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ABSTRAK 

Model Box-Jenkins digunakan secara meluas sama ada sebagai model peramalan, 

piawaian atau bersepadu dalam kajian terkini siri masa. Pemodelan Box-Jenkins adalah 

salah satu teknik peramalan paling berkuasa yang digunakan dalam praktis kajian analisis 

siri masa. Kebanyakan data siri masa contohnya data ekonomi dan sains persekitaran 

adalah bervarians tidak malar secara semulajadi. Walau bagaimanapun, untuk data siri 

masa yang bervarians tidak malar yang tinggi, model Box-Jenkins adalah tidak sesuai 

untuk diaplikasikan kerana andaian ralat varians malar tidak dipenuhi dan ia juga tidak 

dapat mengendalikan sifat heteroskedastisiti. Menggabungkan model Box-Jenkins 

dengan model stokastik heteroskedastisiti seperti model generalised autoregressive 

conditional heteroscedastic (GARCH) merupakan satu kaedah yang berkesan untuk 

mengatasi kekangan model Box-Jenkins bagi data varians tidak malar. Kajian ini menilai 

prestasi model kombinasi antara Box-Jenkins dan variasi GARCH dalam pemodelan dan 

peramalan data univariat siri masa yang bervarians tidak malar yang tinggi dengan 

pemodelan Box-Jenkins sebagai asas prosedur. Empat prosedur dicadangkan dalam 

kajian ini dalam menilai prestasi model kombinasi tersebut di mana tiga cadangan 

prosedur awal adalah menggunakan model Box-Jenkins dengan standard GARCH (or BJ-

G). Prosedur cadangan pertama adalah berdasarkan prosedur asas Box-Jenkins dan ia 

digunakan sebagai kajian tinjauan awal. Prosedur cadangan kedua adalah berdasarkan 

prosedur cadangan pertama yang difokuskan untuk mengendalikan data siri masa 

bervarians tidak malar yang tinggi secara spesifik, menggunakan model BJ-G dengan 

penekanan kepada pengecaman ciri data bervarians tidak malar yang tinggi pada 

peringkat awal. Manakala, prosedur cadangan ketiga adalah lanjutan daripada prosedur 

cadangan kedua, yang digunakan untuk menilai keupayaan model BJ-G untuk peramalan 

jangka panjang. Prosedur cadangan keempat adalah kombinasi prosedur cadangan kedua 

dan ketiga yang mana ia merupakan prosedur komprehensif untuk pemodelan dan 

peramalan data siri masa yang bervarians tidak malar yang tinggi menggunakan model 

Box-Jenkins – variasi GARCH. Kesemua prosedur cadangan diilustrasikan dengan data 

harian harga emas dunia kerana data ini adalah data siri masa yang bervarians tidak malar 

yang tinggi. Berdasarkan kajian awal ke atas 5000 data harian data harian harga emas 

mengunakan prosedur cadangan pertama BJ-G, nilai ralat yang kecil membuktikan model 

BJ-G adalah model yang diyakini untuk pemodelan dan peramalan data bervarians tidak 

malar yang tinggi. Keputusan empirik daripada data harian harga emas dunia 

menggunakan prosedur cadangan kedua menyatakan prosedur ini adalah lebih praktikal 

berbanding prosedur cadangan pertama dalam pemodelan data bervarians tidak malar 

yang tinggi menggunakan model BJ-G dan secara langsung dapat menentukan bilangan 

data yang optimal. Keputusan empirik mencadangkan 25% daripada data yang terkini 

atau 1250 data adalah mencukupi untuk model BJ-G dengan prestasi peramalan yang 

sama seperti menggunakan kesemua data. Manakala, berdasarkan kajian empirik ke atas 

1250 data harian harga emas itu menggunakan prosedur cadangan ketiga, didapati model 

BJ-G berkeupayaan untuk mengikuti pola data sebenar sehingga tujuh hari ke hadapan, 

khasnya dalam selang peramalan 95%. Prosedur cadangan keempat diuji ke atas model 

Box-Jenkins dengan variasi GARCH menggunakan data siri yang sama digunakan untuk 

prosedur cadangan ketiga. Sebagai kesimpulan, model kombinasi Box-Jenkins dan 

variasi GARCH mempunyai potensi yang besar, oleh itu prosedur cadangan keempat   BJ-

G memberikan satu prosedur peramalan siri masa yang komprehensif, sistematik dan 

praktikal bagi data siri masa yang bervarians tidak malar yang tinggi. 
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ABSTRACT 

The Box-Jenkins model has widely been used either as the forecasting, benchmarking or 

as the integrated model in the current research of time series. The Box-Jenkins modelling 

is one of the most powerful forecasting techniques available in research practice of the 

time series analysis. Most of the time series data such as in economics and in 

environmental sciences are volatile in nature. However, for a highly volatile time series 

data, the Box-Jenkins model is inappropriate to be applied since it violates the errors 

assumption of constant variance and it is not able to handle the heteroscedasticity 

property. Combining the model with a heteroscedastic stochastic model such as the 

generalised autoregressive conditional heteroscedastic model (GARCH) can be an 

effective way to overcome the limitation of the Box-Jenkins model in handling the non-

constant variance. This study evaluates the performance of the combination model of 

Box-Jenkins and GARCH-type in modelling and forecasting univariate highly volatile 

time series data with Box-Jenkins modelling as the base procedure. In evaluating the 

performance of the model, four procedures are proposed in this study where the first three 

procedures are using the model of Box-Jenkins and standard GARCH (or BJ-G). The first 

proposed procedure is developed based on the theoretical Box-Jenkins’s procedure and it 

is used for the preliminary study. The second proposed procedure is developed based on 

the first proposed procedure to focus on handling the highly volatile time series data 

specifically, using BJ-G model by emphasizing on the identification of highly volatile 

characteristic in the data at the early stage. While the third proposed procedure is an 

extension from the second procedure, which evaluates the multistep ahead forecasting 

performance of the BJ-G model. The fourth procedure of BJ-G is developed from the 

second and third procedures and it is a comprehensive procedure for modelling and 

forecasting highly volatile time series data using Box-Jenkins – GARCH-type model. The 

proposed procedures are illustrated using the daily world gold price data since it is a 

highly volatile type of time series. Based on the preliminary study on 5000 world daily 

gold price data set using the first procedure of BJ-G, the small magnitude of error proves 

that BJ-G is a reliable model in modelling and forecasting highly volatile data. The 

empirical results of the world daily gold price using the second proposed procedure 

indicate that the procedure is more practical than the first propose procedure to be used 

in modelling a univariate highly volatile data using BJ-G model which simultaneously 

ensures an optimal number of data in dealing with the model. The empirical results 

suggested that the latest 25% of data or 1250 data is sufficient to be employed using       

BJ-G model with similar forecasting performance as by using all data. Meanwhile, based 

on the empirical results on the 1250 world daily gold prices and by employing the third 

procedure, it is found that the BJ-G model is able to follow the trend of the actual data up 

to seven days ahead, specifically within 95% prediction interval. The fourth proposed 

procedure is also tested on the Box-Jenkins with various GARCH-type models using the 

same data series as in the third proposed procedure. In conclusion, the combination model 

of Box-Jenkins and GARCH-type has great potential, thus the fourth proposed procedure 

of BJ-G provides a comprehensive, systematic and practical procedure of time series 

forecasting for univariate highly volatile time series data.  
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Background of Study 

A time series is a set of sequential observations with respect to time. Hence, time 

series analysis is the study about the data collected through time. Many data sets appear 

as time series, such as commodity price, exchange rate, electricity load demand and 

weekly rainfall data. Therefore, time series analysis covers various fields of study that 

attracts high interest among the researchers since the 1960s. The development of four-

stage iterative procedure of time series i.e. identification, estimation, diagnostic checking 

and forecasting developed by Box and Jenkins (1968), known as the Box-Jenkins 

modelling, is considered as the catalyst for the time series research (De Gooijer & 

Hyndman, 2006). The Box-Jenkins modelling is one of the most powerful forecasting 

methods available in research practice of the time series analysis.  

A forecasting method is a procedure for computing forecasts from present and 

past values. Forecasting methods can be broadly classified into three, which are 

judgemental forecasts, univariate methods and multivariate methods, and can be a 

combination of more than one of the three methods. The judgemental forecasts are based 

on subjective judgement, intuition, commercial knowledge and any other relevant 

information. The Delphi technique is one of the famous judgemental methods. The 

univariate and the multivariate methods are the statistical-based method. According to 

Chatfield (2001), the statistical methods tend to be superior than judgemental methods in 

general.  

The univariate methods deal with forecasts, which depend only on present and 

past values of the single series, while the multivariate methods deal with forecasts of a 

given variable depend, at least partly, on values of one or more additional time series 
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variables. The multivariate models include multiple regression, transfer function and 

distributed lag models, econometric models and multivariate versions of autoregressive 

(AR) and autoregressive moving average (ARMA) models, including vector 

autoregressive (VAR) models. This study only focuses on the statistical method, 

specifically univariate methods, and does not attempt to cover judgemental forecasting 

and multivariate forecasting.  

The study is limited to the univariate method and model as it is very useful for 

many purposes, including forecasting large number of series and providing a benchmark 

in comparative forecasting studies (Chatfield, 2001; De Gooijer & Hyndman, 2006). 

Figure 1.1 presents the overview of all related univariate time series methodology and the 

corresponding models, which are graphically drawn using freemind software from the 

input of the studies of Bisson and Gurpinar (2017), Hyndman and Athanasopoulos (2014), 

Adhikari and Agrawal (2013), Tsay (2013), Box, Jenkins and Reinsel (2008), De Gooijer 

and Hyndman (2006) and Chatfield (2001). The Box-Jenkins modelling and its models 

are highlighted in the figure. 

The practicality of the Box-Jenkins modelling and its good performance in 

analysing time series data makes the Box-Jenkins model continuously considered as the 

forecasting, the benchmark or as the integrated model in current research. Furthermore, 

the popularity of this model is also due to its capability to analyse almost any set of time 

series data either for profit or non-profit applications (Christodoulos, Michalakelis & 

Varoutas, 2010). Some of its profit applications, for example in business and economics, 

the model is extensively used in exchange rate forecasting (Allen & Taylor, 1990; Giddy 

& Dufey, 1975; Khashei & Bijari, 2010; Singh & Jain, 2018; Zhang, 2003) and 

commodity prices (Darekar & Reddy, 2017; Ho, Xie & Goh, 2002; Yaziz, Ahmad, Nian 

& Muhammad, 2011). For non-profit application, such as in environmental sciences area, 

the Box-Jenkins model has been applied in ozone concentrations (Awang, Kar Yong & 

Yin Hoeng, 2017; G. Liu, Tarasick, Fioletov, Sioris & Rochon, 2009; Robeson & Steyn, 

1990), air quality (Polydoras, Anagnostopoulos & Bergeles, 1998; Taneja, Ahmad, 

Ahmad & Attri, 2016) and hydrological study (Castellano-Méndez, González-Manteiga, 

Febrero-Bande, Manuel Prada-Sánchez & Lozano-Calderón, 2004; Fouli, Fouli, Bashir 

& Loni, 2017).  
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Figure 1.1 Overview of methodologies and models in univariate time series forecasting 

Source: Bisson and Gurpinar (2017), Hyndman and Athanasopoulos (2014), Adhikari and Agrawal (2013), Tsay (2013), Box et al. (2008), 

De Gooijer and Hyndman (2006) and Chatfield (2001). 
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Most of the time series data are volatile in nature where the data varies over time. 

If the volatility in a data series is low, the Box-Jenkins model is appropriate as it assumes 

that the variance of the errors is constant, known as homoscedasticity property. However, 

for highly volatile data, the variance for errors is non-constant and the Box-Jenkins model 

is found inappropriate since it violates the errors assumption of constant variance. The 

characteristic of non-constant errors in variance is known as heteroscedasticity or 

autoregressive conditional heteroscedastic (ARCH) effects.  

The ARCH effects in a highly volatile data are commonly seen in economics and 

financial data. The highly volatile characteristic initially detected using time series plot 

where it shows large variation and the volatility cluster (i.e. data is high for certain time 

period and low for certain time period) in the plot. However, it is hard to detect accurately 

the ARCH effects in a data series using graphical presentation. Hence, a statistical test 

namely the heteroscedasticity test, is needed to confirm the highly volatile characteristic 

in a time series data. Therefore, if the decision of the test rejects the null hypothesis of no 

ARCH effect in the residuals of the model, then the series is classified as a highly volatile 

data.  

Hence, the Box-Jenkins model should not be applied to highly volatile data since 

it fails to handle the heteroscedasticity property that is present in the data series. 

Therefore, if a study wants to use the Box-Jenkins model to analyse a highly volatile data 

because of its good reputation in research practice, then a modification on the model needs 

to be done. Combining the model with a heteroscedastic stochastic model or a well-known 

volatility model can be an effective way to overcome the limitations of the Box-Jenkins 

model in handling ARCH effects in the data series. 

  Previous studies have shown that generalised autoregressive conditional 

heteroscedastic (GARCH)-type model is widely applied to handle volatility in a data 

series (S. Hammoudeh & Yuan, 2008; Qadan & Yagil, 2012; Trück & Liang, 2012). In 

recent years, many studies proposed the incorporation of GARCH-type model into the 

Box-Jenkins model due to its good performance in dealing with highly volatile data. Some 

of the studies that incorporate the Box-Jenkins model with GARCH-type are ARIMA-

GARCH (Babu & Reddy, 2015; Chen, Hu, Meng & Zhang, 2011; Girish, 2016; Liu & 

Shi, 2013; Loi & Ng, 2018; Tan, Zhang, Wang & Xu, 2010; Zhou, He & Sun, 2006), AR-

EGARCH (Ahmed, 2017; Ferenstein & Gasowski, 2004; Girish, 2016; Walid, Chaker, 
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Masood & Fry, 2011), AR-GARCH (Ferenstein & Gasowski, 2004; Gaglianone & 

Marins, 2017; Harrison & Paton, 2004; Sohn & Lim, 2007), ARIMA-PARCH (Girish, 

2016), ARIMA-TGARCH (Ahmad, Ping, Yaziz & Miswan, 2015; Freedi, Shamiri & Isa, 

2012), ARMA-GARCH (Liu & Shi, 2013; Pham & Yang, 2010; Wang, Gelder, Vrijling 

& Ma, 2005), ARMA-EGARCH (Ord, Koehler, Snyder & Hyndman, 2009) and ARIMA-

GARCH-M (Liu, Erdem & Shi, 2011; Liu & Shi, 2013; Liu, Shi & Qu, 2013). An 

extensive discussion on the model of Box-Jenkins with GARCH-type is provided in 

Chapter 2. 

Although these studies obtain promising results by applying the Box-Jenkins 

model with GARCH-type, there is no study that focuses on the development of procedure 

or procedure on the combination model of Box-Jenkins and GARCH-type to deal with 

highly volatile data. Hence, this motivates a study to develop a procedure in modelling 

and forecasting a highly volatile time series data with the Box-Jenkins as the base model 

by incorporating GARCH-type model to capture the heteroscedasticity in the data series.  

However, this study focuses on the standard GARCH at first, or simply called as 

GARCH, due to its popularity and parcimonious characteristics, in developing a basic 

procedure of the combination model of Box-Jenkins and GARCH-type. The procedure is 

then applied to other GARCH-type models that work practically for highly volatile data. 

The combination model of Box-Jenkins and GARCH (or BJ-G) has great potential, thus 

the proposed procedure in this study would give significant procedural contribution to the 

basis for research that deals with highly volatile data. Not only that, the development of 

procedure in this study will also provide useful guidelines for using the combination 

model to address highly volatile data which is in line with big data analytics and support 

the 4th industrial revolution (IR 4.0). 

1.2 Problem Statement 

Improving forecasting method is one of the main issues in time series research. 

Therefore, the research continues to improve the effectiveness of the forecasting models. 

According to Chatfield (2001), the forecasting literatures concentrate on how to 

implement particular forecasting method, whereas most forecasters probably need much 

more help with the strategy of forecasting. There is plenty of software available to make 

it easy to fit the model to the data series, however it is still hard to decide when to use the 
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model and how to choose the appropriate model for the data series. The recent 

publications in time series such as Loi and Ng (2018), Ahmed (2017), Hyndman and 

Athanasopoulos (2017) and Tsay (2013) are still lacking in demonstrating a clear strategy 

of forecasting. Therefore, this study would present a comprehensive strategy of 

forecasting in the form of a procedure, specifically for forecasting highly volatile time 

series data, which will assist the researcher in forecasting. The proposed procedure will 

complement the existing procedure in time series modelling and forecasting, specifically 

the Box-Jenkins modelling.  

One of the established time series methods in many research practices is the Box-

Jenkins modelling (De Gooijer & Hyndman, 2006; Christodoulos, Michalakelis & 

Varoutas, 2010). In this study, the focus is modelling and forecasting the univariate highly 

volatile time series data by applying the Box-Jenkins as the base model. It is vital for a 

model to be able to analyse and predict data which reflects the data series pattern. 

Therefore, in this study, the GARCH model is considered to be incorporated with the 

Box-Jenkins model due to its capability in handling heteroscedasticity in the data series.  

Hence, the main issue in this study is how to develop an appropriate procedure in 

modelling and forecasting a univariate highly volatile time series data using Box-Jenkins 

– GARCH (BJ-G) model, or simply called as procedure of BJ-G. The proposed procedure 

is based on the standard Box-Jenkins’s procedure, which consists of four stages. This 

proposed procedure will be used to justify and evaluate the performance of the BJ-G 

model in analysing and forecasting (at one-step ahead) the data series. 

If the first proposed procedure of BJ-G has shown promising results, then the next 

issue that needs to be considered is how to develop a procedure of BJ-G model in handling 

univariate highly volatile time series data specifically. This proposed procedure of BJ-G 

emphasizes on the identification of highly volatile characteristics in the data at the early 

stage before further analysis is conducted. Therefore, the first proposed procedure should 

be improved by introducing the steps of heteroscedasticity test and the BJ-G model 

identification in Stage I of the second proposed procedure of BJ-G instead of in Stage III 

in the first proposed procedure. The second proposed procedure would simultaneously 

ensure the optimal number of data required for practical application in handling univariate 

highly volatile time series data using BJ-G model. Determination of the optimal number 

of data using a statistical model for practical application is one of the main issues in time 
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series forecasting (Chatfield,2001; Hyndman & Athanasopoulos, 2014; Hyndman & 

Konstenko, 2017). 

However, the second proposed procedure of BJ-G is only applied for one-step 

ahead forecasting performance, which is not practical for real data due to its limitation of 

the prediction period (Babu & Reddy, 2015; Pham & Yang, 2010; Byström, 2005). 

Therefore, the third issue that needs to be considered in this study is how to develop a 

procedure of BJ-G that can be used for multistep forecasting. It is observed that many 

statistical software only provides the analysis and forecasting results for one-step ahead 

forecast. Hence, in evaluating the forecasting performance for multistep ahead using BJ-

G model, a set of codes using programming language needs to be constructed to analyse 

the data up to n-step ahead forecasting. The codes will be associated with the third 

proposed procedure of BJ-G. 

Since the combination model of Box-Jenkins and GARCH has great potential for 

research that deals with univariate highly volatile time series data, the comprehensive 

procedure of BJ-G is considered in the study. Therefore, the fourth procedure is developed 

from the second and third procedures. The fourth procedure is then applied to all 

GARCH-type models related to highly volatile data. Hence, this study proposes a 

comprehensive procedure using Box-Jenkins with GARCH-type model in improving 

forecasting method specifically for forecasting univariate highly volatile time series data.  

1.3 Objectives of the Study 

The objectives of this study are: 

1. To propose a procedure using Box-Jenkins as the base model in modelling and 

forecasting univariate highly volatile time series data. 

2. To propose a procedure of BJ-G in specifically handling univariate highly volatile 

time series data.  

3. To propose a procedure of BJ-G in evaluating the multistep forecasting 

performance for the univariate highly volatile time series data. 

