|\theta_{2}\right|, \ldots,\left|\theta_{p}\right|<1 .
$$

The seasonal autoregressive integrated moving average model of Box-Jenkins model denoted by SARIMA $(p, d, q)(P, D, Q)_{S}$, is designed for the nonstationary and seasonal series. This seasonal model is extended from ARIMA model and represented by Equation 3.5,

$$
\Phi_{P}\left(B^{S}\right) \varphi_{p}(B)(1-B)^{d}\left(1-B^{S}\right)^{D} \dot{y}_{t}=\Theta_{Q}\left(B^{S}\right) \theta_{q}(B) a_{t}
$$

where

$$
\dot{y}_{t}= \begin{cases}y_{t}-\mu, & \text { if } d=D=0 \\ y_{t}, & \text { otherwise }\end{cases}
$$

and $\Phi_{P}\left(B^{S}\right)=1-\sum_{I=1}^{P} \Phi_{I}\left(B^{S}\right)^{I}, \Theta_{Q}\left(B^{S}\right)=1-\sum_{J=1}^{Q} \Theta_{J}\left(B^{S}\right)^{J}$ which are polynomials in terms of B^{s} of order P and $Q, \nabla_{D}^{S}=\left(1-B^{S}\right)^{D}, S$ is the seasonal period, P is the order of seasonal autoregressive, Q is the order of the seasonal moving average, and D is the order of seasonal differencing.

The Box-Jenkins approach is different from most methods in a time series because it uses an iterative approach of identifying a possible model from a general class of models. As depicted in Figure 3.1, the general Box-Jenkins framework includes four iterative stages namely Stage I: Model identification, Stage II: Parameter estimation, Stage III: Diagnostic checking and Stage IV: Forecasting. The general step by step procedure in the Box-Jenkins framework is briefly reviewed as follows [see (Box et al., 2008)].

Stage I (Identification): The stationarity in the data is tested since the Box-Jenkins models are applicable for stationary series data. The use of Box-Cox
transformation is suggested for seasonal series. The autocorrelation function (ACF) and partial autocorrelation function (PACF) of the stationary series then are used to identify the possible model of the Box-Jenkins for the data. For the Box-Jenkins models, the ACF and PACF properties of a stationary data series are employed in determining the order of the models. Basically, the sample ACF is used to obtain the possible values of order q for $\operatorname{MA}(q), \operatorname{ARIMA}(p, d, q)$ and $\operatorname{SARIMA}(p, d, q)(P, D, Q)_{s}$ models, and the sample PACF is used to obtain the possible values of order p for $\operatorname{AR}(p), \operatorname{ARIMA}(p, d, q)$ and $\operatorname{SARIMA}(p, d, q)(P, D, Q)_{s}$ models.

Stage II (Parameter estimation): The parameters for the possible model are estimated using widely known parameter estimation approach such as maximum likelihood estimation (MLE) or ordinary least square (OLS). The model with significant parameter(s) will be considered for the next stage. Essentially, the method of MLE works by finding the most likely values of the parameters given the actual data. More specifically, a log-likelihood function is formed and the values of the parameters that maximise it are required. The MLE can be employed to find parameter values for both linear and nonlinear models. Meanwhile, the method of OLS is simply a procedure that finds the minimum of the sum of squared error function.

Stage III (Diagnostic checking): In diagnostic checking or data cleaning stage, the chosen model will be statistically verified against the original data to see whether it adequately describes the series. The model fits the data well if its estimated errors or its residuals $\left\{\hat{a}_{t}\right\}$ are generally small, randomly distributed, homoscedasticity (constant and finite variance process) and contain no useful information, for the closeness to the white noise criteria. If the specified model is not satisfactory, the process of stage I to stage III is repeated by using a new identified model in order to improve the previous model. This iterative procedure continues until a satisfactory model is obtained.

Stage IV (Forecasting): When the satisfactory model is obtained, the model then can be used for forecasting. The forecasting evaluation for one-step ahead is the
minimum mean square error (MSE) while for multiple step ahead, the forecasting evaluation used is the prediction intervals (PIs) of 95% and 50%.

The graphical visualisation of the theoretical procedure of Box-Jenkins modelling is illustrated by Figure 3.3, where Box-Jenkins is abbreviated as BJ. The current practices in Box-Jenkins modelling are quite general and not thorough enough to describe the nature of time series data studied as well as the stages. By not being thorough, researchers might overlook the fact that some time series, specifically the highly volatile time series, which cannot be analysed using the current procedure of Box-Jenkins since the modelling is not able to handle the non-constant variance that exist in the time series data.

Previous studies have shown that the GARCH models are widely applied to handle volatility in a data series (Ahmed, 2017; Baur \& Lucey, 2010; Chen et al., 2011; Girish, 2016; Loi \& Ng, 2018; Liu \& Shi, 2013; Pham \& Yang, 2010; Trück \& Liang, 2012). Therefore, the volatility model is being considered in constructing the proposed procedure of Box-Jenkins model that deals with highly volatile time series data. In addition, by considering the GARCH model in the errors, it would be useful in providing a more accurate prediction interval in the future forecast (Ruppert \& Matteson, 2015).

3.3 The Combination of Box-Jenkins and GARCH Model

In dealing with univariate highly volatile time series data using Box-Jenkins approach, the consideration then is to study the combination of Box-Jenkins and the GARCH (BJ-G) model. Based on previous studies on Box-Jenkins with GARCH-type model as summarised in Table 2.4 (in Chapter 2), the use of the combination model in handling heteroscedasticity in a data series is supported by many researchers. However, to the best knowledge of the researcher, the previous studies are lack in the development of procedure of Box-Jenkins - GARCH-type model. Therefore, this study initiates to develop a comprehensive procedure of the model by focusing on the combination of BoxJenkins with GARCH-type model.

Figure 3.3 Theoretical procedure of the Box-Jenkins modelling

The standard GARCH is considered in the preliminary stage of this study due to its parsimonious characteristic as well as its popularity in handling heteroscedasticity in a data series (Babu \& Reddy, 2015; Chen et al., 2011; Gaglianone \& Marins, 2017; Girish, 2016; Liu \& Shi, 2013; Loi \& Ng, 2018; Pham \& Yang, 2010; Tan et al., 2010; Tsay, 2013; Zhou et al., 2006). By applying standard GARCH model, or simply called as GARCH, as a base model to handle the volatility in the data series, the basic theory related to the volatility model is discussed. In this volatility model, the key concept is the conditional variance, that is, the variance conditional on the past. Suppose that the mean model at time t for a univariate series is given as in Equation 3.6,

$$
s_{t}=\mu_{t}+a_{t}
$$

where s_{t} and a_{t} be the stationary data and random error at time period t, respectively; with μ_{t} is conditional mean of s_{t} and $a_{t}=\sigma_{t} \varepsilon_{t}$ where ε_{t} is the innovations of the model and has zero-mean independent and identically distributed sequences with continuous distributions. The term a_{t} follows a $\operatorname{GARCH}(r, s)$ model if the conditional variance of s_{t}, denoted by σ_{t}^{2}, is given as in Equation 3.7 (Bollerslev, 1986; Francq \& Zakoïan, 2010).

$$
\sigma_{t}^{2}=\alpha_{0}+\sum_{i=1}^{r} \alpha_{i} a_{t-i}^{2}+\sum_{i=1}^{s} \beta_{i} \sigma_{t-i}^{2}
$$

where α_{i} and β_{i} are the coefficient of the parameters ARCH and GARCH, respectively. The random variable σ_{t} is called the volatility of a_{t}. According to Francq and Zakoian, there is no general agreement concerning the definition of volatility; volatility sometimes refer to a conditional standard deviation, and sometimes to a conditional variance (Francq \& Zakoïan, 2010).

There are two definitions regarding the GARCH process (Francq \& Zakoïan, 2010). The first one is, the a_{t} is called a $\operatorname{GARCH}(r, s)$ process (or sometimes called semistrong) if its first two moments exist and satisfy:
(i) $\quad E\left(a_{t} \mid a_{u}, u<t\right), \quad t \in \mathrm{Z}$.
(ii) There exist constant $\alpha_{0}, \alpha_{i}, i=1,2, \ldots, r$ and $\beta_{j}, j=1,2, \ldots, s$ in Equation 3.7.

However, the first definition of the GARCH process does not directly provide a solution process satisfying those conditions. While, the second definition is, the a_{t} is called a strong $\operatorname{GARCH}(r, s)$ process if

$$
\left\{\begin{array}{l}
a_{t}=\sigma_{t} \varepsilon_{t} \\
\sigma_{t}^{2}=\alpha_{0}+\sum_{i=1}^{r} \alpha_{i} a_{t-1}^{2}+\sum_{j=1}^{s} \beta_{j} \sigma_{t-1}^{2}
\end{array}\right.
$$

where the α_{i} and β_{j} are nonnegative constants $\left(\alpha_{i} \geq 0, \beta_{i} \geq 0\right)$ and α_{0} is a (strictly) positive constant $\left(\alpha_{0}>0\right)$. The second definition is more restrictive but allows explicit solutions to be obtained, which is introduced by Bollerslev. If $r=0$, the $\operatorname{GARCH}(r, s)$ process reduces to the $\operatorname{ARCH}(s)$ process, and for $r=s=0, a_{t}$ is simply white noise. In the $\operatorname{ARCH}(s)$ process, the conditional variance is specified as a linear function of past sample variances only, whereas the $\operatorname{GARCH}(r, s)$ process allows lagged conditional variances to enter as well (Bollerslev, 1986).

In the combination model of BJ-G, a two-phase procedure is proposed. In the first phase, the best model identified from the Box-Jenkins models is first used to model the mean data of time series and the residuals of this model will then be investigated for heteroscedasticity to detect the existence of volatility in the data series. In the second phase, the GARCH is used to model the variance equation of the residuals. In this combination model, the Box-Jenkins model with GARCH error components is applied to analyse the univariate series and to predict the values of approximation series (Chen et al., 2011; Liu \& Shi, 2013; Tan et al., 2010; Zhou et al., 2006). In this procedure, the error term a_{t} of the Box-Jenkins model is said to follow a GARCH process of orders r and s. The flowchart of this combination procedure of Box-Jenkins with standard GARCH can be summarised as shown in Figure 3.4 and this procedure is applicable for other GARCHtype models. Note that, the error distribution for GARCH model denoted by ε_{t} is an independent and identically distributed (IID) as normal, t and GED distribution (Tsay, 2013).

Figure 3.4 Procedure of combination of BJ-G, specifically with standard GARCH

The ACF and PACF of the squared residuals help to specify the GARCH orders, r and s, respectively (Pham \& Yang, 2010). In practice, the modelling procedure of GARCH model consists of three steps as follows:

Step 1: Build an econometric model for the observed data and remove any serial correlation in the data. Use the residual series of the econometric model to check GARCH effects. The ARCH test and Lagrange Multiplier test are used to check conditional heteroscedasticity.

Step 2: ACF and PACF of the squared residuals help to specify the GARCH orders, r and s, respectively. However, normally these orders are not very accurate.

Step 3: To check the adequacy of the fitted model, Ljung - Box Q-test (LBQ-test) of estimated residuals is used for mean model and squares of estimated residuals for the variance model.

3.4 The Proposed Modified Procedure of Box-Jenkins - GARCH Model for Modelling and Forecasting Highly Volatile Time Series Data

Figure 3.5 illustrates the new procedure of Box-Jenkins - GARCH (or BJ-G) model for modelling and forecasting highly volatile time series data as proposed by the current study. The proposed procedure takes into account the steps that were usually omitted by researchers but yet should be considered to ensure the validity of the BoxJenkins results specifically to highly volatile time series data. Before the four stages as shown in Figure 3.1 are conducted, the time series need to be partitioned into in-sample and out-of-sample series, in a typical ratio of 90:10 (Chatfield, 2001). The in-sample series is used to estimate model which involves the identification, parameter estimation and diagnostic checking stages. Meanwhile, the out-of-sample series will be used to validate the model developed in the previous stage. This cross-validation procedure has been proposed and practiced by Box and Jenkins (Box \& Jenkins, 1968), although it is not clearly emphasised. It is stated that cross-validation procedure is a more sophisticated version of in-sample/out-of-sample in evaluating forecast accuracy (Hyndman \& Athanasopoulos, 2014).

Figure 3.5 Proposed procedure of BJ-G for highly volatile time series data (Note: Box-Jenkins is abbreviated as BJ)

In general, time series data go through the same identification and parameter estimation stages as the standard Box-Jenkins procedures. However, for a highly volatile time series data, the existence of heteroscedasticity in the diagnostic checking stage will violate the assumption of constant variance in the Box-Jenkins models. Therefore, a combination of BJ-G is proposed in the standard Box-Jenkins procedures in handling volatility in the data series, namely the procedure of BJ-G. The details of each stage for the proposed procedure are described in Section 3.4.1 to Section 3.4.4.

3.4. \quad Stage I: Model Identification

In the model identification stage, the procedures can be divided into two parts, data screening and model identification, as can be illustrated in Figure 3.6. In the data screening part, there are five procedural steps that should be considered in this proposed procedure, which are (i) data plotting, (ii) descriptive statistics, (iii) data stationarity, (iv) preliminary linearity test, and (v) Portmanteau test.

In practice, the first step of data screening is by plotting a time series graph to detect three important characteristics of the data series: (i) variation that increases or decreases as the series increases (nonstationary in-variance), (ii) occurrence of an upward or downward trend (nonstationary in-mean), and (iii) seasonality; in tracing the data series movement. Meanwhile, the part of descriptive statistics is important in developing the basic statistical measures such as mean, variance, skewness and kurtosis in studying the characteristics of a time series data. These basic statistical measures can be explained using the concept of moments of a random variable, as can be referred to Section 3.4.1.1.

In dealing with a time series data via the Box-Jenkins modelling, stationarity is one of the important aspects that need to be considered, as thoroughly explained in Section 3.4.1.2. Stationarity in data can be classified into two: (i) stationarity in-variance and (ii) stationarity in-mean. Whenever the data exhibits a large variation within a given period, the stationarity in-variance can be achieved using suitable transformation.

Figure 3.6 Detail procedures in Stage I of the procedure of BJ-G for highly volatile data

If the series is nonstationary in-variance, the data series need to be transformed first in order to stabilise the variance. The objective of the transformation is to simplify the pattern in the historical data by removing known sources of variations or by making the pattern more consistent across the whole data set since simpler patterns usually lead to more accurate forecasts (Hyndman \& Athanasopoulos, 2014). When dealing with historical data which exhibit increasing or decreasing pattern as the series increases, the data transformation is required for better results. In this study, the Box-Cox transformation is used as the data transformation method due to its potential best practice in normalising data, stabilising variance and reducing heteroscedasticity (Box \& Cox, 1964; Osborne, 2010). The details of Box-Cox transformation method can be referred to Section 3.4.1.2 (a).

When the variance in the data series is stabilised, the trend in-mean is investigated. If the series shows a trend either upward or downward within a given period, which demonstrates nonstationary in-mean, then the series need to be differenced to achieve the stationarity. The stationarity in-mean can be graphically identified and tested using the concept of autocorrelation functions (ACF) and partial autocorrelation functions (PACF) as the theory for the concepts can be referred to Section 3.4.1.2 (b(i)). On the other hand, the stationarity in-mean can be checked statistically using the unit root test such as the Augmented Dickey-Fuller test (ADF-test), as presented in Section 3.4.1.2 (b(ii)).

Once the time series data has achieved the stationarity, the preliminary linearity test is suggested in the proposed procedure as shown in Figure 3.5 to verify that a linear model, specifically the Box-Jenkins model, is appropriate to model the stationary data, as can be referred to Section 3.4.1.3. Then, the Portmanteau test using LBQ-test, as discussed in Section 3.4.1.4, is recommended to check the existence of serial correlations in the linear series since the Box-Jenkins model is only valid for correlated series. However, these two procedures have always been neglected in many studies, even though these two procedures are important as an initial procedure either to continue or to stop in applying the Box-Jenkins modelling in analysing as well as forecasting data series.

After the data series pass the screening part, the data is well prepared for the model identification part. In practice, the ACF and PACF of the stationary data will be used to identify the possible models of Box-Jenkins. However, the autocorrelations function method is uncertain and not quite informative in identifying the appropriate Box-Jenkins
model. Hence, in this proposed procedure, the extended autocorrelation function (EACF) method is strongly recommended to be used as an alternative to identify the most appropriate order of the Box-Jenkins model. The details of the EACF approach can be referred to Section 3.4.1.5.

3.4.1.1 Moments of a Random Variable

Volatile time series always arises in financial data. In finance, the first fourth moment of a random variable are used to describe the behaviour of asset prices and returns (Tsay, 2013). The prices and returns are considered as continuous data since it takes any value in the interval on a given number line. By definition, the ℓ th moment of a continuous random variable X about the origin is defined as

$$
m_{\ell}^{\prime}=E\left(X^{\ell}\right)=\int_{-\infty}^{\infty} x^{\ell} f(x) d x
$$

where $E\left(X^{\ell}\right)$ denotes the expectation of X^{ℓ} and $f(x)$ is the probability density function (pdf) of X. The first moment is defined by

$$
m_{1}^{\prime}=E(X)=\int_{-\infty}^{\infty} x f(x) d x .
$$

The first moment is known as the mean, denoted by $\mu_{X}, m_{1}^{\prime}=\mu_{X}=E(X)$. It measures the central location of the data series.

The ℓ th central moment of X about the origin is defined as in Equation 3.10, provided that the integral exists. Therefore, the second central moment m_{2} is defined by Equation 3.11, is known as the variance of X, denoted by σ_{X}^{2} which measures the variability of the data series. The positive square root of variance represents the standard deviation of X, denoted by σ_{X}. For asset prices and returns, variance (or standard deviation) is a measure of uncertainty and often used as a risk measure.

$$
\begin{align*}
& m_{\ell}=E\left[\left(X-\mu_{X}\right)^{\ell}\right]=\int_{-\infty}^{\infty}\left(x-\mu_{X}\right)^{\ell} f(x) d x \\
& m_{2}=E\left[\left(X-\mu_{X}\right)^{2}\right]=\int_{-\infty}^{\infty}\left(x-\mu_{X}\right)^{2} f(x) d x
\end{align*}
$$

The third central moment, m_{3} relates to the symmetry of the data series with respect to its mean. The normalisation of the third central moment is called the skewness of X, denoted by $S(x)$. The skewness indicates the degree of asymmetry of the distribution about the mean, which is defined as Equation 3.12.

$$
S(x)=E\left[\frac{\left(X-\mu_{X}\right)^{3}}{\sigma_{X}^{3}}\right]
$$

Meanwhile, the normalisation of the fourth central moment is called the kurtosis of X, denoted by $K(x)$. It measures the tail thickness of the distribution of X. The kurtosis indicates the peakedness of a distribution about its mean which is defined as in Equation 3.13.

$$
K(x)=E\left[\frac{\left(X-\mu_{X}\right)^{4}}{\sigma_{X}^{4}}\right]
$$

The quantity of $K(x)-3$ is called the excess kurtosis since $K(x)=3$ is for normal distribution. A distribution with positive excess kurtosis is said to have heavy tails, implying that the distribution has more mass on the tails as compared to normal distribution. This means that a random variable from such distribution contains more extreme values, and the distribution is said to be leptokurtic. On the other hand, a distribution with negative excess kurtosis is said to have short tails, and the distribution is said to be platykurtic.

In finite sample, the moments of a random variable can be estimated. Let $\left\{x_{1}, x_{2}, \ldots, x_{T}\right\}$ be a random sample of X with T observations. The estimated sample mean, sample variance, sample skewness and sample kurtosis are given by Equation 3.14 to Equation 3.17, respectively. The hypothesis and its testing regarding the mean, skewness and kurtosis of the series can be summarised as in Table 3.1.

$$
\begin{align*}
& \hat{\mu}_{X}=\frac{1}{T} \sum_{t=1}^{T} x_{t} \\
& \hat{\sigma}_{X}^{2}=\frac{1}{T-1} \sum_{t=1}^{T}\left(x_{t}-\hat{\mu}_{X}\right)^{2}
\end{align*}
$$

$$
\begin{align*}
& \hat{S}(x)=\frac{1}{(T-1) \hat{\sigma}_{X}^{3}} \sum_{t=1}^{T}\left(x_{t}-\hat{\mu}_{X}\right)^{3} \\
& \hat{K}(x)=\frac{1}{(T-1) \hat{\sigma}_{X}^{4}} \sum_{t=1}^{T}\left(x_{t}-\hat{\mu}_{X}\right)^{4}
\end{align*}
$$

Table 3.1 Test of hypothesis for mean, skewness and kurtosis for a data series

Hypothesis	Test statistic	Critical point	Decision rule
$\begin{aligned} & H_{0}: \mu_{X}=0 \\ & H_{1}: \mu_{X} \neq 0 \end{aligned}$	$t_{\text {test }}=\frac{\sqrt{T} \hat{\mu}_{X}}{\hat{\sigma}_{X}}$	$t_{\frac{\alpha}{2}, T-1} \text { or } Z_{\frac{\alpha}{2}}$	reject H_{0} if $\left\|t_{\text {test }}\right\|>t_{\frac{\alpha}{2}, T-1}$ *or $\left\|t_{\text {test }}\right\|>Z_{\frac{\alpha}{2}}$ or p-value $\leq \alpha$
$\begin{aligned} & H_{0}: S(x)=0 \\ & H_{1}: S(x) \neq 0 \end{aligned}$	$t_{\text {test }}=\frac{\hat{S}(x)}{\sqrt{\frac{6}{T}}}$	$t_{\frac{\alpha}{2}, T-1} \text { or } Z_{\frac{\alpha}{2}}$	reject H_{0} if $\left\|t_{\text {test }}\right\|>t_{\frac{\alpha}{2}, T-1}$ *or $\left\|t_{\text {test }}\right\|>Z_{\frac{\alpha}{2}}$ or p-value $\leq \alpha$
$\begin{aligned} & H_{0}: K(x)-3=0 \\ & H_{1}: K(x)-3 \neq 0 \end{aligned}$	$t_{\text {test }}=\frac{\hat{K}(x)-3}{\sqrt{\frac{24}{T}}}$	$t_{\frac{\alpha}{2}, T-1} \text { or } Z_{\frac{\alpha}{2}}$	reject H_{0} if $\left\|t_{\text {test }}\right\|>t_{\frac{\alpha}{2}, T-1}$ *or $\left\|t_{\text {test }}\right\|>Z_{\frac{\alpha}{2}}$ or p-value $\leq \alpha$

*For a sufficiently large T, the test statistic approaches a standard normal distribution.

In the hypothesis testing on μ_{X}, the property of the consistent estimate of μ_{X} under rather weak conditions, specifically $\bar{X} \sim N\left(\mu_{X}, \frac{\sigma_{X}^{2}}{T}\right)$, makes the test statistic approaches a standard normal distribution for a sufficiently large T. While, according to Snedecor and Cochran (1980), if X is a normal random variable, then $\hat{S}(x)$ and $\hat{K}(x)-3$ are distributed asymptotically as normal with zero mean and variances $\frac{6}{T}$ and $\frac{24}{T}$, respectively. Jarque and Bera proposed a normality test based on these asymptotic properties, which can be used to test the normality of the asset prices and returns (Jarque \& Bera, 1987).

3.4.1.2 Stationarity in Time Series

A time series is a set of observations sequentially in time, hence a time series analysis is about the study of data collected through time. A stationary process is a special class of stochastic processes, which is based on the assumption that the process is in a particular state of statistical equilibrium. A stochastic process is a statistical phenomenon
that evolves in time according to probabilistic laws or can be said as a model that describes the probability structures of a sequence of observations. A stochastic process is said to be strictly stationary if its properties are unaffected by a change of time origin, that is, if the joint probability distribution associated with T observations $y_{t_{1}}, y_{t_{2}}, \ldots, y_{t_{T}}$, made at any set of times $t_{1}, t_{2}, \ldots, t_{T}$, is the same as the T observations $y_{t_{1}+k}, y_{t_{2}+k}, \ldots, y_{t_{T}+k}$, made at times $t_{1}+k, t_{2}+k, \ldots, t_{T}+k$. Thus, for a time series to be strictly stationary, the joint distribution of any set of observations must be unaffected by shifting all the times of observation forward or backward by any integer of k.

The stationarity assumption implies that the probability distribution $f\left(y_{t}\right)$ is the same for all times t and may be written as $f(y)$. Hence, the stochastic process has a constant mean as given in Equation 3.18,

$$
\mu=E\left(y_{t}\right)=\int_{-\infty}^{\infty} y f(y) d y
$$

which defines the level about which it fluctuates, and a constant variance as given by Equation 3.19,

$$
\sigma_{y}^{2}=E\left[\left(y_{t}-\mu\right)^{2}\right]=\int_{-\infty}^{\infty}(y-\mu)^{2} f(y) d y
$$

which measures its spread on this level. In practice, the mean μ and the variance σ_{y}^{2} of the stochastic process can be estimated by the sample mean and the sample variance of the time series, given by Equation 3.20 and Equation 3.21, respectively (Tsay, 2013).

$$
\begin{align*}
& \bar{y}=\frac{1}{T} \sum_{t=1}^{T} y_{t} \\
& s_{y}^{2}=\frac{1}{T} \sum_{t=1}^{T}\left(y_{t}-\bar{y}\right)^{2}
\end{align*}
$$

The stationarity assumption also implies that the joint probability distribution $f\left(y_{t_{1}}, y_{t_{2}}\right)$ is of constant interval for all times t_{1}, t_{2}. Under the stationarity assumption, the covariance between y_{t} and y_{t+k}, separated by k intervals of time or by lag k, must be the same for all times t. In time series, covariance is used to investigate how observations are
related to each other in time and it measures the degree of second order variation between two data at two different times. Therefore, the covariance of y_{t} and y_{t+k} is known as the autocovariance coefficient at lag k, denoted by γ_{k}, is given as Equation 3.22. On the other hand, a stochastic process is weakly stationary if the mean μ is a fixed constant for all times t and the covariance γ_{k} depends only on the time difference or time lag k for all times t.

$$
\gamma_{k}=\operatorname{cov}\left[y_{t}, y_{t+k}\right]=E\left[\left(y_{t}-\mu\right)\left(y_{t+k}-\mu\right)\right]
$$

Similarly, the autocorrelation coefficient at lag k or the correlation between y_{t} and y_{t+k}, denoted by ρ_{k}, is defined by Equation 3.23,

$$
\rho_{k}=\frac{E\left[\left(y_{t}-\mu\right)\left(y_{t+k}-\mu\right)\right]}{\sqrt{E\left[\left(y_{t}-\mu\right)^{2}\right] E\left[\left(y_{t+k}-\mu\right)^{2}\right]}}=\frac{\operatorname{Cov}\left[y_{t}, y_{t+k}\right]}{\sigma_{y}^{2}}=\frac{\gamma_{k}}{\gamma_{0}}
$$

since for a stationary process, the variance $\sigma_{y_{t}}^{2}=\sigma_{y_{t+k}}^{2}$ and $\sigma_{y}^{2}=\gamma_{0}$. Particularly, if $k=0$, Equation 3.23 implies that $\rho_{0}=1$.

The covariance matrix of symmetric form, Γ_{T} associated with a stationary process for observations $y_{1}, y_{2}, \ldots, y_{T}$ made at T successive time is given by

$$
\Gamma_{T}=\left[\begin{array}{ccccc}
\gamma_{0} & \gamma_{1} & \gamma_{2} & \cdots & \gamma_{T-1} \\
\gamma_{1} & \gamma_{0} & \gamma_{1} & \cdots & \gamma_{T-2} \\
\gamma_{2} & \gamma_{1} & \gamma_{0} & \cdots & \gamma_{T-3} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
\gamma_{T-1} & \gamma_{T-2} & \gamma_{T-3} & \cdots & \gamma_{0}
\end{array}\right]=\sigma_{y}^{2}\left[\begin{array}{ccccc}
1 & \rho_{1} & \rho_{2} & \cdots & \rho_{T-1} \\
\rho_{1} & 1 & \rho_{1} & \cdots & \rho_{T-2} \\
\rho_{2} & \rho_{1} & 1 & \cdots & \rho_{T-3} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
\rho_{T-1} & \rho_{T-2} & \rho_{T-3} & \cdots & 1
\end{array}\right]=\sigma_{y}^{2} \mathrm{P}_{T}
$$

where $\gamma_{T}=\sigma_{y}^{2} \rho_{T}$, refer to Equation 3.23. The covariance matrix is formed from the autocovariance coefficients associated with constant elements on any diagonal, is called an autocovariance matrix. The corresponding correlation matrix P_{T} is called an autocorrelation matrix. Both Γ_{T} and P_{T} are positive definite for any stationary process (Box et al., 2008). This positive definiteness of the P_{T} indicates that its determinant and
all principal minors are greater than zero, which then implies that $-1<\rho_{1}, \rho_{2}, \ldots, \rho_{q}<1$ for q orders.

The plot of γ_{k} versus lag k is called the autocovariance function of the stochastic process, similarly the plot of ρ_{k} versus lag k is called the autocorrelation function (ACF) of the process. The autocovariance function and the ACF are denoted by $\left\{\gamma_{k}\right\}$ and $\left\{\rho_{k}\right\}$, respectively. The $\left\{\rho_{k}\right\}$ is a plot of the diagonals of P_{T} and is necessarily symmetric about zero, implies $\rho_{k}=\rho_{-k}$. Examples of ACF plot is given in Figure 3.7.

Figure 3.7 ACF plot

Therefore, it can be concluded that a stationarity process for y_{t} is completely characterised by its mean μ and its autocovariance function $\left\{\gamma_{k}\right\}$. The stationarity process can also be characterised by its mean μ, variance σ_{y}^{2} and autocorrelation function $\left\{\rho_{k}\right\}$ or ACF. However, the later approach is mostly used in practical applications. In time series modelling, the model cannot be directly applied if the series is nonstationary. A stationary time series is one whose properties do not depend on the time at which the series is observed or more precisely, if y_{t} is a stationary time series, then for all n, the distribution of $\left(y_{t}, y_{\left.t+1, \ldots, y_{t+N}\right)}\right)$ does not depend on t. Figure 3.8 illustrates the case of stationary series which shows that the series appear to vary about a fixed level, that is zero.

Figure $3.8 \quad$ Stationary series

White noise process is an example of a stationary process. It is a sequence of IID random variables, denoted as $a_{1}, a_{2}, \ldots, a_{T}$, which is assumed to have mean zero and variance σ_{a}^{2}. The independence implies that a_{t} are uncorrelated, hence its autocovariance is given by Equation 3.24.

$$
\gamma_{k}=E\left[a_{t} a_{t+k}\right]= \begin{cases}\sigma_{a}^{2}, & k=0 \\ 0, & k \neq 0\end{cases}
$$

Since stationarity is the initial aspect that needs to be considered when dealing with time series data, therefore it is important to know whether the data contains any trend or seasonal characteristics. The time series with trends or with seasonal characteristics are not stationary since the trend and seasonality will affect the value of the time series at different times. The graphical representation for cases of nonstationary series is illustrated in Figure 3.9. Figure 3.9(a) shows the series does not vary about a fixed level, exhibits an overall upward trend and the variances increases as the series increases. Time series that exhibit these phenomena are said to be nonstationary in-mean and in-variance. Figure 3.9(b) presents the case of nonstationary in-mean since it exhibits a trend in the series. The case of seasonality series is shown in Figure 3.9(c), since the series presents a characteristic of repetitive pattern in nature. Meanwhile, Figure 3.9(d) illustrates the case of seasonality and nonstationary in-mean and in-variance.

The stationarity process for the case illustrated in Figure 3.9(a) is presented in Figure 3.10. Figure 3.10(a) shows the observed series of daily gold prices in the Malaysia market from year 2003 to 2014, which indicates the case of nonstationary in-mean and in-variance, as well as exhibiting overall upward and nonseasonal trends. In order to make such data series stationary, data transformation and data differencing are needed. The log transformation is suggested to handle nonstationary in-variance based on certain criteria and the differencing method is used to cater nonstationary in-mean.

Figure 3.9 Graphical representations for several cases of nonstationary series

The plot of transformed series is shown in Figure 3.10(b). After the transformation, the series is found to be less volatile, however, the upward trend still exists in the series, therefore the transformed series need to be differenced. The differenced process is given by $y_{t}^{*}=\log y_{t}-\log y_{t-1}$, where y_{t}^{*} is the transformed data at time t and graph for the differenced data is shown in Figure 3.10(c). Figure 3.10(c) shows the series is stationary after the first differenced on the transformed series, which presents that the transformation and differencing have made the nonstationary series into stationary series. The stationary series presents variances that change over time as shown in Figure 3.10(c) and it is usually observed in financial time series data. This volatility behaviour (variances change over time) can be captured by conditional heteroscedasticity models such as ARCH or GARCH models. If the first differenced is insufficient to make the series stationary, Box and Jenkins suggested that the second differenced is always sufficient for most series to achieve stationarity (Box \& Jenkins, 1968).

Figure 3.10 The plots of nonstationary series to obtain stationary series after transforming and differencing

3.4.1.2(a) Stationarity in-Variance: Box-Cox Transformation Method

The Box-Cox transformation has found more practical data transformation in a variety of fields, especially in econometrics (Sakia, 1992). The Box-Cox transformation is popular in financial time series analysis and has been considered in forecasting volatility (Gonçalves \& Meddahi, 2011; Higgins \& Bera, 1992). The use of Box-Cox power transformation in improving forecasting accuracy is also supported by many researchers (Lee, Sadaei, \& Suhartono, 2013; Luetkepohl \& Xu, 2011).

The use of Box-Cox transformation which is a preliminary step in the identification stage of fitting Box-Jenkins model was recommended by Box and Jenkins for seasonal series (Box \& Jenkins, 1976). Box and Jenkins suggest power or log transformations to achieve stationarity in the variance of the time series data. The power and log transformation is known as the Box-Cox transformation named after Box and

Cox (Box \& Cox, 1964). The Box-Cox transformation is a modification from a family of power transformations introduced by Tukey (Tukey, 1957). The formula of the Box-Cox transformation for positive series, $y_{t}>0$ is given in Equation 3.25,

$$
y_{t}^{*}= \begin{cases}\frac{y_{t}^{\lambda}-1}{\lambda}, & \text { for } \lambda \neq 0 \\ \log _{\mathrm{e}}\left(y_{t}\right), & \text { for } \lambda=0\end{cases}
$$

where y_{t} is the actual data at time t, y_{t}^{*} is the transformed data at time t, and λ is the minimum residual mean square error value.

Box and Cox proposed the Box-Cox transformation as a solution to satisfy these assumptions: (i) the variables (or their error terms) are normally distributed, (ii) the additivity of the errors structures (or mean model is linear), and (iii) the variance of error terms is homoscedastic. However, the data transformation approach is also well applied to the case of heteroscedastic in the error terms as well as able to reduce the noise and volatility effect in the data (Gonçalves \& Meddahi, 2011; Lee et al., 2013). According to Osborne (2010), Box-Cox transformation represents a potential best practice whenever normalising data or equalising variance is desired. Frequently, the transformation not only stabilises the variance, but also improves the approximation of the distribution by normal distribution. Therefore, the Box-Cox transformation can be a solution for simultaneously correcting normality, linearity and reducing volatility in the variance (Box \& Cox, 1964; Osborne, 2010; Sakia, 1992).

The Box-Cox transformation represents a family of power transformations that incorporates and extends the conventional options to help researchers easily find the optimal transformation of data. The approach suggests a λ value that corresponds to an understandable transformation to make it easier to transform the data back (backtransform) to obtain forecasts on the original scale. Table 3.2 shows some commonly used values of λ and its associated transformation.

Table 3.2 Some commonly used values of λ and its associated transformation

Values of λ	$\mathbf{- 1 . 0}$	$\mathbf{- 0 . 5}$	$\mathbf{0}$	$\mathbf{0 . 5}$	$\mathbf{1 . 0}$
Transformation	$\frac{1}{y_{t}}$	$\frac{1}{\sqrt{y_{t}}}$	$\log _{e} y_{t}$	$\sqrt{y_{t}}$	y_{t}

As reported by the previous literatures, it is recommended to use log function as the power transformation especially for financial data (Luetkepohl \& Xu, 2011; Proietti \& Lütkepohl, 2013). Note that the log function is a subset of the class of Box-Cox transformation whenever λ equals to zero. According to Nelson and Granger (1979), the log transformation is frequently used by econometricians, either because the change in logarithm of variables approximates percentage changes, or rate of return, or because it is observed that the variability of a series appears to be related to the level, so that using logarithms may produce relationships with more homogeneous residual. The use of log function in the financial data also seems related to the distribution of data itself since most of the financial data tends to be positively skewed and the logarithmic transformation is recommended for positively skewed data (Olivier \& Norberg, 2010).

According to Box and Cox (1964), in estimating the λ, an assumption is made that for some unknown λ, the transformed data y_{i}^{*}, for $i=1,2, \ldots, T$, satisfies the full normal theory assumptions (i.e. independently normally distributed with constant variance σ^{2}) and with expectation $E\left(y^{(\lambda)}\right)=a \theta$, where a is known $(T \times T)$ matrix and θ is a $(T \times 1)$ vector of unknown parameters associated with the transformed data, or can be simplified as $y_{t}^{(\lambda)} \sim \operatorname{NID}\left(a \theta, \sigma^{2}\right)$.

Consider a time series $x_{1}, x_{2}, \ldots, x_{T}$ with normal pdf, as given by

$$
f\left(x_{t} ; \mu, \sigma^{2}\right)=\left(2 \pi \sigma^{2}\right)^{-\frac{1}{2}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x_{t}-\mu\right)^{2}\right) .
$$

According to Box and Cox (1964), the probability density for the untransformed (original) data y_{t} is obtained by multiplying the normal density by the Jacobian of the transformation. By considering the assumption of $y_{t}^{*} \sim \operatorname{NID}\left(a \theta, \sigma^{2}\right)$, the pdf of y_{t} is given by Equation 3.26.

$$
f\left(y_{t} ; a \theta, \sigma^{2}\right)=\left(2 \pi \sigma^{2}\right)^{-\frac{1}{2}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(y_{t}-a \theta\right)^{2}\right) \frac{d y_{t}^{*}}{d y_{t}}
$$

The likelihood function (L) is the product of the pdf for each y_{t}, given by

$$
\begin{aligned}
L\left(\lambda ; y_{i}^{*}\right) & =\prod_{i=1}^{T} f_{Y_{i}}\left(y_{i}^{*}, a \theta, \sigma^{2}\right) \frac{d y_{i}^{*}}{d y_{i}} \\
& =\left(f_{Y_{1}}\left(y_{1}^{*}, a \theta, \sigma^{2}\right) f_{Y_{2}}\left(y_{2}^{*}, a \theta, \sigma^{2}\right) \ldots f_{Y_{T}}\left(y_{T}^{*}, a \theta, \sigma^{2}\right)\right)\left(\prod_{i=1}^{T}\left|\frac{d y_{i}^{*}}{d y_{i}}\right|\right) \\
& =\left((2 \pi \sigma ^ { 2 }) ^ { - \frac { T } { 2 } } \left(e^{\left.\left.\left(-\frac{1}{2 \sigma^{2}}\left(v_{1}^{*}-a \theta\right)^{2}\right)+\left(-\frac{1}{2 \sigma^{2}}\left(y_{2}^{*}-a \theta\right)^{2}\right)+\ldots+\left(-\frac{1}{2 \sigma^{2}}\left(y_{T}^{*}-a \theta\right)^{2}\right)\right)\right)\left(\prod_{i=1}^{T}\left|\frac{d y_{i}^{*}}{d y_{i}}\right|\right)}\right.\right. \\
& =\left(2 \pi \sigma^{2}\right)^{-\frac{T}{2}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{T}\left(y_{i}^{*}-a \theta\right)^{2}\right) J(\lambda ; y)
\end{aligned}
$$

where $J(\lambda ; y)=\prod_{i=1}^{T}\left|\frac{d y_{i}^{*}}{d y_{i}}\right|$. By considering y_{t}^{*}, a and θ are $(T \times 1),(T \times T)$ and $(T \times 1)$ matrices, respectively, therefore

$$
y_{t}^{*}-a \theta=\left[\begin{array}{c}
y_{1}^{*} \\
y_{2}^{*} \\
\vdots \\
y_{T}^{*}
\end{array}\right]-\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 T} \\
a_{21} & a_{22} & \ldots & a_{2 T} \\
\vdots & \vdots & \ddots & \vdots \\
a_{T 1} & a_{T 2} & \ldots & a_{T T}
\end{array}\right]\left[\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{T}
\end{array}\right]=\left[\begin{array}{c}
y_{1}^{*}-\left(a_{11} \theta_{1}+a_{12} \theta_{2}+\ldots+a_{1 T} \theta_{T}\right) \\
y_{2}^{*}-\left(a_{21} \theta_{1}+a_{22} \theta_{2}+\ldots+a_{2 T} \theta_{T}\right) \\
\vdots \\
y_{T}^{*}-\left(a_{T 1} \theta_{1}+a_{T 2} \theta_{2}+\ldots+a_{T T} \theta_{T}\right)
\end{array}\right]
$$

Then, by multiplying the transpose matrix $\left(y_{t}^{*}-a \theta\right)^{\prime}$ to the matrix $\left(y_{t}^{*}-a \theta\right)$, the product can be expressed as

$$
\begin{aligned}
\left(y_{t}^{*}-a \theta\right)^{\prime}\left(y_{t}^{*}-a \theta\right)= & {\left[y_{1}^{*}-\left(a_{11} \theta_{1}+a_{12} \theta_{2}+\ldots+a_{1 T} \theta_{T}\right)\right]^{2}+\left[y_{2}^{*}-\left(a_{21} \theta_{1}+a_{22} \theta_{2}+\ldots+a_{2 T} \theta_{T}\right)\right]^{2} } \\
& \quad+\ldots+\left[y_{T}^{*}-\left(a_{T 1} \theta_{1}+a_{T 2} \theta_{2}+\ldots+a_{T T} \theta_{T}\right)\right]^{2} \\
= & \left(y_{1}^{*}-a \theta\right)^{2}+\left(y_{2}^{*}-a \theta\right)^{2}+\ldots+\left(y_{T}^{*}-a \theta\right)^{2} \\
& =\sum_{i=1}^{T}\left(y_{i}^{*}-a \theta\right)^{2}
\end{aligned}
$$

Therefore, the likelihood function can be simplified as Equation 3.27.

$$
L\left(\lambda ; y_{i}^{*}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{\frac{T}{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(\left(y^{*}-a \theta\right)^{\prime}\left(y^{*}-a \theta\right)\right)\right) J(\lambda ; y)
$$

Box and Cox applied the MLE approach in estimating parameter of λ. The MLE method was developed by Fisher in the 1920s and since then it has been widely used due to sufficiency, consistency and efficiency properties it has (Myung, 2003). Therefore, by taking the natural logarithm of the likelihood function,
$\ln L\left(\lambda ; y_{i}^{*}\right)=\log _{e}\left(L\left(\lambda ; y_{i}^{*}\right)\right)$

$$
\begin{aligned}
& =\log _{e}\left(\frac{1}{\left(2 \pi \sigma^{2}\right)^{\frac{T}{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(\left(y^{*}-a \theta\right)^{\prime}\left(y^{*}-a \theta\right)\right)\right) J(\lambda ; y)\right) \\
& =\log _{e}\left(2 \pi \sigma^{2}\right)^{-\frac{T}{2}}+\log _{e}\left(\exp \left(-\frac{1}{2 \sigma^{2}}\left(\left(y^{*}-a \theta\right)^{\prime}\left(y^{*}-a \theta\right)\right)\right)\right)+\log _{e} J(\lambda ; y) \\
& =-\frac{T}{2} \log _{e}(2 \pi)-\frac{T}{2} \log _{e} \sigma^{2}-\frac{1}{2 \sigma^{2}}\left(\left(y^{*}-a \theta\right)^{\prime}\left(y^{*}-a \theta\right)\right)+\log _{e} J(\lambda ; y)
\end{aligned}
$$

Thus, for fixed λ, the maximised \log likelihood is given by Equation 3.28,

$$
\ln L_{\max }(\lambda)=-\frac{T}{2} \log _{e} \hat{\sigma}^{2}(\lambda)+\log _{e} J(\lambda ; y)
$$

where $\hat{\sigma}^{2}(\lambda)=\frac{S(\lambda)}{T}$ and $S(\lambda)$ is the residual sum of squares in the analysis of variance of y^{*}.

Gold price consists of positive value, therefore the data considered in this study is the case for $y_{t}>0$. According to Box and Cox, the second term in Equation (3.28) is replaced by $(\lambda-1) \sum_{t=1}^{T} \log _{e} y_{t}$ in the case of $y_{t}>0$ (Box \& Cox, 1964). By substituting $S(\lambda)$ and the updated second term to Equation 3.28, therefore the maximised \log likelihood becomes an expression as Equation 3.29.

$$
\ln L_{\max }(\lambda)=-\frac{T}{2} \log _{e}\left[\frac{1}{T} \sum_{t=1}^{T}\left(y_{t}^{*}-\bar{y}_{t}^{*}\right)^{2}\right]+(\lambda-1) \sum_{t=1}^{T} \log _{e} y_{t}
$$

Then, by plotting $\ln L_{\max }(\lambda)$ versus λ for a trial series of values, the maximizing value of $\hat{\lambda}$ may be read-off, with $100(1-\alpha) \%$ confidence interval as given by $\ln L_{\max }(\hat{\lambda})-\ln L_{\max }(\lambda)<\frac{1}{2} \chi_{v_{\lambda}}^{2}(\alpha)$, where v_{λ} is the number of independent components in λ.

Since λ is employed significantly in the Box-Cox transformation and the transformation is widely applied in analysing and forecasting data, many software offer the plotting with estimated value of λ with its 95% confidence interval based on the BoxCox power transformation approach, such as Minitab and R language. There are many functions in the forecast packages in R that is specially built to compute and plot λ for the Box-Cox transformation such as AID package (Asar, Ilk, \& Dag, 2017), BoxCox function in car package (Fox, Weisberg, Adler, \& Bates, 2015), BoxCox function in MASS package (Ripley, Venables, Bates, \& Hornik, 2017) and the BoxCox function in forecast package (Hyndman et al., 2015). In this study, the estimation of λ is obtained using BoxCox function in forecast package or using AID package. However, there are limitations of the R packages such as the forecast package give the value of λ without plotting and the AID package is only valid for $T \leq 5000$. Therefore, for the case of $T>5000$, the estimated λ can be obtained using Minitab.

3.4.1.2(b) Stationary in-Mean

Most volatile time series specifically in finance and economics exhibit trending behaviour or nonstationary in the mean. Since the data should be in a stationary form to be analysed, then if the data exhibits trending characteristics, some form of trend removal is required. There are two common procedures to remove the trend that are the autocorrelation functions (ACF and PACF) and the unit root test methods.

(i) Sample Autocorrelation Function and Sample Partial Autocorrelation Function

Box and Jenkins proposed to use the ACF and the PACF of the sample data as the basic tools in checking the stationarity in the mean as well as to identify the order of the time series model (Box \& Jenkins, 1968). They provided both a theoretical framework
and practical rules for determining appropriate values for p and q as well as their seasonal counterparts of P and Q by using the ACF and the PACF. The use of autocorrelation functions in a linear time series model is able to capture the linear dynamic of the data (Tsay, 2005). The ACF and the PACF provide a useful measure of the degree of dependence between values of a time series at specific intervals of separation and play an important role in the prediction of future values (Boland, 2008). On the other hand, the ACF and PACF of the squared residuals from a stationary series are used to get the possible values of r and s , respectively, for the $\operatorname{GARCH}(r, s)$ models.

The ACF is a measure of the linear relationship between time series observations separated by some time period, denoted the lag k. Note that the correlation coefficient between y_{t} and y_{t-k} is called the lag-k autocorrelation of y_{t} and is commonly denoted by ρ_{k}, which is specifically defined as Equation 3.30,

$$
\rho_{k}=\frac{\operatorname{Cov}\left(y_{t}, y_{t-k}\right)}{\sqrt{\operatorname{Var}\left(y_{t}\right) \operatorname{Var}\left(y_{t-k}\right)}}=\frac{\operatorname{Cov}\left(y_{t}, y_{t-k}\right)}{\operatorname{Var}\left(y_{t}\right)}=\frac{\gamma_{k}}{\gamma_{0}}
$$

where $\operatorname{Var}\left(y_{t-k}\right)=\operatorname{Var}\left(y_{t}\right)$, for the case of weakly stationary. A weakly stationary time series y_{t} is not serially correlated if and only if $\rho_{k}=0$ for all $k>0$. The collection of autocorrelations, $\left\{\rho_{k}\right\}$, is called the ACF of y_{t}.

Box concluded that most satisfactory estimate of the k th lag autocorrelation ρ_{k} from data of $y_{1}, y_{2}, \ldots, y_{T}$ is denoted by r_{k} as given in Equation 3.31 (Box et al., 2008).

$$
r_{k}=\hat{\rho}_{k}=\frac{c_{k}}{c_{0}}=\frac{\frac{1}{T} \sum_{t=1}^{T-k}\left(y_{t}-\bar{y}\right)\left(y_{t+k}-\bar{y}\right)}{\frac{1}{T} \sum_{t=1}^{T}\left(y_{t}-\bar{y}\right)^{2}}
$$

The value r_{k} in Equation 3.31 is called the sample autocorrelation function at lag k. The plot of r_{k} versus lag k is called the sample autocorrelation function of the process, refer to Figure 3.7. Since the ACF is a plot of the diagonals of the P_{T} and symmetric about zero, therefore in practice, it is necessary to plot the positive half of the sample ACF.

Sometimes, the sample ACF is called as the correlogram. The characteristic of positive definiteness of the P_{T} which indicates that $-1<\rho_{1}, \rho_{2}, \ldots, \rho_{q}<1$, implies the values of r_{k} is $-1<r_{k}<1$.

In identifying a model for a time series, it is necessary to have a rough check on whether ρ_{k} (or r_{k}), is effectively zero beyond a certain lag. Thus, Bartlett's approximation is employed to approximate large-lag standard error of the estimated autocorrelation r_{k} at lags k greater than some value q beyond which the theoretical autocorrelation function ρ_{k} may be deemed to have "died out", which is expressed by Equation 3.32.

$$
\operatorname{se}\left[r_{k}\right] \approx \sqrt{\frac{1}{T}\left(1+2 \sum_{i=1}^{q} \rho_{i}^{2}\right)}, \quad k>q
$$

In practice, the $r_{k}(k=1,2, \ldots, q)$ are substituted to replace the ρ_{k}. The large-lag standard error approximates the standard deviation of r_{k} for appropriately large lags $(k>q)$, with the assumption that the ρ_{k} are all essentially zero beyond some hypothesised lag $k=q$.

Similarly, the large-lag Bartlett's approximation for the covariance between the estimated autocorrelations r_{k} and r_{k+s} at two different lags k and $k+s$ is given in Equation 3.33. This approximation result is required in the interpretation of individuals since large covariance can exist between neighbouring values.

$$
\operatorname{cov}\left[r_{k}, r_{k+s}\right] \approx \frac{1}{T} \sum_{\nu=-q}^{q} p_{\nu} p_{v+s}, \quad k>q
$$

A special case of the large-lag standard errors occur when $p=0$. In this case, the ρ_{k} are taken to be zero for all lags (other than lag 0), hence the series is completely random or white noise. Thus, the standard errors for r_{k} can be expressed in the simple form as in Equation 3.34.

$$
\operatorname{se}\left[r_{k}\right] \approx \frac{1}{\sqrt{T}}, \quad k>0
$$

For the white noise series, the result in Equation 3.33 indicates that the estimated autocorrelations between r_{k} and r_{k+s} are uncorrelated, therefore a collection of estimated autocorrelations for different lags will tend to be independently and normally distributed with mean 0 and variance $1 / T$. Noted that, the r_{k} is also known to be approximately normally distributed for large T.

While, the partial autocorrelation function is a device that exploits the fact that an $\operatorname{AR}(p)$ process has an autocorrelation function that is infinite in extent, it can by its nature be described in terms of p nonzero functions of the autocorrelations. The PACF shows the relation between two observations y_{t} and y_{t+k} after they are separated with other observations between y_{t} and y_{t+k}. Theoretically, PACF is a function of two observations y_{t} and y_{t+k} that can be separated by a lag of k time units, denoted by $\phi_{k k}$. The partial autocorrelation function of a p th-order autoregressive process has a cut off after lag p. In practice, the estimate of the k th lag partial autocorrelation from data of $y_{1}, y_{2}, \ldots, y_{T}$, is denoted by $r_{k k}$, as given in Equation 3.35.

$$
r_{k k}=\hat{\phi}_{k k}= \begin{cases}r_{1} & \text { if } k=1 \\ \frac{r_{k}-\sum_{i=1}^{k-1} r_{k-1, i} r_{k-i}}{1-\sum_{i=1}^{k-1} r_{k-1, i} r_{i}}, & \text { if } k=2,3, \ldots\end{cases}
$$

where $r_{k, j}=r_{k-1}-r_{k k} r_{k-1, k-j}$ for $j=1,2, \ldots, k-1$. The $r_{k k}$ in Equation 3.35 is called the sample partial autocorrelation function at lag k. The plot of $r_{k k}$ versus lag k is called the sample partial autocorrelation function of the process. The characteristics of symmetric and positive definiteness for $r_{k k}$ are similar to the sample ACF, which implies $-1<r_{k k}<1$.

As for the sample ACF, it also needs to have a rough check on whether $r_{k k}$ is effectively zero beyond a certain lag p in identifying a model related to autoregressive. On the hypothesis that the process is autoregressive of order p, it was shown that the estimated partial autocorrelations of order $p+1$ and higher, are approximately independently and normally distributed with zero mean (Daniels, 1956; Jenkins, 1961;

Quenouille, 1949). Also, if T is the number of observations used in estimating, the variance of the estimated partial autocorrelations of order $p+1$ and higher is given by Equation 3.36.

$$
\operatorname{var}\left[r_{k k}\right] \cong \frac{1}{T}, \quad k>p
$$

Thus, for the partial autocorrelations, the standard error of the estimated partial autocorrelations of order $p+1$ and higher is expressed by Equation 3.37.

$$
s e\left[r_{k k}\right] \approx \frac{1}{\sqrt{T}}, \quad k>p
$$

A time series is said to be stationary when the sample ACF and PACF dies down or cuts off drastically in the correlograms, as given in Equation 3.38,

$$
\begin{array}{ll}
r_{k}=0, & \text { for } k>q \\
r_{k k}=0, & \text { for } k>p
\end{array}
$$

where p and q are the number of lag that the sample ACF and PACF cuts off, respectively. For the Box-Jenkins models, the sample ACF and the sample PACF are used to get the possible order q of models that consist of moving average components and to get the possible values of order p for models that consist of autoregressive components, respectively, for a stationary data series. Box et al. provides a convenient reference table of the properties of the theoretical autocorrelation and partial autocorrelation functions for autoregressive and moving average processes of first and second order, as summarised in Table 3.3 (Box et al., 2008).

In obtaining a useful estimate of the ACF and PACF, Box and Jenkins recommend that the number of data be at least 50 and the value of k not larger than $\frac{T}{4}$ (Box \& Jenkins, 1968). Alternatively, Hyndman and Athanasopoulos (Hyndman \& Athanasopoulos, 2014) proposed a particular formula of the maximum number of lag k of the ACF and PACF, denoted by $k_{\text {max }}$, given by Equation 3.39,

$$
k_{\max }=10 \log _{10}\left(\frac{T}{w}\right)
$$

where T is number of observations and w is number of series. Since the scope in this study is univariate data, therefore the maximum lag can be rewritten as Equation 3.40. Note that, the suggested $k_{\text {max }}$ value is still consistent with the idea from Box and Jenkins.

$$
k_{\max }=10 \times \log _{10} T
$$

Table 3.3 Behaviour of the ACF and PACF for the $d^{\text {th }}$ difference of an ARIMA process of first and second order
Source: Box et al. (2008)

Order	Behaviour of ρ_{k}	Behaviour of $\phi_{k k}$	Preliminary estimates	Admissible region
$(1, d, 0)$	Decays exponentially	Only ϕ_{11} nonzero	$\varphi_{1}=\rho_{1}$	$-1<\varphi_{1}<1$
(0, $d, 1)$	Only ρ_{1} nonzero	Exponential dominates decay	$\rho_{1}=\frac{-\theta_{1}}{1+\theta_{1}^{2}}$	$-1<\theta_{1}<1$
(2,d,0)	Mixture of exponentials or damped sine wave	Only ϕ_{11} and ϕ_{22} nonzero	$\begin{aligned} & \varphi_{1}=\frac{\rho_{1}\left(1-\rho_{2}\right)}{1-\rho_{1}^{2}} \\ & \varphi_{2}=\frac{\rho_{2}-\rho_{1}^{2}}{1-\rho_{1}^{2}} \end{aligned}$	$\begin{aligned} & -1<\varphi_{2}<1 \\ & \varphi_{2}+\varphi_{1}<1 \\ & \varphi_{2}-\varphi_{1}<1 \end{aligned}$
(0, $d, 2$)	Only ρ_{1} and ρ_{2} nonzero	Dominated by mixture of exponential or damped sine wave	$\begin{aligned} & \rho_{1}=\frac{-\theta_{1}\left(1-\theta_{2}\right)}{1+\theta_{1}^{2}+\theta_{2}^{2}} \\ & \rho_{2}=\frac{-\theta_{2}}{1+\theta_{1}^{2}+\theta_{2}^{2}} \end{aligned}$	$\begin{aligned} & -1<\theta_{2}<1 \\ & \theta_{2}+\theta_{1}<1 \\ & \theta_{2}-\theta_{1}<1 \end{aligned}$
($1, d, 1$)	Decays exponentially from first lag	Dominated by exponential decay from first lag	$\begin{aligned} & \rho_{1}=\frac{\left(1-\theta_{1} \varphi_{1}\right)\left(\varphi_{1}-\theta_{1}\right)}{1+\theta_{1}^{2}-2 \varphi_{1} \theta_{1}} \\ & \rho_{2}=\varphi_{1} \rho_{1} \end{aligned}$	$\begin{aligned} & -1<\varphi_{1}<1 \\ & -1<\theta_{1}<1 \end{aligned}$

ii. Unit Root Test: Augmented Dickey-Fuller Test

Despite the visual inspection of the autocorrelation functions, the formal method to test the trend stationarity of a series is the unit root test. Unit root test is a method for detecting unit roots in time series since the presence of a unit root indicates that the time series is not stationary in-mean so that the series should be differenced in order to make it stationary. One of the most widely used unit root test is the Augmented Dickey-Fuller test (ADF-test).

Dickey and Fuller proposed a useful tool for testing a series for the presence of a unit root, known as standard Dickey-Fuller test (DF-test) (Dickey \& Fuller, 1979). This test is used to determine whether the series is stationary or should it undergo differencing to achieve stationarity, and they proved that the test is more powerful compared to BoxPierce Q-statistic in testing the Box-Jenkins model. In the standard DF-test, a simple $\operatorname{AR}(1)$ process is considered which is given by

$$
\begin{aligned}
& y_{t}=\phi_{d f} y_{t-1}+T D_{t}+a_{t} \\
& T D_{t}=c+x_{t}^{\prime}
\end{aligned}
$$

where $T D_{t}$ is a deterministic term consisting of c as a constant and x_{t}^{\prime} as the deterministic time trend, $y_{0}=0, \phi_{d f}$ is a parameter to be estimated that consist of real number and $a_{t} \sim \operatorname{NID}\left(0, \sigma^{2}\right)$.If $\left|\phi_{d f}\right|>1$, the y_{t} is a nonstationary series with the variance increases exponentially as t increases. The time series with $\left|\phi_{d f}\right|=1$ is called a random walk series and might be in the cases of nonstationary series. While if $\left|\phi_{d f}\right|<1, y_{t}$ converges to a stationary series. Thus, the hypothesis of unit root test is to test the stationarity in a series which can be evaluated by using whether $\left|\phi_{d f}\right|<1$ that indicates that no unit root in the data series. Hence, the hypotheses of the DF-test may be written as $H_{0}: \phi_{d f}=1$ against $H_{1}:\left|\phi_{d f}\right|<1$.

Alternatively, the $\mathrm{AR}(1)$ model may be rewritten as Equation 3.41,

$$
\begin{align*}
& \Delta y_{t}=\pi y_{t-1}+T D_{t}+a_{t} \\
& T D_{t}=c+x_{t}^{\prime}
\end{align*}
$$

where $\pi=\phi_{d f}-1$. The unit root tests are often computed using this alternative model (Zivot \& Wang, 2003). Therefore, the null and alternative hypothesis for the model in Equation 3.41 may be written as $H_{0}: \pi=0$ versus $H_{1}: \pi<0$ with the test statistic given by $t_{\text {test }}=\frac{\hat{\pi}}{\operatorname{se}(\hat{\pi})}$, where $\hat{\pi}$ is the estimate of π and $\operatorname{se}(\hat{\pi})$ is the standard error estimate. Dickey and Fuller showed that this test statistic does not follow the t distribution and derived the asymptotic results and simulated critical values for various sample sizes
(Dickey \& Fuller, 1979). Mackinnon then implemented a much larger size of simulations, allowing the calculation of Dickey-Fuller critical values and p-values for any sample sizes (MacKinnon, 1996). The Mackinnon critical value calculations are used by many softwares including EViews and SPlus in constructing test output.

The standard DF unit root test is valid if the time series is well characterised by an $\operatorname{AR}(1)$ with white noise errors. However, many financial time series have a more complicated structure than a simple $\operatorname{AR}(1)$ model. Furthermore, if the series is correlated at higher order lags, the assumption of the a_{t} is violated. To overcome these constraints, Said and Dickey constructed the augmented Dickey-Fuller (ADF) unit root test for higher-order correlation to accommodate general $\operatorname{ARMA}(p, q)$ and $\operatorname{ARIMA}(p, d, q)$ models, where the number d equals the number of unit roots in the characteristic equation for the time series (Said \& Dickey, 1984). For the ADF-test, the following regression model is estimated, as shown in Equation 3.42,

$$
\begin{align*}
& \Delta y_{t}=\pi y_{t-1}+T D_{t}+C_{1} \Delta y_{t-1}+C_{2} \Delta y_{t-2}+\ldots+C_{k} \Delta y_{k-1}+a_{t} \\
& T D_{t}=c+x_{t}^{\prime}
\end{align*}
$$

where $\Delta y_{t}=y_{t}-y_{t-1}$ denotes the first differenced series, $\pi=\phi_{d f}-1, k$ is the number of lags to include in the regression, C_{i} is the coefficient for the $\Delta y_{t-i}, a_{t} \sim \operatorname{NID}\left(0, \sigma^{2}\right)$ and $T D_{t}$ is the deterministic term which may consist of constant, or a constant and trend. The augmented model as in Equation 3.42 is then used to test the hypothesis as the model in Equation 3.41 by using the same test statistic. If the y_{t} needs differencing, then the coefficient $\hat{\pi}$ should be approximately zero, while if y_{t} is already stationary, then $\hat{\pi}<0$. In practice, p-value approach is easier to apply than t-test statistic in testing the hypothesis. Based on the hypothesis given, the null hypothesis for an ADF-test is that the data series is nonstationary, therefore large p-values are indicative of nonstationarity, while small p-values suggest stationarity. At 5% significance level, differencing is required if the p-value is greater than 0.05 .

There are two practical issues in performing an ADF-test. First, the choice of $T D_{t}$ either as constant or constant and trend since the chosen $T D_{t}$ will reflect the hypothesis appropriately and characterise the trend properties of the data. According to Zivot and

Wang, the constant $T D_{t}$ is appropriate for non-trending series such as interest rates, exchange rates, and spreads, meanwhile the constant and trend case is appropriate for trending time series like asset prices (Zivot \& Wang, 2003). The second practical issue in ADF-test is the specification of the lag length, $k_{\text {max }}$. If the lag length is too small then the remaining serial correlation in the errors will be biased to the test, on the other hand, if it is too large then the power of the test will suffer. Schwert suggested the useful rule of thumb formula for determining the $k_{\max }$, as given by Equation 3.43,

$$
k_{\max }=\left(12\left(\frac{T}{100}\right)^{\frac{1}{4}}\right)
$$

where T is the number of observations (Schwert, 1989).

In this study, the ADF-test is performed using EViews since the software provides a user friendly tool for testing a series for the presence of a unit root. The ADF unit root test that EViews provides tests the null hypothesis of $H_{0}: \phi_{d f}=1$ against the left-tailed alternative $H_{1}: \phi_{d f}<1$ with Mackinnon critical value approach. In the ADF-test, if null hypothesis is not rejected means the data needs to be differenced to make it stationary.

3.4.1.3 Preliminary Linearity Test in Time Series

Let y_{t} be an original time series with mean μ and a_{t} be a white noise series as $a_{t} \sim \operatorname{IID}\left(0, \sigma_{a}^{2}\right)$. In proposing autoregressive model, Box and Jenkins stated that the deviation of a stationary time series, $y_{t}-\mu$ can be made linearly dependent on previous deviations and on a_{t}, as can be referred to Equation 2.1 (Box \& Jenkins, 1968). Meanwhile, for moving average model, the deviation can be made linearly dependent on a_{t} and on one or more previous $a^{\prime} s$, refer to Equation 2.2. Hence, before considering the Box-Jenkins model to the data series, it is wise to check the linearity of the stationary data first. This preliminary linearity test is done in the identification stage to clarify whether the linear model is appropriate to model the stationary series. One other way to diagnostically do that is to plot the deviation series from stationary data versus the lagged
series. If the stationary series is linear, then it indicates that a linear fit is appropriate. Thus, the Box-Jenkins model is applicable in analysing the data series.

3.4.1.4 Portmanteau Test

The Box-Jenkins model works well for time series data or serially correlated data. The ACF plays an important role in linear time series analysis in testing the serial correlation in data. In testing the autocorrelations of y_{t} in finite samples, Ljung and Box modified the Portmanteau test statistic proposed by Box and Pierce (Box \& Pierce, 1970; Ljung \& Box, 1978). The modified Portmanteau test, known as Ljung-Box Q-statistic, or simply called as LBQ-test, is given by Equation 3.44,

$$
Q\left(k_{\max }\right)=T(T+2) \sum_{k=1}^{k_{\max }} \frac{r_{k}^{2}}{T-k}
$$

is a test statistic for the $H_{0}: \rho_{1}=\rho_{2}=\ldots=\rho_{k}=0$ versus $H_{1}: \rho_{k} \neq 0, k \in\left\{1,2, \ldots, k_{\max }\right\}$; where T is the total observations, r_{k} is the sample ACF of y_{t}, k is the number of lag and $k_{\max }$ is the maximum lag being considered. The decision rule is to reject H_{0} if $Q\left(k_{\max }\right)>\chi_{\alpha}^{2}$ denotes the $100(1-\alpha)$ th percentile of a chi-squared distribution with $k_{\max }$ degrees of freedom (dof), or if p-value is used, the rule then is to reject H_{0} when p-value $<\alpha$. According to Tsay, simulation studies suggest that the choice of $k_{\max } \approx \ln T$ provides better power performance for nonseasonal time series (Tsay, 2013). Meanwhile, for seasonal time series, the rule needs modification in which autocorrelations with lags at the multiples of the seasonality are more important.

3.4.1.5 Extended Autocorrelation Function

Tsay and Tiao proposed a new approach that uses the extended autocorrelation function (EACF) to specify the order of Box-Jenkins model specifically to an ARMA process (Tsay \& Tiao, 1984). The output of EACF is a two-way table, where the rows correspond to AR order p and the columns to MA order q. The theoretical version of EACF for $\operatorname{ARMA}(1,1)$ is given in Table 3.4.

Table 3.4 Theoretical EACF table for an ARMA(1,1) model

MA								
$\mathbf{A R}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
0	X	X	X	X	X	X	X	X
1	X	O	O	O	O	O	O	O
2	$*$	X	O	O	O	O	O	O
3	$*$	$*$	X	O	O	O	O	O
4	$*$	$*$	$*$	X	O	O	O	O
5	$*$	$*$	$*$	$*$	X	O	O	O

The key feature of the EACF table is that, for an $\operatorname{ARMA}(p, q)$ model, the triangle of "O" will have it upper left vertex at the (p, q) position. The EACF table consist of " X " and "O", where "X" denotes that the absolute value of the corresponding EACF is greater than or equal to twice of its asymptotic standard error, while "O" denotes that the corresponding EACF is less than twice of its standard error in modulus. The standard error of EACF can be computed using $2 / \sqrt{T}$ where T is the sample size.

3.4.2 Stage II: Parameter Estimation

As current practice in the Box-Jenkins modelling, the order of the Box-Jenkins model is confirmed first, and then the parameters of the model chosen are estimated. In this study, two estimation methods that are commonly used in previous literatures are applied, maximum likelihood estimation (MLE) and ordinary least squares (OLS). These two methods are built-in in many statistical software including EViews and R language. The method of MLE and OLS for Box-Jenkins models can be referred to Box et al. (2008) and Wei (2006) for details.

However, it is possible that two or more significant models are considered, in which the order of the models are identified by the ACF and PACF approach, might come from the estimation methods. In identifying the best Box-Jenkins model to the series, model selection criteria method is implemented. In general, if the numbers of parameters of the models are the same, then the model with the smallest mean squared error is selected. While if the number of parameters of the models are different, then the parsimony principle is applied by selecting the simpler model yet is adequately significant. In this proposed procedure, the well-known Akaike Information Criteria
(AIC) and another commonly used criterion function which is the Schwarz Information Criterion (SIC) are applied in identifying the best significant Box-Jenkins model, as illustrated in Figure 3.11. These criteria determine the appropriateness of the Box-Jenkins model that identified by EACF method.

As for the time series model, Akaike (Akaike, 1974) proposed the AIC and Schwarz (Schwarz, 1978) proposed the SIC which are defined as in Equation 3.45 and Equation 3.46, respectively.

$$
\begin{align*}
& \operatorname{AIC}(p, q)=T \ln \left(\tilde{\sigma}_{\ell}^{2}\right)+2(p+q) \\
& \mathrm{SIC}(p, q)=T \ln \left(\tilde{\sigma}_{\ell}^{2}\right)+(p+q) \ln (T)
\end{align*}
$$

The $\operatorname{AIC}(p, q)$ is the value of AIC for the model with AR order p and MA order $q, \operatorname{SIC}(p, q)$ is the value of SIC for the model with AR order p and MA order $q, \tilde{\sigma}_{\ell}^{2}$ is the maximum likelihood estimate of σ_{a}^{2} and T is the number of observations. Note that, σ_{a}^{2} is the variance of a_{t}. SIC is also known as the Bayesian information criterion (BIC).

In the model selection criteria, the smallest value of the AIC or SIC are preferred. The difference between AIC and SIC is the value of penalty used. For AIC, the penalty value is fixed to two while $\ln (T)$ for SIC. The AIC and SIC are extensively adopted to guide the choice of alternative models for both linear and nonlinear modelling (Verbeek, 2004).

Figure 3.11 Procedures in Stage II of the procedure of BJ-G for highly volatile data

3.4.3 Stage III: Diagnostic Checking

Once the most appropriate model has been chosen, the model must be examined carefully in the diagnostic checking stage. In this stage, the residual series $\left\{\hat{a}_{t}\right\}$ of the chosen model is investigated in checking the model adequacy. If the model is adequate, then the residual series should behave as a white noise (Tsay, 2013). Otherwise, if the chosen model is found to be inadequate, the Box-Jenkins model identification procedure will be repeated in order to obtain a new appropriate model. In the diagnostic checking stage, the tests considered are serial correlation test, heteroscedasticity test and normality test to assure that the errors behave like white noise. Figure 3.12 shows the detailed procedures of the diagnostic checking stage in the proposed procedure of BJ-G in handling highly volatile time series data.

By definition, a time series y_{t} is a white noise process if the series has zero mean $\left(E\left(y_{t}\right)=0\right)$, has constant and finite variance process $\left(\operatorname{Var}\left(y_{t}\right)=\sigma^{2}\right)$ for all t where $\sigma^{2}<\infty$, and a serially uncorrelated $\left(\operatorname{Cov}\left(y_{t}, y_{s}\right)=0\right.$, if $\left.t \neq s\right)$. Particularly, the white noise errors in time series consists of a sequence of independent and identically distributed (IID) random variables, denoted by $a_{1}, a_{2}, \ldots, a_{T}$, that is assumed to have zero mean, serially uncorrelated and homoscedastic variance. The plot of residuals versus time or residual plots can be used to examine graphically the IID assumption as well as to spot possible outliers in the series.

To assure white noise process on the errors, the residual series $\left\{\hat{a}_{t}\right\}$ of the model is investigated in terms of independence, homoscedasticity (constant and finite variance process) and its distribution. The Durbin-Watson test, the autocorrelation functions and the LBQ-test on the residuals are commonly used to check correlations in the residuals of a series. The tests of serial correlations are further discussed in Section 3.4.3.1.

Figure 3.12 Detail procedures in Stage III of the procedure of BJ-G for highly volatile data

Meanwhile, to detect the existence of heteroscedasticity in the residuals, the ARCH test, the autocorrelation functions on squared residuals and the Ljung-Box Q statistics on the squared residuals are used, as presented in Section 3.4.3.2. For a highly volatile time series data, the tests of heteroscedasticity will show that the variance of the series is not correctly specified by the model since the variance is not constant. In handling the existence of volatility clustering in the series, this study proposed the BJ-G model since GARCH model is highly recommended in the previous literatures as volatility model.

In the combination model of BJ-G, the chosen model of the Box-Jenkins is used to model the mean data of time series while the GARCH is used to model the variance equation of the residuals. The identification method of order r and s for the GARCH model can be referred to in Section 3.2 for details. In the diagnostic checking stage, once the residuals of the chosen combination model are not serially correlated, then it is strongly suggested that the linearity checking of the mean model is conducted by applying the Terasvirta test, as will be discussed further in Section 3.4.3.3. The consideration of the linearity test is made for validating the appropriateness of the use of Box-Jenkins in the combination model to model the mean data series. Meanwhile, the appropriateness of GARCH to model the variance equation for a volatile time series is shown by the tests of heteroscedasticity.

On the other hand, the distribution of errors (or innovations) in white noise is initially assumed to be normal, therefore normality test on the residual series as described in Section 3.4.3.4 is done to check the assumption. However, the non-normal characteristic that typically exists in the residuals of volatile time series also leads to failure of the normality test. Therefore, distributions such as t, generalized error distribution (GED) and their skewed version are considered to model the errors. The detail of the distributions for the innovations can be referred to in Section 3.4.3.5. Therefore, in the procedure, a BJ-G model is proposed to analyse the univariate volatile series as well as to forecast highly volatile series.

3.4.3.1 Serial Correlation Tests

The errors in time series data usually exhibit some type of autocorrelated structure such as the errors are correlated with themselves at different time periods. Note that, the errors of a time series data should be independent but the data itself is serially correlated. The residual plots can be useful for the detection of autocorrelation. If the sign of the residuals is randomly distributed or correlation is close to zero, then the model errors are uncorrelated. Meanwhile, if there are not enough changes of sign in the pattern of residuals or the sign of residuals occur in cluster, there is positive correlation in the errors. On the other hand, if the residuals alternate signs too rapidly, there exists negative correlation in the errors (Tsay, 2013).