4. To propose a comprehensive procedure of BJ-G for all GARCH-type models in 

modelling and forecasting univariate highly volatile time series data. 
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1.4 Scope of the Study 

This study focuses on parametric-based models, namely Box-Jenkins and 

GARCH in modelling and forecasting highly volatile time series data. These two models 

are combined to form a BJ-G model, which is a combination of both linear and nonlinear 

models. The data used in this study is the world daily gold price obtained from 

www.kitco.com which is reliable in the market. The data in this website is used by many 

related companies and in research articles. Scope of this research is to undertake a 

comprehensive investigation on the proposed procedure of the BJ-G model in forecasting 

univariate highly volatile time series data only. Itemised research activities of each 

objective are as follows:  

1. To propose a procedure as Box-Jenkins as the base model in modelling and 

forecasting univariate highly volatile time series data. 

a. The proposed procedure of BJ-G is based on the standard Box-Jenkins’s 

procedure, which consists of four stages, that are Stage I  

(Model identification), Stage II (Parameter estimation), Stage III 

(Diagnostic checking) and Stage IV (Forecasting).  

b. In the proposed procedure of BJ-G, the best Box-Jenkins model to analyse 

the data series is identified first. The heteroscedasticity in a highly volatile 

data series is detected in the diagnostic checking stage. The proposed 

procedure is meant for a combination of Box-Jenkins model with standard 

GARCH (GARCH) model. 

c. New steps and methods are suggested for the proposed procedure of BJ-G 

including data descriptive, the improvement of autocorrelation function 

(ACF) and partial autocorrelation function (PACF) methods, the use of 

Box-Cox transformation method, linearity test, portmanteau test, extended 

autocorrelation function (EACF) method, the Ljung-Box Q-test and the 

ARCH test. 

d. The proposed procedure of BJ-G investigates the appropriateness of 

distribution of innovations for the BJ-G model by considering Normal, t, 

skewed-t, generalised error distribution (GED) and Skewed-GED. 

e. A 5000 daily world gold price starting from 24th November 1993 to 17th 

December 2013 is used in the proposed procedure of BJ-G as a case study. 

http://www.kitco.com/
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2. To propose a procedure of BJ-G in specifically handling univariatehighly volatile 

time series data. 

a. The proposed procedure is a modification from the first proposed procedure 

of BJ-G. 

b. In the proposed procedure, the heteroscedasticity in a data series is detected 

in the model identification stage since the study focuses on highly volatile 

data.  

c. The data used in the first proposed procedure of BJ-G is divided into six 

different sets of data based on previous literatures (Babu & Reddy, 2015; 

Ferenstein & Gasowski, 2004; Gaglianone & Marins, 2017; García-Ferrer et al., 

2012; Harrison & Paton, 2004; Koopman et al., 2007; Sohn & Lim, 2007) and 

each sample is tested using the new proposed procedure in determining the 

optimal number of data for BJ-G model.  

 

3. To propose a procedure of BJ-G model in evaluating the multistep forecasting 

performance for the univariate highly volatile time series data. 

a. The proposed procedure of BJ-G is an extension from the proposed 

procedure of BJ-G in the second objective, specifically in Stage IV. 

b. In this proposed procedure, sets of codes in R language are constructed. 

c. The multistep forecasting performance for the combination model using the 

new proposed procedure is considered with 80% and 95% prediction 

intervals as suggested by Hyndman and Athanasopoulos (2013). 

d. The data used in this procedure is the data series of the optimal sample based 

on the procedure of BJ-G in objective 2. 

 

4. To propose a comprehensive procedure of BJ-G for all GARCH-type models in 

modelling and forecasting univariate highly volatile time series data.  

a. The proposed procedure of BJ-G is limited to apply for univariate time 

series data. 

b. The proposed procedure is applied to all GARCH-type models that are used 

previously for highly volatile data including the standard GARCH 

(GARCH), the GARCH in the mean (GARCH-M), the exponential GARCH 

(EGARCH), the threshold GARCH (TGARCH) and the asymmetric power 

ARCH (APARCH)). 
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1.5 Significance of the Study 

This study will evaluate the performance of the combination model of BJ-G in 

forecasting univariate highly volatile time series data. As one of the established method 

in time series analysis, the Box-Jenkins model is used as the base model in the 

combination model. The good reputation of Box-Jenkins in handling univariate time 

series data and the practicality of GARCH in handling heteroscedasticity in a data series 

will contribute to a new potential approach in forecasting highly volatile time series data. 

This study will propose four procedures of BJ-G to cater the four objectives in 

this doctorate research. The first proposed procedure of BJ-G is developed based on the 

standard Box-Jenkins’s procedure since it will be used in evaluating the performance of 

the combination model to forecasting univariate highly volatile data for the preliminary 

study. The second proposed procedure of BJ-G model is developed specifically dealing 

for univariate highly volatile data at the early stage which simultaneously ensure the 

optimal number of data required for BJ-G model. While the third proposed procedure of 

BJ-G is an extension from the second one, which is applied in evaluating the multistep 

ahead forecasting performance of the BJ-G model. The fourth proposed procedure is 

developed from the second and third procedures and it is a comprehensive BJ-G 

procedure for modelling and forecasting univariate highly volatile time series data using 

the Box-Jenkins with GARCH-type model. 

The proposed procedures are illustrated using the daily world gold price data since 

it is expected to be a highly volatile type of time series data. The original data series of 

the gold price is applied to the first and second proposed procedures of BJ-G, while the 

data series from an optimal number of data (based on the empirical results from the second 

procedure of BJ-G) would be used in evaluating the third and fourth proposed procedures. 

It is expected that the empirical results would demonstrate a good result in forecasting 

evaluations using the proposed procedures of BJ-G.   

At the final stage, this study would contribute to a comprehensive procedure in 

modelling and forecasting up to n-step ahead for highly volatile time series data using 

Box-Jenkins with all GARCH-type models, as proposed by the fourth procedure of BJ-

G. This study indirectly enhances the capability of the Box-Jenkins model in forecasting 

data series for further improvement of procedures and results. The guidelines given by 
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the proposed procedures of BJ-G package with R codes developed would provide a good 

tool to demonstrate an element of data science which support IR 4.0. 

1.6 Thesis Organisation 

This thesis comprises of five (5) chapters with summary drawn for each study as 

the last section in the respective chapters. Chapter 1 (this chapter) presents a general 

introduction and motivation behind the research. Chapter 2 provides the literature reviews 

of highly volatile time series with a focus on univariate modelling, specifically the Box-

Jenkins models, the heteroscedastic stochastic model especially GARCH-type and the 

combination of BJ-G model. Chapter 3 outlines the research methodology and concepts 

used in the study; theory of the Box-Jenkins modelling, the procedure for the combination 

of BJ-G model and the proposed procedures of BJ-G as in the objectives in this study 

with theoretical explanations for methods and tests used in each stage of the procedures. 

Chapter 4 presents the analysis of the data series, by taking daily world gold prices as a 

case study, using the four procedures of BJ-G as proposed in Chapter 3. Chapter 5 

provides an overall summary of this thesis and highlights future research prospects. It is 

then followed by reference and appendices to facilitate a better understanding of this 

thesis. In general, the framework of this study is outlined in Figure 1.2. 

 

 

 

 

 

 

 

 
 

 

Figure 1.2 Framework of study 

Step 2: Development of procedure using Box-Jenkins as the based model in 

modelling and forecasting univariate highly volatile time series data as Box-

Jenkins as the base model in modelling and forecasting univariate highly 

Step 1: Literature reviews 

Step 6: Conclusions 

Step 3: Development of BJ-G procedure in identifying the highly volatile 

characteristic at the early stage by modifying the proposed procedure in Step 2 

Step 4: Development of procedure of BJ-G model for multistep forecasting 

Step 5: Development of new comprehensive procedure of BJ-G model in 

modelling and forecasting univariate highly volatile time series data 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction 

This chapter provides a brief review of Box-Jenkins modelling and the research 

scenario for the highly volatile time series data. The statistics for the number of 

publications in the related study from ISI web of science are provided. The modelling of 

Box-Jenkins and Box-Jenkins – GARCH (BJ-G) model in terms of procedure in the 

present study are critically reviewed to determine the gap for further development and 

contributions. 

2.2 Box-Jenkins Modelling and Highly Volatile Time Series Data 

Box-Jenkins modelling is proposed by Box and Jenkins in 1968 by introducing a 

procedure of four iterative stages namely model identification, parameter estimation, 

diagnostic checking and forecasting (Box & Jenkins, 1968). The modelling provides a 

systematic methodology for identifying and estimating models that incorporate 

autoregressive (AR) and moving average (MA) models. The AR, MA, autoregressive 

moving average (ARMA), autoregressive integrated moving average (ARIMA) and 

seasonal autoregressive integrated moving average (SARIMA) are the models under 

consideration of the Box-Jenkins modelling, or so-called as the Box-Jenkins model.   

The Box-Jenkins model is essentially a model for transforming the original series 

ty  into a series that consists of random errors component ta ; or tt ay  , where ty  is 

often highly correlated series and ta  is an uncorrelated series. In general, the random 

errors component will exist in all construction of Box-Jenkins models. In the Box and 

Jenkins modelling, the principle of parsimony is an important principle in the choice of 
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models, meaning that a simpler (having fewer parameters) model whilst adequately 

representing the data should be selected (Box & Jenkins, 1968; Box, et. al, 2008).  

In the modelling, Box and Jenkins developed the class of stochastic models that 

are capable to represent stationary and nonstationary behaviour in obtaining the 

appropriate stochastic models since they believed that the optimal forecasts of future 

values of time series are determined by the stochastic model that describes the series. 

Their main effort then goes to statistical analysis in the stochastic model for the series 

that is directed to forecasting. In their initial study, Box and Jenkins employed significant 

relationships of two main univariate time series models, namely autoregressive and 

moving average which are given by Equation 2.1 and 2.2, respectively (Box & Jenkins, 

1968). These models originally developed by Yule (Yule, 1927). 

     
tptpttt ayyyy    ...2211
  2.1 

    
qtqtttt aaaay    ...2211
               2.2 

 

Equation 2.1 is the mathematical expression for the autoregressive model which 

shows that the deviation ty  is linearly dependent on previous deviations and on ta , 

where   is the mean of data. Meanwhile, in the moving average model, the ty  is 

made linearly dependent on ta  and on one or more previous random errors, as expressed 

in Equation 2.2. The forms in Equation 2.1 and 2.2 have linear relationships.  

By definition, a univariate time series is a single random variable at time t, ty  

while a univariate model describes the distribution of ty  in terms of its relationship with 

past values of ty  with a series of random errors, ta . Hence, the Box-Jenkins models are 

able to handle linear stochastic series and is considered as one of the linear stochastic 

models. In general, the linear stochastic models often work well and able to provide an 

adequate approximation for modelling and forecasting data series (De Gooijer & 

Hyndman, 2006). Due to its capability, linear stochastic model as well as the 

corresponding linear method provides a useful benchmark for comparison of the results 

with alternative models. According to Tsay (2013), the univariate linear time series model 

covers simple econometric models that are useful in business, finance and economics. 
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The practicality of the Box-Jenkins model in handling linear stochastic series 

either as forecasting, the benchmark or as the integrated model makes the Box-Jenkins 

modelling is one of the established method in time series analysis. A book of Time Series 

Analysis: Forecasting and Control by Box and Jenkins in 1970 sparks a significant 

contribution in time series forecasting studies using the Box-Jenkins models. The book 

has had an enormous impact on the theory and practice of modern time series forecasting, 

specifically on univariate time series (De Gooijer & Hyndman, 2006).  

Since the Box-Jenkins models contribute a significant effect to univariate time 

series data, hence the study on the Box-Jenkins modelling and its models still receives 

great interest till today. Figure 2.1 shows a trend in citation indexed journal papers for 

Box-Jenkins model during the years 2000 to early 2018 in various research areas. The top 

ten research areas related to time series data using Box-Jenkins model between year 2000 

and 2018 is given in Table 2.1. The data was generated from the ISI web of science 

(Thompson Reuters, http:apps.webofknowledge.com/) using the keywords ‘time series’, 

‘Box-Jenkins model’ and all related Box-Jenkins models on 23 January 2018. It can be 

observed that the number of publications has been continuously increasing year after year, 

thereby opening new ideas and opportunities for researchers to develop better 

understanding on the methods and procedures of the Box-Jenkins modelling. 

 
Figure 2.1 Number of papers published in the time series research using Box-

Jenkins model between 2000 and 2018 generated from ISI web of science on 23 January 

2018 

Despite the fact that the Box-Jenkins model is popular and practical to be used, it 
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zero and constant variance 
2

ta , or can be written as  2,0~
tat Na   (Box, Jenkins & 

Reinsel, 2008). However, for a highly volatile time series, the error term does not satisfy 

the homoscedastic assumption of constant variance.  

Table 2.1 Top ten research areas related to time series data using Box-Jenkins 

model between 2000 and 2018 generated from ISI web of science on 23 January 2018 
 

Research area Number of papers Percentage (%) 

Mathematics & Statistics  1598  22.0 

Engineering  1519  20.9  

Business  & Economics  1157  15.9  

Computer science & Artificial intelligence  1115  15.3  

Geology  616  8.5  

Environmental sciences ecology  564  7.8  

Mathematical methods in social sciences  399  5.5  

Water resources  294  4.0  

Geochemistry geophysics  285  3.9  

Energy fuels  266  3.6  

 

The time series studies for highly volatile is reportedly rapidly increasing in recent 

years, which indicates that the nature of current data is highly volatile especially in the 

commodity markets. This statement is supported by the statistics data generated from ISI 

web of science using the keywords “time series” and “volatility” or “highly volatile” on 

23 January 2018, as shown graphically in Figure 2.2 and tabulated in Table 2.2. 

Therefore, a good forecasting method that is able to handle well a highly volatile time 

series data is vital to study in providing a useful forecasting tool especially for 

applications in economics and other related areas. 

 

 
Figure 2.2 Number of papers published related to highly volatile time series 

between 2000 and 2018 generated from ISI web of science on 23 January 2018 
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Table 2.2 Top ten research areas related to highly volatile time series data between 

2000 and 2018 generated from ISI web of science on 23 January 2018 
 

Research area Number of papers Percentage (%) 

Business & Economics 898 47.4 

Mathematics & Statistics 588 31.0 

Computer science & Artificial intelligence 312 16.5 

Mathematical methods in social sciences 293 15.5 

Engineering 258 13.6 

Environmental sciences ecology 126 6.6 

Operations research management science 101 5.3 

Meteorology atmospheric sciences 66 3.5 

Energy fuels 65 3.4 

Science technology other topics 48 2.5 

 

2.3 ARCH/GARCH Model and Volatility 

In a highly volatile series, the time-varying variance (volatility or 

heteroscedasticity) which depends on the observations of the immediate past, is called 

conditional variance. The autoregressive conditional heteroscedastic (ARCH) model as 

introduced by Engle is used to model the conditional variance of the innovations, 2

t  

(Engle, 1982). An ARCH model is the first model that provides a systematic framework 

for univariate volatility modelling to detect heteroscedasticity in financial time series in 

understanding volatility in time series data (Engle, 1982; Tsay, 2005). However, the 

ARCH models are difficult to estimate since they often produce negative estimates of the 

coefficient of ARCH parameters. Note that, all ARCH parameters must be positive. To 

solve this problem, Bollerslev proposed an extended form of heteroscedastic model 

known as the generalised autoregressive conditional heteroscedastic (GARCH) 

(Bollerslev, 1986).  

In general, GARCH-type models can easily accommodate volatility clustering in 

a data series and being used in research practice of time series modelling and forecasting 

(refer Figure 1.1). Previous studies showed that GARCH-type models such as standard 

GARCH, GARCH-M and asymmetric GARCH (EGARCH, APARCH) are widely 

applied in time series forecasting to handle volatility in a data series (Ahmed, 2017; Chen 

et al., 2011; Girish, 2016; Loi & Ng, 2018; Liu & Shi, 2013; Pham & Yang, 2010).  

Table 2.3 presents the top ten research areas using ARCH/GARCH-type model between 

2000 and 2018 generated from ISI web of science on 23 January 2018. From the statistics, 
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it is shown that GARCH-type models have widely been used in forecasting economic or 

financial related data, where estimation of variance is important in the assessment of risk.  

Table 2.3 Top ten research areas related to time series data using ARCH/GARCH - 

type model between 2000 and 2018 generated from ISI web of science on 23 January 

2018 
 

Research area Number of papers Percentage (%) 

Business & Economics  388  40.7 

Mathematics & Statistics  376  39.4 

Computer science & Artificial intelligence  150  15.7 

Mathematical methods in social sciences  139  14.6 

Engineering  117  12.3 

Operations research management science  47  4.9 

Energy fuels  37  3.9 

Environmental sciences ecology  35  3.7 

Science technology other topics  21  2.2 

Energy fuels  266  3.6 

 

Due to its homoscedastic assumption of constant variance, the Box-Jenkins model 

is found inappropriate for modelling and forecasting highly volatile time series data. 

However, because of the good reputation of Box-Jenkins model in research practice, the 

model is worth considering in forming a forecasting model for the highly volatile time 

series. Since the forecasting model must reflect its structure and pattern, the conditional 

variance in a highly volatile data series should be considered in forming a reliable 

forecasting model. Hence, the incorporation of GARCH model to Box-Jenkins model can 

be an effective way to overcome the limitation of the Box-Jenkins model in forecasting 

highly volatile time series.  

There are various forecast models in dealing with highly volatile time series data 

such as support vector machines (SVMs) (Villegas, Pedregal & Trapero, 2018), artificial 

neural networks (ANNs) (Alasali, Haben, Becerra & Holderbaum, 2018; Chakravarty, 

Mohapatra & Dash, 2016; Chen et al., 2012; Chitsaz, Shaker, Zareipour, Wood & 

Amjady, 2015; Jun, Lingyu, Yuyan & Peng, 2017; Panapakidis, 2016; Pandey, Jagadev, 

Dehuri & Cho, 2019; Yu, Choi & Hui, 2012), hybrid ANNs and Box-Jenkins 

(Weerathunga & Silva, 2018), artificial intelligence (AI) (Yang, Zhang & Wang, 2019), 

dynamic window size algorithm (DyWiSA) (Dalmazo, Vilela & Curado, 2017), hybrid 

fuzzy system and ANNs (Barros & de Medeiros, 2017), dynamic model averaging 

(DMA) (Naser, 2016), bootstrapped regime switching (BRS) (Gel, Lyubchich & Ahmed, 
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2016), wavelet smoothing method (Michis, 2015), sparse modelling (Tzagkarakis, 

Caicedo-Llano & Dionysopoulos, 2015), value-at-risk (VaR) estimation method (Liu, 

Chung & Wen, 2014), hybrid of ANNs and SVMs (Hu, Wang & Zeng, 2013) and Taguchi 

method (Wang & Huang, 2007). Although these models achieve a certain effect in 

forecasting highly volatile data, many studies in recent years applied the combination 

models of Box-Jenkins with GARCH-type to time series data in various fields for their 

good performance.  

Data generated from ISI web of science on 23 January 2018, as presented in Figure 

2.3, shows the number of papers published using the combination model between 2000 

and 2017. It shows that the number of publications is increasing significantly especially 

since year 2009, which indicates that the model of Box-Jenkins – GARCH-type is a 

promising one in forecasting highly volatile time series data. However, the information 

about the procedure in applying the combination model is not documented clearly. Hence, 

the development of a comprehensive procedure of BJ-G would provide useful basic 

guidelines for using the combination model of Box-Jenkins – GARCH-type to address 

univariate highly volatile data. 

 

 
Figure 2.3 Number of papers published using BJ-G model between 2000 and 2017 

generated from ISI web of science on 23 January 2018 

2.4 A Review of Some Studies on Box-Jenkins – GARCH Model 

The study on highly volatile time series for modelling and forecasting purposes 

using Box-Jenkins with GARCH-type model is supported by many researchers. Some of 

the recent studies, specifically for univariate data, are summarised in Table 2.4. To the 

best of our knowledge, although these studies achieve a certain effect in modelling and 

forecasting highly volatile time series data, very limited studies or literatures focus on the 

development of BJ-G model procedure.  
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Table 2.4 Review on the selected studies on Box-Jenkins – GARCH-type model  

Researcher Data Model Methods/Procedure 

Loi and Ng, 

2018 

- electricity prices 

- 524 weekly 

wholesale prices 

(6/5/06-20/4/16) 

- ratio 503:21 (or 

96:4) 

ARIMA-

GARCH 

i) Descriptive statistics and 

volatility checking (use standard 

deviation at level and log price) 

ii) Stationarity test: differenced, 

Perron/Voselgang breakpoint 

unit root tests 

iii) Identify model: ACF, PACF 

iv) Parameter estimate: MLE, AIC 

v) Diagnostic test: ARCH test, 

ACF on 
2ˆ
t

a  

vi) Forecast evaluation: 1-step, 

MAPE, MAE, RMSE, TIC 

*Handling outlier 

*Apply structural breaks to 

ARIMA-GARCH  

*Provides brief procedure 

Gaglianone 

and Marins, 

2017 

- exchange rate  

- 183 monthly data 

(Jan 00-Mac 

2015) with ratio 

72:111 (or 40:60) 

- 3977 daily data 

(3/1/00-

31/3/2015) with 

ratio 1565: 2412 

(or 40:60) 

AR-GARCH i) Analysis on exchange rate 

ii) Diagnostic test: t innovations 

iii) Forecasting: Point forecast 

(RMSE), multiple step ahead up 

to h = 20 (70% PIs, LPDS, 

Knüppel test, Berkowitz test) 

iv) Model ranking: local analysis, 

risk analysis 

*AR-GARCH is 1 of 14 model 

*more on multiple step forecasting  

*Brief procedure for AR-GARCH 

Ahmed, 2017 - stock market 

index prices  

- energy 

commodity 

prices: oil and 

natural gas  

541 weekly 

closing data (1/2-

8/6/2016) 

AR-EGARCH   

- for 

univariate 

data 

 

VAR-

EGARCH 

-for 

bivariate data 

i) Stationarity: ADF, PP, KPSS  

ii) Properties for volatility: Mean, 

standard deviation, skewness, 

kurtosis, JB-test, LBQ-test, 

ARCH test 

iii) lag order: SIC 

iv) Parameter estimate: AIC, SIC, 

QMLE 

v) Diagnostic Test: JB, LBQ, 

LBQ2, ARCH 

*No discussion on forecasting part 

*No framework is proposed 

Girish, 2016 - Spot electricity 

prices  

- 27384 hourly 

data (1/10/10-

15/11/13) 

- ratio 26304:1080 

(or 96:4) 

ARIMA-

GARCH, 

ARIMA-

PARCH, 

ARIMA-

EGARCH 

i) Data stationarity: first 

differenced price 

ii) Heteroscedasticity test: White 

test (for data) 

iii) Identify model: ACF and PACF 

iv) Diagnostic test: SIC, ACF, 

PACF, LBQ, LBQ2, ARCH test 

v) Forecasting evaluation: 1-step 

ahead forecast (RMSE, MAE, 

MAPE and TIC) 

*Not discuss on parameter estimate 
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Table 2.4 Continued 
 

Researcher Data Model Methods/Procedure 

Liu and Shi, 

2013 

- short term real 

time electricity 

prices  

- 18960 hourly 

data (1/1/08-

28/2/2010) 

- ratio 17544:1416 

(or 92:8) 

ARMA-

GARCH,  

ARMA-

GARCH-M 

i) Descriptive statistics on price  

ii) ARMA model: use EACF 

method 

iii) Parameter estimation: MLE 

iv) Diagnostic test: adjusted R2, F-

test, AIC, SIC, ACF and PACF 

on residuals 

v) Forecasting evaluation: 1-step 

ahead forecast (RMSE, MAE, 

MAPE, TIC) 

*no discussion on data stationarity 

*no test on heteroscedasticity 

*no graphical framework on the 

procedure 

Babu and 

Reddy, 2015 

- Stock price 

- daily closing data 

(Jan 2010-Dec 

2011) 

 

Hybrid ARIMA-

GARCH 

i) Pre-processing step: 

decompose series to highly 

and low volatile using MA 

filter. 

ii) The highly volatile data is 

partitioned and interpolated 

to apply ARIMA-GARCH 

model 

iii) Check volatility (use 

standard deviation), volatility 

clustering, fat tail 

distribution. 

iv) Forecasting evaluation: 

MAPE, MaxAPE, MAE, 

RMSE, 20-step ahead  

*no discussion on how to choose 

the model order, diagnostic test. 

*discussion more on k-fold cross 

validation in choosing model and 

forecasting. 

García-Ferrer, 

González-

Prieto and 

Peña, 2012 

- stock price 

- 1250 daily 

closing data 

- (1/1/00 – 

31/12/04) 

- ratio 1000:250 

(or 80:20) 

AR-GARCH, 

ARMA-GARCH 

i) Analysis on log return, 

descriptive statistics, JB-test 

and LBQ-test, LBQ2-test  

ii) ARMA model: SIC, 

GARCH: QMLE 

iii) Innovations: normal, t, GED 

iv) Forecast error: MSE, 1-step 

ahead 

*Propose procedure using GICA-

GARCH to fit a ARMA-GARCH 

model 
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Table 2.4 Continued 
 

Researcher Data Model Methods/Procedure 

Liu, Erdem and 

Shi, 2011 

- wind speed data 

-  hourly data 

(1/1/02-31/12/08) 

ARMA-

GARCH, 

ARMA-

GARCH-M 

i) ARMA model: use EACF 

method 

ii) Parameter estimation: MLE 

iii) Diagnostic test: adjusted R2, 

F-test, AIC, SIC, LBQ-test, 

BG-test 

*no test on heteroscedasticity, 

show data volatility using time 

plot 

* no discussion on stationarity 

data 

*no discussion on forecasting 

part 

*no graphical 

framework/procedures 

Chen et al., 

2011 

- Short-time traffic 

flow 

(transportation) 

- 3-min, 5-min, 10-

min and 15-min 

traffic flow 

- (1/10 – 30/11/09) 

- Ratio 50:50 

Hybrid ARIMA-

GARCH 

i) Stationary data: differenced 

ii) Model identification: ACF, 

PACF 

iii) Diagnostic test: LBQ, 

ARCH-test, LBQ2 

iv) Forecast evaluation: MAE, 

MSE, MRE, 1-step ahead 

*no discussion on data 

transformation, parameter 

estimate 

*provides graphical framework 

on procedure 

Walid, Chaker, 

Masood and 

Fry, 2011 

- stock market 

index prices 

- exchange rate 

- weekly closing 

data 

- (Dec 1994-March 

2009) 

AR-EGARCH i) Return price and rate, 

descriptive statistics, JB-test, 

LBQ, LBQ2-test 

ii) Stationarity test: ADF, PP, 

KPSS 

iii) Lag order: AIC, Hannan and 

Quinn 

iv) Diagnostic test: LBQ, LBQ2 

* no discussion on forecasting 

part 

*no framework/procedure is 

proposed 

Harrison and 

Paton, 2004 

- Stock market 

price 

- 1384 daily data 

(7/5/97 -16/9/00) 

 

AR-GARCH i) Analysis on stock market 

return 

ii) Descriptive statistics, 

Shapiro-Wilk for normality 

test 

iii) Parameter estimation: MLE 

iv) Model selection: AIC 

v) Diagnostic test: ARCH-test, 

LBQ-test 

*no discussion on forecasting  
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Table 2.4 Continued 
 

Researcher Data Model Methods/Procedure 

Pham and 

Yang, 2010 

- Vibration signal 

(highly volatile 

time series) for 

fault prediction 

- 470 of 6-hour 

data 

- (Sept – Nov 

2005) 

- ratio 250:220 (or 

53:47) 

ARMA(1,1)-

GARCH(1,1) 

 

i) Stationarity: ACF plot 

ii) Identify model: ACF and 

PACF 

iii) Parameter estimate: MLE 

iv) Forecasting: MSE, 1-step to 

10-step ahead  

*not emphasis on diagnostic 

checking 

*no checking on the existence of 

heteroscedasticity in the data.  

*no transformation data step. 

*shows framework, but not 

enough details on method used. 

Ord, Koehler, 

Snyder and 

Hyndman, 2009 

- gasoline price 

- monthly data 

- (Jan 1991 – Nov 

2006) 

- ratio 132:59 (or 

70:30) 

 

ARMA(1,1)-

EGARCH(1,1) 

i) Analyse log gas price 

ii) Parameter estimation: MLE 

iii) Forecasting: up to h-step 

ahead 

*use the model in monitoring 

heteroscedastic processes 

*no procedure is given on 

identification stage and 

diagnostic test 

Koopman, 

Ooms and 

Carnero, 2007 

- daily electricity 

spot prices  

- 4480 daily data 

(4/1/93 – 

10/4/05) 

periodic 

seasonal Reg-

ARFIMA-

GARCH 

i) Analyse log data, first 

difference of log prices, 

descriptive statistics 

ii) Parameter estimation: MLE, 

AIC 

iii) Diagnostic test: residual plot, 

LBQ, LBQ2-test, histogram 

and ACF for residuals, ACF 

of squared residuals, t 

innovations 

*no discussion on forecasting 

* provides basic modelling 

framework in sentence form, no 

graphical framework 

Byström, 2005 - electricity spot 

prices (highly 

volatile) 

- 41665 hourly 

data (1/1/96 -

1/10/00) 

- Ratio 

17472:24193 (or 

40:60) 

AR-

GARCH(1,1) 

i) Analysis on return price, 

descriptive statistics, LBQ-

test, LBQ2-test 

ii) Parameter estimation: MLE 

iii) Diagnostic test: descriptive 

statistics on residuals, LBQ-

test, LBQ2-test, normal and t 

iv) Forecasting: 1-step to 24-

step, use tail quantiles at 

different probability 

*no explanation on how to 

choose order of GARCH model. 

*procedure/procedure used is not 

clear presented 
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Table 2.4 Continued 
 

Researcher Data Model Methods/Procedure 

Sohn and Lim, 

2007 

- rates of Dow 

Jones Industrial 

Average 

- data stock price 

- (24/9/01-

10/11/03) 

AR-GARCH i) Analysis on log return rates  

ii) Forecasting evaluation: h-

step ahead, MRE 

*no procedure to choose the 

order of the model, assume data 

follows AR(2)-GARCH(1,1) 

Ferenstein and 

Gasowski, 2004 

- stock price 

- Daily closing 

price 

- (26/3/92 – 

9/12/02)  

 

 

AR-GARCH, 

AR-EGARCH 

i) Analysis on log returns of 

prices 

ii) Identification: use PACF of 

log return for AR model, 

LBQ-test 

iii) Parameter estimation: 

QMLE, AIC, SIC 

iv) Diagnostic test: LBQ-test, 

LM ARCH-test, QQ-plot, 

innovations distribution 

(normal, t, GED, hyperbolic) 

v) Forecasting evaluation: 

MSE, MAE, MAPE, 

MMEO, MMEU, 1-step and 

2-step 

*the ratio of estimate: forecast is 

not stated 

 

2.5 Gap of Knowledge in the Study 

In this study, the Box-Jenkins modelling is used as the basic approach in 

forecasting highly volatile time series data. There are four iterative stages in the 

modelling, Stage I (Model identification), Stage II (Parameter estimation), Stage III 

(Diagnostic checking) and Stage IV (Forecasting). In finding the gap of knowledge in the 

study, specifically in the development of the procedure in the Box-Jenkins modelling in 

handling highly volatile time series data, published books that have been highly 

influential which were written by experts on the topic of time series forecasting that is 

related to the Box-Jenkins modelling for univariate data have been referred. The four 

main references used are for theoretical and application of Box-Jenkins modelling. Table 

2.5 presents the review of the procedure of Box-Jenkins modelling from the publications.  
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Table 2.5 Review on procedure of Box-Jenkins modelling for univariate data 

Publication Contribution on Procedure Limitation/Remarks 

Time Series Analysis: 

Forecasting and 

Control 4th and 5th ed. 

(Box, et al., 2008; 

Box, Jenkins, Reinsel 

& Ljung, 2015) 

Stage I: (i) Stationarity test: ACF and 

PACF, unit root test, use differenced 

method; (iii) Identify model: ACF and 

PACF (kmax = 20); (iv) Model selection: 

AIC, SIC. The Box-Cox transformation is 

suggested for seasonal series. 

Stage II: MLE, OLS 

Stage III: autocorrelation check on 

residual, LBQ-test at kmax = 20)  

Stage IV: MSE for 1-step ahead, PIs 50% 

and 95% for multiple step. 

 Provide thorough explanation of the 

theoretical parts on the methods used.  

 Provide a brief graphical presentation 

on the stages in the procedure.  

 Provide some basic concepts of 

ARCH/GARCH in errors part of BJ. 

 To detect ARCH/GARCH effect: ACF 

and PACF of squared errors, LBQ-test 

on squared errors, ARCH LM test.  

 Illustrate the procedures using R 

software in the latest publication. 

 The procedure to 

combine the Box-

Jenkins model with 

ARCH/GARCH is not 

well explained. 

 No detailed graphical 

presentation (include 

methods and tests) on 

the procedure of BJ 

modelling either for BJ 

models or BJ-G.  

 The steps in each stage 

is not clearly explained. 

 No discussion on the 

procedure to determine 

the optimal sample size 

either for BJ models or 

BJ-G. 

 Lack of discussion on 

distribution of errors 

which is important in 

Stage III.  

 

Forecasting: 

Principles and 

Practice 1st - 2nd 

online edition (OText) 

(Hyndman & 

Athanasopoulos, 

2014; Hyndman & 

Athanasopoulos, 

2017) 

Stage I: (i) Stationarity: time plot, data 

transformation, differencing (ACF, 

ADF-test (   3
1

1 Tk ), LBQ-test  at

10k ; (ii) Identify model: ACF, PACF  

Stage II: MLE, AIC and SIC 

Stage IV: 80% and 95% PIs, 1 to n-step 

 Steps in forecasting: define problem, 

collect info, preliminary analysis, choose 

and fit models, forecasting evaluation. 

 Forecasting tools:(i) Graphics: time plot, 

lag plot, scatter plot, ACF (ii) data 

transformation: Box-Cox, calendar 

adjustments; (iii) residual diagnostics: 

plot, histogram, ACF, LBQ-test; (iv) 

forecast accuracy: in-sample to out-of-

sample (80:20), forecast error (MAE, 

RMSE, MAPE, scaled error, MASE), 

cross-validation, 80% and 95% PIs. 

 Provides a framework of general process 

of forecasting using ARIMA. 

 Emphasise graphical methods to explore, 

analyse and forecast the data. 

  Provides data analysis using R language 

specifically forecast package. 

 Provides a general idea to determine the 

optimal sample size for time series. 

 The procedures (steps, 

methods) using BJ 

model is not structured 

well in the stages of BJ 

modelling.  

 Unclear stages of the 

Box-Jenkins modelling 

in the framework of 

general process of 

forecasting using 

ARIMA.  

 Did not provide 

thorough discussion on 

the theoretical details 

behind each method. 

 No discussion on 

GARCH, suggest to use 

data transformation 

(Box-Cox) to address 

heteroscedasticity. 

 No discussion on Box-

Jenkins model and 

GARCH in handling 

volatility in data series 
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Table 2.5 Continued 

Publication Contribution on Procedure Limitation/Remarks 

An Introduction to 

Analysis of Financial 

Data with R 

(Tsay, 2013) 

 

Stage I: (i) time plots, stationarity (scatter 

plot, ACF, PACF, differencing, ADF-

test), LBQ-test at Tk ln , (ii) Identify 

model: AR (use ACF, AIC, SIC), MA 

(use PACF), ARMA and ARIMA (use 

EACF, AIC, SIC))  

Stage II: OLS, MLE 

Stage III: ACF, LBQ-test on residuals, 

DW-test, LBQ-test on squared residuals, 

LMARCH-test, error distribution. 

Stage IV: Backtesting (MSE, RMSE, 

MAE, Bias), 1 to n-step (95% PIs). 

 Properties of financial data: asset return, 

simple return, compounded return. 

 Statistical tool: moments, graphics (time 

plot, histogram, scatter plot), JB-test. 

 linear models in financial time series: 

AR, MA, ARMA, ARIMA, SARIMA, 

random walk, random walk with drift. 

 Provides steps in ARCH/GARCH model 

 Discuss ARCH and GARCH-type model 

 Demonstrate analysis using R language. 

 The procedures (steps, 

methods) using BJ 

model is not structured 

well. 

 No detailed graphical 

presentation (include 

methods and tests) on the 

procedure of BJ 

modelling either for BJ 

models or BJ-G. 

 No discussion on the 

combination of Box-

Jenkins model with 

GARCH-type in 

handling volatility in 

data series 

 No discussion on the 

procedure to determine 

the optimal sample size 

either for BJ models or 

BJ-G. 

 

Time Series 

Forecasting   

(Chatfield, 2001) 

 

Stage I: (i) Model formulation: 

preliminary analysis; (ii) Model 

selection: ACF and PACF, AIC and SIC.  

Stage III: residual plot, autocorrelation 

check, LBQ-test (k= 20).  

Stage IV: forecast evaluation (RMSE, 

MAE, MSE, PMSE, ME, MAPE), 80% or 

90% PIs 

 objectives in time series analysis: data 

description, modelling, forecasting, 

control. 

 Preliminary part: (i) Data description: 

time plot, descriptive statistics, 

histogram; (ii) Box-Cox transformation 

when series has severe changes in 

variance; (iii) data cleaning: outlier, 

errors, missing; (iv) emphasise on ACF 

 Stationarity: differencing 

 in-sample (Stage I – Stage III) and out-

of-sample (Stage IV), ratio 90:10 

 Nonlinearity checking: plot yt vs yt−1 

 Brief discussion on sample size 

 Discuss briefly on ARCH/GARCH. 

 Provides details on prediction intervals. 

 No detailed graphical 

presentation (include 

methods and tests) on 

the procedure of BJ 

modelling either for BJ 

models or BJ-G. 

 No discussion on the 

procedure to determine 

the optimal sample 

size. 

 A brief discussion on 

Stage II (MLE, OLS). 

 No discussion on the 

distribution of errors 

which is important in 

model forecasting. 

 No detailed discussion 

on models in dealing 

with univariate highly 

volatile data. 

*BJ is simplified for Box-Jenkins and BJ-G is simplified for Box-Jenkins with GARCH  
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The books of Time Series Analysis: Forecasting and Control 4th ed. by Box et al. 

(2008) have been cited 44 241 times, as generated in Google Scholar up to 23 January 

2018. Hence, it shows that the Box-Jenkins modelling has been very influential in the 

development of time series modelling. Since the study focuses on the development of the 

Box-Jenkins modelling, the books have been used as the main reference for the basic 

theories and procedures in this study. Other than that, the books by Hyndman and 

Athanasopoulos (2014,2017) and Chatfield (2001) and have also been used as key 

references in the development of the procedures for practical application of univariate 

highly volatile. Whereas, the book by Tsay has been used as the main reference for 

financial tools since the study focuses on highly volatile data that is closely related to 

financial data (Tsay, 2013). Therefore, based on the critical reviews on books presented 

in Table 2.5 and the existing publications, the knowledge gaps are identified, as the details 

are given in Table 2.6.  

Table 2.6 The knowledge gaps in the study 

New contribution Limitation/Remarks 

1. Proposed a modified procedure in modelling and forecasting 

univariate highly volatile data series using BJ-G model based on 

the Box-Jenkins modelling, by considering the methods and tests 

used in Stage I to Stage IV as suggested in the key publications 

used.  

2. Proposed a modified BJ-G procedure in dealing specifically with 

univariate highly volatile time series data which simultaneously 

ensure the number of data required for practical application using 

BJ-G model. 

3. Proposed a modified procedure in evaluating the multistep 

forecasting performance using BJ-G model. 

4. Proposed a comprehensive procedure of Box-Jenkins with all 

GARCH-type model in forecasting highly volatile time series up 

to n-step ahead. 

5. Provides a well-structured graphical presentation of each BJ-G 

stage (Stage I – Stage IV) for each proposed procedure. 

6. Evaluate the performance of the proposed procedures and the 

corresponding graphical presentations for world gold price. 

7. The procedures and the corresponding graphical presentation are 

also applicable when applying the Box-Jenkins model to data 

series, by ignoring the parts of heteroscedasticity test. 

 For univariate data 

time series only. 

 Consider the model 

of Box-Jenkins for 

the mean model. 

 Consider the model 

of GARCH-type for 

the variance model. 

 

The knowledge gaps identified are focused on the development of time series 

forecasting model in handling univariate highly volatile time series data using  
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Box-Jenkins modelling by incorporating the Box-Jenkins with GARCH-type model. The 

positioning of Box-Jenkins and the GARCH models in the univariate time series 

forecasting can be referred to in Figure 1.1 in Chapter 1. 

2.6 Concluding Remarks 

The current study aims to develop a new procedure for modelling and forecasting 

highly volatile time series data with the Box-Jenkins as the base model. Since the focus 

in this study is to develop the procedure of Box-Jenkins that deals with univariate highly 

volatile time series data, then the GARCH-type model is considered in the proposed 

procedures, namely the Box-Jenkins – GARCH’s procedure or procedure of BJ-G. The 

proposed procedure of BJ-G is demonstrated using the world gold prices as the case study. 
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CHAPTER 3 

 

 

METHODOLOGY AND STATISTICAL TOOLS 

3.1 Introduction 

This chapter theoretically describes the concepts and methodologies used in the 

study. Based on these concepts and methodologies, the current study aims to develop a 

conceptual procedure for modelling and forecasting highly volatile time series data with 

the Box-Jenkins as the base model. The world gold prices will be the case study. A general 

Box-Jenkins framework in modelling and forecasting is illustrated in Figure 3.1. 