The autocorrelation between two errors that are one period apart, or the lag one autocorrelation is defined as Equation 3.47,

$$
\rho_{1}=\frac{\operatorname{Cov}\left(a_{t}, a_{t+1}\right)}{\sqrt{\sigma_{a_{t}}^{2}} \sqrt{\sigma_{a_{t}}^{2}}}=\frac{\phi_{a} \sigma_{\varepsilon_{t}}^{2}\left(\frac{1}{1-\phi_{a}^{2}}\right)}{\sqrt{\sigma_{\varepsilon_{t}}^{2}\left(\frac{1}{1-\phi_{a}^{2}}\right)} \sqrt{\sigma_{\varepsilon_{t}}^{2}\left(\frac{1}{1-\phi_{a}^{2}}\right)}}=\phi_{a}
$$

where a_{t} is the error term in the model at time period t, ε_{t} is an $\operatorname{NID}\left(0, \sigma_{e}^{2}\right)$ random variable, ϕ_{a} is a parameter that defines the relationship between successive values of the model errors a_{t} and a_{t-1} with $|\phi|<1$, and the time index is $t=1,2, \ldots, T$. Consequently, the autocorrelation between two errors that are k periods apart is $\rho_{k}=\phi_{a}^{k}$, which is called the autocorrelation function. Two common statistical tests in detecting the presence of autocorrelation are the Durbin-Watson test and the LBQ-test on residuals. Meanwhile, the residual plot shows graphical evidence to support the result of these serial correlation tests.

The Durbin-Watson test (DW-test) is the test developed by Durbin and Watson (Durbin \& Watson, 1971). The test is one of widely used procedure to detect the positive presence of autocorrelation in time series model errors. The DW-test measures the firstorder serial correlation in the residuals of the estimated equation. The considered serial correlation in the DW-test is given by Equation 3.48,

$$
a_{t}=\phi_{a} a_{t-1}+\varepsilon_{t}
$$

where a_{t} is the error term in the model at time period t, ε_{t} is an $\operatorname{NID}\left(0, \sigma_{e}^{2}\right)$ random variable, ϕ_{a} is a parameter that defines the relationship between successive values of the model errors a_{t} and a_{t-1} with $|\phi|<1$, and the time index is $t=1,2, \ldots, T$. The null hypothesis for the DW test is no serial correlation in the residuals, while presence of serial correlation is the alternative hypothesis, or can be simplified as $H_{0}: \phi_{a}=0$ versus $H_{1}: \phi_{a}>0$.

Let T is the number of observations and \hat{a}_{t} is the residual at time t, the DW-test statistic is given by Equation 3.49.

$$
D W=\frac{\sum_{t=2}^{T}\left(\hat{a}_{t}-\hat{a}_{t-1}\right)^{2}}{\sum_{t=1}^{T} \hat{a}_{t}^{2}}=\frac{\sum_{t=2}^{T} \hat{a}_{t}^{2}+\sum_{t=2}^{T} \hat{a}_{t-1}^{2}-2 \sum_{t=2}^{T} \hat{a}_{t} \hat{a}_{t-1}}{\sum_{t=1}^{T} \hat{a}_{t}^{2}} \approx 2\left(1-r_{1}\right)
$$

where r_{1} is the lag one sample autocorrelation coefficient defined as

$$
r_{1}=\frac{\sum_{t=1}^{T-1} \hat{a}_{t} \hat{a}_{t+1}}{\sum_{t=1}^{T} \hat{a}_{t}^{2}}
$$

The value of DW-test should be approximately 2 for uncorrelated errors $\left(r_{1}=0\right)$. According to Johnston and DiNardo, if DW ≈ 2 means there is no serial correlation, if $D W<2$ means there is positive serial correlation and if $2<\mathrm{DW}<4$ means there is negative serial correlation in the residuals (Johnston \& DiNardo, 1997).

There are limitations of the DW-test as a test for serial correlation. One of the main limitations is, if there are lagged dependent variables on the right-hand side of the model, the DW-test is no longer valid. Another main limitation is the test is only valid for testing the possibility of serial correlation in a first-order time series model. To overcome these limitations, the LBQ-test is preferred in most applications.

The LBQ-test on residuals is used in the diagnostic checking to recognise whether there is autocorrelation in the residuals of fitted time series models. The null hypothesis for this test is no remaining serial correlation in the residuals. Failure to reject the null hypothesis means that the mean equation is correctly specified up to lag $k_{\max }$. The test statistic for the test can be referred to Equation 3.44. In the test, statistics $Q\left(k_{\max }\right)$ follows $\chi^{2}\left(k_{\max }\right)$ distribution with $k_{\max }$ degrees of freedom if there is no autocorrelation among residuals.

In practice, the choice of $k_{\max }$ may affect the performance of the LBQ-test statistic. As for the selection of $k_{\max }$ value, the general principlel is that a larger value is better and the literature normally uses of $k_{\max }$ value of no more than 20 (Živkov, Njegić, Momčilović, \& Milenković, 2016). Often $k_{\max }=15$ is used as it is able to detect model failures (Engle, 2001). Simulation studies suggest that $k_{\text {max }} \approx \ln T$ provides better power performance (Tsay, 2013). Alternatively, Hyndman and Athanasopoulos suggest using $k_{\text {max }}=10$ for nonseasonal data and $k_{\text {max }}=2 S$ for seasonal data, where S is the period of seasonality. They believed that, the suggestion value of $k_{\text {max }}$ is adequate to ensure that the number of lag is large enough to capture any meaningful and troublesome correlations. The LBQ-test is not good when $k_{\max }$ is large, therefore if the $k_{\text {max }}$ value is larger than $T / 5$, then use $k_{\max }=T / 5$ (Hyndman \& Athanasopoulos, 2014).

In EViews, the result of LBQ-test is displayed together with ACF and PACF of the residuals for high order serial correlation. If there is no serial correlation in the residuals, the ACF and PACF at all lags will be closed to zero, and all Q-statistics will be insignificant with large p-values.

3.4.3.2 Heteroscedasticity Test

Let $a_{t}=y_{t}-\mu_{t}$ be the errors of the mean equation of model. The squared series of errors $\left\{a_{t}^{2}\right\}$ is used in checking the conditional heteroscedasticity of the model for the data series, which is also known as the ARCH effects. This particular heteroscedasticity specification is motivated by the observation that in many financial time series, the
magnitude of the residuals appeared to be related to the magnitude of the recent residuals. Hence, ignoring ARCH effects may result in the loss of efficiency.

There are two ARCH tests available and commonly used in testing heteroscedasticity in data series. The first test is to apply the Lagrange multiplier test, which is known as the ARCH LM test (Engle, 1982). The Engle's ARCH LM test is equivalent to the F statistic for testing $\alpha_{i}=0$ for $i=1,2, \ldots, k_{\text {max }}$ in the linear regression as given by the equation below,

$$
a_{t}^{2}=\alpha_{0}+\alpha_{1} a_{t-1}^{2}+\ldots+\alpha_{k_{\max }} a_{t-k_{\max }^{2}}^{2}+e_{t} \quad \text { for } t=k_{\max }+1, k_{\max }+2, \ldots, T
$$

where e_{t} denotes the error term, $k_{\text {max }}$ is a positive integer and T is the number of observation. This is a regression of the squared residuals on a constant and lagged squared up to order $k_{\text {max }}$. The selection of $k_{\max }$ value for ARCH test is the same as explained in Section 3.4.3.1.

The null hypothesis for the ARCH LM test is $H_{0}: \alpha_{1}=\alpha_{2}=\ldots=\alpha_{k_{\max }}=0$ and the alternative hypothesis is $H_{1}: \alpha_{i} \neq 0$ for some i between 1 and $k_{\text {max }}$. The ARCH LM test, as described by Tsay (2013), is given by Equation 3.50,

$$
f_{\text {test }}=\frac{\left(\mathrm{SSR}_{\mathrm{A}}-\mathrm{SSR}_{\mathrm{B}}\right) / k_{\text {max }}}{\mathrm{SSR}_{\mathrm{B}} /\left(T-2 k_{\text {max }}-1\right)}
$$

where $\operatorname{SSR}_{\mathrm{A}}=\sum_{t=k_{\max }+1}^{T}\left(\hat{a}_{t}^{2}-\bar{a}\right), \bar{a}=\frac{1}{T} \sum_{t=1}^{T} \hat{a}_{t}^{2}$ is the sample mean of $\hat{a}_{t}^{2}, \hat{a}_{t}^{2}$ is the estimated errors or residuals of the model, $\mathrm{SSR}_{\mathrm{B}}=\sum_{t=k_{\max }+1}^{T} \hat{e}_{t}^{2}$ and \hat{e}_{t}^{2} is the least squares residual of the prior linear regression. Under the H_{0}, the ARCH LM test follows an F distribution with degrees of freedom of $k_{\max }$ and $T-2 k_{\max }-1, f_{k_{\max }, T-2 k_{\max }-1}$. For sufficiently large T, one can use $k_{\text {max }} f_{\text {test }}$ as the test statistic, which is asymptotically a chi-squared distribution with $k_{\max }$ degrees of freedom, $\chi_{k_{\max }}^{2}$. The rule is to reject the H_{0} if $k_{\max } f_{\text {test }}>\chi_{\alpha, k_{\max }}^{2}$ or the $p-$ value $\leq \alpha$. If the decision is to not reject H_{0}, it can be concluded that there is no ARCH effect in the residuals of the model.

The second test for conditional heteroscedasticity is the LBQ-test on a squared residual series $\left\{\hat{a}_{t}^{2}\right\}$. The test on the squared residuals of the best fitting Box-Jenkins model could be useful in improving forecasts of the series since numerous time series data in which the squared residuals appear to be autocorrelated even though the residuals do not (Granger \& Andersen, 1978; McLeod \& Li, 1983). The details of the LBQ-test on $\left\{\hat{a}_{t}^{2}\right\}$ can be referred to McLeod and Li (McLeod \& Li, 1983).

The null hypothesis of the test is no ARCH in the residuals or the variance equation is correctly specified up to lag $k_{\text {max }}$. In EViews, the result of LBQ-test is displayed together with ACF and PACF of the squared residuals for high order of lag. If there is no ARCH in the residuals, the ACF and PACF at all lags will approach zero, and all Q-statistics value should be insignificant with p-value $>\alpha$. On the other hand, if there is presence of ARCH in the residuals, the PACF for the squared residuals can be used to determine the suitability of ARCH or GARCH model in handling the heteroscedasticity in the data series.

3.4.3.3 Linearity Test for Mean Model

To validate the linearity assumption of the mean model to data series, a widely used linearity test in neural networks known as Terasvirta test is used (Teräsvirta, 1994; Teräsvirta, Lin, \& Granger, 1993). The Terasvirta test for time series proposed by Teräsvirta et al. (1993) is based on the concepts of neural networks theory. In this linearity test, the null hypothesis is that the mean model is linear and the test is designed for the autoregressive model of order p. There are three stages in implementing this test, given as follows:

Step 1: Regress y_{t} on $1, y_{t-1}, y_{t-2}, \ldots, y_{t-p}$. Compute the residuals \hat{u}_{t} and the sum of the squared residuals SSR_{0} where $\mathrm{SSR}_{0}=\sum_{t=1}^{T} \hat{u}_{t}^{2}$.

Step 2: Regress \hat{u}_{t} on $1, y_{t-1}, y_{t-2}, \ldots, y_{t-p}$ and m auxiliary regressors. Compute the residuals \hat{v}_{t} and the residual sum of squares SSR_{1} where $\operatorname{SSR}_{1}=\sum_{t=1}^{T} \hat{v}_{t}^{2}$.

Step 3: Compute the test statistic, $f_{\text {test }}=\frac{\left(\mathrm{SSR}_{0}-\mathrm{SSR}_{1}\right) / m}{\operatorname{SSR}_{1} /(T-p-1-m)}$.

Note that, p is the order of autoregressive model, T is the number of data and m is the number of auxiliary regressors. Under the linearity test, $f_{\text {test }}$ is approximately f distributed with m and $T-p-1-m$ degrees of freedom, $f_{\alpha, m, T-p-1-m}$. If $f_{\text {test }}>f_{\alpha, m, T-p-1-m}$ or p-value $\leq \alpha$, then the null hypothesis is rejected. In R language, the linearity test for time series data is implemented in the tseries package by the function terasvirta.test().

3.4.3.4 Normality Test

Jarque-Bera test (JB-test) is one of the common test statistics for testing whether the series or the errors of the series is normally distributed. The test statistic measures the difference of the skewness and kurtosis of the series with those from the normal distribution. The statistic is computed as in Table 3.5.

Table 3.5 Jarque-Bera test statistic

Hypothesis	Test statistic	Critical point	Decision rule
$H_{0}: X \sim N\left(\mu, \sigma^{2}\right)$	$\mathrm{JB}_{\text {test }}=T\left[\frac{\hat{S}^{2}(x)}{6}+\frac{(\hat{K}(x)-3)^{2}}{24}\right]$	$\chi_{\frac{\alpha}{2}, 2}^{2}$	reject H_{0} if $\quad \mathrm{JB}_{\text {test }}>\chi_{\frac{\alpha}{2}, 2}^{2}$
$H_{1}: X \nmid N\left(\mu, \sigma^{2}\right)$	or p-value $\leq \alpha$		

Under the null hypothesis of a normal distribution, the JB-test statistic is distributed as $\chi_{\frac{\alpha}{2}, 2}^{2}$. A small p-value leads to the rejection of the null hypothesis of a normal distribution at 5% significance level. It is important to test the validity of normality assumption since violation of the assumption may lead to the use of wrong estimators, invalid inferential statements and inaccurate conclusions (Jarque \& Bera, 1987).

3.4.3.5 Distribution of Errors

The distribution of the standardised error or innovations ε_{t} in the part of diagnostic checking is investigated in order to find the appropriate innovations to make the model fit the data well. The considered distributions for ε_{t} in this study are Normal, t, the skewed- t, the generalised error distribution (GED) and the skewed generalised error distribution (SGED).

Under the normality assumption on the errors, the pdf of ε_{t} is given by Equation 3.51,

$$
f\left(\varepsilon_{t} \mid \mu, \sigma\right)=\frac{1}{\sqrt{2 \pi \sigma_{t}^{2}}} \exp \left(-\frac{\varepsilon_{t}^{2}}{2 \sigma_{t}^{2}}\right) .
$$

If the data exhibit heavy tails characteristics, it is more appropriate to assume that ε_{t} follows a t distribution. The t distribution also known as Student's t distribution, is introduced by William Sealy Gosset (known as "Student") in 1908 (Boland, 1984). Let ε_{t} be a t distribution with v degrees of freedom, the pdf of ε_{t} is given by Equation 3.52 where $\Gamma($.$) is the gamma function. For a t$ distribution with v, the mean is 0 , its variance is $v /(v-2)$ if $v>2$, the skewness is 0 if $v>3$ and the excess kurtosis is $6 /(v-4)$ if $v>4$.

$$
f\left(\varepsilon_{t} \mid v\right)=\frac{\Gamma((v+1) / 2)}{\Gamma(v / 2) \sqrt{v \pi}}\left(1+\frac{\varepsilon_{t}^{2}}{v}\right)^{-\frac{(v+1)}{2}}, \quad v>2,
$$

To handle the data that exhibit heavy tails with skewness characteristics, the t distribution has been modified to become a skewed- t distribution. For the innovation ε_{t} of an ARCH process, the pdf of a standardised skewed- t distribution is given by Equation 3.53,

$$
f\left(\varepsilon_{t} \mid \xi, v\right)= \begin{cases}\frac{2}{\xi+\frac{1}{\xi}} Я f\left[\xi\left(\vartheta \varepsilon_{t}+\varpi\right) \mid v\right] & \text { if } \varepsilon_{t}<-\varpi / \vartheta \\ \frac{2}{\xi+\frac{1}{\xi}} \vartheta f\left[\left(\vartheta \varepsilon_{t}+\varpi\right) / \xi \mid v\right] & \text { if } \varepsilon_{t} \geq-\varpi / \vartheta\end{cases}
$$

where $f(\cdot)$ is the pdf of the standardised t distribution in Equation $3.51, \xi$ is the skewness parameter, v is the degrees of freedom and $v>2$, and the parameters σ and ϑ are given as,

$$
\varpi=\frac{\Gamma((v-1) / 2) \sqrt{v-2}}{\sqrt{\pi} \Gamma(v / 2)}\left(\xi-\frac{1}{\xi}\right), \quad \vartheta^{2}=\left(\xi^{2}+\frac{1}{\xi^{2}}-1\right)-\varpi^{2}
$$

where ξ^{2} is a measure of the skewness.

The generalised error distribution (GED) is a possible candidate for the description of financial market price changes (Giller, 2005). The GED is a symmetrical unimodal and a member of the exponential family. Box and Tiao (1992) call the GED distribution as an exponential power distribution. The GED distribution is proposed by Subbotin (1923) and is defined by three parameters: μ locates the mean of the distribution; σ defines the dispersion of the distribution; and κ controls the shape of the distribution. If ε_{t} may assume a GED, therefore the pdf of the errors is given by Equation 3.54,

$$
f\left(\varepsilon_{t} \mid \mu, \sigma, \kappa\right)=\frac{\exp \left(-\frac{1}{2}\left(\left|\varepsilon_{t}\right| \sigma\right)^{\frac{1}{\kappa}}\right)}{\sigma\left(2^{(1+\kappa)}\right) \Gamma(1+\kappa)},-\infty<\varepsilon_{t}<\infty, \kappa<\infty
$$

where $\Gamma(\cdot)$ is the gamma function. This distribution reduces to a Normal distribution if $\kappa=\frac{1}{2}$, i.e. $G\left(\mu, \sigma^{2}, \frac{1}{2}\right)=N\left(\mu, \sigma^{2}\right)$; if $\kappa=1$ then the distribution is recognized as Double Exponential or Laplace distribution, i.e. $G\left(\mu, \sigma^{2}, 1\right)=L\left(\mu, 4 \sigma^{2}\right)$; and if $\kappa \rightarrow 0$,
the distribution tends to uniform distribution $U(\mu-\sigma, \mu+\sigma)$. For $\kappa<\frac{1}{2}$ the distribution is platykurtic, while for $\kappa>\frac{1}{2}$, it is leptokurtic.

The skewed generalised error distribution (SGED) introduced by Theodossiou (2008) is used to accommodate the skewness and leptokurtosis in the ε_{t}. If ε_{t} follows the SGED, then the pdf for the errors is given by Equation 3.55.

$$
f\left(\varepsilon_{t} \mid \mu, \sigma, \kappa, \xi\right)=\frac{C}{\sigma} \exp \left(-\frac{1}{\left[1-\operatorname{sign}\left(\varepsilon_{t}+\delta \sigma\right) \xi\right]^{\kappa} \theta^{\kappa} \sigma^{\kappa}}\left|\varepsilon_{t}+\delta \sigma\right|^{\kappa}\right)
$$

where

$$
\begin{aligned}
& C=\frac{\kappa}{2 \theta} \Gamma\left(\frac{1}{\kappa}\right)^{-1}, \\
& \theta=\Gamma\left(\frac{1}{\kappa}\right)^{\frac{1}{2}} \Gamma\left(\frac{3}{\kappa}\right)^{\frac{1}{2}} S(\xi)^{-1}, \\
& \delta=2 \xi A S(\xi)^{-1}, \\
& S(\xi)=\sqrt{1+3 \xi^{2}-4 A^{2} \xi^{2}}, \\
& A=\Gamma\left(\frac{2}{\kappa}\right) \Gamma\left(\frac{1}{\kappa}\right)^{-\frac{1}{2}} \Gamma\left(\frac{3}{\kappa}\right)^{-\frac{1}{2}} .
\end{aligned}
$$

Note that μ, σ and ξ are the expected value, the standard deviation and the skewness parameter for the distribution, respectively, sign is the sign function and $\Gamma($.$) is$ the gamma function. The scaling parameters κ and ξ obey the following constraints $\kappa>0$ and $-1<\xi<1$. The parameter κ controls the height and tails of the density function and the ξ controls the rate of descent of the density around the mode of the distribution which is defined as $\mu-\delta \sigma$.

3.4.4 Stage IV: Forecasting

The best BJ-G model is identified from Stage I to Stage III. Then, this model will be used in the forecasting and the detailed procedures in the forecasting stage of the proposed procedure as shown in Figure 3.13. Note that, if the stationary series is a transformed series, then the out-of-sample series must be transformed as well before the chosen model is applied to the series since the selection of the model is based on the analysis of the stationary data. By applying the chosen model to the out-of-sample data series in stationary form, a series of forecast data is obtained. The forecast series in the stationary form is then compared to the out-of-sample series in obtaining the forecast error.

However, the forecast data obtained is in the stationary form which is not in the original scale. To obtain the forecast data series as well as forecast evaluations in its original scale, there are two approaches. The first approach is by modifying the selected model based on the transformation chosen in the identification stage. The model with the retransformed scale is then used to get the out-of-sample series. The second approach is by retransforming the forecast transformed data. The forecast data series in its original scale then is used in evaluating the forecasting performance.

In the forecasting stage, the series of out-of-sample data are used to obtain the forecast results since the accuracy of forecasts can only be determined by considering how well a model performs on new data that were not used when fitting the model (Hyndman \& Athanasopoulos, 2017). The validity and accuracy of a forecasting model is assessed by the cross-validation (CV) method. The valid forecasting model will demonstrate good predictive accuracy. Note that, the out-of-sample one-step ahead forecast is also known as one-step time series cross-validation.

Figure 3.13 Detail procedures in Stage IV of the procedure of BJ-G for highly volatile data

3.4.4.1 Time Series Cross-Validation

Time series cross-validation is a version of CV that searches for a good one-step ahead forecast of the data (Hart, 1994). Let n be the number of forecasts and $\hat{y}_{T}(h)$ be the forecast made at origin T of the actual value y_{T+1} at future time $T+1$, that is, at lead time or forecasting horizon h. Here y_{T+1} refers alternatively to the out-of-sample series. For the one-step ahead forecast, the procedure of CV of a statistical model is given in the following steps (Hyndman \& Athanasopoulos, 2017; Tsay, 2013):

Step 1: Divide the data set into two parts; in-sample and out-of-sample. There is no specific rule to guide the division, but each subsample should contain sufficient data points. Typical analyst used a ratio of 90:10 (Chatfield, 2001).

Step 2: Perform model estimation using in-sample data and use the fitted model to obtain 1-step ahead forecast and its forecast error. Suppose the in-sample data is $\left\{y_{t} \mid t=1,2, \ldots, T\right\}$, then the fitted model using the first T data points is used to compute the one-step ahead forecast, $\hat{y}_{T}(1)$ and its forecast error, $e_{T}(1)=y_{T+1}-\hat{y}_{T}(1)$.

Step 3: Reestimate the model using $T+1$ data points and compute the 1 -step ahead forecast and its forecast error. That is, compute $e_{T+1}(1)=y_{T+2}-\hat{y}_{T+1}(1)$, where $\hat{y}_{T+1}(1)$ is the 1 -step ahead forecast of the newly fitted model at the forecast origin $T+1$.

Step 4: Repeat step 3 until $e_{T+(n-1)}(1)=y_{T+n}-\hat{y}_{T+(n-1)}(1)$.

Note that the CV procedure is also applicable for multistep ahead forecasting, i.e. $h=2,3, \ldots, n$. The procedure of CV is known as backtesting in the finance literature.

3.4.4.2 Forecasting Evaluations

By applying the procedure of CV , the forecasting performance is compared across models based on three evaluation criteria which are commonly used in the previous literatures. The evaluation criteria are the mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE). In the forecasting evaluations, if the actual values and forecast values are closer to each other, a small forecast error will be obtained. Thus, smaller RMSE, MAE and MAPE values are
preferred. The best forecasting model is the one that generates the lowest prediction error. However, if the results are not consistent among these criterions, it is suggested to choose MAPE since it is relatively more stable than others (Wang, Huang, \& Wang, 2012). The evaluation criteria for one-step ahead forecast are given in Equation 3.56 to Equation 3.58. The evaluation criteria in Equation 3.56 to Equation 3.58 are also applicable for multistep ahead forecasting or when $h=2,3, \ldots, n$.

$$
\begin{aligned}
& \mathrm{MAE}=\frac{1}{n} \sum_{j=1}^{n}\left|e_{j}(1)\right| \\
& \mathrm{RMSE}=\sqrt{\frac{\sum_{j=1}^{n}\left(e_{j}(1)\right)^{2}}{n}} \\
& \mathrm{MAPE}=\frac{100}{n} \sum_{j=1}^{n}\left|\frac{e_{j}(1)}{y_{T+j}}\right|
\end{aligned}
$$

3.4.4.3 Prediction Intervals

In addition to assessing the best forecast data \hat{y}_{t}, it is necessary to specify their accuracy to measure the risks associated with decisions based upon the forecasts may be assessed. The accuracy of the forecasts can be expressed by calculating probability limits on either side of each forecast or also known as prediction intervals (PIs) (Box et al., 2008). Computing prediction intervals (PIs) is an important part of the forecasting process as it is useful to quantify the accuracy of the forecast data (Chatfield, 2001). These limits may be calculated for any convenient set of probabilities, such as $95 \%, 80 \%$ or 50%. However, suitable percentages may be used. These limits are such that the given information available at origin T, there is a probability of $1-\alpha$ that the actual value is in the out-of-sample series, y_{T+1}, when it occurs, will be within them, which is expressed as Equation 3.59.

$$
P\left(y_{T+1}(-)<y_{T+1}<y_{T+1}(+)\right)=1-\alpha
$$

Then, a 95% prediction interval for one-step ahead forecast of y_{T+1} for a_{t} normally distributed, is given by Equation 3.60, where $\operatorname{Var}\left[e_{T}(1)\right]$ is the variance of the

1 -step ahead forecast error that is defined as Equation 3.61. The a_{T+1} is referred to as the shock to the series at $T+1$, which is also known as the one-step ahead forecast error at the forecast origin T. In practice, the estimated value of $\operatorname{Var}\left[e_{T}(1)\right]$ can be obtained from the variance of the one-step ahead forecast residuals of the model considered. The limit in Equation 3.59 and the PIs in Equation 3.60 are also applicable to multistep ahead forecasting, i.e. $h=2,3, \ldots, n$.

$$
\begin{align*}
& \hat{y}_{T}(1) \pm Z_{0.025} \sqrt{\operatorname{Var}\left[e_{T}(1)\right]} \\
& \operatorname{Var}\left[e_{T}(1)\right]=\operatorname{Var}\left(a_{T+1}\right)=\sigma_{a}^{2}
\end{align*}
$$

Consequently, a $(1-\alpha) 100 \%$ PI for h-step ahead forecasting and a_{t} follows normal distribution is given by Equation 3.62. If a_{t} has heavy-tailed characteristics, then Equation 3.62 is modified by changing $Z_{\alpha / 2}$ to the appropriate error distribution with heavier tails than the normal.

$$
\hat{y}_{T}(h) \pm Z_{\alpha / 2} \sqrt{\operatorname{Var}\left[e_{T}(h)\right]}
$$

There are several discussions on how to determine the value of $\operatorname{Var}\left[e_{T}(h)\right]$. According to Chatfield (2001), for a series that shows no obvious trend, autocorrelation or seasonality, the $\operatorname{Var}\left[e_{T}(h)\right]$ can be determined using Equation 3.63. Box et al. (2008) recommend that the use of Equation 3.63 is optimal for an $\operatorname{ARIMA}(0,1,1)$ model. For a random walk model, the $\operatorname{Var}\left[e_{T}(h)\right]$ can be estimated using Equation 3.64. The Equation 3.64 is true for a random walk model and it can be in error when it is applied to other types of model (Chatfield, 2001).

$$
\begin{gather*}
\operatorname{Var}\left[e_{T}(h)\right]=\left[1+(h-1) \alpha^{2}\right] \operatorname{Var}\left[e_{T}(1)\right] \\
\operatorname{Var}\left[e_{T}(h)\right]=h \operatorname{Var}\left[e_{T}(1)\right]
\end{gather*}
$$

3.5 The Modified Procedure for Univariate Highly Volatile Data using BJ-G

The earlier proposed procedure of BJ-G in Section 3.4 is further modified specifically for univariate highly volatile time series data. Therefore, a significant modification is done on Stage I of the procedure of BJ-G in Figure 3.5 to ensure the data
series is a highly volatile data at the early stage, which is the data is prepared appropriately to use the BJ-G model. Hence, in Stage I of the newly proposed procedure of BJ-G, two steps are introduced that are the preliminary heteroscedasticity test and the BJ-G model identification. These two steps are used to justify the significance of adding volatility model to the Box-Jenkins and to identify the appropriate BJ-G model, respectively.

The modified procedure will simultaneously able to determine the optimal number of data required for BJ-G model. Determination of the optimal number of data using a statistical model for practical application is one of the main issues in time series forecasting (Chatfield,2001; Hyndman \& Athanasopoulos, 2014; Hyndman \& Konstenko, 2017). According to Hyndman and Kostenko (2017), the number of data required for any statistical model depends on at least two items: the number of model parameters to be estimated and the amount of random variation existing in the data. It means, a reasonable approach to determine the appropriate number of data for forecasting is to ensure that there is enough data to estimate the model and the model performs well for out-of-sample evaluation. By referring to Figure 3.5, these two items are incorporated in Stage II and Stage IV of the proposed procedure by considering the selection criteria of AIC and SIC in the model estimation stage and by applying the out-of-sample one-step ahead forecasting evaluations using MSE, RMSE, MAE and MAPE in the forecasting stage. Konishi and Kitagawa (2008) reported that as the number of data increases, minimising the AIC is equivalent to minimising the MSE.

Figure 3.14 illustrates the new proposed procedure of BJ-G in modelling and forecasting highly volatile time series data that will simultaneously ensure the optimal number of data required for BJ-G model. In Stage I of the new proposed procedure, there are eight steps that are data plotting, data descriptive statistics, data stationarity, preliminary linearity test, Portmanteau test, BJ model identification, preliminary heteroscedasticity test and BJ-G model identification. For Stage II to Stage IV in the newly proposed procedure, the procedure and the method used are the same as in the proposed procedure in Section 3.4. In this study, the new proposed framework is employed to different data series of daily world gold price in determining the optimal number of data using BJ-G model. Note that, this new proposed procedure of BJ-G is the improvised version of procedure for BJ-G as proposed in Section 3.4.

Figure 3.14 New proposed procedure of BJ-G in forecasting highly volatile data

3.6 Multistep Forecasting for Highly Volatile Data using Modified BJ-G Procedure

The second proposed procedure of BJ-G is only applied for one-step ahead forecasting performance, which is not practical for real data due to its limitation of the prediction period (Babu \& Reddy, 2015; Pham \& Yang, 2010; Byström, 2005). Hence, the study on the multistep ahead forecast is important since it is significant for practical application purposes using the BJ-G model. Therefore, the following study is aimed at proposing a modified procedure of BJ-G in evaluating the multistep forecasting performance of Box-Jenkins - GARCH (or BJ-G) model for highly volatile time series data. In investigating the performance of multistep ahead forecasting for the BJ-G model, Stage IV in the procedure of Figure 3.14 is extended to n-step ahead forecasting by proposing a new procedure of BJ-G as presented in Figure 3.15.

Step 2: Obtain \hat{y}_{T+h} for h-step ahead of the BJ-G model

Step 3: Obtain forecasting evaluations for \hat{y}_{T+h}

Step 4: Obtain the prediction interval for \hat{y}_{T+h}

Step 5: Plot graph of the performance of \hat{y}_{T+h}
End

Figure 3.15 Proposed procedure of BJ-G for multistep ahead forecasting

Note that, the procedure for Stage I to III of the procedure of BJ-G are the same as discussed in Section 3.5. In order to achieve the objective, the procedure and programming codes are constructed for multistep ahead forecast using BJ-G model. It has been observed that available software is only able to provide the results for one-step ahead forecast. In the proposed procedure, sets of codes are constructed in R for evaluating the
forecasting performance up to n-step ahead, which is based on the proposed model of BJG. The proposed procedure in Figure 3.15 is explained explicitly in the following steps:

Step 1: Obtain the simulated stationary series, \hat{s}_{T+h} for forecasting horizon $h=1,2,3, \ldots, n$ using the proposed BJ-G model. There are two approaches to obtain \hat{s}_{T+h}; the first approach is using the results of one-step ahead forecast of BJ-G model from available software (EViews). In the second approach, the \hat{s}_{T+h} series is obtained through simulation on BJ-G model using programming codes.

Step 2: Obtain the forecast data for h-step ahead, \hat{y}_{T+h} of the BJ-G model. The corresponding R codes of \hat{y}_{T+h} for one-step ahead are written.

Step 3: Obtain forecasting evaluations of MAE, RMSE and MAPE for h-step ahead forecast by comparing \hat{y}_{T+h} and the out-of-sample data y_{T+h}. The corresponding R codes for the forecasting evaluations of \hat{y}_{T+h} for one-step ahead are written.

Step 4: Obtain the prediction intervals (PIs) for \hat{y}_{T+h}. The PIs gives an interval within which the actual data, y_{t} is expected to lie with a specified probability by using the forecast, \hat{y}_{T+h}. In this study, the PIs used are 80% and 95%, which is commonly used in forecasting method as suggested by Hyndman and Athanasopoulos (2013). The R codes for PIs of 80% and 95% of \hat{y}_{T+h} using one-step ahead forecast are written.

Step 5: Graphical presentation for the performance of the forecast data is shown by plotting the graph of actual data in the out-of-sample series, y_{T+h} and the h-step ahead forecast, \hat{y}_{T+h} with its prediction intervals. The R codes for plotting the performance with PIs of 80% and 95% for one-step ahead forecast are written.

The procedure from Step 1 to 5 for $h=2,3, \ldots, n$ is repeated in order to obtain the multistep ahead forecast evaluations for BJ-G model.

3.7 Modified BJ-G Procedure for GARCH-type Models

In recent years, many studies proposed the incorporation of Box-Jenkins with GARCH-type model due to its good performance in dealing with highly volatile data. Based on literatures, some of the studies on univariate highly volatile data that incorporate the Box-Jenkins model with GARCH-type are ARIMA-GARCH (C. Chen et al., 2011; Tan et al., 2010; Zhou et al., 2006), AR-EGARCH (Ahmed, 2017; Ferenstein \& Gasowski, 2004; Girish, 2016; Walid, Chaker, Masood \& Fry, 2011), AR-GARCH (Gaglianone \& Marins, 2017), ARIMA-APARCH (Girish, 2016), ARIMA-TGARCH (Ahmad et al., 2015; Freedi et al.,2012), ARMA-GARCH (Liu \& Shi, 2013; Pham \& Yang, 2010; Wang, Gelder, Vrijling, \& Ma, 2005), ARMA-EGARCH (Ord, Koehler, Snyder \& Hyndman, 2009) and ARIMA-GARCH-M (Liu, Erdem \& Shi, 2011; Liu \& Shi, 2013; Liu, Shi, \& Qu, 2013).

Since the combination model of Box-Jenkins and GARCH-type has great potential for research that deals with univariate highly volatile time series data, the comprehensive procedure of BJ-G should be considered in the study. Therefore, the comprehensive procedure of BJ-G which is the fourth proposed procedure in this study is developed from the second and third procedures (refer to Figure 3.14 and Figure 3.15 for the second and the third proposed procedures, respectively). The fourth proposed procedure of BJ-G is illustrated by Figure 3.16.

The fourth proposed procedure of BJ-G is not only applicable for Box-Jenkins with standard GARCH model but it is also can be applied to Box-Jenkins with all GARCH-type models under consideration in previous studies on highly volatile data that are GARCH-M EGARCH, TGARCH and APARCH. Note that, the procedure of combination Box-Jenkins with standard GARCH model as in Figure 3.4 and the modelling procedure in estimating GARCH parameters as discussed by Pham and Yang (2010) are also applicable to other GARCH-type models under study.

Figure 3.16 A modified comprehensive proposed procedure of BJ-G for modelling and forecasting univariate highly volatile time series data

The GARCH-M model, where " M " stands for GARCH in the mean, is one of the symmetric GARCH-type models, as it is symmetric in response to the past volatility. The $\operatorname{GARCH}(r, s)-\mathrm{M}$ model can be written as Equation 3.65 (Tsay, 2013).

$$
\begin{align*}
& s_{t}=\mu+M \sigma_{t}^{2}+a_{t}, \quad a_{t}=\sigma_{t} \varepsilon_{t}, \quad \varepsilon_{t} \sim \operatorname{IID}(0,1) \\
& \sigma_{t}^{2}=\alpha_{0}+\sum_{i=1}^{r} \alpha_{i} a_{t-i}^{2}+\sum_{i=1}^{s} \beta_{i} \sigma_{t-i}^{2}
\end{align*}
$$

where s_{t} is the stationary series, σ_{t}^{2} is the conditional variance of s_{t}, M is the risk premium parameter and α_{i} and β_{i} are parameters satisfying conditions similar to those of GARCH model. A positive M indicates that the series is positively related to its past volatility. The GARCH-M model is used to model the phenomenon of a series that may depend on its volatility. The existence of risk premium in the GARCH-M model implies that there are serial correlations in the series.

The exponential GARCH or EGARCH is proposed by Nelson (1991) to overcome some weaknesses of the GARCH model in terms of the leverage effect and parameter restrictions (Freedi et al., 2012). EGARCH is one of the asymmetric GARCH-type models. An $\operatorname{EGARCH}(r, s)$ model can be written as Equation 3.66, where s_{t} is the stationary series, σ_{t}^{2} is the conditional variance of s_{t}, μ_{t} is conditional mean of s_{t}, α_{i} and β_{i} are parameters satisfying conditions similar to those of GARCH model and g_{i} signifies the leverage effect of a_{t-i} (Tsay, 2013; Freedi et al., 2012). It is expected that g_{i} to be negative in real applications, if it is exists. Note that, a positive a_{t-i} or there is "good news" contributes $\alpha_{i}\left(1+g_{i}\right)\left|\varepsilon_{t-i}\right|$ to the log volatility, in contrast a negative a_{t-i} or there is "bad news" gives $\alpha_{i}\left(1-g_{i}\right)\left|\varepsilon_{t-i}\right|$ where $\varepsilon_{t-i}=\frac{a_{t-i}}{\sigma_{t-i}}$.

$$
\begin{align*}
& s_{t}=\mu_{t}+a_{t}, \quad a_{t}=\sigma_{t} \varepsilon_{t}, \quad \varepsilon_{t} \sim \operatorname{IID}(0,1) \\
& \ln \left(\sigma_{t}^{2}\right)=\alpha_{0}+\sum_{i=1}^{r} \alpha_{i} \frac{\left|a_{t-i}\right|+g_{i} a_{t-i}}{\sigma_{t-i}}+\sum_{j=1}^{s} \beta_{j} \ln \sigma_{t-j}^{2}
\end{align*}
$$

The threshold generalised autoregressive conditional heteroscedastic or TGARCH is one of the commonly used volatility models in handling leverage effects in
a data series. For a univariate series of s_{t}, a $\operatorname{TGARCH}(r, s)$ model is given by Equation 3.67 (Tsay, 2013).

$$
\begin{align*}
& s_{t}=\mu_{t}+a_{t}, \quad a_{t}=\sigma_{t} \varepsilon_{t}, \quad \varepsilon_{t} \sim \operatorname{IID}(0,1) \\
& \sigma_{t}^{2}=\alpha_{0}+\sum_{i=1}^{r}\left(\alpha_{i}+g_{i} N_{t-i}\right) a_{t-i}^{2}+\sum_{i=1}^{s} \beta_{i} \sigma_{t-i}^{2}
\end{align*}
$$

where N_{t-i} is an indicator for negative a_{t-i}, that is

$$
N_{t-i}=\left\{\begin{array}{ll}
1 & \text { if } a_{t-i}<0, \\
0 & \text { if } a_{t-i} \geq 0
\end{array} \quad \text { for } i=1,2, \ldots, r\right.
$$

and s_{t} is the stationary series, μ_{t} is conditional mean of s_{t}, σ_{t}^{2} is the conditional variance of s_{t}, α_{i} and β_{i} are parameters satisfying conditions similar to those of GARCH model. Noted that, g_{i} signifies the leverage effect of a_{t-i}. It is expected that g_{i} to be negative in real applications (Tsay, 2013). This TGARCH model is also known as the GJR model since Glosten et al. (1993) essentially proposed the same model.

The asymmetric power autoregressive conditional heteroscedastic or APARCH model is proposed by Ding, Granger, \& Engle, 1993. The APARCH (r, s) model can be written as Equation 3.68 where s_{t} is the stationary series, σ_{t}^{2} is the conditional variance of s_{t}, μ_{t} is conditional mean of s_{t}, α_{i} and β_{i} are parameters satisfying conditions similar to those of GARCH model, g_{i} signifies the leverage effect of a_{t-i} and δ is a positive real number (Tsay, 2013). If $\delta=0$ in Equation 3.68, then the APARCH model becomes the EGARCH model of Nelson (1991), while if $\delta=2$, the APARCH model becomes to TGARCH. Similar to GARCH model, the APARCH $(1,1)$ model is often used in practice (Tsay, 2013).

$$
\begin{align*}
& s_{t}=\mu_{t}+a_{t}, \quad a_{t}=\sigma_{t} \varepsilon_{t}, \quad \varepsilon_{t} \sim \operatorname{IID}(0,1) \\
& \sigma_{t}^{\delta}=\alpha_{0}+\sum_{i=1}^{r} \alpha_{i}\left(\left|a_{t-i}\right|+g_{i} a_{t-i}\right)^{\delta}+\sum_{i=1}^{s} \beta_{i} \sigma_{t-i}^{\delta}
\end{align*}
$$

3.8 Concluding Remarks

The Box-Jenkins - GARCH's procedure based on Box-Jenkins modelling was proposed to handle highly volatile data. There are four procedures of BJ-G proposed in this study, as given by Figure 3.5, Figure 3.14, Figure 3.15 and Figure 3.16. The first proposed procedure of BJ-G as shown by Figure 3.5 is developed based on the standard Box-Jenkins's procedure since it will be used in evaluating the performance of the combination model to forecasting univariate highly volatile data for the preliminary study. The second proposed procedure of BJ-G model as shown in Figure 3.14 is developed specifically dealing for univariate highly volatile data at the early stage which simultaneously ensure the optimal number of data required for BJ-G model. The third proposed procedure of BJ-G as given by Figure 3.15 is applied in evaluating the multistep ahead forecasting performance of the BJ-G model. While, the fourth proposed procedure as given by Figure 3.16 is a comprehensive BJ-G procedure for modelling and forecasting univariate highly volatile time series data using the Box-Jenkins with GARCH-type model.

The performance of the four proposed procedures of BJ-G will be illustrated using real life data, specifically the world gold prices as will be discussed in details in Chapter 4. The daily gold price data are selected since it is expected to be a highly volatile type of time series data.

CHAPTER 4

GOLD PRICE FORECASTING USING MODIFIED PROCEDURE OF BOX JENKINS - GARCH FOR HIGHLY VOLATILE TIME SERIES: A CASE STUDY
 4.1 Introduction

Gold is noted as a volatile monetary asset commodity (Batten, Ciner \& Lucey, 2010; Lucey, Larkin \& O’Connor, 2013; Yaya, Tumala \& Udombodo, 2016). The world gold prices are used to illustrate the proposed procedures of Box-Jenkins - GARCH (BJ-G) in Chapter 3. This chapter presents the empirical results of the highly volatile gold prices series. Section 4.2 presents the preliminary analysis on gold price using the modified BJ-G as illustrated in Figure 3.5. The analysis describes a step-by-step for four stages in the procedure using BJ-G model to determine its suitability in modelling and forecasting gold prices, specifically at one-step ahead.

In section 4.3, the second proposed procedure of BJ-G is applied to the gold price series in evaluating the performance of the procedure in specifically handling highly volatile data for practical application. The promising results from one-step ahead out-ofsample forecast series using the second procedure BJ-G has motivated the extension to multiple-step ahead forecast as will be discussed in details in Section 4.4. In Section 4.5, the fourth proposed procedure of BJ-G is applied to Box-Jenkins with all GARCH-type models as in the previous studies on highly volatile data including standard GARCH, GARCH-M, EGARCH, TGARCH and APARCH in determining the best GARCH-type model in handling volatility, specifically in the gold price series. The data is analysed using EViews and R programming language. The empirical results are thoroughly explained and the detail analyses can be referred to Appendix 2 to 5 for Section 4.2 to 4.5 , respectively.

4.2 Preliminary Analysis on Gold Price Forecasting using Modified BJ-G

Based on the previous studies of Box-Jenkins - GARCH-type model on highly volatile data, there are various number of data used starting 180 to almost 42000, depending on frequency of data either monthly, weekly, daily or hourly (Ahmed, 2017; Babu \& Reddy, 2015; Byström, 2005; Ferenstein and Gasowski, 2004; Gaglianone \& Marins, 2017; García-Ferrer et al., 2012; Girish, 2016; Harrison \& Paton, 2004; Koopman et al., 2007; Liu \& Shi, 2013; Loi \& Ng, 2018; Ord et al., 2009; Pham \& Yang, 2010; Sohn \& Lim, 2007; Walid et al., 2011). In the preliminary analysis, the daily basis price series is chosen due to it is the shortest frequency of available data. Noted that, in general, the capability to forecast in shorter time periods means faster response to fluctuation of the data. Since the data in this study is daily basis, the number of data from 500 to 5000 are usually considered in the related literatures (Babu \& Reddy, 2015; Ferenstein \& Gasowski, 2004; Gaglianone \& Marins, 2017; García-Ferrer et al., 2012; Harrison \& Paton, 2004; Koopman et al., 2007; Sohn \& Lim, 2007). Therefore, in the preliminary study, 5000 daily gold price series is considered to ensure all significant characteristics related to volatility of data are captured.

The daily world gold prices price data used in the study starts from $24^{\text {th }}$ November 1993 to $17^{\text {th }}$ December 2013 of 5-day-per-week frequencies. Values are quoted in US dollars per ounce and the data is obtained from a reliable source of www.kitco.com. However, there are some missing price values in the original series due to holiday and stock market closing day. The data is divided into two parts: (i) in-sample data of period from $24^{\text {th }}$ November 1993 to $20^{\text {th }}$ December 2011 with 4500 observations, and (ii) out-of-sample period from $21^{\text {st }}$ December 2011 to $17^{\text {th }}$ December 2013 with 500 observations. The in-sample data is used to estimate model, whereas the out-of-sample data is used in model forecasting, with the ratio of estimate to forecast $90: 10$. The ratio of $90: 10$ is used in this preliminary study since it is a typical ratio used by analyst (Chatfield, 2001).

4.2.1 Stage I: Gold Price Data Identification

In employing Box-Jenkins modelling, the model cannot be directly applied if the series is nonstationary. It is important to know whether the data contains any trend or seasonal components. By referring to Figure 3.5, the first step of identification is to check the occurrence of an upward or downward trend as well as seasonality in gold price
movement by plotting in-sample series as shown in Figure 4.1. From the figure, we can observe that the gold price series does not vary around a fixed level which indicates that the series is nonstationary in both mean and variance, exhibiting an overall upward and nonseasonal trend.

Figure 4.1 In-sample series of daily gold price

Based on the descriptive statistics of the series as given in Table 4.1, it can be seen that most of the data is around USD 560/oz with a standard deviation of USD 363/oz. The sample skewness and kurtosis for the original series are 1.5925 and 4.7121, respectively. In testing the skewness of the series, the hypothesis is $H_{0}: S\left(y_{t}\right)=0$ versus $H_{1}: S\left(y_{t}\right) \neq 0$. Since the t-test statistic of 43.6124 and its p-value close to zero, hence, the null hypothesis of zero skewness is rejected at the 5\% significance level. For excess kurtosis, the hypothesis is $H_{0}: K\left(y_{t}\right)-3=0$ versus $H_{1}: K\left(y_{t}\right)-3 \neq 0$. The t-test statistic of excess kurtosis for the in-sample series is 23.4439 with p-value close to zero, thus the null hypothesis is rejected. The values and test of hypotheses for skewness and kurtosis imply that the series is asymmetric, positively skewed and leptokurtic, as graphically shown by histogram in Figure 4.2. These characteristics imply that the normality assumption for the daily gold price is rejected at any level of significance by the Jarque-Bera test (JB-test), with test statistic of 2454.4068 , which is very large as compared to a chi-square distribution with 2 degrees of freedom.

Table 4.1 Descriptive statistics for in-sample series

Min	Max	Mean	Median	Std. dev.	Skewness	Kurtosis	JB-test	NoO
252.8	1895	558.7877	387.1250	363.4643	1.5925	4.7121	2454.4068	4500
								(0.0000)

[^1]

Figure 4.2 Histogram for in-sample series

4.2.1.1 Data Stationarity

The original gold price series depicts nonstationary behaviour, therefore the data needs to be handled first by stabilising the variance which will suggest the appropriate transformation series (Hyndman \& Athanasopoulos, 2014). The transformation series, if needed, will be checked on the stationarity in-mean. In this study, the Box-Cox transformation is used as the variance stabilising method. Meanwhile, the ACF and PACF as proposed by Box and Jenkins (1968) are used in analysing stationarity in-mean of the transformation series, which is supported by ADF-test results.

Based on the Box-Cox transformation analysis, the best estimated power value of $\lambda=-0.2147$ which is close to 0 , implies that the transformation of $y_{t}{ }^{*}=\ln y_{t}$, where $y_{t}{ }^{*}$ is the transformed data and y_{t} is the observed data, is appropriate to stabilise the variance in the data series. The log transformation is chosen as compared to the transformation with exact value of λ, since it is easier to back-transform to the original price data for the forecasting purpose. Note that the in-sample gold price series is positively skewed, and this agrees with well-established guidelines of transformation that a log transformation is recommended for positively skewed data (Olivier \& Norberg, 2010).

The plot of the log transformed series is shown in Figure 4.3. Based on descriptive statistics of the transformed data given in Table 4.2, it can clearly be seen that the series is less volatile up to 99.85%, suggesting that the log transformation indeed helps in stabilising the amplitude of the gold price. On the other hand, the log transformation not only stabilises the variance, but also improves the approximation of data normality. Figure 4.4 shows the histogram of the transformed data which is symmetrically
distributed as compared to the histogram of the original price data shown in Figure 4.2, which indicates that the log transformation did improve the normality of the data.

Table 4.2 Descriptive statistics for the transformed data series

Min	Max	Mean	Median	Std. dev.	Skewness	Kurtosis	JB-test	NoO
5.5326	7.5470	6.1652	5.9587	0.5315	0.8959	-0.4107	633.8854	4500

* Std. dev is abbreviated for standard deviation, the values in parenthesis denotes p-value and NoO is abbreviated for number of observation.

Figure 4.3 The transformed data of daily gold price for in-sample period

However, the p-value $=0.0000$ of the JB-test rejects normality in the log data. Even though the transformation method is able to stabilise effectively the variance in the data, Figure 4.3 graphically shows that the trend still exists in the \log series. This indicates that the transformed series is still not stationary, specifically in-mean. Therefore, the ACF and PACF of the log series are investigated as recommended by Box and Jenkins (1968) in handling the in-mean nonstationary case. The in-mean nonstationary behaviour is then statistically investigated using unit root test of ADF-test as proposed by Said and Dickey (1984).

Figure 4.4 Histogram for in-sample transformed series

The correlogram or sample ACF, r_{k} of the log series, as shown in Figure 4.5, suggested that the transformed data is nonstationary, specifically in-mean, due to the spikes which is slowly decaying to zero. The pattern of the ACF that shows spikes in the sample on one side indicates that the log series does not have seasonal behaviour (Box \& Jenkins, 1968; Hanke, Reitsch, \& Wichern, 2001), which confirms the nonseasonal trend as shown in Figure 4.1. The number of data used for this univariate in-sample series is $T=4500$ implies that the maximum lag for the ACF and PACF is $k_{\max }=10 \log (4500) \approx 36$, by applying Equation 3.40. The sample ACF with slowly decaying to zero up to $k_{\max } \approx 36$ suggested that this \log series needs differencing.

Autocorrelation	Partial Correlation

Figure 4.5 The ACF and PACF of the log series

To confirm statistically that the transformed data is nonstationary in-mean, the ADF-test is employed to the log series as given in Table 4.3. The ADF-test using EViews is based on the left-tailed t distribution as proposed by MacKinnon (1996). Based on the ADF-test with the maximum lag $k_{\max }=12\left((4500 / 100)^{\frac{1}{4}}\right) \approx 31$, the t-test statistics is -1.0016 , which is greater than the t-critical of -3.4108 at 5% significance level. Hence, the null hypothesis of a presence of unit root in the data series is not rejected. If we consider the analysis based on p-value, the p-value is 0.9422 that is greater than 0.05 ,
therefore we arrive at the same conclusion. The presence of unit root suggests that the data series is nonstationary. Hence, data differencing is needed for the transformed data (log data) to make the series stationary.

Table 4.3 Augmented Dickey-Fuller unit root test on transformed data

$t_{\text {test }}$	$-t_{0.05,37}$	\boldsymbol{p}-value	Number of lag
-1.0016	-3.4108	0.9422	31

Thus, the log gold price series need to be differenced, $y_{t}-y_{t-1}$ in order to remove the trend and obtain a stationary series. The ADF-test for first order difference of the log series is -13.9454 which is much smaller than the 5% significance level of test critical value, as given by Table 4.4. The p-value $=0.0000$ indicates that the ADF t-statistic is significant and there is no unit root in the data series, which suggests that the first differenced of log price series is stationary. The stationarity of the first differenced log price series is then supported by the sample ACF and PACF patterns for the series as shown in Figure 4.6, where the values are reduced drastically to zero. This is agreed with the previous studies that gold price has nonstationary characteristics (Dunis \& Nathani, 2007; Shafiee \& Topal, 2010; Smith, 2002). Consequently, the gold price series is stationary after one lagged difference from the daily log price series or simply it is stationary in the form of the daily log return price series.

Table 4.4 Augmented Dickey-Fuller unit root test on first differenced log data

$t_{\text {test }}$	$-t_{0.05,37}$	\boldsymbol{p}-value	Number of lag
-13.9454	-3.4108	0.0000	31

Figure 4.7 graphically illustrates the stationarity of the first order differenced \log gold price series since most of the data are located around the mean of zero, $\mu=0$. However, there are some spikes in the figure which represents volatility clustering specifically starting year 2001 (around data of 1700-day in Figure 4.7) due to relatively weak supply of gold, geopolitical tensions since the 11 September terrorist attacks, the emergence of new markets in developing economies, growing speculation about the large US current-account imbalances and the required correction through a significant depreciation of the dollar which have contributed to the upward trend and higher volatility (Alcidi, De Grauwe, Gros, \& Oh, 2010). As shown in the figure, there is clear evidence
of volatility clustering that is large or small asset price changes tend to be followed by other large or small price changes of either positive or negative sign. This implies that gold price return volatility changes over time.

Autocorrelation	Partial Correlation		AC	PAC	Q-stat	Prob
'	'	1	-0.007	-0.007	0.2247	0.635
''	,	,	0.006	-0.006	0.3854 0.4010	0.825 0.940
*	"	4	${ }_{0}^{0.046}$	-0.046	${ }^{\circ} \mathrm{O} .7870$	-0.944
"	,	5	-0.009 -0.037	-0.009 -0.038	10.179 16.498	-0.070
,	'	7	-0.017	-0.038	17.838	-0.011
,	"	8	0.005	0.003	17.958	0.022
,	'	10	-0.016	0.017	19.070	0.025
,	'	11	-0.042	-0.041	27.100	0.004
'	'	12	-0.032	-0.035	31.745	0.002
,	,	14	0.010	0.012	32.494	0.003
4	;	15	-0.028	-0.022	35.963	0.002
"	,	16	0.049	0.051	46.834	0.000
,	'	18	-0.08	-0.003	47.163	0.000
'	'	19	-0.007	-0.005	47.400	0.000
中	,	21	-0.029	-0.027	51.287	0.000
,	'	22	-0.004	-0.004	53.344	0.000
'	'	23	-0.022	-0.023	55.541	0.000
'	',	24	-0.046	-0.049	64.928	0.000
"	,	26	-0.029	-0.028	71.667	-0.000
,	,	27	-0.013	-0.010	72.435	-0.000
"'	''	28	-0.006	-0.001	72.5812	-0.000
',	,	30	-0.007	-0.011	74.954	-0.000
"'	"'	31	-0.006	-	75.108 75.147	-0.000
,	'	33	-0.031	-0.031	79.460	-0.000
,	',	34 35 3	0.009	0.006	79.829	0.000
\%		36	-0.011	-0.022	88.917	-0.000

Figure 4.6 ACF and PACF for first differenced \log series

Figure 4.7 The first order difference of daily log gold price series

The mean of stationary series as shown in Table 4.5 is 0.0003 . It is numerically supports that the average return is positive but very close to zero, however, the value is statistically significant at 5% significance level. The standard deviation for stationary series is 0.0106 which shows that the \log return series is less volatile up to 99.99% as compared to the original series. The distribution of stationary data is symmetric as the hypothesis of zero skewness is accepted since the t-test statistic is 1.1008 with p-value more than 5% significance level. The symmetric characteristic of the stationary series is supported graphically by Figure 4.8.

Table $4.5 \quad$ Descriptive statistics for stationary series

Min	Max	Mean	Median	Std. dev.	Skewness	Kurtosis	JB-test	NoO
-0.0797	0.0964	0.0003	0.0002	0.0106	0.0402	6.9142	8974.38	4499
		(0.0398)			(0.2710)	(0.0000)	(0.0000)	

* Std. dev is abbreviated for standard deviation, the values in parenthesis denotes p-value and NoO is abbreviated for number of observation.

On the other hand, the kurtosis for the log return has increased more than four times compared to the price data. The t-test of the excess kurtosis for the series is 94.6661 with p-value close to zero, imply that the log return series is leptokurtic with a higher peak and fatter tails as compared to the price data. The leptokurtic or heavy-tailed characteristic implies that the \log return of gold price puts more mass on the tails and contains more extreme values. The test of hypotheses for mean, skewness and kurtosis indicate that, in general, the stationary series or \log return series has more gains than losses, but the profit obtained is close to zero for most of the time (refer to Figure 4.7).

Figure $4.8 \quad$ Histogram for stationary series

4.2.1.2 Preliminary of Linearity Test

Box-Jenkins approach is one of the widely used forecasting methods for linear data. Therefore, it is wise to conduct linearity test for the gold price data, specifically to stationary data, before the Box-Jenkins model is applied. The preliminary linearity step is necessary in identifying whether the data series fits the linear model or not at the early stage. Therefore, in the proposed Box-Jenkins framework, this step is applied in the identification stage.

Figure 4.9 shows the plot of differenced log price series versus its lagged 1 series. It can be seen that the plot is nearly a straight line, implying that the Box-Jenkins's linear
model is appropriate for the data series. This is following the concept driven by Box and Jenkins (1968) for their models, that the deviation is linearly dependent on previous deviations. The deviation in this study is the stationary data itself, y_{t}^{*} since the mean of y_{t}^{*} is very close to 0 .

Figure 4.9 The plot of the first differenced log price and its previous deviations

4.2.1.3 Portmanteau Test

Since the linearity is proven for the stationary series of gold price, then the serial correlation of the series is checked either it is serially correlated data or not. It can be seen that most values of the sample ACF and PACF for the stationary series, as shown in Figure 4.6, are close to zero which indicates that the stationary series has tendency to be uncorrelated series. On the assumption that the stationary series completely random, therefore the standard error limits for sample ACF and PACF are the same, that is $\operatorname{se}\left[r_{k}\right]=\operatorname{se}\left[r_{k k}\right] \approx \frac{1}{\sqrt{4499}}=0.0149$. Referring to the figure, most of the values of sample ACF and PACF are within two standard error limits of 0.0298 , suggesting that the serial correlations in daily gold price returns are small, if any (Box et al., 2008; Box \& Jenkins, 1968; Tsay, 2013). Based on these results, it can be concluded that the Box-Jenkins model is not appropriate to analyse the stationary series of gold price. However, it is not wise to make the conclusion just based on graphical related results.

Therefore, in the screening part of the proposed procedure of BJ-G, a Portmanteau test of LBQ-test is applied to verify whether the stationary series has no serial correlations as well as to verify the justification of application of the Box-Jenkins model to the data series. In the Portmanteau test, the hypothesis null of $H_{0}: \rho_{1}=\rho_{2}=\ldots=\rho_{k}$ with $k=9$ is tested for the stationary data. The choice of $k=\ln 4499 \approx 9$ is based on Tsay (2013)
suggestion, since the in-sample log return price series is nonseasonal. For $k=9$, the LBQtest is 19.0700 with p-value 0.0246 . It is clearly that the LBQ-test rejects the null hypothesis of no serial correlations in the log return price series at 5\% significance level. Consequently, there exists serial correlations in the stationary series of the daily gold price series. Therefore, the serial correlations test leads to the justification of using Box-Jenkins models for the data series. The stationary data is now prepared well for the Box-Jenkins model identification part.

4.2.1.4 Box-Jenkins Model Identification

Based on the previous analysis, the daily gold price series has shown nonstationary and nonseasonal patterns. The series is stationary in-mean and variance after differencing of one lagged to the log price series which is agreed with the ADF unit root test and spikes patterns of the ACF and PACF for the differenced \log series. The preliminary linearity test supports the use of the linear model, while the Portmanteau test for the stationary series leads to the application of Box-Jenkins models in handling the serial correlation in the series. Therefore, these results then reflect to the $\operatorname{ARIMA}(p, 1, q)$ as the appropriate Box-Jenkins model in analysing the daily gold price data.

The Box-Jenkins modelling makes use of the sample ACF and PACF to specify a model that can capture the dynamic dependence of the data. Thus, the r_{k} and $r_{k k}$ for the stationary series as shown in Figure 4.7 is investigated to identify the order of the ARIMA model. Referring to the figure, most of the values of r_{k} and $r_{k k}$ are close to zero and it is hard to identify graphically the appropriate order for the ARIMA model. Due to parsimony approach as practiced in the Box-Jenkins modelling, the values of both parameters p and q are suggested for 0,1 , and 2 . These values of p and q are always appropriate for the stationary series in most application (Box \& Jenkins, 1968).

On the assumption that ρ_{k} to be zero for all lags since most of the values of r_{k} graphically are close to zero, that is $q=0$, then the estimated large lag standard error is $\operatorname{se}\left[r_{k}\right] \approx \frac{1}{\sqrt{4499}}=0.0149$. Referring to Figure 4.6, there are only seven lags that are greater than the two standard error limit of 0.0298 , therefore the model with $q=0$ can be accepted. Since the value of $r_{1}=-0.0070$ is less than the two standard error of
0.0298 , it can be concluded that ρ_{1} is zero. Therefore, it might be reasonable to investigate the model of $q=1$, that is to test the hypothesis of $H_{0}: \rho_{k}=0(k \geq 2)$ versus $H_{1}: \rho_{1} \neq 0$. Using Equation 3.32, the estimated large-lag standard error under this hypothesis is $\operatorname{se}\left[r_{k}\right] \approx \sqrt{\frac{1}{4499}\left[1+2(-0.0070)^{2}\right]}=0.0149$ where $k>1$. Based on the values of r_{k} in Figure 4.6, there are seven of the estimated autocorrelations for lags greater than 1 are greater than two standard error limit, therefore there is no reason to doubt the adequacy of the model that consists of $q=1$.

The same method of model adequacy is applied to other considered parameters p and q. The estimated standard errors of autocorrelations and partial autocorrelations for all considered models are the same that is 0.0149. It is observed that the number of lags of sample ACF and PACF with greater than two standard error limit (or 0.0298) for the ARIMA models of $(0,1,0),(0,1,1),(0,1,2),(1,1,0),(1,1,1),(1,1,2),(2,1,0),(2,1,1)$ and $(2,1,2)$ are not more than seven, indicates that all considered models are adequate.

Alternatively, instead of using autocorrelation method in identifying the ARIMA model, we recommend one to apply the EACF method as introduced by Tsay and Tiao (1984) in the proposed framework. As shown in Table 4.6, the EACF result suggests the order of $(0,1,0)$ since the triangle of " O " have its upper left vertex at the $(0,0)$ position with the standard error of $2 / \sqrt{4499}=0.0298$. Referring to Figure 4.6, the behaviour of sample ACF and PACF of the stationary series likely agreed with the $\operatorname{ARIMA}(0,1,0)$ as suggested by the EACF result, but all other considered models are also worth entertaining.

Table 4.6 The simplified EACF table for the differenced log series

MA Order: q													
p	0	1	2	3	4	5	6	7	8	9	10	11	12
0	O	O	O	X	O	X	O	O	O	O	X	X	O
1	X	O	O	X	O	O	O	O	O	O	O	X	O
2	X	X	O	O	O	O	O	O	O	O	O	O	O
3	X	X	X	O	O	X	O	O	O	O	O	O	O
4	X	X	X	X	O	O	O	O	O	O	O	O	O
5	X	X	X	X	X	O	O	O	O	O	O	O	O
6	X	X	X	X	X	O	O	O	O	O	O	O	O

4.2.2 Stage II: Parameter Estimation of the Box-Jenkins Model

In the estimation stage, as can be referred to Figure 3.10, all the possible ARIMA models are estimated using MLE and OLS methods. Table 4.7 shows the results from the estimation stage using EViews at 5\% significance levels with normalised AIC and SIC values for the nine possible ARIMA models. In general, the model with smaller AIC and SIC values are concluded to be the better estimation model.

Table 4.7 The results of estimation stage of the possible ARIMA models

Models	OLS		MLE	
	AIC	SIC	AIC	SIC
ARIMA(0,1,0)	-6.2646	-6.2632	-6.2642	-6.2613
ARIMA(0,1,1)*	-6.2642	-6.2614	-6.2638	-6.2595
ARIMA(0,1,2)*	-6.2638	-6.2595	-6.2634	-6.2577
ARIMA(1,1,0)*	-6.2640	-6.2612	-6.2638	-6.2595
ARIMA(1,1,1)	-6.2643	-6.2600	-6.2633	-6.2576
ARIMA(1,1,2)*	-6.2638	-6.2581	-6.2629	-6.2558
ARIMA(2,1,0)*	-6.2634	-6.2591	-6.2634	-6.2577
ARIMA(2,1,1)*	-6.2632	-6.2575	-6.2629	-6.2558
ARIMA(2,1,2)*	-6.2632	-6.2561	-6.2625	-6.2539

*The insignificant model
Based on the values of AIC and SIC for all significant models in Table 4.7, it can be concluded that the estimation using OLS is similar than MLE for ARIMA models, with very slight difference. Referring to the table, there are two possible models that are found to be significant at 5% significance level, ARIMA($0,1,0$) and ARIMA($1,1,1$). Since the AIC and SIC values for both models are equivalent, hence the models need to be chosen wisely. These results are in line with the models suggested by Box and Jenkins (1968) since there is similar characteristics in the sample ACF and the stationary series.

In the proposed procedure of BJ-G, the EACF approach introduced by Tsay and Tiao (1984) is recommended to be used to overcome the uncertainty of model chosen. The result of the EACF approach is supported by the smallest values of AIC and SIC using OLS estimation method as well as agreed with the model suggestion based on behaviour of autocorrelation functions by Box et al. (2008). Furthermore, according to the principle of parsimony that simple models are preferred to complex models when all things being equal, hence the model of $\operatorname{ARIMA}(0,1,0)$ is chosen as the best estimate model to model daily gold price.

Consequently, the estimation results of $\operatorname{ARIMA}(0,1,0)$ for stationary data of insample daily gold price data using OLS method is given by Table 4.8.

Table $4.8 \quad$ Estimation result for $\operatorname{ARIMA}(0,1,0)$ model

Variable	Coefficient	Standard error	$t_{\text {test }}$	\boldsymbol{p}-value
c	0.0003	0.0002	2.0565	0.0398

In Table 4.8, the constant c are statistically significant at 5% level, hence the model of ARIMA $(0,1,0)$ for the daily log return of the gold price data is given by Equation 4.1, where $a_{t} \sim \operatorname{NID}(0,0.0001)$ with $\hat{\sigma}_{a}^{2}=0.0001$ and $\nabla y_{t}{ }^{*}$ is the differenced \log price data at time t. As given by the equation, it implies that the series has no significant serial correlation.

$$
\nabla y_{t}^{*}=0.0003+a_{t}
$$

The significance of c in the estimated model implies that the expected daily \log return for gold market is about 0.03%, which is positive and remarkable. In fact, it is small, but has an important long term implication, supporting the common belief that the return of gold investment performs well in the long term, as can be explained as follows.

By using the n-period simple gross return as defined in Equation 4.2,

$$
1+R_{t}(n)=\prod_{j=1}^{n-1}\left(1+R_{t-j}\right)
$$

where R_{t} is simple return, therefore, the average annual simple gross return for daily log return gold price is

$$
r_{t}=\left[\prod_{t=1}^{4499}\left(1+y_{t}^{*}\right)\right]^{\frac{250}{4499}}-1=0.0692
$$

where $r_{t}=\ln \left(1+R_{t}\right)$ which is called the \log return and y_{t}^{*} is the daily \log return (or stationary data). Hence, the average annual simple return is given by

$$
R_{t}=\exp \left(r_{t}\right)-1=\exp (0.0692)-1=0.0717
$$

This shows that the daily simple return of gold investment grew about 7.17% per annum from 1993 to 2011. The return value for the investment is given by the compound return for n-period as defined by Equation 4.3,

$$
\mathrm{FV}=\mathrm{PV}\left(R_{t}+1\right)^{n}
$$

where FV is the future value and PV is the present value. By substituting $\mathrm{PV}=1$, and $R_{t}=0.0717$ in Equation 4.3, therefore, a one-dollar investment in gold at the end of 1993 would be worth about $1(0.0717+1)^{18} \approx$ USD 3.48 at the end of 2011 .

4.2.3 Stage III: Diagnostic Checking of the Box-Jenkins Model

The chosen model, $\operatorname{ARIMA}(0,1,0)$ is then examined carefully in the diagnostic checking stage in detecting the adequacy of the model to the data series. In the diagnostic checking stage, referred to Figure 3.11, the residual series $\left\{\hat{a}_{t}\right\}$ of the model is investigated in terms of independence, homoscedasticity and normality for the closeness to the white noise criteria. The residuals plot for $\operatorname{ARIMA}(0,1,0)$ of the in-sample stationary series, shown as in Figure 4.10, illustrates randomness in the residuals with some spikes representing volatility clustering in certain periods as reflected by the differenced \log data.

Figure 4.10 Residuals plot for $\operatorname{ARIMA}(0,1,0)$

As in the serial correlation test, the result of DW-test is approximated to two $(2.0139 \approx 2)$ which shows that there is no first-order serial correlation in the residuals. The LBQ-test is then tested on the residuals to test the null hypothesis that there is no remaining serial correlation in the residuals for higher lags. From the test, as shown in

Figure 4.11, the p-value of the LBQ-test is not significant up to lag 5 shows that the mean equation of the $\operatorname{ARIMA}(0,1,0)$ to the data is correctly specified up to lag 5 , at 5% significance level. The ACF and PACF of the residuals are both relatively small and approximately equal to zero, support the independency in the residuals, as shown graphically in Figure 4.10.

In testing of heteroscedasticity in the residuals, the ARCH LM test, or simply called as ARCH test is applied to the residuals of the $\operatorname{ARIMA}(0,1,0)$ model. The number of lag 10 and lag 15 are used for the ARCH test (Engle, 2001; Hyndman \& Athanasopoulos, 2014). The ARCH test shows significant p-value which indicates the presence of ARCH in the residuals up to lag 15 as shown in Table 4.9.

It is also very clear that various spikes of ACF and PACF of squared residuals of ARIMA($0,1,0$), as shown in Figure 4.12, are beyond the two standard error limits of 0.0298 , showing that the residuals under consideration have ARCH effect. The LBQ-test which is tested on the squared residuals also agreed that there is the ARCH effect in the residuals. This means that the variance equation for the ARIMA model is not correctly specified due to the existence of volatility clustering in the data series. Furthermore, the PACF of the squared residuals of $\operatorname{ARIMA}(0,1,0)$ shows insignificant results up to lag 12, which indicate that at least 12 variables should be considered in ARCH model at 5\% significance level. Hence, by applying parsimonious method, it is suggested to use GARCH model as compared to ARCH in handling the existence of heteroscedasticity in the residuals.

Figure 4.11 LBQ-test on residuals for $\operatorname{ARIMA}(0,1,0)$

Table $4.9 \quad$ Heteroscedasticity test using ARCH test for ARIMA（ $0,1,1$ ）

$\chi_{\text {test }}$	\boldsymbol{p}－value	$\boldsymbol{k}_{\max }$
372.0444	0.0000	10
421.2442	0.0000	15

Autocorrelation	Partial Correlation		AC	PAC	Q－Stat	Prob
¢	曰	1	0.164	0.164	121.09	0.000
	p	2	0.123	0.098	188.85	0.000
	百	3	0.164	0.134	309.41	0.000
e	0	4	0.130	0.080	385.09	0.000
？	］	5	0.164	0.115	506.19	0.000
日	p	6	0.134	0.067	587.08	0.000
Q	¢	7	0.127	0.060	659.79	0.000
e	d	8	0.127	0.054	732.73	0.000
a	，	9	0.098	0.022	776.22	0.000
0	1	10	0.085	0.010	809.15	0.000
0	1	11	0.084	0.012	840.74	0.000
趿	里	12	0.154	0.094	948.24	0.000
a	－	13	0.112	0.035	1004.9	0.000
0	¢	14	0.092	0.021	1043.0	0.000
\square	1	15	0.110	0.037	1097.9	0.000
9	－	16	0.077	0.001	1124.6	0.000
P	p	17	0.150	0.083	1226.7	0.000
e	－	18	0.111	0.027	1282.0	0.000
0	－	19	0.092	0.015	1320.5	0.000
a	p	20	0.130	0.048	1397.3	0.000

Figure 4．12 Ljung－Box Q－test on squared residuals for $\operatorname{ARIMA}(0,1,0)$

On the other hand，the JB－test of normality as given by Table 4.10 strongly rejects the null hypothesis that the white noise innovation ε_{t} is a normal distribution．The rejection is supported by the existence of many outliers on the left and right tails of the normal QQ－plot as shown in Figure 4．13．Based on the descriptive statistics for the residuals of $\operatorname{ARIMA}(0,1,0)$ ，it can be seen that both mean and variance of the residuals are approximately zero，with value of 1.58×10^{-17} and 0.0001 ，respectively．

Table 4．10 Descriptive statistics for the residuals of $\operatorname{ARIMA}(0,1,0)$

Min	Max	Mean	Median	Std． dev．	Skewness	Kurtosis	JB－test	NoO
-0.0800	0.0961	1.58×10^{-17}	-0.0001	0.0106	0.0402	9.9186	8974.38	4199

[^2]

Figure 4.13 Normal QQ-plot for $\operatorname{ARIMA}(0,1,0)$

Based on the results of diagnostic checking, $\operatorname{ARIMA}(0,1,0)$ model is good in handling serial correlation test in the residuals, however it fails to satisfy other tests of white noise criteria. This is due to the presence of volatility clustering in the data series and non-Gaussian characteristics in the residuals of the series as shown in Figure 4.10 and Figure 4.13 , respectively. Therefore, in handling the existence of heteroscedasticity in the residuals, the stationary series is reanalysed using ARIMA-GARCH model. Then, the innovations of residuals of the proposed ARIMA-GARCH model will be tested including normal, t, skewed- t, GED and skewed-GED.

4.2.4 Modelling Gold Price using Box-Jenkins - GARCH

The previous analysis on the Box-Jenkins specifically ARIMA models determines that the ARCH effect occurred in the data series where conditional variance is not constant throughout the time, due to the presence of volatility in daily gold price data series. The considered ARIMA model did not handle the heteroscedasticity that exist in the data series. By referring to Figure 3.11, the standard GARCH models as the recommended volatility model is used to satisfy the non-constant behaviour in the residuals of the ARIMA models, by applying ARIMA-GARCH model to the gold price.