 

 

 

 

 

 

 

 

Figure 3.1 General Box-Jenkins’s framework 

 

However, the framework can be enhanced for further improvement of procedures 

and results to develop a new procedure. In our work, while a new Box-Jenkins’s 

procedure is developed, its two important principles which are stationarity and parsimony 

will not be violated. This chapter starts with the discussion on Box-Jenkins modelling and 

forecasting procedures. Since the focus in this study is to develop a procedure of  

Box-Jenkins that deals with highly volatile time series data, then the theory of the 

GARCH models is considered in developing the combination model of Box-Jenkins – 

Stage III: Diagnostic Checking 

Stage I:  Model Identification 

Stage IV: Forecasting 

Stage II: Parameter Estimation 
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GARCH, simply called as BJ-G. In the final section, a procedure of BJ-G developed by 

the current study is presented. 

3.2 Box-Jenkins Modelling 

Box-Jenkins modelling involves five types of models (Box et al., 2008). The 

models are autoregressive (AR), moving average (MA), autoregressive moving average 

(ARMA), autoregressive integrated moving average (ARIMA) and seasonal 

autoregressive integrated moving average (SARIMA). The models which are associated 

with stationary behaviours are AR, MA and ARMA. Stationary models assume that the 

process remains in equilibrium statistically with probabilistic properties that do not 

change over time, in particular varying about a fixed constant mean level and with 

constant variance. ARIMA is the only model that handles nonstationary time series with 

nonseasonal characteristics, meanwhile, SARIMA is the only model of Box-Jenkins that 

is dedicated to nonstationary with seasonal time series. The procedure in choosing the 

appropriate Box-Jenkins model is shown in Figure 3.2. 

Time series data

Box-Jenkins models

Is the series 

stationary?

Is the series 

seasonal?

AR(p)

MA(q)

ARMA(p,q)

SARIMA(p,d,q)(P,D,Q)T

ARIMA(p,d,q)

NoNo

YesYes

 

Figure 3.2 Schematic diagram for the procedure in choosing the appropriate Box-

Jenkins Model 
 

Source: Box, et al. (2008). 

Figure 3.2 shows how to identify different types of time series data as either 

stationary or nonstationary. The general forms of the Box-Jenkins’s stationary and 

nonstationary models are given as follows. 
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i) Stationary Models   

Let ty  and ta  be the observed value and random error at time period t, 

respectively; with c is a constant,   is the mean of the model, 
p ,...,, 21

 are the 

autoregressive parameters with order p, 
q ,...,, 21

are the moving average parameters 

with order q, d is the order of differencing and B  is the backward shift operator. The 

operator of   



p

i

i

ip BB
1

1   and   



q

j

j

jq BB
1

1  are polynomials in terms of B of 

degree p and q. Note that p, q and d are integers. The stationary Box-Jenkins models have 

the form given in Equation 3.1 to 3.3. In these models, the random errors ta  are assumed 

to be independently and identically distributed (IID) with mean zero and constant 

variance of 2 .  

The autoregressive model of order p, or AR(p) is expressed as in Equation 3.1, 

tptpttt ayyycy    ...2211
  for 1,...,, 21 p    3.1 

 

or equivalently to 

   tt

p

p ayBBB    ...1 2

21  

where   pc  211 . Meanwhile, the moving average model of order q, or 

abbreviated as MA(q), is expressed as in Equation 3.2. 

 

qtqtttt aaaay    ...2211
  for 1,...,, 21 q    3.2 

 

or can be written as     tt

q

qt aBaBBBy    ...1 2

21   . 

The autoregressive moving average model of order p and q, or particularly an 

ARMA(p,q), is a model that mixes the AR(𝑝) and MA(𝑞) models as in Equation 3.3.  

  
qtqtttptpttt aaaayyycy    ...... 22112211

  3.3 

or can be written as     tt aByB   0 , where    ...1 21 pc  . 
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ii) Nonstationary Models 

The autoregressive integrated moving average model of order p and q, 

ARIMA(p,d,q) is the extended model of ARMA(p,q) with order of differencing, d. This 

model suggests that in a nonstationary case, the series need to be differenced in order to 

form a stationary series. The general form of ARIMA(p,d,q) has the form as in Equation 

3.4, 

                 1 tqt

d

p aByBB   for  .1,...,,   ,1,...,, 2121  pp      3.4 

The seasonal autoregressive integrated moving average model of Box-Jenkins 

model denoted by SARIMA   
S

QDPqdp ,, ,, , is designed for the nonstationary and 

seasonal series. This seasonal model is extended from ARIMA model and represented by 

Equation 3.5, 

           tq

S

Qt

DSd

p

S

P aBByBBBB   11    3.5 

where 



 


otherwise             ,

0 if      ,

t

t

t
y

Ddy
y


  

and    



P

I

IS

I

S

P BB
1

1 ,    



Q

J

JS

J

S

Q BB
1

1 which are polynomials in 

terms of 
sB of order P and Q,  DSS

D B 1 , S is the seasonal period, P is the order of 

seasonal autoregressive, Q is the order of the seasonal moving average, and D is the order 

of seasonal differencing.  

The Box-Jenkins approach is different from most methods in a time series because 

it uses an iterative approach of identifying a possible model from a general class of 

models. As depicted in Figure 3.1, the general Box-Jenkins framework includes four 

iterative stages namely Stage I: Model identification, Stage II: Parameter estimation, 

Stage III: Diagnostic checking and Stage IV: Forecasting. The general step by step 

procedure in the Box-Jenkins framework is briefly reviewed as follows [see (Box et al., 

2008)].  

Stage I (Identification): The stationarity in the data is tested since the Box-Jenkins 

models are applicable for stationary series data. The use of Box-Cox 
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transformation is suggested for seasonal series. The autocorrelation function 

(ACF) and partial autocorrelation function (PACF) of the stationary series then 

are used to identify the possible model of the Box-Jenkins for the data. For the 

Box-Jenkins models, the ACF and PACF properties of a stationary data series are 

employed in determining the order of the models. Basically, the sample ACF is 

used to obtain the possible values of order q for MA(q), ARIMA(p,d,q) and 

SARIMA(p,d,q)(P,D,Q)S models, and the sample PACF is used to obtain the 

possible values of order p for AR(p), ARIMA(p,d,q) and 

SARIMA(p,d,q)(P,D,Q)S models. 

Stage II (Parameter estimation): The parameters for the possible model are 

estimated using widely known parameter estimation approach such as maximum 

likelihood estimation (MLE) or ordinary least square (OLS). The model with 

significant parameter(s) will be considered for the next stage. Essentially, the 

method of MLE works by finding the most likely values of the parameters given 

the actual data. More specifically, a log-likelihood function is formed and the 

values of the parameters that maximise it are required. The MLE can be employed 

to find parameter values for both linear and nonlinear models. Meanwhile, the 

method of OLS is simply a procedure that finds the minimum of the sum of 

squared error function. 

Stage III (Diagnostic checking): In diagnostic checking or data cleaning stage, 

the chosen model will be statistically verified against the original data to see 

whether it adequately describes the series. The model fits the data well if its 

estimated errors or its residuals  tâ  are generally small, randomly distributed, 

homoscedasticity (constant and finite variance process) and contain no useful 

information, for the closeness to the white noise criteria. If the specified model is 

not satisfactory, the process of stage I to stage III is repeated by using a new 

identified model in order to improve the previous model. This iterative procedure 

continues until a satisfactory model is obtained. 

Stage IV (Forecasting): When the satisfactory model is obtained, the model then 

can be used for forecasting. The forecasting evaluation for one-step ahead is the 
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minimum mean square error (MSE) while for multiple step ahead, the forecasting 

evaluation used is the prediction intervals (PIs) of 95% and 50%. 

The graphical visualisation of the theoretical procedure of Box-Jenkins modelling 

is illustrated by Figure 3.3, where Box-Jenkins is abbreviated as BJ. The current practices 

in Box-Jenkins modelling are quite general and not thorough enough to describe the 

nature of time series data studied as well as the stages. By not being thorough, researchers 

might overlook the fact that some time series, specifically the highly volatile time series, 

which cannot be analysed using the current procedure of Box-Jenkins since the modelling 

is not able to handle the non-constant variance that exist in the time series data. 

Previous studies have shown that the GARCH models are widely applied to 

handle volatility in a data series (Ahmed, 2017; Baur & Lucey, 2010; Chen et al., 2011; 

Girish, 2016; Loi & Ng, 2018; Liu & Shi, 2013; Pham & Yang, 2010; Trück & Liang, 2012). 

Therefore, the volatility model is being considered in constructing the proposed procedure 

of Box-Jenkins model that deals with highly volatile time series data. In addition, by 

considering the GARCH model in the errors, it would be useful in providing a more 

accurate prediction interval in the future forecast (Ruppert & Matteson, 2015).  

3.3 The Combination of Box-Jenkins and GARCH Model  

In dealing with univariate highly volatile time series data using Box-Jenkins 

approach, the consideration then is to study the combination of Box-Jenkins and the 

GARCH (BJ-G) model. Based on previous studies on Box-Jenkins with GARCH-type 

model as summarised in Table 2.4 (in Chapter 2), the use of the combination model in 

handling heteroscedasticity in a data series is supported by many researchers. However, 

to the best knowledge of the researcher, the previous studies are lack in the development 

of procedure of Box-Jenkins – GARCH-type model. Therefore, this study initiates to 

develop a comprehensive procedure of the model by focusing on the combination of Box-

Jenkins with GARCH-type model.  
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Figure 3.3 Theoretical procedure of the Box-Jenkins modelling 
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The standard GARCH is considered in the preliminary stage of this study due to 

its parsimonious characteristic as well as its popularity in handling heteroscedasticity in 

a data series (Babu & Reddy, 2015; Chen et al., 2011; Gaglianone & Marins, 2017; Girish, 

2016; Liu & Shi, 2013; Loi & Ng, 2018; Pham & Yang, 2010; Tan et al., 2010; Tsay, 

2013; Zhou et al., 2006). By applying standard GARCH model, or simply called as 

GARCH, as a base model to handle the volatility in the data series, the basic theory related 

to the volatility model is discussed. In this volatility model, the key concept is the 

conditional variance, that is, the variance conditional on the past. Suppose that the mean 

model at time t for a univariate series is given as in Equation 3.6, 

ttt as          3.6 

where ts  and ta  be the stationary data and random error at time period t, respectively; 

with t is conditional mean of ts  and ttta   where t  is the innovations of the model 

and has zero-mean independent and identically distributed sequences with continuous 

distributions. The term ta  follows a GARCH(r,s) model if the conditional variance of ,ts  

denoted by  2

t , is given as in Equation 3.7 (Bollerslev, 1986; Francq & Zakoïan, 2010). 
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where i  and i  are the coefficient of the parameters ARCH and GARCH, respectively. 

The random variable t  is called the volatility of ta . According to Francq and Zakoian, 

there is no general agreement concerning the definition of volatility; volatility sometimes 

refer to a conditional standard deviation, and sometimes to a conditional variance (Francq 

& Zakoïan, 2010). 

 There are two definitions regarding the GARCH process (Francq & Zakoïan, 

2010). The first one is, the ta  is called a GARCH(r,s) process (or sometimes called semi-

strong) if its first two moments exist and satisfy:  

(i)    ttuaaE ut     ,, . 

(ii) There exist constant 0 , rii ,...,2,1,   and sjj ,...,2,1,  in Equation 3.7. 
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However, the first definition of the GARCH process does not directly provide a solution 

process satisfying those conditions. While, the second definition is, the ta  is called a 

strong GARCH(r,s) process if  





















s

j

tj

r

i

tit

ttt

a

a

1

2

1

1

2

10

2 



 

where the i  and 
j  are nonnegative constants  0,0  ii  and 0  is a (strictly) 

positive constant  00  . The second definition is more restrictive but allows explicit 

solutions to be obtained, which is introduced by Bollerslev. If r = 0, the GARCH(r, s) 

process reduces to the ARCH(s) process, and for r = s = 0,  ta  is simply white noise. In 

the ARCH(s) process, the conditional variance is specified as a linear function of past 

sample variances only, whereas the GARCH(r, s) process allows lagged conditional 

variances to enter as well (Bollerslev, 1986). 

In the combination model of BJ-G, a two-phase procedure is proposed. In the first 

phase, the best model identified from the Box-Jenkins models is first used to model the 

mean data of time series and the residuals of this model will then be investigated for 

heteroscedasticity to detect the existence of volatility in the data series. In the second 

phase, the GARCH is used to model the variance equation of the residuals. In this 

combination model, the Box-Jenkins model with GARCH error components is applied to 

analyse the univariate series and to predict the values of approximation series (Chen et 

al., 2011; Liu & Shi, 2013; Tan et al., 2010; Zhou et al., 2006). In this procedure, the error 

term ta  of the Box-Jenkins model is said to follow a GARCH process of orders r and s. 

The flowchart of this combination procedure of Box-Jenkins with standard GARCH can 

be summarised as shown in Figure 3.4 and this procedure is applicable for other GARCH-

type models. Note that, the error distribution for GARCH model denoted by t  is an 

independent and identically distributed (IID) as normal, t and GED distribution (Tsay, 

2013). 
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Figure 3.4 Procedure of combination of BJ-G, specifically with standard GARCH 
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The ACF and PACF of the squared residuals help to specify the GARCH orders, 

r and s, respectively (Pham & Yang, 2010). In practice, the modelling procedure of 

GARCH model consists of three steps as follows: 

Step 1: Build an econometric model for the observed data and remove any serial 

correlation in the data. Use the residual series of the econometric model to check GARCH 

effects. The ARCH test and Lagrange Multiplier test are used to check conditional 

heteroscedasticity. 

Step 2: ACF and PACF of the squared residuals help to specify the GARCH orders, 

r and s, respectively. However, normally these orders are not very accurate.  

Step 3: To check the adequacy of the fitted model, Ljung - Box Q-test (LBQ-test) of 

estimated residuals is used for mean model and squares of estimated residuals for the 

variance model. 

 

3.4 The Proposed Modified Procedure of Box-Jenkins – GARCH Model for 

Modelling and Forecasting Highly Volatile Time Series Data 

Figure 3.5 illustrates the new procedure of Box-Jenkins – GARCH (or BJ-G) 

model for modelling and forecasting highly volatile time series data as proposed by the 

current study. The proposed procedure takes into account the steps that were usually 

omitted by researchers but yet should be considered to ensure the validity of the Box-

Jenkins results specifically to highly volatile time series data. Before the four stages as 

shown in Figure 3.1 are conducted, the time series need to be partitioned into in-sample 

and out-of-sample series, in a typical ratio of 90:10 (Chatfield, 2001). The in-sample 

series is used to estimate model which involves the identification, parameter estimation 

and diagnostic checking stages. Meanwhile, the out-of-sample series will be used to 

validate the model developed in the previous stage. This cross-validation procedure has 

been proposed and practiced by Box and Jenkins (Box & Jenkins, 1968), although it is 

not clearly emphasised. It is stated that cross-validation procedure is a more sophisticated 

version of in-sample/out-of-sample in evaluating forecast accuracy (Hyndman & 

Athanasopoulos, 2014).  
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Figure 3.5 Proposed procedure of BJ-G for highly volatile time series data (Note: Box-Jenkins is abbreviated as BJ) 
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In general, time series data go through the same identification and parameter 

estimation stages as the standard Box-Jenkins procedures. However, for a highly volatile 

time series data, the existence of heteroscedasticity in the diagnostic checking stage will 

violate the assumption of constant variance in the Box-Jenkins models. Therefore, a 

combination of BJ-G is proposed in the standard Box-Jenkins procedures in handling 

volatility in the data series, namely the procedure of BJ-G. The details of each stage for 

the proposed procedure are described in Section 3.4.1 to Section 3.4.4.  

 

3.4.1 Stage I: Model Identification  

In the model identification stage, the procedures can be divided into two parts, 

data screening and model identification, as can be illustrated in Figure 3.6. In the data 

screening part, there are five procedural steps that should be considered in this proposed 

procedure, which are (i) data plotting, (ii) descriptive statistics, (iii) data stationarity, (iv) 

preliminary linearity test, and (v) Portmanteau test.  

In practice, the first step of data screening is by plotting a time series graph to 

detect three important characteristics of the data series: (i) variation that increases or 

decreases as the series increases (nonstationary in-variance), (ii) occurrence of an upward 

or downward trend (nonstationary in-mean), and (iii) seasonality; in tracing the data series 

movement. Meanwhile, the part of descriptive statistics is important in developing the 

basic statistical measures such as mean, variance, skewness and kurtosis in studying the 

characteristics of a time series data. These basic statistical measures can be explained 

using the concept of moments of a random variable, as can be referred to Section 3.4.1.1. 

In dealing with a time series data via the Box-Jenkins modelling, stationarity is 

one of the important aspects that need to be considered, as thoroughly explained in 

Section 3.4.1.2. Stationarity in data can be classified into two: (i) stationarity in-variance 

and (ii) stationarity in-mean. Whenever the data exhibits a large variation within a given 

period, the stationarity in-variance can be achieved using suitable transformation.  
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Figure 3.6 Detail procedures in Stage I of the procedure of BJ-G for highly volatile 

data 
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If the series is nonstationary in-variance, the data series need to be transformed 

first in order to stabilise the variance. The objective of the transformation is to simplify 

the pattern in the historical data by removing known sources of variations or by making 

the pattern more consistent across the whole data set since simpler patterns usually lead 

to more accurate forecasts (Hyndman & Athanasopoulos, 2014). When dealing with 

historical data which exhibit increasing or decreasing pattern as the series increases, the 

data transformation is required for better results. In this study, the Box-Cox 

transformation is used as the data transformation method due to its potential best practice 

in normalising data, stabilising variance and reducing heteroscedasticity (Box & Cox, 

1964; Osborne, 2010). The details of Box-Cox transformation method can be referred to 

Section 3.4.1.2 (a). 

When the variance in the data series is stabilised, the trend in-mean is investigated. 

If the series shows a trend either upward or downward within a given period, which 

demonstrates nonstationary in-mean, then the series need to be differenced to achieve the 

stationarity. The stationarity in-mean can be graphically identified and tested using the 

concept of autocorrelation functions (ACF) and partial autocorrelation functions (PACF) 

as the theory for the concepts can be referred to Section 3.4.1.2 (b(i)). On the other hand, 

the stationarity in-mean can be checked statistically using the unit root test such as the 

Augmented Dickey-Fuller test (ADF-test), as presented in Section 3.4.1.2 (b(ii)). 

Once the time series data has achieved the stationarity, the preliminary linearity 

test is suggested in the proposed procedure as shown in Figure 3.5 to verify that a linear 

model, specifically the Box-Jenkins model, is appropriate to model the stationary data, as 

can be referred to Section 3.4.1.3. Then, the Portmanteau test using LBQ-test, as 

discussed in Section 3.4.1.4, is recommended to check the existence of serial correlations 

in the linear series since the Box-Jenkins model is only valid for correlated series. 

However, these two procedures have always been neglected in many studies, even though 

these two procedures are important as an initial procedure either to continue or to stop in 

applying the Box-Jenkins modelling in analysing as well as forecasting data series.  

After the data series pass the screening part, the data is well prepared for the model 

identification part. In practice, the ACF and PACF of the stationary data will be used to 

identify the possible models of Box-Jenkins. However, the autocorrelations function 

method is uncertain and not quite informative in identifying the appropriate Box-Jenkins 
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model. Hence, in this proposed procedure, the extended autocorrelation function (EACF) 

method is strongly recommended to be used as an alternative to identify the most 

appropriate order of the Box-Jenkins model. The details of the EACF approach can be 

referred to Section 3.4.1.5.  

 

3.4.1.1 Moments of a Random Variable  

 Volatile time series always arises in financial data. In finance, the first fourth 

moment of a random variable are used to describe the behaviour of asset prices and returns 

(Tsay, 2013). The prices and returns are considered as continuous data since it takes any 

value in the interval on a given number line. By definition, the  th moment of a 

continuous random variable X about the origin is defined as  
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 dxxfxXEm 
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where  XE  denotes the expectation of X  and  xf  is the probability density 

function (pdf) of X. The first moment is defined by  

 

    .   1 



 dxxfxXEm      3.9 

 

The first moment is known as the mean, denoted by X ,  XEm X  1 . It measures 

the central location of the data series.  

The  th central moment of X about the origin is defined as in Equation 3.10, 

provided that the integral exists. Therefore, the second central moment 2m  is defined by 

Equation 3.11, is known as the variance of X, denoted by 
2

X  which measures the 

variability of the data series. The positive square root of variance represents the standard 

deviation of X, denoted by X . For asset prices and returns, variance (or standard 

deviation) is a measure of uncertainty and often used as a risk measure.  
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The third central moment, 3m  relates to the symmetry of the data series with 

respect to its mean. The normalisation of the third central moment is called the skewness 

of X, denoted by S(x).  The skewness indicates the degree of asymmetry of the distribution 

about the mean, which is defined as Equation 3.12. 
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Meanwhile, the normalisation of the fourth central moment is called the kurtosis 

of X, denoted by K(x). It measures the tail thickness of the distribution of X.  The kurtosis 

indicates the peakedness of a distribution about its mean which is defined as in Equation 

3.13. 

 

 
 








 


4

4

X

XX
ExK




              3.13 

 

The quantity of   3xK  is called the excess kurtosis since   3xK  is for 

normal distribution. A distribution with positive excess kurtosis is said to have heavy 

tails, implying that the distribution has more mass on the tails as compared to normal 

distribution. This means that a random variable from such distribution contains more 

extreme values, and the distribution is said to be leptokurtic. On the other hand, a 

distribution with negative excess kurtosis is said to have short tails, and the distribution 

is said to be platykurtic. 

In finite sample, the moments of a random variable can be estimated. Let 

 Txxx ,...,, 21  be a random sample of X with T observations. The estimated sample mean, 

sample variance, sample skewness and sample kurtosis are given by Equation 3.14 to 

Equation 3.17, respectively. The hypothesis and its testing regarding the mean, skewness 

and kurtosis of the series can be summarised as in Table 3.1. 
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Table 3.1 Test of hypothesis for mean, skewness and kurtosis for a data series 

Hypothesis Test statistic Critical point Decision rule 
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*For a sufficiently large T, the test statistic approaches a standard normal distribution. 

In the hypothesis testing on X , the property of the consistent estimate of X  

under rather weak conditions, specifically 










T
NX X

X

2

,~


 , makes the test statistic 

approaches a standard normal distribution for a sufficiently large T.  While, according to  

Snedecor and Cochran (1980), if X is a normal random variable, then  xŜ  and   3ˆ xK  

are distributed asymptotically as normal with zero mean and variances 
T

6
 and 

T

24
, 

respectively. Jarque and Bera proposed a normality test based on these asymptotic 

properties, which can be used to test the normality of the asset prices and returns (Jarque 

& Bera, 1987).  

3.4.1.2 Stationarity in Time Series 

A time series is a set of observations sequentially in time, hence a time series 

analysis is about the study of data collected through time. A stationary process is a special 

class of stochastic processes, which is based on the assumption that the process is in a 

particular state of statistical equilibrium. A stochastic process is a statistical phenomenon 
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that evolves in time according to probabilistic laws or can be said as a model that 

describes the probability structures of a sequence of observations. A stochastic process is 

said to be strictly stationary if its properties are unaffected by a change of time origin, 

that is, if the joint probability distribution associated with T observations 
Tttt yyy ,...,,

21
, 

made at any set of times Tttt ,...,, 21 , is the same as the T observations ktktkt T
yyy 

,...,,
21

, made at times ktktkt T  ,...,, 21 . Thus, for a time series to be strictly stationary, the 

joint distribution of any set of observations must be unaffected by shifting all the times 

of observation forward or backward by any integer of k.  

The stationarity assumption implies that the probability distribution  tyf  is the 

same for all times t and may be written as  yf . Hence, the stochastic process has a 

constant mean as given in Equation 3.18, 

 

   dyyfyyE t 
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which defines the level about which it fluctuates, and a constant variance as given by 

Equation 3.19, 

 

      



 dyyfyyE ty  

222               3.19 

 

which measures its spread on this level. In practice, the mean   and the variance 
2

y  of 

the stochastic process can be estimated by the sample mean and the sample variance of 

the time series, given by Equation 3.20 and Equation 3.21, respectively (Tsay, 2013). 
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 The stationarity assumption also implies that the joint probability distribution 

 
21

, tt yyf  is of constant interval for all times 21 , tt . Under the stationarity assumption, the 

covariance between ty  and kty  , separated by k intervals of time or by lag k, must be the 

same for all times t. In time series, covariance is used to investigate how observations are 
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related to each other in time and it measures the degree of second order variation between 

two data at two different times. Therefore, the covariance of ty  and kty  is known as the 

autocovariance coefficient at lag k, denoted by k , is given as Equation 3.22. On the other 

hand, a stochastic process is weakly stationary if the mean   is a fixed constant for all 

times t and the covariance k  depends only on the time difference or time lag k for all 

times t. 

 

        kttkttk yyEyy ,cov              3.22 

 

Similarly, the autocorrelation coefficient at lag k or the correlation between ty  

and kty  , denoted by k , is defined by Equation 3.23,  
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since for a stationary process, the variance 
22

ktt yy 
  and 0

2  y . Particularly, if 

,0k  Equation 3.23 implies that 10   .  

The covariance matrix of symmetric form, T  associated with a stationary 

process for observations Tyyy ,...,, 21  made at T successive time is given by 
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where TyT  2  , refer to Equation 3.23. The covariance matrix is formed from the 

autocovariance coefficients associated with constant elements on any diagonal, is called 

an autocovariance matrix. The corresponding correlation matrix T  is called an 

autocorrelation matrix. Both T  and T  are positive definite for any stationary process 

(Box et al., 2008). This positive definiteness of the T  indicates that its determinant and 
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all principal minors are greater than zero, which then implies that 1,...,,1 21  q  

for q orders. 

The plot of k versus lag k is called the autocovariance function of the stochastic 

process, similarly the plot of k  versus lag k is called the autocorrelation function (ACF) 

of the process. The autocovariance function and the ACF are denoted by  k  and  k , 

respectively. The  k  is a plot of the diagonals of T  and is necessarily symmetric about 

zero, implies kk   . Examples of ACF plot is given in Figure 3.7. 

 

 
Figure 3.7 ACF plot 

Therefore, it can be concluded that a stationarity process for ty  is completely 

characterised by its mean   and its autocovariance function  k . The stationarity 

process can also be characterised by its mean  , variance 
2

y  and autocorrelation 

function  k  or ACF. However, the later approach is mostly used in practical 

applications. In time series modelling, the model cannot be directly applied if the series 

is nonstationary. A stationary time series is one whose properties do not depend on the 

time at which the series is observed or more precisely, if ty  is a stationary time series, 

then for all n, the distribution of  Nttt yyy  ,,1,   does not depend on t. Figure 3.8 

illustrates the case of stationary series which shows that the series appear to vary about a 

fixed level, that is zero.  

 

 
Figure 3.8 Stationary series 
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White noise process is an example of a stationary process. It is a sequence of IID 

random variables, denoted as Taaa ,...,, 21 , which is assumed to have mean zero and 

variance 2

a . The independence implies that ta  are uncorrelated, hence its 

autocovariance is given by Equation 3.24. 
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Since stationarity is the initial aspect that needs to be considered when dealing 

with time series data, therefore it is important to know whether the data contains any trend 

or seasonal characteristics. The time series with trends or with seasonal characteristics 

are not stationary since the trend and seasonality will affect the value of the time series at 

different times. The graphical representation for cases of nonstationary series is illustrated 

in Figure 3.9. Figure 3.9(a) shows the series does not vary about a fixed level, exhibits an 

overall upward trend and the variances increases as the series increases. Time series that 

exhibit these phenomena are said to be nonstationary in-mean and in-variance. Figure 

3.9(b) presents the case of nonstationary in-mean since it exhibits a trend in the series. 

The case of seasonality series is shown in Figure 3.9(c), since the series presents a 

characteristic of repetitive pattern in nature. Meanwhile, Figure 3.9(d) illustrates the case 

of seasonality and nonstationary in-mean and in-variance. 

 

The stationarity process for the case illustrated in Figure 3.9(a) is presented in 

Figure 3.10. Figure 3.10(a) shows the observed series of daily gold prices in the Malaysia 

market from year 2003 to 2014, which indicates the case of nonstationary in-mean and 

in-variance, as well as exhibiting overall upward and nonseasonal trends. In order to make 

such data series stationary, data transformation and data differencing are needed. The log 

transformation is suggested to handle nonstationary in-variance based on certain criteria 

and the differencing method is used to cater nonstationary in-mean. 
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Figure 3.9 Graphical representations for several cases of nonstationary series 

The plot of transformed series is shown in Figure 3.10(b). After the 

transformation, the series is found to be less volatile, however, the upward trend still 

exists in the series, therefore the transformed series need to be differenced. The 

differenced process is given by
1

* log  log  ttt yyy , where *

ty  is the transformed data 

at time t and graph for the differenced data is shown in Figure 3.10(c). Figure 3.10(c) 

shows the series is stationary after the first differenced on the transformed series, which 

presents that the transformation and differencing have made the nonstationary series into 

stationary series. The stationary series presents variances that change over time as shown 

in Figure 3.10(c) and it is usually observed in financial time series data. This volatility 

behaviour (variances change over time) can be captured by conditional heteroscedasticity 

models such as ARCH or GARCH models. If the first differenced is insufficient to make 

the series stationary, Box and Jenkins suggested that the second differenced is always 

sufficient for most series to achieve stationarity (Box & Jenkins, 1968). 
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           (a) 

 
         (b) 

 
          (c) 

 

Figure 3.10 The plots of nonstationary series to obtain stationary series after 

transforming and differencing 

3.4.1.2(a)  Stationarity in-Variance: Box-Cox Transformation Method 

The Box-Cox transformation has found more practical data transformation in a 

variety of fields, especially in econometrics (Sakia, 1992). The Box-Cox transformation 

is popular in financial time series analysis and has been considered in forecasting 

volatility (Gonçalves & Meddahi, 2011; Higgins & Bera, 1992). The use of Box-Cox 

power transformation in improving forecasting accuracy is also supported by many 

researchers (Lee, Sadaei, & Suhartono, 2013; Luetkepohl & Xu, 2011). 

The use of Box-Cox transformation which is a preliminary step in the 

identification stage of fitting Box-Jenkins model was recommended by Box and Jenkins 

for seasonal series (Box & Jenkins, 1976). Box and Jenkins suggest power or log 

transformations to achieve stationarity in the variance of the time series data. The power 

and log transformation is known as the Box-Cox transformation named after Box and 
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Cox (Box & Cox, 1964). The Box-Cox transformation is a modification from a family of 

power transformations introduced by Tukey (Tukey, 1957). The formula of the Box-Cox 

transformation for positive series, 0ty  is given in Equation 3.25,  
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where ty  is the actual data at time t, *

ty  is the transformed data at time t, and   is the 

minimum residual mean square error value. 

Box and Cox proposed the Box-Cox transformation as a solution to satisfy these 

assumptions: (i) the variables (or their error terms) are normally distributed, (ii) the 

additivity of the errors structures (or mean model is linear), and (iii) the variance of error 

terms is homoscedastic. However, the data transformation approach is also well applied 

to the case of heteroscedastic in the error terms as well as able to reduce the noise and 

volatility effect in the data (Gonçalves & Meddahi, 2011; Lee et al., 2013). According to 

Osborne (2010), Box-Cox transformation represents a potential best practice whenever 

normalising data or equalising variance is desired. Frequently, the transformation not only 

stabilises the variance, but also improves the approximation of the distribution by normal 

distribution. Therefore, the Box-Cox transformation can be a solution for simultaneously 

correcting normality, linearity and reducing volatility in the variance (Box & Cox, 1964; 

Osborne, 2010; Sakia, 1992).  

The Box-Cox transformation represents a family of power transformations that 

incorporates and extends the conventional options to help researchers easily find the 

optimal transformation of data. The approach suggests a   value that corresponds to an 

understandable transformation to make it easier to transform the data back (back-

transform) to obtain forecasts on the original scale. Table 3.2 shows some commonly used 

values of   and its associated transformation.  

 

Table 3.2 Some commonly used values of   and its associated transformation 

Values of   -1.0 -0.5 0 0.5 1.0 

Transformation 

t
y
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t
y

1
 te ylog  

t
y  ty  
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As reported by the previous literatures, it is recommended to use log function as 

the power transformation especially for financial data (Luetkepohl & Xu, 2011; Proietti 

& Lütkepohl, 2013). Note that the log function is a subset of the class of Box-Cox 

transformation whenever   equals to zero. According to Nelson and Granger (1979), the 

log transformation is frequently used by econometricians, either because the change in 

logarithm of variables approximates percentage changes, or rate of return, or because it 

is observed that the variability of a series appears to be related to the level, so that using 

logarithms may produce relationships with more homogeneous residual. The use of log 

function in the financial data also seems related to the distribution of data itself since most 

of the financial data tends to be positively skewed and the logarithmic transformation is 

recommended for positively skewed data (Olivier & Norberg, 2010).  

According to Box and Cox (1964), in estimating the  , an assumption is made 

that for some unknown  , the transformed data ,,...,2,1for    ,* Tiyi   satisfies the full 

normal theory assumptions (i.e. independently normally distributed with constant 

variance 2 ) and with expectation 
    ayE  , where a is known  TT   matrix and 

  is a  1T  vector of unknown parameters associated with the transformed data, or can 

be simplified as    . ,~ 2 aNIDyt
 

Consider a time series Txxx ,...,, 21  with normal pdf, as given by 
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1
exp2,; 


 tt xxf . 

 

According to Box and Cox (1964), the probability density for the untransformed 

(original) data ty  is obtained by multiplying the normal density by the Jacobian of the 

transformation. By considering the assumption of  , ,~ 2* aNIDyt
 the pdf of ty  is 

given by Equation 3.26. 
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The likelihood function (L) is the product of the pdf for each ty , given by  
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Then, by multiplying the transpose matrix   ayt

*
to the matrix  ayt 
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product can be expressed as  
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Therefore, the likelihood function can be simplified as Equation 3.27. 
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Box and Cox applied the MLE approach in estimating parameter of  . The MLE 

method was developed by Fisher in the 1920s and since then it has been widely used due 

to sufficiency, consistency and efficiency properties it has (Myung, 2003). Therefore, by 

taking the natural logarithm of the likelihood function,  
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Thus, for fixed  , the maximised log likelihood is given by Equation 3.28,  
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where  
 
T

S 
 2ˆ  and  S is the residual sum of squares in the analysis of variance of 

*y . 

Gold price consists of positive value, therefore the data considered in this study is 

the case for 0ty . According to Box and Cox, the second term in Equation (3.28) is 

replaced by  



T

t

te y
1

log1  in the case of 0ty  (Box & Cox, 1964). By substituting 

 S and the updated second term to Equation 3.28, therefore the maximised log 

likelihood becomes an expression as Equation 3.29. 
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Then, by plotting  maxln L  versus  for a trial series of values, the maximizing 

value of ̂  may be read-off, with  %1100   confidence interval as given by 

     


2

maxmax
2

1
lnˆln  LL , where  is the number of independent components 

in  .  

Since  is employed significantly in the Box-Cox transformation and the 

transformation is widely applied in analysing and forecasting data, many software offer 

the plotting with estimated value of   with its 95% confidence interval based on the Box-

Cox power transformation approach, such as Minitab and R language. There are many 

functions in the forecast packages in R that is specially built to compute and plot for the 

Box-Cox transformation such as AID package (Asar, Ilk, & Dag, 2017), BoxCox function 

in car package (Fox, Weisberg, Adler, & Bates, 2015), BoxCox function in MASS 

package (Ripley, Venables, Bates, & Hornik, 2017) and the BoxCox  function in 

forecast package (Hyndman et al., 2015). In this study, the estimation of   is obtained 

using BoxCox function in forecast package or using AID package. However, there are 

limitations of the R packages such as the forecast package give the value of  without 

plotting and the AID package is only valid for 5000T . Therefore, for the case of 

5000T , the estimated  can be obtained using Minitab.  

 

3.4.1.2(b) Stationary in-Mean 

 

Most volatile time series specifically in finance and economics exhibit trending 

behaviour or nonstationary in the mean. Since the data should be in a stationary form to 

be analysed, then if the data exhibits trending characteristics, some form of trend removal 

is required. There are two common procedures to remove the trend that are the 

autocorrelation functions (ACF and PACF) and the unit root test methods.  

 

(i) Sample Autocorrelation Function and Sample Partial Autocorrelation 

Function 

 

Box and Jenkins proposed to use the ACF and the PACF of the sample data as the 

basic tools in checking the stationarity in the mean as well as to identify the order of the 

time series model (Box & Jenkins, 1968). They provided both a theoretical framework 
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and practical rules for determining appropriate values for p and q as well as their seasonal 

counterparts of P and Q by using the ACF and the PACF. The use of autocorrelation 

functions in a linear time series model is able to capture the linear dynamic of the data 

(Tsay, 2005). The ACF and the PACF provide a useful measure of the degree of 

dependence between values of a time series at specific intervals of separation and play an 

important role in the prediction of future values (Boland, 2008). On the other hand, the 

ACF and PACF of the squared residuals from a stationary series are used to get the 

possible values of r and s, respectively, for the  sr,GARCH  models.  

The ACF is a measure of the linear relationship between time series observations 

separated by some time period, denoted the lag k. Note that the correlation coefficient 

between ty  and kty  is called the lag-k autocorrelation of ty  and is commonly denoted 

by k , which is specifically defined as Equation 3.30, 
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where    tkt yy VarVar  , for the case of weakly stationary. A weakly stationary time 

series ty  is not serially correlated if and only if 0k  for all 0k . The collection of 

autocorrelations,  k , is called the ACF of ty . 

Box concluded that most satisfactory estimate of the kth lag autocorrelation k  

from data of Tyyy ,...,, 21  is denoted by kr  as given in Equation 3.31 (Box et al., 2008). 
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The value kr in Equation 3.31 is called the sample autocorrelation function at lag k. The 

plot of kr  versus lag k is called the sample autocorrelation function of the process, refer 

to Figure 3.7. Since the ACF is a plot of the diagonals of the T  and symmetric about 

zero, therefore in practice, it is necessary to plot the positive half of the sample ACF. 
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Sometimes, the sample ACF is called as the correlogram. The characteristic of positive 

definiteness of the T  which indicates that 1,...,,1 21  q , implies the values of 

kr  is 11  kr . 

 

In identifying a model for a time series, it is necessary to have a rough check on 

whether k (or kr ), is effectively zero beyond a certain lag. Thus, Bartlett’s 

approximation is employed to approximate large-lag standard error of the estimated 

autocorrelation kr  at lags k greater than some value q beyond which the theoretical 

autocorrelation function k  may be deemed to have “died out”, which is expressed by 

Equation 3.32. 
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In practice, the  qkrk ,...,2,1   are substituted to replace the k . The large-lag 

standard error approximates the standard deviation of kr  for appropriately large lags

 qk  , with the assumption that the k  are all essentially zero beyond some 

hypothesised lag qk  . 

Similarly, the large-lag Bartlett’s approximation for the covariance between the 

estimated autocorrelations kr  and skr   at two different lags k and sk  is given in 

Equation 3.33. This approximation result is required in the interpretation of individuals 

since large covariance can exist between neighbouring values. 
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              3.33 

 A special case of the large-lag standard errors occur when 0p . In this case, the 

k  are taken to be zero for all lags (other than lag 0), hence the series is completely 

random or white noise. Thus, the standard errors for kr  can be expressed in the simple 

form as in Equation 3.34.  

  0        , 
1

 k
T

rse k               3.34 

 



59 

For the white noise series, the result in Equation 3.33 indicates that the estimated 

autocorrelations between kr  and skr   are uncorrelated, therefore a collection of estimated 

autocorrelations for different lags will tend to be independently and normally distributed 

with mean 0 and variance T/1 . Noted that, the kr  is also known to be approximately 

normally distributed for large T. 

While, the partial autocorrelation function is a device that exploits the fact that an 

AR(p) process has an autocorrelation function that is infinite in extent, it can by its nature 

be described in terms of p nonzero functions of the autocorrelations. The PACF shows 

the relation between two observations ty  and kty   after they are separated with other 

observations between ty  and kty  . Theoretically, PACF is a function of two observations 

ty  and kty   that can be separated by a lag of k time units, denoted by kk . The partial 

autocorrelation function of a pth-order autoregressive process has a cut off after lag p. In 

practice, the estimate of the kth lag partial autocorrelation from data of Tyyy ,...,, 21 , is 

denoted by kkr , as given in Equation 3.35. 
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where .1,...,2,1for   ,11,   kjrrrr jkkkkkjk
The kkr  in Equation 3.35 is called the 

sample partial autocorrelation function at lag k. The plot of kkr  versus lag k is called the 

sample partial autocorrelation function of the process. The characteristics of symmetric 

and positive definiteness for kkr  are similar to the sample ACF, which implies 

11  kkr .  

As for the sample ACF, it also needs to have a rough check on whether kkr  is 

effectively zero beyond a certain lag p in identifying a model related to autoregressive. 