4.2.4.1 Stage I: Model Identification of ARIMA-GARCH

In the combination model of ARIMA-GARCH, the best model of the Box-Jenkins that is $\operatorname{ARIMA}(0,1,0)$ is used as the mean model while $\operatorname{GARCH}(r, s)$ is used as the variance model. In identifying the appropriate value of r and s for GARCH model, the ACF and PACF for the squared residuals of the considered ARIMA is used, where the ACF is used to specify the r value and the PACF is used to specify the s value. Based on Figure 4.12, the ACF and PACF for squared residuals for $\operatorname{ARIMA}(0,1,0)$ suggested the values for $r=1,2,3,4,5$ and $s=1,2,3,4$, respectively. Therefore, there are 20 possible model combinations between $\operatorname{ARIMA}(0,1,0)-\operatorname{GARCH}(r, s)$, as the details in Appendix 2.

4.2.4.2 Stage II: Parameter Estimation of ARIMA-GARCH

Even though OLS shows the best parameter estimate for the ARIMA models, but the method has disadvantages when volatility or ARCH effect is present in the series (Chand, Kamal, \& Ali, 2012). Therefore, the parameter of the ARIMA-GARCH model is estimated using the MLE since it is widely applied in the combination of Box-Jenkins - ARCH/GARCH model in various data series (Chand et al., 2012; Chen et al., 2011; Liu \& Shi, 2013; Tan et al., 2010; Zhou et al., 2006). The simultaneous estimation procedure of MLE for Box-Jenkins with ARCH/GARCH models is built-in, in statistical packages such as EViews and fGarch (in R language).

From the analysis conducted in the estimation stage, five of the 20 possible ARIMA-GARCH models show significant results at 5\% significance level. The significant models are $\operatorname{ARIMA}(0,1,0)-\operatorname{GARCH}(1,1), \operatorname{ARIMA}(0,1,0)-\operatorname{GARCH}(1,2)$, ARIMA(0,1,0)-GARCH(2,1), ARIMA(0,1,0)-GARCH(2,2) and ARIMA(0,1,1)$\operatorname{GARCH}(1,4)$. Table 4.11 shows the empirical results for the significant ARIMAGARCH models with normal errors assumption on the stationary data of daily gold price using MLE method at 5\% significance level. It can be observed that all the significant ARIMA-GARCH models have insignificant constant in the mean equation.

The empirical results of the significant ARIMA-GARCH models indicate that the values of normalised AIC, normalised SIC and the log-likelihood are marginally decreased when the value of r and s is greater than one (i.e. $r, s>1$). Based on Table 4.11, the models of $\operatorname{ARIMA}(0,1,0)-\operatorname{GARCH}(4,4)$ produced the smallest values for AIC and

SIC, respectively. However, since the criterion values are marginally decreased with $\operatorname{ARIMA}(0,1,0)-\operatorname{GARCH}(1,1)$, therefore $\operatorname{ARIMA}(0,1,0)-\operatorname{GARCH}(1,1)$ model is chosen for the next stage due to the principle of parsimony that is well practised in the Box Jenkins modelling.

Table 4.11 Estimation results of the significant ARIMA-GARCH models

Par	ARIMA(0,1,0) -GARCH(1,1)	$\begin{aligned} & \hline \text { ARIMA(} \mathbf{0 , 1 , 0}) \\ & -\operatorname{GARCH}(\mathbf{1 , 2}) \end{aligned}$	ARIMA(0,1,0) - $\operatorname{GARCH}(2,1)$	$\begin{aligned} & \hline \text { ARIMA }(0,1,0) \\ & -\operatorname{GARCH}(2,2) \end{aligned}$	ARIMA(0,1,0) -GARCH $(4,4)$
c	$\begin{array}{r} 4.29 \times 10^{-5} \\ (0.7000) \end{array}$	$\begin{array}{r} 5.79 \times 10^{-5} \\ (0.6030) \end{array}$	$\begin{array}{r} 7.61 \times 10^{-5} \\ (0.4907) \end{array}$	$\begin{array}{r} 5.73 \times 10^{-5} \\ (0.6068) \end{array}$	$\begin{array}{r} 3.21 \times 10^{-5} \\ (0.7694) \end{array}$
α_{0}	$\begin{array}{r} 1.27 \times 10^{-7} \\ (0.0000) \end{array}$	$\begin{array}{r} 1.75 \times 10^{-7} \\ (0.0001) \end{array}$	$\frac{9.20 \times 10^{-8}}{(0.0001)}$	$\begin{array}{r} 1.16 \times 10^{-8} \\ (0.0198) \end{array}$	$\begin{array}{r} 3.86 \times 10^{-8} \\ (0.0235) \end{array}$
α_{1}	$\begin{array}{r} 0.0428 \\ (0.0000) \end{array}$	$\begin{array}{r} 0.0620 \\ (0.0000) \end{array}$	$\begin{array}{r} 0.1128 \\ (0.0000) \end{array}$	$\begin{array}{r} 0.0970 \\ (0.0000) \end{array}$	$\begin{array}{r} 0.0943 \\ (0.0000) \end{array}$
α_{2}			$\begin{array}{r} -0.0775 \\ (0.0000) \end{array}$	$\begin{array}{r} -0.0916 \\ (0.0000) \end{array}$	$\begin{array}{r} 0.0901 \\ (0.0000) \end{array}$
α_{3}	-	-	-	-	$\begin{aligned} & -0.0884 \\ & (0.0000) \end{aligned}$
α_{4}	-	-	-	-	$\begin{array}{r} -0.0776 \\ (0.0000) \end{array}$
β_{1}	$\begin{array}{r} 0.9594 \\ (0.0000) \end{array}$	$\begin{array}{r} 0.4564 \\ (0.0001) \end{array}$	$\begin{array}{r} 0.9663 \\ (0.0000) \end{array}$	$\begin{array}{r} 1.7484 \\ (0.0000) \end{array}$	$\begin{aligned} & -0.0811 \\ & (0.0213) \end{aligned}$
β_{2}	-	$\begin{array}{r} 0.4846 \\ (0.0000) \end{array}$		$\begin{array}{r} -0.7536 \\ (0.0000) \end{array}$	$\begin{array}{r} 1.5295 \\ (0.0000) \end{array}$
β_{3}	-	-	-		$\begin{array}{r} 0.2768 \\ (0.0000) \end{array}$
β_{4}	-	-			$\begin{array}{r} -0.7428 \\ (0.0000) \\ \hline \end{array}$
AIC	-6.5894	-6.5917	-6.5958	-6.6007	-6.6118
SIC	-6.5837	-6.5846	-6.5887	-6.5922	-6.5976
Log-1	14826.8700	14833.8100	14842.24	14854.3000	14883.3300

* values in parenthesis denotes p-value, Par is abbreaviated for parameter and Log-1 is for log-likelihood.

4.2.4.3 Stage III: Diagnostic Checking of ARIMA-GARCH

Figure 4.14 shows the standardised residuals plot for $\operatorname{ARIMA}(0,1,0)$ $\operatorname{GARCH}(1,1)$ of the in-sample stationary series. Except for several possible outliers due to volatility clustering in the data series, the standardised residuals look random and reasonable. While the corresponding diagnostic test results for the Box-Jenkins GARCH model is given by Table 4.12. In the diagnostic checking tests, the DW-test value of approximately two, shows that there is no first-order serial correlation in the residuals for the considered BJ-G model. Even though the LBQ-test on the standardised residuals shows the existence of serial correlation (and the autocorrelation decreases in the higher lag), this is most probably due to small autocorrelations that should not be of practical
importance (Ruppert \& Matteson, 2015). This situation is not surprising since the sample size used is 4499 , which might lead to small autocorrelation due to its large sample size (Ruppert \& Matteson, 2015).

Figure 4.14 Standardised residuals plot for ARIMA(0,1,0)-GARCH(1,1)

Table 4.12 Diagnostic tests on ARIMA(0,1,0)-GARCH(1,1) model

Diagnostic Test	Value	\boldsymbol{p}-value
DW-test	2.0125	-
LBQ (10)	9.0971	0.5230
LBQ (15)	17.3830	0.2970
LBQ $^{2}(10)$	16.8210	0.0780
LBQ $^{2}(15)$	16.6610	0.2360
ARCH $^{(110)}$	17.8694	0.0822
ARCH(15)	19.7402	0.2696
JB-test	9221.6300	0.0000

*LBQ(10) represents the LBQ-test on residuals at lag $10, \operatorname{LBQ}^{2}(10)$ represents the LBQ-test on squared residuals at lag 10 and $\operatorname{ARCH}(10)$ represents the ARCH LM-test at lag 10.

To validate the linearity assumption in the mean equation of the model, the Terasvirta test is applied. For the stationary data, the test statistic is $f_{\text {test }}=4.3915$ with p - value $=0.0124$ which indicates that the null hypothesis of the test is rejected at 5% level of significance. Therefore, the result of the test supports the behaviour of random walk in mean model which implies that ARIMA $(0,1,0)$ is correctly specified for the mean model. Otherwise, the p-value is insignificant for LBQ-test on the squared standardised residuals which interprets that there is no ARCH in the residuals up to both lag 10 and 15 , as supported by the result of LM ARCH. Therefore, the model checking statistics on serial correlations, linearity and heteroscedasticity suggest that the mean and variance equation of the combination model of BJ-G is adequate and correctly specified.

On the other hand, the JB-test of the ARIMA-GARCH model strongly rejects the null hypothesis that the innovations, ε_{t} is Gaussian. The rejection is supported graphically by the existence of more outliers in the tails of the normal QQ-plot on the ARIMA $(0,1,0)-\operatorname{GARCH}(1,1)$ as shown in Figure 4.15. The outliers may be a signal that the conditional variance is not constant which exist when the variance is large.

Figure 4.15 The normal QQ-plot of standardised residuals of ARIMA($0,1,0$)$\operatorname{GARCH}(1,1)$

In investigating the characteristics of the innovations of the BJ-G model, the tests on skewness and kurtosis of the model residuals are conducted. Based on Table 4.13, the sample skewness and sample kurtosis of the standardised residuals are 0.4664 and 9.9514, respectively. By considering the hypothesis $H_{0}: S_{R}=0$ versus $H_{0}: S_{R} \neq 0$, where S_{R} denotes the skewness of the standardised residuals, the test statistic is 12.7715 with p value zero. The distribution of stationary data looks symmetric as shown in Figure 4.16, however, the hypothesis of zero skewness is rejected at 5% significance level. As for the kurtosis, the hypothesis is $H_{0}: K_{R}-3=0$ versus $H_{0}: K_{R}-3 \neq 0$, where K_{R} denotes the kurtosis of the standardised residuals, the test statistic is 95.1754 with p-value zero. Therefore, the null hypothesis of zero kurtosis is rejected which indicates that the standardised residuals series is leptokurtic with a higher peak and fatter tails as can be seen in Figure 4.16.

Table 4.13 Descriptive statistics of standardised residuals of ARIMA($0,1,0$)$\operatorname{GARCH}(1,1)$

Min	Max	Mean	Median	Std. dev.	Skewness	Kurtosis	NoO
-5.7572	10.8021	0.0353	0.0224	1.0000	0.4664	9.9514	4499
		(0.0297)			(0.0000)	(0.0000)	

*Std. dev is abbreviated for standard deviation, the values in parenthesis denotes p-value and NoO is abbreviated for number of observation.

Figure 4.16 Histogram for standardised residuals of $\operatorname{ARIMA}(0,1,0)-\operatorname{GARCH}(1,1)$

The characteristics of non-normal, heavy-tailed and skewed in the standardised residuals derive the use of t, skewed- t, GED and SGED distributions to be employed to the innovations for $\operatorname{ARIMA}(0,1,0)-\operatorname{GARCH}(1,1)$ model. Table 4.14 presents the joint parameter estimation and diagnostic checking for the $\operatorname{ARIMA}(0,1,0)-\operatorname{GARCH}(1,1)$ with four types of innovations. It is noted that, all models are highly significant and provide a good fit to the data since model checking statistics fail to indicate inadequacy of the model. The results given in the table reveals that ARIMA($0,1,0)-\mathrm{GARCH}(1,1)$ model with t innovations is preferred based on the smallest values of normalised AIC and SIC, as well as in line with the principle of parsimony.

The QQ-plot shown in Figure 4.17 supports the decision of preference of t innovations for the $\operatorname{ARIMA}(0,1,0)-\operatorname{GARCH}(1,1)$ model to the stationary series of gold price data. The good fit of the QQ-plot in Figure 4.17(a) that nearly a straight line except for four outliers on the left and right tails, support graphically the use of t innovations. The percentage of the outliers is a small fraction of the data, just about 0.09% compared to the in-sample size. It is clear that the heavy-tailed characteristic in the stationary series gives significant impact to the chosen innovations since t-related QQ-plot relatively fit better than GED-related QQ-plot. On the other hand, the skewness characteristic shows no impact since the non-skewed-related models have comparatively smaller AIC and SIC than skewed-related models. It is also hard to detect graphically any significant difference in the QQ-plot between skewed and non-skewed models.

Table 4.14 Parameter estimation and diagnostic testing on ARIMA($0,1,0$)$\operatorname{GARCH}(1,1)$ model for t, skewed- t, GED and SGED innovations

Stages	Innovations			
	t	Skewed-t	GED	SGED
Parameter Estimation				
c	$7.58 \times 10^{-5}(0.4227)$	$3.90 \times 10^{-5}(0.6996)$	$5.65 \times 10^{-5}(0.6083)$	$6.10 \times 10^{-5}(0.5621)$
α_{0}	$1.92 \times 10^{-7}(0.0000)$	$1.88 \times 10^{-7}(0.0183)$	$2.04 \times 10^{-7}(0.0000)$	$2.04 \times 10^{-7}(0.0000)$
α_{1}	$0.0663(0.0000)$	$0.0663(0.0000)$	$0.0606(0.0000)$	$0.0607(0.0000)$
β_{1}	$0.9386(0.0000)$	$0.9387(0.0000)$	0.9420(0.0000)	0.9419(0.0000)
v	$4.6977(0.0000)$	4.6760 (0.0000)	1.1400 (0.0000)	$1.1400(0.0000)$
ξ		0.9840 (0.0000)	-	$1.0020(0.0000)$
AIC	-6.7078	-6.7073	-6.7023	-6.7019
SIC	-6.7006	-6.6987	-6.6952	-6.6934
Log-1	15094.1500	15094.0600	15081.9100	15081.9300
Diagnostic Checking				
DW-test	2.0128	1.9396	1.9408	1.9410
LBQ (10)	10.0070(0.4400)	10.1482(0.4276)	10.0333(0.4376)	10.0392(0.4371)
LBQ (15)	$18.2380(0.2500)$	18.5904(0.2329)	$18.5428(0.2352)$	18.5399(0.2353)
$\operatorname{LBQ}^{2}(10)$	$6.0308(0.8130)$	$6.1130(0.8057)$	$6.8677(0.7379)$	$6.8565(0.7389)$
$\mathrm{LBQ}^{2}(15)$	$8.4942(0.9020)$	8.5863(0.8981)	$9.2438(0.8644)$	$9.2325(0.8650)$
ARCH(10)	$6.1155(0.8055)$	$6.1148(0.8055)$	6.8692(0.7377)	$6.8289(0.7415)$
ARCH(15)	$8.3064(0.9109)$	8.3080(0.9108)	8.9089(0.8822)	$8.8739(0.8840)$

* values in parenthesis denotes p-value, Log-l is abbreaviated for log-likelihood, LBQ(10) represents the LBQ-test on residuals at lag $10, \mathrm{LB}^{2}(10)$ represents the LBQ-test on squared residuals at lag 10 and $\mathrm{ARCH}(10)$ represents the ARCH LM-test at lag 10.

Figure 4.17 The QQ-plot of standardized residuals of ARIMA(0,1,0)-GARCH(1,1) model for innovations of t, skewed- t, GED and SGED, respectively

4.2.4.4 Stage IV: Forecasting of ARIMA-GARCH

Consequently, the model of $\operatorname{ARIMA}(0,1,0)-\operatorname{GARCH}(1,1)$ with t innovations is used in the forecasting stage. The $\operatorname{ARIMA}(0,1,0)-\operatorname{GARCH}(1,1)$ model with t innovations for the stationary series for gold price data is given by Equation 4.4,

$$
\begin{align*}
& \Delta y_{t}^{*}=7.58 \times 10^{-5}+a_{t}, \quad a_{t}=\sigma_{t} \varepsilon_{t} \\
& \sigma_{t}^{2}=1.92 \times 10^{-7}+0.06 a_{t-1}^{2}+0.93 \sigma_{t-1}^{2} \text { and } \varepsilon_{t} \sim t_{4.70}^{*}
\end{align*}
$$

where y_{t}^{*} is the \log price data at time t and $\nabla y_{t}^{*}=y_{t}^{*}-y_{t-1}{ }^{*}$ is the differenced \log price data at time t. The BJ-G model is then applied to the series of out-of-sample data that consists of 500 observations in evaluating the forecasting performance of the model. Since the stationary series or the daily log return price series is in log differenced form, the out-of-sample data must be transformed as well in applying the BJ-G model to obtain the forecast data of one-step ahead and the prediction error.

Referring to Figure 3.12, Equation 4.4 is then modified to be an appropriate model to apply to the original scale in evaluating the performance of the BJ-G model in forecasting gold price. By retransforming the log and rearranging Equation 4.4, the model for daily gold price is given by Equation 4.5, where y_{t} is the daily gold price and $s_{t}=\Delta y_{t}^{*}$ is the stationary data for the daily gold prices.

$$
\begin{align*}
& y_{t}=y_{t-1} \exp \left(s_{t}\right), \quad s_{t}=7.58 \times 10^{-5}+a_{t}, \quad a_{t}=\sigma_{t} \varepsilon_{t} \\
& \sigma_{t}^{2}=1.92 \times 10^{-7}+0.06 a_{t-1}^{2}+0.93 \sigma_{t-1}^{2} \text { and } \varepsilon_{t} \sim t_{4.70}^{*}
\end{align*}
$$

The forecast evaluations for one-step ahead using the proposed model for stationary series and price series are generated. Table 4.15 shows the joint results of RMSE, MAE and MAPE for 500 stationary forecast data (daily log return price data) and the forecast price data (daily price) using the ARIMA($0,1,0$)-GARCH(1,1) model with t innovations. There is no result of MAPE for the stationary series since there is zero value of the transformed series due to no changes of the price for two consecutive days.

Table 4.15 Forecast evaluations of ARIMA($0,1,0)-\operatorname{GARCH}(1,1)$ with t innovations

Data series	Forecast Evaluations		
	RMSE	MAE	MAPE
Log Return Price Series	0.0124	0.0084	-
Price Series	12.6855	18.3716	0.8402%

The one-step ahead forecast using ARIMA(0,1,0)-GARCH(1,1) model with t innovations for daily gold prices from $21^{\text {st }}$ December 2012 to $17^{\text {th }}$ December 2013 is shown in Figure 4.18. In the plot, the dashed line (red colour) presents the forecasted prices with ± 2 standard errors whereas the solid line (blue colour) shows the actual gold prices. It is observed that the forecast gold prices fluctuate between USD 1200 and USD 1800 per ounce in the 500-day out-sample period. Graphically, the BJ-G model shows promising performance in forecasting daily gold price series which is the trend of forecast prices that follows closely the actual data for the 500 days out-of-sample period. The comparison between actual daily gold price and its one-step ahead forecast price using the proposed BJ-G model for the last ten days out-of-sample simulation period is given by Table 4.16. In the study, the last ten-day simulation data is sufficient enough to demonstrate the trend of one-day lag (where the second column (forecast) prices can be obtained from the first column (actual) prices by shifting the first column one row downward) in the forecasting part.

Figure 4.18 Graph of the actual and forecast data using ARIMA($0,1,0)-\operatorname{GARCH}(1,1)$ model with t innovations for out-of-sample period

Table 4.16 The actual and forecast prices using ARIMA($0,1,0$) -GARCH(1,1)

Date	Actual price (USD/Oz)	Forecast price (USD/Oz)	Difference (USD/Oz)
4 Dec 2013	1227.50	1218.18	9.33
5 Dec 2013	1222.50	1228.43	-5.93
6 Dec 2013	1233.00	1223.43	9.57
9 Dec 2013	1237.00	1233.94	3.06
10 Dec 2013	1266.25	1237.94	28.31
11 Dec 2013	1260.75	1267.21	-6.46
12 Dec 2013	1225.25	1261.71	-36.46
13 Dec 2013	1232.00	1226.18	5.82
16 De 2013	1234.75	1232.94	1.81
17 Dec 2013	1231.75	1235.69	-3.94

4.2.5 Comparison of the Box-Jenkins, GARCH and the Box-Jenkins - GARCH Model Performance in Forecasting Gold Price

The Box-Jenkins models specifically ARIMA is widely used in research practice for gold price in comparison or forecasting model (Alcidi et al., 2010; Khan, 2013; Miswan, Ping, \& Ahmad, 2013). While, Ping et al. (2013) applied GARCH model to forecast Malaysian gold. GARCH as one of widely used models for asset volatility. Volatility is defined as the conditional standard deviation of asset returns (Tsay, 2013). In general, a series of the asset returns is a stationary series in the form of \log return. Therefore, in this case study, the performance of the appropriate Box-Jenkins model, GARCH model and the proposed BJ-G model is discussed further. However, the series of gold price in this case study is not a stationary series, therefore the GARCH model is not appropriate to be used to forecast the data and the model would not be considered in the model comparison.

Table 4.17 presents the estimation results for the considered Box-Jenkins model ARIMA($0,1,0$) and the BJ-G model (specifically ARIMA($0,1,0$)-GARCH(1,1) with t innovations) for the daily gold price series. It is found that both the normalised AIC and SIC values as well as the log-likelihood value from the BJ-G model are smaller than that of ARIMA model, hence it shows that ARIMA($0,1,0$)-GARCH(1,1) model with t innovations is a better model as compared to $\operatorname{ARIMA}(0,1,0)$ for estimating daily gold prices. Note that, the single ARIMA model fails to handle the heteroscedasticity that exist in the data series as discussed in section 4.2.3, as well as violating the assumption on the constant variance in the errors. Therefore, it can solely be concluded that ARIMA($0,1,0$)$\operatorname{GARCH}(1,1)$ with t innovations is appropriate and preferred in forecasting gold price since it reflects its pattern without violating the errors assumptions of the ARIMA model.

Table 4.17 Estimation evaluations for ARIMA and ARIMA-GARCH

Parameter	ARIMA(0,1,0)	ARIMA(0,1,0)-GARCH(1,1)
c	$0.0003(0.0398)$	$7.58 \times 10^{-5}(0.4227)$
α_{0}	-	$1.92 \times 10^{-7}(0.0000)$
α_{1}	-	$0.0663(0.0000)$
β_{1}	-	$0.9386(0.0000)$
v	-	$4.6977(0.0000)$
AIC	-6.2646	-6.7078
SIC	-6.2632	-6.7006
Log-likelihood	14093.2400	15094.1500

* values in parenthesis denotes p-value.

By applying ARIMA($0,1,0)-\operatorname{GARCH}(1,1)$ to the data series, it can be seen that the ARCH and GARCH coefficients in the variance model are statistically significant and the sum of both coefficients is very close to one. This indicates that volatility shocks are quite persistent where this result is often observed in high frequency financial data such as intra-day, daily or weekly data. Based on Table 4.17, The large value of $\beta_{1}=0.9386$ is attributed to a long-term persistence of volatility clustering. Therefore, by applying the BJ-G model to the data series, it can be seen that the combination model is able to explain better about the characteristics of the gold price.

The empirical results using 5000-daily data series indicate that the combination model of Box-Jenkins and GARCH (or BJ-G) is proven as a potential model to analyse and forecast a highly volatile time series data, specifically gold price data. The results of this preliminary study have been published in Yaziz, Azizan, Ahmad, Zakaria, Agrawal and Boland (2015), Yaziz et al., (2014), Yaziz, Azizan, Zakaria and Ahmad (2013). This is in line with other reports that use the BJ-G model for highly volatile data series such as electricity price (Liu \& Shi, 2013; Tan et al., 2010), internet traffic (Zhou et al., 2006), traffic flow (C. Chen et al., 2011), stock market (Freedi et al., 2012) and gold price (Ahmad, Ping, Yaziz, \& Miswan, 2014; Ahmad et al., 2015).

4.3 The Empirical Results of Gold Price on the Second Proposed Procedure of BJ-G

Given the positive results of the forecasting one-step ahead for the data series using BJ-G model in the preliminary study, the performance of the second proposed procedure of BJ-G as illustrated in Figure 3.14 is then evaluated using the gold price series. The data series of daily world gold price, as applied in section 4.2 , is used as the pool of data set in this empirical study. Based on the previous studies, the number of data from 500 to 5000 are usually considered for BJ-G model for daily basis (Babu \& Reddy, 2015; Ferenstein and Gasowski, 2004; Gaglianone \& Marins, 2017; García-Ferrer et al., 2012; Harrison \& Paton, 2004; Koopman et al., 2007; Sohn \& Lim, 2007). Note that, 5000 data as considered in the preliminary study is the maximum number of data for daily basis in previous literatures to ensure all significant characteristics related to volatility of data can be captured.

The 5000 data series is then divided into six different data series ranges from 500 to 5000 and each data series is tested using the second proposed procedure of BJ-G as shown in Figure 3.14. Basically, the number of data for each sample is approximately half from the previous duration, with a ratio of estimate to forecast at 90:10. The ratio of estimate to forecast used is the same as in Section 4.2 to maintain the continuity of the study. The details of the classification of sample data series are summarised in Table 4.18.

Table 4.18 Classification of sample data series

Sample	Duration	$\begin{gathered} \text { Number of } \\ \text { Data } \end{gathered}$	In-Sample	Out-of-Sample
1	$\begin{gathered} \hline 24 / 11 / 93-17 / 12 / 13 \\ (20 \text {-year }) \end{gathered}$	5000	$\begin{aligned} & \hline 24 / 11 / 93-20 / 12 / 11 \\ & \text { (4500 data) } \end{aligned}$	$\begin{gathered} 21 / 12 / 11-17 / 12 / 13 \\ \text { (500 data) } \end{gathered}$
2	$\begin{gathered} 5 / 12 / 03-17 / 12 / 13 \\ (10 \text {-year }) \end{gathered}$	2500	$\begin{gathered} 5 / 12 / 03-18 / 12 / 12 \\ \text { (2250 data) } \end{gathered}$	$\begin{aligned} & \text { 19/12/12-17/12/13 } \\ & \text { (250 data) } \end{aligned}$
3	$\begin{gathered} \text { 22/12/08-17/12/13 } \\ (5 \text {-year) } \end{gathered}$	1250	$\begin{gathered} 22 / 12 / 08-24 / 6 / 13 \\ \text { (1125 data) } \end{gathered}$	$\begin{gathered} 25 / 6 / 13-17 / 12 / 13 \\ \text { (125 data) } \end{gathered}$
4	$\begin{gathered} \text { 21/12/09-17/12/13 } \\ \text { (4-year) } \end{gathered}$	1000	$\begin{aligned} & \text { 21/12/09-29/7/13 } \\ & \text { (900 data) } \end{aligned}$	$\begin{gathered} \text { 30/7/13-17/12/13 } \\ \text { (100 data) } \end{gathered}$
5	$\underset{(3 \text {-year })}{20 / 12 / 10-17 / 12 / 13}$	750	$\begin{gathered} 20 / 12 / 10-3 / 9 / 13 \\ (675 \text { data }) \end{gathered}$	$\begin{gathered} \text { 4/9/13-17/12/13 } \\ \text { (75 data) } \end{gathered}$
6	$\begin{gathered} 21 / 12 / 11-17 / 12 / 13 \\ (2 \text {-year }) \end{gathered}$	500	$\begin{gathered} 21 / 12 / 11-8 / 10 / 13 \\ \text { (450 data) } \end{gathered}$	$\begin{aligned} & 9 / 10 / 13-17 / 12 / 13 \\ & \text { (50 data) } \end{aligned}$

Since a significant modification is done on Stage I of the second proposed procedure of BJ-G (refer to Figure 3.14) where it involves eight steps and will be disussed in detail in-sample data series. The first step is to plot in-sample series for each sample considered, as shown in Figure 4.19. The purpose of this step is to check the occurrence of any trends and seasonality behaviour in the gold price movement graphically. Based on Figure 4.19, it is observed that the gold price series is nonseasonal for all data series. The stationarity behaviour based on the time series plots of all samples can be classified into three groups as follows:
(i) The series for Sample 1 and 2 have the same characteristics, where it exhibits overall upward trend with inconsistent and large variation;
(ii) The series for Sample 3 to 5 have an unclear trend but exhibit inconsistent and large variation;
(iii) The series for Sample 6 has downward trend with consistent and small variation.

Figure 4.19 In-sample time series plot of original data for Sample 1 to 6

In the second step, the descriptive statistics of all samples is obtained as tabulated in Table 4.19, which support the the behaviour of each sample as described in the first step. The test of hypothesis for skewness imply that the series for all samples is asymmetric. The data series in Sample 1 and 2 are positively skewed, while Sample 3 to 6 are negatively skewed. The JB-test validates the asymmetric characteristics for all samples. Based on Table 4.19, it can be seen that all samples have excess kurtosis, specifically, Sample 1 is leptokurtic while Sample 2 to 6 are platykurtic. The reduction in the kurtosis value from Sample 1 to 6 implies that the peakedness in the data series is decreasing from Sample 1 to 6 . The graphical representation of distribution for each sample is shown by histogram in Figure 4.20.

Table 4.19 Descriptive statistics for in-sample original data of Sample 1 to 6

Sample	Number of Data	Mean	Standard deviation	Skewness	Kurtosis	JB - test	Distribution
1	4500	$\begin{aligned} & \hline 558.7877 \\ & (0.0000) \end{aligned}$	363.4643	$\begin{gathered} \hline 1.5925 \\ (0.0000) \end{gathered}$	$\begin{gathered} 1.7121 \\ (0.0000) \end{gathered}$	$\begin{gathered} 2454.4068 \\ (0.0000) \end{gathered}$	+vely skewed, leptokurtic
2	2250	$\begin{gathered} 938.1378 \\ (0.0000) \end{gathered}$	442.5005	$\begin{gathered} 5.0606 \\ (0.0000) \end{gathered}$	$\begin{gathered} -1.0278 \\ (0.0000) \end{gathered}$	$\begin{aligned} & 194.8672 \\ & (0.0000) \end{aligned}$	+vely skewed, platykurtic
3	1125	$\begin{gathered} 1375.5310 \\ (0.0000) \end{gathered}$	289.4461	$\begin{aligned} & -2.6388 \\ & (0.0003) \end{aligned}$	$\begin{gathered} -1.2612 \\ (0.0000) \end{gathered}$	$\begin{aligned} & 87.2810 \\ & (0.0000) \end{aligned}$	-vely skewed, platykurtic
4	900	$\begin{gathered} 1485.9270 \\ (0.0000) \end{gathered}$	211.4332	$\begin{gathered} -3.2810 \\ (0.0000) \end{gathered}$	$\begin{gathered} -1.1077 \\ (0.0000) \end{gathered}$	$\begin{aligned} & 61.8668 \\ & (0.0000) \end{aligned}$	-vely skewed, platykurtic
5	675	$\begin{gathered} 1580.1060 \\ (0.0000) \end{gathered}$	146.4332	$\begin{gathered} -4.4476 \\ (0.0000) \end{gathered}$	$\begin{aligned} & -6.8583 \\ & (0.0003) \end{aligned}$	$\begin{aligned} & 35.3177 \\ & (0.0000) \end{aligned}$	-vely skewed, platykurtic
6	450	$\begin{gathered} 1573.4772 \\ (0.0000) \\ \hline \end{gathered}$	150.3654	$\begin{gathered} -0.7256 \\ (0.0003) \\ \hline \end{gathered}$	$\begin{gathered} -0.7002 \\ (0.0024) \end{gathered}$	$\begin{array}{r} 48.6770 \\ (0.0000) \\ \hline \end{array}$	-vely skewed, platykurtic

[^3]Sample 1

Sample 4

Sample 2

Sample 5

Sample 3

Sample 6

Figure 4.20 Histogram for in-sample original series of Sample 1 to 6

The third step of Stage I in the second proposed procedure of BJ-G is checking the stationarity behavior for the samples. The Box-Cox transformation method is applied first to identify the nonstationary in-variance behaviour in the in-sample data series. The Box-Cox estimated value for the power of estimation, $\lambda_{B C}$ for each sample with its appropriate transformation is summarised in Table 4.20 . It can be seen that, 5 out of 6 samples depict nonstationary in-variance. Hence, the in-sample data series of the samples need to be transformed first in order to stabilise the variance. This indicates the importance of the Box-Cox transformation especially when the time series plot shows inconsistent and large variations, which supports the observation in the first step. Figure 4.21 graphically shows the transformed data series, y_{t}^{*} for Sample 1 to 6 . Note that the series for Sample 6 does not need to be transformed since its $\lambda_{B C}$ values is close to 1 .

Table 4.20 The transformed and stationary data for Sample 1 to 6

Sample	Box-Cox Transformation, $\lambda_{B C}$	Transformed Data, y_{t}^{*}
1	$\lambda_{B C}=-0.2147 \rightarrow 0$	$y_{t}^{*}=\ln y_{t}$
2	$\lambda_{B C}=-0.1101 \rightarrow 0$	$y_{t}^{*}=\ln y_{t}$
3	$\lambda_{B C}=0.0780 \rightarrow 0$	$y_{t}^{*}=\ln y_{t}$
4	$\lambda_{B C}=-0.4217 \rightarrow-0.5$	$y_{t}^{*}=\frac{1}{\sqrt{y_{t}}}$
5	$\lambda_{B C}=0.6421 \rightarrow 0.5$	$y_{t}^{*}=\sqrt{y_{t}}$
6	$\lambda_{B C}=0.9999 \rightarrow 1$	$y_{t}^{*}=y_{t}$

Sample 1

Sample 4

Sample 2

Sample 5

Sample 3

Sample 6

Figure 4.21 In-sample time series plot for transformed data of Sample 1 to 6

The in-sample transformed data of Sample 1 to 5 and in-sample data of Sample 6 are then tested for stationarity in-mean, using autocorrelation method (ACF and PACF) and unit root test (ADF-test). Table 4.21 summarises the behaviour of sample ACF and PACF up to lag $k_{\text {max }}$, where $k_{\max }=10 \log T$ and the ADF-test up to lag $k_{\text {max }}$ where $k_{\max }=12(T / 100)^{\frac{1}{4}}$ and T is the number of data for in-sample series.

Table 4.21 Checking the stationarity of the transformed series at level (if needed)

Sample	ACF and PACF		ADF-test		Stationarity Condition
	Behaviour	$k_{\text {max }}$	t-test	$k_{\text {max }}$	
1	ACF spikes too slowly decays to zero and on one-side, only r_{11} nonzero	36	$\begin{aligned} & \hline-1.0016 \\ & (0.9422) \\ & \hline \end{aligned}$	31	$\begin{gathered} \text { Not } \\ \text { stationary } \end{gathered}$
2	ACF spikes too slowly decays to zero and on one-side, only r_{11} nonzero	34	$\begin{aligned} & \hline-3.3392 \\ & (0.0603) \end{aligned}$	26	$\begin{gathered} \text { Not } \\ \text { stationary } \end{gathered}$
3	ACF spikes too slowly decays to zero and on one-side, only r_{11} nonzero	31	$\begin{gathered} \hline 0.1488 \\ (0.9977) \end{gathered}$	21	$\begin{gathered} \text { Not } \\ \text { stationary } \end{gathered}$
4	ACF spikes too slowly decays to zero and on one-side, only r_{11} nonzero	30	$\begin{aligned} & \hline-0.5591 \\ & (0.9806) \end{aligned}$	21	Not stationary
5	ACF spikes slowly decays to zero and on one-side, only r_{11} nonzero	29	$\begin{aligned} & \hline-2.0605 \\ & (0.5664) \end{aligned}$	20	$\begin{gathered} \text { Not } \\ \text { stationary } \end{gathered}$
6	ACF spikes slowly decays to zero and on one-side, only r_{11} nonzero	27	$\begin{aligned} & \hline-1.7495 \\ & (0.7274) \end{aligned}$	18	Not stationary

[^4]Based on the table, all the series are not stationary at level $(d=0)$, therefore all the considered series need to be differenced in order to remove the trend. The details of the sample ACF and PACF and the ADF-test for the samples considered can be referred to Appendix 3.

The behaviour of the sample ACF and PACF and the ADF-test at the first differenced transformed data are summarised in Table 4.22. The results in the table indicate that series for all samples are stationary after first differenced. It can also be concluded that the ADF-test is useful to confirm numerically the stationarity in a series, since the sample ACF and PACF is based on graphical representation.

Table 4.22 Checking the stationarity at the first differenced series

Sample	ACF and PACF		ADF-test		Stationarity condition
	Behaviour	$k_{\text {max }}$	t-test	$k_{\text {max }}$	
1	Only r_{1} nonzero, PACF spikes decays to zero exponentially and cuts off at lag 20	36	$\begin{gathered} \hline-13.9454 \\ (0.0000) \end{gathered}$	31	Stationary
2	ACF spikes dies down to zero from lag 1, PACF spikes is damped sine wave with most of spikes close to zero from lag 1	34	$\begin{gathered} -10.6504 \\ (0.0000) \end{gathered}$	26	Stationary
3	ACF spikes dies down to zero from lag 1, PACF spikes is damped sine wave with most of spikes close to zero from lag 1	31	$\begin{aligned} & \hline-6.8659 \\ & (0.0000) \end{aligned}$	21	Stationary
4	ACF spikes dies down to zero from lag 1, only PACF spikes at lag 21 is nonzero	30	$\begin{aligned} & \hline-6.4382 \\ & (0.0000) \end{aligned}$	21	Stationary
5	ACF and PACF spikes dies down to zero from lag 1	29	$\begin{aligned} & \hline-4.9654 \\ & (0.0002) \\ & \hline \end{aligned}$	20	Stationary
6	ACF spikes dies down to zero from lag 1 , only r_{22} and r_{88} are nonzero	27	$\begin{aligned} & \hline-5.2250 \\ & (0.0001) \end{aligned}$	18	Stationary

*Values in parenthesis denotes p-value.

Figure 4.22 graphically shows the time plot for the stationary series for Sample 1 to 6 where it can be seen that most of the stationary data in all samples are located around the mean of zero. As shown in the figure, there is clear evidence of volatility clustering changes over time in the stationary series which implies that the gold price is one of the volatile data. Since the series found to be volatile, hence it is wise to consider the GARCH model in handling volatility in the series. However, it can be observed that the volatility clustering in a time series decreases as the number of data decreases.

Figure 4.22 Time plot for stationary series of Sample 1 to 6

The descriptive statistics for stationary series, s_{t} of Sample 1 to 6 is given in
Table 4.23. The stationary series for all samples reject the normality assumption and show leptokurtic or heavy-tailed characteristics since the excess kurtosis of the stationary series is significant and positive. This implies that the stationary series of the gold price have more mass on the tails and contains more extreme values.

Based on Table 4.23, it is also observed that the mean of the stationary series for Sample 1 and 2 are significant at 5\% significance level while the mean for Sample 3 to 6 are insignificant. The positive value and significance of the mean for Sample 1 and 2, implies that the average return for 9 -year and above investment in gold market is positive, as summarised in Table 4.24. This supports the gold market return performs well in the long-term period. The annual simple return of the gold price for the Sample 1 and 2 are 7.17% and 16.14% per annum, respectively, shows that the 9 -year investment is the best minimum duration for the gold market.

The fourth and fifth steps are testing the linearity and serial correlation in the stationary series by applying the preliminary of linearity test and Portmanteau test, respectively. These two steps are necessary in satisfying the Box-Jenkins's conditions since the model performs for a linear and serially correlated series. Figure 4.23 shows the plot of the stationary series and its lagged series. Based on the figure, the plot for all samples are nearly straight line, which indicates that the series fits the linear model graphically. This implies that the Box-Jenkins model is appropriate for the data series.

Table 4.23 Descriptive statistics for in-sample stationary series of Sample 1 to 6

Sample	Stationary series, S_{t}	Mean	Std. dev.	Skewness	Kurtosis	JB - test	Distribution
1	$s_{t}=y_{t}^{*}-y_{t-1}^{*}$	$\begin{gathered} 0.0003 \\ (0.0398) \end{gathered}$	0.0105	$\begin{gathered} 0.0402 \\ (0.2710) \end{gathered}$	$\begin{gathered} \hline 6.9142 \\ (0.0000) \end{gathered}$	$\begin{gathered} \hline 8974.3798 \\ (0.0000) \end{gathered}$	Symmetric, Leptokurtic
2	$s_{t}=y_{t}^{*}-y_{t-1}^{*}$	$\begin{gathered} 0.0006 \\ (0.0174) \end{gathered}$	0.0127	$\begin{gathered} \hline-0.3374 \\ (0.0000) \end{gathered}$	$\begin{gathered} 3.5419 \\ (0.0000) \end{gathered}$	$\begin{gathered} 1222.1838 \\ (0.0000) \end{gathered}$	Negatively skewed, Leptokurtic
3	$s_{t}=y_{t}^{*}-y_{t-1}^{*}$	$\begin{gathered} \hline 0.0004 \\ (0.3112) \end{gathered}$	0.0122	$\begin{gathered} -0.5852 \\ (0.0000) \end{gathered}$	$\begin{gathered} 5.9934 \\ (0.0000) \end{gathered}$	$\begin{gathered} 1755.8600 \\ (0.0000) \end{gathered}$	Negatively skewed, Leptokurtic
4	$s_{t}=y_{t}^{*}-y_{t-1}^{*}$	$\begin{aligned} & -3 \times 10^{-6} \\ & (0.5708) \end{aligned}$	0.0002	$\begin{gathered} \hline 0.9506 \\ (0.0000) \end{gathered}$	6.7163 (0.0000)	$\begin{gathered} 1836.4894 \\ (0.0000) \end{gathered}$	Positively skewed, Leptokurtic
5	$s_{t}=y_{t}^{*}-y_{t-1}^{*}$	$\begin{gathered} 0.0004 \\ (0.9678) \end{gathered}$	0.2494	$\begin{aligned} & \hline-1.0058 \\ & (0.0000) \end{aligned}$	$\begin{gathered} 6.8980 \\ (0.0000) \end{gathered}$	$\begin{gathered} 1461.8425 \\ (0.0000) \end{gathered}$	Negatively skewed, Leptokurtic
6	$s_{t}=y_{t}-y_{t-1}$	$\begin{aligned} & \hline-0.6203 \\ & (0.4825) \end{aligned}$	$\begin{gathered} 18.698 \\ 1 \end{gathered}$	$\begin{aligned} & \hline-0.8445 \\ & (0.0000) \end{aligned}$	$\begin{gathered} \hline 8.3118 \\ (0.0000) \end{gathered}$	$\begin{gathered} 1361.9921 \\ (0.0000) \end{gathered}$	Negatively skewed, Leptokurtic

*Values in parenthesis denotes p-value and Std. Dev. is abbreviated of standard deviation.

Table 4.24 Annual simple return for Sample 1 and 2

Sample	Duration	R_{t}	Valuation at the end of duration for $\$ \mathbf{1}$ investment
1	18 years	7.17%	$\$ 3.48$
2	$(24 / 11 / 93-20 / 12 / 2011)$	16.14%	$\$ 3.84$
	9 years		

Since the linearity is depicted for all stationary series of gold price graphically, then the Portmanteau test of LBQ-test is applied to check whether the series is a serially correlated series statistically. Table 4.25 summarises the results of the Q-test for $k_{\max }$ equals to $\ln T, 10$ and 15 , where T is the number of data for in-sample series. The $k_{\max }$ of $\ln T, 10$ and 15 for the LBQ-test are based on the recommendation for nonseasonal series by Tsay (2013), Hyndman and Anthanasopoulus (2014) and Engle (2001), respectively. Based on the results, it is clear that series in Sample 1 to 3 reject the null hypothesis of no serial correlations in the stationary series for all $k_{\max }$ at 5% significance level, while other samples do not. However, it is found that series in Sample 6 rejects the null hypothesis for $k_{\max }=15$ at 5% significance level. Therefore, it can be concluded that the stationary series for Sample 1, 2, 3 and 6 are serially correlated, thus, the Box-Jenkins
model is appropriate to be applied to the series. While, Sample 4 and 5 are not considered in the next step since the stationary series for the samples are not serially correlated.

Sample 1

Sample 4

Sample 2

Sample 5

Sample 3

Sample 6

Figure 4.23 Plot of the stationary series and its lagged series

Table 4.25 Portmanteau test of LBQ-test for Sample 1 to 6

Data	T	LBQ-test for s_{t}			Is Serially Correlated at$\alpha=0.05 \text { ? }$
		$k_{\text {max }}=\ln T$	$k_{\text {max }}=10$	$k_{\text {max }}=15$	
1	4500	$\begin{array}{r} \hline 19.0700 \\ (0.0246) \\ \hline \end{array}$	$\begin{aligned} & \hline 19.2450 \\ & (0.0373) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 35.9630 \\ & (0.0018) \\ & \hline \end{aligned}$	Yes
2	2250	$\begin{array}{r} 15.9820 \\ (0.0426) \\ \hline \end{array}$	$\begin{aligned} & \hline 20.0290 \\ & (0.0290) \\ & \hline \end{aligned}$	$\begin{aligned} & 31.3260 \\ & (0.0079) \\ & \hline \end{aligned}$	Yes
3	1125	$\begin{array}{r} 12.2690 \\ (0.0921) \\ \hline \end{array}$	$\begin{aligned} & 18.1030 \\ & (0.0532) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 31.8360 \\ & (0.0068) \\ & \hline \end{aligned}$	Yes
4	900	$\begin{gathered} \hline 5.7932 \\ (0.5641) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.1145 \\ (0.6177) \end{gathered}$	$\begin{aligned} & 11.9120 \\ & (0.6857) \end{aligned}$	No
5	675	$\begin{gathered} \hline 5.6586 \\ (0.5801) \\ \hline \end{gathered}$	$\begin{gathered} 9.0999 \\ (0.5227) \\ \hline \end{gathered}$	$\begin{aligned} & 11.8980 \\ & (0.6867) \\ & \hline \end{aligned}$	No
6	450	$\begin{gathered} \hline 7.3670 \\ (0.2882) \end{gathered}$	$\begin{aligned} & \hline 22.5090 \\ & (0.0951) \end{aligned}$	$\begin{aligned} & 18.7180 \\ & (0.0440) \end{aligned}$	Yes for $k_{\text {max }}=15$

*Values in parenthesis denotes p-value.

The sixth step in Stage I of the proposed procedure is to identify the appropriate Box-Jenkins model for the in-sample series. As discussed in Section 4.2, the model suggested by the EACF method is proven to be the best Box-Jenkins model as compared to other possible models as suggested by the ACF and PACF method. Therefore, in this study, the model chosen by the EACF method will be used for the next step in detecting

ARCH effect in the stationary series. Figure 4.24 shows the EACF table and the corresponding suggested Box-Jenkins model for stationary series of samples 1, 2, 3 and 6. It can be seen that, all the stationary series suggest $\operatorname{ARIMA}(0,1,0)$. This means that all stationary series under consideration indicate random walk model. The suggested BoxJenkins model by the EACF method is observed to be the same as obtained by forecast package in R.

Sample 1

	AR/MA 0123456789101112 $\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 0 & 0 & x & 0 & 0 & 0 & 0\end{array} x$ $\begin{array}{llllllllllll}1 & x & 0 & 0 & 0 & 0 & x & 0 & 0 & 0 & 0 & 0 \\ 2 & x & x & 0 & 0 & 0 & x & 0 & 0 & 0 & 0 & 0\end{array}$ $3 \times x \times 00 \times 00000000$ $6 \times \mathrm{x} \times \mathrm{ox} \mathrm{x} 0000000 \mathrm{o}$
ARIMA($0,1,0$)	ARIMA(0,1,0)
Sample 3	Sample 6
0123456789101112	$0^{\text {MA }} 12345678910$
1×0 人ooxooooo -	
	$\begin{array}{ll}2 \times \times 10 & \times 0 \\ 3 & \times 1\end{array}$
$4 \times \times \times \times 0$ Oooooo	$4 \times \times 0 \times 0$ -
ARIMA(0,1,0)	ARIMA(0,1,0)

Figure 4.24 EACF table and its Box-Jenkins model for stationary series of Sample 1, 2, 3 and 6

The seventh step in the identification stage of the modified procedure of BJ-G is to detect the existence of volatility clustering in the residuals of the Box-Jenkins model by doing the preliminary of heteroscedasticity test using LBQ-test for squared residuals of the Box-Jenkins model. If the test indicates the presence of ARCH in the residuals up to $k_{\text {max }}$, then there is a need to justify the use of GARCH as compared to ARCH model in handling heteroscedasticity in the residuals of the Box-Jenkins model for the volatile series by examining the value of PACF for the squared residuals of the model.

Table 4.26 shows the LBQ-test for squared residuals of the Box-Jenkins model for the stationary series of the sample considered, at lag 10 and 15 . The significant p value of the LBQ-test for samples 1 to 3 at 5\% significance level reveals the presence of ARCH in the residuals of the Box-Jenkins model up to lag 20. This indicates the existence of highly volatile characteristic in the series, imply that the variance equation for the Box-

Jenkins model is not correctly specified up to the lag. Since the PACF of the squared residuals for Sample 1 to 3 shows insignificant results at 5\% significance level up to lag 17, 20 and 18 , respectively, indicates that the GARCH model is parsimony to be used as compared to ARCH in handling the existence of heteroscedasticity in the residuals. While, the LBQ-test for Sample 6 shows that the Box-Jenkins model is sufficient enough to analyse the stationary series, thus, Sample 6 is not considered for the next analysis.

Table 4.26 The preliminary analysis of heteroscedasticity test for the Box-Jenkins model of the stationary series for the samples considered

Sample	Box-Jenkins Model	LBQ-test for a_{t}^{2}		$k_{\text {max }}$ PACF for a_{t}^{2} at $\alpha=0.05$
		$k_{\text {max }}=10$	$k_{\text {max }}=15$	
1	ARIMA(0,1,0)	$\begin{gathered} \hline 809.15000 \\ (0.0000) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1097.9000 \\ (0.0000) \\ \hline \end{gathered}$	17
2	ARIMA(0,1,0)	$\begin{gathered} 393.2200 \\ (0.0000) \end{gathered}$	$\begin{aligned} & 601.0300 \\ & (0.0000) \\ & \hline \end{aligned}$	20
3	ARIMA(0,1,0)	$\begin{aligned} & \hline 16.0790 \\ & (0.0790) \\ & \hline \end{aligned}$	$\begin{aligned} & 32.1140 \\ & (0.0062) \\ & \hline \end{aligned}$	18
6	ARIMA(0,1,0)	$\begin{gathered} \hline 1.8682 \\ (0.9973) \\ \hline \end{gathered}$	$\begin{gathered} 3.2326 \\ (0.9994) \end{gathered}$	-

*Values in parenthesis denotes p-value

The last step in Stage I of the second proposed procedure of BJ-G is to identify the appropriate order of r and s of $\operatorname{GARCH}(r, s)$ to combine with the appropriate BoxJenkins model for each sample considered. Figure 4.25 presents the r_{k} and $r_{k k}$ for the squared residuals of the considered ARIMA model that will be used in identifying the appropriate value of r and s, respectively. On the assumption that the stationary series for the sample considered are random, the standard error limit of r_{k} and $r_{k k}$ are the same, that are $0.0298,0.0422$ and 0.0597 for samples 1,2 and 3 , respectively.

Referring to Figure 4.25, it can be seen that the pattern of r_{k} and $r_{k k}$ for Sample 1 and 2 are similar. By considering the appropriateness of GARCH in the model $(r \neq 0, s \neq 0)$, the suggested order values are $r=1,2,3,4,5$ and $s=1,2,3,4$ for the samples. On the other hand, most of r_{k} and $r_{k k}$ values for Sample 3 are close to zero and it is hard to identify graphically the appropriate order of the GARCH model. Since the pattern for r_{k} and $r_{k k}$ are similar to ARIMA model in the analysis of Section 4.2, therefore the values of r and s are suggested to be 1 and 2, respectively. Hence, there are

20 possible model combinations of ARIMA-GARCH that need to be considered for Samples 1 and 2, while four possible ARIMA-GARCH models for Sample 3.

Figure 4.25 The sample ACF and the sample PACF for squared residuals of the ARIMA model considered for Sample 1 to 3

The details on how to choose the preferred BJ-G model for Sample 1 can be referred to Section 4.2. The empirical results on the possible BJ-G models for Sample 2 and 3 can be referred to Appendix 3. Based on the empirical results, the similar characteristics as the series in Sample 1 are observed on the series of Sample 2 (refer Section 4.2 for details). Therefore, the same decision as for Sample 1 is decided for the order of r and s for the series of Sample 2, that is the ARIMA model is preferably combined with $\operatorname{GARCH}(1,1)$. Meanwhile, for the series of Sample 3, only $\operatorname{GARCH}(1,1)$ and $\operatorname{GARCH}(1,2)$ are significant to be combined with $\operatorname{ARIMA}(0,1,0)$, where $\operatorname{GARCH}(1,1)$ is the preferred one based on the principle of parsimony.

The procedure for Stage II to Stage III in the proposed new procedure of BJ-G for the series of Sample 2 and 3 are the same as applied to Sample 1 in Section 4.2. Table 4.27 tabulates the results of the preferred BJ-G model for stationary series of Sample 1 to 3 from the parameter estimation and diagnostic checking results. Based on the table, it can be seen that the series of Sample 1 has the smallest value for both the selection criteria (AIC and SIC) as compared to the series of Sample 2 and 3. However, by applying the parsimonious principle, Sample 3 is more preferred since the estimation results are decreased marginally between the BJ-G models that is adequate to fit the data of the
sample considered. The one-step ahead out-of-sample forecast evaluations for daily gold price of Sample 1 to 3, as given in Table 4.28, also support the preference of Sample 3.

Table 4.27 Results from Stage II to III of the proposed framework for the preferred Box-Jenkins - GARCH model for stationary series of Sample 1 to 3

STAGES	Sample 1	Sample 2	Sample 3
	ARIMA(0,1,0) -	ARIMA(0,1,0) -	ARIMA(0,1,0)-
	GARCH(1,1)	GARCH(1,1)	$\operatorname{GARCH}(1,1)$
	with $\varepsilon_{t} \sim t$	with $\varepsilon_{t} \sim G E D$	with $\varepsilon_{t} \sim t$
	STAGE II: PARAMETER ESTIMATION		
c	$7.58 \times 10^{-5}(0.4227)$	0.0008(0.0000)	0.0007(0.0223)
α_{0}	$1.92 \times 10^{-7}(0.0000)$	$1.19 \times 10^{-6}(0.0166)$	$2.50 \times 10^{-6}(0.0270)$
α_{1}	$0.0663(0.0000)$	$0.0461(0.0000)$	$0.0345(0.0024)$
β_{1}	0.9386(0.0000)	$0.9466(0.0000)$	$0.9474(0.0000)$
v	$4.6977(0.0000)$	$1.2738(0.0000)$	$4.8148(0.0000)$
AIC	-6.7078	-6.1426	-6.1641
SIC	-6.7006	-6.1299	-6.1417
	STAGE III: DIAGNOSTIC CHECKING		
DW-test	2.0128	1.9863	2.0326
LBQ (10)	$10.0070(0.4400)$	17.346(0.0670)	$11.6610(0.3080)$
LBQ (15)	$18.2380(0.2500)$	$26.1810(0.0360)$	$20.6320(0.1490)$
LBQ^{2} (10)	$6.0308(0.8130)$	$6.3357(0.7860)$	$1.8660(0.9970)$
LBQ^{2} (15)	8.4942(0.9020)	$12.5020(0.6410)$	$2.9469(1.0000)$
ARCH (10)	$6.1155(0.8055)$	12.4174(0.6472)	$1.8760(0.9972)$
ARCH (15)	8.3064(0.9109)	$6.2228(0.7962)$	$2.9419(0.9996)$

*Values in parenthesis denotes p-value

Table 4.28 Forecast evaluations for the preferred Box-Jenkins - GARCH model for daily gold price series of Sample 1 to 3

Forecasting	Sample 1	Sample 2	Sample 3
Evaluation	ARIMA(0,1,0) -	ARIMA(0,1,0)	ARIMA(0,1,0)-
	GARCH $(\mathbf{1 , 1})$	GARCH(1,1)	GARCH(1,1)
	with $\varepsilon_{t} \sim t$	with $\varepsilon_{t} \sim$ GED	with $\varepsilon_{t} \sim t$
RMSE	18.3716	19.2190	17.8764
MAE	12.6855	12.6869	12.9301
MAPE $(\%)$	0.8402	0.9155	0.9956

Based on the results of Stage II to III for Sample 1 to 3 in Table 4.27, it can be observed that the preferred combination model for the series of all samples are the random walk. The preferred BJ-G model for the series of Sample 1 are totally random walk since
the constant of ARIMA model is not significant, while the model for the series of Sample 2 and 3 are random walk with drift. The innovations of all preferred model for the samples considered follow t distribution, except for the series of Sample 2, which follows the GED distribution. The standardised residuals of the ARIMA model appear to be random for each sample considered, but their magnitudes exhibit the characteristics of heavy tails, which support the non-normal innovations. The non-normality of the innovations could be related to the heavy tails distribution of the stationary series (see Table 4.21).

The results from Stage II and Stage IV indicate that the optimal number of data to forecast gold price using the second proposed procedure of BJ-G is 1250 data of the 5year sample. The empirical results of model selection criteria and one-step-ahead forecasting evaluations suggested that the latest 25% of 5000 data is sufficient enough to be employed in the BJ-G model with similar forecasting performance as by using all the data. Consequently, the model of $\operatorname{ARIMA}(0,1,0)-\operatorname{GARCH}(1,1)$ with t innovations for the series of Sample 3 of daily gold price is given by Equation 4.6, where y_{t} is the daily gold price, s_{t} is the stationary data for the daily gold prices, a_{t} is the random error at time t period and σ_{t}^{2} is the conditional variance of y_{t}.

$$
\begin{align*}
& y_{t}=y_{t-1} \exp \left(s_{t}\right), \quad s_{t}=0.0007+a_{t}, \quad a_{t}=\sigma_{t} \varepsilon_{t} \\
& \sigma_{t}^{2}=2.50 \times 10^{-6}+0.0345 a_{t-1}^{2}+0.9474 \sigma_{t-1}^{2} \text { and } \varepsilon_{t} \sim t_{4.81}^{*}
\end{align*}
$$

By referring to Equation 4.6, the significant of $c=0.0007$ in the mean model of ARIMA ($0,1,0$)-GARCH(1,1) shows the upward trend of the forecast model implies that the expected mean return of the series is about 0.07%, which is positive in long term duration. While, the value of $\left(\hat{a}_{1}^{2}=0.0345^{2}\right)<\frac{1}{3}$ in the variance model shows that the unconditional fourth moment of the daily log returns of gold price exists (Tsay, 2013). This implies that the distribution of the daily log return tends to contain more extreme values or is said to be leptokurtic which is consistent with the nature of data series (refer to Table 4.23). The extreme values contribute to the existence of highly volatile characeristics in the data series. The large value of $\beta_{1}=0.9474$ in the variance model reflects to a long-term persistence of volatility clustering.

The one-step ahead forecast using the ARIMA($0,1,0)-\operatorname{GARCH}(1,1)$ model with t innovations for daily gold prices from $25^{\text {th }}$ June 2013 to $17^{\text {th }}$ December 2013 is graphically shown in Figure 4.26. It is observed that the forecast gold prices (in red dashed line) fluctuate between USD1200 and USD1400 per ounce and follows closely with oneday lag to the actual data (in blue solid line) for the 125-day out-sample period. The characteristics that is reflected from the mean and variance models prove that the ARIMA-GARCH model is able to follow the nature of the highly volatile data series well so that it can be used in forecasting the actual gold price. The comparison values between actual data of daily gold price and its forecast price using the BJ-G model for the last ten days out-of-sample simulation period for the series of Sample 3 is given by Table 4.29.

Figure 4.26 Plot of the actual and forecast data using ARIMA($0,1,0)-\operatorname{GARCH}(1,1)$ with t innovations for out-of-sample period of the series of Sample 3

Table 4.29 The comparison between actual and forecast gold prices for the last ten days out-of-sample simulation period of Sample 3 using the model of ARIMA($0,1,1$)$\operatorname{GARCH}(1,1)$ with t innovations

Date	Actual price (USD/Oz)	Forecast price $($ USD/Oz)	Difference (USD/Oz)
4 Dec 2013	1227.50	1218.07	-9.43
5 Dec 2013	1222.50	1228.33	5.83
6 Dec 2013	1233.00	1223.33	-9.67
9 Dec 2013	1237.00	1233.83	-3.17
10 Dec 2013	1266.25	1237.84	-28.41
11 Dec 2013	1260.75	1267.12	6.37
12 Dec 2013	1225.25	1261.60	36.35
13 Dec 2013	1232.00	1226.08	-5.92
16 Dec 2013	1234.75	1232.83	-1.92
17 Dec 2013	1231.75	1235.58	3.83

4.4 Simulation study on the Multistep Forecasting for Highly Volatile Data using the Third Proposed Procedure of BJ-G

Given the overall positive results at the one-step ahead forecast in the empirical results as described in Section 4.3, therefore the following study is aimed at assessing the forecasting performance of the BJ-G model for higher horizons or at n-step-ahead forecast. In evaluating the performance of the multistep ahead forecast, the third proposed procedure as illustrated in Figure 3.15 is employed to daily world gold price series for the last 5-year data (Sample 3), since the series is considered optimal for BJ-G model in the case study. The implementation of the third proposed procedure associated with R codes is explained explicitly in the following step 1 to 5 . The Step 1 to 5 is repeated for $h=2,3, \ldots, n$ in order to obtain the multistep ahead forecast evaluations for BJ-G model.

Step 1: Based on the proposed model as in Equation 4.6 for Sample 3 of gold price series, the value of \hat{s}_{T+h} for $\operatorname{ARIMA}(0,1,0)-\operatorname{GARCH}(1,1)$ using t innovations is obtained through simulation using Equation 4.7.

$$
\begin{align*}
& \hat{s}_{T+h}=0.0007+\hat{a}_{T+h}, \quad \hat{a}_{T+h}=\hat{\sigma}_{T+h} \hat{\varepsilon}_{T+h} \\
& \hat{\sigma}_{T+h}^{2}=2.50 \times 10^{-6}+0.0345 \hat{a}_{T}^{2}+0.9474 \hat{\sigma}_{T}^{2} \text { and } \hat{\varepsilon}_{T+h} \sim t_{4.81}^{*}
\end{align*}
$$

The corresponding R codes for the proposed value of \hat{s}_{T+h} are written as follows.

```
spec = garchSpec(model = list(mu=0.0007,omega = 2.5e-6, alpha = 3.45e-
2,beta = 9.474e-1, shape=4.81), cond.dist="std")
st_AG=garchSim(spec, n = 125);st_AG
```

Step 2: For the case study, the forecast data \hat{y}_{T+h} is given by Equation 4.8.

$$
\hat{y}_{T+h}=y_{T} \exp \left(\hat{s}_{T+h}\right)
$$

since the transformed data is in logarithm. Note that \hat{s}_{T+h} is obtained from Step 1. The corresponding R codes of \hat{y}_{T+h} for one-step ahead is written as follows.

```
f_AG_1step<-matrix(0,125,1); f_AG_1step
f_AG_1step[1]=dt[1125]*exp(st_AG[1]);f_AG_1step[1]
for(\overline{i}}\mathrm{ in 2:125){
    f_AG_1step[i]=dt_o[i-1]*exp(st_AG[i])
}
f_AG_1step
```

Step 3: Obtain forecasting evaluations of MAE, RMSE and MAPE for h-step ahead forecast. The corresponding R codes for the forecasting evaluations of \hat{y}_{T+h} for one-step ahead of the daily gold price is written as follows.

```
forecastevaluation<-function(dt4_o,f_AG_1step)
    T<- 125
error1 AG 1step=matrix(0,T,1);error1 AG 1step
error2_AG-1step=matrix(0,T,1);error2_AG_1step
error3_AG_1step=matrix(0,T,1);error3_AG_1step
error4_AG_1step =matrix(0,T,1); error4_AG_1step
rmse_AG_1step=rep (0,1); rmse AG 1step
mae_\overline{AG_I_1step=rep (0,1); mae_AG_1step}
mape_AG_1step =rep (0,1); mape_AG_1step
for (i in 1:T){
    error1_AG_1step[i]<-dt_o[i]-f_AG_1step[i]
    error2_AG_1step[i]<-abs(error1_AG_1step[i])
    error3 AG_1step[i]<-error1 AG 1step[i]^2
    error4_AG_1step[i]<-abs(er\overline{ror\overline{1}_AG_1step[i]/dt_o[i])}
}
cbind(error1_AG_1step,error2_AG_1step,error3_AG_1step,error4_AG_1step)
mae_AG_1step=sum(error2_AG_1step)/T; mae_AG_1step
rmse_AG_1step=sqrt(sum(error3_AG_1step)/T); rmse_AG_1step
mape_AG_1step=(100/T)*sum(error4_AG_1step); mape_AG_1step
forecastevaluation(dt_o,f_AG_1step)
```

Step 4: Obtain the prediction intervals (PIs) for \hat{y}_{T+h}. Since a_{t} for the series in the case study using the proposed BJ-G model follows t distribution with a degrees of freedom $v=4.81$, therefore the 80% PIs and 95% PIs for h-step ahead are given in Equation 4.9 and 4.10 , respectively. In obtaining $\operatorname{Var}\left[e_{T}(h)\right]$, Equation 3.64 is applied since the proposed model for the data series is $\operatorname{ARIMA}(0,1,0)-\operatorname{GARCH}(1,1)$, which is a random walk model. In practice, the $\operatorname{Var}\left[e_{T}(h)\right]$ is the variance of the residual for h-step ahead, as can be obtained from basic statistics of the residual for each forecast horizon (refer to Appendix 4).

$$
\begin{align*}
& 80 \% \text { PI: } \hat{y}_{T}(h) \pm t_{0.1,4.81} \sqrt{\operatorname{Var}\left[e_{T}(h)\right]} \\
& 90 \% \text { PI: } \hat{y}_{T}(h) \pm t_{0.025,4.81} \sqrt{\operatorname{Var}\left[e_{T}(h)\right]}
\end{align*}
$$

The R codes for PIs of 80% and 95% of \hat{y}_{T+h} in the case study are as follows.

```
resiAG_1step=matrix(0,125,1); resiAG_1step
for(i in 1:125){
    resiAG_1step[i]<-dt_o[i]-f_AG_1step[i]
}
resiAG_1step;basicStats(resiAG4)
v1<-qt(c(.025, .975), df=4.81);v1
```

```
v2<-qt(c(.1, .9), df=4.81);v2
T<- 125
lo95_AG_1step=matrix(0,T,1);lo95_AG_1step
hi95_AG_1step=matrix(0,T,1);hi95_AG_1step
lo80_AG_1step=matrix(0,T,1);1o80_AG_1step
hi80_AG_1step =matrix(0,T,1);hi80_AG_1step
h=matrix (0,T,1);h
for(i in 1:125){
    h[i]=i
    lo95 AG_1step[i]<-f AG_1step[i]-(2.6014*(sqrt(h[i]*320.3818)))
    hi95_AG_1step[i]<-f_AG_1step[i]+(2.6014*(sqrt(h[i]*320.3818)))
    lo80_AG_1step[i]<-f_AG_1step[i]-(1.4847*(sqrt(h[i]*320.3818)))
    hi80_AG_1step[i]<-f_AG4[i]+(1.4847*(sqrt(h[i]*320.3818)))
}
cbind(dt_o,f_AG_1step,lo95_AG_1step,hi95_AG_1step,lo80_AG_1step,hi80_A
G_1step)
```

Step 5: Plot the graph of actual data in the out-of-sample series, y_{T+h} and the h-step ahead forecast, \hat{y}_{T+h} with its prediction intervals. The R codes for PIs of 80% and 95% for onestep ahead forecast in the case study are written as follows.

```
date_AG<- dt[1126:1250,7];date_AG
library(Hmisc)
matplot(dt_o,xaxt="n",type="l",lwd=3, col="blue",xlab="Dates",ylab="Pri
ce(USD/oz)",mgp=c(2,0.4,0),Ylim=c (700,1800), cex.lab=1.3, cex.axis=1. 3,l
ab=c (4,4,7))
par(new = TRUE)
matplot(dt_o, xaxt="n",type="points", pch=".", cex=5, col="black",xlab="Da
tes",ylab="Price(USD/oz)",mgp=c(2,0.4,0),ylim=c(700,1800),cex.lab=1.3,
cex.axis=1.3,lab=c (4,4,7))
par(new = TRUE)
matplot(f_AG_lstep,xaxt="n",type="l",col="red",lty=2,lwd=2,xlab="Dates
",ylab="Price(USD/oz)",mgp=c (2,0.4,0),ylim=c (700,1800), cex.lab=1.3, cex
.axis=1.3, lab=c(4,4,7))
par(new = TRUE)
matplot(f_AG_1step,xaxt="n",col="black",type="points",pch="o", cex=1,xl
ab="Dates", y\overline{lab="Price(USD/Oz)",mgp=c(2,0.4,0),ylim=c(700,1800),cex.la}
b=1.3, cex.axis=1.3,lab=c (4,4,7))
par(new = TRUE)
matplot(cbind(lo95_AG_1step,hi95_AG_1step,lo80_AG_1step,hi80_AG_1step)
, xaxt="n",type="l",lty=2, col=c("black","black","green","green"),xlab"D
ates",ylab="Price(USD/Oz)",mgp=c(2,0.4,0),ylim=c (700,1800),cex.lab=1.3
, cex.axis=1.3,lab=c (4,4,7)) axis (1.5,at=1:125, labels=date_AG,xaxp=c (2,1
0,124),tck=0,mgp=c (2,0.4,0),xlim=c (1, 125), cex.lab=1.3, cex.axis=1.3,lab
=c(4,4,7))
minor.tick(nx=3)
```

The empirical results of the forecasting performance of BJ-G model is based on 1250 daily world gold price series, starting 22 December 2008 to 17 December 2013, that is Sample 3 in Section 4.3. Given the positive results of one-day ahead using the BJ-G model in Section 4.3, the forecasting performance of the model will be assessed at horizons greater than one day $(h>1)$. For the 5-year data series under study, the first

1125 data (90%) are used to estimate the model while the last 125 data (10\%) are defined as the out-of-sample series.

Table 4.30 presents the one-step to 125 -step ahead forecast evaluation results with the number of data that lies outside the prediction intervals of 80% and 95% of the forecast value at the forecast origin 1125 for the daily gold price using ARIMA($0,1,0$)$\operatorname{GARCH}(1,1)$ with t innovations. Referring to Equation 4.6 for the model and Equation 4.8 for the updated point forecast, \hat{y}_{T+n}. The details of the analysis can be referred to Appendix 4. Based on Table 4.30, the values of MAE, RMSE and MAPE are increasing as the forecast horizon increases. This is in agreement with common sense that \hat{y}_{T+2} is more uncertain as compared to \hat{y}_{T+1}. It can be observed that the forecast evaluations, specifically the values of MAE and RMSE for one-step to seven-step forecast horizons increased gradually. However, there is significant increment of the forecast evaluations from seven-step to ten-step forecast horizons.

On the other hand, by observing the prediction interval for each horizon under consideration, it can be seen that the ten-step ahead forecast results show the lowest number of actual price that lies outside 80% PIs and no actual prices are outside 95% PIs as compared to other multistep ahead forecast horizons. However, it is quite hard to make a decision based on the prediction interval in order to choose the appropriate forecast horizon for the model since the number of data outside the prediction intervals for multistep ahead forecast horizons are different marginally, specifically for 95\% PIs.

Table 4.30 Forecast evaluation with prediction intervals for the considered forecast horizon

Forecast Horizon	Forecast evaluation			Number of data outside prediction intervals		
	MAE	RMSE	MAPE	$\mathbf{8 0 \%}$	$\mathbf{9 5 \%}$	
1-step ahead	12.9301	17.8764	0.9956	$1(0.8 \%)$	$0(0 \%)$	
2-step ahead	15.7938	21.3297	1.2132	$20(16 \%)$	$1(0.8 \%)$	
3-step ahead	18.2953	24.4472	1.4098	$25(20 \%)$	$2(1.6 \%)$	
4-step ahead	21.6096	28.3663	1.6716	$20(16 \%)$	$1(0.8 \%)$	
5-step ahead	22.8394	28.9304	1.7647	$22(17.6 \%)$	$1(0.8 \%)$	
7-step ahead	24.5981	30.1233	1.8941	$\mathbf{1 7}(\mathbf{1 3 . 6 \%)}$	$\mathbf{2 (1 . 6 \%)}$	
10-step ahead	32.2870	40.1970	2.4859	$15(12 \%)$	$0(0 \%)$	
15-step ahead	37.6551	46.2091	2.9068	$21(16.8 \%)$	$3(2.4 \%)$	
25-step ahead	43.7949	53.0116	3.3840	$36(28.8 \%)$	$4(3.2 \%)$	
125-step ahead	59.0288	76.2116	4.6135	$23(18.4 \%)$	$2(1.6 \%)$	

[^5]Hence, by considering both results of forecast evaluations and prediction intervals, the seven-step ahead is suggested for practical use since the values of errors are gradually increased from one-step to seven-step ahead forecast and the number of data outside the prediction intervals of 80% and 95% are among the lowest for mustistep forecast horizon. The results indicate that the seven-step ahead forecast perform the best in forecasting as compared to other multistep ahead forecast horizons. However, the performance of seven-step ahead forecast horizon is weaker than the one-step ahead forecast horizon.

Figure 4.27 shows the corresponding out-of-sample forecasting plot of seven-step ahead using the BJ-G model for the daily gold price. The forecast and actual prices are marked by " 0 " and " \bullet ", which linked with red dashed line and blue solid line, respectively. The forecasting plot includes the prediction intervals of 80% and 95% which are presented by the dashed line of green and black, respectively. It can be seen that the forecasting performance of the BJ-G model for up to seven-step ahead forecast is supported graphically by the plot. It is observed that the trend of seven-day ahead forecast price mimics the actual price for the out-of-sample period. Therefore, it can be concluded that $\operatorname{ARIMA}(0,1,0)-\operatorname{GARCH}(1,1)$ with t innovations can be considered for forecast horizons up to seven-day ahead price for five-year data series. For the details of other multistep ahead forecast under consideration, refer to Appendix 4.

Figure 4.27 Plot of actual data and seven-step ahead forecast using ARIMA($0,1,0$)$\operatorname{GARCH}(1,1)$ with 80% (in green dashed line) and 95% (in black dashed line) PIs

Table 4.31 presents the forecast price of the first seven-day out-of-sample period for seven-step ahead forecast using the ARIMA($0,1,0$)-GARCH(1,1) with t innovations
associated with its PIs of 80% and 95% at the forecast origin price of 24 June 2013. Based on the forecast price, only two actual data are not within the 80% PIs as highlighted in Table 4.31, while all actual data are within 95% PIs. This indicates that the proposed model of ARIMA-GARCH is able to follow the trend of actual data up to seven-day ahead, specifically within 95% PIs.