On the hypothesis that the process is autoregressive of order p, it was shown that the 

estimated partial autocorrelations of order 1p and higher, are approximately 

independently and normally distributed with zero mean (Daniels, 1956; Jenkins, 1961; 
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Quenouille, 1949).  Also, if T is the number of observations used in estimating, the 

variance of the estimated partial autocorrelations of order 1p and higher is given by 

Equation 3.36.   

  pk
T

rkk        ,  
1

var               3.36 

 

Thus, for the partial autocorrelations, the standard error of the estimated partial 

autocorrelations of order 1p and higher is expressed by Equation 3.37. 

 

  pk
T

rse kk         ,  
1

              3.37 

 

A time series is said to be stationary when the sample ACF and PACF dies down 

or cuts off drastically in the correlograms, as given in Equation 3.38,  

 

pkr

qkr

kk
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for       ,0

for        ,0
               3.38 

where p and q are the number of lag that the sample ACF and PACF cuts off, respectively. 

For the Box-Jenkins models, the sample ACF and the sample PACF are used to get the 

possible order q of models that consist of moving average components and to get the 

possible values of order p for models that consist of autoregressive components, 

respectively, for a stationary data series. Box et al. provides a convenient reference table 

of the properties of the theoretical autocorrelation and partial autocorrelation functions 

for autoregressive and moving average processes of first and second order, as summarised 

in Table 3.3 (Box et al., 2008). 

 

In obtaining a useful estimate of the ACF and PACF, Box and Jenkins recommend 

that the number of data be at least 50 and the value of k  not larger than 
4

T
(Box & Jenkins, 

1968). Alternatively, Hyndman and Athanasopoulos (Hyndman & Athanasopoulos, 

2014) proposed a particular formula of the maximum number of lag k of the ACF and 

PACF, denoted by maxk , given by Equation 3.39,  

 











w

T
k 10max log10                3.39 
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where T is number of observations and w is number of series. Since the scope in this study 

is univariate data, therefore the maximum lag can be rewritten as Equation 3.40. Note 

that, the suggested maxk  value is still consistent with the idea from Box and Jenkins.  

 

Tk 10max log10                3.40 

 

Table 3.3 Behaviour of the ACF and PACF for the dth difference of an ARIMA 

process of first and second order  
 

Source: Box et al. (2008) 
 
 

Order Behaviour of k  Behaviour of kk  Preliminary  

estimates 
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11    11 1    
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ii. Unit Root Test: Augmented Dickey-Fuller Test 

Despite the visual inspection of the autocorrelation functions, the formal method 

to test the trend stationarity of a series is the unit root test. Unit root test is a method for 

detecting unit roots in time series since the presence of a unit root indicates that the time 

series is not stationary in-mean so that the series should be differenced in order to make 

it stationary. One of the most widely used unit root test is the Augmented Dickey-Fuller 

test (ADF-test). 
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Dickey and Fuller proposed a useful tool for testing a series for the presence of a 

unit root, known as standard Dickey-Fuller test (DF-test) (Dickey & Fuller, 1979). This 

test is used to determine whether the series is stationary or should it undergo differencing 

to achieve stationarity, and they proved that the test is more powerful compared to Box-

Pierce Q-statistic in testing the Box-Jenkins model. In the standard DF-test, a simple 

AR(1) process is considered which is given by  

 

'

1

tt

tttdft

xcTD

aTDyy



 
 

where tTD  is a deterministic term consisting of c as a constant and '

tx  as the deterministic 

time trend, 00 y , 
df  is a parameter to be estimated that consist of real number and 

 .,0~ 2NIDat
If ,1df  the ty  is a nonstationary series with the variance increases 

exponentially as t increases. The time series with 1df  is called a random walk series 

and might be in the cases of nonstationary series. While if ,1df ty  converges to a 

stationary series. Thus, the hypothesis of unit root test is to test the stationarity in a series 

which can be evaluated by using whether 1df  that indicates that no unit root in the 

data series. Hence, the hypotheses of the DF-test may be written as 1  :0 dfH   against 

1:1 dfH  .  

Alternatively, the AR(1) model may be rewritten as Equation 3.41, 

      
'

1

tt

tttt

xcTD

aTDyy



 
               3.41 

where .1 df  The unit root tests are often computed using this alternative model 

(Zivot & Wang, 2003). Therefore, the null and alternative hypothesis for the model in 

Equation 3.41 may be written as 0  :   versus0  : 10   HH  with the test statistic 

given by 
 


ˆ

ˆ
test

se
t  , where ̂  is the estimate of   and  ̂se  is the standard error 

estimate. Dickey and Fuller showed that this test statistic does not follow the t distribution 

and derived the asymptotic results and simulated critical values for various sample sizes 



63 

(Dickey & Fuller, 1979). Mackinnon then implemented a much larger size of simulations, 

allowing the calculation of Dickey-Fuller critical values and p-values for any sample sizes 

(MacKinnon, 1996). The Mackinnon critical value calculations are used by many 

softwares including EViews and SPlus in constructing test output. 

The standard DF unit root test is valid if the time series is well characterised by 

an AR(1) with white noise errors. However, many financial time series have a more 

complicated structure than a simple AR(1) model. Furthermore, if the series is correlated 

at higher order lags, the assumption of the ta is violated. To overcome these constraints, 

Said and Dickey constructed the augmented Dickey-Fuller (ADF) unit root test for 

higher-order correlation to accommodate general ARMA(p,q) and ARIMA(p,d,q) 

models, where the number d equals the number of unit roots in the characteristic equation 

for the time series (Said & Dickey, 1984). For the ADF-test, the following regression 

model is estimated, as shown in Equation 3.42, 

 

'

122111 ...
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            3.42 

 

where 1 ttt yyy  denotes the first differenced series, 1 df , k is the number of 

lags to include in the regression, iC is the coefficient for the ity  ,  2,0~ NIDat
 and 

tTD  is the deterministic term which may consist of constant, or a constant and trend. The 

augmented model as in Equation 3.42 is then used to test the hypothesis as the model in 

Equation 3.41 by using the same test statistic. If the ty  needs differencing, then the 

coefficient ̂  should be approximately zero, while if ty  is already stationary, then .0ˆ   

In practice, p-value approach is easier to apply than t-test statistic in testing the 

hypothesis. Based on the hypothesis given, the null hypothesis for an ADF-test is that the 

data series is nonstationary, therefore large p-values are indicative of nonstationarity, 

while small p-values suggest stationarity. At 5% significance level, differencing is 

required if the p-value is greater than 0.05. 

There are two practical issues in performing an ADF-test. First, the choice of tTD  

either as constant or constant and trend since the chosen tTD  will reflect the hypothesis 

appropriately and characterise the trend properties of the data. According to Zivot and 
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Wang, the constant tTD  is appropriate for non-trending series such as interest rates, 

exchange rates, and spreads, meanwhile the constant and trend case is appropriate for 

trending time series like asset prices (Zivot & Wang, 2003). The second practical issue in 

ADF-test is the specification of the lag length, maxk . If the lag length is too small then the 

remaining serial correlation in the errors will be biased to the test, on the other hand, if it 

is too large then the power of the test will suffer. Schwert suggested the useful rule of 

thumb formula for determining the maxk , as given by Equation 3.43, 
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1
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100

12
T

k                3.43 

 

where T is the number of observations (Schwert, 1989).  

In this study, the ADF-test is performed using EViews since the software provides 

a user friendly tool for testing a series for the presence of a unit root. The ADF unit root 

test that EViews provides tests the null hypothesis of 1:0 dfH   against the left-tailed 

alternative 1:1 dfH   with Mackinnon critical value approach. In the ADF-test, if null 

hypothesis is not rejected means the data needs to be differenced to make it stationary. 

 

3.4.1.3 Preliminary Linearity Test in Time Series 

Let ty  be an original time series with mean  and ta  be a white noise series as 

 2,0~ at IIDa  . In proposing autoregressive model, Box and Jenkins stated that the 

deviation of a stationary time series, ty  can be made linearly dependent on previous 

deviations and on ta , as can be referred to Equation 2.1 (Box & Jenkins, 1968). 

Meanwhile, for moving average model, the deviation can be made linearly dependent on 

ta and on one or more previous sa' , refer to Equation 2.2.  Hence, before considering the 

Box-Jenkins model to the data series, it is wise to check the linearity of the stationary data 

first. This preliminary linearity test is done in the identification stage to clarify whether 

the linear model is appropriate to model the stationary series. One other way to 

diagnostically do that is to plot the deviation series from stationary data versus the lagged 
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series. If the stationary series is linear, then it indicates that a linear fit is appropriate. 

Thus, the Box-Jenkins model is applicable in analysing the data series. 

 

3.4.1.4 Portmanteau Test 

The Box-Jenkins model works well for time series data or serially correlated data. 

The ACF plays an important role in linear time series analysis in testing the serial 

correlation in data. In testing the autocorrelations of ty  in finite samples, Ljung and Box  

modified the Portmanteau test statistic proposed by Box and Pierce (Box & Pierce, 1970; 

Ljung & Box, 1978). The modified Portmanteau test, known as Ljung-Box Q-statistic, or 

simply called as LBQ-test, is given by Equation 3.44, 
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is a test statistic for the 0...: 210  kH   versus  max1 ,...,2,1   ,0: kkH k 

; where T is the total observations, kr is the sample ACF of ty , k  is the number of lag 

and maxk  is the maximum lag being considered. The decision rule is to reject 0H  if 

  2

max kQ  denotes the  th1100  percentile of a chi-squared distribution with maxk  

degrees of freedom (dof), or if p-value is used, the rule then is to reject 0H  when

value-p . According to Tsay, simulation studies suggest that the choice of 

Tk lnmax   provides better power performance for nonseasonal time series (Tsay, 2013). 

Meanwhile, for seasonal time series, the rule needs modification in which 

autocorrelations with lags at the multiples of the seasonality are more important. 

 

3.4.1.5 Extended Autocorrelation Function 

Tsay and Tiao proposed a new approach that uses the extended autocorrelation 

function (EACF) to specify the order of Box-Jenkins model specifically to an ARMA 

process (Tsay & Tiao, 1984). The output of EACF is a two-way table, where the rows 

correspond to AR order p and the columns to MA order q. The theoretical version of 

EACF for ARMA(1,1) is given in Table 3.4. 
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Table 3.4 Theoretical EACF table for an ARMA(1,1) model 
 

MA 

AR 0 1 2 3 4 5 6 7 
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O 
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* 

X 

O 
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O 

O 

X 

X 

O 

O 

O 

O 

O 

X 

O 

O 

O 

O 

O 

X 

O 

O 

O 

O 

O 

 

The key feature of the EACF table is that, for an ARMA(p,q) model, the triangle 

of “O” will have it upper left vertex at the (p,q) position. The EACF table consist of “X” 

and “O”, where “X” denotes that the absolute value of the corresponding EACF is greater 

than or equal to twice of its asymptotic standard error, while “O” denotes that the 

corresponding EACF is less than twice of its standard error in modulus. The standard 

error of EACF can be computed using T2  where T is the sample size.  

 

3.4.2 Stage II: Parameter Estimation 

As current practice in the Box-Jenkins modelling, the order of the Box-Jenkins 

model is confirmed first, and then the parameters of the model chosen are estimated. In 

this study, two estimation methods that are commonly used in previous literatures are 

applied, maximum likelihood estimation (MLE) and ordinary least squares (OLS). These 

two methods are built-in in many statistical software including EViews and R language. 

The method of MLE and OLS for Box-Jenkins models can be referred to Box et al. (2008) 

and Wei (2006) for details. 

However, it is possible that two or more significant models are considered, in 

which the order of the models are identified by the ACF and PACF approach, might come 

from the estimation methods. In identifying the best Box-Jenkins model to the series, 

model selection criteria method is implemented. In general, if the numbers of parameters 

of the models are the same, then the model with the smallest mean squared error is 

selected. While if the number of parameters of the models are different, then the 

parsimony principle is applied by selecting the simpler model yet is adequately 

significant. In this proposed procedure, the well-known Akaike Information Criteria 
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(AIC) and another commonly used criterion function which is the Schwarz Information 

Criterion (SIC) are applied in identifying the best significant Box-Jenkins model, as 

illustrated in Figure 3.11. These criteria determine the appropriateness of the Box-Jenkins 

model that identified by EACF method. 

As for the time series model, Akaike (Akaike, 1974) proposed the AIC and 

Schwarz (Schwarz, 1978) proposed the SIC which are defined as in Equation 3.45 and 

Equation 3.46, respectively.  

 

     qpTqp  2~ln,AIC 2

                3.45 

       TqpTqp ln~ln,SIC 2                 3.46 

 

The  qp,AIC  is the value of AIC for the model with AR order p and MA order 

q,  qp,SIC  is the value of SIC for the model with AR order p and MA order q, 2~
  is 

the maximum likelihood estimate of 2

a  and T is the number of observations. Note that, 

2

a  is the variance of ta . SIC is also known as the Bayesian information criterion (BIC).  

In the model selection criteria, the smallest value of the AIC or SIC are preferred. 

The difference between AIC and SIC is the value of penalty used. For AIC, the penalty 

value is fixed to two while  Tln  for SIC. The AIC and SIC are extensively adopted to 

guide the choice of alternative models for both linear and nonlinear modelling (Verbeek, 

2004).  
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Figure 3.11 Procedures in Stage II of the procedure of BJ-G for highly volatile data  
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3.4.3 Stage III: Diagnostic Checking 

Once the most appropriate model has been chosen, the model must be examined 

carefully in the diagnostic checking stage. In this stage, the residual series  tâ  of the 

chosen model is investigated in checking the model adequacy. If the model is adequate, 

then the residual series should behave as a white noise (Tsay, 2013). Otherwise, if the 

chosen model is found to be inadequate, the Box-Jenkins model identification procedure 

will be repeated in order to obtain a new appropriate model. In the diagnostic checking 

stage, the tests considered are serial correlation test, heteroscedasticity test and normality 

test to assure that the errors behave like white noise. Figure 3.12 shows the detailed 

procedures of the diagnostic checking stage in the proposed procedure of BJ-G in 

handling highly volatile time series data.  

By definition, a time series ty  is a white noise process if the series has zero mean 

  0tyE , has constant and finite variance process   2Var ty  for all t where 

2 , and a serially uncorrelated   styy st   if ,0,Cov . Particularly, the white noise 

errors in time series consists of a sequence of independent and identically distributed (IID) 

random variables, denoted by Taaa ,...,, 21 , that is assumed to have zero mean, serially 

uncorrelated and homoscedastic variance. The plot of residuals versus time or residual 

plots can be used to examine graphically the IID assumption as well as to spot possible 

outliers in the series. 

To assure white noise process on the errors, the residual series  tâ  of the model 

is investigated in terms of independence, homoscedasticity (constant and finite variance 

process) and its distribution. The Durbin-Watson test, the autocorrelation functions and 

the LBQ-test on the residuals are commonly used to check correlations in the residuals of 

a series. The tests of serial correlations are further discussed in Section 3.4.3.1.  
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Figure 3.12 Detail procedures in Stage III of the procedure of BJ-G for highly 

volatile data 
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Meanwhile, to detect the existence of heteroscedasticity in the residuals, the 

ARCH test, the autocorrelation functions on squared residuals and the Ljung-Box Q-

statistics on the squared residuals are used, as presented in Section 3.4.3.2. For a highly 

volatile time series data, the tests of heteroscedasticity will show that the variance of the 

series is not correctly specified by the model since the variance is not constant. In 

handling the existence of volatility clustering in the series, this study proposed the BJ-G 

model since GARCH model is highly recommended in the previous literatures as 

volatility model. 

In the combination model of BJ-G, the chosen model of the Box-Jenkins is used 

to model the mean data of time series while the GARCH is used to model the variance 

equation of the residuals. The identification method of order r and s for the GARCH 

model can be referred to in Section 3.2 for details. In the diagnostic checking stage, once 

the residuals of the chosen combination model are not serially correlated, then it is 

strongly suggested that the linearity checking of the mean model is conducted by applying 

the Terasvirta test, as will be discussed further in Section 3.4.3.3. The consideration of 

the linearity test is made for validating the appropriateness of the use of Box-Jenkins in 

the combination model to model the mean data series. Meanwhile, the appropriateness of 

GARCH to model the variance equation for a volatile time series is shown by the tests of 

heteroscedasticity.   

On the other hand, the distribution of errors (or innovations) in white noise is 

initially assumed to be normal, therefore normality test on the residual series as described 

in Section 3.4.3.4 is done to check the assumption. However, the non-normal 

characteristic that typically exists in the residuals of volatile time series also leads to 

failure of the normality test.  Therefore, distributions such as t, generalized error 

distribution (GED) and their skewed version are considered to model the errors. The detail 

of the distributions for the innovations can be referred to in Section 3.4.3.5.  Therefore, 

in the procedure, a BJ-G model is proposed to analyse the univariate volatile series as well 

as to forecast highly volatile series.  
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3.4.3.1 Serial Correlation Tests 

The errors in time series data usually exhibit some type of autocorrelated structure 

such as the errors are correlated with themselves at different time periods. Note that, the 

errors of a time series data should be independent but the data itself is serially correlated. 

The residual plots can be useful for the detection of autocorrelation. If the sign of the 

residuals is randomly distributed or correlation is close to zero, then the model errors are 

uncorrelated. Meanwhile, if there are not enough changes of sign in the pattern of 

residuals or the sign of residuals occur in cluster, there is positive correlation in the errors. 

On the other hand, if the residuals alternate signs too rapidly, there exists negative 

correlation in the errors (Tsay, 2013). 

 The autocorrelation between two errors that are one period apart, or the lag one 

autocorrelation is defined as Equation 3.47, 
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where ta  is the error term in the model at time period t, t  is an NID  2,0 e  random 

variable, a  is a parameter that defines the relationship between successive values of the 

model errors ta  and 1ta  with 1 , and the time index is Tt ...,,2,1 . Consequently, 

the autocorrelation between two errors that are k periods apart is k

ak   , which is called 

the autocorrelation function. Two common statistical tests in detecting the presence of 

autocorrelation are the Durbin-Watson test and the LBQ-test on residuals. Meanwhile, 

the residual plot shows graphical evidence to support the result of these serial correlation 

tests. 

The Durbin-Watson test (DW-test) is the test developed by Durbin and Watson 

(Durbin & Watson, 1971). The test is one of widely used procedure to detect the positive 

presence of autocorrelation in time series model errors. The DW-test measures the first-

order serial correlation in the residuals of the estimated equation. The considered serial 

correlation in the DW-test is given by Equation 3.48,  
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ttat aa   1                3.48 

 

where ta  is the error term in the model at time period t, t  is an NID  2,0 e  random 

variable, a  is a parameter that defines the relationship between successive values of the 

model errors ta  and 1ta  with 1 , and the time index is Tt ,...,2,1 . The null 

hypothesis for the DW test is no serial correlation in the residuals, while presence of serial 

correlation is the alternative hypothesis, or can be simplified as 

. 0:    versus0: 10  aa HH   

Let T is the number of observations and tâ  is the residual at time t, the DW-test 

statistic is given by Equation 3.49. 
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where 1r  is the lag one sample autocorrelation coefficient defined as 
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The value of DW-test should be approximately 2 for uncorrelated errors  01 r . 

According to Johnston and DiNardo, if 2DW   means there is no serial correlation, if 

2DW  means there is positive serial correlation and if 4DW2   means there is 

negative serial correlation in the residuals (Johnston & DiNardo, 1997). 

There are limitations of the DW-test as a test for serial correlation. One of the 

main limitations is, if there are lagged dependent variables on the right-hand side of the 

model, the DW-test is no longer valid. Another main limitation is the test is only valid for 

testing the possibility of serial correlation in a first-order time series model. To overcome 

these limitations, the LBQ-test is preferred in most applications. 
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The LBQ-test on residuals is used in the diagnostic checking to recognise whether 

there is autocorrelation in the residuals of fitted time series models. The null hypothesis 

for this test is no remaining serial correlation in the residuals. Failure to reject the null 

hypothesis means that the mean equation is correctly specified up to lag maxk . The test 

statistic for the test can be referred to Equation 3.44. In the test, statistics  maxkQ  follows 

 max

2 k  distribution with maxk  degrees of freedom if there is no autocorrelation among 

residuals.  

In practice, the choice of maxk  may affect the performance of the LBQ-test 

statistic. As for the selection of maxk  value, the general principlel is that a larger value is 

better and the literature normally uses of maxk value of no more than 20 (Živkov, Njegić, 

Momčilović, & Milenković, 2016). Often 15max k  is used as it is able to detect model 

failures (Engle, 2001). Simulation studies suggest that Tk lnmax   provides better power 

performance (Tsay, 2013). Alternatively, Hyndman and Athanasopoulos suggest using 

10max k  for nonseasonal data and Sk 2max   for seasonal data, where S is the period of 

seasonality. They believed that, the suggestion value of maxk  is adequate to ensure that 

the number of lag is large enough to capture any meaningful and troublesome 

correlations. The LBQ-test is not good when maxk  is large, therefore if the maxk  value is 

larger than 5/T , then use 5/max Tk  (Hyndman & Athanasopoulos, 2014).  

In EViews, the result of LBQ-test is displayed together with ACF and PACF of 

the residuals for high order serial correlation. If there is no serial correlation in the 

residuals, the ACF and PACF at all lags will be closed to zero, and all Q-statistics will be 

insignificant with large p-values.  

 

3.4.3.2 Heteroscedasticity Test 

Let ttt ya  be the errors of the mean equation of model. The squared series 

of errors  2

ta  is used in checking the conditional heteroscedasticity of the model for the 

data series, which is also known as the ARCH effects. This particular heteroscedasticity 

specification is motivated by the observation that in many financial time series, the 
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magnitude of the residuals appeared to be related to the magnitude of the recent residuals. 

Hence, ignoring ARCH effects may result in the loss of efficiency.  

There are two ARCH tests available and commonly used in testing 

heteroscedasticity in data series. The first test is to apply the Lagrange multiplier test, 

which is known as the ARCH LM test (Engle, 1982). The Engle’s ARCH LM test is 

equivalent to the F statistic for testing 0i  for max,...,2,1 ki   in the linear regression 

as given by the equation below, 

 

Tkkteaaa tktktt ,...,2,1for ... maxmax

2

maxmax

2

110

2     

 

where te  denotes the error term, maxk  is a positive integer and T is the number of 

observation. This is a regression of the squared residuals on a constant and lagged squared 

up to order maxk . The selection of maxk  value for ARCH test is the same as explained in 

Section 3.4.3.1. 

The null hypothesis for the ARCH LM test is 0...:
max210  kH   and 

the alternative hypothesis is 0:1 iH   for some i between 1 and maxk . The ARCH LM 

test, as described by Tsay (2013), is given by Equation 3.50, 
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 is the sample mean of 2ˆ
ta , 2ˆ

ta  is the 

estimated errors or residuals of the model, 
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1max

2

B
ˆSSR  and 2ˆ

te  is the least squares 

residual of the prior linear regression. Under the 0H , the ARCH LM test follows an F 

distribution with degrees of freedom of maxk  and 12 max  kT ,
1max2,max  kTkf . For 

sufficiently large T, one can use testfkmax  as the test statistic, which is asymptotically a 

chi-squared distribution with maxk  degrees of freedom, .2

maxk  The rule is to reject the 

0H  if 
2

max,max ktestfk  or the  valuep . If the decision is to not reject 0H , it can 

be concluded that there is no ARCH effect in the residuals of the model. 



76 

The second test for conditional heteroscedasticity is the LBQ-test on a squared 

residual series  2ˆ
ta . The test on the squared residuals of the best fitting Box-Jenkins 

model could be useful in improving forecasts of the series since numerous time series 

data in which the squared residuals appear to be autocorrelated even though the residuals 

do not (Granger & Andersen, 1978; McLeod & Li, 1983). The details of the LBQ-test on 

 2ˆ
ta  can be referred to McLeod and Li (McLeod & Li, 1983). 

The null hypothesis of the test is no ARCH in the residuals or the variance 

equation is correctly specified up to lag maxk . In EViews, the result of LBQ-test is 

displayed together with ACF and PACF of the squared residuals for high order of lag. If 

there is no ARCH in the residuals, the ACF and PACF at all lags will approach zero, and 

all Q-statistics value should be insignificant with  valuep . On the other hand, if 

there is presence of ARCH in the residuals, the PACF for the squared residuals can be 

used to determine the suitability of ARCH or GARCH model in handling the 

heteroscedasticity in the data series. 

 

3.4.3.3 Linearity Test for Mean Model 

To validate the linearity assumption of the mean model to data series, a widely 

used linearity test in neural networks known as Terasvirta test is used (Teräsvirta, 1994; 

Teräsvirta, Lin, & Granger, 1993). The Terasvirta test for time series proposed by 

Teräsvirta et al. (1993) is based on the concepts of neural networks theory. In this linearity 

test, the null hypothesis is that the mean model is linear and the test is designed for the 

autoregressive model of order p. There are three stages in implementing this test, given 

as follows: 

 

Step 1: Regress ty on 
pttt yyy  ,...,,,1 21
. Compute the residuals tû  and the sum of the 

squared residuals 0SSR where 



T

t

tu
1

2

0
ˆSSR . 

Step 2: Regress tû  on 
pttt yyy  ,...,,,1 21

 and m auxiliary regressors. Compute the 

residuals tv̂  and the residual sum of squares 1SSR  where 



T

t

tv
1

2

1
ˆSSR .  
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Step 3: Compute the test statistic, 
 

 mpT

m
f






1/SSR

/SSRSSR

1

10
test . 

Note that, p is the order of autoregressive model, T is the number of data and m is the 

number of auxiliary regressors. Under the linearity test, testf  is approximately f 

distributed with m and mpT  1  degrees of freedom, .1,, mpTmf   If 

mpTmff  1,,test   or value-p , then the null hypothesis is rejected.  In R language, 

the linearity test for time series data is implemented in the tseries package by the function 

terasvirta.test( ). 

3.4.3.4 Normality Test 

Jarque-Bera test (JB-test) is one of the common test statistics for testing whether 

the series or the errors of the series is normally distributed. The test statistic measures the 

difference of the skewness and kurtosis of the series with those from the normal 

distribution. The statistic is computed as in Table 3.5. 

 

Table 3.5 Jarque-Bera test statistic 

Hypothesis Test statistic Critical 

point 

Decision rule 
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JB

2
2

test

xKxS
T  

2

2,
2

  reject 0H  if  
2

2,
2

test
JB    

or  value-p  

 

Under the null hypothesis of a normal distribution, the JB-test statistic is 

distributed as 
2

2,
2

 . A small p-value leads to the rejection of the null hypothesis of a 

normal distribution at 5% significance level. It is important to test the validity of 

normality assumption since violation of the assumption may lead to the use of wrong 

estimators, invalid inferential statements and inaccurate conclusions (Jarque & Bera, 

1987). 
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3.4.3.5 Distribution of Errors  

The distribution of the standardised error or innovations t  in the part of 

diagnostic checking is investigated in order to find the appropriate innovations to make 

the model fit the data well. The considered distributions for t  in this study are Normal, 

t, the skewed-t, the generalised error distribution (GED) and the skewed generalised error 

distribution (SGED). 

Under the normality assumption on the errors, the pdf of t  is given by Equation 

3.51, 
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If the data exhibit heavy tails characteristics, it is more appropriate to assume that t  

follows a t distribution. The t distribution also known as Student’s t distribution, is 

introduced by William Sealy Gosset (known as “Student”) in 1908 (Boland, 1984). Let 

t  be a t distribution with   degrees of freedom, the pdf of t  is given by Equation 3.52 

where  .  is the gamma function. For a t distribution with  , the mean is 0, its variance 

is  2  if 2 , the skewness is 0 if 3  and the excess kurtosis is  46   if 

4 . 
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To handle the data that exhibit heavy tails with skewness characteristics, the t 

distribution has been modified to become a skewed-t distribution. For the innovation t  

of an ARCH process, the pdf of a standardised skewed- t distribution is given by Equation 

3.53,    
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where  f  is the pdf of the standardised t distribution in Equation 3.51,   is the 

skewness parameter,   is the degrees of freedom and 2 , and the parameters   and 

  are given as, 
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where 
2  is a measure of the skewness. 

The generalised error distribution (GED) is a possible candidate for the 

description of financial market price changes (Giller, 2005). The GED is a symmetrical 

unimodal and a member of the exponential family. Box and Tiao (1992) call 

the GED distribution as an exponential power distribution. The GED distribution is 

proposed by Subbotin (1923) and is defined by three parameters:   locates the mean of 

the distribution;   defines the dispersion of the distribution; and   controls the shape of 

the distribution. If t  may assume a GED, therefore the pdf of the errors is given by 

Equation 3.54, 
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where    is the gamma function. This distribution reduces to a Normal distribution if 

2

1
 , i.e.  22 ,

2

1
,,  NG 








; if 1 then the distribution is recognized as 

Double Exponential or Laplace distribution, i.e.    22 4,1,,  LG  ; and if 0 , 



80 

the distribution tends to uniform distribution    ,U . For 
2

1
  the 

distribution is platykurtic, while for ,
2

1
  it is leptokurtic. 

The skewed generalised error distribution (SGED) introduced by Theodossiou 

(2008) is used to accommodate the skewness and leptokurtosis in the t . If t  follows 

the SGED, then the pdf for the errors is given by Equation 3.55. 
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Note that  ,  and  are the expected value, the standard deviation and the 

skewness parameter for the distribution, respectively, sign is the sign function and  .  is 

the gamma function. The scaling parameters   and   obey the following constraints 

0  and 11   . The parameter   controls the height and tails of the density 

function and the   controls the rate of descent of the density around the mode of the 

distribution which is defined as   . 
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3.4.4 Stage IV: Forecasting   

The best BJ-G model is identified from Stage I to Stage III. Then, this model will 

be used in the forecasting and the detailed procedures in the forecasting stage of the 

proposed procedure as shown in Figure 3.13. Note that, if the stationary series is a 

transformed series, then the out-of-sample series must be transformed as well before the 

chosen model is applied to the series since the selection of the model is based on the 

analysis of the stationary data. By applying the chosen model to the out-of-sample data 

series in stationary form, a series of forecast data is obtained. The forecast series in the 

stationary form is then compared to the out-of-sample series in obtaining the forecast 

error.  

However, the forecast data obtained is in the stationary form which is not in the 

original scale. To obtain the forecast data series as well as forecast evaluations in its 

original scale, there are two approaches. The first approach is by modifying the selected 

model based on the transformation chosen in the identification stage. The model with the 

retransformed scale is then used to get the out-of-sample series. The second approach is 

by retransforming the forecast transformed data. The forecast data series in its original 

scale then is used in evaluating the forecasting performance.   

In the forecasting stage, the series of out-of-sample data are used to obtain the 

forecast results since the accuracy of forecasts can only be determined by considering 

how well a model performs on new data that were not used when fitting the model 

(Hyndman & Athanasopoulos, 2017). The validity and accuracy of a forecasting model 

is assessed by the cross-validation (CV) method. The valid forecasting model will 

demonstrate good predictive accuracy. Note that, the out-of-sample one-step ahead 

forecast is also known as one-step time series cross-validation. 
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Figure 3.13 Detail procedures in Stage IV of the procedure of BJ-G for highly volatile data 
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3.4.4.1 Time Series Cross-Validation 

Time series cross-validation is a version of CV that searches for a good one-step 

ahead forecast of the data (Hart, 1994). Let n be the number of forecasts and  hyT
ˆ  be 

the forecast made at origin T of the actual value 1Ty  at future time 1T , that is, at lead 

time or forecasting horizon h. Here 1Ty  refers alternatively to the out-of-sample series. 

For the one-step ahead forecast, the procedure of CV of a statistical model is given in the 

following steps (Hyndman & Athanasopoulos, 2017; Tsay, 2013):  

Step 1: Divide the data set into two parts; in-sample and out-of-sample. There is no 

specific rule to guide the division, but each subsample should contain sufficient data 

points. Typical analyst used a ratio of 90:10 (Chatfield, 2001). 

Step 2: Perform model estimation using in-sample data and use the fitted model to obtain 

1-step ahead forecast and its forecast error. Suppose the in-sample data is 

 Ttyt ,...,2,1|  , then the fitted model using the first T data points is used to compute 

the one-step ahead forecast,  1ˆ
Ty  and its forecast error,    1ˆ1 1 TTT yye   .  

Step 3: Reestimate the model using 1T  data points and compute the 1-step ahead 

forecast and its forecast error. That is, compute    ,1ˆ1 121   TTT yye  where  1ˆ
1Ty  is 

the 1-step ahead forecast of the newly fitted model at the forecast origin 1T . 

Step 4: Repeat step 3 until      1ˆ1 11   nTnTnT yye . 

Note that the CV procedure is also applicable for multistep ahead forecasting, i.e. 

nh ,...,3,2 . The procedure of CV is known as backtesting in the finance literature. 

3.4.4.2 Forecasting Evaluations 

By applying the procedure of CV, the forecasting performance is compared across 

models based on three evaluation criteria which are commonly used in the previous 

literatures. The evaluation criteria are the mean absolute error (MAE), root mean square 

error (RMSE), and mean absolute percentage error (MAPE). In the forecasting 

evaluations, if the actual values and forecast values are closer to each other, a small 

forecast error will be obtained. Thus, smaller RMSE, MAE and MAPE values are 
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preferred. The best forecasting model is the one that generates the lowest prediction error. 

However, if the results are not consistent among these criterions, it is suggested to choose 

MAPE since it is relatively more stable than others (Wang, Huang, & Wang, 2012). The 

evaluation criteria for one-step ahead forecast are given in Equation 3.56 to Equation 

3.58. The evaluation criteria in Equation 3.56 to Equation 3.58 are also applicable for 

multistep ahead forecasting or when nh ...,,3,2 .  
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3.4.4.3 Prediction Intervals 

In addition to assessing the best forecast data tŷ , it is necessary to specify their 

accuracy to measure the risks associated with decisions based upon the forecasts may be 

assessed. The accuracy of the forecasts can be expressed by calculating probability limits 

on either side of each forecast or also known as prediction intervals (PIs)  

(Box et al., 2008). Computing prediction intervals (PIs) is an important part of the 

forecasting process as it is useful to quantify the accuracy of the forecast data (Chatfield, 

2001). These limits may be calculated for any convenient set of probabilities, such as 

95%, 80% or 50%. However, suitable percentages may be used. These limits are such 

that the given information available at origin T, there is a probability of 1  that the 

actual value is in the out-of-sample series, 1Ty , when it occurs, will be within them, 

which is expressed as Equation 3.59. 

 

    1)()( 111 TTT yyyP               3.59 

 

Then, a 95% prediction interval for one-step ahead forecast of 1Ty for ta  

normally distributed, is given by Equation 3.60, where   1Var Te  is the variance of the 
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1-step ahead forecast error that is defined as Equation 3.61. The 1Ta  is referred to as the 

shock to the series at 1T , which is also known as the one-step ahead forecast error at 

the forecast origin T. In practice, the estimated value of   1Var Te  can be obtained from 

the variance of the one-step ahead forecast residuals of the model considered. The limit 

in Equation 3.59 and the PIs in Equation 3.60 are also applicable to multistep ahead 

forecasting, i.e. nh ,...,3,2 . 

 

    1Var1ˆ
025.0 TT eZy                3.60 

     2

1Var1Var aTT ae  
              3.61 

 

Consequently, a   %1001   PI for h-step ahead forecasting and ta  follows 

normal distribution is given by Equation 3.62. If ta  has heavy-tailed characteristics, then 

Equation 3.62 is modified by changing 
2

Z  to the appropriate error distribution with 

heavier tails than the normal. 

 

    heZhy TT Varˆ
2

                         3.62 

 

There are several discussions on how to determine the value of   heTVar . 

According to Chatfield (2001), for a series that shows no obvious trend, autocorrelation 

or seasonality, the   heTVar  can be determined using Equation 3.63. Box et al. (2008) 

recommend that the use of Equation 3.63 is optimal for an ARIMA(0,1,1) model. For a 

random walk model, the   heTVar  can be estimated using Equation 3.64. The Equation 

3.64 is true for a random walk model and it can be in error when it is applied to other 

types of model (Chatfield, 2001). 

 

        1Var11Var 2

TT ehhe               3.63 

     1VarVar TT ehhe               3.64 

3.5  The Modified Procedure for Univariate Highly Volatile Data using BJ-G 

The earlier proposed procedure of BJ-G in Section 3.4 is further modified 

specifically for univariate highly volatile time series data. Therefore, a significant 

modification is done on Stage I of the procedure of BJ-G in Figure 3.5 to ensure the data 
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series is a highly volatile data at the early stage, which is the data is prepared appropriately 

to use the BJ-G model. Hence, in Stage I of the newly proposed procedure of BJ-G, two 

steps are introduced that are the preliminary heteroscedasticity test and the BJ-G model 

identification. These two steps are used to justify the significance of adding volatility 

model to the Box-Jenkins and to identify the appropriate BJ-G model, respectively.   

The modified procedure will simultaneously able to determine the optimal number 

of data required for BJ-G model. Determination of the optimal number of data using a 

statistical model for practical application is one of the main issues in time series 

forecasting (Chatfield,2001; Hyndman & Athanasopoulos, 2014; Hyndman & 

Konstenko, 2017). According to Hyndman and Kostenko (2017), the number of data 

required for any statistical model depends on at least two items: the number of model 

parameters to be estimated and the amount of random variation existing in the data. It 

means, a reasonable approach to determine the appropriate number of data for forecasting 

is to ensure that there is enough data to estimate the model and the model performs well 

for out-of-sample evaluation. By referring to Figure 3.5, these two items are incorporated 

in Stage II and Stage IV of the proposed procedure by considering the selection criteria 

of AIC and SIC in the model estimation stage and by applying the out-of-sample one-step 

ahead forecasting evaluations using MSE, RMSE, MAE and MAPE in the forecasting 

stage. Konishi and Kitagawa (2008) reported that as the number of data increases, 

minimising the AIC is equivalent to minimising the MSE.  

Figure 3.14 illustrates the new proposed procedure of BJ-G in modelling and 

forecasting highly volatile time series data that will simultaneously ensure the optimal 

number of data required for BJ-G model. In Stage I of the new proposed procedure, there 

are eight steps that are data plotting, data descriptive statistics, data stationarity, 

preliminary linearity test, Portmanteau test, BJ model identification, preliminary 

heteroscedasticity test and BJ-G model identification. For Stage II to Stage IV in the 

newly proposed procedure, the procedure and the method used are the same as in the 

proposed procedure in Section 3.4. In this study, the new proposed framework is 

employed to different data series of daily world gold price in determining the optimal 

number of data using BJ-G model. Note that, this new proposed procedure of BJ-G is the 

improvised version of procedure for BJ-G as proposed in Section 3.4.  
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                 STAGE III: BJ-G DIAGNOSTIC CHECKING
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Figure 3.14  New proposed procedure of BJ-G in forecasting highly volatile data 
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3.6  Multistep Forecasting for Highly Volatile Data using Modified BJ-G 

Procedure 

The second proposed procedure of BJ-G is only applied for one-step ahead 

forecasting performance, which is not practical for real data due to its limitation of the 

prediction period (Babu & Reddy, 2015; Pham & Yang, 2010; Byström, 2005). Hence, 

the study on the multistep ahead forecast is important since it is significant for practical 

application purposes using the BJ-G model. Therefore, the following study is aimed at 

proposing a modified procedure of BJ-G in evaluating the multistep forecasting 

performance of Box-Jenkins – GARCH (or BJ-G) model for highly volatile time series 

data. In investigating the performance of multistep ahead forecasting for the BJ-G model, 

Stage IV in the procedure of Figure 3.14 is extended to n-step ahead forecasting by 

proposing a new procedure of BJ-G as presented in Figure 3.15.  

Start

Step 1: Obtain          using BJ-G model 

Step 2: Obtain           for h-step ahead of the BJ-G model 

Step 3: Obtain forecasting evaluations for              

Step 4: Obtain the prediction interval for         

Step 5: Plot graph of the performance of    

hTy 
ˆ

hTy 
ˆ

hTy 
ˆ

hTy 
ˆ

hTs 
ˆ

End
 

 

Figure 3.15 Proposed procedure of BJ-G for multistep ahead forecasting 

Note that, the procedure for Stage I to III of the procedure of BJ-G are the same 

as discussed in Section 3.5. In order to achieve the objective, the procedure and 

programming codes are constructed for multistep ahead forecast using BJ-G model. It has 

been observed that available software is only able to provide the results for one-step ahead 

forecast. In the proposed procedure, sets of codes are constructed in R for evaluating the 
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forecasting performance up to n-step ahead, which is based on the proposed model of BJ-

G. The proposed procedure in Figure 3.15 is explained explicitly in the following steps:   

 

Step 1: Obtain the simulated stationary series, 
hTs 

ˆ  for forecasting horizon nh ,...,3,2,1  

using the proposed BJ-G model. There are two approaches to obtain 
hTs 

ˆ ; the first 

approach is using the results of one-step ahead forecast of BJ-G model from available 

software (EViews). In the second approach, the 
hTs 

ˆ  series is obtained through 

simulation on BJ-G model using programming codes. 