Table 4.31 Actual price and the seven-step ahead forecast price using the model of ARIMA($0,1,0$)-GARCH(1,1) with t innovations

Date	Actual Price	Forecast Price	Prediction Interval	
	(USD/oz)	(USD/oz)	$\mathbf{8 0 \%}$	$\mathbf{9 5 \%}$
25 June 2013	1279.00	1287.62	$(1228.12,1347.12)$	$(1183.37,1391.87)$
26 June 2013	1236.25	1288.49	$(1228.99,1347.99)$	$(1184.24,1392.74)$
27 June 2013	1232.75	1289.36	$(1229.86,1348.86)$	$(1185.11,1393.61)$
2 June 2013	$\mathbf{1 1 9 2 . 0 0}$	1290.23	$(1230.74,1349.73)$	$(1185.99,1394.48)$
1 July 2013	1242.75	1291.11	$(1231.61,1350.61)$	$(1186.86,1395.36)$
2 July 2013	$\mathbf{1 2 5 2 . 5 0}$	1291.98	$(1232.48,1351.48)$	$(1187.73,1396.23)$
3 July 2013	1292.85	1188.60	$(1233.36,1352.35)$	$(1188.60,1397.10)$

4.5 The Empirical Results of the Box-Jenkins with GARCH-type Models using the Fourth Proposed Procedure of BJ-G
 Given the promising results of combination model of ARIMA with GARCH in

 following the trend of actual daily gold price up to seven-day ahead, therefore the fourth proposed procedure as illustrated in Figure 3.16 is then applied to all GARCH-type models that are used in previous studies for highly volatile data including GARCH-M, EGARCH, TGARCH and APARCH (Ahmed, 2017; Ferenstein \& Gasowski, 2004; Girish, 2016; Walid et al., 2011; Ord, Koehler, Snyder \& Hyndman, 2009; Girish, 2016; Ahmad et al., 2015; Freedi et al., 2012; Liu et al., 2011; Liu \& Shi, 2013; Liu et al., 2013). The steps and methods used for Stage I to IV in the fourth proposed procedure of BJ-G are the same as applied to Section 4.3 and 4.4. The ARIMA with standard GARCH or simply called as ARIMA-GARCH that assessed in previous sections (Section 4.3 and 4.4) will be used as a benchmark to other ARIMA-GARCH-type models under consideration. Hence, the empirical results in assessing the performance for the Box-Jenkins with GARCH-type models are based on the same data used in Section 4.4 (or the optimal data series in Section 4.3) to maintain the continuity of the study.Note that, $\operatorname{ARIMA}(0,1,0)$ is the best Box-Jenkins model to analyse the data series as discussed in Section 4.3. Therefore, in this empirical study, the model of
$\operatorname{ARIMA}(0,1,0)$ is maintained to be used as the mean model of Box-Jenkins with the considered GARCH-type models. By considering the GARCH-type models applied previously in handling volatility in the highly volatile series that are GARCH-M, EGARCH, TGARCH and APARCH, the estimation results for $\operatorname{ARIMA}(0,1,0)$ with the GARCH-type models are presented by Table 4.32. Note that, the modelling procedure of Box-Jenkins with standard GARCH is applied to ARIMA with the GARCH-type models. Therefore, the details on how to choose the order for parameter of the GARCH-type models, specifically r and s, can be referred to Section 4.2. The details of empirical results on the possible ARIMA-GARCH-type models for the gold price series can be referred to Appendix 5.

By referring to the empirical results, the order of $r=1$ and $s=1$ is preferred for all GARCH-type models under consideration based on the principle of parsimony. Table 4.32 displays the estimation results for the parameters of $\operatorname{ARIMA}(0,1,0)-\operatorname{GARCH}(1,1)$, ARIMA($0,1,0)-\operatorname{EGARCH}(1,1), \quad$ ARIMA(0,1,0)-GARCH(1,1)-M, ARIMA(0,1,0)$\operatorname{APARCH}(1,1)$ and $\operatorname{ARIMA}(0,1,0)-\mathrm{TGARCH}(1,1)$, respectively, with innovations ε_{t} follows normal, t and GED distributions. The skewed innovations are not considered here due to non-skewed preference for errors distribution of ARIMA-GARCH model to the data series as discussed in Section 4.3. The estimation results for ARIMA-GARCH is represented in this section for benchmark. Note that, ARIMA($0,1,0)-\operatorname{GARCH}(1,1)$ with t innovations is chosen as the preferred ARIMA-GARCH model for the data series, as discussed in Section 4.3.

By considering other GARCH-type models in Table 4.32, it can be seen that the use of $\operatorname{EGARCH}(1,1)$ and $\operatorname{TGARCH}(1,1)$ are highly significant at 5% significance level, specifically for normal innovations. The large values of β_{1} in the variance model of the three significant ARIMA-GARCH-type models (i.e. ARIMA($0,1,0$)-GARCH(1,1) with t innovations, ARIMA($0,1,0$)-EGARCH(1,1) with normal innovations, ARIMA($0,1,0$)$\operatorname{TGARCH}(1,1)$ with normal innovations) are reflected by the conditional standard deviation processes which demonstrate a relatively long term persistence of volatility clustering. The negative sign of significant leverage effect term g_{1} in the asymmetric models of EGARCH and TGARCH with normal innovations implying that negative shocks (or bad news) gives a higher effect on the return of gold price than positive shocks.

Table 4.32 Estimation results for ARIMA($0,1,0$) with selected GARCH-type models

Model	Parameter	$\varepsilon_{t} \sim$ Normal	$\varepsilon_{t} \sim t$	$\varepsilon_{t} \sim \mathbf{G E D}$
$\begin{gathered} \hline \text { ARIMA }(0,1,0)- \\ \operatorname{GARCH}(1,1) \end{gathered}$	c	0.0006(0.0957)	0.0007(0.0223)	$0.0006(0.0232)$
	α_{0}	$4.2 \times 10^{-6}(0.0000)$	$2.5 \times 10^{-6}(0.0270)$	$2.8 \times 10^{-6}(0.0100)$
	α_{1}	0.0485(0.0000)	$0.0345(0.0024)$	0.0372(0.0031)
	β_{1}	0.9241(0.0000)	0.9474(0.0000)	0.9425(0.0000)
	${ }_{0}$		4.8148(0.0000)	1.1682(0.0000)
	AIC	-6.0407	-6.1641	-6.1532
	SIC	-6.0229	-6.1417	-6.1309
ARIMA(0,1,0)$\operatorname{EGARCH}(1,1)$	c	0.0005(0.1696)	0.0007(0.0148)	0.0006(0.0332)
	α_{0}	-0.4646(0.0000)	-0.2049(0.0098)	-16.4524(0.0000)
	α_{1}	$0.1411(0.0000)$	0.0958(0.0003)	-0.0220(0.5402)
	g_{1}	-0.0492(0.0000)	0.0126(0.4506)	-0.0728(0.0510)
	β_{1}	$0.9594(0.0000)$	0.9849(0.0000)	-0.8604(0.0000)
	${ }^{1}$	-	4.8016(0.0000)	1.0974(0.0000)
	AIC	-6.0457	-6.1634	-6.1075
	SIC	-6.0233	-6.1365	-6.0807
ARIMA($0,1,0$)-$\operatorname{GARCH}(1,1)-\mathrm{M}$	c	0.0010(0.2547)	0.0011(0.1460)	0.0007(0.2711)
	M	-3.4813(0.5736)	-3.1885(0.5564)	$-1.0650(0.8318)$
	α_{0}	$4.1 \times 10^{-6}(0.0000)$	$2.5 \times 10^{-6}(0.0271)$	$2.7 \times 10^{-6}(0.0100)$
	α_{1}	0.0485(0.0000)	$0.0341(0.0023)$	0.0370(0.0031)
	β_{1}	0.9247(0.0000)	0.9480(0.0000)	0.9427(0.0000)
	ν		4.8038(0.0000)	1.1687(0.0000)
	AIC	-6.0392	-6.1626	-6.1515
	SIC	-6.0169	-6.1358	-6.1247
ARIMA($0,1,0$)$\operatorname{APARCH}(1,1)$	c	0.0004(0.0000)	0.0007(0.0175)	$0.0006(0.0077)$
	α_{0}	$0.0065(0.0004)$	$4.2 \times 10^{-5}(0.0408)$	$9.7 \times 10^{-5}(0.0294)$
	α_{1}	$0.0695(0.0000)$	$0.0525(0.0002)$	0.0589(0.0004)
	g_{1}	0.5534(0.0023)	-0.1414(0.3793)	$0.0324(0.8654)$
	β_{1}	0.9059(0.0000)	0.9446(0.0000)	0.9344(0.0000)
	δ	0.4201(0.1575)	$1.3290(0.0066)$	$1.2130(0.0461)$
	ν		4.8210 (0.0000)	1.1690 (0.0000)
	AIC	3.0354	-6.1259	-6.0545
	SIC	3.0354	-6.1259	-6.0546
ARIMA(0,1,0)TGARCH(1,1)	c	0.0005(0.1743)	0.0007(0.0191)	$0.0006(0.0240)$
	α_{0}	$4.5 \times 10^{-6}(0.0000)$	$2.3 \times 10^{-6}(0.0333)$	$2.7 \times 10^{-6}(0.0103)$
	α_{1}	$0.0518(0.0000)$	0.0349(0.0022)	$0.0349(0.0022)$
	g_{1}	-0.1463(0.0034)	0.1063(0.4126)	$0.0374(0.7515)$
	β_{1}	0.9173(0.0000)	0.9489(0.0000)	0.9428(0.0000)
	v		4.8158(0.0000)	$1.1679(0.0000)$
	AIC	-6.0413	-6.1628	-6.1514
	SIC	-6.0189	-6.1360	-6.1246

*Values in the parenthesis are p-values.

The normalised AIC and SIC results for the three significant models indicate that ARIMA-GARCH shows the smallest value for both information criteria as compared to other models, indicating that $\operatorname{ARIMA}(0,1,0)-\operatorname{GARCH}(1,1)$ with t innovations is the preferred one in modelling the gold price data. However, all the significant ARIMA-GARCH-type models are considered in the next stage of the fourth proposed BJ-G procedure for further investigation.

On the other hand, the models of $\operatorname{GARCH}(1,1)-\mathrm{M}$ and $\operatorname{APARCH}(1,1)$ for all innovations are insignificant. The insignificant of the GARCH-M model due to the estimated risk premium, M are negative and highly insignificant for all innovations. The value of M for the GARCH-M models implying that there are no serial correlations in the stationary series of daily gold price, or in other words, although the extra risk is hold for the asset, the return is indifferent with those who are not taking extra risk. Meanwhile, the insignificant of APARCH model for the stationary gold price series is due to δ and g_{1} are highly insignificant for normal innovations and both t and GED innovations, respectively. The insignificant of APARCH models implying that the existence of leverage effect in the gold price series is not significant. Therefore, all models with GARCH-M and APARCH are not considered for Stage III and IV of the fourth proposed procedure of BJ-G in forecasting gold price series.

Table 4.33 presents the joint diagnostic checking for the three significant ARIMA-GARCH-type models. The model checking statistics shows that all considered models are adequate and correctly specified in describing the mean and variance of the stationary series of gold price. Even though the LBQ-test on the standardised residuals shows the existence of serial correlation (and the autocorrelation decreases in the higher lag), this is most probably due to small autocorrelations because of the large number of data used ($T=1125$) that should not be of practical importance (Ruppert \& Matteson, 2015). This statement supports by the standardised residuals plot for the ARIMA-GARCH-type models to the in-sample stationary series as illustrated in Figure 4.28. Based on the figure, the standardised residuals using the considered models look random and reasonable except for several possible outliers.

Otherwise, the p-value is insignificant for LBQ-test on the squared standardised residuals for all considered models as shown in Table 4.33 which interprets that there is no ARCH in the residuals up to both lag 10 and 15, as supported by the result of LM

ARCH. This demonstrated that the ARIMA-GARCH-type models are able to handle the heteroscedasticity in the stationary series of gold price very well. Regarding the innovations, the good fit of the QQ-plot in Figure 4.29 that nearly a straight line except for not more than five outliers (or small fraction of the data) on the left and right tails, support graphically the use of t and normal innovations for the ARIMA-GARCH-type models.

Table 4.33 Model diagnostics for ARIMA with significant GARCH-type models

Diagnostic test	ARIMA(0,1,0)- GARCH(1,1) with $\varepsilon_{t} \sim t$	ARIMA(0,1,0)- EGARCH(1,1)	ARIMA(0,1,0)- TGARCH(1,1)
	2.0128	with $\varepsilon_{t} \sim$ Normal	with $\varepsilon_{t} \sim$ Normal
DW-test	$10.0070(0.4400)$	$11.9030(0.2920)$	$11.9050(0.2910)$
LBQ(10)	$18.2380(0.2500)$	$21.5240(0.1210)$	$21.7890(0.1130)$
LBQ(15)	$6.0308(0.8130)$	$2.4849(0.9910)$	$1.8738(0.9970)$
LBQ $^{2}(10)$	$8.4942(0.9020)$	$5.3342(0.9890)$	$3.7900(0.9980)$
$\operatorname{LBQ}^{2}(15)$	$6.1155(0.8055)$	$2.6457(0.9886)$	$1.9639(0.9966)$
ARCH(10)	$8.3064(0.9109)$	$5.5423(0.9865)$	$3.9084(0.9980)$
ARCH(15)			

*Values in parenthesis denote p-values. $Q(10)$ is the Ljung-Box statistics for standardised residuals at lag $10, Q^{2}(10)$ is the Ljung-Box statistics for squared standardised residuals at lag 10, $\mathrm{ARCH}(10)$ is the Engle's Lagrange Multiplier test for heteroscedasticity at lag 10.

Figure 4.28 Standardised residual plot for in-sample stationary series of gold prices using $\operatorname{ARIMA}(0,1,0)$ and (a) $\operatorname{GARCH}(1,1)$ with $\varepsilon_{t} \sim t$, (b) $\operatorname{EGARCH}(1,1)$ with $\varepsilon_{t} \sim$ Normal, (c) TGARCH(1,1) with $\varepsilon_{t} \sim$ Normal

Forecasting performance results for multistep ahead of the daily gold price using ARIMA with the significant GARCH-type models have been reported in Table 4.34. For the one-step ahead (as highlighted in Table 4.34), all the considered models show similar performance with marginal differences in forecasting, as presented graphically in Figure
4.30. While, for multistep ahead forecast, it is observed that the model of EGARCH and TGARCH have the same characteristics as GARCH, that is the values of MAE and RMSE for one-step to seven-step forecast horizons increased gradually and there is significant increment of the forecast evaluations from seven-step to ten-step forecast horizons. Hence, by using the same consideration as for GARCH model, the seven-step ahead having the best performance of multistep forecasting using EGARCH and TGARCH models.

Figure 4.29 QQ-plot for in-sample stationary series of gold prices using $\operatorname{ARIMA}(0,1,0)$ and (a) $\operatorname{GARCH}(1,1)$ with $\varepsilon_{t} \sim t$, (b) $\operatorname{EGARCH}(1,1)$ with $\varepsilon_{t} \sim \operatorname{Normal}$, (c) $\operatorname{TGARCH}(1,1)$ with $\varepsilon_{t} \sim$ Normal

Figure 4.31 shows the actual and the seven-step forecast of the daily gold price using the considered ARIMA-GARCH-type models. The forecast and actual prices are marked by "o" and " \bullet ", which linked with red dashed line and blue solid line, respectively. The forecasting plot includes the prediction intervals of 80% and 95% which are presented by the dashed line of green and black, respectively. It can be seen that the forecasting performance of the BJ-G models for up to seven-step ahead forecast is supported graphically by the plot since the trend of seven-day ahead forecast price mimics the actual price for the out-of-sample period.

Therefore, the seven-step ahead forecast evaluations of the ARIMA-GARCHtype models as highlighted in Table 4.34 are used in finding the best model of Box-Jenkins-GARCH-type model in multistep forecasting gold price using the fourth proposed model of BJ-G. It can be observed that all the considered models having similar results of forecast evaluations of RMSE, MAE and MAPE for the seven-step ahead, as the model of EGARCH shows the lowest error evaluations with marginal difference as
compared to others. However, by looking at the prediction intervals evaluations, it reveals that GARCH model having the lowest number of data outside the prediction intervals of both 80% and 95%. Surprisingly, the ARIMA-GARCH model shows consistent performance as the lowest number of data outside the prediction intervals for other multistep ahead forecast horizon with significant difference as compared to other models, specifically at 95% PIs.

Table 4.34 Multistep forecast evaluation of ARIMA with significant GARCH-type models under consideration

Model	Forecast Horizon	Forecast evaluation			Number of data outside the PIs	
		MAE	RMSE	MAPE	80\%	95\%
ARIMA(0,1,0)$\operatorname{GARCH}(1,1)$ with $\varepsilon_{t} \sim t$	1-step ahead	12.9301	17.8764	0.9956	1(0.8\%)	0(0\%)
	2-step ahead	15.7938	21.3297	1.2132	20(16\%)	1(0.8\%)
	3-step ahead	18.2953	24.4472	1.4098	25(20\%)	2(1.6\%)
	4-step ahead	21.6096	28.3663	1.6716	20(16\%)	1(0.8\%)
	5-step ahead	22.8394	28.9304	1.7647	22(17.6\%)	1(0.8\%)
	7-step ahead	24.5981	30.1233	1.8941	17(13.6\%)	2(1.6\%)
	10 -step ahead	32.2870	40.1970	2.4859	15(12\%)	0 (0\%)
	15 -step ahead	37.6551	46.2091	2.9068	21(16.8\%)	3(2.4\%)
	25 -step ahead	43.7949	53.0116	3.3840	36(28.8\%)	4(3.2\%)
	125 -step ahead	59.0288	76.2116	4.6135	23(18.4\%)	2(1.6\%)
ARIMA(0,1,0)- $\operatorname{EGARCH}(1,1)$ with $\varepsilon_{t} \sim$ Normal	1-step ahead	12.9024	17.9129	0.9930	1(0.8\%)	0(0\%)
	2-step ahead	15.6431	21.4087	1.1990	23(18.4\%)	9(7.2\%)
	3 -step ahead	18.1892	24.4896	1.3988	26(20.8\%)	9(7.2\%)
	4-step ahead	21.8222	28.4818	1.6812	29(23.2\%)	6(4.8\%)
	5 -step ahead	22.4658	28.3566	1.7296	22(17.6\%)	7(5.6\%)
	7-step ahead	23.3542	29.2521	1.7853	27(21.6\%)	5(4\%)
	10 -step ahead	32.0150	41.2452	2.4403	30(24\%)	8(6.4\%)
	15 -step ahead	35.0348	42.5039	2.6747	23(18.4\%)	5(4\%)
	25 -step ahead	35.9671	47.1370	2.7217	23(18.4\%)	6(4.8\%)
	125 -step ahead	140.4588	152.7912	10.7086	91(72.8\%)	79(63.2\%)
ARIMA($0,1,0$) TGARCH(1,1) with $\varepsilon_{t} \sim$ Normal	1-step ahead	12.9144	17.8579	0.9943	1(0.8\%)	0(0\%)
	2-step ahead	15.7330	21.2976	1.2083	25(20\%)	11(8.8\%)
	3 -step ahead	18.2081	24.3872	1.4028	30(24\%)	7(5.6\%)
	4 -step ahead	21.5550	28.2882	1.6668	31(24.8\%)	6(4.8\%)
	5 -step ahead	22.7189	28.7512	1.7549	27(21.6\%)	5(4\%)
	7-step ahead	24.3465	29.8233	1.8736	25(20\%)	4(3.2\%)
	10 -step ahead	32.1432	39.9784	2.4727	25(20\%)	6(4.8\%)
	15 -step ahead	37.0640	45.2896	2.8587	30(24\%)	8(6.4\%)
	25 -step ahead	42.2841	51.0354	3.2625	42(33.6\%)	14(11.2\%)
	125 -step ahead	49.0475	63.3683	3.8175	29(23.2\%)	10(8\%)

[^6]Hence, by considering both results of forecast evaluations and prediction intervals, the model of $\operatorname{ARIMA}(0,1,0)-\operatorname{GARCH}(1,1)$ with t innovations is suggested for practical use. The preference of the ARIMA-GARCH model in forecasting the gold prices is supported by the smallest values of normalised AIC and SIC, as well as in line with the principle of parsimony. Yet, it can be said that world daily gold price can be forecasted accurately using ARIMA($0,1,0$)-GARCH(1,1) with MAPE statistic values of less than or around 5\% which is considered to be relatively good (Girish, 2016). Therefore, by using the fourth procedure of BJ-G, the ARIMA-GARCH model has the best forecasting performance for the daily gold prices as compared to other models.
(a)

(b)

(c)

Figure 4.30 Plot of actual data and one-step ahead forecast of gold prices using $\operatorname{ARIMA}(0,1,0)$ and (a) $\operatorname{GARCH}(1,1)$ with $\varepsilon_{t} \sim t$, (b) $\operatorname{EGARCH}(1,1)$ with $\varepsilon_{t} \sim \operatorname{Normal}$, (c) TGARCH(1,1) with $\varepsilon_{t} \sim$ Normal; with 80% (in green dashed line) and 95% (in black dashed line) PIs

Figure 4.31 Plot of actual data and the seven-step ahead forecast of daily gold price using $\operatorname{ARIMA}(0,1,0)$ (a) $\operatorname{GARCH}(1,1)$ with $\varepsilon_{t} \sim t$, (b) $\operatorname{EGARCH}(1,1)$ with $\varepsilon_{t} \sim$ Normal, (c) $\operatorname{TGARCH}(1,1)$ with $\varepsilon_{t} \sim$ Normal; with 80% (in green dashed line) and 95% (in black dashed line) PIs

4.6 Conclusion

This case study evaluates the performance of four proposed procedures of BoxJenkins - GARCH (or BJ-G) in modelling and forecasting a highly volatile time series data, specifically the world daily gold prices. The first proposed procedure of BJ-G is used to justify and evaluate the performance of BJ-G model using the world gold price which is thoroughly discussed in Section 4.2. Based on the empirical results in Section 4.2, the first proposed procedure of BJ-G shows a promising approach in analysing and forecasting the data series which simultaneously proves that a combination model of BJG is reliable in forecasting a highly volatile data. The good performance of BJ-G in forecasting the data series due to its capability to understand the characteristics of a highly volatile data series better without violating the basic assumptions of errors as a BoxJenkins model does as well as the combination model overcome the weaknesses of GARCH model in dealing with nonstationary series.

Since the first proposed procedure of BJ-G have shown promising approach, then the second proposed procedure of BJ-G is tested on the daily gold price data by emphasizing on the identification of highly volatile characteristic in the data at the early stage before further analysis is conducted since it is focuses on handling the highly volatile time series data specifically. Based on the empirical results of Section 4.3, the second proposed procedure of BJ-G provides a systematic procedure in modelling and forecasting a highly volatile data, being simultaneously practical to be used in determining the optimal number of data while working with any univariate highly volatile data at any frequency. The empirical results of the world daily gold price suggest that the latest 25% (or 1250) is sufficient enough to be employed in the BJ-G model with similar forecasting performance as by using 5000 data.

Given the overall positive results at the one-step ahead forecast in the empirical results in Section 4.3, therefore the case study in Section 4.4 is aimed at assesing the forecasting performance of the BJ-G model for higher horizons by applying the third proposed procedure of BJ-G to the daily world gold price series of Sample 3. Based on the empirical results, the third proposed procedure provides a promising procedure to assess the performance of the BJ-G model, specifically ARIMA($0,1,0$)-GARCH(1,1) with t innovations, in forecasting up to seven-day ahead gold price. The procedure adds the value of the BJ-G model since it allows the model to follow the nature of the series
well and able to explain more about the characteristics of the highly volatile series up to n-step-ahead forecast.

In Section 4.5, the fourth proposed procedure of BJ-G is applied to Box-Jenkins with all GARCH-type models under consideration in previous studies on highly volatile data that are GARCH-M, EGARCH, TGARCH and APARCH by employing the same data series in Section 4.4. The results of ARIMA-GARCH model from Section 4.3 and 4.4 are used as benchmark in determining the best Box-Jenkins - GARCH-type model in handling the data series. The empirical results reveal that ARIMA($0,1,0)-\operatorname{GARCH}(1,1)$ with t innovations outperforms other ARIMA-GARCH-type models.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction

This chapter summarises the modelling of highly volatile data using time series model, specifically the combination model of Box-Jenkins with GARCH or BJ-G model. This chapter briefly outlines the major conclusions of this doctoral research and recommendations for further improvement.

5.2 Conclusions

This doctoral research focuses on the modelling and forecasting of the univariate highly volatile time series data with Box-Jenkins as the base model and GARCH-type as the variance model. In this study, four proposed procedures are developed in evaluating the performance of Box Jenkins - GARCH-type model in modelling and forecasting highly volatile time series data: the first procedure is proposed for pre-evaluation performance of Box-Jengkins with standard GARCH (or BJ-G) based on the theoretical Box-Jenkins procedure (refer to Figure 3.5); the second procedure is to emphasize on the identification of highly volatile characteristics in the data at the early stage since it is focuses on handling the highly volatile time series data specifically (refer to Figure 3.14); the third is to evaluate the multistep forecasting performance of BJ-G model (refer to Figure 3.15); and the fourth is the comprehensive procedure of BJ-G to apply the procedure to Box-Jenkins with all GARCH-type models in modelling and forecasting highly volatile data for practical purposes (see Figure 3.16). The steps and methods used for each stage in the proposed procedures are investigated and discussed in detail. All the proposed procedures are illustrated using the daily world gold price.

The contributions of this study can be summarised as follows.

1. A literature review on the models and related studies for highly volatile time series data is identified and it is vital to develop the procedure of reliable model that is able to analyse and forecast data which reflects its pattern and volatility clustering characteristic. Primary criteria for the Box-Jenkins as the base model in the proposed procedure is the model comes from the established forecasting techniques in research practice, its reputation as the benchmark model and the forecasting model as well and its capability to analyse almost any time series data. The GARCH-type model is widely applied to handle volatility in a data series. This study combines the Box-Jenkins and GARCH-type models to achieve optimum forecasting performance for highly volatile time series data.
2. The theoretical Box-Jenkins framework and procedure are used in developing the first proposed procedure of BJ-G. With current practices, Box-Jenkins procedures are quite general and not thorough enough to describe the nature of time series data, specifically for non-constant variance that exist in highly volatile data series. In this study, every method used in each step for every stage specifically in model identification and diagnostic checking stages are thoroughly investigated and explained in the proposed procedure of BJ-G. The preliminary empirical results from the case study in Section 4.2 show that the proposed procedure of BJ-G provides a systematic approach in modelling and forecasting gold price, or in general for highly volatile time series data, as well as justify the capability of BJG in handling the data series.
3. In the first proposed procedure of BJ-G, the study suggested new steps and methods, specifically in Stage I (or model identification stage) and Stage III (or diagnostic checking stage). In Stage I, the proposed steps and methods are the step of data descriptive, $k_{\max }$ for ACF and PACF as well as for ADF-test in the data differenced step, the step of prelinearity test, the step of Portmanteau test and the EACF method. In Stage III, the study proposed a system in detecting and handling the heteroscedasticity in the residuals of the Box-Jenkins model which consists of new steps and methods including the DW-test and $k_{\text {max }}$ for LBQ-test in checking on autocorrelation, $k_{\max }$ for ARCH test and LBQ-test for heteroscedasticity test
and introduced the step of linearity test using Terasvirta test in checking the linearity of mean model for BJ-G.
4. The appropriate distribution of innovations of the BJ-G model is also investigated in Stage III of the first proposed procedure of BJ-G to ensure the model fits the data series well. There are five types of widely used innovations ε_{t} considered in this study that are Normal, t, skewed- t, GED and Skewed-GED. The steps in considering the appropriate ε_{t} are discussed thoroughly in the case study of Section 4.2.
5. The promising performance of BJ-G model using the first proposed procedure is lead to the second proposed procedure of BJ-G that focuses on handling the highly volatile time series data specifically, using BJ-G model by emphasizing on the identification of highly volatile characteristics in the data at the early stage. A significant modification is done specifically to Stage I in the second proposed procedure, by proposing the step of preliminary heteroscedasticity test and the identification step of the BJ-G model. This proposed procedure of BJ-G is to accomplish the second objective in the thesis, which is the empirical results are thoroughly discussed in Section 4.3.
6. The empirical results of the world daily gold price in Section 4.3 indicate that the second procedure of $\mathrm{BJ}-\mathrm{G}$ is more practical than the first propose procedure in modelling highly volatile data using BJ-G model which simultaneously ensures an optimal number of data in dealing with the model to any univariate highly volatile data at any frequency. Hence, it is suggested that the latest 25% of data or 1250 data is sufficient to be employed using BJ-G model with similar forecasting performance as by using all data.
7. This study supports the use of Box-Cox transformation method in the data transformation step to address the issue of nonstationarity in-variance. By applying the method, analyst will choose the appropriate transformation for data series that best suits the nature of data. The importance of the method is proven in the case study of Section 4.3 using the second proposed procedure of BJ-G, where it can be observed that some of the samples considered are not suitable for logarithmic transformation. The implication of using inappropriate transformation data will lead to inaccurate forecasting results.
8. Given the overall positive results at the one-step ahead forecast of BJ-G model using the second proposed procedure, the third proposed procedure of BJ-G is proposed in evaluating the performance of the model at higher horizons. In the proposed procedure, sets of codes in R language are constructed since the software including EViews is only able to provide the results for one-step ahead forecast. The steps are clearly explained in the proposed procedure with consideration of 95% and 80% prediction intervals. This proposed procedure of BJ-G is to cater the third objective in the thesis.
9. The latest 5 -year (or 1250 data) world daily gold price is employed to the third proposed procedure in evaluating the multistep forecasting performance of BJ-G model. Based on the empirical results, the model is able to follow the trend of actual data up to seven days ahead, specifically within 95% prediction interval. This indicates that, the third proposed procedure provides a promising procedure in evaluating the forecasting performance of BJ-G model up to n-step ahead for a univariate highly volatile time series data.
10. This study contributes to a comprehensive procedure in modelling and forecasting up to n-step ahead for highly volatile time series data using Box-Jenkins with all GARCH-type models, as proposed by the fourth proposed procedure of BJ-G. The fourth proposed procedure is a combination of the second proposed procedure of $\mathrm{BJ}-\mathrm{G}$ and the third proposed procedure of BJ-G. The fourth proposed procedure of BJ-G is not only applicable for Box-Jenkins with standard GARCH model but it can also be applied to Box-Jenkins with all GARCH-type models including GARCH-M, EGARCH, TGARCH and APARCH which heve been widely used in the previous studies. The capability of the fourth proposed procedure of BJ-G in providing an efficient procedure in handling highly volatile data using BoxJenkins - GARCH-type models is evaluated in Section 4.5. The empirical results in Section 4.5 reveal that ARIMA with standard GARCH, or specifically ARIMA(0,1,0)-GARCH(1,1) with t innovations outperforms other ARIMA-GARCH-type models.
11. This study enhances the capability of standard Box-Jenkins's procedure in handling a highly volatile data by considering GARCH-type model to handle variance without violating the basic assumptions of errors. The proposed procedure of BJ-G adds the value of the Box-Jenkins model since it allows the BJ model with a combination of GARCH to follow the nature of the series well and
understand better the characteristics of the highly volatile series up to n-stepahead forecast.
12. Improving forecasting method is one of the main issues in time series research. Therefore, the comprehensive proposed procedure of BJ-G (or the fourth propose procedure) improves the effectiveness of the forecasting model of Box-Jenkins -GARCH-type in modelling and forecasting a univariate highly volatile time series data. The guidelines given by the proposed procedure of BJ-G package with R codes developed provide a good tool to demonstrate the capability of the model of Box-Jenkins - GARCH-type in handling the highly volatile data systematically and practically.

5.3 Recommendations

There are many possible extensions to enhance the performance of the comprehensive proposed procedure of BJ-G (the fourth proposed procedure). Empirical experience suggests that:

1. The proposed procedure of BJ-G is applicable for any univariate highly volatile time series data such as commodity prices, stock price, temperature data and rainfall data, of any frequencies, i.e. weekly, monthly, quarterly and yearly.
2. The steps and methods used in the proposed procedures of BJ-G are also practical to be used for the Box-Jenkins modelling. It is noted that current practices in the Box-Jenkins modelling are quite general and the steps and methods used are lack of details.
3. The performance of the proposed procedure of BJ-G is suggested to be tested using different ratios of estimate to forecast such as 95:5, 80:20 (as recommended by Hyndman and Athanasopoulus (2014)), 70:30 or 50:50.
4. The proposed procedure of BJ-G is suggested to consider highly volatile time series data with outlier, seasonality effect and missing data.
5. The proposed procedure can be applied to bivariate and multivariate highly volatile time series data. For example, analysis on the comparison between local and world data could be an interesting research in bivariate analysis.

REFERENCES

Ahmad, M. H., Ping, P. Y., Yaziz, S. R., \& Miswan, N. H. (2014). A hybrid model for improving Malaysian gold forecast accuracy. International Journal of Mathematical Analysis, 8, 1377-1387.

Ahmad, M. H., Ping, P. Y., Yaziz, S. R., \& Miswan, N. H. (2015). Forecasting Malaysian gold using a hybrid of ARIMA and GJR-GARCH models. Applied Mathematical Sciences, 9, 1491-1501.

Ahmed, W. M. A. (2017). On the dynamic interactions between energy and stock markets under structural shifts: Evidence from Egypt. Research in International Business and Finance, 42, 61-74.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723.

Alasali, F., Haben, S., Becerra, V., \& Holderbaum, W. (2018). Day-ahead industrial load forecasting for electric RTG cranes. Journal of Modern Power Systems and Clean Energy, 6(2), 223-234.

Alcidi, C., De Grauwe, P., Gros, D., \& Oh, Y. (2010). The Future of the Eurozone and Gold. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1672672

Allen, H., \& Taylor, M. P. (1990). Charts, Noise and Fundamentals in the London Foreign Exchange Market. The Economic Journal, 100(400), 49.

Asar, Ö., Ilk, O., \& Dag, O. (2017). Estimating Box-Cox power transformation parameter via goodness-of-fit tests. Communications in Statistics - Simulation and Computation, 46(1), 91-105.

Awang, N., Kar Yong, N., \& Yin Hoeng, S. (2017). Forecasting ozone concentration levels using Box-Jenkins ARIMA modelling and artificial neural networks: A comparative study. MATEMATIKA, 33(2), 119-130.

Babu, N. C., \& Reddy, E. B. (2015). Prediction of selected Indian stock using a partitioning-interpolation based ARIMA-GARCH model. Applied Computing and Informatics, 11(2), 130-143.

Barros, M., \& de Medeiros, L. (2017). Electricity spot price forecasting in Brazil using a hybrid neuro-fuzzy system and neural network approach. International Journal of Energy and Statistics, 05(01), 1750004.

Baur, D. G., \& Lucey, B. M. (2010). Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold. Financial Review, 45(2), 217-229.

Boland, J. (2008). Time Series Modelling of Solar Radiation. In V. Badescu (Ed.), Modeling Solar Radiation at the Earth's Surface (pp. 283-312).

Boland, P. J. (1984). A Biographical Glimpse of William Sealy Gosset. The American Statistician, 38(3), 179-183.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307-327.

Box, G. E. P., \& Cox, D. R. (1964). An Analysis of Transformations. Journal of the Royal Statistical Society, 26(2), 211-252.

Box, G. E. P., \& Jenkins, G. M. (1968). Some Recent Advances in Forecasting and Control. Journal of the Royal Statistical Society. Series C (Applied Statistics), 17(2), 91-109.

Box, G. E. P., \& Jenkins, G. M. (1976). Time series analysis: forecasting and control (Rev. ed). San Francisco: Holden-Day.

Box, G. E. P., Jenkins, G. M., \& Bacon, D. W. (1967). Models for forecasting seasonal and non-seasonal time series (pp. 271-311).

Box, G. E. P., Jenkins, G. M., \& Reinsel, G. C. (2008). Time Series Analysis: Box/Time Series Analysis.

Box, G. E. P., \& Pierce, D. A. (1970). Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models. Journal of the American Statistical Association, 65(332), 1509-1526.

Box, G. E. P., \& Tiao, G. C. (1992). Bayesian Inference in Statistical Analysis: Box/Bayesian.

Byström, H. N. E. (2005). Extreme value theory and extremely large electricity price changes. International Review of Economics \& Finance, 14(1), 41-55.

Castellano-Méndez, M., González-Manteiga, W., Febrero-Bande, M., Manuel PradaSánchez, J., \& Lozano-Calderón, R. (2004). Modelling of the monthly and daily behaviour of the runoff of the Xallas river using Box-Jenkins and neural networks methods. Journal of Hydrology, 296(1), 38-58.

Chakravarty, S., Mohapatra, P., \& Dash, P. K. (2016). Evolutionary extreme learning machine for energy price forecasting. International Journal of Knowledge-Based and Intelligent Engineering Systems, 20(2), 75-96.

Chand, S., Kamal, S., \& Ali, I. (2012). Modeling and Volatility Analysis of Share Prices Using ARCH and GARCH Models. World Applied Sciences Journal, 19(1), 7782.

Chatfield, C. (2001). Time-series forecasting. Retrieved from http://www.crcnetbase.com/isbn/9781584880639

Chen, C., Hu, J., Meng, Q., \& Zhang, Y. (2011). Short-time traffic flow prediction with ARIMA-GARCH model. 2011 IEEE Intelligent Vehicles Symposium (IV), 607612.

Chen, X., Dong, Z. Y., Meng, K., Xu, Y., Wong, K. P., \& Ngan, H. W. (2012). Electricity Price Forecasting With Extreme Learning Machine and Bootstrapping. IEEE Transactions on Power Systems, 27(4), 2055-2062.

Chitsaz, H., Shaker, H., Zareipour, H., Wood, D., \& Amjady, N. (2015). Short-term electricity load forecasting of buildings in microgrids. Energy and Buildings, 99, 50-60.

Christodoulos, C., Michalakelis, C., \& Varoutas, D. (2010). Forecasting with limited data: Combining ARIMA and diffusion models. Technological Forecasting and Social Change, 77(4), 558-565.

Dalmazo, B. L., Vilela, J. P., \& Curado, M. (2017). Performance Analysis of Network Traffic Predictors in the Cloud. Journal of Network and Systems Management, 25(2), 290-320.

Daniels, H. E. (1956). The Approximate Distribution of Serial Correlation Coefficients. Biometrika, 43(1/2), 169-185.

Darekar, A., \& Reddy, A. A. A. (2017). Forecasting of Common Paddy Prices in India. Journal of Rice Research, 10(1), 71-75.

De Gooijer, J. G., \& Hyndman, R. J. (2006). 25 years of time series forecasting. International Journal of Forecasting, 22(3), 443-473.

Dickey, D. A., \& Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association, 74(366a), 427-431.

Ding, Z., Granger, C. W. J., \& Engle, R. F. (1993). A long memory property of stock market returns and a new model. Journal of Empirical Finance, 1(1), 83-106.

Dunis, C. L., \& Nathani, A. (2007). Quantitative trading of gold and silver using nonlinear models. Neural Network World, 17(2), 93-111.

Durbin, J., \& Watson, G. S. (1971). Testing for Serial Correlation in Least Squares Regression. Biometrika, 58(1), 1-19.

Engle, R. (2001). GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics. Journal of Economic Perspectives, 15(4), 157-168.

Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), 987-1007.

Ferenstein, E., \& Gasowski, M. (2004). Modelling stock returns with AR-GARCH processes. SORT, 28(1), 55-68.

Fouli, H., Fouli, R., Bashir, B., \& Loni, O. A. (2017). Seasonal forecasting of rainfall and runoff volumes in Riyadh region, KSA. KSCE Journal of Civil Engineering, $1-11$.

Fox, J., Weisberg, S., Adler, D., \& Bates, D. (2015). Package 'car' (Version 2.1-4).

Francq, C., \& Zakoïan, J.-M. (2010). Inconsistency of the MLE and inference based on weighted LS for LARCH models. Journal of Econometrics, 159(1), 151-165.

Freedi, A. A., Shamiri, A., \& Isa, Z. (2012). A Study on the Behavior of Volatility in Saudi Arabia Stock Market Using Symmetric and Asymmetric GARCH Models. Journal of Mathematics and Statistics, 8(1), 98-106.

Gaglianone, W. P., \& Marins, J. T. M. (2017). Evaluation of exchange rate point and density forecasts: An application to Brazil. International Journal of Forecasting, 33(3), 707-728.

García-Ferrer, A., González-Prieto, E., \& Peña, D. (2012). A conditionally heteroskedastic independent factor model with an application to financial stock returns. International Journal of Forecasting, 28(1), 70-93.

Gel, Y. R., Lyubchich, V., \& Ahmed, S. E. (2016). Catching Uncertainty of Wind: A Blend of Sieve Bootstrap and Regime Switching Models for Probabilistic ShortTerm Forecasting of Wind Speed. In W. K. Li, D. A. Stanford, \& H. Yu (Eds.), Advances in Time Series Methods and Applications (Vol. 78, pp. 279-293).

Giddy, I. H., \& Dufey, G. (1975). The Random Behavior of Flexible Exchange Rates: Implications for Forecasting. Journal of International Business Studies, 6(1), 132.

Giller, G. L. (2005). A Generalized Error Distribution (SSRN Scholarly Paper No. ID 2265027). Retrieved from Social Science Research Network website: https://papers.ssrn.com/abstract=2265027

Girish, G. P. (2016). Spot electricity price forecasting in Indian electricity market using autoregressive-GARCH models. Energy Strategy Reviews, 11-12, 52-57.

Gonçalves, S., \& Meddahi, N. (2011). Box-Cox transforms for realized volatility. Journal of Econometrics, 160(1), 129-144.

Granger, C. W. J., \& Andersen, A. (1978). On the invertibility of time series models. Stochastic Processes and Their Applications, 8(1), 87-92.

Hammoudeh, S. M., Yuan, Y., McAleer, M., \& Thompson, M. A. (2010). Precious metals-exchange rate volatility transmissions and hedging strategies. International Review of Economics and Finance, 19(4), 633-647.

Hammoudeh, S., Malik, F., \& McAleer, M. (2011). Risk management of precious metals. Quarterly Review of Economics and Finance, 51(4), 435-441.

Hammoudeh, S., \& Yuan, Y. (2008). Metal volatility in presence of oil and interest rate shocks. Energy Economics, 30(2), 606-620.

Hanke, J. E., Reitsch, A. G., \& Wichern, D. W. (2001). Business forecasting (7th ed). Upper Saddle River, N.J: Prentice Hall.

Harrison, B., \& Paton, D. (2004). Transition, the Evolution of Stock Market Efficiency and Entry into EU: The Case of Romania. Economic Change and Restructuring, 37(3-4), 203-223.

Higgins, M. L., \& Bera, A. K. (1992). A Class of Nonlinear Arch Models. International Economic Review, 33(1), 137-158.

Ho, S. ., Xie, M., \& Goh, T. . (2002). A comparative study of neural network and BoxJenkins ARIMA modeling in time series prediction. Computers \& Industrial Engineering, 42(2-4), 371-375.

Hu, J., Wang, J., \& Zeng, G. (2013). A hybrid forecasting approach applied to wind speed time series. Renewable Energy, 60, 185-194.

Hyndman, R. J., \& Athanasopoulos, G. (2014). Forecasting: principles and practice. OText.

Hyndman, R. J., \& Athanasopoulos, G. (2017). Forecasting: principles and practice. OText.

Hyndman, R. J., Athanasopoulos, G., Razbash, S., Schmidt, D., Zhou, Z., Khan, Y., \& Wang, E. (2015). forecast: Forecasting functions for time series and linear models. R package (Version 6(6),7).

Hyndman, R. J., \& Kostenko, A. V. (2017). Minimum sample size requirements for seasonal forecasting models. Foresight: The International Journal of Applied Forecasting, 6, 12-15.

Jarque, C. M., \& Bera, A. K. (1987). A Test for Normality of Observations and Regression Residuals. International Statistical Review / Revue Internationale de Statistique, 55(2), 163-172.

Jenkins, G. M. (1961). General Considerations in the Analysis of Spectra. Technometrics, 3(2), 133-166.

Johnston, J., \& DiNardo, J. (1997). Econometric methods (4th ed). New York: McGraw-Hill.

Jun, W., Lingyu, T., Yuyan, L., \& Peng, G. (2017). A weighted EMD-based prediction model based on TOPSIS and feed forward neural network for noised time series. Knowledge-Based Systems, 132, 167-178.

Khan, M. M. A. (2013). Forecasting of Gold Prices (Box Jenkins Approach). International Journal of Emerging Technology and Advanced Engineering, 3(3), 662-670.

Khashei, M., \& Bijari, M. (2010). An artificial neural network (p, d, q) model for timeseries forecasting. Expert Systems with Applications, 37(1), 479-489.

Konishi, S., \& Kitagawa, G. (2008). Information Criteria and Statistical Modeling. Retrieved from //www.springer.com/gp/book/9780387718866

Koopman, S. J., Ooms, M., \& Carnero, M. A. (2007). Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices. Journal of the American Statistical Association, 102(477), 16-27.

Lee, M. H., Sadaei, H. J., \& Suhartono. (2013). Improving TAIEX forecasting using fuzzy time series with Box-Cox power transformation. Journal of Applied Statistics, 40(11), 2407-2422.

Liu, G., Tarasick, D. W., Fioletov, V. E., Sioris, C. E., \& Rochon, Y. J. (2009). Ozone correlation lengths and measurement uncertainties from analysis of historical ozonesonde data in North America and Europe. Journal of Geophysical Research, 114(D4).

Liu, H., Erdem, E., \& Shi, J. (2011). Comprehensive evaluation of ARMA-GARCH(M) approaches for modeling the mean and volatility of wind speed. Applied Energy, 88(3), 724-732.

Liu, H., \& Shi, J. (2013). Applying ARMA-GARCH approaches to forecasting shortterm electricity prices. Energy Economics, 37, 152-166.

Liu, Heping, \& Shi, J. (2013). Applying ARMA-GARCH approaches to forecasting short-term electricity prices. Energy Economics, 37, 152-166.

Liu, Heping, Shi, J., \& Qu, X. (2013). Empirical investigation on using wind speed volatility to estimate the operation probability and power output of wind turbines. Energy Conversion and Management, 67, 8-17.

Liu, W., Chung, C. Y., \& Wen, F. (2014). Multifractal based return interval approach for short-term electricity price volatility risk estimation. IET Generation, Transmission \& Distribution, 8(9), 1550-1560.

Ljung, G. M., \& Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297-303.

Loi, T. S. A., \& Ng, J. L. (2018). Anticipating electricity prices for future needs Implications for liberalised retail markets. Applied Energy, 212, 244-264.

Luetkepohl, H., \& Xu, F. (2011). Forecasting Annual Inflation with Seasonal Monthly Data: Using Levels versus Logs of the Underlying Price Index. Journal of Time Series Econometrics, 3(1).

MacKinnon, J. G. (1996). Numerical Distribution Functions for Unit Root and Cointegration Tests. Journal of Applied Econometrics, 11(6), 601-618.

McLeod, A. I., \& Li, W. K. (1983). Diagnostic Checking Arma Time Series Models Using Squared-Residual Autocorrelations. Journal of Time Series Analysis, 4(4), 269-273.

Michis, A. A. (2015). A wavelet smoothing method to improve conditional sales forecasting. Journal of the Operational Research Society, 66(5), 832-844.

Miswan, N. H., Ping, P. Y., \& Ahmad, M. H. (2013). On parameter estimation for malaysian gold prices modelling and forecasting. International Journal of Mathematical Analysis, 7(21-24), 1059-1068.

Myung, I. J. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47(1), 90-100.

Naser, H. (2016). Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach. Energy Economics, 56, 75-87.

Nelson, D. B. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, 59(2), 347.

Olivier, J., \& Norberg, M. M. (2010). Positively Skewed Data: Revisiting the Box-Cox Power Transformation. International Journal of Psychological Research, 3(1), 68-75.

Ord, J. K., Koehler, A. B., Snyder, R. D., \& Hyndman, R. J. (2009). Monitoring processes with changing variances. International Journal of Forecasting, 25(3), 518-525.

Osborne, J. W. (2010). Improving your data transformations: Applying the Box-Cox transformation. 15(12), 1-9.

Panapakidis, I. P. (2016). Application of hybrid computational intelligence models in short-term bus load forecasting. Expert Systems with Applications, 54, 105-120.

Pandey, T. N., Jagadev, A. K., Dehuri, S., \& Cho, S.-B. (2019). A review and empirical analysis of neural networks based exchange rate prediction. Intelligent Decision Technologies, 12(4), 423-439.

Pham, H. T., \& Yang, B.-S. (2010). Estimation and forecasting of machine health condition using ARMA/GARCH model. Mechanical Systems and Signal Processing, 24(2), 546-558.

Polydoras, G. N., Anagnostopoulos, J. S., \& Bergeles, G. C. (1998). Air quality predictions: dispersion model vs Box-Jenkins stochastic models. An implementation and comparison for Athens, Greece. Applied Thermal Engineering, 18(11), 1037-1048.

Proietti, T., \& Lütkepohl, H. (2013). Does the Box-Cox transformation help in forecasting macroeconomic time series? International Journal of Forecasting, 29(1), 88-99.

Qadan, M., \& Yagil, J. (2012). Fear sentiments and gold price: Testing causality inmean and in-variance. Applied Economics Letters, 19(4), 363-366.

Quenouille, M. H. (1949). Approximate Tests of Correlation in Time-Series. Journal of the Royal Statistical Society. Series B (Methodological), 11(1), 68-84.

Ripley, B., Venables, B., Bates, D. M., \& Hornik, K. (2017). Package ‘MASS' (Version 7.3-49).

Robeson, S. M., \& Steyn, D. G. (1990). Evaluation and comparison of statistical forecast models for daily maximum ozone concentrations. Atmospheric Environment. Part B. Urban Atmosphere, 24(2), 303-312.

Ruppert, D., \& Matteson, D. S. (2015). GARCH Models. In Springer Texts in Statistics. Statistics and Data Analysis for Financial Engineering (pp. 405-452).

Said, S. E., \& Dickey, D. A. (1984). Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika, 71(3), 599-607.

Sakia, R. M. (1992). The Box-Cox Transformation Technique: A Review. The Statistician, 41(2), 169.

Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 461-464.

Schwert, G. W. (1989). Why Does Stock Market Volatility Change Over Time? The Journal of Finance, 44(5), 1115-1153.

Shafiee, S., \& Topal, E. (2010). An overview of global gold market and gold price forecasting. Resources Policy, 35(3), 178-189.

Singh, U. P., \& Jain, S. (2018). Optimization of neural network for nonlinear discrete time system using modified quaternion firefly algorithm: case study of Indian currency exchange rate prediction. Soft Computing, 22(8), 2667-2681.

Smith, G. (2002). Tests of the random walk hypothesis for London gold prices. Applied Economics Letters, 9(10), 671-674.

Snedecor, G. W., \& Cochran, W. G. (1980). Statistical methods (7th ed). Ames, Iowa: Iowa State University Press.

Sohn, S. Y., \& Lim, M. (2007). Hierarchical forecasting based on AR-GARCH model in a coherent structure. European Journal of Operational Research, 176(2), 1033-1040.

Subbotin, M. T. (1923). On the Law of Frequency of Error. Matematicheskii Sbornik, 31(2), 296-301.

Tan, Z., Zhang, J., Wang, J., \& Xu, J. (2010). Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models. Applied Energy, 87(11), 3606-3610.

Taneja, K., Ahmad, S., Ahmad, K., \& Attri, S. D. (2016). Time series analysis of aerosol optical depth over New Delhi using Box-Jenkins ARIMA modeling approach. Atmospheric Pollution Research, 7(4), 585-596.

Teräsvirta, T. (1994). Specification, Estimation, and Evaluation of Smooth Transition Autoregressive Models. Journal of the American Statistical Association, 89(425), 208-218.

Teräsvirta, T., Lin, C.-F., \& Granger, C. W. J. (1993). Power of the Neural Network Linearity Test. Journal of Time Series Analysis, 14(2), 209-220.

Theodossiou, P. (2008). Financial Data and the Skewed Generalized T Distribution (SSRN Scholarly Paper No. ID 65037). Retrieved from Social Science Research Network website: https://papers.ssrn.com/abstract=65037

Trück, S., \& Liang, K. (2012). Modelling and forecasting volatility in the gold market. International Journal of Banking and Finance, 9(1). Retrieved from http://epublications.bond.edu.au/ijbf/vol9/iss1/3

Tsay, R. S. (2005). Analysis of Financial Time Series, 2nd ed. John Wiley \& Sons, Inc.
Tsay, R. S. (2013). An introduction to analysis of financial data with R. Hoboken, N.J: Wiley.

Tsay, R. S., \& Tiao, G. C. (1984). Consistent Estimates of Autoregressive Parameters and Extended Sample Autocorrelation Function for Stationary and Nonstationary ARMA Models. Journal of the American Statistical Association, 79(385), 84-96.

Tukey, J. W. (1957). On the Comparative Anatomy of Transformations. The Annals of Mathematical Statistics, 28(3), 602-632.

Tzagkarakis, G., Caicedo-Llano, J., \& Dionysopoulos, T. (2015). Sparse modeling of volatile financial time series via low-dimensional patterns over learned dictionaries. Algorithmic Finance, 4(3-4), 139-158.

Verbeek, J. J. (2004). Mixture models for clustering and dimension reduction., S.1.
Villegas, M. A., Pedregal, D. J., \& Trapero, J. R. (2018). A support vector machine for model selection in demand forecasting applications. Computers \& Industrial Engineering, 121, 1-7.

Walid, C., Chaker, A., Masood, O., \& Fry, J. (2011). Stock market volatility and exchange rates in emerging countries: A Markov-state switching approach. Emerging Markets Review, 12(3), 272-292.

Wang, B., Huang, H., \& Wang, X. (2012). A novel text mining approach to financial time series forecasting. Neurocomputing, 83, 136-145.

Wang, T. Y., \& Huang, C. Y. (2007). Improving forecasting performance by employing the Taguchi method. European Journal of Operational Research, 176(2), 10521065.

Wang, W., Van Gelder, P. H. A. J. M., Vrijling, J. K., \& Ma, J. (2005). Testing and modelling autoregressive conditional heteroskedasticity of streamflow processes. Nonlinear Processes in Geophysics, 12(1), 55-66.

Weerathunga, H. P. S. ., \& Silva, A. T. P. (2018). DRNN-ARIMA Approach to Shortterm Trend Forecasting in Forex Market. 2018 18th International Conference on Advances in ICT for Emerging Regions (ICTer), 287-293.

Wei, W. W. S. (2006). Time series analysis: univariate and multivariate methods (2nd ed). Boston: Pearson Addison Wesley.

Yang, B., Zhang, W., \& Wang, H. (2019). Stock Market Forecasting Using Restricted Gene Expression Programming. Computational Intelligence and Neuroscience, 2019, 1-14.

Yaziz, S. R., Ahmad, M. H., Nian, L. C., \& Muhammad, N. (2011). A comparative study on Box-Jenkins and Garch models in forecasting crude oil prices. Journal of Applied Sciences, 11(7), 1129-1135.

Yaziz, S. R., Azizan, N. A., Ahmad, M. H., \& Zakaria, R. (2016). Modelling gold price using ARIMA-TGARCH. Applied Mathematical Sciences, 10, 1391-1402.

Yaziz, S. R., Azizan, N. A., Ahmad, M. H., Zakaria, R., Agrawal, M., \& Boland, J. (2014). Innovations in the ARIMA-GARCH Modeling in Forecasting Gold Price. PROCEEDINGS OF THE 10TH IMT-GT INTERNATIONAL CONFERENCE ON MATHEMATICS, STATISTICS AND ITS APPLICATIONS 2014 (ICMSA2014), 650-658.

Yaziz, S. R., Azizan, N. A., Zakaria, R., \& Ahmad, M. H. (2013, December 1). The performance of hybrid ARIMA-GARCH modeling in forecasting gold price. Presented at the 20th International Congress on Modelling and Simulation, Adelaide, Australia.

Yu, Y., Choi, T.-M., \& Hui, C.-L. (2012). An Intelligent Quick Prediction Algorithm With Applications in Industrial Control and Loading Problems. IEEE Transactions on Automation Science and Engineering, 9(2), 276-287.

Yule, G. U. (1927). On a method of investigating periodicities disturbed series, with special reference to Wolfer's sunspot numbers. Phil. Trans. R. Soc. Lond. A, 226(636-646), 267-298.

Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159-175.

Zhou, B., He, D., \& Sun, Z. (2006). Traffic predictability based on ARIMA/GARCH model. 2006 2nd Conference on Next Generation Internet Design and Engineering, NGI 2006, 200-207.

Živkov, D., Njegić, J., Momčilović, M., \& Milenković, I. (2016). Exchange Rate Volatility and Uncovered Interest Rate Parity in the European Emerging Economies. Prague Economic Papers, 25(3), 253-270.

Zivot, E., \& Wang, J. (2003). Rolling Analysis of Time Series. In Modeling Financial Time Series with S-Plus® (pp. 299-346).

APPENDIX 1 RESEARCH ACHIEVEMENT

PATENT/COPYRIGHT

1. Patent of "Method and System for Forecasting Commodity Prices", Yaziz, S. R., Zakaria, R. Patent Application PI2018000655, Dated 7 May 2018.
2. Copyright of "Forecasting Malaysia Gold Price using Hybrid ARIMA with Symmetric GARCH Modeling (Backward ARIMA-GARCH in Forecasting Gold Price for Malaysia Market)", Yaziz, S. R., Zakaria, R. Azizan, N. A., Ahmad, M. H., Satari, S. Z., Dated 12 May 2015.

PUBLICATIONS (JOURNAL AND INDEXED PROCEEDINGS)

1. Yaziz, S.R., Zakaria, R. and Boland, J., Multistep Forecasting for Highly Volatile Data using New Procedure of Box-Jenkins and GARCH, ASM Science Journal. (Scopus Indexed). Submitted in October 2018 (in review)
2. Yaziz, S. R., Zakaria, R. and Ahmad, M. H. (2017). Determination of sample size for higher volatile data using new framework of Box-Jenkins model with GARCH: A case study on gold price, IOP Conf. Series: Journal of Physics: Conf. Series 890, 012161. (Scopus Indexed)
3. Yaziz, S. R., Azizan, N. A., Ahmad, M. H. and Zakaria, R. (2016). Modeling gold price using ARIMA - TGARCH", Applied Mathematical Sciences, 10(28), 13911402. (Scopus Indexed) - 3 citations (based on google scholar on 10 May 2019)
4. Yaziz, S.R., Azizan, N.A., Ahmad, M.H., Zakaria, R., Agrawal, M. and Boland, J. (2015). Preliminary analysis on hybrid Box-Jenkins - GARCH modeling in forecasting gold price, AIP Conference Proceedings 1643, 289-297. (ISI Indexed) - 3 citations (based on google scholar on 10 May 2019)
5. Ahmad, M. H, Pung, Y. P., Yaziz, S. R. and Miswan, N. H. (2015). Forecasting Malaysian gold using a hybrid of ARIMA and GJR-GARCH models, Applied Mathematical Sciences, 9(30), 1491-1501. (Scopus Indexed)
6. Ahmad, M. H, Pung, Y. P., Yaziz, S. R. and Miswan, N. H. (2014). A hybrid model for improving Malaysian gold forecast accuracy, International Journal of Mathematical Analysis, 8(28), 1377-1387. (Scopus Indexed)
7. Yaziz, S.R., Azizan, N.A., Ahmad, M.H., Zakaria, R., Agrawal, M. and Boland, J. (2014). Innovations in the ARIMA-GARCH modelling in forecasting gold price, Proceedings of The $10^{\text {th }}$ IMT-GT International Conference on Mathematics, Statistics and Its Applications 2014 (ICMSA2014), e-ISBN 978-967-0524-67-2, 650-658.
8. Yaziz, S. R., Azizan, N. A., Zakaria, R. and Ahmad, M. H. (2013). The performance of hybrid ARIMA - GARCH modelling in forecasting gold price, Proceedings of The $20^{\text {th }}$ International Congress on Modelling and Simulation (MODSIM2013), 1201-1207. (ISI Indexed)- 17 citations (based on google scholar on 10 May 2019)

MANUSCRIPT REVIEWER

1. Reviewer for manuscript (on Oct 2017) entitled "A Comparative Study of Series ARIMA/MLP Hybrid Models for Stock Price Forecasting" for Journal of Statistical Computation and Simulation (IF 0.869, Q3), Publisher: Taylor \& Francis.
2. Reviewer for manuscript (on July 2018) entitled "Forecasting Electricity Consumption Using Time Series Model" for The 4th International Conference on the Applications of Science and Mathematics 2018 (SCIEMATHIC2018).
3. Reviewer for manuscript (on July 2018) entitled "Fuzzy time series forecasting model based on frequency density and similarity measure approach" for The 4th International Conference on the Applications of Science and Mathematics 2018 (SCIEMATHIC2018).
4. Reviewer for manuscript (on May 2019) entitled "Different Time Series Models for Forecasting Prices of Coconut Exports in Sri Lanka" for International Conference on Applied \& Industrial Mathematics and Statistics 2019 (ICoAIMS 2019).

AWARDS

1. Silver Medal, in the ITEX 2018 for "Reliable Gold Price Predictor", Kuala Lumpur.
2. Gold Medal, in CITREX 2018 for "Forecasting Gold Price based on Box-Jenkins - GARCH's Procedures", UMP.
3. Bronze Medal, in CITREX 2017 for "Determination of Sample Size for Volatile Data using New Box-Jenkins-GARCH Framework: Gold Price Forecasting", UMP.
4. Bronze Medal, in MTE 2016 for "Forecasting Gold Price using Hybrid of Backward ARIMA - GARCH for Malaysia Market", Kuala Lumpur.
5. Gold Medal, in the CITREX 2015 for "Forecasting Malaysia Gold Price using Hybrid ARIMA with Symmetric GARCH Modeling", UMP.
6. Bronze Medal, in the ITEX 2014 for "Modeling Gold Price using Hybrid of BoxJenkins - GARCH", Kuala Lumpur.
7. Gold Medal, in the CITREX 2014 for "Modeling Gold Price using Hybrid of Box-Jenkins - GARCH", UMP.

CONFERENCES/NON-INDEXED PROCEEDINGS

1. Yaziz, S.R., Zakaria, R. and Suhartono, "ARIMA and Symmetric GARCH-type Models for Forecasting Malaysia Gold Price", International Conference on Applied \& Industrial Mathematics and Statistics 2019 (ICoAIMS 2019), 8-10 Aug 2017, Kuantan (Presenter)
2. Yaziz, S.R., Zakaria, R. and Boland, J., "Multistep Forecasting for Highly Volatile Data using New Procedure of Box-Jenkins and GARCH", Simposium Kebangsaan Sains Matematik ke-26 (SKSM26), 28-29 Nov 2018, Kota Kinabalu, Malaysia. (Presenter)
3. Yaziz, S. R., Zakaria, R. and Ahmad, M. H. "Determination of sample size for higher volatile data using new framework of Box-Jenkins model with GARCH: A case study on gold price", $1^{\text {st }}$ International Conference on Applied \& Industrial Mathematics and Statistics 2017 (ICoAIMS 2017), 8-10 Aug 2017, Kuantan, Malaysia. (Presenter)
4. Yaziz, S.R., Azizan, N.A., Zakaria, R. and Ahmad, M. H. "Modeling Malaysia Gold Price using hybrid of ARIMA and Symmetric GARCH-type models", $4^{\text {th }}$ International Conference on Computer Engineering \& Mathematical Sciences (ICCEMS 2014), 4-5 Dec 2014, Langkawi, Malaysia. (Presenter)
5. Yaziz, S. R., Azizan, N. A., Ahmad, M. H. and Zakaria, R. "Modeling Gold Price using ARIMA - TGARCH", Simposium Kebangsaan Sains Matematik ke-22 (SKSM22), 24-26 Nov 2014, Shah Alam, Malaysia. (Presenter)
6. Yaziz, S.R., Azizan, N.A., Ahmad, M.H., Zakaria, R., Agrawal, M. and Boland, J. "Innovations in the ARIMA-GARCH modeling in forecasting gold price", The $10^{\text {th }}$ IMT-GT International Conference on Mathematics, Statistics and Its Applications 2014 (ICMSA2014), 14-16 Oct 2014, Terengganu, Malaysia. (Presenter)
7. Yaziz, S.R., Azizan, N.A., Ahmad, M.H., Zakaria, R., Agrawal, M. and Boland, J. "Preliminary Analysis on Hybrid Box-Jenkins - GARCH Modeling in Forecasting Gold Price", The $2^{\text {nd }}$ ISM International Statistical Conference 2014 with Applications in Sciences and Engineering (ISM-II), 12-14 Aug 2014, Kuantan, Malaysia. (Presenter)
8. Yaziz, S. R., Azizan, N. A., Zakaria, R. and Ahmad, M. H. "The performance of hybrid ARIMA - GARCH modeling in forecasting gold price", The $20^{\text {th }}$ International Congress on Modelling and Simulation (MODSIM2013), 1-6 Dec 2013, Adelaide, Australia. (Presenter)

APPENDIX 2
 ANALYSIS OF CHAPTER 4 SECTION 4.2

A. Data for Preliminary Study (24 Nov 1993-17 Dec 2013)

1. Time plot for estimate data (24 Nov 1993-20 Dec 2011)

2. Descriptive Statistics for original data

3. Data Stationarity
i. Nonstationary in-Variance: Box-Cox Transformation
> lambda <- BoxCox.lambda(dt2, method=c("guerrero","loglik
"), lower=-1, upper=1); lambda \# to get the value of lambda [1] -0.2146852
4. Time plot for In data- estimate (24 Nov 1993 - 20 Dec 2011)

5. Descriptive Statistics for In data

6. Data Stationarity: in- Mean
i. Analysis on ACF and PACF for Log Data

ii. ADF test

7. Time plot for the first differenced of In data - Stationary data

8. Descriptive Statistics for the first differenced of In data- Stationary series

nobs	4499.000000		test	test statistic	p-value
NAS	0.000000		mean	2.0565	0.0398
Minimum	-0.079719 0.096416		skewness	1.1008	0.2710
1. Quartile	-0.004261		kurtosis	94.6661	0.0000
3. Quartile	0.005289		normality	8974.3798	0.0000
Mean Median	$\begin{aligned} & 0.000324 \\ & 0.000178 \end{aligned}$	$\stackrel{\text { ¢ }}{ }$			
Sum	1.455641				
SE Mean	0.000157	-			
LCL Mean	0.000015	${ }^{\text {¢ }}$			
UCL Mean	0.000632	훈			
Variance	0.000111	-			
stdev	0.010553	8 8-			
skewness	0.040233				
Kurtosis	6.914227			$\underbrace{\text { Price(USD/0z) }}_{0.05}$	${ }_{0} .10$

9. Data Stationarity for the first differenced of \ln data: in- Mean
i. Analysis on ACF and PACF for Log Data

10. Preliminary of Linearity Test

- Plot of stationary data vs lagged stationary data

11. Portmanteau Test

$$
\begin{aligned}
& k=\ln T \text { (Tsay's suggestion): } \\
& \text { X-squared }=19.07, \mathrm{df}=9, \mathrm{p} \text {-value }=0.0246 \\
& \hline k=10(\text { Hyndman's suggestion }) \\
& \text { X-squared }=19.245, \mathrm{df}=10, \mathrm{p} \text {-value }=0.03726 \\
& \hline k=15 \text { (Engle's suggestion) } \\
& \text { X-squared }=35.963, \mathrm{df}=15, \mathrm{p} \text {-value }=0.00179 \\
& \hline
\end{aligned}
$$

MODELLING GOLD PRICE USING BOX-JENKINS MODEL

12. Stage I: BJ Model Identification

Method 1: ACF and PACF					ii. Method 2: EACF	
Autocorrelation	Partial Correlation	AC PAC	Q-Stat	Prob		
保	保	$\|$1 -0.007 -0.007 2 0.006 0.006 3 0.002 0.002 4 0.046 0.046 5 -0.009 -0.009 6 -0.037 -0.038 7 -0.017 -0.018 8 0.005 0.003 9 0.016 0.017 10 -0.006 -0.003 11 -0.042 -0.041 12 -0.032 -0.035 13 0.008 0.005 14 0.010 0.012 15 -0.028 -0.022 16 0.049 0.051 17 -0.001 -0.005 18 0.008 0.003 19 -0.007 -0.005 20 0.029 0.027 21 -0.021 -0.020 22 -0.004 -0.004 23 -0.022 -0.023 24 -0.046 -0.049 25 -0.025 -0.024 26 -0.029 -0.028 27 -0.013 -0.010 28 -0.006 0.001 29 -0.022 -0.023 30 -0.007 -0.011 31 -0.006 -0.004 32 0.003 -0.001 33 -0.031 -0.031 34 0.009 0.006 35 0.011 0.008 36 -0.011 -0.022	0.2247 0.3854 0.4010 9.7870 10.179 16.498 17.838 17.958 19.070 19.245 27.100 31.745 32.020 32.494 35.963 46.834 46.843 47.163 47.400 51.287 53.282 53.344 55.541 64.928 67.831 71.667 72.435 72.585 74.712 74.954 75.108 75.147 79.460 79.829 80.361 80.917	0.635 0.825 0.044 0.070 0.011 0.022 0.025 0.037 0.004 0.002 0.002 0.003 0.002 0.000		Data: dldt2 AR/MA $\begin{array}{lllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$ $0000 \times 0 \times 00000 \times x \quad 0$ $1 \times 000 x 0000000000 x \quad 0$ $2 \times \times 000000000000000$ $3 \times x \times 00 \times 000000000$ $\begin{array}{lllllllllllll}5 & x & x & x & x & x & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 6 & x & x & x & x & x & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0\end{array}$

13. Stage II: BJ Parameter Estimation
i. Method 1: Ordinary Least Square (OLS)

BJ Models	Estimation Results				
ARIMA(0,1,0)	Dependent Variable: D(LDT2) Method: Least Squares Date: 01/26/19 Time: 16:47 Sample (adjusted): 24500 Included observations: 4499 after adjustments				
	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	1 C	0.000324	0.000157	2.056480	0.0398
	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	$\begin{aligned} & 0.000000 \\ & 0.000000 \\ & 0.010553 \\ & 0.500914 \\ & 14093.24 \\ & 2.013938 \end{aligned}$	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		$\begin{array}{r} 0.000324 \\ 0.010553 \\ -6.264609 \\ -6.263184 \\ -6.264107 \end{array}$
$\operatorname{ARIMA}(0,1,1)$	Dependent Variable: D(LDT2) Method: Least Squares Date: 01/26/19 Time: 16:50 Sample (adjusted): 24500 Included observations: 4499 after adjustments Convergence achieved after 3 iterations MA Backcast: 1				
	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	C MA(1)	$\begin{array}{r} \hline 0.000324 \\ -0.006983 \end{array}$	$\begin{aligned} & 0.000156 \\ & 0.014913 \end{aligned}$	$\begin{array}{r} 2.070636 \\ -0.468246 \end{array}$	$\begin{aligned} & \hline 0.0384 \\ & 0.6396 \end{aligned}$
	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000049 -0.000173 0.010554 0.500890 14093.35 0.221870 0.637642	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.000324 0.010553 -6.264214 -6.261364 -6.263209 1.999891
$\operatorname{ARIMA}(0,1,2)$	Dependent Variable: D(LDT2) Method: Least Squares Date: 01/26/19 Time: 16:52 Sample (adjusted): 24500 Included observations: 4499 after adjustments Convergence achieved after 5 iterations MA Backcast: 01				
	Variable	Coefficient	Sta. Error	t-Statistic	c Prob.
	C MA(1) MA(2)	0.000324 -0.007053 0.005504	$\begin{aligned} & 0.000157 \\ & 0.014915 \\ & 0.014915 \end{aligned}$	$\begin{array}{r} 2.059271 \\ -0.472900 \\ 0.369938 \end{array}$	$\begin{aligned} & 0.0395 \\ & 0.6363 \\ & 0.7121 \end{aligned}$
	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000082 -0.000362 0.010555 0.500873 14093.42 0.185243 0.830909	Mean depen S.D. depend Akaike info Schwarz crit Hannan-Qui Durbin-Wats	nt var t var erion on criter. stat	0.000324 0.010553 -6.263802 -6.259527 -6.262296 1.999781
ARIMA(1,1,0)	Dependent Variable: D(LDT2) Method: Least Squares Date: 01/26/19 Time: 16:49 Sample (adjusted): 34500 Included observations: 4498 after adjustments Convergence achieved after 2 iterations				
	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	C $\operatorname{AR(1)}$	$\begin{array}{r} \hline 0.000323 \\ -0.007066 \end{array}$	$\begin{aligned} & 0.000156 \\ & 0.014915 \end{aligned}$	$\begin{array}{r} 2.066070 \\ -0.473776 \end{array}$	$\begin{aligned} & \hline 0.0389 \\ & 0.6357 \end{aligned}$
	R -squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000050 -0.000172 0.010555 0.500880 14089.76 0.224464 0.635683	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Qui Durbin-Wats	ent var t var erion on criter. stat	$\begin{array}{r} 0.000323 \\ 0.010554 \\ -6.264010 \\ -6.261159 \\ -6.263005 \\ 1.999704 \end{array}$

ARIMA(1,1,1)	Dependent Variable: D(LDT2) Method: Least Squares Date: 01/26/19 Time: 16:58 Sample (adjusted): 34500 Included observations: 4498 after adjustments Convergence achieved after 23 iterations MA Backcast: 2				
	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	AR(1) MA(1)	$\begin{array}{r} 0.000323 \\ -0.949915 \\ 0.941225 \end{array}$	0.000157 0.048752 0.052630	$\begin{array}{r} 2.062202 \\ -19.48449 \\ 17.88396 \end{array}$	0.0392 0.0000 0.0000
	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000769 0.000325 0.010552 0.500520 14091.38 1.730768 0.177266	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.000323 0.010554 -6.264285 -6.260009 -6.262778 1.995018
ARIMA(1,1,2)	Dependent Variable: D(LDT2) Method: Least Squares Date: 01/26/19 Time: 17:03 Sample (adjusted): 34500 Included observations: 4498 after adjustments Convergence achieved after 31 iterations MA Backcast: 12				
	Variable	Coefficient	Sta. Error	t-Statistic	Prob.
	C $\mathrm{AR}(1)$ $\mathrm{MA}(1)$ $\mathrm{MA}(2)$	$\begin{array}{r} 0.000323 \\ -0.948769 \\ 0.942483 \\ 0.002639 \end{array}$	$\begin{aligned} & 0.000157 \\ & 0.050704 \\ & 0.052860 \\ & 0.015434 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.056656 \\ -18.71180 \\ 17.82970 \\ 0.171005 \\ \hline \end{array}$	0.0398 0.0000 0.0000 0.8642
	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	$\begin{aligned} & 0.000776 \\ & 0.000109 \\ & 0.010553 \\ & 0.500517 \\ & 14091.39 \\ & 1.163617 \\ & 0.322076 \end{aligned}$	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		$\begin{array}{r} 0.000323 \\ 0.010554 \\ -6.263847 \\ -6.258145 \\ -6.261838 \\ 1.999805 \end{array}$
ARIMA(2,1,0)	Dependent Variable: D(LDT2) Method: Least Squares Date: 01/26/19 Time: 17:07 Sample (adjusted): 44500 Included observations: 4497 after adjustments Convergence achieved after 2 iterations				
	Variable AR(1) AR(2)	Coefficient	Std. Error	t-Statistic	Prob.
		$\begin{array}{r} 0.000323 \\ -0.007010 \\ 0.005924 \end{array}$	0.000157 0.014918 0.014918	$\begin{array}{r} 2.056469 \\ -0.469925 \\ 0.397125 \end{array}$	$\begin{aligned} & 0.0398 \\ & 0.6384 \\ & 0.6913 \end{aligned}$
	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000085 -0.000360 0.010557 0.500858 14086.23 0. 190605 0.826466	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.000323 0.010555 -6.263388 -6.259111 -6. 261881 1.999508
$\operatorname{ARIMA}(2,1,1)$	Dependent Variable: D(LDT2) Method: Least Squares Date: 01/26/19 Time: 17:06 Sample (adjusted): 44500 Included observations: 4497 after adjustments Convergence achieved after 15 iterations MA Backcast: 3				
	Variable	Coefficient	Stal. Error	t-Statistic	Prob.
	C AR(1) AR(2) MA.1)	$\begin{array}{r} 0.000327 \\ 0.512899 \\ 0.014383 \\ -0.520036 \end{array}$	0.000160 0.677528 0.014921 0.677605	$\begin{array}{r} 2.042679 \\ 0.757016 \\ 0.963884 \\ -0.767462 \end{array}$	0.0411 0.4491 0.3352 0.4428
	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000363 -0.000304 0.010557 0.500718 14086.85 0.544494 0.651848	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.000323 0.010555 -6.263222 -6.257519 -6.261213 1.999788
ARIMA(2,1,2)	Dependent Variable: D(LDT2) Method: Least Squares Date: 01/26/19 Time: 17:05 Sample (adjusted): 44500 Included observations: 4497 after adjustments Convergence achieved after 25 iterations MA Backcast: 23				
	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	$\begin{gathered} C \\ \text { AR(1) } \\ \text { AR(2) } \\ \text { MA(1) } \\ \text { MA(2) } \end{gathered}$	$\begin{array}{r} 0.000325 \\ -0.312166 \\ 0.603937 \\ 0.308241 \\ -0.593204 \end{array}$	0.000159 1.141721 1.092842 1.147441 1.089705	$\begin{array}{r} 2.046624 \\ -0.273417 \\ 0.552629 \\ 0.268634 \\ -0.544371 \end{array}$	$\begin{aligned} & 0.0408 \\ & 0.7845 \\ & 0.5805 \\ & 0.7882 \\ & 0.5862 \end{aligned}$
	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000844 -0.0000045 0.010555 0.500477 14087.94 0.949085 0.434377	Mean depenc S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-WVats	ent var t var erion on criter. stat	0.000323 0.010555 -6.263258 -6.256130 -6.260747 2.004295

ii. Method 2: Maximum Likelihood Estimator (MLE)

14．Stage III：BJ Diagnostic Checking
i．ARIMA（0，1，0）using OLS

b． $\mathrm{LB} Q$－statistic Test for Residuals

c．Durbin－Watson Test
Breusch－Godrrey Serial Correlation LM Test：

F－statistic	0.224509	Prob．F（1，4497）	0.6356
Obs＊R－squared	0.224598	Prob．Chi－Square（1）	0.6356
Test Equation：			
Dependent Variable：RESID			
Method：Least Squares			
Date： $01 / 26 / 19$ Time： $18: 11$			
Sample： 24500			
Included observations：4499			
Presample missing value lagged residuals set to zero．			

Variable	Coefficient	Std．Error	t－Statistic	Prob．
C	$-1.47 \mathrm{E}-08$	0.000157	$-9.31 \mathrm{E}-05$	0.9999
RESID（－1）	-0.007066	0.014911	-0.473876	0.6356
R－squared	0.000050	Mean dependent var	$1.58 \mathrm{E}-17$	
Adjusted R－squared	0.000050	S．D．dependent var	0.010553	
S．E．of regression	0.010553	Akaike info criterion	-6.264214	
Sum squared resid	0.500889	Schwarz criterion	-6.261364	
Log likelihood	14093.35	Hannan－Quinn criter．	-6.263210	
F－statistic	0.224559	Durbin－Watson stat	1.999724	
Prob（F－statistic）	0.635611			

d．LBQ－statistic Test on Squared Residuals

Correlogram of Residuals Squared						
Date：01／26／19 Time：18：17 Sample： 24500 Included observations： 4499						
Autocorrelation	Partial Correlation		AC	PAC	Q－Stat	Prob
扫	旧	1	0.164	0.164	121.09	0.000
吅	17	2	0.123	0.098	188.85	0.000
阯	吅	3	0.164	0.134	309.41	0.000
阯	，	4	0.130	0.080	385.09	0.000
归	吅	5	0.164	0.115	506.19	0.000
阯	10	6	0.134	0.067	587.08	0.000
阯	中	7	0.127	0.060	659.79	0.000
早	中	8	0.127	0.054	732.73	0.000
17	1	9	0.098	0.022	776.22	0.000
17	1	10	0.085	0.010	809.15	0.000
中	，	11	0.084	0.012	840.74	0.000
吅	中	12	0.154	0.094	948.24	0.000
中	1	13	0.112	0.035	1004.9	0.000
里	，	14	0.092	0.021	1043.0	0.000
吅	＂	15	0.110	0.037	1097.9	0.000
中	＂	16	0.077	0.001	1124.6	0.000
吅	1］	17	0.150	0.083	1226.7	0.000
㫜	中	18	0.111	0.027	1282.0	0.000
省		19	0.092	0.015	1320.5	0.000
中	中	20	0.130	0.048	1397.3	0.000

e．ARCH Test

Heteroskedasticity Test：ARCH

F－statistic	44.97267	Prob．F（9，4480）	0.0000
Obs＊R－squared	372.0444	Prob．Chi－Square（9）	0.0000

Heteroskedasticity Test．ARCH

F－statistic	40.51851	Prob．F（10，4478）	0.0000
Obs＊R－squared	372.4773	Prob．Chi－Square（10）	0.0000
Heteroskedasticity Test．ARCH			
F－statistic	30.88411	Prob． $\operatorname{F(15,4468)}$	0.0000
Obs＊R－squared	421.2442	Prob．Chi－Square（15）	0.0000

f．Descriptive statistics for the residuals

g．Normal QQ－plot

ii. ARIMA(0,1,0) using MLE

Standardized residuals: to examine IID assumption and to detect possible outliers
ACF of Residuals: ideally,should be within the limit of 2 standard errors
P-values: Ljung-Box Q-stat for residuals, P -value >0.05 up to lag 5

> Box.test (residuals(fit1_bj), lag=10,type="Ljung") \#j jur
Box-Ljung test
data: residuals(fit1_bj)

$$
x \text {-squared }-19.245, d f=10, p \text {-value }=0.03726
$$

$$
>\text { Box.test }(((\text { residuals (fit1_bj))^2),1ag=10, type="Ljung") }
$$

Box-Ljung test

$$
\text { data: }((\text { residuals (fit1_bj))} \wedge 2)
$$

$$
\mathrm{x} \text {-squared }=809.15, \mathrm{df}=10, \mathrm{p} \text {-value }<2.2 \mathrm{e}-16
$$

$$
\text { > normaltest(residuals (fit1_bj), method-' } j b^{\prime} \text {) \#jarque-Ber }
$$

Title:
Jarque - Bera Normalality Test
Test Results:
STATISTIC:
X-squared: 8974. 3798
P VALUE:
Asymptotic p value: < $2.2 \mathrm{e}-16$

B．MODELLING GOLD PRICE USING BOX－JENKINS－GARCH MODEL
1．Stage I：BJ－GARCH Model Identification
i．Mean Model： $\operatorname{ARIMA}(0,1,0)$
ii．Variance Model
ACF and PACF on Squared Residuals
Correlogram of Residuals Squared

Date：01／26／19 Time：18：17
Sample： 24500
Included observations： 4499

Autocorrelation	Partial Correlation		AC	PAC	Q－Stat	Prob
可	归	1	0.164	0.164	121.09	0.000
	吅	2	0.123	0.098	188.85	0.000
吅	扫	3	0.164	0.134	309.41	0.000
尚	吅	4	0.130	0.080	385.09	0.000
白	吅	5	0.164	0.115	506.19	0.000
扫	阯	6	0.134	0.067	587.08	0.000
白	17	7	0.127	0.060	659.79	0.000
少	11	8	0.127	0.054	732.73	0.000
吅	1	9	0.098	0.022	776.22	0.000
䏔	1	10	0.085	0.010	809.15	0.000
吅	1	11	0.084	0.012	840.74	0.000
扫	阳	12	0.154	0.094	948.24	0.000
吅	中	13	0.112	0.035	1004.9	0.000
尚	1	14	0.092	0.021	1043.0	0.000
吅	1	15	0.110	0.037	1097.9	0.000
12	1	16	0.077	0.001	1124.6	0.000
扫		17	0.150	0.083	1226.7	0.000
吅	10	18	0.111	0.027	1282.0	0.000
里	1	19	0.092	0.015	1320.5	0.000
吕	中	20	0.130	0.048	1397.3	0.000

2．Stage II：BJ－GARCH Parameter Estimation（using MLE）

3. Stage III: BJ Diagnostic Checking for ARIMA(0,1,0)-GARCH(1,1)

i. ARIMA (0,1,0)-GARCH $(1,1)$ with Normal distribution

Dependent Variable: D(LDT2)
Method: ML - ARCH (Marquardt) - Normal distribution
Sample (adjusted): 24500

Variable	Coefficient	Std. Error	z-Statistic	Prob.	
C	$4.29 \mathrm{E}-05$	0.000111	0.385310	0.7000	
Variance Equation					
C	$1.27 \mathrm{E}-07$	$2.97 \mathrm{E}-08$	4.274505	0.0000	
RESID(-1)2	0.042750	0.001711	24.98154	0.0000	
GARCH(-1)	0.959363	0.001120	856.8717	0.0000	
R-squared	-0.000707	Mean dependent var	0.000324		
Adjusted R-squared	-0.000707	S.D. dependent var	0.010553		
S.E. of regression	0.010557	Akaike info criterion	-6.589408		
Sum squared resid	0.501269	Schwarz criterion	-6.583708		
Log likelihood	14826.87	Hannan-Quinn criter.	-6.587400		
Durbin-Watson stat	2.012515				

Teraesvirta Neural Network Test
data: d7nx2
$F=4.3915, \mathrm{df} 1=2, \mathrm{df} 2=4496, \mathrm{p}$-va1ue $=0.01243$

> \# estimate model ARIMA(1,1,1)-GARCH $(1,1)$ with cond.dist=normal
$>$ fit21<-garchFit(formula $=\sim \operatorname{arma}(0,0)+g a r c h(1,1)$, data $=$ dldt2, con
d.dist="norm", include.mean = TRUE,trace=F) \# for model with constant
> sum21<-summary(fit21)
Title: GARCH Modelling
Call: garchFit(formula $=\sim \operatorname{arma}(0,0)+\operatorname{garch}(1,1)$, data $=$ dldt2, cond.dist = "norm",inc
lude.mean $=$ TRUE, trace $=\mathrm{F}$)
Mean and Variance Equation: data $\sim \operatorname{arma}(0,0)+\operatorname{garch}(1,1)$
[data = dldt2]
Conditional Distribution: norm
Coefficient (s) :
$\begin{array}{rrrr}\text { mu } & \text { omega } & \text { alpha1 } & \text { betal } \\ 4.4334 e-05 & 1.2762 e-07 & 4.2918 \mathrm{e}-02 & 9.5914 \mathrm{e}-01\end{array}$
Std. Errors:based on Hessian

Error Analysis:

Log Likelihood:
14826.16 normalized: 3.295435

Standardised Residuals Tests:

			Statistic	P-Value
Jarque-Bera Test	R	Chi^2 $^{\prime}$	9453.627	0
Shapiro-Wilk Test	R	W	0.9546877	0
Ljung-Box Test	R	$\mathrm{Q}(10)$	9.327292	0.5013495
Ljung-Box Test	R	$\mathrm{Q}(15)$	17.69191	0.2792092
Ljung-Box Test	R	$\mathrm{Q}(20)$	29.1451	0.08494138
Ljung-Box Test	$\mathrm{R}^{\wedge} 2$	$\mathrm{Q}(10)$	16.81045	0.07866499
Ljung-Box Test	$\mathrm{R}^{\wedge} 2$	$\mathrm{Q}(15)$	18.55147	0.2347828
Ljung-Box Test	$\mathrm{R}^{\wedge} 2$	$\mathrm{Q}(20)$	21.85274	0.3485547
LMArch Test	R	$\mathrm{TR}^{\wedge} 2$	17.17721	0.143052

Information Criterion Statistics:
AIC BIC SIC HQIC
$-6.589091-6.583391-6.589093-6.587083$
> \#to calculate Durbin-Watson Test: Method 2
$>$ x21<-residuals(fit21,standardize=TRUE)
$>$ f21<-acf(x21,lag=40);f21

$\begin{array}{llllllllllllll}13 & 0.011 & 14 & 0.027 & 0.008 & 0.003 & -0.010 & -0.008 & -0.022 & 0.015 & 0.098 & 0.015 & -0.023 & -0.032\end{array}$
$\begin{array}{lllllllllll}-0.003 & 0.003 & -0.016 & 0.033 & 0.014 & 0.014 & 0.015 & 0.029 & 29 & 30 & 31 \\ 21 & 22 & 23 & 34 & 34 & 25 & 26 & 27 & 28 & 29 & 30\end{array}$
$33{ }^{-0} 0.004^{34}-0.002^{35}-0.020^{36}-0.019^{37}-0.030^{38}-0.011^{39}-0.00840-0.014-0.008-0.010-0.010$
$-0.0020 .007-0.0020 .0200 .011$-0.017 $0.0140 .014-0.002$
> dw21<-2* (1-f21\$acf[2]) ; dw21 \#use formula dw=2(1-r1)
[1] 1.946512
> basicStats(x21) \#to get the descriptive of the standardized residuals

nobs	4499.000000	> \#\#Test of Hypotheses for standardised residuals\#\#
NAs	0.000000	$>$ tresth (x21) \#test of hyphtesis of mean
Minimum	-5.771694	One Sample t-test
Maximum	10.827922	data: x21
1. Quartile	-0.511818	$\mathrm{t}=1.9939$, $\mathrm{df}=4498$, p-value $=0.04622$
3. Quartile	0.578078	alternative hypothesis: true mean is not equal to 0
Mean	0.029693	95 percent confidence interval:
Median	0.016326	0.00049811020 .0588878691
Sum	133.588760	sample estimates: mean of x
SE Mean	0.014892	0.02969299
LCL Mean	0.000498	$[1]^{-} 12.77147$
UCL Mean	0.058888	$>$ pvs x21=2*(1-pnorm(s x21)) -2va x21 \#pyelue for the skewness
Variance	0.997699	[1] 0
Stcieu	0.998849	
Skewness	0.477820	[1] ${ }^{-95.17539}$ -
Kurtosis	7.032348	$>$ pvk_x21=2*(1-pnorm(k_x21) higxk_x21 \#p-value for the kurtosis [1] 0

ii. \quad ARIMA (0,1,0)-GARCH $(\mathbf{1 , 1})$ with \boldsymbol{t} distribution

Dependent Variable: D(LDT2)
Method: ML - ARCH (Marquardt) - Student's t distribution
Date: 07/28/17 Time: 14:36
Sample (adjusted): 24500
Included observations: 4499 after adjustments
Convergence achieved after 15 iterations
Presample variance: backcast (parameter $=0.7$)
GARCH $=C(2)+C(3)^{\star} R E S I D(-1)^{\wedge} 2+C(4)^{\star} G A R C H(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.	
C	$7.58 \mathrm{E}-05$	$9.46 \mathrm{E}-05$	0.801690	0.4227	
Variance Equation					
C	$1.92 \mathrm{E}-07$	$8.21 \mathrm{E}-08$	2.335608	0.0195	
RESID $(-1)^{n} 2$	0.066284	0.007208	9.195282	0.0000	
GARCH(-1)	0.938563	0.005795	161.9728	0.0000	
T-DIST. DOF	4.697706	0.317229	14.80854	0.0000	
R-squared	-0.000551	Mean dependent var	0.000324		
Adjusted R-squared	-0.000551	S.D. dependent var	0.010553		
S.E. of regression	0.010556	Akaike info criterion	-6.707778		
Sum squared resid	0.501190	Schwarz criterion	-6.700652		
Log likelihood	15094.15	Hannan-Quinn criter.	-6.705267		
Durbin-Watson stat	2.012829				

iii. ARIMA (0,1,0)-GARCH (1,1) with skewed- \boldsymbol{t} distribution
$>$ fit23_r<-garcheit(formula $=\sim \operatorname{arma}(0,0)+g a r c h(1,1)$, data $=d 1 d t 2$, cond. dist $=$ "sstd", include, mean $=$ EALSEutrace=F) \# for ARIMA without constant $>$ sum $23<-$ summary(fit23_r)
TitleiGARCH Modelling
cal.igarcheit (formula $=$ ~arma $(0,0)+\operatorname{gacch}(1,1)$, data = didt2, condedist Mean and, include, mean $=$ FALSE, trace $=(F) 0)+\operatorname{garch}(1,1)$
<environment: Ox15403994>
[data $=$ dldt2]
Conditional Distribution:ssto
coefficient (s):

1. 864 omega blphal betal
std. Errorsibased on Hessian
Error Analysis:

or	Analysis: Estimate	Std. Error	t value	$\operatorname{Rc}(>\|t\|)$	
omega	1.864e-07	7.912e-08	2.356	0.0185	*
alphal	6. $637 \mathrm{e}-02$	$7.784 \mathrm{e}-03$	8. 526	$<2 \mathrm{e}-16$	***
betal	9.387e-01	6. $334 \mathrm{e}-03$	148.209	$<2 \mathrm{e}-16$	***
skew	$9.811 \mathrm{e}-01$	1. $711 \mathrm{e}-02$	57.337	$<2 \mathrm{e}-16$	***
shape	4. $6733+00$	$3.380 \mathrm{e}-01$	13.826	$<2 e-16$	
Sign	cades:	0.001	* 0	,	

signife codes: 0 ***, $0.001 ; * *, 0.01$ \% 0.05 , 0.1 in 1
Log Likelihood:
normalized: $\quad 3.354964$

			Statistic	$p-v a 1 u e$
Jarque-Bera Test	R	chinz	15615.52	0
Shapiro-wilk Jest	R	w	0.949175	0
Ljung-Box Test	R	Q(10)	10.118	0.4302023
Ljung-Box Test	R	Q(15)	18.65161	0. 2299577
Ljung-Box Test	R	Q(20)	30.56298	0. 06123051
Ljung-Box Test	R^2	Q(10)	6.104533	0. 8064057
Ljung-Box Test	R^2	Q(15)	8. 581091	O. 8983834
Ljung-Box Test	R^2	Q(20)	11.40161	0. 9351353
LM Arch Test	R	TR^2	7.274739	Q. 8389364

Information criterion statistics:
$\begin{array}{rrrrr}\text { AIC } & \text { BIC } & \text { HQIC } \\ -6.707705 & -6.700579 & -6.707707 & -6.705194\end{array}$

$>$ \# estimate model ARIMA $(0,1,1)-\operatorname{GARCH}(1,1)$ with cond.dist=skewed t
$>$ fit $23<-$ garchFit (formula $=\sim \operatorname{arma}(0,0)+g a r c h(1,1)$, data $=$ dldt2, cond.dist=" sstd", include.mean $=$ TRUE,trace=F) \# for model with constant
> sum23<-summary(fit23)
Title:GARCH Modelling
Call:garchFit(formula $=$ ~arma $(0,0)+\operatorname{garch}(1,1)$, data $=$ dldt2, cond.dist $=" s s t d "$,
include.mean $=$ TRUE, trace $=F$)
Mean and Variance Equation:data ~ arma(0, 0) + garch(1, 1)
[data $=$ dldt2]
Conditional Distribution: sstd
Coefficient(s)
mu omega alpha1 betal skew shape
$3.8961 e-05 \quad 1.8769 e-07 \quad 6.6340 e-02 \quad 9.3867 e-01 \quad 9.8397 e-01 \quad 4.6757 e+00$
Std. Errors:based on Hessian
Error Analysis:

| | Estimate | Std. Error | t value | Pr $(>\|t\|)$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| mu | $3.896 e-05$ | $1.010 e-04$ | 0.386 | 0.6996 |
| omega | $1.877 e-07$ | $7.953 e-08$ | 2.360 | 0.0183 |

alpha1	6.634e-02	$7.780 \mathrm{e}-03$	8.527	<2e-16	***
betal	$9.387 e-01$	$6.337 \mathrm{e}-03$	148.130	<2e-16	***
skew	$9.840 \mathrm{e}-01$	$1.870 \mathrm{e}-02$	52.618	<2e-16	***
shape	$4.676 \mathrm{e}+00$	$3.381 \mathrm{e}-01$	13.830	<2e-16	***

Log Likelihood:
15094.06 normalized: 3.35498

Standardised Residuals Tests:

			Statistic p-Value	
Jarque-Bera Test	R	Chi^2	15634.1	0
Shapiro-Wilk Test	R	W	0.9491605	0
Ljung-Box Test	R	$Q(10)$	10.14822	0.4275869
Ljung-Box Test	R	$Q(15)$	18.59038	0.2328994
Ljung-Box Test	R	$Q(20)$	30.64627	0.06003686
Ljung-Box Test	$R^{\wedge} 2$	$Q(10)$	6.113017	0.8056803
Ljung-Box Test	$R^{\wedge} 2$	$Q(15)$	8.586274	0.8981381
Ljung-Box Test	$R^{\wedge} 2$	$Q(20)$	11.40931	0.9349096
LM Arch Test	R	$T R^{\wedge} 2$	7.280071	0.8385639

Information Criterion Statistics:
$-6.707293-6.698742-6.707297-6.704280$

> \#to calculate Durbin-Watson Test: Method 2
> x23<-residuals(fit23,standardize=TRUE)
> f23<-acf(x23,lag=40);f23
Autocorrelations of series 'x23', by lag

$\begin{array}{lllllllllllllllll}0.011 & 0.030 & 0.009 & -0.001 & -0.011 & -0.008 & -0.023 & 0.012 & 0.006 & 0.016 & -0.023 & -0.032 & -0.003 & 0.003 & -0.0\end{array}$ $\begin{array}{llllll}17 & 0.034 & 0.014 & 0.015 & 0.017 & 0.028\end{array}$

-0.003-0.002 -0.020-0.022-0.029-0.011-0.007-0.017-0.007-0.009-0.010-0.001 0.007-0.002 0 .
$021 \quad 0.011-0.015 \quad 0.012 \quad 0.012-0.002$
> dw23<-2*(1-f23\$acf[2]);dw23 \#use formula dw=2(1-r1)
[1] 1.939565
> basicStats(x23) \#to get the descriptive of the standardized residuals

nobs	4499.000000	> \#\#
NAs	0.000000	$>$ thatast (x23) \#test of hxpatesig of mean
Minimuan	-5.920441	One Sample t-test
Maximum	12.029642	data: x23
1. Quartile	-0.511359	$t=2.1136$, df $=4498$, p-value $=0.03461$
3. Quartile	0.580443	alternative hypothesis: true mean is not equal to 0 95 percent confidence intervel:
Mean	0.031644	$0.0022917850 .060997005$
Median	0.018047	sample estimates: mean of x
Sum	142.368133	0.0316444
SE Mean	0.014972	
LCL Mean	0.002292	[1] 17.1199
UCL Mean	0.060997	$>$ pvs x23=2* (1-pnorm(s_x23) hixva x23 \#pyelue for the skewness
Variance	1.008508	
Stcler	1.004245	$[1]-123.7852$
Skewness	0.625185	$>$ pvk_x23=2*(1-pnorm(k_x23) higvk x23 \#p-value for the kurtosis
Kurtosis	9.040968	[1] 0^{-}

iv. ARIMA (0,1,0)-GARCH (1,1) with GED distribution

Dependent Variable: D(LDT2_ESTIMATE) Date: $03 / 13 / 17$ Time: 01:38
Sample (adjusted): 24500
Included observations: 4499 after adjustments
Convergence achieved after 18 iterations
Presample variance: backcast (parameter $=0.7$)
GARCH $=C(1)+C(2)^{*} R E S I D(-1)^{n} 2+C(3)^{*} G A R C H(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.				
Variance Equation								
RESID $(-1)^{\wedge} 2$	$2.02 E-07$	$8.36 E-08$	2.418886	0.0156				
GARCH(-1)	0.060560	0.006485	9.338634	0.0000				
GED PARAMETER	0.942147	0.005399	174.5087	0.0000				
R-squared	1.139490	0.022071	51.62895	0.0000				
AdjustedR-squared	-0.000940	Mean dependent var	0.000324					
S.E. of regression	-0.000718	S.D. dependent var	0.010553					
Sum squaredresid	0.010557	Akaike info criterion	-6.702930					
Log likelihood	0.501385	Schwarz criterion	-6.697230					
Durbin-Watson stat	15082.24	Hannan-Quinn criter.	-6.700922					

Series: Standardized Residuals Sample 24500 Observations 4499 Mean	
Median	0.036921
Maximum	0.023278
Minimum	-5.958213
Std. Dev.	1.013886
Skewness	0.597554
Kurtosis	11.70747
Jarque-Bera	14480.83
Probability	0.000000

> \# estimate model ARIMA $(0,1,0)-\operatorname{GARCH}(1,1)$ with cond.dist=GED
$>\operatorname{fit} 24<-$ garchFit(formula $=\sim \operatorname{arma}(0,0)+\operatorname{garch}(1,1)$, data $=$ dldt2, algorithm $="$ lbfgsb+nm",hessian = "ropt", cond.dist="ged", include.mean = TRUE,trace=F) > sum24<-summary(fit24)
Title:GARCH Modelling
Call:garchFit(formula $=\sim \operatorname{arma}(0,0)+\operatorname{garch}(1,1)$, data $=d l d t 2$, cond.dist $=" g e d "$, include.mean $=$ TRUE, trace $=F$, algorithm $=$ "lbfgsb+nm", hessian = "ropt")
Mean and Variance Equation: data $\sim \operatorname{arma}(0,0)+\operatorname{garch}(1,1)$
[data = dldt2]
Conditional Distribution:ged
Coefficient(s):
mu omega alpha1 betal shape
$5.6492 e-05 \quad 2.0368 e-07 \quad 6.0634 e-02 \quad 9.4196 e-01 \quad 1.1401 e+00$
Std. Errors:based on Hessian

Error Analysis:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$	
mu	5.649e-05	$1.102 \mathrm{e}-04$	0.513	0.6083	
omega	$2.037 \mathrm{e}-07$	$8.171 \mathrm{e}-08$	2.493	0.0127	*
alpha1	6.063e-02	$7.884 \mathrm{e}-03$	7.691	$1.47 e-14$	***
betal	$9.420 \mathrm{e}-01$	$6.851 \mathrm{e}-03$	137.484	$<2 \mathrm{e}-16$	***
shape	$1.140 \mathrm{e}+00$	$3.081 \mathrm{e}-02$	37.008	$<2 \mathrm{e}-16$	***
Signif	codes: 0	***' 0.001	***' 0.	01 '*' 0.	5

Log Likelihood:
15081.91 normalized: 3.352281

Standardised Residuals Tests:

			Statistic p-Value	
Jarque-Bera Test	R	Chi^2	14719.6	0
Shapiro-Wilk Test	R	W	0.949981	0
Ljung-Box Test	R	$Q(10)$	10.0333	0.4375771
Ljung-Box Test	R	$Q(15)$	18.54279	0.2352048
Ljung-Box Test	R	$Q(20)$	30.58091	0.0609718
Ljung-Box Test	$R^{\wedge} 2$	$Q(10)$	6.867687	0.7378743
Ljung-Box Test	$R^{\wedge} 2$	$Q(15)$	9.24379	0.8644292
Ljung-Box Test	$R^{\wedge} 2$	$Q(20)$	12.09128	0.9128982
LM Arch Test	R	$T^{\wedge} 2$	7.971098	0.7873849

Information Criterion Statistics

| AIC | BIC | SIC | HQIC |
| ---: | ---: | ---: | ---: | ---: |
| -6.702339 | -6.695214 | -6.702342 | -6.699828 |

nobs	4499.000000	\bigcirc \#\#Test of Hypotheses for standardised residuals\#\#
NAs	0.000000	$>$ tutesty $\times 24)$ \#test of hypqtesis of mean
Minimum	-5.968045	One Sample t-test
Maximum	12.015778	data: x 24 (f) 4498
1. Quartile	-0.521731	$t=1.9672$, $\mathrm{g} f=4498$, p-value $=0.04923$ alternative hypothesis: true mean is not equal to 0
3. Quartile	0.584364	95 percent confidence interval:
Mean	0.029719	0.0001008398 0.0593373389
Median	0.015725	sample estimates: mean of x
Sum	133.706183	0.02971909
SE Mean	0.015108	> g_x24=0.6059/ggxt (6/4499); [1] ${ }^{-16.59141}$
LCL Mean	0.000101	$>$ pvin_x24=2* (1-pnorm(s_x24) hixut x24 \#pyalue for the skewness
UCL Mean	0.059337	[1] 0
Variance	1.026845	
Stciex	1.013334	[1] 120.1118
Skewness	0.605946	> pvk_x24=2* (1-pnorm $(k$ _ 24$)$ birvk $\times 24$ \#p-value for the kurtosis
Kurtosis	8.772710	[1] 0

v. ARIMA (0,1,0)-GARCH (1,1) with skewed-GED distribution

>fit25<-garchFit(formula $=\sim \operatorname{arma}(0,0)+g a r c h(1,1)$, data $=$ dldt2, proc edure ="lbfgsb+nm", hessian = "ropt", cond.dist="sged", include.mean $=T$ RUE,trace=F) \#ARIMA with constant
> sum25<-summary(fit25)
Title:GARCH Modelling
Call:garchFit(formula $=\sim \operatorname{arma}(0,0)+\operatorname{garch}(1,1)$, data $=$ dldt2, cond.dist = "sged",incl ude.mean = TRUE, trace = F, procedure = "lbfgsb+nm", hessian = "ropt")
Mean and Variance Equation:data ~ arma(0, 0) + garch(1, 1)
[data = dldt2]
Conditional Distribution: sged
Coefficient(s):
mu omega alphal betal skew shape
$6.0983 e-05 \quad 2.0440 e-07 \quad 6.0677 e-02 \quad 9.4191 e-01 \quad 1.0025 e+00 \quad 1.1398 e+00$
Std. Errors:based on Hessian

	Estimate	Std. Error	t value $\operatorname{Pr}(>\|t\|)$
mu	6.098e-05	1.052e-04	$0.580 \quad 0.5621$
omega	$2.044 \mathrm{e}-07$	$8.194 \mathrm{e}-08$	2.4940 .0126 *
alpha1	$6.068 \mathrm{e}-02$	$7.887 \mathrm{e}-03$	$7.6931 .44 \mathrm{e}-14$ ***
betal	$9.419 \mathrm{e}-01$	$6.857 \mathrm{e}-03$	$137.355<2 \mathrm{e}-16$ ***
skew	$1.002 \mathrm{e}+00$	$1.049 \mathrm{e}-02$	$95.559<2 \mathrm{e}-16$ ***
shape	$1.140 \mathrm{e}+00$	$3.086 \mathrm{e}-02$	36.938 < 2e-16 ***
Signif	. codes: 0	***' 0.001	'**' 0.01 `*' 0.05 '

Log Likelihood:
15081.93 normalized: 3.352286

Standardised Residuals Tests:

4. STAGE IV: BJ-GARCH FORECASTING (ARIMA(0,1,0)-GARCH(1,1) with \boldsymbol{t}) i. For Stationary Data (Daily Log Return Gold Price)

Forecast: DLDT2F	
Actual: D(LDT2)	
Forecast sample: 45015000	
Included observations: 500	
Root Mean Squared Error	0.012351
Mean Absolute Error	0.008388
Mean Abs. Percent Error	99.40000
Theil Inequality Coefficient	1.000000
Bias Proportion	0.001911
Variance Proportion	0.998089
Covariance Proportion	0.000000

> mae_st_AG2=sum (error2st_AG2)/T; mae_st_AG2; [1] 0.008388001
> rmse_st_AG2=sqrt (sum (error3st_AG2)/T); rmse_st_AG2; [1] 0.01235061
> \#mape_st_AG2=(100/T)*sum(error4s_AG); mape_st_AG2 \#cannot calculate mape because of ex ist of "0" data in stationary data

ii. For Daily Gold Price

> mae_AG2=sum(error2_AG2)/T; mae_AG2; [1] 12.6855
> rmse_AG2=sqrt(sum (error3_AG2)/T); rmse_AG2; [1] 18.37164
> mape_AG2 $=(100 / T)$ *sum (error4_AG2); mape_AG2; [1] 0.8401619

Actual and Forecast data for the last 10 days (model ARIMA(0,1,0)-GARCH(1,1) with \boldsymbol{t}):

$[, 1][, 2] \quad[, 3] \quad[, 4] \quad[, 6] \quad[, 7] \quad[, 8] \quad[, 9] \quad[, 10]$ $[1]$, $[2]$, $[3]$, $[4] \quad$, $[5]$, $[6]$, [7,] 1599.2141691 .2841570 .6931612 .2241750 .3291695 .0371590 .4581377 .5461281 .4731274 .468 [8,] 1614.2261645 .4991575 .7961614 .4761744 .3241680 .7761587 .2051383 .5501283 .4741320 .252 [9,] 1600.2151649 .2521580 .7001616 .2271738 .3201649 .2521596 .7121414 .5741299 .2361317 .500 [10] 1617.7281659 .2601541 .1701619 .7301728 .0621646 .5001604 .9691395 .5601309 .9951318 .501 [11] 1616.2271662 .7621559 .1841623 .7331712 .3001657 .2581611 .9741403 .5661342 .0191334 .013 [12] $1638.2441658 .0091607 .220 \quad 1598.9641707 .7971659 .0101608 .7211400 .5631329 .5091332 .262$ [13] 1635.7421650 .5031636 .2421602 .9671716 .8031676 .2731614 .9761405 .0671327 .5081345 .772 [14] 1662.2621636 .7431607 .2201605 .7191717 .3041658 .7591608 .9721401 .0641330 .7601348 .774 [15] 1636.7431665 .2641577 .6981615 .9771708 .2971667 .7661600 .4651387 .0531370 .2901362 .034 [16] 1642.2471681 .5271585 .2041616 .2271711 .2991681 .7771599 .2141384 .3011366 .0371350 .275 [17] 1657.2581693 .2861604 .7181640 .7461720 .3061677 .5241604 .2181375 .2941373 .5431355 .779 [18] 1648.2511677 .2731620 .7311643 .2481717 .5541676 .2731599 .4641383 .8011364 .0361325 .006 [19] 1656.2571658 .7591614 .7261666 .5151686 .2801689 .7831584 .7031386 .0521376 .5451307 .743 [20] 1654.2561663 .7631628 .4861668 .2671684 .7791688 .7821575 .9471392 .3071378 .5471321 .503 [21] 1676.7731678 .7751616 .7271669 .2671692 .2851691 .7841547 .6751385 .8021420 .3281308 .243 [22] 1666.7651677 .5241626 .7351661 .2611716 .5531691 .5341569 .1911367 .7881420 .5791320 .002 [23] 1651.2541622 .2321602 .2161661 .7621718 .3051672 .2701576 .1971373 .7931408 .8201308 .243 [24] 1728.312 1632.239 1583.202 1649.753 1739.571 1661.261 1578.448 1293.482 1395.810 1286.477 [25] 1727.311 1645.2491566 .6891692 .7851736 .5681657 .7591576 .1971296 .2341393 .3081283 .474 [26] 1730.314 1659.260 1571.193 1698.289 1727.562 1664.764 1566.189 1287.728 1400.5631282 .224 [27] 1745.3251669 .7681577 .1971691 .2841727 .5621678 .7751536 .6671279 .9721391 .0561273 .467 [28] 1741.3221667 .7661574 .6961702 .2921711 .2991666 .0151396 .0601237 .1891386 .0521286 .977 [29] 1752.3301654 .2561559 .6841729 .3131714 .8021670 .2681381 .0491233 .6871388 .0541288 .228 [30] 1735.3181636 .7431599 .7151733 .3161731 .8151667 .2661393 .0581192 .9061391 .0561284 .475 [31] 1720.3061645 .2491593 .2101738 .0701733 .5661674 .7721394 .8091243 .6941359 .2821276 .719 [32] 1725.310 1651.254 1618.729 1738.320 1725.310 1675.522 1406.568 1253.452 1364.786 1257.955 [33] 1747.3271642 .7471614 .7261734 .5671732 .3151669 .2671425 .5821250 .9501329 .0091240 .942 [34] 1749.328 1630.238 1605.219 1776.849 1735.818 1669.5181409 .0701252 .7011319 .5021247 .197
[35] 1712.8001650 .7531588 .2061771 .3451751 .8301653 .2551429 .5851213 .6711325 .0061243 .944 [36] 1721.3071638 .9941586 .2041770 .8441747 .5771648 .7521452 .1021236 .1891313 .2471248 .448 [37] 1723.3081654 .7561596 .4621768 .0921709 .2981646 .2501472 .6181256 .4541301 .9891245 .946 [38] 1734.317 1664.764 1578.198 1759.836 1726.311 1647.251 1468.615 1256.954 1366.538 1246.446 $\left[\begin{array}{llllllllllllllllll}{[39]} & 1714.302 & 1652.505 & 1557.432 & 1785.856 & 1727.311 & 1613.475 & 1470.116 & 1285.976 & 1350.275 & 1253.952\end{array}\right.$ [40] 1724.3091665 .2641596 .7121763 .8391721 .3071611 .9741455 .8551280 .7221324 .0051230 .434 [41] 1734.3171649 .2521590 .9581772 .8461699 .0401608 .9721470 .3661285 .7261315 .2491218 .175 [42] 1749.3281638 .9941586 .4551746 .0761695 .2871589 .7071470 .3661292 .4811323 .7551228 .433 [43] 1753.331 1644.9991576 .4471764 .3401695 .5371578 .1981445 .3471298 .2361334 .0131223 .429 [44] 1778.3501603 .7181585 .2041777 .3491702 .7931577 .6981469 .1151284 .2251342 .0191233 .937 $\begin{array}{lllllllllllllllll}{[45]} & 1778.851 & 1583.702 & 1577.448 & 1788.358 & 1713.801 & 1587.455 & 1466.614 & 1296.735 & 1327.508 & 1237.940\end{array}$ [46] 1773.3461599 .7151573 .4451776 .8491711 .2991591 .7081427 .5841328 .0081291 .7311267 .212 $[47] 1782.3531584 .2031584 .4531776 .5991717 .5541605 .4691431 .8371334 .5131307 .2431261 .708$ [48] 1771.3451559 .6841602 .2161793 .1111694 .0361589 .7071434 .8391336 .0141317 .0001226 .181 [49] 1715.302 1557.683 1619.229 1785.356 1697.539 1583.452 1411.071 1327.008 1310.7451232 .936 $\begin{array}{llllllllllllllllllll}{[50]} & 1708.297 & 1549.677 & 1619.480 & 1774.848 & 1697.038 & 1575.446 & 1382.049 & 1332.011 & 1324.506 & 1235.688\end{array}$

APPENDIX 3
 ANALYSIS OF CHAPTER 4 SECTION 4.3

1. Data of Study

Sample	Duration	Number of Data	In-Sample Data	Out-of-Sample Data
1	$\begin{gathered} 24 / 11 / 1993-17 / 12 / 2013 \\ (20 \text {-year }) \\ \hline \end{gathered}$	5000	$\begin{gathered} 24 / 11 / 1993-20 / 12 / 2011 \\ \text { (4500 data) } \end{gathered}$	$\begin{gathered} 21 / 12 / 2011-17 / 12 / 2013 \\ \text { (500 data) } \end{gathered}$
2	$\begin{gathered} 5 / 12 / 2003-17 / 12 / 2013 \\ (10-y e a r) \end{gathered}$	2500	$\begin{gathered} \text { 5/12/2003-18/12/2012 } \\ (2250 \text { data) } \end{gathered}$	$\begin{gathered} 19 / 12 / 2012-17 / 12 / 2013 \\ \text { (250 data) } \end{gathered}$
3	$\begin{gathered} 22 / 12 / 2008-17 / 12 / 2013 \\ \text { (5-year) } \end{gathered}$	1250	$\begin{gathered} \hline 22 / 12 / 2008-24 / 6 / 2013 \\ (1125 \text { data }) \end{gathered}$	$25 / 6 / 2013-17 / 12 / 2013$ (125 data)
4	$\begin{gathered} 21 / 12 / 2009-17 / 12 / 2013 \\ \text { (4-year) } \end{gathered}$	1000	$\begin{gathered} 21 / 12 / 2009-29 / 7 / 2013 \\ (900 \text { data }) \\ \hline \end{gathered}$	$\begin{gathered} 30 / 7 / 2013-17 / 12 / 2013 \\ \text { (100 data) } \end{gathered}$
5	$\begin{gathered} 20 / 12 / 2010-17 / 12 / 2013 \\ (3-\text { year }) \end{gathered}$	750	$\begin{gathered} 20 / 12 / 2010-3 / 9 / 2013 \\ (675 \text { data) } \end{gathered}$	$\begin{gathered} \text { 4/9/2013-17/12/2013 } \\ \text { (75 data) } \end{gathered}$
6	$\begin{gathered} 21 / 12 / 2011-17 / 12 / 2013 \\ (2 \text {-year }) \end{gathered}$	500	$\begin{aligned} & 21 / 12 / 2011-8 / 10 / 2013 \\ & (450 \text { data }) \end{aligned}$	$\begin{gathered} 9 / 10 / 2013-17 / 12 / 2013 \\ \text { (50 data) } \\ \hline \end{gathered}$

STAGE I: MODEL IDENTIFICATION

1. Time Plot

Data	Original Data, y	Transformed Data, y_{t}^{*}	Stationary Data, S_{t}
1			
2		$\lambda_{B C}=-0.1101 \rightarrow 0: y_{t}^{*}=\ln y_{t}$	$s_{t}=\Delta y_{t}^{*}$
3		$\lambda_{B C}=0.0780 \rightarrow 0: y_{t}^{*}=\ln y_{t}$	$s_{t}=\Delta y_{t}^{*}$
4		$\lambda_{B C}=-0.4217 \rightarrow-0.5: y_{t}^{*}=\frac{1}{\sqrt{y_{t}}}$	$s_{t}=\Delta y_{t}^{*}$

5			$s_{t}=\Delta y_{t}^{*}$
6		$\lambda_{B C}=0.9999 \rightarrow 1: y_{t}^{*}=y$	$s_{t}=\Delta y$

2. Descriptive Statistics for original data, transformed data and stationary data

Average Annual Return for Sample 1 - Sample 3 (significant mean)

Sample 1

> t2=prod(d1dt2+1);t2 \#product
[1] 3.336908
> r2=t2^(250/4499)-1;r2 \#annual log retur
n
[1] 0.06925463
> R2=exp(r2)-1;R2 \#annual simple return
[1] 0.07170906
> fv2=1*((R2+1)^18);fv2\#compound return(f
$\mathrm{v})=\mathrm{pv} *[(\mathrm{Rt}+1) \wedge \mathrm{T}]$
[1] 3.478438

Sample 2

$>\mathrm{t} 3=\operatorname{prod}(\mathrm{d} 1 \mathrm{dt} 3+1) ; \mathrm{t} 3$ \#product

[1] 3.505386

$>r 3=t 3 \wedge(250 / 2249)-1 ; r 3$ \#annual $10 g$ retur
n
[1] 0.1496169
$>R 3=\exp (r 3)-1 ; R 3$ \#annual simp1e return
[1] 0.1613892
> fv3=1*((R3+1)^9);fv3\#compound return(fv $=p v *[(R t+1) \wedge T]$
[1] 3.844147
3. Nonstationary in-mean: (i) using sample ACF and sample PACF; (ii) using ADF-test

4. Preliminary of Linearity Test and Portmanteau Test

Data	Linearity Test	Portmanteau Test: Ljung-Box Q-test
1	data: dIdt2	$\begin{aligned} & k=\ln T \text { (Tsay's suggestion): } \\ & \mathrm{x} \text {-squared }=19.07, \mathrm{df}=9, \mathrm{p} \text {-value }=0.0246 \\ & k=10(\text { Hyndman's suggestion }) \\ & \mathrm{x} \text {-squared }=19.245, \mathrm{df}=10, \mathrm{p} \text {-value }=0.03726 \\ & \hline k=15 \text { (Engle's suggestion) } \\ & \mathrm{x} \text {-squared }=35.963, \mathrm{df}=15, \mathrm{p} \text {-value }=0.00179 \end{aligned}$
2	data: dTdt3	```\(k=\ln T\) (Tsay's suggestion) x -squared \(=15.982, \mathrm{df}=8, \mathrm{p}\)-value \(=0.04263\) \(k=10\) (Hyndman's suggestion) \(x\)-squared \(=20.029, d f=10, p\)-value \(=0.02898\) \(k=15\) (Engle's suggestion) \({ }_{3}^{x}\)-squared \(=31.326, \mathrm{df}=15, \mathrm{p}\)-va7ue \(=0.00794\)```
3	data: dldt4	```\(k=\ln T\) (Tsay's suggestion) x-squared \(=12.269, \mathrm{df}=7, \mathrm{p}\)-va7ue \(=0.09206\) \(k=10\) (Hyndman's suggestion) X-squared \(=18.103, \mathrm{df}=10, \mathrm{p}\)-va7ue \(=0.05325\) \(k=15\) (Engle's suggestion) x-squared \(=31.836, \mathrm{df}=15, \mathrm{p}\)-va7ue \(=0.00677\) 7```
4	data: dtdt5	```> Box.test(dtdt5,7ag=7,type='Ljung')#Tsay's suggestion,k=7n 899=6.8013 Box-Ljung test data: dtdt5 X-squared = 5.7932, df = 7, p-value = 0.5641 > Box.test(dtdt5,lag=10,type='Ljung')#hyndman's suggestion k=10 Box-Ljung test data: dtdt5 x-squared = 8.1145, df = 10, p-value = 0.6177 > Box.test(dtdt5,lag=15,type='Ljung')#Engle's suggestion Box-Ljung test data: dtdt5 X-squared = 11.912, df = 15, p-value = 0.6857```
5		```> Box.test(dtdt6,7ag=7,type='Ljung')#Tsay's suggestion,k=ln 674=6.5132 Box-Ljung test data: dtdt6 x-squared = 5.6586, df = 7, p-value = 0.5801 > Box.test(dtdt6,7ag=10,type='Ljung')#hyndman's suggestion k=10 Box-Ljung test data: dtdt6 x-squared =9.0999, df = 10, p-value = 0.5227 > Box.test(dtdt6,lag=15,type='Ljung')#Engle's suggestion Box-Ljung test data: dtdt6 x-squared = 11.898, df = 15, p-value = 0.6867```
6	data: ddt7	```\(k=\ln T\) (Tsay's suggestion) X-squared \(=7.367, \mathrm{df}=6, \mathrm{p}\)-va7ue \(=0.2882\) \(k=10\) (Hyndman's suggestion) X-squared \(=22.509, d f=15, p\)-value \(=0.09514\) \(k=15\) (Engle's suggestion) \(x\)-squared \(=18.718, \mathrm{df}=10, \mathrm{p}\)-value \(=0.04399\) \(k=10\) (Hyndman's suggestion) x -squared \(=7.2201, \mathrm{df}=10, \mathrm{p}\)-value \(=0.7045\) \(k=15\) (Engle's suggestion) x-squared \(=9.9381, \mathrm{df}=15, \mathrm{p}\)-value \(=0.8236\)```

5. Possible Box-Jenkins model and Preliminary of Heteroscedasticity test

STAGE II: BOX-JENKINS - GARCH PARAMETER ESTIMATION

SAMPLE 1: Refer to Chapter 4.2 and Appendix 2

SAMPLE 2

ARIMA (0, 1,0$)-\mathrm{GARCH}(1,1)$					2. ARIMA (0, 1, 0)-GARCH $(1,2)$												
Dependent Variable: D(LDT3)					Dependent Variable: D(LDT3)												
Method: ML - ARCH (Marquardt) - Normal distributionSample (adjusted): 22250					Method: ML - ARCH (Marquardt) - Normal distribution Sample (adjusted): 22250												
Variable	Coefficient	Std. Error	z-Statistic	Prob.	Variable	Coefficient	Std. Error	z-Statistic	Prob.								
C	0.000586	0.000217	2.696675	0.0070	C	0.000512	0.000214	2.394022	0.0167								
Variance Equation					Variance Equation												
C	$1.15 \mathrm{E}-06$	$3.15 \mathrm{E}-07$	3.648057	0.0003	C	$3.57 \mathrm{E}-07$	$1.18 \mathrm{E}-07$	3.016582	0.0026								
RESID (-1) ${ }^{\wedge} 2$	0.047859	0.005482	8.729874	0.0000	RESID(-1) ${ }^{2}$	0.014239	0.003869	3.680771	0.0002								
$\operatorname{GARCH}(-1)$	0.945348	0.006267	150.8374	0.0000	$\operatorname{GARCH}(-1)$	$\begin{array}{r} 1.729060 \\ -0.745368 \end{array}$	0.077562	$\begin{array}{r} 22.29267 \\ -10.13972 \end{array}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$								
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000017	Mean dependent var		0.000639	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat		Mean dependent var										
	-0.000017	S.D. dependent var		0.012734		-0.000100			0.012734								
	0.012734	Akaike info criterion		-6.091298		0.012734	Akaike info crit		-6.094498								
		Schwarz criterion		-6.081128		0.364547	Schwarz criter		-6.081785								
		Hannan-Quin	criter.	-6.087586		6858.263	Hannan-Quinn criter.		-6.089858								
	$\begin{aligned} & 6853.665 \\ & 1.986586 \end{aligned}$					1.986423											
Heteroskedasticity Test: ARCH					Heteroskedasticity Test: ARCH												
F-statistic	0.668990	Prob. F 10,2228)		0.7542	F-statistic Obs*R-squared	0.391313	Prob. F(10,2228)		0.9510								
Obs*R-squared	6.702799	Prob. Chi-Square(10)		0.7532		3.925556	Prob. Chi-Squ	(10)	0.9506								
3. ARIMA (0, 0 (0)-GARCH (1,3$)$Dependent Variable: D(LDT3)Method: ML-ARCH (Marquardt) - Normal distributionSample (adjusted): 22250					4. $\operatorname{ARIMA}(0,1,0)-\mathrm{GARCH}(1,4)$												
					Dependent Variable: D(LDT3) Method: ML - ARCH (Marquardt) - Normal distribution Sample (adjusted): 22250												
Variable	Coefficient	Std. Error	z-Statistic	Prob.	Variable	Coefficient	Std. Error	z-Statistic	Prob.								
C	0.000510	0.000214	2.385342	0.0171	C	0.000518	0.000214	2.417106	0.0156								
	Variance Equation				Variance Equation												
C	$3.15 \mathrm{E}-07$	$2.34 \mathrm{E}-07$	1.347890		$\stackrel{C}{\text { C }}$	$3.43 \mathrm{E}-07$ 0.013232	$9.78 \mathrm{E}-08$	3.507108 5	0.0005 0.0000								
$\operatorname{RESID}(-1)^{\wedge} 2$	0.012622	0.009016	1.399979	0.1615	$\operatorname{RESID}(-1)^{\wedge} 2$	${ }_{2}^{0.013232}$	0.002464 0.044009	5.369955 58.04164	0.0000 0.0000								
GARCH(-1)	1.901347	0.781948	2.431551	0.0150	GARCH (-2)	-3.148347	0.077746	-40.49514	0.0000								
GARCH(-2)	-1.058490	1.398439	-0.756908	0.4491	GARCH (-3)	2.356992	0.078852	29.89153	0.0000								
GARCH(-3)	0.142698	0.627506	0.227406	0.8201	GARCH (-4)	-0.778264	0.042724	-18.21602	0.0000								
R -squared	$\begin{aligned} & -0.000102 \\ & -0.000102 \end{aligned}$	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000639	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000090	Mean dependent var		0.000639								
Adjusted R-squared				0.012734		-0.000090	S.D. dependen		0.012734								
S.E. of regression	0.012734			-6.093644		0.012734	Akaike info crit		-6.096483								
Sum squared resid	0.364548			-6.078388		0.364543	Schwarz criter		-6.078685								
Log likelihood	$\begin{aligned} & 6858.302 \\ & 1.986417 \end{aligned}$			-6.088075		6862.495	Hannan-Quinn	riter.	-6.089987								
Durbin-Watson stat						1.986441											
Heteroskedasticity Test: ARCH					Heteroskedasticity Test: ARCH												
F-statistic	$\begin{aligned} & 0.378886 \\ & 3.801105 \end{aligned}$	Prob. $F(10,2228)$ Prob. Chi-Square(10)		0.9562	F-statistic Obs*R-squared	0.3566483.578357	Prob. $\mathrm{F}(10,2228)$		0.9647								
Obs*R-squared				0.9559					0.9644								
5. ARIMA $(0,1,0)$-GARCH Dependent Variable: D(LDT3) Method: ML - ARCH (Marquardt) - Normal distribution Sample (adjusted): 22250					6. ARIMA ($0,1,0$)-GARCH $(2,2)$ Dependent Variable: D(LDT3) Method: ML - ARCH (Marquardt) - Normal distribution Sample (adjusted): 22250												
Variable	Coefficient	Std. Error	z-Statistic	Prob.	Variable	Coefficient	Std. Error	z-Statistic	Prob.								
c	0.000487	0.000212	2.291986	0.0219	c	0.000486	0.000213	2.286534	0.0222								
Variance Equation					Variance Equation												
C	$1.33 \mathrm{E}-06$	$3.53 \mathrm{E}-07$	3.756726	0.0002	C	$8.44 \mathrm{E}-07$	$3.45 \mathrm{E}-07$	2.447858	0.0144								
$\operatorname{RESID}(-1)^{\wedge} 2$	-0.001775	0.009037	-0.196418	0.8443	RESID (-1) ${ }^{\wedge} 2$	-0.002187	0.009171	-0.238449	0.8115								
RESIID (-2) ${ }^{\wedge}$	0.057162	0.011040	5.177781	0.0000	RESID (-2) ${ }_{\text {GARCH }}{ }^{2}$	0.037319 1.346376	0.016956 0.229560	2.200952 5.865027	0.0277 0.0000								
GARCH(-1)	0.936857	0.007345	127.5569	0.0000	GARCH(-2)	1.3466390 -0.38690	0.216344										
R-squared	-0.000143-0.000143	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000639	R -squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat		Mean dependent var										
Adjusted R-squared				0.012734		-0.000144 -0.000144	Mean depende		0.000639								
S.E. of regression	0.012735			-6.094441		0.012735	Akaike info crit		-6.094011								
Sum squared resid	0.364562			-6.081728		0.364563	Schwarz criter		-6.078755								
Log likelihood	6858.199			-6.089801		6858.715	Hannan-Quinn	riter.	-6.088442								
Durbin-Watson stat	1.986336			1.986335													
Heteroskedasticity Test: ARCH					Heteroskedasticity Test: ARCH												
F-statistic	0.354045			Prob. F(10,22		0.9656	F-statistic	0.300661	Prob. F(10,22		0.9812						
Obs*R-squared	3.552286	Prob. Chi-Sq	(10)	0.9653	Obs*R-squared	3.017386	Prob. Chi-Squ	(10)	0.9810								

ARIMA (0, 1,0)-GARCH $(4,1)$				
Dependent Variable: D(LDT3) Method: ML - ARCH (Marquardt) - Normal distribution Sample (adjusted): 22250				
Variable	Coefficient	Std. Error	z-Statistic	Prob.
C	0.000495	0.000213	2.324481	0.0201
Variance Equation				
C	$1.39 \mathrm{E}-06$	$3.82 \mathrm{E}-07$	3.651472	0.0003
RESID(-1)^2	-0.002685	0.009034	-0.297231	0.7663
RESID (-2) ${ }^{2}$	0.033900	0.018535	1.829027	0.0674
RESID (-3) ${ }^{\wedge}$	0.026017	0.026294	0.989453	0.3224
RESID (-4) ${ }^{\wedge}$	0.001319	0.019711	0.066933	0.9466
GARCH(-1)	0.933419	0.008327	112.0927	0.0000
R -squared	-0.000128	Mean depend	t var	0.000639
Adjusted R-squared	-0.000128	S.D. dependent		0.012734
S.E. of regression	0.012735	Akaike info crit		-6.093172
Sum squared resid	0.364557	Schwarz criter		-6.075374
Log likelihood	6858.771	Hannan-Quinn		-6.086675
Durbin-Watson stat	1.986366			
Heteroskedasticity Test: ARCH				
F-statistic Obs*R-squared	0.291484	Prob. $\mathrm{F}(10,2228)$		0.9833
	2.925407	Prob. Chi-Square(10)		0.9831

15. ARIMA $(0,1,0)-\operatorname{GARCH}(4,3)$

Dependent Variable: D(LDT3)
Method: ML - ARCH (Marquardt) - Normal distribution
Sample (adjusted): 22250

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C	0.000513	0.000210	2.447341	0.0144
Variance Equation				
C	$3.39 \mathrm{E}-06$	$1.05 \mathrm{E}-06$	3.228001	0.0012
RESID (-1)^2	-0.002886	0.008902	-0.324187	0.7458
RESID (-2)^2	0.037085	0.008600	4.312171	0.0000
RESID (-3)^2	0.077700	0.009507	8.173139	0.0000
RESID (-4)^2	0.064934	0.011087	5.856681	0.0000
GARCH(-1)	-0.268060	0.018613	-14.40164	0.0000
GARCH(-2)	0.177385	0.016741	10.59604	0.0000
GARCH(-3)	0.896402	0.017453	51.36080	0.0000
R-squared	-0.000099	Mean depend	var	0.000639
Adjusted R-squared	-0.000099	S.D. depende		0.012734
S.E. of regression	0.012734	Akaike info cri		-6.097739
Sum squared resid	0.364546	Schwarz crite		-6.074856
Log likelihood	6865.908	Hannan-Quin	criter.	-6.089387
Durbin-Watson stat	1.986425			
Heteroskedasticity Test: ARCH				
F-statistic	0.231087	Prob. F(10,2228)		0.9933
Obs*R-squared	2.319870	Prob. Chi-Square(10)		0.9932

17. ARIMA $(0,1,0)-\operatorname{GARCH}(5,1)$

Dependent Variable: D(LDT3)
Method: ML - ARCH (Marquardt) - Normal distribution
Sample (adjusted): 22250

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C	0.000495	0.000214	2.310023	0.0209
Variance				
C	$1.37 \mathrm{E}-06$	$3.83 \mathrm{E}-07$	3.588362	0.0003
RESID $(-1)^{2} 2$	-0.002586	0.009032	-0.286370	0.7746
RESID $(-2)^{2} 2$	0.033645	0.018523	1.816370	0.0693
RESID $(-3)^{2} 2$	0.026389	0.026259	1.004947	0.3149
RESID $(-4)^{2} 2$	0.006291	0.023950	0.262661	0.7928
RESID $(-5)^{2} 2$	-0.005892	0.016347	-0.360413	0.7185
GARCH (-1)	0.934222	0.009024	103.5304	0.0000
R-squared	-0.000128	Mean dependent var	0.000639	
Adjusted R-squared	-0.000128	S.D. dependent var	0.012734	
S.E. of reqression	0.012735	Akaike info criterion	-6.092313	
Sum squared resid	0.364557	Schwarz criterion	-6.071973	
Log likelihood	6858.806	Hannan-Quinn criter.	-6.084889	
Durbin-Watson stat	1.986367			

[^7]
14. ARIMA $(0,1,0)-G A R C H ~(4,2)$

Dependent Variable: D(LDT3)
Method: ML - ARCH (Marquardt) - Normal distribution
Sample (adjusted): 22250

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C	0.000499	0.000214	2.334015	0.0196
Variance Equation				
c	$2.47 \mathrm{E}-06$	$7.16 \mathrm{E}-07$	3.447850	0.0006
RESID (-1) ${ }^{\wedge} 2$	-0.000545	0.009443	-0.057707	0.9540
$\operatorname{RESID}(-2)^{\wedge} 2$	0.028515	0.016711	1.706355	0.0879
RESID (-3) ${ }^{\wedge}$	0.038530	0.023596	1.632867	0.1025
$\operatorname{RESID}(-4)^{\wedge} 2$	0.038400	0.017070	2.249512	0.0245
GARCH(-1)	0.173886	0.328890	0.528705	0.5970
GARCH(-2)	0.707079	0.309801	2.282363	0.0225
R -squared	-0.000121	Mean depend	t var	0.000639
Adjusted R-squared	-0.000121	S.D. depende		0.012734
S.E. of regression	0.012735	Akaike info cr		-6.092810
Sum squared resid	0.364554	Schwarz crite		-6.072470
Log likelihood	6859.365	Hannan-Quin		-6.085386
Durbin-Watson stat	1.986380			
Heteroskedasticity Test: ARCH				
F-statistic	0.244684	Prob. F(10, 22		0.9916
Obs*R-squared	2.456226	Prob. Chi-Squ	(10)	0.9915

16. ARIMA $(0,1,0)-\operatorname{GARCH}(4,4)$

Dependent Variable: D(LDT3)
Method: ML - ARCH (Marquardt) - Normal distribution Sample (adjusted): 22250

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C	0.000516	0.000209	2.472259	0.0134
Variance Equation				
C	$5.37 \mathrm{E}-06$	$1.62 \mathrm{E}-06$	3.311219	0.0009
RESID(-1)^2	0.004662	0.009604	0.485487	0.6273
RESID(-2) 2	0.062700	0.012694	4.939330	0.0000
RESID $(-3)^{\wedge 2}$	0.110906	0.014451	7.674529	0.0000
RESID(-4) 2	0.097262	0.011967	8.127572	0.0000
GARCH(-1)	-0.917708	0.120822	-7.595527	0.0000
GARCH(-2)	0.032043	0.040286	0.795391	0.4264
GARCH(-3)	0.970409	0.037621	25.79415	0.0000
GARCH(-4)	0.611538	0.113957	5.366366	0.0000
R-squared	-0.000093	Mean dependent var	0.000639	
Adjusted R-squared	-0.000093	S.D. dependent var	0.012734	
S.E. of regression	0.012734	Akaike info criterion	-6.097491	
Sum squared resid	0.364544	Schwarz criterion	-6.072066	
Loa likelihood	6866.629	Hannan-Quinn criter.	-6.088211	
Durbin-Watson stat	1.986436			

Heteroskedasticity Test: ARCH

F-statistic	0.167719	Prob. F(10,2228)	0.9983
Obs*R-squared	1.684205	Prob. Chi-Square(10)	0.9982

18. ARIMA (0,1,0)-GARCH $(5,2)$				
Dependent Variable: D(LDT3) Method: ML - ARCH (Marquardt) - Normal distribution Sample (adjusted): 22250				
Variable	Coefficient	Std. Error	z-Statistic	Prob.
C	0.000512	0.000216	2.371608	0.0177
Variance Equation				
C	$2.21 \mathrm{E}-06$	7.17E-07	3.076076	0.0021
RESID (-1) ${ }^{\text {2 }}$	0.000666	0.009448	0.070468	0.9438
$\operatorname{RESID}(-2)^{\wedge} 2$	0.027400	0.016543	1.656301	0.0977
$\operatorname{RESID}(-3)^{\wedge} 2$	0.050106	0.022802	2.197458	0.0280
RESID (-4) ${ }^{\text {2 }}$	0.044000	0.017375	2.532426	0.0113
RESID (-5) ${ }^{\wedge}$	-0.025242	0.022167	-1.138711	0.2548
GARCH(-1)	0.234615	0.272100	0.862238	0.3886
GARCH(-2)	0.655996	0.253461	2.588152	0.0096
R-squared	-0.000100	Mean depend	t var	0.000639
Adjusted R-squared	-0.000100	S.D. depende		0.012734
S.E. of regression	0.012734	Akaike info crior	rion	-6.092407
Sum squared resid	0.364547	Schwarz crite		-6.069524
Log likelihood	6859.912	Hannan-Quin	criter.	-6.084055
Durbin-Watson stat	1.986421			
Heteroskedasticity Test. ARCH				
F-statistic	0.196713	Prob. F(10,22		0.9966
Obs*R-squared	1.975098	Prob. Chi-Sq	(10)	0.9965

19. ARIMA $(0,1,0)-\operatorname{GARCH}(5,3)$

Dependent Variable: D(LDT3)
Method: ML - ARCH (Marquardt) - Normal distribution

Variable	Coefficient	Std. Error	z-Statistic	Prob.
c	0.000513	0.000215	2.380960	0.0173
Variance Equation				
c	3.02E-06	$7.90 \mathrm{E}-07$	3.823726	0.0001
RESID(-1$)^{\wedge} 2$	-0.000290	0.010896	-0.026575	0.9788
$\operatorname{RESID}(-2)^{\wedge} 2$	0.040720	0.017629	2.309901	0.0209
RESID (-3)^2	0.025257	0.014914	1.693529	0.0904
RESID (-4)^2	0.041770	0.015922	2.623497	0.0087
RESID (-5)n2	0.014687	0.017112	0.858298	0.3907
GARCH(-1)	0.658617	0.007645	86.14478	0.0000
GARCH(-2)	-0.738503	0.002232	-330.8747	0.0000
GARCH(-3)	0.939490	0.007689	122.1920	0.0000
R-squared	-0.000099	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000639
Adjusted R-squared	-0.000099			0.012734
S.E. of regression	0.012734			-6.107254
Sum squared resid	0.364546			-6.081828
Loq likelihood	6877.607			-6.097973
Durbin-Watson stat	1.986425			
Heteroskedasticity Test: ARCH				
F-statistic	0.333834	Prob. $\mathrm{F}(10,2228)$ Prob. Chi-Square(10)		0.9722
Obs*R-squared	3.349807			0.9720

SAMPLE 3

1. $\operatorname{ARIMA}^{(0,1,0)-G A R C H}(1,1)$				
Dependent Variable: D(LDT4)				
Method: ML - ARCH (Marquardt) - Normal distribution Sample (adjusted): 21125				
Variable	Coefficient	Std. Error	z-Statistic	Prob.
C	0.000562	0.000337	1.665885	0.0957
Variance Equation				
C	4.16E-06	$4.79 \mathrm{E}-07$	8.674440	0.0000
RESID(-1)^2	0.048512	0.008067	6.013365	0.0000
GARCH(-1)	0.924102	0.007995	115.5896	0.0000
R-squared	-0.000247	Mean depend	var	0.000370
Adjusted R-squared	-0.000247	S.D. dependen		0.012243
S.E. of regression	0.012244	Akaike info crit		-6.040748
Sum squared resid	0.168361	Schwarz criter		-6.022866
Log likelihood	3398.900	Hannan-Quinn		-6.033990
Durbin-Watson stat	2.033410			
Heteroskedasticity Test: ARCH				
F-statistic	0.183795	Prob. F(10,1103)		0.9974
Obs*R-squared	1.853196	Prob. Chi-Squ	(10)	0.9973

3. ARIMA $(0,1,0)-G A R C H(2,1)$

Dependent Variable: D(LDT4)
Method: ML - ARCH (Marquardt) - Normal distribution
Sample (adjusted): 21125

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C	0.000650	0.000346	1.878698	0.0603
Variance Equation				
C	$2.90 \mathrm{E}-06$	$7.15 \mathrm{E}-07$		
RESID $(-1)^{\wedge} 2$	0.107685	0.018391	5.855285	0.0000
RESID $(-2)^{\wedge} 2$	-0.067210	0.018723	-3.589721	0.0003
GARCH(-1)	0.940772	0.009192	102.3431	0.0000
R-squared	-0.000525	Mean dependent var	0.000370	
Adjusted R-squared	-0.000525	S.D. dependent var	0.012243	
S.E. of reqression	0.012246	Akaike info criterion	-6.041812	
Sum squared resid	0.168408	Schwarz criterion	-6.019460	
Log likelihood	3400.498	Hannan-Quinn criter.	-6.033365	
Durbin-Watson stat	2.032844			

Heteroskedasticity Test: ARCH			
F-statistic	0.236809	Prob. F(10,1103)	0.9926
Obs*R-squared	2.386587	Prob. Chi-Square(10)	0.9924

20. ARIMA ($0,1,0$)-GARCH $(5,4)$

Dependent Variable: D(LDT3)
 Method: ML - ARCH (Marquardt) - Normal distribution

 Sample (adjusted): 22250| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| :---: | :---: | :---: | :---: | :---: |
| c | 0.000556 | 0.000213 | 2.608191 | 0.0091 |
| Variance Equation | | | | |
| c | 6.09E-06 | $3.20 \mathrm{E}-06$ | 1.904396 | 0.0569 |
| RESID (-1) ${ }^{2}$ | 0.002382 | 0.009385 | 0.253843 | 0.7996 |
| RESID (-2) ${ }^{2}$ | 0.037906 | 0.021196 | 1.788333 | 0.0737 |
| RESID (-3) ${ }^{\wedge}$ | 0.100264 | 0.046629 | 2.150224 | 0.0315 |
| RESID (-4) 2 | 0.107588 | 0.071584 | 1.502977 | 0.1328 |
| RESID (-5) ${ }^{2}$ | 0.037049 | 0.042927 | 0.863072 | 0.3881 |
| GARCH(-1) | -1.236278 | 0.727763 | -1.698737 | 0.0894 |
| GARCH(-2) | 0.498015 | 0.682975 | 0.729185 | 0.4659 |
| GARCH (-3) | 1.148969 | 0.570154 | 2.015193 | 0.0439 |
| GARCH(-4) | 0.270583 | 0.674328 | 0.401264 | 0.6882 |
| R -squared | -0.000043 | Mean dependent var | | 0.000639 |
| Adjusted R-squared | -0.000043 | S.D. dependent var | | 0.012734 |
| S.E. of regression | 0.012734 | Akaike info criterionSchwarz criterion | | -6.097376 |
| Sum squared resid | 0.364526 | | | -6.069408 |
| Log likelihood | 6867.500 | Hannan-Quinn criter. | | -6.087168 |
| Durbin-Watson stat | 1.986535 | | | |
| Heteroskedasticity Test: ARCH | | | | |
| F-statistic | 0.234321 | Prob. $\mathrm{F}(10,2228)$
 Prob. Chi-Square(10) | | 0.9929 |
| Obs*R-squared | 2.352304 | | | 0.9929 |

2. \quad ARIMA $(0,1,0)-\operatorname{GARCH}(1,2)$

Dependent Variable: D(LDT4)
Method: ML - ARCH (Marquardt) - Normal distribution
Sample (adjusted): 21125

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C	0.000593	0.000344	1.720520	0.0853
Variance Equation				
C	$5.36 \mathrm{E}-06$	$7.70 \mathrm{E}-07$	6.966283	0.0000
RESID (-1) ${ }^{\text {2 }}$	0.068871	0.014326	4.807503	0.0000
GARCH(-1)	0.471007	0.266033	1.770482	0.0766
GARCH(-2)	0.425200	0.253875	1.674841	0.0940
R-squared	-0.000331	Mean dependent var		0.000370
Adjusted R-squared	-0.000331	S.D. dependent var		0.012243
S.E. of rearession	0.012245	Akaike info criterion		-6.040165
Sum squared resid	0.168375			-6.017813
Log likelihood	$\begin{aligned} & 3399.573 \\ & 2.033238 \end{aligned}$	Schwarz criterion Hannan-Quinn criter.		-6.031718
Durbin-Watson stat		Hannan-Quinn criter.		

Heteroskedasticity Test: ARCH

F-statistic	0.200106	Prob. F(10,1103)	0.9963
Obs*R-squared	2.017361	Prob. Chi-Square(10)	0.9962
4			

4. ARIMA (0,1,0)-GARCH $(2,2)$

Dependent Variable: D(LDT4)
Method: ML - ARCH (Marquardt) - Normal distribution
Sample (adjusted): 21125

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C	0.000651	0.000346	1.882021	0.0598
Variance Equation				
C	$2.82 \mathrm{E}-06$	1.27E-06	2.221816	0.0263
RESID (-1) ${ }^{2}$	0.107448	0.018389	5.843127	0.0000
RESID (-2) ${ }^{2}$	-0.068233	0.024483	-2.786927	0.0053
GARCH(-1)	0.967346	0.351774	2.749905	0.0060
GARCH(-2)	-0.024833	0.328786	-0.075529	0.9398
R-squared	-0.000529	Mean dependent var		0.000370
Adjusted R-squared	-0.000529	S.D. dependent var		0.012243
S.E. of regression	0.012246	Akaike info criterion		-6.040037
Sum squared resid	0.168408	Schwarz criterion		-6.013215
Loq likelihood	3400.501	Hannan-Quinn criter.		-6.029901
Durbin-Watson stat	2.032835			

Heteroskedasticity Test: ARCH

F-statistic	0.236608	Prob. F(10,1103)	0.9926
Obs*R-squared	2.384560	Prob. Chi-Square(10)	0.9925

STAGE II－STAGE III：BJ－G model＇s Parameter Estimation and Diagnostic Checking
SAMPLE 1：Refer to Appendix 2
SAMPLE 2
i．ARIMA（0，1，0）－GARCH $(1,1)$ with Normal distribution
Dependent Variable：D（LDT3）
Method：ML－ARCH（Marquardt）－Normal distribution
Date：03／13／17 Time：04：29
Sample（adjusted）： 22250
Included observations： 2249 after adjustments
Convergence achieved after 9 iterations
Presample variance：backcast（parameter $=0.7$ ）
$\mathrm{GARCH}=\mathrm{C}(2)+\mathrm{C}(3)^{*} \mathrm{RESID}(-1)^{\wedge} 2+\mathrm{C}(4)^{\star} \mathrm{GARCH}(-1)$

Variable	Coefficient	Std．Error	z－Statistic	Prob．	
C	0.000586	0.000217	2.696675	0.0070	
Variance Equation					
RESID $(-1)^{\wedge} 2$	$1.15 E-06$	$3.15 E-07$	3.648057	0.0003	
GARCH（－1）	0.047859	0.005482	8.729874	0.0000	
R－squared	0.945348	0.006267	150.8374	0.0000	
AdjustedR－squared	-0.000017	Mean dependent var	0.000639		
S．E．ofregression	-0.000017	S．D．dependent var	0.012734		
Sum squaredresid	0.012734	Akaike info criterion	-6.091298		
Log likelihood	0.364517	Schwarz criterion	-6.081128		
Durbin－Watson stat	6853.665	Hannan－Quinn criter．	-6.087586		

Date：03／13／17 Time：04：30
Sample： 22250
Included observations： 2249

Autocorrelation	Partial Correlation	AC	PAC	Q－Stat	Prob
中	中	10.021	0.021	1.0262	0.311
1	1	$2-0.027$	－0．028	2.6980	0.259
1	1	$3-0.008$	－0．007	2.8488	0.416
＇	＇1	40.004	0.004	2.8893	0.577
＂	＂	50.024	0.023	4.1446	0.529
d	4	$6-0.048$	－0．049	9.3654	0.154
1	1	$7-0.020$	－0．017	10.296	0.172
＇	＇	$8-0.006$	－0．008	10.380	0.239
17	中	$9 \quad 0.053$	0.052	16.764	0.053
1	中	100.013	0.010	17.133	0.071
1	＇	$11-0.031$	－0．027	19.303	0.056
4	4	$12-0.047$	－0．046	24.299	0.019
＂	＂	130.016	0.015	24.850	0.024
＂	＇	140.009	0.002	25.017	0.034
1	（1）	$15-0.020$	－0．016	25.957	0.038
1.	1，	160.030	0.036	27.976	0.032
＂	＇	$17-0.005$	－0．006	28.024	0.045
	1	180.006	－0．001	28.107	0.060
1	1	$19-0.010$	－0．013	28.355	0.077
1p	1p	$20 \quad 0.028$	0.033	30.137	0.068

Series：Standardized Residuals	
Sample 2 2250	
Observations 2249	
Mean	0.012271
Median	0.019709
Maximum	3.875859
Minimum	-5.864775
Std．Dev．	1.000445
Skewness	-0.396411
Kurtosis	4.623967
Jarque－Bera	306.0359
Probability	0.000000

iii. ARIMA (0,1,0)-GARCH (1,1) with skewed- \boldsymbol{t} distribution
$>\operatorname{fit} 33<-$ garchFit(formu1a $=\sim \operatorname{arma}(0,0)+\operatorname{garch}(1,1)$, data $=$ d1dt3, cond, di st="sstd", include, mean $=$ TRUE, trace=F) \# for ARIMA with constant
$>\operatorname{sum} 33<-$ summary (fit33)
Jitte:GARCH Modelling
calligarchFit (formula $=\sim \operatorname{arma}(0,0)+\operatorname{garch}(1,1)$, data $=d 1 d t 3$, cond.dist
$=$ sstd, include, mean $=$ TRUE, trace $=F$)
Mean and Variance Equationidata $\sim \operatorname{arma}(0,0)+\operatorname{garch}(1,1)$
<environment: 0×14 efeld4>
[data $=$ dldt3]
Conditional Distributionisstd
coefficient(s):
mu omega alpha1 beta1 skew shape
$\begin{array}{llllll}7.4405 \mathrm{e}-04 & 1.1544 \mathrm{e}-06 & 4.5162 \mathrm{e}-02 & 9.4838 \mathrm{e}-01 & 9.3725 \mathrm{e}-01 & 5.9387 \mathrm{e}+00\end{array}$
Std. Errorsibased on Hessian
Error Analysis:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$	
mu	$7.440 \mathrm{e}-04$	$2.230 \mathrm{e}-04$	3.337	0.000847	$* * *$
omega	$1.154 \mathrm{e}-06$	$4.421 \mathrm{e}-07$	2.611	0.009023	$* *$
alpha1.	$4.516 \mathrm{e}-02$	$7.346 \mathrm{e}-03$	6.147	$7.87 \mathrm{e}-10$	$* * *$
beta1	$9.484 \mathrm{e}-01$	$7.781 \mathrm{e}-03$	121.890	$<2 \mathrm{e}-16$	$* * *$
Skew	$9.372 \mathrm{e}-01$	$2.614 \mathrm{e}-02$	35.856	$<2 \mathrm{e}-16$	$* * *$
Shape	$5.939 \mathrm{e}+00$	$8.066 \mathrm{e}-01$	7.362	$1.81 \mathrm{e}-13$	$* * *$

Signife codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' , 1
Log Likelihood:
6905.012 normalized: 3.070259

Standardised Residuals Tests:

Jarque-Bera Test	R	Chi^2	$\begin{aligned} & \text { Statistic } \\ & 304.5085 \end{aligned}$	$\mathrm{p}_{0}^{\mathrm{p} \text {-value }}$
Shapiro-wilk Test	R	W	0.9829788	9.389528e-16
Ljung-Box Test	R	$Q(10)$	17.37142	0.06653892
Ljung-Box Test	R	Q(15)	26.01236	0.037893
Ljung-Box Test	R	$Q(20)$	30.39286	0.0637331
Ljung-Box Test	R^2	Q(10)	6.692161	0.754152
Ljung-Box Test	R^2	Q(15)	13.55087	0.5598278
Ljung-Box Test	R^2	Q(20)	19.79902	0.4705635
LM Arch Test	R	TR^2	7.881679	0. 794307

Information Criterion Statistics:

| AIC | BIC | SIC | HQIC |
| ---: | ---: | ---: | ---: | ---: |
| -6.135182 | -6.119926 | -6.135196 | -6.129613 |

$>$ Archtest ($\times 33$, lags $=10$, demean $=$ FALSE $)$ \#arch test at lag=10
ARCH LM-test; Nul7 hypothesis: no ARCH effects
data: $\times 33$
Chi-squared $=6.6036, ~ d f=10, p-v a 7 u e=0.7623$
$>$ Archtest ($\times 33$, lags $=15$, demean $=$ FALSE $)$
ARCH LM-test; Null hypothesis: no ARCH effects
data: $\times 33$
Chi-squared $=13.617, \mathrm{df}=15, \mathrm{p}$-value $=0.5548$
> dw $33<-2^{*}(1-f 33 \$$ acf[2]); dw33 \#use formula dw=2(1-r1)
[1] 2.056946

iv. ARIMA (0,1,0)-GARCH $(1,1)$ with GED distribution

Dependent Variable: D(LDT3)
Method: ML - ARCH (Marquardt) - Generalized error distribution (GED)
Date: 03/13/17 Time: 05:1
Sample (adjusted): 22250
included observations: 2249 after adjustments
Convergence achieved after 12 iterations
Presample variance: backcast (parameter $=0.7$)
$\mathrm{GARCH}=C(2)+C(3)^{\star} \mathrm{RESID}(-1)^{\wedge} 2+C(4)^{\star}$ GARCH (-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.	
C	0.000802	0.000198	4.060084	0.0000	
Variance Equation					
RESID $(-1)^{n} 2$	$1.19 E-06$	$4.99 E-07$	2.396478	0.0166	
GARCH(-1)	0.046085	0.008681	5.308623	0.0000	
GED PARAMETER	0.946606	0.009879	95.82158	0.0000	
R-squared	1.273843	0.049894	25.53103	0.0000	
AdjustedR-squared	-0.000164	Mean dependent var	0.000639		
S.E. of regression	-0.000164	S.D.dependent var	0.012734		
Sum squaredresid	0.012735	Akaike infocriterion	-6.142602		
Loglikelihood	0.364570	Schwarzcriterion	-6.129889		
Durbin-Watson stat	6912.356	Hannan-Quinn criter.	-6.137962		

Date: 03/13/17 Time: 05:19
Sample: 22250
Included observations: 2249

v. ARIMA (0,1,0)-GARCH (1,1) with skewed-GED distribution

$>$ fit $35<$-garcheit (formula $=\sim \operatorname{arma}(0,0)+\operatorname{garch}(1,1)$, data $=$ didt 3 , cond. dis $t=$ "sged", include mean $=$ TRUE, trace=F) \# for ARIMA with constant $>$ sum35<-summary(fit35) Title:GARCH Modelling Ca11:
garcheit (formu1a $=\sim \operatorname{arma}(0,0)+\operatorname{garch}(1,1)$, data $=d 1 d t 3$, cond, dist $="$
sged", inctude.mean $=$ TRUE, trace $=\mathrm{F}$)
Mean and Variance Equationidata $\sim \operatorname{arma}(0,0)+\operatorname{garch}(1,1)$
<environment: $0 \times 15568 a 60 \geq[$ data $=\mathrm{d} 1 \mathrm{dt} 3]$
Conditional Distribution:sged
Coefficient(s):

mu	omega	alpha1	betal	skew	shape
$5.9970 \mathrm{e}-04$	$1.0357 \mathrm{e}-06$	$4.4840 \mathrm{e}-02$	$9.4857 \mathrm{e}-01$	$9.5576 \mathrm{e}-01$	$1.2890 \mathrm{e}+00$

std. Errorsibased on Hessian Error Analysis:

Estimate std Error

-6.142447	-6.127192	-6.142462	-6.136879

Standardised residuals:

$$
\text { dw } 35<-2 *(1-f 35 \$ \text { acf }[2]) ; \text { dw } 35 \text { \#use formula } d w=2(1-r 1)
$$

$$
\begin{aligned}
& \text { [1] } 2.056001 \\
& >\text { Archiest }(\times 35, ~ 1 a g s=10, ~ d e m e a n ~=~ F A L S E) ~ \# a r c h ~ t e s t ~ a t ~ l a g=10 ~
\end{aligned}
$$

ARCH LM-test; Nul7 hypothesis: no ARCH effects

$$
\begin{aligned}
& \text { data: } \times 35 \\
& \text { chi-squared }=6.8539, \mathrm{df}=10, \mathrm{p} \text {-value }=0.7392
\end{aligned}
$$

$$
>\text { Archtest }(\times 35,1 \text { ags }=15, \text { demean }=\text { FALSE })
$$

ARCH LM-test; Nul7 hypothesis: no ARCH effects
data: $\times 35$
Chi-squared $=13.857, ~ d f=15, p$-value $=0.5364$

SAMPLE 3

i．ARIMA（0，1，0）－GARCH（1，1）with Normal distribution
Dependent Variable：D（LDT4）
Method：ML－ARCH（Marquardt）－Normal distribution
Date：03／13／17 Time：06：09
Sample（adjusted）： 21125
Included observations： 1124 after adjustments
Convergence achieved after 14 iterations
Presample variance：backcast（parameter $=0.7$ ）
GARCH $=C(1)+C(2)^{*} R E S I D(-1)^{\wedge} 2+C(3)^{*} G A R C H(-1)$

Variable	Coefficient	Std．Error	z－Statistic	Prob．
Variance Equation				
C	4．17E－06	$4.56 \mathrm{E}-07$	9.144686	0.0000
RESID（－1）${ }^{\wedge} 2$	0.045807	0.008057	5.685143	0.0000
GARCH（－1）	0.926391	0.008346	111.0018	0.0000
R －squared	－0．000914	Mean dependent var		0.000370
Adjusted R－squared	－0．000023	S．D．dependent var		0.012243
S．E．of regression	0.012243	Akaike info criterion		－6．040033
Sum squared resid	0.168473	Schwarz criterion		－6．026622
Log likelihood	3397.498	Hannan－Qui	criter．	－6．034965
Durbin－Wats on stat	2.032054			

Date：03／13／17 Time：06：13
Sample： 21125
Included observations： 1124

Autocorrelation	Partial Correlation	AC PAC	Q－Stat	Prob
小	小	10.0050 .005	0.0290	0.865
8	1	$\begin{array}{llll}2 & -0.034-0.034\end{array}$	1.2993	0.522
11	11	$3-0.022-0.021$	1.8350	0.607
11	11	$4 \begin{array}{lll}4 & 0.003 & 0.002\end{array}$	1.8463	0.764
1.	1］	$\begin{array}{llll}5 & 0.045 & 0.043\end{array}$	4.1093	0.534
1	1	$\begin{array}{llll}6 & -0.038 & -0.039\end{array}$	5.7490	0.452
1	1	$\begin{array}{llll}7 & -0.013-0.009\end{array}$	5.9313	0.548
1	1	$8-0.013-0.014$	6.1265	0.633
$1]$	1］	$\begin{array}{llll}9 & 0.067 & 0.065\end{array}$	11.227	0.260
＇	1	$10 \quad 0.002-0.002$	11.233	0.340
＂	11	11－0．013－0．006	11.428	0.408
1	1	$\begin{array}{llll}12 & -0.048 & -0.046\end{array}$	14.050	0.298
11	＂	$\begin{array}{llll}13 & 0.019 & 0.020\end{array}$	14.469	0.342
1	1	$\begin{array}{lll}14 & 0.024 & 0.013\end{array}$	15.099	0.371
\square	\square	$\begin{array}{llll}15 & -0.067 & -0.064\end{array}$	20.249	0.163
1	中	$\begin{array}{llll}16 & 0.018 & 0.023\end{array}$	20.612	0.194
11	1	$\begin{array}{llll}17 & -0.003-0.002\end{array}$	20.623	0.244
11	11	$\begin{array}{llll}18 & 0.041 & 0.031\end{array}$	22.530	0.209
1	1	$\begin{array}{llll}19 & -0.007 & -0.009\end{array}$	22.588	0.256
1	11	$\begin{array}{llll}20 & 0.018 & 0.028\end{array}$	22.943	0.292

Correlogram of Standardized Residuals Squared					
Date：03／13／17 Time：06：15 Sample： 21125 Included observations： 1124					
Autocorrelation	Partial Correlation	AC	PAC	Q－Stat	Prob
小	小	10.002	0.002	0.0069	0.934
11	11	$2-0.006$	－0．006	0.0506	0.975
1	＂	$3-0.013$	－0．013	0.2367	0.971
1	1	$4-0.018$	－0．018	0.6092	0.962
11	1	$5-0.018$	－0．018	0.9907	0.963
11	1	$6 \quad 0.009$	0.009	1.0826	0.982
1	1	$7 \quad 0.018$	0.017	1.4572	0.984
1	11	$8-0.005$	－0．006	1.4897	0.993
11	11	90.008	0.008	1.5573	0.997
＇1	1	$10 \quad 0.001$	0.001	1.5581	0.999
＂	1	$11-0.015$	－0．014	1.8207	0.999
＇	1	$12-0.003$	－0．002	1.8299	1.000
1	＂	$13-0.011$	－0．011	1.9624	1.000
11	1	$14-0.014$	－0．014	2.1803	1.000
11	11	150.027	0.026	3.0093	1.000
1	1	$16-0.016$	－0．018	3.3021	1.000
	1	$17-0.014$	－0．014	3.5213	1.000
1	1	180.014	0.014	3.7503	1.000
＂	1	$19-0.016$	－0．016	4.0344	1.000
11	11	$20 \quad 0.007$	0.008	4.0953	1.000

Heteroskedasticity Test：ARCH

F－statistic	0.159351	Prob．F（10，1103）	0.9986
Obs＊R－squared	1.607076	Prob．Chi－Square（10）	0.9986

Heteroskedasticity Test：ARCH

F－statistic	0.201945	Prob．F（15，1093）	0.9996
Obs＊R－squared	3.065030	Prob．Chi－Square（15）	0.9995

ii. \quad ARIMA (0,1,0)-GARCH $(1,1)$ with \boldsymbol{t} distribution

iii. ARIMA (0,1,0)-GARCH $(1,1)$ with skewed- \boldsymbol{t} distribution

$>$ fit43_r<-garcheit(formula $=\sim \operatorname{arma}(0,0)+\operatorname{garch}(1,1)$, data $=d 1 d t 4$, cond dist="sstd", include,mean = FALSE, trace=F) \# for ARIMA without constant > sum43<-summary (fit43_r)
JitleiGARCH Modelling
calligarchFit(formula $=\sim \operatorname{arma}(0,0)+\operatorname{garch}(1,1)$, data $=$ dldt4, cond.dist
$=$ "sstd", include. mean $=$ FALSE, trace $=$ F)
Mean and variance Equationidata $\sim \operatorname{arma}(0,0)+\operatorname{garch}(1,1)$
<environment: 0x13de4310 \geq [data $=$ d1dt4]
Conditional Distributionisstd
coefficient(s):
omega alpha1 beta1 skew shape
$2.8875 \mathrm{e}-06 \quad 4.2102 \mathrm{e}-02 \quad 9.3935 \mathrm{e}-01 \quad 9.2790 \mathrm{e}-01 \quad 4.7647 \mathrm{e}+00$
Std. Errors;based on Hessian

Information criterion Statistics:
$\begin{array}{rrrr}\text { AIC } & \text { BIC } & \text { SIC } & \text { HQIC } \\ -6.158587 & -6.136236 & -6.158627 & -6.150140\end{array}$

iv．ARIMA（0，1，0）－GARCH $(1,1)$ with GED distribution

Dependent Variable：D（LDT4）
Method：ML－ARCH（Marquardt）－Generalized error distribution（GED）
Date：03／13／17 Time：15：02
Sample（adjusted）： 21125
Included observations： 1124 after adjustments
Convergence achieved after 23 iterations
Presample variance：backcast（parameter $=0.7$ ）
$\mathrm{GARCH}=\mathrm{C}(2)+\mathrm{C}(3)^{*} \mathrm{RESID}(-1)^{\wedge} 2+\mathrm{C}(4)^{*} \mathrm{GARCH}(-1)$

Variable	Coefficient	Std．Error	z－Statistic	Prob．			
C	0.000623	0.000275	2.269519	0.0232			
Variance Equation							
RESID $(-1)^{\wedge} 2$	$2.75 E-06$	$1.07 E-06$	2.576444	0.0100			
GARCH（－1）	0.037180	0.012565	2.959012	0.0031			
GED PARAMETER	0.942461	0.016372	57.56708	0.0000			
R－squared	1.168244	0.044418	26.30106	0.0000			
Adjusted R－squared	-0.000428	Mean dependent var	0.000370				
S．E．of regression	-0.000428	S．D．dependent var	0.012243				
Sum squared resid	0.012245	Akaike info criterion	-6.153220				
Loglikelihood	0.168391	Schwarz criterion	-6.130868				
Durbin－Watson stat	3463.110	Hannan－Quinn criter．	-6.144773				

Date：03／13／17 Time：15：06
Sample： 21125
Included observations： 1124

| Autocorrelation Partial Correlation | AC | PAC | Q－Stat | Prob |
| :--- | :--- | :--- | :--- | :--- | :--- |

Correlogram of Standardized Residuals Squared				
Date：03／13／17 Time： $15: 05$Sample： 21125Included observations： 1124				
Autocorrelation	Partial Correlation	$n \quad A C$ PAC	Q－Stat	Prob
中	中	$\begin{array}{lll}1 & 0.011 & 0.011\end{array}$	0.1268	0.722
1	1	$2-0.004-0.004$	0.1481	0.929
＂	＂	$3-0.011-0.011$	0.2869	0.962
1	1	4－0．017－0．017	0.6100	0.962
11	11	$5-0.018-0.018$	0.9816	0.964
1	1	$\begin{array}{llll}6 & 0.010 & 0.010\end{array}$	1.1003	0.982
＂	＂	$\begin{array}{lll}7 & 0.022 & 0.022\end{array}$	1.6706	0.976
1	11	$8-0.004-0.005$	1.6906	0.989
＂	＂	$9 \quad 0.011 \quad 0.011$	1.8259	0.994
1	1	$10-0.001-0.000$	1.8262	0.998
1	1	$11-0.013-0.012$	2.0215	0.998
1	11	$\begin{array}{llll}12 & -0.003 & -0.002\end{array}$	2.0330	0.999
1	1	$13-0.008-0.009$	2.1139	1.000
＂	1	$14-0.013-0.013$	2.3169	1.000
，	1	$\begin{array}{llll}15 & 0.024 & 0.024\end{array}$	2.9823	1.000
11	＂	$16-0.015-0.017$	3.2435	1.000
1	1	$\begin{array}{llll}17 & -0.015 & -0.015\end{array}$	3.5182	1.000
1	1	$\begin{array}{llll}18 & 0.012 & 0.013\end{array}$	3.6900	1.000
1	1	$\begin{array}{llll}19 & -0.016-0.016\end{array}$	3.9699	1.000
川	中	$\begin{array}{llll}20 & 0.004 & 0.006\end{array}$	3.9909	1.000
Heteroskedasticity Test：ARCH				
F－statistic	0.182813	Prob．F 10,1103 ）		0.9975
Obs＊R－squared	1.843304	Prob．Chi－Square（10）		0.9974
Heteroskedasticity Test ARCH				
F－statistic	0.196746	Prob． $\mathrm{F}(15,1093)$		0.9996
Obs＊R－squared	2.986329	Prob．Chi－Square（15）		0.9996

| Series：Standardized Residuals
 Sample 2 1125
 Observations 1124

 Mean -0.020144
 Median -0.001772
 Maximum 4.227669
 Minimum -10.02880
 Std．Dev． 1.019383
 Skewness -1.034127
 Kurtosis 12.35896

 Jarque－Bera 4302.472
 Probability 0.000000 |
| :--- | ---: |

v. ARIMA (0,1,0)-GARCH (1,1) with skewed-GED distribution

$>$ fit45_r<-garchFit(formu1a $=\sim \operatorname{arma}(0,0)+g a r c h(1,1)$, data $=d 1 d t 4$, cond. d ist="sged", include,mean = EALSE, trace=F) \# for ARIMA without constant $>$ sum45<-summary(fit45_r)
Jitte:GARCH Modelling
calligarcheit(formula $=\sim \operatorname{arma}(0,0)+\operatorname{gacch}(1,1)$, data $=$ d1dt4, cond.dist
$=$ "sged", include.mean $=$ FALSE, trace $=F$)
Mean and variance Equationidata $\sim \operatorname{arma}(0,0)+\operatorname{garch}(1,1)$
<environment: 0x1487fa5c>[data $=$ dldt4]
Conditional Distributionisged
coefficient (s):
2.9207 omega alpha1 skew beta1 shape
std. Errorsibased on Hessian
Error Analysis:
omega Estimate std. Error
$2.4090 .01598 *$
$\begin{array}{llrrr}\text { alpha1 } 4.309 \mathrm{e}-02 & 1.232 \mathrm{e}-02 & 3.497 & 0.00047 & * * * \\ \text { beta1 } 9.370 \mathrm{e}-01 & 1.588 \mathrm{e}-02 & 59.008 & <2 \mathrm{e}-16 * * *\end{array}$
skew $9.289 \mathrm{e}-01 \quad 1.821 \mathrm{e}-02 \quad 50.999<2 \mathrm{e}-16$ ***
shape $1.175 \mathrm{e}+00 \quad 6.157 \mathrm{e}-02 \quad 19.089<2 e-16 * * *$
signifi codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '. 0.1 imi 1
Log Likelihood:
3461.27 normalized: 3.079422

Standardised Residuals Tests:

			Statistic p-value	
Jarque-Bera Test	R	Chi^Z	4147.252	0
Shapiro-wilk Jest	R	W	0.9438308	0
Ljung-Box Test	R	Q(10)	10.60208	0.3893472
Ljung-Box Test	R	$Q(15)$	19.28142	0.2012632
LJung-Box Test	R	$Q(20)$	22.47182	0.3154664
LJung-Box Test	$R \wedge 2$	$Q(10)$	1.52967	0.9988399
Ljung-Box Test	$R \wedge 2$	$Q(15)$	2.694424	0.9997949
LJung-Box Test	$R \wedge 2$	$Q(20)$	3.746284	0.999973
LM Arch Test	R	TR^2	1.85204	0.9996013

Information Criterion Statistics:
AIC BIC SIC HQIC
$-6.149947-6.127596-6.149987-6.141501$

STAGE IV: BOX-JENKINS - GARCH FORECASTING

Sample 1: Refer Appendix 2

Sample 2: ARIMA (0,1,0)-GARCH (1,1) with GED innovations
i. For Stationary Data (Daily Log Return Gold Price)

Forecast LDT3F	
Actual: D(LDT3)	
Forecast sample: 22512500	
Included observations: 250	
Root Mean Squared Error	0.013897
Mean Absolute Error	0.009119
Mean Abs. Percent Error	105.7116
Theil Inequality Coefficient	0.951699
Bias Proportion	0.022338
Variance Proporfion	0.977662
Covariance Proportion	$\mathbf{0 . 0 0 0 0 0 0}$

> mae_st_AG3=sum(error2st_AG3)/T; mae_st_
> mae_st_AG3=sum(error2st_AG3)/T; mae_st_
AG3
AG3
[1] 0.009118529
[1] 0.009118529
> rmse st AG3=sqrt(sum(error3st AG3)/T);
> rmse st AG3=sqrt(sum(error3st AG3)/T);
rmse_st_AG3
rmse_st_AG3
[1] 0.01389693
[1] 0.01389693
For Daily Gold Price
For Daily Gold Price
> mae_AG3=sum(error2_AG3)/T; mae_AG3
> mae_AG3=sum(error2_AG3)/T; mae_AG3
[1] 12.68691
[1] 12.68691
> rmse_AG3=sqrt(sum(error3_AG3)/T); rmse_
> rmse_AG3=sqrt(sum(error3_AG3)/T); rmse_
AG3
AG3
[1] 19.21902
[1] 19.21902
> mape_AG3=(100/T)*sum(error4_AG3); mape_
> mape_AG3=(100/T)*sum(error4_AG3); mape_
AG3
AG3
[1] 0.9154706
[1] 0.9154706

Sample 3: ARIMA (0,1,0)-GARCH (1,1) with t innovations
i. For Stationary Data (Daily Log Return Gold Price)

> mae_st_AG4=sum (error2st_AG4)/T; mae_st_AG4
[1] 0.009951418
> rmse st AG4 = sqrt(sum(error3st AG4)/T); rmse _st_AG4
[1] 0.01380593

For Daily Gold Price

> mae_AG4=sum(error2_AG4)/T; mae_AG4
[1] 12.93009
> rmse_AG4=sqrt(sum(error3_AG4)/T); rmse_AG4
[1] 17.87645
> mape AG4=(100/T) *sum(error4_AG4); mape AG4
[1] $0 . \overline{9} 956225$

APPENDIX 4 ANALYSIS OF CHAPTER 4 SECTION 4.4

A. OUT-OF-SAMPLE DATA

- 25 June -17 Dec 2013 (125 data)
i) Original data (Price in USD)

Date	Price (\$)	Date	Price(\$)	Date	Price(\$)	Date	Price(\$)	Date	Price(\$)
25/6/2013	1279.00	30/7/2013	1324.	4/9/2013	1390.00	9/10/20	1304.00	13/11/2013	1272.50
6/2013	1236.25	/2013	13	5/9/2013	1385.	10/10/2013	1298.50	11/2013	1286.00
13	1232.75	013	13	2013	138	13	265.50	/2013	
28/6/2013	1192.00	/2013	1309.25	9/9/2013		0/2	1285.50	16/11/2013	88.50
013	1242.75	5/8/2013	1304.75	10/9/2013	135	15/10/2013	1270.50	17/11/2013	
7/2013	1252.50	/2013	1280.50	119/201		16/10/2013	73.5	18/11/2013	
/7/2013		/2013	1282.50	12/9/2013	1328.00	17/10/20	1319.25	/2013	
13	12	8/8/2013	1298.25	13/9/2013	13	18/1	1316.50	13	
2013	1212.75	/20		16/9/2013		19/10/2	1317.50	11/2013	
8/7/2013		/20		17		20/10/20		2013	
7/2013		13/8/2013		18		21/10/2013	1331.25	013	
10/7/2013		14/8/2013		19/9/2013		22/10/20	1344.75	4/11/20	
11/7/2013		15/8/2013	1329.75	20	134	23	1347.75	25/11/2013	
7/2013	1279.75	16/8/2013	1369.25	21/9/2013	13	24/10/20	1361.00	2/20	1229.50
15/7/2013	1284.75	19/8/2013		22	1314.25	25/10/2	1349.2	3/12/2013	1217.25
16/7/2013	1291.50	20/8/2013	1372.50	23	1322.75	26/10/20	1354.7	12/2013	
013	1297.25	21/8/2013		24		27/10/2	1324.00	5/12/2013	1222.50
18/7/2013		22/8/2013		25		1/11/2013	1306.75	12/2013	1233.0
$7 / 2013$	12	/20		26/9/2013	13	1/2	1320.5	12/20	
/7/2013	1327.00	27/8/2013	14	1/10/2013	129	5/11/2013	1307.25	12/2013	1266.25
23/7/2013	1333.50	28/8/2013	14	2/10/2013		6/11/20	1319.00	11/12/2013	12
4/7/2013	1335.00	29/8/201	1407.75	3/10/2013	1316	11/2013	1307.25	12/12/2013	122
7/2013	1326.00	30/8/2013	1394.75	4/10/2013	1309.	8/11/2013	1285.5	13/12/2013	12
26/7/2013	1331.00	2/9/2013	1392.25	7/10/2013	1323.50	11/11/2013	1282.5	16/12/2013	1234.7
29/7/2013	1329.75	3/9/2013	1399.	8/10/2013	132	12/11/20	1281.25	12/2	1231.75

Out-of-sample data in original scale (Price)

$[1]$	1279.00	1236.25	1232.75	1192.00	1242.75	1252.50	1250.00	1251.75	1212.75	1235.25
$[11]$	1255.50	1256.00	1285.00	1279.75	1284.75	1291.50	1297.25	1283.25	1295.75	1327.00
$[21]$	1333.50	1335.00	1326.00	1331.00	1329.75	1324.15	1314.50	1315.00	1309.25	1304.75
$[31]$	1280.50	1282.50	1298.25	1309.00	1341.00	1328.50	1326.50	1329.75	1369.25	1365.00
$[41]$	1372.50	1363.00	1375.50	1377.50	1419.25	1419.50	1407.75	1394.75	1392.25	1399.50
$[51]$	1390.00	1385.00	1387.00	1390.00	1358.25	1363.75	1328.00	1318.50	1324.00	1312.25
$[61]$	1301.00	1365.50	1349.25	1323.00	1314.25	1322.75	1333.00	1341.00	1326.50	1290.75
$[71]$	1306.25	1316.00	1309.75	1323.50	1329.50	1304.00	1298.50	1265.50	1285.50	1270.50
$[81]$	1273.50	1319.25	1316.50	1317.50	1333.00	1331.25	1344.75	1347.75	1361.00	1349.25
$[91]$	1354.75	1324.00	1306.75	1320.50	1307.25	1319.00	1307.25	1285.50	1282.50	1281.25
$[101]$	1272.50	1286.00	1287.25	1283.50	1275.75	1257.00	1240.00	1246.25	1243.00	1247.50
$[111]$	1245.00	1245.50	1253.00	1229.50	1217.25	1227.50	1222.50	1233.00	1237.00	1266.25
$[121]$	1260.75	1225.25	1232.00	1234.75	1231.75					

ii. Out-of-sample data in Transformed scale (log price)

$[1]$	7.153834	7.119838	7.117003	7.083388	7.125082	7.132897	7.130899	7.132298	7.100646	7.119029
$[11]$	7.135289	7.135687	7.158514	7.154420	7.158319	7.163560	7.168002	7.157151	7.166845	7.190676
$[21]$	7.195562	7.196687	7.189922	7.193686	7.192746	7.188526	7.181212	7.181592	7.177210	7.173767
$[31]$	7.155006	7.156567	7.168772	7.177019	7.201171	7.191806	7.190299	7.192746	7.222018	7.218910
$[41]$	7.224389	7.217443	7.226573	7.228026	7.257884	7.258060	7.249748	7.240470	7.238676	7.243870
$[51]$	7.237059	7.233455	7.234898	7.237059	7.213952	7.217994	7.191429	7.184250	7.188413	7.179499
$[61]$	7.170888	7.219276	7.207304	7.187657	7.181021	7.187468	7.195187	7.201171	7.190299	7.162979
$[71]$	7.174916	7.182352	7.177592	7.188035	7.192558	7.173192	7.168965	7.143223	7.158903	7.147166
$[81]$	7.149524	7.184819	7.182732	7.183491	7.195187	7.193874	7.203963	7.206192	7.215975	7.207304
$[91]$	7.211372	7.188413	7.175298	7.185766	7.175681	7.184629	7.175681	7.158903	7.156567	7.155591
$[101]$	7.148739	7.159292	7.160263	7.157346	7.151290	7.136483	7.122867	7.127894	7.125283	7.128897
$[111]$	7.126891	7.127292	7.133296	7.114363	7.104349	7.112735	7.108653	7.117206	7.120444	7.143815
$[121]$	7.139462	7.110900	7.116394	7.118624	7.116191					

iii. Out-of-sample data in Stationary scale (First differenced of log price)

$[1]$	-0.0060411370	-0.0339959186	-0.0028351578	-0.0336148775	0.0416940973	0.0078148880
$[7]$	-0.0019980027	0.0013990209	-0.0316520641	0.0183828706	0.0162605209	0.0003981684
$[13]$	0.0228266503	-0.0040939720	0.0038994005	0.0052401867	0.0044423057	-0.0108507168
$[19]$	0.0096937556	0.0238310773	0.0048863093	0.0011242272	-0.0067644001	0.0037636476
$[25]$	-0.0009395848	-0.0042202105	-0.0073143790	0.0003803004	-0.0043822115	-0.0034430026
$[31]$	-0.0187608249	0.0015606714	0.0122059057	0.0082462832	0.0241521174	-0.0093651181
$[37]$	-0.0015065916	0.0024470600	0.0292721900	-0.0031087160	0.0054794658	-0.0069457417
$[43]$	0.0091291487	0.0014529607	0.0298583010	0.0001761339	-0.0083120118	-0.0092774974
$[49]$	-0.0017940443	0.0051938865	-0.0068112828	-0.0036036075	0.0014430017	0.0021606058
$[55]$	-0.0231066407	0.0040411517	-0.0265642071	-0.0071793242	0.0041627307	-0.0089142364
$[61]$	-0.0086100216	0.0483874624	-0.0119717794	-0.0196469974	-0.0066357244	0.0064467421
$[67]$	0.0077191384	0.0059835631	-0.0108717097	-0.0273204498	0.0119369920	0.0074363962
$[73]$	-0.0047605536	0.0104434634	0.0045231890	-0.0193664682	-0.0042267114	-0.0257424511
$[79]$	0.0156804467	-0.0117372239	0.0023584917	0.0352943779	-0.0020866933	0.0007593015
$[85]$	0.0116960398	-0.0013136907	0.0100897717	0.0022284132	0.0097831883	-0.0086708412
$[91]$	0.0040680529	-0.0229594779	-0.0131143189	0.0104673141	-0.0100847587	0.0089481796
$[97]$	-0.0089481796	-0.0167779464	-0.0023364497	-0.0009751342	-0.0068526945	0.0105531564
$[103]$	0.0009715341	-0.0029174386	-0.0060564804	-0.0148063114	-0.0136165500	0.0050276627
$[109]$	-0.0026112298	0.0036137361	-0.0020060187	0.0004015258	0.0060036202	-0.0189330932
$[115]$	-0.0100133666	0.0083853646	-0.0040816383	0.0085522818	0.0032388692	0.0233706832
$[121]$	-0.0043529946	-0.0285618772	0.0054939603	0.0022296553	-0.0024325980	

B. SIMULATION DATA USING ARIMA(0,1,0)-GARCH(1,1) WITH \boldsymbol{t} INNOVATIONS

1. 1-STEP AHEAD OF ARIMA(0,1,0)-GARCH(1,1)

a. Simulation data in original scale (price) with 95% and 80% prediction intervals

ate	Actual Price	Forecast 1-step AG		80	ate	Actual Price	Forecast 1-step	95\% PI		80\% PI	
25/6/2013		1287.62			10	1358.25	1390.94		1736.26)	,	
26/6/2013	12	12	(1214.02, 1345.72)	(1242.28, 1317.45)	11/9/2013	13	1359.17	(1010.72,)	,	1558.04)
6/2	1232	1237.09			12/9/2013	132	1364.67			(1164.04,	
28/6/2013	11	12	(1140.46, 1326.71)	(1180.43, 1286.73				(974.28,	1683.51)	(1126.51,	1531.29)
$7 / 2$	1242.7				16/9/2013	13		3,	1677.05)	(1115.27,	
	12	12	(1129.53, 1357.65	(1	17/9/2013		1324.90	(964.22,)	,	1530.74)
	12		(1130.15, 1376.54	(1183.04, 1323.66				(949.47,	1676.81)	8,	
$7 / 2$	125	1250.85	(11	(11	19/9/2013	13	1301.88	(935.24,	1668.52)	(1092.63,	
5/7/2013	12	12	(1	(1172.87, 1332.32)	20/9/2013			(996.84,	1736.01)	(1155.49,	1577.36)
	1235.25				21			(977.66,		(1137.56,	
9/7/2013	12	12	(108)	(1	22	1314.25	1323.90	,)	4,	1538.15)
			(1095.05, 1417.65						1693.42)	,	
7/201	128	1256.85	(1088	(11	24/9/2013	13	1323.65	(942.51,	1704.78)	(1106.12,	1541.17)
12/7/2013	12		(1					(949.93,	1717.87)	,	
			(11		26			(955.13,		(1121.16,	
16/7/2013	12	12	(1099.37, 1471.87	(1179.32, 1391.92	1/10/2013	1290.75	1327.40	(937.82,	1716.97)	,	1549.74)
			(1					(899.28,	1683.97)	,	
18/7/2013	128	12	(1100		3/10/2013		13	,	1702.23)	(1081.64,	1532.63)
19/7/2013			(1081					(919.06,	1714.73)	(1089.83,	
			(108							(1082.03,	
23/7/2013	13	13	(11		8/	13	1324.40	(921.15,	1727.64)	(1094.25,	1554.54)
	13		(11		9/10/2013			(924.47,	1736.33)	(1098.72,	
25/7/2013	132	13	(1	(120	10/1	12		(896.29,	17	(1071.69,	
	13	1326.90	(1098					(888.14,	1710.61)	,	
	132								1680.22)	(1030.15,	
30/7/2013	13	133	(1093	(1	15/10	127	1286.37	(869.90,	1702.84)	(1048.68,	
31/7/2013	1314.5	1325.05	(1083	(118)	16/10/2013	1273	1271.36	(852.29,		(1032.18,	
	1315.0	13	(10	(117		13		(852.72,	16	(1033.71,	1515.01)
2/8/2013	13	13	(1065.14, 1566.64	(1	18	13		(895.93,	1744.35)	,	1562.25)
	130		(10						1744.15)	(1073.83,	
6/8/2013	128	130	(10)	(11	20	1333.00	1318.39	(889.10,	1747.68)	(1073.38,	
7/8/2013	128		(1017	(1131				(902.09,	1765.71)	1087.46,	
	129		(10)	(1				(897.84,)	(1084.28,	
9/8/2013	130	12	(1	(1	23	13		(908.86,	1782.46)	(1096.36,)
12/8/2013	1341		(103	(11		13		(909.39,)	(1097.95,	
13/8/2013	132	13	(1	(1182	25	13	1361.92	0.18	18	(1109.81,	1614.03)
14/8/2013	1326	13	(1	(1167.75	26/10/2013	13		(905.98,	1794.35)	(1096.65,	
15/8/2013	13	13	(1	(11	27	13		(909.05,	1802.28)	(1100.77,)
16/8/2013	1369	1330.65	(1039.86, 1621.44)	(116	1/11/2013	13		(875.	1773.9	(1068.62,	15
19/8/2013	13		(107	(12	4/			9,)	(1049.98,	
20/8/2013	137	13	(1067	(1195	5/			87.55,	1775.23)	(1062.37,	1580.41)
			(107	(120	6/			(861.	1764.36)	(1047.75,	
22/8/2013	1375.5	13	(105	(1189	7/	13		0,	1778.49)	(1058.16,	1581.63)
23/8/2013	137		(1067	(120	8/11/2013	12	. 13	(847.18,	1769.08)	(1045.06,	
27/8/2013	1419		(1066.08, 16	(1200.16, 1556.70	11/11/2013	12		(823.07,	1749.67)	(1021.95,	1550.79)
28/8/2013	1419.5	142	(1	(1239.97,	12/11	1281.2	1283.3	(817.74,	1749.00	(1017.62,	1549.12)
29/8/2	1407.7	1420.46	(1101.24, 173	(1238.27	13/11/2013	127	2.12	(814.16,	1750.07	(1015.04,	1549.19)
30/8/2	1394.7	140	(1086.10, 1731	(1224.59,	14/11/20	128	1273.3	(803.10,	1743.62)	(1004.97,	1541.76)
9/2	1392.2	1395.69	(1069.75, 1721.	(1209.67, 1581.72)	15/11/2013	1287.2	1286.87	(814.31,	1759.43)	(1017.16,	1556.58)
9/2	1399.5	1393.19	(1063.94, 1722.4	(1205.28, 1581.11	16/11/2013	1283.	. 1	(813.27,	1762.97)	(1017.11,	155
9/2	1390.0	1400.45	(1067.92, 1732	$(1210.66,1590.23$	17/11/2013	1275.	1284.3	807.24,	1761.5	(1012.06,	15
5/9/2013	1385.00	1390.94	(1055.17, 1726.71)	(1199.31, 1582.58	18/11/2013	1257.0	1276.61	(797.22,	1756.01)	(1003.01,	1550.22)
6/9/2013	1387.00	1385.94	(1046.95, 1724.92)	(1192.47, 1579.41)	19/11/201	1240.0	1257.85	(776.20,	1739.50)	(982.96,	15
9/9/2013	1390.00	1387.94	(1045.77, 1730.11)	$(1192.65,1583.22)$	20/11/2013	1246.25	1240.84	(756.94,	1724.74)	(964.66,	1517.01)

Date	Actual Price	$\begin{array}{\|c\|} \hline \text { Forecast } \\ \text { 1-step } \\ \text { AG } \\ \hline \end{array}$	95\% PI	80\% PI	Date	Actual Price	Forecast 1-step AG	95\% PI		80\% PI	
21/11/2013	1243.00	1247.09	(760.96, 1733.23)	(969.64, 1524.54)	6/12/2013	1233.00	1223.33	(717.52,	1729.13)	(934.65,	1512.01)
22/11/2013	1247.50	1243.84	(755.48, 1732.20)	(965.12, 1522.56)	9/12/2013	1237.00	1233.83	(725.89,	1741.78)	(943.94,	1523.73)
23/11/2013	1245.00	1248.34	(757.77, 1738.92)	(968.36, 1528.33)	10/12/2013	1266.25	1237.84	(727.76,	1747.91)	(946.72,	1528.95)
24/11/2013	1245.50	1245.84	(753.07, 1738.62)	(964.60, 1527.09)	11/12/2013	1260.75	1267.11	(754.91,	1779.30)	(974.78,	1559.43)
25/11/2013	1253.00	1246.34	(751.37, 1741.31)	(963.85, 1528.84)	12/12/2013	1225.25	1261.60	(747.30,	1775.91)	(968.07,	1555.13)
2/12/2013	1229.50	1253.85	(756.69, 1751.00)	(970.10, 1537.59)	13/12/2013	1232.00	1226.08	(709.67,	1742.49)	(931.35,	1520.81)
3/12/2013	1217.25	1230.33	(731.00, 1729.66)	(945.35, 1515.32)	16/12/2013	1234.75	1232.83	(714.33,	1751.34)	(936.91,	1528.76)
4/12/2013	1227.50	1218.07	(716.57, 1719.57)	$(931.85,1504.29)$	17/12/2013	1231.75	1235.59	(714.99,	1756.18)	(938.47,	1532.70)
5/12/2013	1222.50	1228.33	(724.67, 1731.99)	(940.88, 1515.78)							

To find Prediction Interval for 1-step ahead ARIMA-GARCH:
Residual data for 1-step AG
for (i in 1:125) \{
resiAG4[i]<- dt4_o[i]-f_AG4[i];resiAG4[125]
\}
resiAG4

Data	Residual								
[1,]	-8.620238	[26,]	-6.499319	[51,]	-10.446491	[76,]	-26.399150	[101,]	-9.616518
[2,]	-43.614997	[27,]	-10.545531	[52,]	-5.940066	[77,]	-6.381903	[102,]	12.639400
[3,]	-4.336084	[28,]	-0.389005	[53,]	1.063315	[78,]	-33.878184	[103,]	0.380270
[4,]	-41.583717	[29,]	-6.639344	[54,]	2.061963	[79,]	19.144134	[104,]	-4.620576
[5,]	49.943842	[30,]	-5.385454	[55,]	-32.690066	[80,]	-15.869393	[105,]	-8.61803
[6,]	8.909520	[31,]	-25.132412	[56,]	4.581407	[81,]	2.140752	[106,]	-19.6127
[7,]	-3.347074	[32,]	1.133989	[57,]	-36.672313	[82,]	44.888724	[107,]	-17.8501
[8,]	0.904617	[33,]	14.882637	[58,]	-10.39813	[83,]	-3.642217	[108,]	5.411379
[9,]	-39.846567	[34,]	9.871985	[59,]	4.608290	[84,]	0.109642	[109,]	-4.092847
[10,]	21.679809	[35,]	31.11471	[60,]	-12.64542	[85,]	14.608967	[110,]	3.659
[11,]	19.414592	[36,]	-13.406927	[61,]	-12.137483	[86,]	-2.651516	[111,]	-3.343693
[12,]	-0.349103	[37,]	-2.898473	[62,]	63.620125	[87,]	12.599668	[112,]	-0.342002
[13,]	28.150559	[38,]	2.352879	[63,]	-17.173497	[88,]	2.090537	[113,]	6.65766
[14,]	-6.119054	[39,]	38.600681	[64,]	-27.162506	[89,]	12.338508	[114,]	-24.347412
[15,]	4.134497	[40,]	-5.176033	[65,]	-9.644754	[90,]	-12.670454	[115,]	-13.081519
[16,]	5.881115	[41,]	6.576841	[66,]	7.61116	[91,]	4.587494	[116,]	9.426766
[17,]	4.876549	[42,]	-10.428230	[67,]	9.355415	[92,]	-31.666226	[117,]	-5.830167
[18,]	-14.877338	[43,]	11.578194	[68,]	7.098484	[93,]	-18.145429	[118,]	9.673216
[19,]	11.632130	[44,]	1.069741	[69,]	-15.406927	[94,]	12.866236	[119,]	3.166114
[20,]	30.373676	[45,]	40.818388	[70,]	-36.647121	[95,]	-14.143063	[120,]	28.413409
[21,]	5.602542	[46,]	-0.709848	[71,]	14.627057	[96,]	10.865898	[121,]	-6.356374
[22,]	0.598145	[47,]	-12.710017	[72,]	8.866574	[97,]	-12.642049	[122,]	-36.352654
[23,]	-9.902870	[48,]	-13.952070	[73,]	-7.140020	[98,]	-22.634102	[123,]	5.921355
[24,]	4.103217	[49,]	-3.443279	[74,]	12.864208	[99,]	-3.869393	[124,]	1.916790
[25,]	-2.150164	[50,]	6.308413	[75,]	5.104908	[100,]	-2.117363	[125,]	-3.835069

> basicStats(f_AG4)	$>$ basicStats (resiAG4) \#to get variance
nobs 125.000000	the error for $\begin{gathered}\text { 1-step anead } \\ \text { resiag }\end{gathered}$
NAs 0.000000	nobs 125.000000
Minimum 1192.806158	NAs 0.000000
Maximum 1420.460017	Minimum -43.614997
1. Quartile 1271.359248	Maximum 63.620124
3. Quartile 1332.150333	1. Quartile -10.446491
Mean 1305.565566	3. Quartile 6.657660
Median 1308.134102	Mean -1.322366
Sum 163195.695733	Median -0.709848
SEMean 4.425373	Sum -165.295733
LCL Mean 1296.806512	SEMean 1.600954
UCL Mean 1314.324619	LCL Mean -4.491103
Variance 2447.991208	UCL Mean 1.846371
Stdex 49.477179	Variance 320.381830
$\begin{array}{lr}\text { Skewness } & 0.120733 \\ \text { Kurtosis } & -0.560318\end{array}$	Stdex 17.899213
Kurtosis -0.560318	Skewness 0.416493 Kurtosis 1.500949

```
>v1<-qt(c(.025,.975), df=4.81);v1 #t dist with alpha 0.025 and v=4.8
1, for PI 95%
[1] -2.601425 2.601425
> v2<-qt(c(.1, .9), df=4.81); v2#t dist with alpha 0.1 and v=4.81, for
    PI 80%
[1] -1.484687 1.484687
for(i in 1:125){
    h[i]=i;h[1]
    lo95_AG4[i]<-f_AG4[i]-(2.6014*(sqrt(h[i]*320.3818)))#lower limit 95%
    hi95_AG4[i]<-f_AG4[i]+(2.6014*(sqrt(h[i]*320.3818))) #upper limit 95%
    lo80_AG4[i]<-f_AG4[i]-(1.4847*(sqrt(h[i]*320.3818)))#lower limit 80%
    hi80_AG4[i]<-f_AG4[i]+(1.4847*(sqrt(h[i]*320.3818))) #upper limit 80%
}
cbind(dt4_o,f_AG4,lo95_AG4,hi95_AG4,lo80_AG4,hi80_AG4)
```

b. Simulation data in transformation scale (log) - based on EViews results

$[1]$	7.160551	7.154510	7.120514	7.117679	7.084064	7.125758	7.133573	7.131575	7.132974	7.101322
$[11]$	7.119705	7.135965	7.136363	7.159190	7.155096	7.158996	7.164236	7.168678	7.157827	7.167521
$[21]$	7.191352	7.196238	7.197363	7.190598	7.194362	7.193422	7.189202	7.181888	7.182268	7.177886
$[31]$	7.174443	7.155682	7.157243	7.169449	7.177695	7.201847	7.192482	7.190975	7.193422	7.222695
$[41]$	7.219586	7.225065	7.218120	7.227249	7.228702	7.258560	7.258736	7.250424	7.241147	7.239352
$[51]$	7.244546	7.237735	7.234131	7.235574	7.237735	7.214628	7.218670	7.192105	7.184926	7.189089
$[61]$	7.180175	7.171565	7.219952	7.207980	7.188333	7.181698	7.188144	7.195863	7.201847	7.190975
$[71]$	7.163655	7.175592	7.183028	7.178268	7.188711	7.193234	7.173868	7.169641	7.143899	7.159579
$[81]$	7.147842	7.150200	7.185495	7.183408	7.184167	7.195863	7.194550	7.204639	7.206868	7.216651
$[91]$	7.207980	7.212048	7.189089	7.175974	7.186442	7.176357	7.185305	7.176357	7.159579	7.157243
$[101]$	7.156268	7.149415	7.159968	7.160940	7.158022	7.151966	7.137159	7.123543	7.128570	7.125959
$[111]$	7.129573	7.127567	7.127968	7.133972	7.115039	7.105026	7.113411	7.109329	7.117882	7.121120
$[121]$	7.144491	7.140138	7.111576	7.117070	7.119300					

Simulation data in stationary scale (First differenced of \log data) - based on \mathbf{R} (simulation for 1 series only)

```
library("fGarch", lib.loc="~/R/win-library/3.4")
set. seed(1234)
spec = garchSpec(model = list(mu=0.0007,omega = 2.5e-6, alpha = 3.45e-
2,
    beta = 9.474e-1, shape=4.81),
cond.dist="std") #simulation for ARIMA(0,1,0)-GARCH(1,1)-t dist
f1=garchSim(spec, n = 125);f1 #results of the 125 simulation data
```

$[1]$	0.0032336690	0.0035946250	-0.0096160530	0.0021458690	-0.0118923500	-0.0019453350
$[7]$	-0.0117594500	-0.0052013150	0.0185603600	0.0009740198	-0.0062786830	0.0229451100
$[13]$	-0.0044352470	-0.0107953100	0.0155319800	0.0096796750	-0.0100745300	0.0050352500
$[19]$	0.0015485060	0.0017492980	0.0117372000	-0.0030484830	0.0026762660	0.0016542430
$[25]$	0.0107005100	0.0009504282	0.0083335200	0.0049469740	0.0128437100	0.0348630800
$[31]$	0.0063654970	0.0202228200	-0.0023715650	-0.0144468700	0.0117994200	0.0087944170
$[37]$	0.0040368000	0.0346885400	-0.0000290915	0.0066798420	0.0006408244	0.0154800400
$[43]$	0.0078802900	0.0137405700	0.0044007740	0.0034056120	-0.0031219260	-0.0136936100
$[49]$	-0.0080342930	-0.0465339800	-0.0351341300	0.0058209920	0.0009878060	0.0190192600
$[55]$	-0.0093911090	0.0019784160	-0.0165331400	-0.0013902020	-0.0085223650	0.0114143700
$[61]$	0.0046950500	-0.00893345740	-0.0120049900	-0.0024123590	-0.0101578500	0.0189279500
$[67]$	-0.0137561300	0.0065717330	0.0111003600	-0.0033840930	0.0207243500	0.0113094300
$[73]$	-0.0028587170	-0.0036971970	-0.0072829290	0.0048327740	-0.0096956680	0.0024382980
$[79]$	0.0021914480	0.0074380220	-0.0164284900	-0.0045731370	-0.0139514400	0.0017935680
$[85]$	-0.0382821500	-0.0069438830	0.0156552400	-0.0035594270	-0.0085826680	-0.0075571530
$[91]$	-0.0100078500	-0.0000245724	-0.0051379020	-0.0038235180	0.0125958500	0.0006047664
$[97]$	-0.0018435180	0.0061130170	-0.0119203300	0.0157608900	0.0004433674	0.0022603040
$[103]$	-0.0009655506	0.0080645190	-0.0110209400	0.0035320880	0.0166671700	-0.0165803400
$[109]$	-0.0139785000	0.0055407800	-0.0222916800	-0.0030069800	-0.0009050866	-0.0204717200
$[115]$	0.0092287740	0.0107621900	0.0056033040	-0.0070149470	0.0204072100	0.0028432990
$[121]$	-0.0007357040	-0.0059651230	-0.0243788200	-0.0071469930	-0.0165564800	

2. n-step ahead of ARIMA(0,1,0)-GARCH(1,1) - in original scale (price)

Date	$\begin{array}{\|c} \text { Actual } \\ \text { Price } \end{array}$	Forecast n step AG	95\% PI	80\% PI	Date	Actual Price	$\begin{gathered} \text { Forecast } n- \\ \text { step AG } \end{gathered}$	$\mathbf{9 5 \% ~ P I}$		80\% PI	
25/6/2013	1279.00	1287.62	(1116.44, 1458.80)	(1189.92, 1385.32)	6/9/2013	1387.00	1333.69	(1162.52,	1504.87)	(1236.00,	1431.39)
26/6/2013	1236.25	1288.49	(1117.31, 1459.67)	(1190.80, 1386.19)	9/9/2013	1390.00	1334.60	(116	1505.77)	(1236.90,	1432.29)
27/6/2013	1232.75	1289.36	(1118.19, 1460.54)	(1191.67	10/9/2013	1358.25	1335.50	(1164.32,	1506.68)	(1237.80,	9)
28/6/2013	1192.00	1290.23	(1119.06, 1461.41)	(1192.5	11/9/2013	1363.75	1336.40	(1165.22,	1507.58)	(1238.71,	0)
1/7/2013	1242.75	1291.11	(1119.93, 1462.28)	(1193.41, 1388.80)	12/9/2013	1328.00	1337.31	(1166.13,	1508.48)	(1239.61,)
2/7/2013	1252.50	1291.98	(1120.80, 1463.16)	(1	13/9/2013	1318.50	1338.21	(1167.03,	1509.39)	(1240.51,	1)
3/7/2013	1250.00	1292.85	(1121.68, 1464.03)	(1	16/9/2013	1324.00	13	(1167.94,	1510.29)	(1241.42,	1)
4/7/2013	1251.75	1293.7	1)	(1	17/9/2013	1312.25	1340.02	(1168.84,	1511.20)	(1242.32,	2)
5/7/2013	1212.75	1294.60	8)	(1196.91, 1392.30)	18/9/2013	1301.00	1340.93	5,	0)	(1243.23,	2)
8/7/2013	1235.25	1295.48	(1124.30, 1466.66)	(1197.78	19/9/2013	1365.50	1341.83	6,	1513.01)	(1244.14,	3)
9/7/2013	1255.50	1296.36	$(1125.18,1467.53)$	(11	20/9/2013	1349.25	1342.74	(1171.56,	1513.92)	(1245.04,	4)
10/7/2013	1256.00	1297.23	$(1126.06,1468.41)$	(1	21/9/2013	1323.00	1343.65	(1172.47,	1514.83)	(1245.95,	5)
11/7/2013	1285.00	1298.11	(1126.93, 1469.29)	(1200.41, 1395.81)	22/9/2013	1314.25	1344.56	(1173.38,	1515.73)	(1246.86,	1442.25)
12/7/2013	1279.7	1298.99	(1127.81, 1470.16)	(1201.29, 1396.68)	23/9/2013	1322.75	1345.47	(1174.29,	1516.64)	(1247.77,	1443.16)
15/7/2013	1284.7	1299.87	(1128.69, 1471.04)	(1202.17, 1397.5	24/9/2013	1333.00	1346.38	(1175.20,	1517.55)	(1248.68,	1444.07)
16/7/2013	1291.5	1300.75	(1129.57, 1471.92)	(1203.05,	25/9/2013	1341.00	1347.29	(1176.11,	1518.46)	(1249.59,	1444.98)
17/7/2013	1297.2	1301.62	(1130.45, 1472.80)	(1203.93, 1399.32)	26/9/2013	1326.50	1348.20	(1177.02,	1519.38)	(1250.50,	1445.89)
18/7/2013	1283.25	1302.51	(1131.33, 1473.68)	(1204.81	1/10/2013	1290.75	1349.11	(1177	1520.29)	(1251.41,	1446.81)
19/7/2013	1295.75	1303.39	(1132.21, 1474.56)	(1205.6	2/10/2013	1306.25	1350.02	(1178.85	1521.20)	(1252.33,	1447.72)
22/7/2013	1327.00	1304.27	(1133.09, 1475.44)	(1206.5	3/10/2013	1316.00	1350.94	(1179.76,	1522.11)	(1253.24,	1448.63)
23/7/2013	1333.50	1305.15	(1133.97, 1476.33)	(1207.4	4/10/2013	1309.75	1351.85	(1180.67,	1523.03)	(1254.15,	1449.55)
24/7/2013	1335.00	1306.03	(1134.86, 1477.21)	(120	7/10/2013	1323.50	1352.76	(1181.59,	1523.94)	(1255.07,	1450.46)
25/7/2013	1326.00	1306.92	$(1135.74,1478.09)$	(12	8/10/2013	1329.50	135	(1182.50,	1524.86)	(1255.98,	1451.37)
26/7/2013	1331.00	1307.8	(1136.62, 1478.98)	$(1210.10,1405.50)$	9/10/2013	1304.00	1354	(1183.42,	1525.77)	(1256.90,	29)
29/7/2013	1329.75	1308.68	(1137.51, 1479.86)	(12	10/10/2013	1298.50	1355.51	(1184.33,	1526.69)	(1257.81,	1453.21)
30/7/2013	1324.15	1309.57	$(1138.39,1480.75)$	(1211.87, 1407.27)	11/10/2013	1265.50	1356.43	25,	1527.60)	(1258.73,	2)
31/7/2013	1314.50	1310.45	$(1139.28,1481.63)$	(1212.76, 1408.15)	14/10/2013	1285.50	1357.34	(1186.17,	1528.52)	(1259.65,	1455.04)
1/8/2013	1315.00	1311.34	(1140.16, 1482.52)	$(1213.64,1409.04)$	15/10/2013	1270.50	1358.26	(1187.09,	1529.44)	(1260.57,	1455.96)
2/8/2013	1309.25	1312.23	$(1141.05,1483.40)$	$(1214.53,1409.92)$	16/10/2013	1273.50	1359.18	(1188.00,	1530.36)	(1261.48,	1456.88)
5/8/2013	1304.75	1313.12	(1141.94, 1484.29)	(1215.42, 1410.81)	17/10/2013	1319.25	1360.10	(1188.92,	1531.28)	(1262.40,	1457.80)
6/8/2013	1280.50	1314.00	$(1142.83,1485.18)$	(1216.31, 1411.70)	18/10/2013	1316.50	1361.02	(1189.84,	1532.20)	(1263.32,	1458.72)
7/8/2013	1282.50	1314.89	(1143.71, 1486.07)	$(1217.20,1412.59)$	19/10/2013	1317.50	1361.94	(1190.76,	1533.12)	(1264.24,	1459.64)
8/8/2013	1298.25	1315.78	(1144.60, 1486.96)	$(1218.09,1413.48)$	20/10/2013	1333.00	1362.86	(1191.68,	1534.04)	(1265.17,	1460.56)
9/8/2013	1309.0	1316.67	(1145.49, 1487.85)	$(1218.98,1414.37)$	21/10/2013	1331.25	1363.78	(119	1534.96)	(1266.09,	1461.48)
12/8/2013	1341.00	1317.56	$(1146.38,1488.74)$	(1219.87, 1415.26)	22/10/2013	1344.75	1364.71	(1193.53,	1535.88)	(1267.01,	1462.40)
13/8/2013	1328.50	1318.45	(1147.28, 1489.63)	(1220.76, 1416.15)	23/10/2013	1347.75	1365.63	(1194.45,	1536.81)	(1267.93,	1463.32)
14/8/2013	1326.50	1319.34	(1148.17, 1490.52)	$(1221.65,1417.04)$	24/10/2013	1361.00	1366.55	(1195.38,	1537.73)	(1268.86,	1464.25)
15/8/2013	1329.75	1320.24	$(1149.06,1491.41)$	(1222.54, 1417.93)	25/10/2013	1349.25	1367.48	(1196.30,	1538.65)	(1269.78,	1465.17)
16/8/2013	1369.25	1321.13	(1149.95, 1492.31)	(1223.43, 1418.83)	26/10/2013	1354.75	1368.40	(1197.22,	1539.58)	(1270.71,	1466.10)
19/8/2013	1365.00	1322.02	(1150.85, 1493.20)	(1224.33, 1419.72)	27/10/2013	1324.00	1369.33	(1198.15,	1540.50)	(1271.63,	1467.02)
20/8/2013	1372.50	1322.92	(1151.74, 1494.09)	$(1225.22,1420.61)$	1/11/2013	1306.75	1370.25	(1199.08,	1541.43)	(1272.56,	1467.95)
21/8/2013	1363.00	1323.81	(1152.63, 1494.99)	(1226.12, 1421.51)	4/11/2013	1320.50	1371.18	(1200.00,	1542.36)	(1273.48,	1468.88)
22/8/2013	1375.50	1324.71	(1153.53, 1495.88)	(1227.01, 1422.40)	5/11/2013	1307.25	1372.11	(1200.93,	1543.28)	(1274.41,	1469.80)
23/8/2013	1377.50	1325.60	(1154.43, 1496.78)	$(1227.91,1423.30)$	6/11/2013	1319.00	1373.03	(1201.86,	1544.21)	(1275.34,	1470.73)
27/8/2013	1419.25	1326.50	(1155.32, 1497.68)	$(1228.80,1424.20)$	7/11/2013	1307.25	1373.96	(1202.79,	1545.14)	(1276.27,	1471.66)
28/8/2013	1419.50	1327.40	(1156.22, 1498.57)	(1229.70, 1425.09)	8/11/2013	1285.50	1374.89	(1203.72,	1546.07)	(1277.20,	1472.59)
29/8/2013	1407.75	1328.29	(1157.12, 1499.47)	$(1230.60,1425.99)$	11/11/2013	1282.50	1375.82	(1204.65,	1547.00)	(1278.13,	1473.52)
30/8/2013	1394.75	1329.19	(1158.02, 1500.37)	$(1231.50,1426.89)$	12/11/2013	1281.25	1376.75	(1205.58,	1547.93)	(1279.06,	1474.45)
2/9/2013	1392.25	1330.09	(1158.91, 1501.27)	$(1232.40,1427.79)$	13/11/2013	1272.50	1377.68	(1206.51,	1548.86)	(1279.99,	1475.38)
3/9/2013	1399.50	1330.99	(1159.81, 1502.17)	(1233.30, 1428.69)	14/11/2013	1286.00	1378.62	(1207.44,	1549.79)	(1280.92,	1476.31)
4/9/2013	1390.00	1331.89	$(1160.71,1503.07)$	(1234.20, 1429.59)	15/11/2013	1287.25	1379.55	(1208.37,	1550.73)	(1281.85,	1477.24)
5/9/2013	1385.00	1332.79	$(1161.62,1503.97)$	(1235.10, 1430.49)	16/11/2013	1283.50	1380.48	(1209.30,	1551.66)	(1282.79,	1478.18)

Date	Actual Price	Forecast n step AG	$\mathbf{9 5 \%}$ PI	80\% PI	Date	Actual Price	Forecast n step AG	$\mathbf{9 5 \%}$ PI		80\% PI	
17/11/2013	1275.75	1381.41	(1210.24, 1552.59)	$(1283.72,1479.11)$	4/12/2013	1227.50	1391.73	(1220.55,	1562.90)	(1294.03,	1489.42)
18/11/2013	1257.00	1382.35	(1211.17, 1553.53)	$(1284.65,1480.05)$	5/12/2013	1222.50	1392.67	(1221.49,	1563.84)	(1294.97,	1490.36)
19/11/2013	1240.00	1383.28	(1212.11, 1554.46)	$(1285.59,1480.98)$	6/12/2013	1233.00	1393.61	(1222.43,	1564.79)	(1295.91,	1491.31)
20/11/2013	1246.25	1384.22	(1213.04, 1555.40)	(1286.52, 1481.92)	9/12/2013	1237.00	1394.55	(1223.38,	1565.73)	(1296.86,	1492.25)
21/11/2013	1243.00	1385.16	(1213.98, 1556.33)	$(1287.46,1482.85)$	10/12/2013	1266.25	1395.50	(1224.32,	1566.67)	(1297.80,	1493.19)
22/11/2013	1247.50	1386.09	(1214.92, 1557.27)	$(1288.40,1483.79)$	11/12/2013	1260.75	1396.44	(1225.26,	1567.62)	(1298.74,	1494.14)
23/11/2013	1245.00	1387.03	(1215.85, 1558.21)	$(1289.33,1484.73)$	12/12/2013	1225.25	1397.38	(1226.21,	1568.56)	(1299.69,	1495.08)
24/11/2013	1245.50	1387.97	(1216.79, 1559.14)	(1290.27, 1485.66)	13/12/2013	1232.00	1398.33	(1227.15,	1569.51)	(1300.63,	1496.02)
25/11/2013	1253.00	1388.91	(1217.73, 1560.08)	(1291.21, 1486.60)	16/12/2013	1234.75	1399.27	(1228.10,	1570.45)	(1301.58,	1496.97)
2/12/2013	1229.50	1389.85	(1218.67, 1561.02)	$(1292.15,1487.54)$	17/12/2013	1231.75	1400.22	(1229.04,	1571.40)	(1302.52,	1497.92)
3/12/2013	1217.25	1390.79	$(1219.61,1561.96)$	(1293.09, 1488.48)							

Note:

1. Actual data outside 80% prediction interval: $23 / 125$ (18.4%), specifically starting at $104^{\text {th }}$ data
2. Actual data outside 95% prediction interval: $2 / 125$ (1.6%)

To find Prediction Interval for n-step ahead ARIMA-GARCH:

 Residual data for $\mathbf{1 2 5}$-step AG```
for(i in 1:125) {
 resiAG4_n[i]<- dt4_o[i]-f_AG4_n[i];resiAG4_n[125]
}
resiAG4_n
```

| Data | Residual | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| $[1]$, | -8.620238 | $[26]$, | 14.581507 | $[51]$, | 58.109129 | $[76]$, | -50.593745 | $[101]$, | -105.183600 |
| $[2]$, | -52.241065 | $[27]$, | 4.045837 | $[52]$, | 52.208363 | $[77]$, | -57.009865 | $[102]$, | -92.615336 |
| $[3]$, | -56.612480 | $[28]$, | 3.659569 | $[53]$, | 53.306987 | $[78]$, | -90.926605 | $[103]$, | -92.297703 |
| $[4]$, | -98.234484 | $[29]$, | -2.977300 | $[54]$, | 55.405002 | $[79]$, | -71.843965 | $[104]$, | -96.980700 |
| $[5]$, | -48.357079 | $[30]$, | -8.364768 | $[55]$, | 22.752406 | $[80]$, | -87.761946 | $[105]$, | -105.664328 |
| $[6]$, | -39.480263 | $[31]$, | -33.502837 | $[56]$, | 27.349201 | $[81]$, | -85.680548 | $[106]$, | -125.348587 |
| $[7]$, | -42.854038 | $[32]$, | -32.391506 | $[57]$, | -9.304615 | $[82]$, | -40.849770 | $[107]$, | -143.283479 |
| $[8]$, | -41.978403 | $[33]$, | -17.530776 | $[58]$, | -19.709043 | $[83]$, | -44.519614 | $[108]$, | -137.969004 |
| $[9]$, | -81.853360 | $[34]$, | -7.670647 | $[59]$, | -15.114083 | $[84]$, | -44.440081 | $[109]$, | -142.155160 |
| $[10]$, | -60.228908 | $[35]$, | 23.438880 | $[60]$, | -27.769734 | $[85]$, | -29.861170 | $[110]$, | -138.591950 |
| $[11]$, | -40.855050 | $[36]$, | 10.047805 | $[61]$, | -39.925998 | $[86]$, | -32.532881 | $[111]$, | -142.029374 |
| $[12]$, | -41.231784 | $[37]$, | 7.156127 | $[62]$, | 23.667124 | $[87]$, | -19.955216 | $[112]$, | -142.467431 |
| $[13]$, | -13.109110 | $[38]$, | 9.513846 | $[63]$, | 6.509634 | $[88]$, | -17.878175 | $[113]$, | -135.906123 |
| $[14]$, | -19.237029 | $[39]$, | 48.120961 | $[64]$, | -20.648470 | $[89]$, | -5.551758 | $[114]$, | -160.345449 |
| $[15]$, | -15.115542 | $[40]$, | 42.977472 | $[65]$, | -30.307188 | $[90]$, | -18.225966 | $[115]$, | -173.535411 |
| $[16]$, | -9.244650 | $[41]$, | 49.583379 | $[66]$, | -22.716521 | $[91]$, | -13.650799 | $[116]$, | -164.226009 |
| $[17]$, | -4.374353 | $[42]$, | 39.188682 | $[67]$, | -13.376469 | $[92]$, | -45.326256 | $[117]$, | -170.167243 |
| $[18]$, | -19.254650 | $[43]$, | 50.793379 | $[68]$, | -6.287033 | $[93]$, | -63.502340 | $[118]$, | -160.609112 |
| $[19]$, | -7.635542 | $[44]$, | 51.897472 | $[69]$, | -21.698211 | $[94]$, | -50.679051 | $[119]$, | -157.551619 |
| $[20]$, | 22.732970 | $[45]$, | 92.750958 | $[70]$, | -58.360007 | $[95]$, | -64.856389 | $[120]$, | -129.244763 |
| $[21]$, | 28.350886 | $[46]$, | 92.103838 | $[71]$, | -43.772419 | $[96]$, | -54.034354 | $[121]$, | -135.688546 |
| $[22]$, | 28.968205 | $[47]$, | 79.456111 | $[72]$, | -34.935449 | $[97]$, | -66.712946 | $[122]$, | -172.132966 |
| $[23]$, | 19.084927 | $[48]$, | 65.557778 | $[73]$, | -42.099096 | $[98]$, | -89.392166 | $[123]$, | -166.328026 |
| $[24]$, | 23.201051 | $[49]$, | 62.158836 | $[74]$, | -29.263360 | $[99]$, | -93.322015 | $[124]$, | -164.523724 |
| $[25]$, | 21.066578 | $[50]$, | 68.509287 | $[75]$, | -24.178243 | $[100]$, | -95.502493 | $[125]$, | -168.470062 |

```
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{> basicStats(f_AG4_f)} & \multicolumn{2}{|l|}{> basicstats(resiAG4_n)} \\
\hline nobs & 125.000000 & & resiAG4_n \\
\hline NAS & 0.000000 & nobs & 125.000000 \\
\hline Minimum & 1287.620238 & NAS & 0.000000 \\
\hline Maximum & 1400.220062 & Minimum & -173.535411 \\
\hline 1. Quartile & 1314.891506 & Maximum & 92.750958 \\
\hline 3. Quartile & 1371.179051 & 1. Quartile & -85.680548 \\
\hline Mean & 1343.139947 & 3. Quartile & 4.045837 \\
\hline Median & 1342.740366 & Mean & -38.896747 \\
\hline Sum & 167892.493435 & Median & -30.307188 \\
\hline SE Mean & 2.942299 & Sum & -4862.093435 \\
\hline LCL Mean & 1337.316313 & SE Mean & 5.885497 \\
\hline UCL Mean & 1348.963582 & LCL Mean & -50.545795 \\
\hline Variance & 1082.140728 & UCL Mean & -27.247700 \\
\hline Stdev & 32.895907 & Variance & 4329.884925 \\
\hline Skewness & 0.028917 & Stdev & 65.801861 \\
\hline Kurtosis & -1.227913 & Skewness & -0.337425 \\
\hline & & Kurtosis & -0.568069 \\
\hline
\end{tabular}
\(>\mathrm{v} 1<-q t(\mathrm{c}(.025, .975), \mathrm{df}=4.81) ; \mathrm{v} 1\) \#t dist with alpha 0.025 and \(\mathrm{v}=4.8\) 1, for PI 95\%
[1] -2.601425 2.601425
> v2<-qt(c(.1, .9), df=4.81); v2#t dist with alpha 0.1 and v=4.81, for
 PI 80%
[1] -1.484687 1.484687
for(i in 1:125){
 h[i]=i;h[1]
 lo95 AG4 n[i]<-f AG4 n[i]-(2.6014*65.8019) #lower limit 95%
 hi95_AG4_n[i]<-f_AG4_n[i]+(2.6014*65.8019) #upper limit 95%
 lo80_AG4_n[i]<-f_AG4_n[i]-(1.4847*65.8019) #lower limit 80%
 hi80_AG4_n[i]<-f_AG4_n[i]+(1.4847*65.8019) #upper limit 80%
 }
cbind(dt4_o,f_AG4_n,lo95_AG4_n,hi95_AG4_n,1080_AG4_n,hi80_AG4_n)
```


## C. ERRORS CALCULATION

1(a) 1-step ahead error of ARIMA(0,1,0)-GARCH(1,1) in original scale

| Data | Error | Abs. error | error ^2 | $\begin{gathered} \text { Abs } \\ \text { (error/y) } \end{gathered}$ | Data | Error | Abs. error | error ^2 | $\begin{gathered} \text { Abs } \\ \text { (error/y) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [1,] | -8.620238 | 8.620238 | 74.308510 | 0.006740 | [64,] | -27.162506 | 27.162506 | 737.801700 | 0.020531 |
| [2,] | -43.614997 | 43.614997 | 1902.268000 | 0.035280 | [65,] | -9.644754 | 9.644754 | 93.021270 | 0.007339 |
| [3,] | -4.336084 | 4.336084 | 18.801630 | 0.003517 | [66,] | 7.611164 | 7.611164 | 57.929810 | 0.005754 |
| [4,] | -41.583717 | 41.583717 | 1729.206000 | 0.034886 | [67,] | 9.355415 | 9.355415 | 87.523790 | 0.007018 |
| [5,] | 49.943842 | 49.943842 | 2494.387000 | 0.040188 | [68,] | 7.098484 | 7.098484 | 50.388470 | 0.005293 |
| [6,] | 8.909520 | 8.909520 | 79.379550 | 0.007113 | [69,] | -15.406927 | 15.406927 | 237.373400 | 0.011615 |
| [7,] | -3.347074 | 3.347074 | 11.202900 | 0.002678 | [70,] | -36.647121 | 36.647121 | 1343.011000 | 0.028392 |
| [8,] | 0.904617 | 0.904617 | 0.818332 | 0.000723 | [71,] | 14.627057 | 14.627057 | 213.950800 | 0.011198 |
| [9,] | -39.846567 | 39.846567 | 1587.749000 | 0.032856 | [72,] | 8.866574 | 8.866574 | 78.616140 | 0.006738 |
| [10,] | 21.679809 | 21.679809 | 470.014100 | 0.017551 | [73,] | -7.140020 | 7.140020 | 50.979880 | 0.005451 |
| [11,] | 19.414592 | 19.414592 | 376.926400 | 0.015464 | [74,] | 12.864208 | 12.864208 | 165.487800 | 0.009720 |
| [12,] | -0.349103 | 0.349103 | 0.121873 | 0.000278 | [75,] | 5.104908 | 5.104908 | 26.060080 | 0.003840 |
| [13,] | 28.150559 | 28.150559 | 792.454000 | 0.021907 | [76,] | -26.399150 | 26.399150 | 696.915100 | 0.020245 |
| [14,] | -6.119054 | 6.119054 | 37.442820 | 0.004781 | [77,] | -6.381903 | 6.381903 | 40.728690 | 0.004915 |
| [15,] | 4.134497 | 4.134497 | 17.094070 | 0.003218 | [78,] | -33.878184 | 33.878184 | 1147.731000 | 0.026771 |
| [16,] | 5.881115 | 5.881115 | 34.587510 | 0.004554 | [79,] | 19.144134 | 19.144134 | 366.497900 | 0.014892 |
| [17,] | 4.876549 | 4.876549 | 23.780730 | 0.003759 | [80,] | -15.869393 | 15.869393 | 251.837600 | 0.012491 |
| [18,] | -14.877338 | 14.877338 | 221.335200 | 0.011593 | [81,] | 2.140752 | 2.140752 | 4.582820 | 0.001681 |
| [19,] | 11.632130 | 11.632130 | 135.306500 | 0.008977 | [82,] | 44.888724 | 44.888724 | 2014.998000 | 0.034026 |
| [20,] | 30.373676 | 30.373676 | 922.560200 | 0.022889 | [83,] | -3.642217 | 3.642217 | 13.265750 | 0.002767 |
| [21,] | 5.602542 | 5.602542 | 31.388470 | 0.004201 | [84,] | 0.109642 | 0.109642 | 0.012021 | 0.000083 |
| [22,] | 0.598145 | 0.598145 | 0.357777 | 0.000448 | [85,] | 14.608967 | 14.608967 | 213.421900 | 0.010959 |
| [23,] | -9.902870 | 9.902870 | 98.066820 | 0.007468 | [86,] | -2.651516 | 2.651516 | 7.030539 | 0.001992 |
| [24,] | 4.103217 | 4.103217 | 16.836390 | 0.003083 | [87,] | 12.599668 | 12.599668 | 158.751600 | 0.009370 |
| [25,] | -2.150164 | 2.150164 | 4.623203 | 0.001617 | [88,] | 2.090537 | 2.090537 | 4.370345 | 0.001551 |
| [26,] | -6.499319 | 6.499319 | 42.241150 | 0.004908 | [89,] | 12.338508 | 12.338508 | 152.238800 | 0.009066 |
| [27,] | -10.545531 | 10.545531 | 111.208200 | 0.008022 | [90,] | -12.670454 | 12.670454 | 160.540400 | 0.009391 |
| [28,] | -0.389005 | 0.389005 | 0.151325 | 0.000296 | [91,] | 4.587494 | 4.587494 | 21.045100 | 0.003386 |
| [29,] | -6.639344 | 6.639344 | 44.080880 | 0.005071 | [92,] | -31.666226 | 31.666226 | 1002.750000 | 0.023917 |
| [30,] | -5.385454 | 5.385454 | 29.003120 | 0.004128 | [93,] | -18.145429 | 18.145429 | 329.256600 | 0.013886 |
| [31,] | -25.132412 | 25.132412 | 631.638100 | 0.019627 | [94,] | 12.866236 | 12.866236 | 165.540000 | 0.009743 |
| [32,] | 1.133989 | 1.133989 | 1.285931 | 0.000884 | [95,] | -14.143063 | 14.143063 | 200.026200 | 0.010819 |
| [33,] | 14.882637 | 14.882637 | 221.492900 | 0.011464 | [96,] | 10.865898 | 10.865898 | 118.067700 | 0.008238 |
| [34,] | 9.871985 | 9.871985 | 97.456080 | 0.007542 | [97,] | -12.642049 | 12.642049 | 159.821400 | 0.009671 |
| [35,] | 31.114715 | 31.114715 | 968.125500 | 0.023203 | [98,] | -22.634102 | 22.634102 | 512.302600 | 0.017607 |
| [36,] | -13.406927 | 13.406927 | 179.745700 | 0.010092 | [99,] | -3.869393 | 3.869393 | 14.972200 | 0.003017 |
| [37,] | -2.898473 | 2.898473 | 8.401146 | 0.002185 | [100,] | -2.117363 | 2.117363 | 4.483227 | 0.001653 |
| [38,] | 2.352879 | 2.352879 | 5.536038 | 0.001769 | [101,] | -9.616518 | 9.616518 | 92.477420 | 0.007557 |
| [39,] | 38.600681 | 38.600681 | 1490.013000 | 0.028191 | [102,] | 12.639400 | 12.639400 | 159.754400 | 0.009828 |
| [40,] | -5.176033 | 5.176033 | 26.791320 | 0.003792 | [103,] | 0.380270 | 0.380270 | 0.144605 | 0.000295 |
| [41,] | 6.576841 | 6.576841 | 43.254840 | 0.004792 | [104,] | -4.620576 | 4.620576 | 21.349720 | 0.003600 |
| [42,] | -10.428230 | 10.428230 | 108.748000 | 0.007651 | [105,] | -8.618039 | 8.618039 | 74.270600 | 0.006755 |
| [43,] | 11.578194 | 11.578194 | 134.054600 | 0.008417 | [106,] | -19.612798 | 19.612798 | 384.661900 | 0.015603 |
| [44,] | 1.069741 | 1.069741 | 1.144345 | 0.000777 | [107,] | -17.850118 | 17.850118 | 318.626700 | 0.014395 |
| [45,] | 40.818388 | 40.818388 | 1666.141000 | 0.028761 | [108,] | 5.411379 | 5.411379 | 29.283030 | 0.004342 |
| [46,] | -0.709848 | 0.709848 | 0.503884 | 0.000500 | [109,] | -4.092847 | 4.092847 | 16.751390 | 0.003293 |
| [47,] | -12.710017 | 12.710017 | 161.544500 | 0.009029 | [110,] | 3.659350 | 3.659350 | 13.390840 | 0.002933 |
| [48,] | -13.952070 | 13.952070 | 194.660300 | 0.010003 | [111,] | -3.343693 | 3.343693 | 11.180280 | 0.002686 |
| [49,] | -3.443279 | 3.443279 | 11.856170 | 0.002473 | [112,] | -0.342002 | 0.342002 | 0.116965 | 0.000275 |
| [50,] | 6.308413 | 6.308413 | 39.796070 | 0.004508 | [113,] | 6.657660 | 6.657660 | 44.324430 | 0.005313 |
| [51,] | -10.446491 | 10.446491 | 109.129200 | 0.007515 | [114,] | -24.347412 | 24.347412 | 592.796500 | 0.019803 |
| [52,] | -5.940066 | 5.940066 | 35.284380 | 0.004289 | [115,] | -13.081519 | 13.081519 | 171.126100 | 0.010747 |
| [53,] | 1.063315 | 1.063315 | 1.130638 | 0.000767 | [116,] | 9.426766 | 9.426766 | 88.863910 | 0.007680 |
| [54,] | 2.061963 | 2.061963 | 4.251692 | 0.001483 | [117,] | -5.830167 | 5.830167 | 33.990840 | 0.004769 |
| [55,] | -32.690066 | 32.690066 | 1068.640000 | 0.024068 | [118,] | 9.673216 | 9.673216 | 93.571100 | 0.007845 |
| [56,] | 4.581407 | 4.581407 | 20.989290 | 0.003359 | [119,] | 3.166114 | 3.166114 | 10.024280 | 0.002560 |
| [57,] | -36.672313 | 36.672313 | 1344.859000 | 0.027615 | [120,] | 28.413409 | 28.413409 | 807.321800 | 0.022439 |
| [58,] | -10.398135 | 10.398135 | 108.121200 | 0.007886 | [121,] | -6.356374 | 6.356374 | 40.403490 | 0.005042 |
| [59,] | 4.608290 | 4.608290 | 21.236330 | 0.003481 | [122,] | -36.352654 | 36.352654 | 1321.515000 | 0.029670 |
| [60,] | -12.645429 | 12.645429 | 159.906900 | 0.009636 | [123,] | 5.921355 | 5.921355 | 35.062450 | 0.004806 |
| [61,] | -12.137483 | 12.137483 | 147.318500 | 0.009329 | [124,] | 1.916790 | 1.916790 | 3.674085 | 0.001552 |
| [62,] | 63.620125 | 63.620125 | 4047.520000 | 0.046591 | [125,] | -3.835069 | 3.835069 | 14.707750 | 0.003114 |
| [63,] | -17.173497 | 17.173497 | 294.929000 | 0.012728 |  |  |  |  |  |

[^8]
## 1(b) 1-step ahead error of ARIMA( $0,1,0)$-GARCH(1,1) in transformed (log) scale

| Data | Error | Abs. error | $\begin{gathered} \text { error } \\ \wedge 2 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Abs } \\ (\text { error/y*) } \end{gathered}$ | Data | Error | Abs. error | error ${ }^{\wedge} 2$ | $\begin{gathered} \text { Abs } \\ (\text { error/y*) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [1,] | -0.006717 | 0.006717 | 0.000045 | 0.000939 | [64,] | -0.020323 | 0.020323 | 0.000413 | 0.002827 |
| [2,] | -0.034672 | 0.034672 | 0.001202 | 0.004870 | [65,] | -0.007312 | 0.007312 | 0.000053 | 0.001018 |
| [3,] | -0.003511 | 0.003511 | 0.000012 | 0.000493 | [66,] | 0.005771 | 0.005771 | 0.000033 | 0.000803 |
| [4,] | -0.034291 | 0.034291 | 0.001176 | 0.004841 | [67,] | 0.007043 | 0.007043 | 0.000050 | 0.000979 |
| [5,] | 0.041018 | 0.041018 | 0.001682 | 0.005757 | [68,] | 0.005307 | 0.005307 | 0.000028 | 0.000737 |
| [6,] | 0.007139 | 0.007139 | 0.000051 | 0.001001 | [69,] | -0.011548 | 0.011548 | 0.000133 | 0.001606 |
| [7,] | -0.002674 | 0.002674 | 0.000007 | 0.000375 | [70,] | -0.027997 | 0.027997 | 0.000784 | 0.003909 |
| [8,] | 0.000723 | 0.000723 | 0.000001 | 0.000101 | [71,] | 0.011261 | 0.011261 | 0.000127 | 0.001569 |
| [9,] | -0.032328 | 0.032328 | 0.001045 | 0.004553 | [72,] | 0.006760 | 0.006760 | 0.000046 | 0.000941 |
| [10,] | 0.017707 | 0.017707 | 0.000314 | 0.002487 | [73,] | -0.005437 | 0.005437 | 0.000030 | 0.000757 |
| [11,] | 0.015584 | 0.015584 | 0.000243 | 0.002184 | [74,] | 0.009767 | 0.009767 | 0.000095 | 0.001359 |
| [12,] | -0.000278 | 0.000278 | 0.000000 | 0.000039 | [75,] | 0.003847 | 0.003847 | 0.000015 | 0.000535 |
| [13,] | 0.022151 | 0.022151 | 0.000491 | 0.003094 | [76,] | -0.020043 | 0.020043 | 0.000402 | 0.002794 |
| [14,] | -0.004770 | 0.004770 | 0.000023 | 0.000667 | [77,] | -0.004903 | 0.004903 | 0.000024 | 0.000684 |
| [15,] | 0.003223 | 0.003223 | 0.000010 | 0.000450 | [78,] | -0.026419 | 0.026419 | 0.000698 | 0.003698 |
| [16,] | 0.004564 | 0.004564 | 0.000021 | 0.000637 | [79,] | 0.015004 | 0.015004 | 0.000225 | 0.002096 |
| [17,] | 0.003766 | 0.003766 | 0.000014 | 0.000525 | [80,] | -0.012413 | 0.012413 | 0.000154 | 0.001737 |
| [18,] | -0.011527 | 0.011527 | 0.000133 | 0.001611 | [81,] | 0.001682 | 0.001682 | 0.000003 | 0.000235 |
| [19,] | 0.009018 | 0.009018 | 0.000081 | 0.001258 | [82,] | 0.034618 | 0.034618 | 0.001198 | 0.004818 |
| [20,] | 0.023155 | 0.023155 | 0.000536 | 0.003220 | [83,] | -0.002763 | 0.002763 | 0.000008 | 0.000385 |
| [21,] | 0.004210 | 0.004210 | 0.000018 | 0.000585 | [84,] | 0.000083 | 0.000083 | 0.000000 | 0.000012 |
| [22,] | 0.000448 | 0.000448 | 0.000000 | 0.000062 | [85,] | 0.011020 | 0.011020 | 0.000121 | 0.001532 |
| [23,] | -0.007440 | 0.007440 | 0.000055 | 0.001035 | [86,] | -0.001990 | 0.001990 | 0.000004 | 0.000277 |
| [24,] | 0.003088 | 0.003088 | 0.000010 | 0.000429 | [87,] | 0.009414 | 0.009414 | 0.000089 | 0.001307 |
| [25,] | -0.001616 | 0.001616 | 0.000003 | 0.000225 | [88,] | 0.001552 | 0.001552 | 0.000002 | 0.000215 |
| [26,] | -0.004896 | 0.004896 | 0.000024 | 0.000681 | [89,] | 0.009107 | 0.009107 | 0.000083 | 0.001262 |
| [27,] | -0.007990 | 0.007990 | 0.000064 | 0.001113 | [90,] | -0.009347 | 0.009347 | 0.000087 | 0.001297 |
| [28,] | -0.000296 | 0.000296 | 0.000000 | 0.000041 | [91,] | 0.003392 | 0.003392 | 0.000012 | 0.000470 |
| [29,] | -0.005058 | 0.005058 | 0.000026 | 0.000705 | [92,] | -0.023636 | 0.023636 | 0.000559 | 0.003288 |
| [30,] | -0.004119 | 0.004119 | 0.000017 | 0.000574 | [93,] | -0.013790 | 0.013790 | 0.000190 | 0.001922 |
| [31,] | -0.019437 | 0.019437 | 0.000378 | 0.002717 | [94,] | 0.009791 | 0.009791 | 0.000096 | 0.001363 |
| [32,] | 0.000885 | 0.000885 | 0.000001 | 0.000124 | [95,] | -0.010761 | 0.010761 | 0.000116 | 0.001500 |
| [33,] | 0.011530 | 0.011530 | 0.000133 | 0.001608 | [96,] | 0.008272 | 0.008272 | 0.000068 | 0.001151 |
| [34,] | 0.007570 | 0.007570 | 0.000057 | 0.001055 | [97,] | -0.009624 | 0.009624 | 0.000093 | 0.001341 |
| [35,] | 0.023476 | 0.023476 | 0.000551 | 0.003260 | [98,] | -0.017454 | 0.017454 | 0.000305 | 0.002438 |
| [36,] | -0.010041 | 0.010041 | 0.000101 | 0.001396 | [99,] | -0.003013 | 0.003013 | 0.000009 | 0.000421 |
| [37,] | -0.002183 | 0.002183 | 0.000005 | 0.000304 | [100,] | -0.001651 | 0.001651 | 0.000003 | 0.000231 |
| [38,] | 0.001771 | 0.001771 | 0.000003 | 0.000246 | [101,] | -0.007529 | 0.007529 | 0.000057 | 0.001053 |
| [39,] | 0.028596 | 0.028596 | 0.000818 | 0.003960 | [102,] | 0.009877 | 0.009877 | 0.000098 | 0.001380 |
| [40,] | -0.003785 | 0.003785 | 0.000014 | 0.000524 | [103,] | 0.000295 | 0.000295 | 0.000000 | 0.000041 |
| [41,] | 0.004803 | 0.004803 | 0.000023 | 0.000665 | [104,] | -0.003594 | 0.003594 | 0.000013 | 0.000502 |
| [42,] | -0.007622 | 0.007622 | 0.000058 | 0.001056 | [105,] | -0.006733 | 0.006733 | 0.000045 | 0.000941 |
| [43,] | 0.008453 | 0.008453 | 0.000071 | 0.001170 | [106,] | -0.015482 | 0.015482 | 0.000240 | 0.002169 |
| [44,] | 0.000777 | 0.000777 | 0.000001 | 0.000107 | [107,] | -0.014293 | 0.014293 | 0.000204 | 0.002007 |
| [45,] | 0.029182 | 0.029182 | 0.000852 | 0.004021 | [108,] | 0.004352 | 0.004352 | 0.000019 | 0.000611 |
| [46,] | -0.000500 | 0.000500 | 0.000000 | 0.000069 | [109,] | -0.003287 | 0.003287 | 0.000011 | 0.000461 |
| [47,] | -0.008988 | 0.008988 | 0.000081 | 0.001240 | [110,] | 0.002938 | 0.002938 | 0.000009 | 0.000412 |
| [48,] | -0.009954 | 0.009954 | 0.000099 | 0.001375 | [111,] | -0.002682 | 0.002682 | 0.000007 | 0.000376 |
| [49,] | -0.002470 | 0.002470 | 0.000006 | 0.000341 | [112,] | -0.000275 | 0.000275 | 0.000000 | 0.000039 |
| [50,] | 0.004518 | 0.004518 | 0.000020 | 0.000624 | [113,] | 0.005328 | 0.005328 | 0.000028 | 0.000747 |
| [51,] | -0.007487 | 0.007487 | 0.000056 | 0.001035 | [114,] | -0.019609 | 0.019609 | 0.000385 | 0.002756 |
| [52,] | -0.004280 | 0.004280 | 0.000018 | 0.000592 | [115,] | -0.010689 | 0.010689 | 0.000114 | 0.001505 |
| [53,] | 0.000767 | 0.000767 | 0.000001 | 0.000106 | [116,] | 0.007709 | 0.007709 | 0.000059 | 0.001084 |
| [54,] | 0.001485 | 0.001485 | 0.000002 | 0.000205 | [117,] | -0.004758 | 0.004758 | 0.000023 | 0.000669 |
| [55,] | -0.023783 | 0.023783 | 0.000566 | 0.003297 | [118,] | 0.007876 | 0.007876 | 0.000062 | 0.001107 |
| [56,] | 0.003365 | 0.003365 | 0.000011 | 0.000466 | [119,] | 0.002563 | 0.002563 | 0.000007 | 0.000360 |
| [57,] | -0.027240 | 0.027240 | 0.000742 | 0.003788 | [120,] | 0.022695 | 0.022695 | 0.000515 | 0.003177 |
| [58,] | -0.007855 | 0.007855 | 0.000062 | 0.001093 | [121,] | -0.005029 | 0.005029 | 0.000025 | 0.000704 |
| [59,] | 0.003487 | 0.003487 | 0.000012 | 0.000485 | [122,] | -0.029238 | 0.029238 | 0.000855 | 0.004112 |
| [60,] | -0.009590 | 0.009590 | 0.000092 | 0.001336 | [123,] | 0.004818 | 0.004818 | 0.000023 | 0.000677 |
| [61,] | -0.009286 | 0.009286 | 0.000086 | 0.001295 | [124,] | 0.001554 | 0.001554 | 0.000002 | 0.000218 |
| [62,] | 0.047711 | 0.047711 | 0.002276 | 0.006609 | [125,] | -0.003109 | 0.003109 | 0.000010 | 0.000437 |
| [63,] | -0.012648 | 0.012648 | 0.000160 | 0.001755 |  |  |  |  |  |

[^9]1(c) 1-step ahead error of ARIMA(0,1,0)-GARCH(1,1) in stationary scale

| Data | Error | Absolute error | error ^2 | Data | Error | Absolute error | error ${ }^{\wedge} 2$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [1,] | -0.006717 | 0.006717 | 0.000045 | [64,] | -0.020323 | 0.020323 | 0.000413 |
| [2,] | -0.034672 | 0.034672 | 0.001202 | [65,] | -0.007312 | 0.007312 | 0.000053 |
| [3,] | -0.003511 | 0.003511 | 0.000012 | [66,] | 0.005771 | 0.005771 | 0.000033 |
| [4,] | -0.034291 | 0.034291 | 0.001176 | [67,] | 0.007043 | 0.007043 | 0.000050 |
| [5,] | 0.041018 | 0.041018 | 0.001682 | [68,] | 0.005307 | 0.005307 | 0.000028 |
| [6,] | 0.007139 | 0.007139 | 0.000051 | [69,] | -0.011548 | 0.011548 | 0.000133 |
| [7,] | -0.002674 | 0.002674 | 0.000007 | [70,] | -0.027997 | 0.027997 | 0.000784 |
| [8,] | 0.000723 | 0.000723 | 0.000001 | [71,] | 0.011261 | 0.011261 | 0.000127 |
| [9,] | -0.032328 | 0.032328 | 0.001045 | [72,] | 0.006760 | 0.006760 | 0.000046 |
| [10,] | 0.017707 | 0.017707 | 0.000314 | [73,] | -0.005437 | 0.005437 | 0.000030 |
| [11,] | 0.015584 | 0.015584 | 0.000243 | [74,] | 0.009767 | 0.009767 | 0.000095 |
| [12,] | -0.000278 | 0.000278 | 0.000000 | [75,] | 0.003847 | 0.003847 | 0.000015 |
| [13,] | 0.022151 | 0.022151 | 0.000491 | [76,] | -0.020043 | 0.020043 | 0.000402 |
| [14,] | -0.004770 | 0.004770 | 0.000023 | [77,] | -0.004903 | 0.004903 | 0.000024 |
| [15,] | 0.003223 | 0.003223 | 0.000010 | [78,] | -0.026419 | 0.026419 | 0.000698 |
| [16,] | 0.004564 | 0.004564 | 0.000021 | [79,] | 0.015004 | 0.015004 | 0.000225 |
| [17,] | 0.003766 | 0.003766 | 0.000014 | [80,] | -0.012413 | 0.012413 | 0.000154 |
| [18,] | -0.011527 | 0.011527 | 0.000133 | [81,] | 0.001682 | 0.001682 | 0.000003 |
| [19,] | 0.009018 | 0.009018 | 0.000081 | [82,] | 0.034618 | 0.034618 | 0.001198 |
| [20,] | 0.023155 | 0.023155 | 0.000536 | [83,] | -0.002763 | 0.002763 | 0.000008 |
| [21,] | 0.004210 | 0.004210 | 0.000018 | [84,] | 0.000083 | 0.000083 | 0.000000 |
| [22,] | 0.000448 | 0.000448 | 0.000000 | [85,] | 0.011020 | 0.011020 | 0.000121 |
| [23,] | -0.007440 | 0.007440 | 0.000055 | [86,] | -0.001990 | 0.001990 | 0.000004 |
| [24,] | 0.003088 | 0.003088 | 0.000010 | [87,] | 0.009414 | 0.009414 | 0.000089 |
| [25,] | -0.001616 | 0.001616 | 0.000003 | [88,] | 0.001552 | 0.001552 | 0.000002 |
| [26,] | -0.004896 | 0.004896 | 0.000024 | [89,] | 0.009107 | 0.009107 | 0.000083 |
| [27,] | -0.007990 | 0.007990 | 0.000064 | [90,] | -0.009347 | 0.009347 | 0.000087 |
| [28,] | -0.000296 | 0.000296 | 0.000000 | [91,] | 0.003392 | 0.003392 | 0.000012 |
| [29,] | -0.005058 | 0.005058 | 0.000026 | [92,] | -0.023636 | 0.023636 | 0.000559 |
| [30,] | -0.004119 | 0.004119 | 0.000017 | [93,] | -0.013790 | 0.013790 | 0.000190 |
| [31,] | -0.019437 | 0.019437 | 0.000378 | [94,] | 0.009791 | 0.009791 | 0.000096 |
| [32,] | 0.000885 | 0.000885 | 0.000001 | [95,] | -0.010761 | 0.010761 | 0.000116 |
| [33,] | 0.011530 | 0.011530 | 0.000133 | [96,] | 0.008272 | 0.008272 | 0.000068 |
| [34,] | 0.007570 | 0.007570 | 0.000057 | [97,] | -0.009624 | 0.009624 | 0.000093 |
| [35,] | 0.023476 | 0.023476 | 0.000551 | [98,] | -0.017454 | 0.017454 | 0.000305 |
| [36,] | -0.010041 | 0.010041 | 0.000101 | [99,] | -0.003013 | 0.003013 | 0.000009 |
| [37,] | -0.002183 | 0.002183 | 0.000005 | [100,] | -0.001651 | 0.001651 | 0.000003 |
| [38,] | 0.001771 | 0.001771 | 0.000003 | [101,] | -0.007529 | 0.007529 | 0.000057 |
| [39,] | 0.028596 | 0.028596 | 0.000818 | [102,] | 0.009877 | 0.009877 | 0.000098 |
| [40,] | -0.003785 | 0.003785 | 0.000014 | [103,] | 0.000295 | 0.000295 | 0.000000 |
| [41,] | 0.004803 | 0.004803 | 0.000023 | [104,] | -0.003594 | 0.003594 | 0.000013 |
| [42,] | -0.007622 | 0.007622 | 0.000058 | [105,] | -0.006733 | 0.006733 | 0.000045 |
| [43,] | 0.008453 | 0.008453 | 0.000071 | [106,] | -0.015482 | 0.015482 | 0.000240 |
| [44,] | 0.000777 | 0.000777 | 0.000001 | [107,] | -0.014293 | 0.014293 | 0.000204 |
| [45,] | 0.029182 | 0.029182 | 0.000852 | [108,] | 0.004352 | 0.004352 | 0.000019 |
| [46,] | -0.000500 | 0.000500 | 0.000000 | [109,] | -0.003287 | 0.003287 | 0.000011 |
| [47,] | -0.008988 | 0.008988 | 0.000081 | [110,] | 0.002938 | 0.002938 | 0.000009 |
| [48,] | -0.009954 | 0.009954 | 0.000099 | [111,] | -0.002682 | 0.002682 | 0.000007 |
| [49,] | -0.002470 | 0.002470 | 0.000006 | [112,] | -0.000275 | 0.000275 | 0.000000 |
| [50,] | 0.004518 | 0.004518 | 0.000020 | [113,] | 0.005328 | 0.005328 | 0.000028 |
| [51,] | -0.007487 | 0.007487 | 0.000056 | [114,] | -0.019609 | 0.019609 | 0.000385 |
| [52,] | -0.004280 | 0.004280 | 0.000018 | [115,] | -0.010689 | 0.010689 | 0.000114 |
| [53,] | 0.000767 | 0.000767 | 0.000001 | [116,] | 0.007709 | 0.007709 | 0.000059 |
| [54,] | 0.001485 | 0.001485 | 0.000002 | [117,] | -0.004758 | 0.004758 | 0.000023 |
| [55,] | -0.023783 | 0.023783 | 0.000566 | [118,] | 0.007876 | 0.007876 | 0.000062 |
| [56,] | 0.003365 | 0.003365 | 0.000011 | [119,] | 0.002563 | 0.002563 | 0.000007 |
| [57,] | -0.027240 | 0.027240 | 0.000742 | [120,] | 0.022695 | 0.022695 | 0.000515 |
| [58,] | -0.007855 | 0.007855 | 0.000062 | [121,] | -0.005029 | 0.005029 | 0.000025 |
| [59,] | 0.003487 | 0.003487 | 0.000012 | [122,] | -0.029238 | 0.029238 | 0.000855 |
| [60,] | -0.009590 | 0.009590 | 0.000092 | [123,] | 0.004818 | 0.004818 | 0.000023 |
| [61,] | -0.009286 | 0.009286 | 0.000086 | [124,] | 0.001554 | 0.001554 | 0.000002 |
| [62,] | 0.047711 | 0.047711 | 0.002276 | [125,] | -0.003109 | 0.003109 | 0.000010 |
| [63,] | -0.012648 | 0.012648 | 0.000160 |  |  |  |  |

[^10]2. $\boldsymbol{n}$-step ahead forecasting performance for $\operatorname{ARIMA}(\mathbf{0 , 1 , 0})$-GARCH(1,1) in original scale

| Data | Error | Abs. error | error ${ }^{\wedge} 2$ | Abs $\left(\mathrm{error} / \mathbf{y}^{*}\right)$ | Data | Error | Abs. error | error ${ }^{\wedge} 2$ | Abs (error/y*) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [1,] | -8.620238 | 8.620238 | 74.308505 | 0.006740 | [64,] | -20.648470 | 20.648470 | 426.359307 | 0.015607 |
| [2,] | -52.241065 | 52.241065 | 2729.128842 | 0.042258 | [65,] | -30.307188 | 30.307188 | 918.525645 | 0.023060 |
| [3,] | -56.612480 | 56.612480 | 3204.972868 | 0.045924 | [66,] | -22.716521 | 22.716521 | 516.040340 | 0.017174 |
| [4,] | -98.234484 | 98.234484 | 9650.013847 | 0.082411 | [67,] | -13.376469 | 13.376469 | 178.929936 | 0.010035 |
| [5,] | -48.357079 | 48.357079 | 2338.407048 | 0.038911 | [68,] | -6.287033 | 6.287033 | 39.526778 | 0.004688 |
| [6,] | -39.480263 | 39.480263 | 1558.691153 | 0.031521 | [69,] | -21.698211 | 21.698211 | 470.812371 | 0.016357 |
| [7,] | -42.854038 | 42.854038 | 1836.468543 | 0.034283 | [70,] | -58.360007 | 58.360007 | 3405.890434 | 0.045214 |
| [8,] | -41.978403 | 41.978403 | 1762.186317 | 0.033536 | [71,] | -43.772419 | 43.772419 | 1916.024706 | 0.033510 |
| [9,] | -81.853360 | 81.853360 | 6699.972503 | 0.067494 | [72,] | -34.935449 | 34.935449 | 1220.485591 | 0.026547 |
| [10,] | -60.228908 | 60.228908 | 3627.521404 | 0.048758 | [73,] | -42.099096 | 42.099096 | 1772.333852 | 0.032143 |
| [11,] | -40.855050 | 40.855050 | 1669.135083 | 0.032541 | [74,] | -29.263360 | 29.263360 | 856.344220 | 0.022111 |
| [12,] | -41.231784 | 41.231784 | 1700.059983 | 0.032828 | [75,] | -24.178243 | 24.178243 | 584.587430 | 0.018186 |
| [13,] | -13.109110 | 13.109110 | 171.848765 | 0.010202 | [76,] | -50.593745 | 50.593745 | 2559.727019 | 0.038799 |
| [14,] | -19.237029 | 19.237029 | 370.063298 | 0.015032 | [77,] | -57.009865 | 57.009865 | 3250.124694 | 0.043904 |
| [15,] | -15.115542 | 15.115542 | 228.479622 | 0.011765 | [78,] | -90.926605 | 90.926605 | 8267.647497 | 0.071850 |
| [16,] | -9.244650 | 9.244650 | 85.463557 | 0.007158 | [79,] | -71.843965 | 71.843965 | 5161.555346 | 0.055888 |
| [17,] | -4.374353 | 4.374353 | 19.134964 | 0.003372 | [80,] | -87.761946 | 87.761946 | 7702.159226 | 0.069077 |
| [18,] | -19.254650 | 19.254650 | 370.741538 | 0.015005 | [81,] | -85.680548 | 85.680548 | 7341.156336 | 0.067280 |
| [19,] | -7.635542 | 7.635542 | 58.301497 | 0.005893 | [82,] | -40.849770 | 40.849770 | 1668.703740 | 0.030964 |
| [20,] | 22.732970 | 22.732970 | 516.787932 | 0.017131 | [83,] | -44.519614 | 44.519614 | 1981.996069 | 0.033817 |
| [21,] | 28.350886 | 28.350886 | 803.772749 | 0.021261 | [84,] | -44.440081 | 44.440081 | 1974.920804 | 0.033731 |
| [22,] | 28.968205 | 28.968205 | 839.156887 | 0.021699 | [85,] | -29.861170 | 29.861170 | 891.689446 | 0.022401 |
| [23,] | 19.084927 | 19.084927 | 364.234425 | 0.014393 | [86,] | -32.532881 | 32.532881 | 1058.388365 | 0.024438 |
| [24,] | 23.201051 | 23.201051 | 538.288769 | 0.017431 | [87,] | -19.955216 | 19.955216 | 398.210646 | 0.014839 |
| [25,] | 21.066578 | 21.066578 | 443.800729 | 0.015843 | [88,] | -17.878175 | 17.878175 | 319.629139 | 0.013265 |
| [26,] | 14.581507 | 14.581507 | 212.620340 | 0.011012 | [89,] | -5.551758 | 5.551758 | 30.822015 | 0.004079 |
| [27,] | 4.045837 | 4.045837 | 16.368798 | 0.003078 | [90,] | -18.225966 | 18.225966 | 332.185846 | 0.013508 |
| [28,] | 3.659569 | 3.659569 | 13.392442 | 0.002783 | [91,] | -13.650799 | 13.650799 | 186.344302 | 0.010076 |
| [29,] | -2.977300 | 2.977300 | 8.864316 | 0.002274 | [92,] | -45.326256 | 45.326256 | 2054.469525 | 0.034234 |
| [30,] | -8.364768 | 8.364768 | 69.969342 | 0.006411 | [93,] | -63.502340 | 63.502340 | 4032.547205 | 0.048596 |
| [31,] | -33.502837 | 33.502837 | 1122.440066 | 0.026164 | [94,] | -50.679051 | 50.679051 | 2568.366251 | 0.038379 |
| [32,] | -32.391506 | 32.391506 | 1049.209657 | 0.025257 | [95,] | -64.856389 | 64.856389 | 4206.351220 | 0.049613 |
| [33,] | -17.530776 | 17.530776 | 307.328096 | 0.013503 | [96,] | -54.034354 | 54.034354 | 2919.711380 | 0.040966 |
| [34,] | -7.670647 | 7.670647 | 58.838829 | 0.005860 | [97,] | -66.712946 | 66.712946 | 4450.617200 | 0.051033 |
| [35,] | 23.438880 | 23.438880 | 549.381077 | 0.017479 | [98,] | -89.392166 | 89.392166 | 7990.959410 | 0.069539 |
| [36,] | 10.047805 | 10.047805 | 100.958379 | 0.007563 | [99,] | -93.322015 | 93.322015 | 8708.998561 | 0.072766 |
| [37,] | 7.156127 | 7.156127 | 51.210154 | 0.005395 | [100,] | -95.502493 | 95.502493 | 9120.726141 | 0.074539 |
| [38,] | 9.513846 | 9.513846 | 90.513257 | 0.007155 | [101,] | -105.183600 | 105.183600 | 11063.589666 | 0.082659 |
| [39,] | 48.120961 | 48.120961 | 2315.626851 | 0.035144 | [102,] | -92.615336 | 92.615336 | 8577.600409 | 0.072018 |
| [40,] | 42.977472 | 42.977472 | 1847.063091 | 0.031485 | [103,] | -92.297703 | 92.297703 | 8518.865911 | 0.071701 |
| [41,] | 49.583379 | 49.583379 | 2458.511457 | 0.036126 | [104,] | -96.980700 | 96.980700 | 9405.256161 | 0.075560 |
| [42,] | 39.188682 | 39.188682 | 1535.752806 | 0.028752 | [105,] | -105.664328 | 105.664328 | 11164.950150 | 0.082825 |
| [43,] | 50.793379 | 50.793379 | 2579.967390 | 0.036927 | [106,] | -125.348587 | 125.348587 | 15712.268363 | 0.099720 |
| [44,] | 51.897472 | 51.897472 | 2693.347606 | 0.037675 | [107,] | -143.283479 | 143.283479 | 20530.155477 | 0.115551 |
| [45,] | 92.750958 | 92.750958 | 8602.740278 | 0.065352 | [108,] | -137.969004 | 137.969004 | 19035.445988 | 0.110707 |
| [46,] | 92.103838 | 92.103838 | 8483.117046 | 0.064885 | [109,] | -142.155160 | 142.155160 | 20208.089451 | 0.114365 |
| [47,] | 79.456111 | 79.456111 | 6313.273654 | 0.056442 | [110,] | -138.591950 | 138.591950 | 19207.728610 | 0.111096 |
| [48,] | 65.557778 | 65.557778 | 4297.822225 | 0.047003 | [111,] | -142.029374 | 142.029374 | 20172.342983 | 0.114080 |
| [49,] | 62.158836 | 62.158836 | 3863.720885 | 0.044646 | [112,] | -142.467431 | 142.467431 | 20296.968870 | 0.114386 |
| [50,] | 68.509287 | 68.509287 | 4693.522424 | 0.048953 | [113,] | -135.906123 | 135.906123 | 18470.474228 | 0.108465 |
| [51,] | 58.109129 | 58.109129 | 3376.670906 | 0.041805 | [114,] | -160.345449 | 160.345449 | 25710.663130 | 0.130415 |
| [52,] | 52.208363 | 52.208363 | 2725.713154 | 0.037696 | [115,] | -173.535411 | 173.535411 | 30114.539037 | 0.142563 |
| [53,] | 53.306987 | 53.306987 | 2841.634820 | 0.038433 | [116,] | -164.226009 | 164.226009 | 26970.181944 | 0.133789 |
| [54,] | 55.405002 | 55.405002 | 3069.714207 | 0.039860 | [117,] | -170.167243 | 170.167243 | 28956.890477 | 0.139196 |
| [55,] | 22.752406 | 22.752406 | 517.671998 | 0.016751 | [118,] | -160.609112 | 160.609112 | 25795.286928 | 0.130259 |
| [56,] | 27.349201 | 27.349201 | 747.978804 | 0.020054 | [119,] | -157.551619 | 157.551619 | 24822.512655 | 0.127366 |
| [57,] | -9.304615 | 9.304615 | 86.575866 | 0.007006 | [120,] | -129.244763 | 129.244763 | 16704.208743 | 0.102069 |
| [58,] | -19.709043 | 19.709043 | 388.446383 | 0.014948 | [121,] | -135.688546 | 135.688546 | 18411.381473 | 0.107625 |
| [59,] | -15.114083 | 15.114083 | 228.435507 | 0.011415 | [122,] | -172.132966 | 172.132966 | 29629.758155 | 0.140488 |
| [60,] | -27.769734 | 27.769734 | 771.158131 | 0.021162 | [123,] | -166.328026 | 166.328026 | 27665.012267 | 0.135007 |
| [61,] | -39.925998 | 39.925998 | 1594.085323 | 0.030689 | [124,] | -164.523724 | 164.523724 | 27068.055902 | 0.133245 |
| [62,] | 23.667124 | 23.667124 | 560.132767 | 0.017332 | [125,] | -168.470062 | 168.470062 | 28382.161753 | 0.136773 |
| [63,] | 6.509634 | 6.509634 | 42.375330 | 0.004825 |  |  |  |  |  |

[^11]
## D. SUMMARY OF 1-STEP AHEAD AND MULTISTEP AHEAD FORECASTING RESULTS OF ARIMA-GARCH (AG)

| 1-step | 2-step ahead foreca |
| :---: | :---: |
| ```> mae_AG4=sum(error2_AG4)/T;[1] 12.93009 > rmse_AG4=sqrt(sum(error3_AG4)/T; 17.87645 > mape_AG4=(100/T)*sum(error4_AG4); 0.9956225```  | ```> mae_AG4_2=sum(error2_AG4_2)/T; [1] 15.79385 > rmse_AG4_2=sqrt(sum(error3_AG4_2)/T); [1] 21.32971 > mape_AG4_2=(100/T)*sum(error4_AG4_2); [1] 1.213224```  |
|  |  |
| ```> mae_AG4_3=sum(error2_AG4_3)/T; [1] 18.29534 > rmse_AG4_3=sqrt(sum(error3_AG4_3)/T); 24.44724 > mape_AG4_3=(100/T)*sum(error4_AG4_3); 1.409793```  | ```> mae_AG4_4=sum(error2_AG4_4)/T; 21.60963 > rmse_AG4_4=sqrt(sum(error3_AG4_4)/T); 28.36626 > mape_AG4_4=(100/T)*sum(error4_AG4_4); 1.67163```  |


| 5-step ahead forecast AG | 7-step ahead forecast AG |
| :---: | :---: |
| ```> mae_AG4_5=sum(error2_AG4_5)/T; [1] 22.83944 > rmse_AG4_5=sqrt(sum(error3_AG4_5)/T); [1] 28.93036 > mape_AG4_5=(100/T)*sum(error4_AG4_5); [1] 1.764663```  | ```> mae_AG4_7=sum(error2_AG4_7)/T;[1] 24.59806 > rmse_AG4_7=sqrt(sum(error3_AG4_7)/T); [1] 30.12332 > mape_AG4_7=(100/T)*sum(error4_AG4_7); [1] 1.894061```  |
| 10-step ahead forecast AG | 15-step ahead forecast AG |
| > mae_AG4_10=sum (error2_AG4_10)/T; 32.28698 > rmse_AG4_10=sqrt(sum(error3_AG4_10)/T); 40.19701 <br> > mape_AG4_10=(100/T)*sum(error4_AG4_10); <br> 2.485947 <br> > outAG_10_1080<-dt4_o[dt4_o<lo80_AG4_10]; <br> [1] 1192.001212 .751235 .251328 .001318 .50 1324.001312 .251285 .501282 .501281 .25 <br> > outAG_10_hi80<-dt4_o[dt4_o>hi80_AG4_10]; <br> [1] $132 \overline{7} .0 \overline{0} 1344.75 \overline{1347.7 \overline{5}} 1361 . \overline{0} 0 \quad 1 \overline{3} 49.25$ <br> > outAG_10_1095<-dt4_o[dt4_o<lo95_AG4_10]; numeric (0) <br> > outAG_10_hi95<-dt4_o[dt4_o>hi95_AG4_10]; numeric (0) <br> \% Forecast data NOT within prediction interval $80 \%$ PI: $15 / 125=12 \%$ | ```> mae_AG4_15=sum(error2_AG4_15)/T; 37.65506 > rmse_AG4_15=sqrt(sum(error3_AG4_15)/T); 46.20913 > mape_AG4_15=(100/T)*sum(error4_AG4_15); 2.906795```  ```> outAG_15_lo80<-dt4_o[dt4_o<lo80_AG4_15]; 1192.00 }\mp@subsup{}{}{-}12\overline{1}2.75 1358.25 13\overline{6}3.75 1\overline{3}28.\overline{0}0 1318 .50 1324.00 1312.25 1265.50 1270.50 1285.50 1282.50 1281.25 1272.50 1286.00 1287.25 1283 .50 1275.75 1217.25 1222.50 > outAG_15_hi80<-dt4_o[dt4_o>hi80_AG4_15]; 1419.2\overline{5} > outAG_15_lo95<-dt4_o[dt4_o<lo95_AG4_15]; [1] 1318.5\overline{0}}1324.00 \overline{1}312.2\overline{5 > outAG_15_hi95<-dt4_o[dt4_o>hi95_AG4_15]; numeric(0) \\ \% Forecast data NOT within prediction interval \[ 80 \% \text { PI: } 21 / 125=16.8 \% \quad 95 \% \text { PI: } 3 / 125=2.4 \% \]``` |



To find Prediction Intervals for 7-step ahead ARIMA-GARCH:

v1<-qt(c(.025,.975), df=4.81);v1 \#t dist, alpha 0.025, v=4.81, PI 95\% v2<-qt(c(.1, .9), df=4.81); v2\#t dist, alpha 0.1, v=4.81, for PI 80\% T<- 125
lo95_AG4_7=matrix(0,T,1); lo95_AG4_7 \#lower limit PI 95\%
hi95_AG4_7=matrix $(0, \mathrm{~T}, 1)$; hi95-AG4_7 \# upper limit PI 95\%
lo80_AG4_-7=matrix(0,T,1); lo80_AG4-7 \#lower limit PI 80\%
hi80_AG4_-7=matrix(0,T,1); hi80_AG4_7 \#upper limit PI 80\%
for(i in 1:125) \{
lo95 AG4 7[i]<-f AG4_7[i]-(2.6014*28.5844) \#lower limit 95\%
hi95 ${ }^{-} \mathrm{AG}^{-} 7[\mathrm{i}]<-\mathrm{f}^{-} \mathrm{AG}^{-} 7[\mathrm{i}]+(2.6014 * 28.5844)$ \#upper limit 95\%
lo80_AG4_7[i]<-f_AG4_7[i]-(1.4847*28.5844) \#lower limit 80\%
hi80_AG4_7[i]<-f_AG4_7[i]+(1.4847*28.5844) \#upper limit 80\%
\}
cbind(dt4_o,f_AG4_7,1095_AG4_7,hi95_AG4_7,1080_AG4_7,hi80_AG4_7)

## Simulation Price Data of 7 -step ahead using ARIMA(0,1,0)-GARCH(1,1) with $t$ innovations



|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  |  |  |
|  | 13 |  |  |  |
|  | 1316.001292 .496 |  | 5 |  |
|  | 1309.751293 .371 |  |  |  |
|  | 1323.501294 .245 |  |  |  |
|  |  |  |  |  |
|  | 1304.001295 .997 |  |  |  |
| 77 | 1298.501296 .873 |  | 1254. |  |
|  | 1265.501299 .378 |  |  |  |
|  | 1285.501300 .257 | 1225.898137 | 12 |  |
|  | 1270.501301 .136 |  |  |  |
|  | 1273.5013 | 1227.6571376 .376 | 1259.57 |  |
|  | 1319.2513 | 1228.5371377 .256 | 1260.45 |  |
|  | 1316.5013 | 1229.4191378 .137 | 1261.33 |  |
|  | 1317.501304 | 1230.3001379 .019 |  |  |
|  | 1333.0013 | 1244.03213 |  |  |
|  | 1331.25131 |  |  | 1361.72 |
|  | 1344.751320 .175 |  |  |  |
|  | 1347.751321 .068 | 1246.7081395 .427 | 1278.62 |  |
|  | 1361.001321 | 1247.6021396 .321 | 1279.52 | 1364.40 |
|  | 1349.251322 | 1248.4961397 .215 | 1280.41 |  |
| 91 | 1354.7513 | 1249.3901398 .109 |  |  |
|  | 1324.0013 | 1281.3071430 .026 | 22 |  |
|  | 1306.751356 .583 | 1282.224143 | 1314.14 | 1399.02 |
|  | 1320.501357 .501 | 1283.1411431 | 1315.06 | 1399.94 |
|  | 1307.251358 .419 | 1284.0591432 .77 | 131 | 1400.85 |
|  | 1319.001359 .337 | 1284.9781433 .697 | 1316.89 | 1 |
|  | 1307.251360 .257 | 1285.8971434 .616 | 1317.817 |  |
|  | 1285.501361 .177 | 1286.8171435 .53 | 1318.737 |  |
|  |  | 1212.0101360 .72 | 1243.930 |  |
|  | 1281.25 1287.239 |  | 124 |  |
|  | 1272.501288 .110 | 1213.7501362 .469 | 2 |  |
|  |  | 1214.622 136 | 1246.54 |  |
|  | 1287.251289 .853 |  | 1247.414 |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  | 1257.001276 .613 |  |  |  |
|  | 1240.001277 .476 | 1203.1171351 .836 |  |  |
|  |  |  |  |  |
|  | 1243.001279 .205 |  |  |  |
|  | 1247.501280 .070 | 1205.7101354 .42 |  |  |
| 11 | 1245.001280 .936 | 1206.5761355 .295 | 1238.496 |  |
| 12 | 1245.501281 .802 | 1207.4421356 .161 |  |  |
| 13 | 1253.001246 .342 | 1171.9831320 .70 |  |  |
| 14 | 1229.501247 .185 | 1172.8261321 .545 | 1204.746 |  |
| 15 | 1217.251248 .029 | 1173.6691322 .388 |  |  |
| 16 | 1227.501248 .873 | 1174.5131323 .232 | 1206.434 | 1291.31 |
| 17 | 1222.501249 .717 | 1175.3581324 .077 | 1207.278 | 1292.15 |
| 18 | 1233.001250 .563 | 1176.2031324 .922 | 1208.123 | 1293.00 |
| 19 | 1237.001251 .408 | 1177.0491325 .768 | 1208.969 | 129 |
| 20 | 1266.251237 .837 | 1163.4771312 .196 | 1195.397 | 1280.27 |
| 121 | 1260.751238 .674 | 1164.3141313 .033 | 1196.234 | 1281.113 |
| 122 | 1225.251239 .511 | 1165.1521313 .871 | 1197.072 | 128 |
| 123 | 1232.001240 .350 | 1165.9901314 .709 | 1197.911 | 1281 |
| 12 | 1234.751241 .189 | 1166.8291315 .548 | 1198.749 | 1283.628 |
| 12 | 1231.751242 .028 | 1167.6691316 .388 | 1199.589 |  |

## APPENDIX 5 <br> ANALYSIS OF CHAPTER 4 SECTION 4.5

## OUT-OF-SAMPLE DATA

- 25 June -17 Dec 2013 (125 data)


## A) ARIMA-EGARCH Model

* Note: $\operatorname{ARIMA}(0,1,0)$ - $\operatorname{EGARCH}(1,1)$ with normal distribution is significant
(i) ARIMA-EGARCH(1,1) normal distribution

| Dependent Variable: D(LDT4) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Method: ML - ARCH (Marquardt) - Normal distribution |  |  |  |  |
| Sample (adjusted): 21125 |  |  |  |  |
| Included observations: 1124 after adjustments |  |  |  |  |
| Convergence achieved after 57 iterations |  |  |  |  |
| Presample variance: backcast ( (parameter $=0.7$ ) |  |  |  |  |
| LOG(GARCH $)=\mathrm{C}(2)+\mathrm{C}(3)^{*}$ ABS $($ RESID $(-1) / @ S Q R T(\operatorname{GARCH}(-1)))+\mathrm{C}(4)$ |  |  |  |  |
| *RESID(-1)/@SQRT(GARCH(-1)) + C(5)*LOG(GARCH(-1)) |  |  |  |  |
| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| C | 0.000474 | 0.000345 | 1.373557 | 0.1696 |
| Variance Equation |  |  |  |  |
| C(2) | -0.464552 | 0.057634 | -8.060352 | 0.0000 |
| C(3) | 0.141116 | 0.017591 | 8.022216 | 0.0000 |
| C(4) | -0.049245 | 0.007964 | -6.183262 | 0.0000 |
| C(5) | 0.959373 | 0.006277 | 152.8311 | 0.0000 |
| R-squared | -0.000073 | Mean depend |  | 0.000370 |
| Adjusted R-squared | -0.000073 | S.D. depender |  | 0.012243 |
| S.E. of regression | 0.012243 | Akaike info crit |  | -6.045677 |
| Sum squared resid | 0.168331 | Schwarz criterio |  | -6.023326 |
| Log likelihood | 3402.671 | Hannan-Quinn | citer. | -6.037230 |
| Durbin-Watson stat | 2.033763 |  |  |  |


| Dependent Variable: D(LDT4) <br> Method: ML - ARCH (Marquardt) - Normal distribution <br> Sample (adjusted): 31125 <br> Included observations: 1123 after adjustments <br> Convergence achieved after 31 iterations <br> MA Backcast: 2 <br> Presample variance: backcast (parameter $=0.7$ ) $\left.\operatorname{LOG}(G A R C H)=C(3)+C(4)^{*} A B S(\operatorname{RESID}(-1)) @ S Q R T(G A R C H(-1))\right)+C(5)$ <br> *RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1)) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Variable | Coefficient | Std. Error | 2-Statistic | Prob. |
| $\begin{aligned} & \operatorname{AR}(1) \\ & \mathrm{MA}(1) \end{aligned}$ | $\begin{array}{r} -0.938337 \\ 0.959228 \end{array}$ | $\begin{aligned} & 0.017025 \\ & 0.015541 \end{aligned}$ | $\begin{array}{r} -55.11536 \\ 61.72315 \end{array}$ | $\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$ |
| Variance Equation |  |  |  |  |
| C(3) | -5.124438 | 0.591494 | -8.663548 | 0.0000 |
| C(4) | 0.148458 | 0.043108 | 3.443848 | 0.0006 |
| C(5) | -0.260152 | 0.026567 | -9.792468 | 0.0000 |
| C(6) | 0.434178 | 0.066421 | 6.536807 | 0.0000 |
| R-squared | 0.014300 | Mean dependent var |  | 0.000376 |
| Adjusted R-squared | 0.013420 | S.D. dependent var. |  | 0.012246 |
| S.E. of regression | 0.012164 | Akaike info criterion |  | -6.028036 |
| Sum squared resid | 0.165866 | Schwarz criterion |  | -6.001195 |
| Log likelihood | 3390.742 | Hannan-Quinn criter. |  | -6.017892 |
| Durbin-Watson stat | 2.041491 |  |  |  |

Dependent Variable: D(LDT4)
Method: ML - ARCH (Marquardt) - Normal distribution
Sample (adjusted): 31125
Included observations: 1123 after adjustments
Convergence achieved after 88 iterations
Presample variance: backcast (parameter $=0.7$ )
$\operatorname{LOG}(\operatorname{GARCH})=\mathrm{C}(3)+\mathrm{C}(4)^{*} \operatorname{ABS}(\operatorname{RESID}(-1)$ @SQRT$(\operatorname{GARCH}(-1)))+\mathrm{C}(5)$
*RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1))

| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| :---: | :---: | :---: | :---: | :---: |
| C | 0.000482 | 0.000340 | 1.419698 | 0.1557 |
| AR(1) | -0.016809 | 0.036579 | -0.459528 | 0.6459 |
| Variance Equation |  |  |  |  |
| C(3) | -0.472306 | 0.058369 | -8.091672 | 0.0000 |
| C(4) | 0.142020 | 0.017613 | 8.063163 | 0.0000 |
| C(5) | -0.048669 | 0.007932 | -6.135647 | 0.0000 |
| C(6) | 0.958584 | 0.006383 | 150.1726 | 0.0000 |
| R -squared | 0.000220 | Mean dependent var |  | 0.000376 |
| Adjusted R-squared | -0.000672 | S.D. dependent yar |  | 0.012246 |
| S.E. of regression | 0.012251 | Akaike info criterion |  | -6.044598 |
| Sum squared resid | 0.168235 | Schwarz criterion |  | -6.017757 |
| Log likelihood | 3400.042 | Hannan-Quinn criter. |  | -6.034454 |
| F-statistic | 0.049274 | Durbin-Watson stat |  | 1.987972 |
| Prob(F-statistic) | 0.998528 |  |  |  |

ARIMA（0，1，0）－EGARCH（1，1）with normal distribution

Correlogram of Standardized Residuals
Date：01／18／19 Time：16：12
Sample： 21125
Included observations： 1124

| Autocorrelation | Partial Correlation | AC | PAC | Q－Stat | Prob |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}1 & -0.001 & -0.001 & 0.0015 & 0.96 \\ 2 & -0.031 & 0.031 & 1.0814 & 0.587\end{array}$ $\begin{array}{lllll}2 & -0.031 & -0.031 & 1.0814 & 0.582 \\ 3 & -0.020 & -0.020 & 1.5352 & 0.674\end{array}$ $\begin{array}{lllll}4 & 0.006 & 0.005 & 1.5812 & 0.812 \\ 5 & 0.048 & 0.047 & 4.1580 & 0.527\end{array}$ $\begin{array}{lllll}5 & 0.048 & 0.047 & 4.1580 & 0.527\end{array}$ $\begin{array}{lllll}6 & -0.040 & -0.040 & 5.9336 & 0.431 \\ 7 & -0.018 & -0.015 & 6.2854 & 0.507\end{array}$ $\begin{array}{lllll}8 & -0.010 & -0.011 & 6.4008 & 0.602\end{array}$ $\begin{array}{lllll}9 & 0.069 & 0.067 & 11.881 & 0.220\end{array}$ $\begin{array}{lllll}10 & -0.004 & -0.007 & 11.903 & 0.292\end{array}$

| Correlogram of Standardized Residuals Squared |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Date：01／18／19 Time：16：13 <br> Sample： 21125 <br> Included observations： 1124 |  |  |  |  |  |
| Autocorrelation | Partial Correlation | AC | PAC | Q－Stat | Prob |
| 中 | 中 | $1-0.008$ | －0．008 | 0.0758 | 0.783 |
| 11 | 11 | $2-0.008$ | －0．008 | 0.1402 | 0.932 |
| 1 | 1 | $3-0.013$ | －0．013 | 0.3308 | 0.954 |
| ＂ | ＂ | $4-0.019$ | －0．019 | 0.7276 | 0.948 |
| ＂ | ＂ | $5-0.024$ | －0．024 | 1.3697 | 0.928 |
| 中 | 中 | 60.012 | 0.011 | 1.5395 | 0.957 |
| 11 | 1 | $7 \quad 0.014$ | 0.013 | 1.7511 | 0.972 |
| 1 | 11 | $8-0.007$ | －0．008 | 1.8111 | 0.986 |
| ＂ | ＂ | 90.024 | 0.024 | 2.4736 | 0.982 |
| 1 | 11 | $10 \quad 0.003$ | 0.004 | 2.4849 | 0.991 |
| 1 | 11 | $11-0.009$ | －0．007 | 2.5672 | 0.995 |
| 11 | 1 | $12-0.001$ | －0．001 | 2.5691 | 0.998 |
| ＇ | 1 | $13-0.007$ | －0．007 | 2.6265 | 0.999 |
| ＂ | 1 | $14-0.011$ | －0．010 | 2.7709 | 0.999 |
| 11 | 19 | 150.047 | 0.047 | 5.3342 | 0.989 |
| ＂ | 1 | $16-0.017$ | －0．018 | 5.6820 | 0.991 |
| 1 | 1 | 17 －0．017 | －0．017 | 6.0226 | 0.993 |
| ＂ | 1 | 180.020 | 0.020 | 6.4919 | 0.994 |
| 1 | 1 | $19-0.016$ | －0．015 | 6.7763 | 0.995 |
| 中 | 1 | $20 \quad 0.019$ | 0.021 | 7.1697 | 0.996 |

Heteroskedasticity Test：ARCH

| F－statistic | 0.262579 | Prob．F（10，1103） | 0.9888 |
| :--- | :--- | :--- | :--- |
| Obs＊R－squared | 2.645680 | Prob．Chi－Square（10） | 0.9886 |

Heteroskedasticity Test：ARCH

| F－statistic | 0.365984 | Prob．F（15，1093） | 0.9869 |
| :--- | :--- | :--- | :--- |
| Obs＊R－squared | 5.542282 | Prob．Chi－Square（15） | 0.9865 |



| Series：Standardized Residuat |  |
| :--- | :--- |
| Sample 2 1125 |  |
| Observations 1124 |  |
|  |  |
| Mean | -0.010411 |
| Median | 0.013316 |
| Maximum | 3.995083 |
| Minimum | -8.440496 |
| Std．Dev． | 1.000667 |
| Skewness | -0.786846 |
| Kurtosis | 8.993679 |
|  |  |
| Jarque－Bera | 1798.373 |
| Probability | 0.000000 |




| Forecast：LDT4F |  |
| :--- | :--- |
| Actual：LDT4 |  |
| Forecast sample： 11261250 |  |
| Included observations： 125 |  |
| Root Mean Squared Error | 0.013792 |
| Mean Absolute Error | 0.009940 |
| Mean Abs．Percent Error | 0.138867 |
| Theil Inequality Coefficient | 0.000961 |
| $\quad$ Bias Proportion | 0.003567 |
| $\quad$ Variance Proportion | 0.000542 |
| Covariance Proportion | 0.995891 |

ARIMA(1,1,1)-EGARCH(1,1) with normal distribution

(ii) ARIMA-EGARCH(1,1) with $t$ distribution

Dependent Variable: D(LDT4)
Method: ML - ARCH (Marquardt) - Student's t distribution
Sample (adjusted): 21125
Included observations: 1124 after adjustments
Convergence achieved after 30 iterations
Presample variance: backcast (parameter $=0.7$ )
$\operatorname{LOG}(\operatorname{GARCH})=\mathrm{C}(2)+\mathrm{C}(3)^{*} \operatorname{ABS}(\operatorname{RESID}(-1)$ )@SQRT(GARCH$\left.(-1))\right)+\mathrm{C}(4)$
${ }^{*} \operatorname{RESID}(-1)$ @SQRT(GARCH(-1)) + C(5) ${ }^{\text {L }}$ LOG(GARCH(-1))

| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| :---: | :---: | :---: | :---: | :---: |
| C | 0.000720 | 0.000296 | 2.436393 | 0.0148 |
| Variance Equation |  |  |  |  |
| C(2) | -0.204890 | 0.079297 | -2.583830 | 0.0098 |
| C(3) | 0.095768 | 0.026251 | 3.648089 | 0.0003 |
| C(4) | 0.012598 | 0.016999 | 0.754429 | 0.4506 |
| C(5) | 0.984903 | 0.007741 | 127.2334 | 0.0000 |
| T-DIST. DOF | 4.801590 | 0.633334 | 7.581453 | 0.0000 |
| R-squared | -0.000820 | Mean dependent var | 0.000370 |  |
| Adjusted R-squared | -0.000820 | S.D. dependent var | 0.012243 |  |
| S.E. of regression | 0.012248 | Akaike info criterion | -6.163370 |  |
| Sum squared resid | 0.168457 | Schwarz criterion | -6.136548 |  |
| Log likelihood | 3469.814 | Hannan-Quinn criter. | -6.153234 |  |
| Durbin-Watson stat | 2.032245 |  |  |  |

Dependent Variable: D(LDT4)
Method: ML - ARCH (Marquardt) - Student's t distribution
Sample (adjusted): 31125
Included observations: 1123 after adjustments
Convergence achieved after 33 iterations
Presample variance: backcast (parameter $=0.7$
S(RESID(-1)/@SQRT(GARCH(-1))) + C(5)
*RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1))

| Variable | Coefficient | Std. Error | $z$-Statistic | Prob. |
| :---: | :---: | :---: | :---: | :---: |
| C | 0.000737 | 0.000287 | 2.564731 | 0.0103 |
| AR(1) | -0.032808 | 0.028495 | -1.151381 | 0.2496 |
| Variance Equation |  |  |  |  |
| C(3) | -0.212868 | 0.078407 | -2.714914 | 0.0066 |
| C(4) | 0.096164 | 0.026360 | 3.648105 | 0.0003 |
| C(5) | 0.012372 | 0.016492 | 0.750165 | 0.4532 |
| C(6) | 0.984012 | 0.007700 | 127.7913 | 0.0000 |
| T-DIST. DOF | 4.705181 | 0.621280 | 7.573361 | 0.0000 |
| R -squared | -0.000872 | Mean dependent var |  | 0.000376 |
| Adjusted R-squared | -0.001765 | S.D. dependent yar, |  | 0.012246 |
| S.E. of regression | 0.012257 | Akaike info criterion |  | -6.163355 |
| Sum squared resid. | 0.168419 | Schwarz criterion |  | -6.132041 |
| Log likelihood | 3467.724 | Hannan-Quinn criter- |  | -6.151521 |
| Durbin-Watson stat | 1.955874 |  |  |  |

Method: ML - ARCH (Marquardt) - Student's t distribution Sample (adjusted): 31125
included observations: 1123 after adjustments
Convergence achieved after 66 iterations
MA Backcast: 2
Presample variance: backcast (parameter $=0.7$ )
$\operatorname{LOG}(\operatorname{GARCH})=\mathrm{C}(4)+\mathrm{C}(5)^{*}$ ABS(RESID(-1)/@SQRT(GARCH(-1)))$+\mathrm{C}(6)$

| Variable | Coefficient | Std. Error | $z$-Statistic | Prob. |
| :---: | :---: | :---: | :---: | :---: |
| C | 0.000717 | 0.000299 | 2.401037 | 0.0163 |
| AR(1) | -0.938630 | 0.028993 | -32.37454 | 0.0000 |
| MA(1) | 0.952866 | 0.026971 | 35.32923 | 0.0000 |
| Variance Equation |  |  |  |  |
| C(4) | -0.203667 | 0.084401 | -2.413088 | 0.0158 |
| C(5) | 0.097763 | 0.026703 | 3.661194 | 0.0003 |
| C(6) | 0.014522 | 0.016926 | 0.857989 | 0.3909 |
| C(7) | 0.985209 | 0.008231 | 119.6975 | 0.0000 |
| T-DIST. DOF | 4.889857 | 0.646991 | 7.557839 | 0.0000 |
| R -squared | 0.013974 | Mean dependent var |  | 0.000376 |
| Adjusted R-squared | 0.012214 | S.D. dependent yar. |  | 0.012246 |
| S.E. of regression | 0.012171 | Akaike info criterion |  | -6.166189 |
| Sum squared resid | 0.165920 | Schwarz criterion |  | -6.130401 |
| Log likelihood | 3470.315 | Hannan-Quinn criter |  | -6.152664 |
| F-statistic | 2.267578 | Durbin-Watson stat |  | 2.029464 |
| $\operatorname{Prob}$ (F-statistic) | 0.027040 |  |  |  |

Method: ML - ARCH (Marquardt) - Student's t distribution
Sample (adjusted): 21125
Included observations: 1124 after adjustments
Convergence achieved after 124 iterations
MA Backcast: 1
LOG $(\mathrm{GARCH})=\mathrm{C}(3)+\mathrm{C}(4)^{-A B S}(\operatorname{RESID}(-1)$ @SQRT $(\operatorname{GARCH}(-1)))+\mathrm{C}(5)$ $\quad{ }^{2} \operatorname{RESID}(-1) / @ S Q R T(\operatorname{GARCH}(-1))+\mathrm{C}(6)^{*} \mathrm{LOG}(\operatorname{GARCH}(-1))$

| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| :---: | ---: | :--- | :---: | ---: |
| C | 0.000735 | 0.000286 | 2.573189 | 0.0101 |
| $\mathrm{MA}(1)$ | -0.035874 | 0.028384 | -1.263886 | 0.2063 |
| Variance Equation |  |  |  |  |
| $\mathrm{C}(3)$ | -0.203658 | 0.079115 | -2.574220 | 0.0100 |
| $\mathrm{C}(4)$ | 0.095987 | 0.06283 | 3.652046 | 0.0003 |
| $\mathrm{C}(5)$ | 0.013234 | 0.016205 | 0.816640 | 0.4141 |
| $\mathrm{C}(6)$ | 0.985014 | 0.007740 | 127.2583 | 0.0000 |
| T-DIST. DOF | 4.720234 | 0.622533 | 7.582301 | 0.0000 |
| R-squared | -0.000884 | Mean dependent yar | 0.000370 |  |
| Adjusted R-squared | -0.001776 | S.D. dependent yar | 0.012243 |  |
| S.E. of regression | 0.01254 | Akaike info criterion | -6.163088 |  |
| Sum squared ressid | 0.168468 | Schwarz criterion | -6.131796 |  |
| Log likelihood | 3470.656 | Hannan-Quinn criter. | -6.151263 |  |
| Durbin-Watson stat | 1.963687 |  |  |  |

## (iii) ARIMA-EGARCH(1,1) with GED distribution

| Dependent Variable: D(LDT4) <br> Method: ML - ARCH (Marquardt) - Generalized error distribution (GED) <br> Sample (adjusted): 21125 <br> Included observations: 1124 after adjustments <br> Convergence achieved after 18 iterations <br> Presample variance: backcast (parameter $=0.7$ ) $\operatorname{LOG}(\text { GARCH })=\mathrm{C}(2)+\mathrm{C}(3)^{2} \operatorname{ABS}(\operatorname{RESID}(-1) @ \operatorname{SQRT}(\operatorname{GARCH}(-1)))+\mathrm{C}(4)$ <br> *RESID(-1) @SSRT(GARCH(-1)) + C(5)*LOG(GARCH(-1)) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| C | 0.000593 | 0.000279 | 2.129633 | 0.0332 |
| Variance Equation |  |  |  |  |
| C(2) | -16.45243 | 0.625892 | -26.28636 | 0.0000 |
| C(3) | -0.021974 | 0.035876 | -0.612492 | 0.5402 |
| C(4) | -0.072755 | 0.037274 | -1.951885 | 0.0510 |
| C(5) | -0.860435 | 0.068600 | -12.54283 | 0.0000 |
| GED PARAMETER | 1.097400 | 0.049938 | 21.97521 | 0.0000 |
| R-squared | -0.000333 | Mean dependent var 0.000370 |  |  |
| Adjusted R-squared | -0.000333 | S.D. dependent var |  | 0.012243 |
| S.E. of regression | 0.012245 | Akaike info criterion |  | -6.107523 |
| Sum squared resid | 0.168375 | Schwarz criterion |  | -6.080701 |
| Log likelihood | 3438.428 | Hannan-Quinn criter- |  | -6.097387 |
| Durbin-Watson stat | 2.033234 |  |  |  |

Dependent Variable: D(LDT4)
Method: ML - ARCH (Marquardt) - Generalized error distribution (GED) Sample (adjusted): 31125
Included observations: 1123 after adjustments
Convergence achieved after 69 iterations
MA Backcast: 2
Presample variance: backcast (parameter $=0.7$ )
*RESID) $=\mathrm{C}(4)+\mathrm{C}(5)^{*}$ ABS(RESID(-1)/@SQRT(GARCH(-1))) $+\mathrm{C}(6)$
${ }^{*} \operatorname{RESID}(-1) / @ \operatorname{SQRT}(\operatorname{GARCH}(-1))+\mathrm{C}(7)^{*} \operatorname{LOG}(\operatorname{GARCH}(-1))$

| Variable | Coefficient | Std. Error | z-Statistic | Prob. |  |
| :---: | ---: | :---: | ---: | ---: | :---: |
| C | 0.000667 | 0.000278 | 2.398111 | 0.0165 |  |
| AR(1) | -0.934372 | 0.030877 | -30.26139 | 0.0000 |  |
| MA(1) | 0.946522 | 0.029486 | 32.10041 | 0.0000 |  |
| Variance Equation |  |  |  |  |  |
| C(4) | -0.266319 | 0.094729 | -2.811370 | 0.0049 |  |
| C(5) | 0.107591 | 0.030091 | 3.575498 | 0.0003 |  |
| C(6) | -0.005579 | 0.016469 | -0.338753 | 0.7348 |  |
| C(7) | 0.979084 | 0.009310 | 105.1648 | 0.0000 |  |
| GED PARAMETER | 1.174127 | 0.051790 | 22.67113 | 0.0000 |  |
| R-squared | 0.013716 | Mean dependent var | 0.000376 |  |  |
| Adjusted R-squared | 0.011955 | S.D. dependent yar | 0.012246 |  |  |
| S.E. of regression | 0.012173 | Akaike info criterion | -6.15415 |  |  |
| Sum squared ressid | 0.165964 | Schwarz criterion | -6.118227 |  |  |
| Log likelihood | 3463.480 | Hannan-Quinn criter. | -6.140490 |  |  |
| F-statistic | 2.225151 | Durbin-Watson stat | 2.027011 |  |  |
| Prob(F-statistic) | 0.030064 |  |  |  |  |
| Inverted AR Roots | -.93 |  |  |  |  |
| Inverted MA Roots | -.95 |  |  |  |  |

Dependent Variable: D(LDT4)
Method: ML - ARCH (Marquardt) - Generalized error distribution (GED)
Sample (adjusted): 31125
Included observations: 1123 after adjustments
Convergence achieved after 43 iterations
Presample variance: backcast ( parameter $=0.7$ )
$\operatorname{LOG}(\operatorname{GARCH})=\mathrm{C}(3)+\mathrm{C}(4)^{*} \operatorname{ABS}(\operatorname{RESID}(-1) / @ S Q R T(\operatorname{GARCH}(-1)))+\mathrm{C}(5)$
*RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1))

| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| :---: | ---: | :---: | ---: | ---: |
| C | 0.000702 | 0.000257 | 2.733771 | 0.0063 |
| AR(1) | -0.055968 | 0.026453 | -2.115740 | 0.0344 |
| Variance Equation |  |  |  |  |
| C(3) | -0.269352 | 0.091092 | -2.956922 | 0.0031 |
| C(4) | 0.104077 | 0.029937 | 3.476549 | 0.0005 |
| C(5) | -0.004317 | 0.015768 | -0.273788 | 0.7842 |
| C(6) | 0.978438 | 0.008994 | 108.7899 | 0.0000 |
| GED PARAMETER | 1.144016 | 0.050102 | 22.83391 | 0.0000 |
| R-squared | -0.001995 | Mean dependent var | 0.000376 |  |
| Adjusted R-squared | -0.002889 | S.D. dependent var | 0.012246 |  |
| S.E. of regression | 0.012264 | Akaike info criterion | -6.154562 |  |
| Sum squared resid | 0.168608 | Schwarz criterion | -6.123248 |  |
| Log likelihood | 3462.787 | Hannan-Quinn criter. | -6.142728 |  |
| Durbin-Watson stat | 1.912249 |  |  |  |

Dependent Variable: D(LDT4)
Method: ML - ARCH (Marquardt) - Generalized error distribution (GED)
Sample (adjusted): 21125
Included observations: 1124 after adjustments
Convergence achieved after 19 iterations
MA Backcast: 1
Presample variance: backcast ( parameter $=0.7$ )
$\operatorname{LOG}($ GARCH $)=\mathrm{C}(3)+\mathrm{C}(4)^{*} \mathrm{ABS}(\operatorname{RESID}(-1) / @ S Q R T(\operatorname{GARCH}(-1)))+\mathrm{C}(5)$ *RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1))

| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| :---: | ---: | :---: | ---: | ---: |
| C | 0.000742 | 0.000253 | 2.933656 | 0.0033 |
| MA(1) | -0.069394 | 0.021639 | -3.206845 | 0.0013 |
| Variance Equation |  |  |  |  |
|  | -16.03562 | 0.815190 | -19.67101 | 0.0000 |
| C(3) | -0.030832 | 0.044538 | -0.692268 | 0.4888 |
| C(5) | -0.100043 | 0.044340 | -2.256266 | 0.0241 |
| C(6) | -0.813955 | 0.089689 | -9.075344 | 0.0000 |
| GED PARAMETER | 1.069379 | 0.049058 | 21.79838 | 0.0000 |
| R-squared | -0.003023 | Mean dependent var | 0.000370 |  |
| Adjusted R-squared | -0.003917 | S.D. dependent var | 0.012243 |  |
| S.E. of regression | 0.012267 | Akaike info criterion | -6.114629 |  |
| Sum squared resid | 0.168828 | Schwarz criterion | -6.083337 |  |
| Log likelihood | 3443.422 | Hannan-Quinn criter. | -6.102804 |  |
| Durbin-Watson stat | 1.899774 |  |  |  |

## B) ARIMA-APARCH Model

$>\mathrm{ml}=$ garchFit( $\sim 1+\operatorname{aparch}(1,1)$, data=dldt4, trace=F) \#aparch $(1,1)$
$>$ summary (m1)
Title:GARCH Modelling
Call:garchFit (formula $=\sim 1+\operatorname{aparch}(1,1)$, data $=$ dldt4, trace $=\mathrm{F})$
Mean and Variance Equation:data $\sim 1+\operatorname{aparch}(1,1)$
<environment: 0x0000000004f88f90>[data = dldt4]
Conditional Distribution:norm
Coefficient(s):
mu omeg
alpha1
gamma1
betal delta
$0.0004012 \quad 0.0065080 \quad 0.0694739 \quad 0.5535739 \quad 0.9058669 \quad 0.4201452$
Error Analysis:
Estimate Std. Error $t$ value $\operatorname{Pr}(>|t|)$
mul 4.012 -
$5.1742 .29 \mathrm{e}-07$ ***
omega 6.508e-03 1.821e-03
alpha1 6.947e-02
gamma1 5.536e-01
betal 9.059e-01 1.608e-02 $56.345<2 e-16$ ***
delta 4.201e-01 2.972e-01 1.414 0.157505
---


```
> m4=garchFit(~1+aparch(1,1), data=dldt4, trace=F, cond.dist="ged")#aparch(1,1) with ged
```

$>$ summary (m4)
Title:GARCH Modelling
Call:garchFit(formula $=\sim 1+\operatorname{aparch}(1,1)$, data $=$ dldt4, cond.dist $=$ "ged", trace $=\mathrm{F}$ )
Mean and Variance Equation:data ~ $1+\operatorname{aparch}(1,1)$
<environment: 0x0000000009bc5b48>[data = dldt4]
Conditional Distribution:ged

Coefficient (s) :
mu omega alpha1 gamma1 betal delta shape
$6.2446 e-04 \quad 9.7087 e-05 \quad 5.8887 e-02 \quad 3.2423 e-02 \quad 9.3436 e-01 \quad 1.2132 e+00 \quad 1.1686 e+00$
Error Analysis:

$$
\text { Estimate Std. Error } t \text { value } \operatorname{Pr}(>|t|)
$$

mu $6.245 e-04 \quad 2.344 e-04 \quad 2.6640 .007715$ **
omega $9.709 \mathrm{e}-05 \quad 4.459 \mathrm{e}-05 \quad 2.1770 .029459$ *
alpha1 5.889e-02 1.663e-02 3.5410 .000398 ***
gamma1 3.242e-02 1.912e-01 0.170 0.865364
beta1 $9.344 \mathrm{e}-01 \quad 1.654 \mathrm{e}-02 \quad 56.491<2 \mathrm{e}-16$ ***
delta 1.213e+00 6.083e-01 1.995 0.046097 *
shape $1.169 e+006.107 e-0219.134<2 e-16 * * *$

| Standardised Residuals Tests: |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Statistic | p-Value |
| Jarque-Bera Test | R | Chi^2 | 483061.4 | 0 |
| Shapiro-Wilk Test | R | W | 0.7451382 | 0 |
| Ljung-Box Test | R | Q (10) | 25.60213 | 0.004313801 |
| Ljung-Box Test | R | Q (15) | 33.46694 | 0.004043101 |
| Ljung-Box Test | R | Q (20) | 40.05189 | 0.004920489 |
| Ljung-Box Test | R^2 | Q (10) | 9.696887 | 0.4674767 |
| Ljung-Box Test | R^2 | Q (15) | 9.937081 | 0.8236789 |
| Ljung-Box Test | R^2 | Q (20) | 10.26936 | 0.9630205 |
| LM Arch Test | R | TR^2 | 6.340672 | 0.8979447 |
| Information Criterion Statistics: <br> AIC BIC SIC HQIC |  |  |  |  |
| -6.054516-6.023223 | -6. | 54593 | 6.042690 |  |

* Note: only ARIMA(0,1,0)-TGARCH(1,1) with normal distribution is significant
(i) ARIMA-TGARCH(1,1) with normal distribution, delta=2 (or TGARCH)

| Dependent Variable: D(LDT4) <br> Method: ML - ARCH (Marquardt) - Normal distribution <br> Sample (adjusted): 21125 <br> Included observations: 1124 after adjustments <br> Convergence achieved after 44 iterations <br> Presample variance: backcast (parameter $=0.7$ ) $\operatorname{GARCH}=\mathrm{C}(2)+\mathrm{C}(3)^{\star}\left(\operatorname{ABS}(\operatorname{RESID}(-1))-\mathrm{C}(4)^{*} \operatorname{RESID}(-1)\right)+\mathrm{C}(5)^{\star} \operatorname{GARCH}($ <br> -1) |  |  |  |  | Dependent Variable: D(LDT4) <br> Method: ML - ARCH (Marquardt) - Normal distribution <br> Sample (adjusted): 31125 <br> Included observations: 1123 after adjustments <br> Convergence achieved after 96 iterations <br> MA Backcast: 2 <br> Presample variance: backcast $($ parameter $=0.7)$ <br> GARCH $=\mathrm{C}(3)+\mathrm{C}(4)^{\star}\left(\operatorname{ABS}(\operatorname{RESID}(-1))-\mathrm{C}(5)^{*} \operatorname{RESID}(-1)\right)+\mathrm{C}(6)^{\star} \operatorname{GARCH}($ <br> -1) |  |  |  |  | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Variable | Coefficient | Std. Error | z-Statistic | Prob. | Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| C | 0.000481 | 0.000354 | 1.358389 | 0.1743 | AR(1) | -0.940932 | 0.024043 | -39.13599 | 0.0000 |
| Variance Equation |  |  |  |  | MA(1) | 0.959275 | 0.022035 | 43.53378 | 0.0000 |
|  |  |  |  |  | Variance Equation |  |  |  |  |
| C(2) | $4.48 \mathrm{E}-06$ | $6.50 \mathrm{E}-07$ | 6.886939 | 0.0000 |  |  |  |  |  |
| C(3) | 0.051849 | 0.008001 | 6.480186 | 0.0000 | C(3) | $4.71 \mathrm{E}-06$ | $7.05 \mathrm{E}-07$ | 6.680098 | 0.0000 |
| C(4) | 0.146288 | 0.049887 | 2.932392 | 0.0034 | C(4) | 0.053582 | 0.008259 | 6.487311 | 0.0000 |
| C(5) | 0.917330 | 0.007643 | 120.0269 | 0.0000 | C(5) | 0.174926 | 0.049996 | 3.498785 | 0.0005 |
| R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat | $\begin{array}{r} -0.000082 \\ -0.000082 \\ 0.012243 \\ 0.168333 \\ 3400.202 \\ 2.033745 \end{array}$ | Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. |  | $\begin{array}{r} 0.000370 \\ 0.012243 \\ -6.041285 \\ -6.018934 \\ -6.032838 \end{array}$ | R-squared <br> Adjusted R-squared <br> S.E. of regression <br> Sum squared resid <br> Log likelihood <br> Durbin-Watson stat | 0.014290 <br> 0.013411 <br> 0.012164 <br> 0.165867 <br> 3401.018 <br> 2.036310 | Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. |  |  |
|  |  |  |  | 0.000376 <br> 0.012246 <br> $-6.046336$ <br> $-6.019495$ <br> $-6.036192$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| Dependent Variable: D(LDT4) <br> Method: ML - ARCH (Marquardt) - Normal distribution <br> Sample (adjusted): 31125 <br> Included observations: 1123 after adjustments <br> Convergence achieved after 78 iterations <br> Presample variance: backcast (parameter $=0.7$ ) <br> $\operatorname{GARCH}=\mathrm{C}(3)+\mathrm{C}(4)^{\star}\left(\operatorname{ABS}(\operatorname{RESID}(-1))-\mathrm{C}(5)^{*} \operatorname{RESID}(-1)\right)+\mathrm{C}(6)^{*} \operatorname{GARCH}($ -1) |  |  |  |  | Dependent Variable: D(LDT4) <br> Method: ML - ARCH (Marquardt) - Normal distribution <br> Sample (adjusted): 21125 <br> Included observations: 1124 after adjustments <br> Convergence achieved after 70 iterations <br> MA Backcast: 1 <br> Presample variance: backcast (parameter $=0.7$ ) <br> $\operatorname{GARCH}=\mathrm{C}(3)+\mathrm{C}(4)^{*}\left(\operatorname{ABS}(\operatorname{RESID}(-1))-\mathrm{C}(5)^{*} \operatorname{RESID}(-1)\right)+\mathrm{C}(6)^{*} \operatorname{GARCH}($ <br> $-1)$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Variable | Coefficient | Std. Error | $z$-Statistic | Prob. | Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| C | 0.000479 | 0.000351 | 1.364068 | 0.1725 | C | 0.000485 |  |  |  |
| AR(1) | -0.014398 | 0.037553 | -0.383409 | 0.7014 | MA(1) | -0.015199 | 0.037429 | -0.406072 | 0.6847 |
| Variance Equation |  |  |  |  | Variance Equation |  |  |  |  |
| C(3) | 4.62E-06 | $6.80 \mathrm{E}-07$ | 6.796666 | 0.0000 | C(3) | $4.49 \mathrm{E}-06$ | $6.70 \mathrm{E}-07$ | 6.700076 | 0.0000 |
| C(4) | 0.051780 | 0.008044 | 6.437330 | 0.0000 | C(4) | 0.052240 | 0.008013 | 6.519300 | 0.0000 |
| C(5) | 0.153642 | 0.050352 | 3.051341 | 0.0023 | C(5) | 0.143494 | 0.049621 | 2.891831 | 0.0038 |
| C(6) | 0.915904 | 0.007625 | 120.1146 | 0.0000 | C(6) | 0.916926 | 0.007615 | 120.4169 | 0.0000 |
| R -squared | 0.000216 | Mean dependent var |  | 0.000376 | R-squared <br> Adjusted R-squared | $\begin{array}{r} 0.000224 \\ -0.000667 \end{array}$ | Mean dependent var |  | 0.000370 |
| Adjusted R-squared | -0.000676 | S.D. dependent yar. |  | 0.012246 |  |  | S.D. dependent yar. |  | 0.012243 |
| S.E. of regression | 0.012251 | Akaike info cri |  | -6.040035 | Adjusted R-squared S.E of regression |  | Akaike info criterion |  | -6.039687 |
| Sum squared resid | 0.168236 | Schwarz crite |  | -6.013194 | S.E. of regression Sum squared resid | 0.168281 3400.304 | Schwarz criterion Hannan-Quinn criter |  | $\begin{aligned} & -6.012865 \\ & -6.029550 \end{aligned}$ |
| Log likelihood | 3397.480 | Hannan-Quin |  | -6.029891 | F-statistic | 3400.304 0.050284 | Durbin-Watson stat |  | $\begin{array}{r} -6.029550 \\ 2.004761 \end{array}$ |
| F-statistic Prob(F-statistic) | 0.048500 0.998583 | Durbin-Watson stat |  | 1.992571 | Prob(F-statistic) | 0.050284 |  |  |  |

ARIMA(0,1,0)-TGARCH(1,1) with normal distribution


| Series: Standardized Residuals |  |
| :--- | ---: |
| Sample 2 1125 |  |
| Observations 1124 |  |
|  |  |
| Mean | -0.008223 |
| Median | 0.012475 |
| Maximum | 4.145550 |
| Minimum | -9.027717 |
| Std. Dev. | 1.000787 |
| Skwness | -0.879610 |
| Kurtosis | 10.26843 |
|  |  |
| Jarque-Bera | 2619.154 |
| Probability | 0.000000 |



(ii) ARIMA-TGARCH(1,1) with $\boldsymbol{t}$ distribution

| Dependent Variable: D(LDT4) <br> Method: ML - ARCH (Marquardt) - Student's t distribution <br> Sample (adjusted): 21125 <br> Included observations: 1124 after adjustments <br> Convergence achieved after 20 iterations <br> Presample variance: backcast (parameter $=0.7$ ) <br> GARCH $=C(2)+C(3)^{*}\left(\operatorname{ABS}(\operatorname{RESID}(-1))-C(4)^{*} \operatorname{RESID}(-1)\right)+C(5)^{*} \operatorname{GARCH}($ <br> -1) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| C | 0.000694 | 0.000296 | 2.344021 | 0.0191 |
| Variance Equation |  |  |  |  |
| C(2) | $2.28 \mathrm{E}-06$ | 1.07E-06 | 2.128181 | 0.0333 |
| C(3) | 0.034915 | 0.011428 | 3.055210 | 0.0022 |
| C(4) | -0.106291 | 0.129729 | -0.819329 | 0.4126 |
| C(5) | 0.948873 | 0.015438 | 61.46181 | 0.0000 |
| T-DIST. DOF | 4.815781 | 0.634447 | 7.590514 | 0.0000 |
| R-squared | -0.000702 | Mean dependent var S.D. dependent yar Akaike info criterion Schwarz criterion Hannan-Quinn criter |  | 0.000370 |
| Adjusted R-squared | -0.000702 |  |  | 0.012243 |
| S.E. of regression | 0.012247 |  |  | -6.162823 |
| Sum squared resid | 0.168437 |  |  | -6.136001 |
| Log likelihood | 3469.506 |  |  | -6.152686 |
| Durbin-Watson stat | 2.032484 |  |  |  |

## Dependent Variable: D(LDT4)

Method: ML - ARCH (Marquardt) - Student's t distribution
Sample (adjusted): 31125
Included observations: 1123 after adjustments
Convergence achieved after 18 iterations
Presample variance: backcast (parameter $=0.7$ )
GARCH $=\mathrm{C}(3)+\mathrm{C}(4)^{*}\left(\operatorname{ABS}(\operatorname{RESID}(-1))-\mathrm{C}(5)^{*} \mathrm{RESID}(-1)\right)+\mathrm{C}(6)^{*} \operatorname{GARCH}$

| Variable | Coefficient | Std. Error | $z$-Statistic | Prob. |
| :---: | :---: | :---: | :---: | :---: |


| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| :---: | :---: | :---: | :---: | :---: |
| C | 0.000714 | 0.000287 | 2.488003 | 0.0128 |
| AR(1) | -0.035318 | 0.029176 | -1.210542 | 0.2261 |
| Variance Equation |  |  |  |  |
| C(3) | $2.48 \mathrm{E}-06$ | $1.09 \mathrm{E}-06$ | 2.273560 | 0.0230 |
| C(4) | 0.035191 | 0.011530 | 3.052072 | 0.0023 |
| C(5) | $-0.095446$ | 0.130071 | -0.733796 | 0.4631 |
| C(6) | 0.947256 | 0.015267 | 62.04596 | 0.0000 |
| T-DIST. DOF | 4.690657 | 0.618815 | 7.580068 | 0.0000 |
| R-squared | -0.000845 |  |  | 0.000376 |
| Adjusted R-squared S.E. of regression | -0.001738 | Mean dependent var S.D. dependent var |  | 0.012246 |
|  | 0.012257 | Akaike info criterion |  | -6.162862 |
| Sum squared resid | 0.168414 | Schwarz criterion |  | -6.131547 |
| Log likelihood | 3467.447 | Hannan-Quinn criter |  | -6.151027 |
| Durbin-Watson stat | 1.951326 |  |  |  |

Dependent Variable: D(LDT4)
Method: ML - ARCH (Marquardt) - Student's $t$ distribution
Sample (adjusted): 31125
Included observations: 1123 after adjustments
Convergence achieved after 141 iterations
MA Backcast: 2
Presample variance: backcast (parameter $=0.7$ )
$\operatorname{GARCH}=\mathrm{C}(4)+\mathrm{C}(5)^{*}\left(\operatorname{ABS}(\operatorname{RESID}(-1))-\mathrm{C}(6)^{*} \operatorname{RESID}(-1)\right)+\mathrm{C}(7)^{*} \operatorname{GARCH}$

| -1) |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: |
| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| C | 0.000694 | 0.000266 | 2.613125 | 0.0090 |
| AR(1) | 0.548619 | 0.333671 | 1.644191 | 0.1001 |
| MA(1) | -0.595382 | 0.320567 | -1.857280 | 0.0633 |
| Variance Equation |  |  |  |  |
| C(4) | $2.30 \mathrm{E}-06$ | $1.06 \mathrm{E}-06$ | 2.173929 | 0.0297 |
| C(5) | 0.034844 | 0.011413 | 3.052948 | 0.0023 |
| C(6) | -0.121062 | 0.124033 | -0.976041 | 0.3290 |
| C(7) | 0.948949 | 0.015118 | 62.77143 | 0.0000 |
| T-DIST. DOF | 4.705219 | 0.617875 | 7.615164 | 0.0000 |
| R-squared | 0.002168 | Mean dependent var | 0.000376 |  |
| Adjusted R-squared | 0.000386 | S.D. dependent yar | 0.012246 |  |
| S.E. of regression | 0.012244 | Akaike info criterion | -6.163663 |  |
| Sum squared resid | 0.167907 | Schwarz criterion | -6.127875 |  |
| Log likelihood | 3468.897 | Hannan-Quinn criter. | -6.150138 |  |
| F-statistic | 0.347628 | Durbin-Watson stat | 1.931378 |  |
| Prob(F-statistic) | 0.931826 |  |  |  |


| Dependent Variable: D(LDT4) <br> Method: ML - ARCH (Marquardt) - Student's $t$ distribution <br> Sample (adjusted): 21125 <br> Included observations: 1124 after adjustments <br> Convergence achieved after 18 iterations <br> MA Backcast: 1 <br> Presample variance: backcast ( parameter $=0.7$ ) <br> $\operatorname{GARCH}=\mathrm{C}(3)+\mathrm{C}(4)^{*}\left(\operatorname{ABS}(\operatorname{RESID}(-1))-\mathrm{C}(5)^{\star} \operatorname{RESID}(-1)\right)+\mathrm{C}(6)^{\star} \operatorname{GARCH}($ <br> -1) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| C | 0.000709 | 0.000285 | 2.484401 | 0.0130 |
| MA(1) | -0.038810 | 0.029054 | -1.335777 | 0.1816 |
| Variance Equation |  |  |  |  |
| C(3) | $2.29 \mathrm{E}-06$ | $1.08 \mathrm{E}-06$ | 2.113164 | 0.0346 |
| C(4) | 0.034991 | 0.011482 | 3.047473 | 0.0023 |
| C(5) | -0.112779 | 0.127260 | -0.886212 | 0.3755 |
| C(6) | 0.949003 | 0.015485 | 61.28482 | 0.0000 |
| T-DIST. DOF | 4.718501 | 0.621501 | 7.592100 | 0.0000 |
| R-squared | -0.000854 | Mean dependent var S.D. dependent yar Akaike info criterion Schwarz criterion Hannan-Quinn criter. |  | 0.000370 |
| Adjusted R-squared | -0.001746 |  |  | 0.012243 |
| S.E. of regression | 0.012253 |  |  | -6.162634 |
| Sum squared resid | 0.168463 |  |  | -6.131342 |
| Log likelihood | 3470.400 |  |  | -6.150809 |
| Durbin-Watson stat | 1.958352 |  |  |  |

## (iii) ARIMA-TGARCH(1,1) with GED distribution

| ```Dependent Variable: D(LDT4) Method: ML - ARCH (Marquardt) - Generalized error distribution (GED) Sample (adjusted): 2 1125 Included observations: 1124 after adjustments Convergence achieved after 25 iterations Presample variance: backcast (parameter =0.7) GARCH = C(2) + C(3)*(ABS(RESID(-1)) - C(4)*RESID(-1)) +C(5)*GARCH( -1)``` |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| C | 0.000621 | 0.000275 | 2.256333 | 0.0240 |
| Variance Equation |  |  |  |  |
| C(2) | $2.72 \mathrm{E}-06$ | $1.06 \mathrm{E}-06$ | 2.564739 | 0.0103 |
| C(3) | 0.037159 | 0.012612 | 2.946406 | 0.0032 |
| C(4) | -0.013833 | 0.120114 | -0.115169 | 0.9083 |
| C(5) | 0.942763 | 0.016371 | 57.58660 | 0.0000 |
| GED PARAMETER | 1.167927 | 0.047497 | 24.58942 | 0.0000 |
| R -squared <br> Adjusted R-squared <br> S.E. of regression <br> Sum squared resid <br> Log likelihood <br> Durbin-Watson stat | -0.000422 | Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter |  | 0.000370 |
|  | -0.000422 |  |  | 0.012243 |
|  | 0.012245 |  |  | -6.151450 |
|  | 0.168390 |  |  | -6.124628 |
|  | 3463.115 |  |  | -6.141314 |
|  | 2.033052 |  |  |  |

Dependent Variable: D(LDT4)
Method: ML - ARCH (Marqua
Sample (adjusted): 31125
Included observations: 1123 after adjustments
Convergence achieved after 22 iterations
MA Backcast: 2
Pressample variance: backccast (parameter $=0.7$ )
$\operatorname{GARCH}=\mathrm{C}(4)+\mathrm{C}(5)^{*}\left(\operatorname{ABS}(\operatorname{RESID}(-1))-\mathrm{C}(6)^{*} \operatorname{RESID}(-1)\right)+\mathrm{C}(7)^{*} \operatorname{GARCH}($ $\underline{\underline{-1)}}$

| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| :---: | :---: | :---: | :---: | :---: |
| c | 0.000714 | 0.000236 | 3.029696 | 0.0024 |
| AR(1) | 0.498249 | 0.248625 | 2.004017 | 0.0451 |
| $\mathrm{MA}(1)$ | -0.561725 | 0.236350 | -2.376666 | 0.0175 |
| Variance Equation |  |  |  |  |
| C(4) | $2.70 \mathrm{E}-06$ | $1.07 \mathrm{E}-06$ | 2.539238 | 0.0111 |
| C(5) | 0.036106 | 0.012564 | 2.873627 | 0.0041 |
| C(6) | -0.037420 | 0.118147 | -0.316722 | 0.7515 |
| C(7) | 0.943985 | 0.016281 | 57.98156 | 0.0000 |
| GED PARAMETER | 1.135260 | 0.046953 | 24.17843 | 0.0000 |
| R -squared | 0.001167 | Mean dependent var |  | 0.000376 |
| Adjusted R-squared | -0.000616 | S.D. dependent yar. |  | 0.012246 |
| S.E. of regression | 0.012250 | Akaike info criterion |  | -6.156649 |
| Sum squared resid | 0.168076 | Schwarz criterion |  | -6.120861 |
| Log likelihood | 3464.959 | Hannan-Quinn çiter- |  | -6.143124 |
| F-statistic | 0.187003 | Durbin-Watson stat |  | 1.898075 |
| Prob(F-statistic) | 0.988138 |  |  |  |


| Dependent Variable: D(LDT4) <br> Method: ML - ARCH (Marquardt) - Generalized error distribution (GED) <br> Sample (adjusted): 31125 <br> Included observations: 1123 after adjustments <br> Convergence achieved after 17 iterations <br> Presample variance: backcast. (parameter $=0.7$ ) <br> GARCH $=\mathrm{C}(3)+\mathrm{C}(4)^{*}\left(\operatorname{ABS}(\operatorname{RESID}(-1))-\mathrm{C}(5)^{*} \operatorname{RESID}(-1)\right)+\mathrm{C}(6)^{*} \operatorname{GARCH}($ <br> -1) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| $\begin{gathered} C \\ \operatorname{AR}(1) \end{gathered}$ | $\begin{array}{r} 0.000691 \\ -0.057976 \end{array}$ | $\begin{aligned} & 0.000257 \\ & 0.026507 \end{aligned}$ | $\begin{array}{r} 2.694189 \\ -2.187188 \end{array}$ | $\begin{aligned} & 0.0071 \\ & 0.0287 \end{aligned}$ |
| Variance Equation |  |  |  |  |
| C(3) | $2.87 \mathrm{E}-06$ | $1.09 \mathrm{E}-06$ | 2.635851 | 0.0084 |
| C(4) | 0.036548 | 0.012508 | 2.921976 | 0.0035 |
| C(5) | -0.013929 | 0.121068 | -0.115053 | 0.9084 |
| C(6) | 0.942052 | 0.016213 | 58.10367 | 0.0000 |
| GED PARAMETER | 1.142719 | 0.046815 | 24.40900 | 0.0000 |
| R-squared | -0.002103 | Mean dependent var |  | 0.000376 |
| Adjusted R-squared | -0.002997 | S.D. dependent yar |  | 0.012246 |
| S.E. of regression | 0.012265 | Akaike info criterion |  | -6.154655 |
| Sum squared resid | 0.168626 | Schwarz criterion |  | -6.123340 |
| Log likelihood | 3462.839 | Hannan-Quinn criter. |  | -6.142820 |
| Durbin-Watson stat | 1.908552 |  |  |  |

Dependent Variable: D(LDT4)
Method: ML - ARCH (Marquardt) - Generalized error distribution (GED)
Sample (adjusted): 21125
Included observations: 1124 after adjustments
Convergence achieved after 21 iterations
MA Backcast: 1
resample variance: backcast (parameter $=07$ )
$\operatorname{GARCH}=\mathrm{C}(3)+\mathrm{C}(4)^{*}\left(\operatorname{ABS}(\operatorname{RESID}(-1))-\mathrm{C}(5)^{*} \operatorname{RESID}(-1)\right)+\mathrm{C}(6)^{*} \mathrm{GARCH}$

| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| :---: | :---: | :---: | :---: | :---: |
| C | 0.000707 | 0.000254 | 2.780117 | 0.0054 |
| MA(1) | -0.061891 | 0.026280 | -2.355005 | 0.0185 |
| Variance Equation |  |  |  |  |
| C(3) | $2.72 \mathrm{E}-06$ | $1.09 \mathrm{E}-06$ | 2.495171 | 0.0126 |
| C(4) | 0.036691 | 0.012582 | 2.916233 | 0.0035 |
| C(5) | -0.030417 | 0.119029 | -0.255546 | 0.7983 |
| C(6) | 0.943405 | 0.016563 | 56.95943 | 0.0000 |
| GED PARAMETER | 1.141577 | 0.047176 | 24.19828 | 0.0000 |
| R-squared | -0.002188 |  |  | 0.000370 |
| Adjusted R-squared | -0.003081 | Mean dependent varS.D. dependent var |  | 0.012243 |
| S.E. of regression | 0.012262 | Akaike info criterion |  | -6.154842 |
| Sum squared resid | $\begin{aligned} & 0.168687 \\ & 3466.021 \end{aligned}$ | Schwarz criterion |  | -6.123550 |
| Log likelihood |  | Hannan-Quinn criter- |  | -6.143016 |
| Durbin-Watson stat | 1.914418 |  |  |  |

## D) ARIMA-GARCH-M Model

## (i) ARIMA-GARCH-M(1,1) with normal distribution

| Dependent Variable: D(LDT4) <br> Method: ML - ARCH (Marquardt) - Normal distribution <br> Sample (adjusted): 21125 <br> Included observations: 1124 after adjustments <br> Convergence achieved after 58 iterations <br> Presample variance: backcast ( parameter $=0.7$ ) <br> GARCH $=\mathrm{C}(3)+\mathrm{C}(4)^{*} \operatorname{RESID}(-1)^{\wedge} 2+\mathrm{C}(5)^{*} \operatorname{GARCH}(-1)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| $\begin{aligned} & \text { GARCH } \\ & \text { C } \end{aligned}$ | $\begin{array}{r} -3.481288 \\ 0.001007 \end{array}$ | $\begin{aligned} & 6.186807 \\ & 0.000885 \end{aligned}$ | $\begin{array}{r} -0.562695 \\ 1.138945 \end{array}$ | $\begin{aligned} & 0.5736 \\ & 0.2547 \end{aligned}$ |
| Variance Equation |  |  |  |  |
| C | 4.08E-06 | $4.94 \mathrm{E}-07$ | 8.262945 | 0.0000 |
| RESID (-1) ${ }^{\wedge} 2$ | 0.048471 | 0.007987 | 6.068642 | 0.0000 |
| GARCH(-1) | 0.924675 | 0.007928 | 116.6294 | 0.0000 |
| R-squared | -0.000364 | Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter |  | 0.000370 |
| Adjusted R-squared | -0.001256 |  |  | 0.012243 |
| S.E. of regression | 0.012250 |  |  | -6.039244 |
| Sum squared resid | 0.168380 |  |  | -6.016892 |
| Log likelihood | 3399.055 |  |  | -6.030797 |
| Durbin-Watson stat | 2.035602 |  |  |  |

Dependent Variable: D(LDT4)
Method: ML - ARCH (Marquardt) - Normal distribution
Sample (adjusted): 31125
Included observations: 1123 after adjustments
Convergence achieved after 12 iterations
MA Backcast: 2
Presample variance: backcast ( parameter $=0.7$ )
GARCH $=\mathrm{C}(4)+\mathrm{C}(5)^{*} \operatorname{RESID}(-1)^{\wedge} 2+\mathrm{C}(6)^{*} \operatorname{GARCH}(-1)$

| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| :---: | ---: | :---: | ---: | :---: |
| GARCH | 3.253207 | 2.417042 | 1.345945 | 0.1783 |
| AR(1) | -0.915480 | 0.026392 | -34.68719 | 0.0000 |
| MA(1) | 0.934346 | 0.020650 | 45.24648 | 0.0000 |
| Variance Equation |  |  |  |  |
| C | $4.35 E-06$ | $5.38 E-07$ | 8.086023 | 0.0000 |
| RESID(-1)^2 | 0.049767 | 0.008273 | 6.015792 | 0.0000 |
| GARCH(-1) | 0.921899 | 0.008481 | 108.6990 | 0.0000 |
| R-squared | 0.013488 | Mean dependent var | 0.000376 |  |
| Adjusted R-squared | 0.011726 | S.D. dependent yar | 0.012246 |  |
| S.E. of regression | 0.012174 | Alaaike info criterion | -6.044027 |  |
| Sum squared cesid | 0.166002 | Schwarz criterion | -6.017186 |  |
| Log likelihood | 3399.721 | Hapnan-Quinn criter. | -6.033883 |  |
| Durbin-Watson stat | 2.038567 |  |  |  |


| Dependent Variable: Method: ML - ARCH <br> Sample (adjusted): 2 <br> Included observations: <br> Convergence achieve <br> MA Backcast: 1 <br> Presample variance: <br> GARCH $=\mathrm{C}(4)+\mathrm{C}(5$ | uardt) - Norm <br> 4 after adjust 62 iteration <br> ast (paramet <br> $\operatorname{SID}(-1)^{\wedge} 2+C$ | al distribution <br> ments $\begin{aligned} & \text { er }=0.7) \\ & (6)^{*} \operatorname{GARCH}(-1) \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| GARCH | -3.713021 | 6.266136 | -0.592554 | 0.5535 |
| C | 0.001040 | 0.000888 | 1.171027 | 0.2416 |
| MA(1) | -0.017657 | 0.037413 | -0.471936 | 0.6370 |
| Variance Equation |  |  |  |  |
| C | $4.09 \mathrm{E}-06$ | $5.20 \mathrm{E}-07$ | 7.866394 | 0.0000 |
| RESID( -1$)^{\wedge} 2$ | 0.048875 | 0.008007 | 6.104035 | 0.0000 |
| GARCH(-1) | 0.924267 | 0.007864 | 117.5388 | 0.0000 |
| R-squared | -0.000059 | Mean dependent var |  | 0.000370 |
| Adjusted R-squared | -0.001843 | S.D. dependent yar. |  | 0.012243 |
| S.E. of regression | 0.012254 | Akaike info criterion |  | -6.037705 |
| Sum squared resid. | 0.168329 | Schwarz criterion |  | -6.010883 |
| Log likelihood | 3399.190 | Hannan-Quinn criter- |  | -6.027569 |
| Durbin-Watson stat | 2.002125 |  |  |  |


| Dependent Variable: Method: ML - ARCH Sample (adjusted): 3 Included observation Convergence achiev Presample variance: GARCH $=\mathrm{C}(4)+\mathrm{C}(5)$ | 4) uardt) - Norm <br> 3 after adjus 79 iteration ast (parame $\operatorname{ID}(-1)^{\wedge} 2+C$ | al distribution <br> ments $\begin{aligned} & \text { er }=0.7) \\ & (6)^{*} \operatorname{GARCH}(-1) \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| GARCH | -2.933323 | 6.197345 | -0.473319 | 0.6360 |
| C | 0.000940 | 0.000879 | 1.069136 | 0.2850 |
| AR(1) | -0.016471 | 0.037551 | -0.438629 | 0.6609 |
| Variance Equation |  |  |  |  |
| C | 4.22E-06 | $5.27 \mathrm{E}-07$ | 8.006269 | 0.0000 |
| RESID(-1) ${ }^{\wedge}$ | 0.048812 | 0.008099 | 6.027023 | 0.0000 |
| GARCH(-1) | 0.923139 | 0.007921 | 116.5456 | 0.0000 |
| R -squared | -0.000252 |  |  | 0.000376 |
| Adjusted R-squared | -0.002038 | Mean dependent varS.D. dependent var |  | 0.012246 |
| S.E. of regression | 0.012259 | Akaike info criterion |  | -6.037681 |
| Sum squared resid | 0.168314 | Schwarz criterion |  | -6.010840 |
| Log likelihood | 3396.158 | Hannan-Quinn criter. |  | -6.027537 |
| Durbin-Watson stat | 1.989838 |  |  |  |

(ii) ARIMA-GARCH-M(1,1) with $\boldsymbol{t}$ distribution

| Dependent Variable: D(LDT4) <br> Method: ML - ARCH (Marquardt) - Student's t distribution <br> Sample (adjusted): 21125 <br> Included observations: 1124 after adjustments <br> Convergence achieved after 16 iterations <br> Presample variance: backcast (parameter $=0.7$ ) $\text { GARCH }=\mathrm{C}(3)+\mathrm{C}(4)^{*} \operatorname{RESID}(-1)^{\wedge} 2+\mathrm{C}(5)^{*} \operatorname{GARCH}(-1)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| $\begin{gathered} \text { GARCH } \\ \mathrm{C} \end{gathered}$ | $\begin{array}{r} -3.188526 \\ 0.001072 \end{array}$ | $\begin{aligned} & 5.420968 \\ & 0.000737 \end{aligned}$ | $\begin{array}{r} -0.588184 \\ 1.453737 \end{array}$ | $\begin{aligned} & 0.5564 \\ & 0.1460 \end{aligned}$ |
| Variance Equation |  |  |  |  |
| C | $2.46 \mathrm{E}-06$ | 1.11E-06 | 2.210787 | 0.0271 |
| $\operatorname{RESID}(-1)^{\wedge} 2$ | 0.034084 | 0.011200 | 3.043149 | 0.0023 |
| $\operatorname{GARCH}(-1)$ | 0.948022 | 0.015641 | 60.61030 | 0.0000 |
| T-DIST. DOF | 4.803791 | 0.634248 | 7.574000 | 0.0000 |
| R-squared | -0.000475 | Mean dependent var |  | 0.000370 |
| Adjusted R-squared | -0.001366 | S.D. dependent yar |  | 0.012243 |
| S.E. of regression | 0.012251 | Akaike info criterion |  | -6.162585 |
| Sum squared resid | 0.168399 | Schwarz criterion |  | -6.135763 |
| Log likelihood | 3469.373 | Hannan-Quinn criter. |  | -6.152448 |
| Durbin-Watson stat | 2.034561 |  |  |  |


| Dependent Variable: D(LDT4) <br> Method: ML - ARCH (Marquardt) - Student's t distribution <br> Sample (adjusted): 31125 <br> Included observations: 1123 after adjustments <br> Convergence achieved after 56 iterations <br> MA Backcast: 2 <br> Presample variance: backcast (parameter $=0.7$ ) $\mathrm{GARCH}=\mathrm{C}(5)+\mathrm{C}(6)^{\star} \operatorname{RESID}(-1)^{\wedge} 2+\mathrm{C}(7)^{\star} \mathrm{GARCH}(-1)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| GARCH | -3.221013 | 5.691207 | -0.565963 | 0.5714 |
| C | 0.001068 | 0.000765 | 1.396256 | 0.1626 |
| AR(1) | -0.597331 | 0.213148 | -2.802424 | 0.0051 |
| MA(1) | 0.592321 | 0.214075 | 2.766889 | 0.0057 |
| Variance Equation |  |  |  |  |
| C | $2.45 \mathrm{E}-06$ | $1.21 \mathrm{E}-06$ | 2.023503 | 0.0430 |
| RESID(-1) ${ }^{\wedge}$ | 0.036111 | 0.011780 | 3.065375 | 0.0022 |
| GARCH(-1) | 0.946600 | 0.016924 | 55.93341 | 0.0000 |
| T-DIST. DOF | 4.841377 | 0.640383 | 7.560132 | 0.0000 |
| R-squared | $\begin{aligned} & 0.007791 \\ & 0.005131 \end{aligned}$ | Mean dependent var |  | 0.000376 |
| Adjusted R-squared |  | S.D. dependent var. |  | 0.012246 |
| S.E. of regression | $\begin{aligned} & 0.005131 \\ & 0.012215 \end{aligned}$ | Akaike info criterion |  | -6.161206 |
| Sum squared resid | 0.166961 Schwarz criterion |  |  | -6.125418 |
| Log likelihood | 3467.517 Hannan-Quinn criter. |  |  | -6.147681 |
| F-statistic | 1.255300 Durbin-Watson stat |  |  | 2.010592 |
| Prob(F-statistic) | 0.269419 |  |  |  |


| Dependent Variable: D(LDT4) <br> Method: ML - ARCH (Marquardt) - Student's $t$ distribution <br> Sample (adjusted): 31125 <br> Included observations: 1123 after adjustments <br> Convergence achieved after 18 iterations <br> Presample variance: backcast ( parameter $=0.7$ ) $\mathrm{GARCH}=\mathrm{C}(4)+\mathrm{C}(5)^{\star} \operatorname{RESID}(-1)^{\wedge} 2+\mathrm{C}(6)^{*} \operatorname{GARCH}(-1)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| $\begin{gathered} \text { GARCH } \\ \text { C } \\ \operatorname{AR}(1) \end{gathered}$ | $\begin{array}{r} -2.335238 \\ 0.000994 \\ -0.034567 \end{array}$ | 5.226131 0.000716 0.029452 | $\begin{array}{r} -0.446839 \\ 1.388994 \\ -1.173677 \end{array}$ | $\begin{aligned} & 0.6550 \\ & 0.1648 \\ & 0.2405 \end{aligned}$ |
| Variance Equation |  |  |  |  |
| $\begin{gathered} C \\ \operatorname{RESID}(-1)^{\wedge} 2 \\ \operatorname{GARCH}(-1) \end{gathered}$ | $\begin{aligned} & 2.66 \mathrm{E}-06 \\ & 0.034309 \\ & 0.946437 \end{aligned}$ | $\begin{aligned} & 1.13 \mathrm{E}-06 \\ & 0.011236 \\ & 0.015409 \end{aligned}$ | $\begin{aligned} & 2.357768 \\ & 3.053517 \\ & 61.42276 \end{aligned}$ | 0.0184 <br> 0.0023 <br> 0.0000 |
| T-DIST. DOF | 4.682086 | 0.618609 | 7.568731 | 0.0000 |
| R-squared | -0.000766 | Mean dependent var S.D. dependent yar. Akaike info criterion Schwarz criterion Hannan-Quinn criter. |  | 0.000376 |
| Adjusted R-squared | -0.002553 |  |  | 0.012246 |
| S.E. of regression | 0.012262 |  |  | -6.162613 |
| Sum squared resid | 0.168401 |  |  | -6.131298 |
| Log likelihood | 3467.307 |  |  | -6.150778 |
| Durbin-Watson stat | 1.954116 |  |  |  |

## Dependent Variable: D(LDT4) <br> Method: ML - ARCH (Marquardt) - Student's $t$ distribution

Sample (adjusted): 21125
Included observations: 1124 after adjustments
Convergence achieved after 18 iterations
MA Backcast: 1
Presample variance: backcast (parameter $=0.7$ )
GARCH $=\mathrm{C}(4)+\mathrm{C}(5)^{\star} \operatorname{RESID}(-1)^{\wedge} 2+\mathrm{C}(6)^{*} \operatorname{GARCH}(-1)$

| Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| :---: | ---: | :---: | ---: | ---: |
| GARCH | -3.264531 | 5.427857 | -0.601440 | 0.5475 |
| C | 0.001103 | 0.000738 | 1.494115 | 0.1351 |
| MA(1) | -0.037779 | 0.029408 | -1.284623 | 0.1989 |
| Variance Equation |  |  |  |  |
| C | $2.50 \mathrm{E}-06$ | $1.13 \mathrm{E}-06$ | 2.204589 | 0.0275 |
| RESID(-1)^2 | 0.034059 | 0.011229 | 3.033245 | 0.0024 |
| GARCH(-1) | 0.948027 | 0.015718 | 60.31508 | 0.0000 |
| T-DIST. DOF | 4.707630 | 0.621930 | 7.569386 | 0.0000 |
| R-squared | -0.000493 | Mean dependent var | 0.000370 |  |
| Adjusted R-squared | -0.002278 | S.D. dependent var | 0.012243 |  |
| S.E. of regression | 0.012257 | Akaike info criterion | -6.162322 |  |
| Sum squared resid | 0.168402 | Schwarz criterion | -6.131030 |  |
| Log likelihood | 3470.225 | Hannan-Quinn criter. | -6.150496 |  |
| Durbin-Watson stat | 1.962640 |  |  |  |

(iii) ARIMA-GARCH-M(1,1) with GED distribution

| Dependent Variable: D(LDT4) <br> Method: ML - ARCH (Marquardt) - Generalized error distribution (GED) <br> Sample (adjusted): 21125 <br> Included observations: 1124 after adjustments <br> Convergence achieved after 22 iterations <br> Presample variance: backcast (parameter $=0.7$ ) $\text { GARCH }=\mathrm{C}(3)+\mathrm{C}(4)^{*} \operatorname{RESID}(-1)^{\wedge} 2+\mathrm{C}(5)^{*} \operatorname{GARCH}(-1)$ |  |  |  |  | Dependent Variable: D(LDT4) <br> Method: ML - ARCH (Marquardt) - Generalized error distribution (GED) <br> Sample (adjusted): 31125 <br> Included observations: 1123 after adjustments <br> Convergence achieved after 25 iterations <br> MA Backcast: 2 <br> Presample variance: backcast (parameter $=0.7$ ) <br> GARCH $=\mathrm{C}(5)+\mathrm{C}(6)^{*} \operatorname{RESID}(-1)^{\wedge} 2+\mathrm{C}(7)^{*}$ GARCH(-1) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | Coefficient | Std. Error | z-Statistic | Prob. | Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| $\begin{gathered} \text { GARCH } \\ \mathrm{C} \end{gathered}$ | $\begin{array}{r} -1.064972 \\ 0.000745 \end{array}$ | $\begin{aligned} & 5.012894 \\ & 0.000677 \end{aligned}$ | $\begin{array}{r} -0.212447 \\ 1.100524 \end{array}$ | $\begin{aligned} & 0.8318 \\ & 0.2711 \end{aligned}$ | $\begin{gathered} \text { GARCH } \\ \text { C } \\ \text { AR(1) } \\ \text { MA(1) } \end{gathered}$ | $\begin{array}{r} -2.066900 \\ 0.000963 \\ 0.501099 \\ -0.563394 \end{array}$ | $\begin{aligned} & 4.880579 \\ & 0.000659 \\ & 0.253714 \\ & 0.241584 \end{aligned}$ | $\begin{array}{r} -0.423495 \\ 1.459985 \\ 1.975060 \\ -2.332087 \end{array}$ | $\begin{aligned} & 0.6719 \\ & 0.1443 \\ & 0.0483 \\ & 0.0197 \end{aligned}$ |
| Variance Equation |  |  |  |  | Variance Equation |  |  |  |  |
| $\begin{gathered} C \\ \operatorname{RESID}(-1)^{\wedge} 2 \\ \operatorname{GARCH}(-1) \end{gathered}$ | $\begin{aligned} & 2.74 \mathrm{E}-06 \\ & 0.036986 \\ & 0.942668 \end{aligned}$ | $\begin{aligned} & 1.06 \mathrm{E}-06 \\ & 0.012510 \\ & 0.016314 \end{aligned}$ | $\begin{aligned} & 2.576434 \\ & 2.956581 \\ & 57.78427 \end{aligned}$ | $\begin{aligned} & 0.0100 \\ & 0.0031 \\ & 0.0000 \end{aligned}$ | $\begin{gathered} C \\ \operatorname{RESID}(-1)^{\wedge} 2 \\ \operatorname{GARCH}(-1) \end{gathered}$ | $\begin{aligned} & 2.78 \mathrm{E}-06 \\ & 0.035757 \\ & 0.943494 \end{aligned}$ | $1.08 \mathrm{E}-06$ 0.012339 0.016157 | $\begin{aligned} & 2.575803 \\ & 2.897989 \\ & 58.39472 \end{aligned}$ | $\begin{aligned} & 0.0100 \\ & 0.0038 \\ & 0.0000 \end{aligned}$ |
| GED PARAMETER | 1.168742 | 0.044438 | 26.30067 | 0.0000 | GED PARAMETER | 1.137221 | 0.043639 | 26.05968 | 0.0000 |
| R-squared | -0.000283 | Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. |  | $\begin{gathered} 0.000370 \\ 0.012243 \\ -6.151494 \\ -6.124672 \\ -6.141358 \end{gathered}$ | R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) | 0.001674 Mean dependent var <br> -0.001002 S.D. dependent yar <br> 0.012253 Akaike info criterion <br> 0.167990 Schwarz criterion <br> 3464.990 Hannan-Quinn criter- <br> 0.268100 Durbin-Watson stat <br> 0.966217 |  |  | $\begin{array}{r} 0.000376 \\ 0.012246 \\ -6.156705 \\ -6.120917 \\ -6.143180 \\ 1.902445 \end{array}$ |
| Adjusted R-squared | +0.001175 |  |  |  |  |  |  |  |  |
| S.E. of regression | 0.012250 |  |  |  |  |  |  |  |  |
| Sum squared resid | 0.168367 |  |  |  |  |  |  |  |  |
| Log likelihood | 3463.140 |  |  |  |  |  |  |  |  |
| Durbin-Watson stat | 2.033929 |  |  |  |  |  |  |  |  |


| Dependent Variable: D(LDT4) |  |  |  |  | Dependent Variable: D(LDT4) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Method: ML - ARCH (Marquardt) - Generalized error distribution (GED) |  |  |  |  | Method: ML - ARCH (Marquardt) - Generalized error distribution (GED) |  |  |  |  |
| Sample (adjusted): 31125 |  |  |  |  | Sample (adjusted): 21125 |  |  |  |  |
| Included observations: 1123 after adjustments |  |  |  |  | Included observations: 1124 after adjustments |  |  |  |  |
| Convergence achieved after 25 iterations |  |  |  |  | Convergence achieved after 38 iterations |  |  |  |  |
| Presample variance: backcast ( (arameter $=0.7$ ) |  |  |  |  | MA Backcast 1 |  |  |  |  |
| GARCH $=\mathrm{C}(4)+\mathrm{C}(5)^{*} \operatorname{RESID}(-1)^{2} 2+\mathrm{C}(6)^{*} \mathrm{GARCH}(-1)$ |  |  |  |  |  |  |  |  |  |
| Variable | Coefficient | Std Error | z-Statistic | Prob |  |  |  |  |  |
|  |  |  |  |  | Variable | Coefficient | Std. Error | z-Statistic | Prob. |
| GARCH | -0.538249 | 4.793793 | -0.112280 | 0.9106 |  |  |  |  |  |
| C | 0.000748 | 0.000651 | 1.149485 | 0.2504 | GARCH | -0.211792 | 4.932258 | -0.042940 |  |
| AR(1) | -0.057980 | 0.026562 | -2.182839 | 0.0290 | c | $0.000727$ | 0.000667 | $\begin{aligned} & 1.089835 \\ & 2027075 \end{aligned}$ | $0.2758$ |
| Variance Equation |  |  |  |  | Variance Equation |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| C | $2.90 \mathrm{E}-06$ | 1.10E-06 | 2.646057 | 0.0081 | C | $2.78 \mathrm{E}-06$ | 1.11E-06 | 2.516359 | 0.0119 |
| RESID(-1) ${ }^{\wedge} 2$ | 0.036461 | 0.012449 | 2.928862 | 0.0034 | RESID (-1) ${ }^{1}$ | 0.036667 | 0.012530 | 2.926362 | 0.0034 |
| $\operatorname{GARCH}(-1)$ | 0.941803 | 0.016246 | 57.97257 | 0.0000 | GARCH(-1) | 0.942787 | 0.016599 | 56.79761 | 0.0000 |
| GED PARAMETER | 1.142503 | 0.043881 | 26.03611 | 0.0000 | GED PARAMETER | 1.141629 | 0.044076 | 25.90141 | 0.0000 |
| R-squared | -0.002005 | Mean dependent var |  | 0.000376 | R-squared | -0.002071 | Mean dependent var |  | 0.000370 |
| Adjusted R-squared | -0.003794 | S.D. dependen |  | 0.012246 | Adjusted R-squared | -0.003859 | S.D. dependent var |  | 0.012243 |
| S.E. of regression | 0.012270 | Akaike info crit |  | -6.154656 | S.E. of regression | 0.012266 | Akaike info criterion |  | -6.154801 |
| Sum squared resid | 0.168609 | Schwarz criteri |  | -6.123341 | Sum squared resid | 0.168668 | Schwarz criterion |  | -6.123509 |
| Log likelihood | 3462.839 | Hannan-Quinn |  | -6.142821 | Log likelihood | 3465.998 | Hannan-Quinn criter. |  | -6.142976 |
| Durbin-Watson stat | 1.909049 |  |  |  | Durbin-Watson stat | 1.915630 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

## 1-STEP AND MULTISTEP AHEAD FORECASTING OF ARIMA-EGARCH (AEG)

| 1-step ahead forecast AEG | 2-step ahead forecast AEG |
| :---: | :---: |
| ```> mae_AEG4=sum(error2_AEG4)/T; [1] 12.90242 > rmse_AEG4=sqrt(sum(error3_AEG4)/T); rmse_A EG4 [1] 17.91294 > mape_AEG4=(100/T)*sum(error4_AEG4); mape_A EG4 [1] 0.99303```  ```> outAEG_1_lo80<-dt4_o[dt4_o<lo80_AEG4];[1] 1236.25 > outAEG_1_hi80<-dt4_o[dt4_o>hi80_AEG4];[1] 1242.75 > outAEG_1_lo95<-dt4_o[dt4_o<lo95_AEG4]; nume ric(0) > outAEG_1_hi95<-dt4_o[dt4_o>hi95_AEG4]; nume ric(0) \\ \% Forecast data NOT within prediction interval \(80 \%\) PI: \(1 / 125=0.8 \% \quad 95 \%\) PI: \(0 / 125=0 \%\)``` | ```> mae_AEG4_2=sum(error2_AEG4_2)/T; 15.64307 > rmse\overline{e_AEG\overline{4}_2=sqrt(sum(\overline{error}\overline{3}_AEG4_2)/T);} [1] 21.4087 > mape_AEG4_2=(100/T)*sum(error4_AEG4_2); [1] 1.198982```  ```> outAEG_2_1080<-dt4_o[dt4_o<lo80_AEG4_2]; 1236.25 1192.00 1212.75 1358.25 1328.00 1318 .50 1323.00 1290.75 1265.50 1285.50 1225.25 > outAEG_2_hi80<-dt4_o[dt4_o>hi80_AEG4_2]; [1] 1242.75 1252.50 1285.00 1279.75 1327.00 1309.00 1341.00 1369.25 1365.00 1419.25 141 9.50 1365.50 1316.00 1319.25 1266.25 > outAEG_2_lo95<-dt4_o[dt4_o<lo95_AEG4_2]; [1] 1236.25 1290.75 > outAEG_2_hi95<-dt4_o[dt4_o>hi95_AEG4_2]; [1] 1242.75 1252.50 1327.00 1419.25 1419.50 1365.50 1319.25``` <br> \% Forecast data NOT within prediction interval $80 \%$ PI: $23 / 125=18.4 \% \quad 95 \%$ PI: $9 / 125=7.2 \%$ |



| 10-step ahead forec | 15-step ahead forecast AEG |
| :---: | :---: |
| > mae_AEG4_10=sum(error2_AEG4_10)/T; 32.01497 > rmsée_AEG $\overline{4}$ _10=sqrt (sum(error3_AEG4_10)/T); [1] 41.2452 <br> > mape_AEG4_10=(100/T)*sum(error4_AEG4_10); [1] $2 . \overline{4} 4034 \overline{7}$ | ```> mae_AEG4_15=sum(error2_AEG4_15)/T;35.03482 > rmse_AEG4_15=sqrt(sum(error3_AEG4_15)/T); [1] 42.50387 \\ > mape_AEG4_15=(100/T)*sum(error4_AEG4_15); [1] \(2 . \overline{674686}\)```  $1324.15 \quad 1315.00 \quad 1369.25 \quad 1365.00 \quad 1372.50 \quad 136$ $3.00 \quad 1375.50 \quad 1377.50 \quad 1419.25 \quad 1365.50 \quad 1361.00$ > outAEG_15_lo95<-dt4_o[dt4_o<lo95_AEG4_15]; |
|  | 25-step ahead forecast AEG |
| ```> mae_AEG4_25=sum(error2_AEG4_25)/T; 35.96708 > rms\overline{e}_AEG\overline{4}-25=sqrt(sum(\overline{error}\overline{3}_AEG4_25)/T); [1] 47.13697 > mape_AEG4_25=(100/T)*sum(error4_AEG4_25); [1] 2.\overline{7}2168\overline{7}``` <br> > outAEG_25_1080<-dt4_o[dt4_o<lo80_AEG4_25]; [1] $1192.00^{-} 1318.50 \quad 1 \overline{3} 12.25^{-1301.0 \overline{0}} 129 \overline{0} .75$ > outAEG_25_hi80<-dt4_o[dt4_o>hi80_AEG4_25]; <br> [1] $132 \overline{7} .0 \overline{0} \quad 1333.50 \overline{1335.0 \overline{0}} 1326 . \overline{0} 0 \quad 13 \overline{3} 1.00$ 1329.751369 .251365 .001372 .501363 .00 1375.501377 .501419 .251419 .501407 .751394. 751392.251399 .50 <br> > outAEG_25_lo95<-dt4_o[dt4_o<lo95_AEG4_25]; numeric (0) <br> > outAEG_25_hi95<-dt4_o[dt4_o>hi95_AEG4_25]; [1] $1419.25^{-} 1419.50 \quad 1 \overline{4} 07.75^{-1394.7 \overline{5}} 139 \overline{2} .25$ 1399.50 <br> \% Forecast data NOT within prediction interval $80 \%$ PI: $23 / 125=18.4 \% \quad 95 \%$ PI: $6 / 125=4.8 \%$ |  |



## To find Prediction Intervals for 7-step ahead ARIMA-EGARCH:

```
for(i in 1:125){
 lo95_AEG4_7[i]<-f_AEG4_7[i]-(1.96*29.3230) #lower limit 95%
 hi95_AEG4_7[i]<-f_AEG4_7[i]+(1.96*29.3230) #upper limit 95%
 lo80-AEG4-7[i]<-f_AEG4_7[i]-(1.2816*29.3230) #lower limit 80%
 hi80_AEG4_7[i]<-f_AEG4_7[i]+(1.2816*29.3230) #upper limit 80%
}
cbind(dt4_o,f_AEG4_7,lo95_AEG4_7,hi95_AEG4_7,lo80_AEG4_7,hi80_AEG4_7)
```



Simulation Price Data of 7 -step ahead using ARIMA(0,1,0)-EGARCH(1,1) with normal


|  |  |  |  |
| :---: | :---: | :---: | :---: |
| 19 |  |  |  |
| 20 | 1327.001268 .030 |  |  |
| 21, | 1333.501266 .087 | 1208.6141323 .560 | 1228.5071303 .667 |
| 22, | 1335.001331 .457 | 1273.9841388 .930 | 1293.8761369 .037 |
| 23, | 1326.001329 .417 | 1271.9441386 .890 | 1291.8361366 .997 |
| 24 | 1331.001327 .380 | 1269.9071384 .853 | 1289.7991364 .960 |
| 25 | 1329.751325 .346 |  |  |
|  | 1324.151323 .315 |  | 1285.7351360 .896 |
| 27 | 1314.501321 .288 | 1263.8151378 .761 | 1283.7071358 .868 |
| 28, | 1315.001319 .263 | 1261.7901376 .736 | 1281.6831356 .843 |
| , | 1309.251312 .985 | 1255.5121370 .458 | 1275.4051350 .565 |
| 30 | 1304.751310 .973 | 1253.5001368 .446 | 1273.3931348 .554 |
| 31 | 1280.501308 .965 | 1251.4921366 .438 | 1271.3841346 .545 |
| 32 | 1282.50130 |  | 1269.3791344 .539 |
| 33 | 1298.251304 .956 | 1247.4831362 .430 | 1267.3761342 .537 |
| 34 | 1309.001302 .957 | 1245.4841360 .430 | 1265.3771340 .537 |
| 35 | 1341.001300 .961 | 1243.4881358 .434 | 1263.3801338 .541 |
|  | 1328.501338 .945 | 1281.4721396 .418 | 1301.3651376 .526 |
| 37 | 1326.501336 .894 | 1279.4211394 .367 | 1299.3131374 .474 |
| 38 | 1329.75133 | 1277.37213 | 1297.2651372 .426 |
| 39 | 1369.251332 .800 | 1275.3271390 .27 | 1295.2201370 .380 |
| 40, | 1365.001330 .758 | 1273.2851388 .231 | 1293.1781368 .338 |
| 41 | 1372.501328 .719 | 1271.2461386 .192 | 1291.1391366 .299 |
| 42 | 1363.001326 .683 | 1269.2101384 .156 | 1289.1031364 .263 |
| 43 | 1375.501360 .912 | 1303.4391418 .385 | 1323.3311398 .492 |
| 44 | 1377.501358 .826 | 1301.3531416 .299 | 1321.2461396 .407 |
| 45 | 1419.251356 .744 | 1299.2711414 .217 | 1319.1641394 .325 |
| 46 | 1419.501354 .666 | 1297.1921412 .139 | 1317.0851392 .246 |
| 47, | 1407.751352 .590 | 1295.1171410 .063 | 1315.0101390 .170 |
| 48 | 1394.751350 .517 | 1293.0441407 .991 | 1312.9371388 .098 |
| 49 | 1392.251348 .448 | 1290.9751405 .921 | 1310.8681386 .029 |
| 50 | 1399.501390 .117 | 1332.6441447 .590 | 1352.5361427 .697 |
| 51 | 1390.001387 .987 | 1330.5141445 .460 | 1350.4061425 .567 |
| 52 | 1385.001385 .860 | 1328.3871443 .333 | 1348.2801423 .440 |
| 53 | 1387.001383 .737 | 1326.2641441 .210 | 1346.1561421 .317 |
| 54 | 1390.001381 .616 | 1324.1431439 .090 | 1344.0361419 .197 |
|  | 1358.251379 .500 | 1322.0261436 .973 | 1341.9191417 .080 |
| 56 | 1363.751377 .386 | 1319.9131434 .859 | 1339.8061414 .966 |
| 57 | 1328.001361 .660 | 1304.1871419 .134 | 1324.0801399 .241 |
| 58 | 1318.501359 .574 | 1302.1011417 .047 | 1321.9941397 .154 |
| 59, | 1324.001357 .491 | 1300.0181414 .964 | 1319.9111395 .071 |
| 60 | 1312.251355 .411 | 1297.9381412 .884 | 1317.8311392 .991 |
| 61 | 1301.001353 .334 | 1295.8611410 .807 | 1315.7541390 .915 |
| 62 | 1365.501351 .261 | 1293.7871408 .734 | 1313.6801388 .841 |
| 63 | 1349.251349 .190 | 1291.7171406 .663 | 1311.6101386 .770 |
| 64 | 1323.001347 .183 | 1289.7101404 .656 | 1309.6021384 .763 |
| 65 | 1314.251345 .118 | 1287.6451402 .592 | 1307.5381382 .699 |
| 66 | $1322.75 \quad 1343.057$ | 1285.5841400 .531 | 1305.4771380 .638 |
| 67 | 1333.001341 .000 | 1283.5271398 .473 | 1303.4191378 .580 |
| 68 | 1341.001338 .945 | 1281.4721396 .418 | 1301.3651376 .525 |
| 69 | 1326.501336 .893 | 1279.4201394 .366 | 1299.3131374 .474 |
| 70 | 1290.751334 .845 | $1277.372 \quad 1392.318$ | 1297.2651372 .425 |
| 71 | 1306.251288 .772 | 1231.2991346 .245 | 1251.1921326 .353 |
| 72, | 1316.001286 .798 | 1229.3251344 .271 | 1249.2171324 .378 |
| 73, | 1309.751284 .826 | 1227.3531342 .299 | 1247.2461322 .406 |
| 74 | 1323.501282 .857 | 1225.3841340 .330 | 1245.2771320 .438 |
| 75 | 1329.501280 .892 | 1223.4191338 .365 | 1243.3111318 .472 |
| 76 | 1304.001278 .929 | 1221.4561336 .402 | 1241.3491316 .509 |
| 77, | 1298.501276 .970 | 1219.4961334 .443 | 1239.3891314 .550 |
| 78, | 1265.501296 .510 | 1239.0371353 .983 | 1258.9301334 .091 |
| 79, | 1285.501294 .524 | 1237.0511351 .997 | 1256.9441332 .104 |
| 80 | 1270.501292 .540 | 1235.0671350 .013 | 1254.9601330 .121 |
| 81 | 1273.501290 .560 | 1233.0871348 .033 | 1252.9801328 .140 |
| 82 | 1319.251288 .583 | 1231.1091346 .056 | 1251.0021326 .163 |
| 83, | 1316.501286 .608 | 1229.1351344 .081 | 1249.0281324 .188 |
| 84, | 1317.501284 .637 | 1227.1641342 .110 | 1247.0561322 .217 |
| 85, | 1333.001315 .481 | 1258.0081372 .954 | 1277.9011353 .062 |
| 86 | 1331.251313 .466 | 1255.9931370 .939 | 1275.8851351 .046 |
| 87 | 1344.751311 .453 | 1253.9801368 .926 | 1273.8731349 .034 |
| 88, | 1347.751309 .444 | 1251.9711366 .917 | 1271.8631347 .024 |
| 89, | 1361.001307 .437 | 1249.9641364 .910 | 1269.8571345 .018 |
| 90, | 1349.251305 .434 | 1247.9611362 .907 | 1267.8541343 .014 |
| 91, | 1354.751303 .434 | 1245.9611360 .907 | 1265.8541341 .014 |
| 92 | 1324.001352 .674 | 1295.2011410 .147 | 1315.0941390 .255 |
| 93, | 1306.751350 .602 | 1293.1291408 .075 | 1313.0211388 .182 |
| 94, | 13 | 1291.0591406 .005 | 3 |


| $[95]$, | 1307.25 | 1346.466 | 1288.993 | 1403.939 | 1308.886 | 1384.046 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $[96]$, | 1319.00 | 1344.403 | 1286.930 | 1401.876 | 1306.823 | 1381.983 |
| $[97]$, | 1307.25 | 1342.343 | 1284.870 | 1399.816 | 1304.7633 | 1379.923 |
| $[98]$, | 1285.50 | 1340.286 | 1282.813 | 1397.759 | 1302.706 | 1377.867 |
| $[99]$, | 1282.50 | 1283.530 | 1226.057 | 1341.003 | 1245.950 | 1321.111 |
| $[100]$, | 1281.25 | 1281.564 | 1224.091 | 1339.037 | 1243.9833 | 1319.144 |
| $[101]$, | 1272.50 | 1279.600 | 1222.127 | 1337.073 | 1242.020 | 1317.180 |
| $[102]$, | 1286.00 | 1277.639 | 1220.166 | 1335.113 | 1240.059 | 1315.220 |
| $[103]$, | 1287.25 | 1275.682 | 1218.209 | 1333.155 | 1238.101 | 1313.262 |
| $[104]$, | 1283.50 | 1273.727 | 1216.254 | 1331.200 | 1236.147 | 1311.308 |
| $[105]$, | 1275.75 | 1271.776 | 1214.302 | 1329.249 | 1234.195 | 1309.356 |
| $[106]$, | 1257.00 | 1273.795 | 1216.322 | 1331.268 | 1236.215 | 1311.376 |
| $[107]$, | 1240.00 | 1271.844 | 1214.370 | 1329.317 | 1234.263 | 1309.424 |
| $[108]$, | 1246.25 | 1269.895 | 1212.422 | 1327.368 | 1232.314 | 1307.475 |
| $[109]$, | 1243.00 | 1267.949 | 1210.476 | 1325.422 | 1230.369 | 1305.529 |
| $[110]$, | 1247.50 | 1266.006 | 1208.533 | 1323.479 | 1228.426 | 1303.587 |
| $[111]$, | 1245.00 | 1264.066 | 1206.593 | 1321.540 | 1226.486 | 1301.647 |
| $[112]$, | 1245.50 | 1262.130 | 1204.657 | 1319.603 | 1224.549 | 1299.710 |
| $[113]$, | 1253.00 | 1243.592 | 1186.119 | 1301.065 | 1206.011 | 1281.172 |
| $[114]$, | 1229.50 | 1241.686 | 1184.213 | 1299.159 | 1204.106 | 1279.267 |
| $[115]$, | 1217.25 | 1239.784 | 1182.311 | 1297.257 | 1202.203 | 1277.364 |
| $[116]$, | 1227.50 | 1237.884 | 1180.411 | 1295.357 | 1200.304 | 1275.464 |
| $[117]$, | 1222.50 | 1235.987 | 1178.514 | 1293.460 | 1198.407 | 1273.568 |
| $[118]$, | 1233.00 | 1234.094 | 1176.620 | 1291.567 | 1196.513 | 1271.674 |
| $[119]$, | 1237.00 | 1232.203 | 1174.730 | 1289.676 | 1194.622 | 1269.783 |
| $[120]$, | 1266.25 | 1235.105 | 1177.632 | 1292.578 | 1197.524 | 1272.685 |
| $[121]$, | 1260.75 | 1233.212 | 1175.739 | 1290.685 | 1195.632 | 1270.793 |
| $[122]$, | 1225.25 | 1231.323 | 1173.850 | 1288.796 | 1193.742 | 1268.903 |
| $[123]$, | 1232.00 | 1229.436 | 1171.963 | 1286.909 | 1191.856 | 1267.016 |
| $[124]$, | 1234.75 | 1227.552 | 1170.079 | 1285.025 | 1189.972 | 1265.133 |
| $[125]$, | 1231.75 | 1225.671 | 1168.198 | 1283.144 | 1188.091 | 1263.252 |

## 1-STEP AND MULTISTEP AHEAD FORECASTING OF ARIMA-TGARCH (ATG)

| 1-step ahead forecast ATG | 2-step ahead forecast ATG |
| :---: | :---: |
| ```> mae_ATG4=sum(error2_ATG4)/T; 12.91445 > rmse_ATG4=sqrt(sum(error3_ATG4)/T); [1] 17.85786 > mape_ATG4=(100/T)*sum(error4_ATG4); [1] 0.\overline{9943338}```  | ```> mae_ATG4_2=sum(error2_ATG4_2)/T; 15.73296 > rmse\overline{e_ATG\overline{4}_2=sqrt(sum(\overline{error}\overline{3}_ATG4_2)/T);} [1] 21. 2975皃 > mape_ATG4_2=(100/T)*sum(error4_ATG4_2); [1] 1. }20830\overline{5```  > outATG_2_1o80<-dt4_o[dt4_o<lo80_ATG4_2]; [1] $123 \overline{6} . \overline{2} 51192.00^{-} 1212 . \overline{7} 51358.25 \quad 1 \overline{3} 63.75$ $1328.001318 .501323 .00 \quad 1290.751265 .50128$ 5.501257 .001225 .25 > outATG_2_hi80<-dt4_o[dt4_o>hi80_ATG4_2]; [1] $124 \overline{2} . \overline{7} 51252.50^{-} 1285 . \overline{0} 01327.001 \overline{3} 41.00$ $1369.25 \quad 1365.00 \quad 1419.251419 .50 \quad 1365.50 \quad 131$ $9.25 \quad 1266.25$ > outATG_2_lo95<-dt4_o[dt4_o<lo95_ATG4_2]; [1] $1236.2 \overline{5} 1192.00 \overline{1} 318.5 \overline{0} \quad 1323 . \overline{0} 0 \quad 12 \overline{9} 0.75$ 1225.25 > outATG_2_hi95<-dt4_o[dt4_o>hi95_ATG4_2]; [1] 1242.751252 .501327 .001365 .501319 .25 \% Forecast data NOT within prediction interval $80 \% \mathrm{PI}: 25 / 125=20 \% \quad 95 \% \mathrm{PI}: 11 / 125=8.8 \%$ |


| 3-step ahead forecast | 4-step ahead foreca |
| :---: | :---: |
| ```> mae_ATG4_3=sum(error2_ATG4_3)/T; 18.20806 > rmse_ATG\overline{4}_3=sqrt(sum(error\overline{3}_ATG4_3)/T); [1] 24.38725 > mape_ATG4_3=(100/T)*sum(error4_ATG4_3); [1] 1.40284```  |  |
|  | 7-step ahead forecast ATG |
| ```> mae_ATG4_5=sum(error2_ATG4_5)/T; 22.71886 > rmse\overline{e_ATG\overline{4}_5=sqrt(sum(error\overline{3}_ATG4_5)/T);} [1] 28.7512\overline{2} > mape_ATG4_5=(100/T)*sum(error4_ATG4_5); [1] 1.}\overline{7}5487\overline{4```  > outATG_5_1080<-dt4_o[dt4_o<lo80_ATG4_5]; [1] 1236.251232 .751192 .001242 .751358 .25 1318.501324 .001312 .251265 .501285 .501270. 501306.751307 .251240 .001225 .251231 .75 > outATG_5_hi80<-dt4_o[dt4_o>hi80_ATG4_5]; $1285.00^{-} 1 \overline{2} 79.75128 \overline{4} .751 \overline{3} 27.00 \overline{1} 419 . \overline{2} 51365$ .501319 .251316 .501317 .501333 .001266 .25 > outATG_5_lo95<-dt4_o[dt4_o<lo95_ATG4_5]; [1] $1232.7 \overline{5} 1192.00 \quad 1265.50 \quad 1270 . \overline{5} 0$ > outATG_5_hi95<-dt4_o[dt4_o>hi95_ATG4_5]; [1] 1333 <br> \% Forecast data NOT within prediction interval $80 \%$ PI: $27 / 125=21.6 \%$ $95 \% \mathrm{PI}: 5 / 125=4 \%$ | ```> mae_ATG4_7=sum(error2_ATG4_7)/T; 24.34648 > rmse_ATG4 [1] 29.8232名 > mape_ATG4_7=(100/T)*sum(error4_ATG4_7); [1] 1.87358\overline{6} *) > outATG_7_lo80<-dt4_o[dt4_o<lo80_ATG4_7]; 1236.25 \overline{1}2\overline{3}2.75 1192.00 12\overline{4}2.75 1\overline{2}52.5\overline{0}1250 .00 1212.75 1358.25 1318.50 1324.00 1312.25 [12] 1301.00 1290.75 1306.75 1307.25 1319.00 1307.25 1285.50 1240.00 > outATG_7_hi80<-dt4_o[dt4_o>hi80_ATG4_7]; [1] 1327.0\overline{0}}1333.50 \overline{1}419.2\overline{5}1419.50 14\overline{0}7.7 1361.00 > outATG_7_lo95<-dt4_o[dt4_o<lo95_ATG4_7]; [1] 1192.00}1301.00 \overline{1290.7\overline{5}}1285.\overline{5} > outATG_7_hi95<-dt4_o[dt4_o>hi95_ATG4_7]; numeric(0) \\ \% Forecast data NOT within prediction interval \(80 \%\) PI: \(25 / 125=20 \% \quad 95 \%\) PI: \(4 / 125=3.2 \%\)``` |


| 1 | 15-step ahead forecast |
| :---: | :---: |
| ```> mae_ATG4_10=sum(error2_ATG4_10)/T; 32.14324 > rmse_ATG\overline{4}_10=sqrt(sum(error\overline{3}_ATG4_10)/T); [1] 39.9784 > mape_ATG4_10=(100/T)*sum(error4_ATG4_10); [1] 2.472696```  <br> \% Forecast data NOT within prediction interval $80 \%$ PI: $25 / 125=20 \% \quad 95 \%$ PI: $6 / 125=4.8 \%$ | ```> mae_ATG4_15=sum(error2_ATG4_15)/T;37.06404 > rmse__ATG\overline{4}_15=sqrt(sum(error\overline{3}_ATG4_15)/T); [1] 45.2896\overline{1} > mape_ATG4_15=(100/T)*sum(error4_ATG4_15); [1] 2.彷870\overline{6}```  |
|  |  |
| ```> mae_ATG4_25=sum(error2_ATG4_25)/T; 42.28412 > rmse_ATG4_25=sqrt(sum(error3_ATG4_25)/T); [1] 51.0354\ > mape_ATG4_25=(100/T)*sum(error4_ATG4_25); [1] 3.262471```  $227.50 \quad 1222.501233 .00 \quad 1237.00 \quad 1225.25 \quad 1232.001$ 234.751231 .75 > outATG_25_hi80<-dt4_o[dt4_o>hi80_ATG4_25]; [1] $1419.251419 .501407 .75^{-1399.50}$ > outATG_25_lo95<-dt4_o[dt4_o<lo95_ATG4_25]; 1192.001318 .501312 .251301 .001323 .001314 .25 1322.751326 .501290 .751306 .251316 .001309 .75 1323.501329 .50 > outATG_25_hi95<-dt4_o[dt4_o>hi95_ATG4_25]; numeric (0) <br> \% Forecast data NOT within prediction interval $80 \%$ PI: $42 / 125=33.6 \% \quad 95 \%$ PI: $14 / 125=11.2 \%$ |  |


|  | f.ATG4-7 125.000000 |  | resiATG4_7 |
| :---: | :---: | :---: | :---: |
| nobs NAS | 125.000000 0.000000 | nobs NAS | 125.000000 0.000000 |
| Minimum | 1237.594661 | Minimum | $-97.226094$ |
| Maximum | 1396.941822 | Maximum | 54.283356 |
| 1. Quartile | 1282.829020 | 1. Quartile | -31.319397 |
| 3. Quartile | 1351.846363 | 3. Quartile | 13.189219 |
| Mean | 1313.064209 | Mean | -8.821009 |
| Median | 1315.632158 | Median | -8.822258 |
| Sum | 164133.026167 | Sum | -1102.626167 |
| SE Mean | 3.909900 | SE Mean | 2. 558380 |
| LCL Mean | 1305.325422 | LCL Mean | -13.884759 |
| UCL Mean | 1320.802996 | UCL Mean | -3.757259 |
| Variance | 1910.914661 | Variance | 818.163288 |
| stdev | 43.714010 | stdev | 28.603554 |
| skewness | 0.049821 | skewness | -0.101724 |
| Kurtosis | -1.025866 | Kurtosis | $-0.207700$ |

## To find Prediction Interval for 7-step ahead ARIMA-TGARCH:

```
for(i in 1:125){
 lo95_ATG4_7[i]<-f_ATG4_7[i]-(1.96*28.6036) #lower limit 95%
 hi95_ATG4_7[i]<-f_ATG4_7[i]+(1.96*28.6036) #upper limit 95%
 lo80_ATG4_7[i]<-f_ATG4_7[i]-(1.2816*28.6036) #lower limit 80%
 hi80_ATG4_7[i]<-f_ATG4_7[i]+(1.2816*28.6036) #upper limit 80%
}
cbind(dt4_o,f_ATG4_7,lo95_ATG4_7,hi95_ATG4_7,lo80_ATG4_7,hi80_ATG4_7)
```

Simulation Price Data of 7-step ahead using ARIMA(0,1,0)-TGARCH(1,1) with normal




[^0]:    *BJ is simplified for Box-Jenkins and BJ-G is simplified for Box-Jenkins with GARCH

[^1]:    * Std. dev is abbreviated for standard deviation, the values in parenthesis denotes $p$-value and NoO is abbreviated for number of observation.

[^2]:    ＊Std．dev is abbreviated for standard deviation，the values in parenthesis denotes $p$－value and NoO is abbreviated for number of observation．

[^3]:    *Values in parenthesis denotes $p$-value, +vely represents for positively and -vely represent for negatively

[^4]:    *Values in parenthesis denotes $p$-value.

[^5]:    *Values in parenthesis denote the percentage for the number of data outside the prediction intervals.

[^6]:    *Values in parenthesis denote the percentage for the number of data outside the prediction intervals.

[^7]:    Heteroskedasticity Test: ARCH

    | F-statistic | 0.284285 | Prob. F(10,2228) | 0.9848 |
    | :--- | :--- | :--- | :--- |
    | Obs ${ }^{*}$ R-squared | 2.853243 | Prob. Chi-Square(10) | 0.9847 |

[^8]:    > mae_AG4=sum(error2_AG4)/T; mae_AG4 [1] 12.93009
    > rmse_AG4=sqrt(sum(error3_AG4)/T); rmse_AG4 [1] 17.87645
    > mape_AG4 $=(100 / \mathrm{T})$ *sum (errōr4_AG4); mape_AG4 [1] 0.9956225

[^9]:    > mae_t_AG4=sum (error2t_AG4)/T; mae_t_AG4 [1] 0.009951418
    > rmse_t_AG4=sqrt(sum(error3t_AG4)/T); rmse_t_AG4 [1] 0.01380593
    > mape_t_AG4 $=(100 / T)$ *sum (error4t_AG4); mape_t_AG4 [1] 0.1388268

[^10]:    > mae_st_AG4=sum(error2st_AG4)/T; mae_st_AG4 [1] 0.009951418
    > rmse_st_AG4=sqrt(sum(error3st_AG4)/T); rmse_st_AG4 [1] 0.01380593

[^11]:    > mae_AG4_n=sum (error2_AG4_n)/T; mae_AG4_n [1] 59.02881
    > rmse_AG4_n=sqrt (sum (error3_AG4_n)/T); rmse_AG4_n [1] 76.21157
    > mape_AG4_n=(100/T)*sum (error4_AG4_n); mape_AG4_n [1] 4.613464