 

Step 2: Obtain the forecast data for h-step ahead, 
hTy 

ˆ  of the BJ-G model. The 

corresponding R codes of 
hTy 

ˆ  for one-step ahead are written. 

 

Step 3: Obtain forecasting evaluations of MAE, RMSE and MAPE for h-step ahead 

forecast by comparing 
hTy 

ˆ  and the out-of-sample data 
hTy 

. The corresponding R codes 

for the forecasting evaluations of 
hTy 

ˆ  for one-step ahead are written. 

 

Step 4: Obtain the prediction intervals (PIs) for 
hTy 

ˆ . The PIs gives an interval within 

which the actual data, 
ty  is expected to lie with a specified probability by using the 

forecast, 
hTy 

ˆ . In this study, the PIs used are 80% and 95%, which is commonly used in 

forecasting method as suggested by Hyndman and Athanasopoulos (2013). The R codes 

for PIs of 80% and 95% of 
hTy 

ˆ  using one-step ahead forecast are written.  

 

Step 5: Graphical presentation for the performance of the forecast data is shown by 

plotting the graph of actual data in the out-of-sample series, 
hTy 

 and the h-step ahead 

forecast, 
hTy 

ˆ  with its prediction intervals. The R codes for plotting the performance with 

PIs of 80% and 95% for one-step ahead forecast are written. 

The procedure from Step 1 to 5 for nh ...,,3,2  is repeated in order to obtain the 

multistep ahead forecast evaluations for BJ-G model.  
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3.7  Modified BJ-G Procedure for GARCH-type Models 

In recent years, many studies proposed the incorporation of Box-Jenkins with 

GARCH-type model due to its good performance in dealing with highly volatile data. 

Based on literatures, some of the studies on univariate highly volatile data that incorporate 

the Box-Jenkins model with GARCH-type are ARIMA-GARCH (C. Chen et al., 2011; 

Tan et al., 2010; Zhou et al., 2006), AR-EGARCH (Ahmed, 2017; Ferenstein & 

Gasowski, 2004; Girish, 2016; Walid, Chaker, Masood & Fry, 2011), AR-GARCH 

(Gaglianone & Marins, 2017), ARIMA-APARCH (Girish, 2016), ARIMA-TGARCH 

(Ahmad et al., 2015; Freedi et al.,2012), ARMA-GARCH (Liu & Shi, 2013; Pham & 

Yang, 2010; Wang, Gelder, Vrijling, & Ma, 2005), ARMA-EGARCH (Ord, Koehler, 

Snyder & Hyndman, 2009) and ARIMA-GARCH-M (Liu, Erdem & Shi, 2011; Liu & 

Shi, 2013; Liu, Shi, & Qu, 2013).  

Since the combination model of Box-Jenkins and GARCH-type has great 

potential for research that deals with univariate highly volatile time series data, the 

comprehensive procedure of BJ-G should be considered in the study. Therefore, the 

comprehensive procedure of BJ-G which is the fourth proposed procedure in this study is 

developed from the second and third procedures (refer to Figure 3.14 and Figure 3.15 for 

the second and the third proposed procedures, respectively). The fourth proposed 

procedure of BJ-G is illustrated by Figure 3.16.  

The fourth proposed procedure of BJ-G is not only applicable for Box-Jenkins 

with standard GARCH model but it is also can be applied to Box-Jenkins with all 

GARCH-type models under consideration in previous studies on highly volatile data that 

are GARCH-M EGARCH, TGARCH and APARCH. Note that, the procedure of 

combination Box-Jenkins with standard GARCH model as in Figure 3.4 and the 

modelling procedure in estimating GARCH parameters as discussed by Pham and Yang 

(2010) are also applicable to other GARCH-type models under study. 

 

 



91 

                 STAGE III: BJ-G DIAGNOSTIC CHECKING

Step 1: Data Plotting
Step 2: Data Descriptive Statistics

Method: Moments of Random Variables
           (Mean, Variance, Skewness, Kurtosis)

Step 3: Data Stationarity
Stationary in-

Variance?

Stationary in-
Mean?

Step 4:

 Pass the Linearity Test?

                     Method: Plot yt vs yt-1

       

Step 5:
Pass the Portmanteau Test?

    Method: LBQ Portmanteau Test
                kmax = 10, ln T, 15

Step 6: BJ Model 
Identification

Stop

Step 3(i): Data Transformation
Method: Box-Cox Transformation

ACF and PACF Method

EACF Method

DATA SCREENING 
PART

MODEL 
IDENTIFICATION 

PART

No

Yes

No

Yes

Yes

No

No

Yes

Step 3(ii): Data Differenced
Method:
1. ACF and PACF, kmax = 10 x log T
2. Unit root test: ADF-test, kmax = (12(T/100)¼)

STAGE I: BJ-G MODEL IDENTIFICATION

Time Series Data

In-Sample Data Out-of-Sample Data

STAGE I: BJ-G MODEL 

IDENTIFICATION
Pass the Data 
Screening?

Stop

BJ Model Identification

Is 
Heteroscedasticity 

Exist?

No

          
                Yes

Stage IV: BJ-G  FORECASTING

Method: MSE,RMSE,MAE,MAPE

BJ Model/
Stop

No

STAGE II: BJ-G PARAMETER 

ESTIMATION

Method: MLE

Model Selection Criteria: AIC, SIC

STAGE III: BJ-G DIAGNOSTIC CHECKING

Is 
Heteroscedasticity 

Exist?

BJ Model/
Stop

No

Yes

BJ-G Model 

Residuals Ploting
- Examine the residuals sign
- Spot outliers

        Checking on Autocorrelation

Statistical Tests

Ljung-Box Q-test on Residuals
kmax =10, 15 (nonseasonal),  kmax =2S (seasonal) 

Durbin-Watson Test
- first-order serial correlation

      Statistical Test for Heteroscedasticity

Engle s ARCH LM Test
kmax = 10, 15 (nonseasonal)

Ljung-Box Q-test on Squared Residuals
kmax = 10, 15 (nonseasonal)

2
1

Step 1: 
Is Residuals Serially 

Correlated?
Method: 1

BJ with other Volatility Models

No

Yes

No

No

Step 3:
Is Heteroscedasticity Exist?

         Method: 
2

Step 2:
 Is Mean Model Linear?
Method: Terasvirta Test

Step 4: 
Is Normally Distributed?

Method: JB Test

Other  Innovations 
Distributions Skewed-GED

Skewed-t

t

GED

Yes

No

Nonlinear ModelYes

Yes

Step 7: Preliminary 
Heteroscedasticity Test

Method: LBQ-test

Step 8: 
BJ-G Model

Identification
Method: ACF and PACF

STAGE IV: BJ-G FORECASTING

Step 1: Obtain            using BJ-G  model
hT

s


ˆ

Step 2: Obtain            for h-step-ahead of the 

BJ-G model

hT
y


ˆ

Step 3: Obtain forecasting evaluations for hT
y


ˆ

Step 4: Obtain the prediction interval for hT
y


ˆ

Step 5: Plot graph of the performance of hT
y


ˆ

 

Figure 3.16 A modified comprehensive proposed procedure of BJ-G for modelling 

and forecasting univariate highly volatile time series data 
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The GARCH-M model, where “M” stands for GARCH in the mean, is one of the 

symmetric GARCH-type models, as it is symmetric in response to the past volatility. The 

M),(GARCH sr  model can be written as Equation 3.65 (Tsay, 2013).  
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where ts  is the stationary series, 2

t  is the conditional variance of ts , M  is the risk 

premium parameter and i  and i  are parameters satisfying conditions similar to those 

of GARCH model. A positive M  indicates that the series is positively related to its past 

volatility. The GARCH-M model is used to model the phenomenon of a series that may 

depend on its volatility. The existence of risk premium in the GARCH-M model implies 

that there are serial correlations in the series. 

 The exponential GARCH or EGARCH is proposed by Nelson (1991) to overcome 

some weaknesses of the GARCH model in terms of the leverage effect and parameter 

restrictions (Freedi et al., 2012). EGARCH is one of the asymmetric GARCH-type 

models. An ),(EGARCH sr  model can be written as Equation 3.66, where ts  is the 

stationary series, 2

t  is the conditional variance of ts , t is conditional mean of ts , i  

and i  are parameters satisfying conditions similar to those of GARCH model and ig  

signifies the leverage effect of ita   (Tsay, 2013; Freedi et al., 2012). It is expected that 

ig  to be negative in real applications, if it is exists. Note that, a positive ita   or there is 

“good news” contributes   itii g   1  to the log volatility, in contrast a negative ita   or 

there is “bad news” gives   itii g   1  where .
it

it
it
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The threshold generalised autoregressive conditional heteroscedastic or 

TGARCH is one of the commonly used volatility models in handling leverage effects in 
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a data series. For a univariate series of ts , a TGARCH (r,s) model is given by Equation 

3.67 (Tsay, 2013).      
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where itN   is an indicator for negative ita  , that is 















        ,0 if      0
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and ts  is the stationary series, t is conditional mean of ts , 2

t  is the conditional 

variance of ts , i  and i  are parameters satisfying conditions similar to those of 

GARCH model. Noted that, ig  signifies the leverage effect of ita  . It is expected that ig  

to be negative in real applications (Tsay, 2013). This TGARCH model is also known as 

the GJR model since Glosten et al. (1993) essentially proposed the same model.  

The asymmetric power autoregressive conditional heteroscedastic or APARCH 

model is proposed by Ding, Granger, & Engle, 1993. The ),(APARCH sr  model can be 

written as Equation 3.68 where ts  is the stationary series, 2

t  is the conditional variance 

of ts , t is conditional mean of ts , i  and i  are parameters satisfying conditions 

similar to those of GARCH model, ig  signifies the leverage effect of ita   and   is a 

positive real number (Tsay, 2013). If 0  in Equation 3.68, then the APARCH model 

becomes the EGARCH model of Nelson (1991), while if 2 , the APARCH model 

becomes to TGARCH. Similar to GARCH model, the APARCH (1,1) model is often used 

in practice (Tsay, 2013).  
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3.8 Concluding Remarks 

The Box-Jenkins – GARCH’s procedure based on Box-Jenkins modelling was 

proposed to handle highly volatile data. There are four procedures of BJ-G proposed in 

this study, as given by Figure 3.5, Figure 3.14, Figure 3.15 and Figure 3.16. The first 

proposed procedure of BJ-G as shown by Figure 3.5 is developed based on the standard 

Box-Jenkins’s procedure since it will be used in evaluating the performance of the 

combination model to forecasting univariate highly volatile data for the preliminary 

study. The second proposed procedure of BJ-G model as shown in Figure 3.14 is 

developed specifically dealing for univariate highly volatile data at the early stage which 

simultaneously ensure the optimal number of data required for BJ-G model. The third 

proposed procedure of BJ-G as given by Figure 3.15 is applied in evaluating the multistep 

ahead forecasting performance of the BJ-G model. While, the fourth proposed procedure 

as given by Figure 3.16 is a comprehensive BJ-G procedure for modelling and forecasting 

univariate highly volatile time series data using the Box-Jenkins with GARCH-type 

model. 

The performance of the four proposed procedures of BJ-G will be illustrated using 

real life data, specifically the world gold prices as will be discussed in details in  

Chapter 4. The daily gold price data are selected since it is expected to be a highly volatile 

type of time series data. 
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CHAPTER 4 

 

 

GOLD PRICE FORECASTING USING MODIFIED PROCEDURE OF BOX - 

JENKINS – GARCH FOR HIGHLY VOLATILE TIME SERIES:  A CASE 

STUDY  

4.1 Introduction 

Gold is noted as a volatile monetary asset commodity (Batten, Ciner & Lucey, 

2010; Lucey, Larkin & O’Connor, 2013; Yaya, Tumala & Udombodo, 2016). The world 

gold prices are used to illustrate the proposed procedures of Box-Jenkins – GARCH  

(BJ-G) in Chapter 3. This chapter presents the empirical results of the highly volatile gold 

prices series. Section 4.2 presents the preliminary analysis on gold price using the 

modified BJ-G as illustrated in Figure 3.5. The analysis describes a step-by-step for four 

stages in the procedure using BJ-G model to determine its suitability in modelling and 

forecasting gold prices, specifically at one-step ahead.  

In section 4.3, the second proposed procedure of BJ-G is applied to the gold price 

series in evaluating the performance of the procedure in specifically handling highly 

volatile data for practical application. The promising results from one-step ahead out-of-

sample forecast series using the second procedure BJ-G has motivated the extension to 

multiple-step ahead forecast as will be discussed in details in Section 4.4. In Section 4.5, 

the fourth proposed procedure of BJ-G is applied to Box-Jenkins with all GARCH-type 

models as in the previous studies on highly volatile data including standard GARCH, 

GARCH-M, EGARCH, TGARCH and APARCH in determining the best GARCH-type 

model in handling volatility, specifically in the gold price series. The data is analysed 

using EViews and R programming language. The empirical results are thoroughly 

explained and the detail analyses can be referred to Appendix 2 to 5 for Section 4.2 to 

4.5, respectively.    
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4.2 Preliminary Analysis on Gold Price Forecasting using Modified BJ-G 

Based on the previous studies of Box-Jenkins – GARCH-type model on highly 

volatile data, there are various number of data used starting 180 to almost 42000, 

depending on frequency of data either monthly, weekly, daily or hourly (Ahmed, 2017; 

Babu & Reddy, 2015; Byström, 2005; Ferenstein and Gasowski, 2004; Gaglianone & 

Marins, 2017; García-Ferrer et al., 2012; Girish, 2016; Harrison & Paton, 2004; Koopman 

et al., 2007; Liu & Shi, 2013; Loi & Ng, 2018; Ord et al., 2009; Pham & Yang, 2010; 

Sohn & Lim, 2007; Walid et al., 2011). In the preliminary analysis, the daily basis price 

series is chosen due to it is the shortest frequency of available data. Noted that, in general, 

the capability to forecast in shorter time periods means faster response to fluctuation of 

the data. Since the data in this study is daily basis, the number of data from 500 to 5000 

are usually considered in the related literatures (Babu & Reddy, 2015; Ferenstein & 

Gasowski, 2004; Gaglianone & Marins, 2017; García-Ferrer et al., 2012; Harrison & Paton, 

2004; Koopman et al., 2007; Sohn & Lim, 2007). Therefore, in the preliminary study, 

5000 daily gold price series is considered to ensure all significant characteristics related 

to volatility of data are captured.    

     The daily world gold prices price data used in the study starts from 24th 

November 1993 to 17th December 2013 of 5-day-per-week frequencies. Values are quoted 

in US dollars per ounce and the data is obtained from a reliable source of www.kitco.com. 

However, there are some missing price values in the original series due to holiday and 

stock market closing day. The data is divided into two parts: (i) in-sample data of period 

from 24th November 1993 to 20th December 2011 with 4500 observations, and (ii) out-

of-sample period from 21st December 2011 to 17th December 2013 with 500 observations. 

The in-sample data is used to estimate model, whereas the out-of-sample data is used in 

model forecasting, with the ratio of estimate to forecast 90:10. The ratio of 90:10 is used 

in this preliminary study since it is a typical ratio used by analyst (Chatfield, 2001).   

4.2.1  Stage I: Gold Price Data Identification 

In employing Box-Jenkins modelling, the model cannot be directly applied if the 

series is nonstationary. It is important to know whether the data contains any trend or 

seasonal components. By referring to Figure 3.5, the first step of identification is to check 

the occurrence of an upward or downward trend as well as seasonality in gold price 

http://www.kitco.com/
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movement by plotting in-sample series as shown in Figure 4.1. From the figure, we can 

observe that the gold price series does not vary around a fixed level which indicates that 

the series is nonstationary in both mean and variance, exhibiting an overall upward and 

nonseasonal trend.  

 

 
 

Figure 4.1 In-sample series of daily gold price 
  

 Based on the descriptive statistics of the series as given in Table 4.1, it can be seen 

that most of the data is around USD 560/oz with a standard deviation of USD 363/oz. The 

sample skewness and kurtosis for the original series are 1.5925 and 4.7121, respectively. 

In testing the skewness of the series, the hypothesis is   0:0 tySH  versus

  0:1 tySH . Since the t-test statistic of 43.6124 and its p-value close to zero, hence, 

the null hypothesis of zero skewness is rejected at the 5% significance level. For excess 

kurtosis, the hypothesis is   03:0 tyKH  versus   03:1 tyKH . The t-test 

statistic of excess kurtosis for the in-sample series is 23.4439 with p-value close to zero, 

thus the null hypothesis is rejected. The values and test of hypotheses for skewness and 

kurtosis imply that the series is asymmetric, positively skewed and leptokurtic, as 

graphically shown by histogram in Figure 4.2. These characteristics imply that the 

normality assumption for the daily gold price is rejected at any level of significance by 

the Jarque-Bera test (JB-test), with test statistic of 2454.4068, which is very large as 

compared to a chi-square distribution with 2 degrees of freedom. 

 

Table 4.1 Descriptive statistics for in-sample series 

Min Max Mean Median Std. dev. Skewness Kurtosis JB-test NoO  

252.8 1895 558.7877 387.1250 363.4643 1.5925 4.7121 2454.4068 

(0.0000) 

4500 

* Std. dev is abbreviated for standard deviation, the values in parenthesis denotes p-value and NoO is 

abbreviated for number of observation. 
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Figure 4.2 Histogram for in-sample series 

4.2.1.1 Data Stationarity  

The original gold price series depicts nonstationary behaviour, therefore the data 

needs to be handled first by stabilising the variance which will suggest the appropriate 

transformation series (Hyndman & Athanasopoulos, 2014). The transformation series, if 

needed, will be checked on the stationarity in-mean. In this study, the Box-Cox 

transformation is used as the variance stabilising method. Meanwhile, the ACF and PACF 

as proposed by Box and Jenkins (1968) are used in analysing stationarity in-mean of the 

transformation series, which is supported by ADF-test results.  

Based on the Box-Cox transformation analysis, the best estimated power value of 

2147.0   which is close to 0, implies that the transformation of
tt yy ln

*
 , where

*

ty  

is the transformed data and 
ty  is the observed data, is appropriate to stabilise the variance 

in the data series. The log transformation is chosen as compared to the transformation 

with exact value of  , since it is easier to back-transform to the original price data for 

the forecasting purpose. Note that the in-sample gold price series is positively skewed, 

and this agrees with well-established guidelines of transformation that a log 

transformation is recommended for positively skewed data (Olivier & Norberg, 2010).   

The plot of the log transformed series is shown in Figure 4.3. Based on descriptive 

statistics of the transformed data given in Table 4.2, it can clearly be seen that the series 

is less volatile up to 99.85%, suggesting that the log transformation indeed helps in 

stabilising the amplitude of the gold price. On the other hand, the log transformation not 

only stabilises the variance, but also improves the approximation of data normality. 

Figure 4.4 shows the histogram of the transformed data which is symmetrically 
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distributed as compared to the histogram of the original price data shown in Figure 4.2, 

which indicates that the log transformation did improve the normality of the data.  

Table 4.2 Descriptive statistics for the transformed data series 

Min Max Mean Median Std. 

dev. 

Skewness Kurtosis JB-test NoO 

5.5326 7.5470 6.1652 5.9587 0.5315 0.8959 -0.4107 633.8854 

(0.0000) 

4500 

* Std. dev is abbreviated for standard deviation, the values in parenthesis denotes p-value and NoO is 

abbreviated for number of observation. 

 

 

Figure 4.3 The transformed data of daily gold price for in-sample period 

However, the 0.0000value- p  of the JB-test rejects normality in the log data. 

Even though the transformation method is able to stabilise effectively the variance in the 

data, Figure 4.3 graphically shows that the trend still exists in the log series. This indicates 

that the transformed series is still not stationary, specifically in-mean. Therefore, the ACF 

and PACF of the log series are investigated as recommended by Box and Jenkins (1968) 

in handling the in-mean nonstationary case. The in-mean nonstationary behaviour is then 

statistically investigated using unit root test of ADF-test as proposed by Said and Dickey 

(1984). 

 

Figure 4.4 Histogram for in-sample transformed series 
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The correlogram or sample ACF, 
kr  of the log series, as shown in Figure 4.5, 

suggested that the transformed data is nonstationary, specifically in-mean, due to the 

spikes which is slowly decaying to zero. The pattern of the ACF that shows spikes in the 

sample on one side indicates that the log series does not have seasonal behaviour (Box & 

Jenkins, 1968; Hanke, Reitsch, & Wichern, 2001), which confirms the nonseasonal trend 

as shown in Figure 4.1. The number of data used for this univariate in-sample series is 

4500T  implies that the maximum lag for the ACF and PACF is 

  364500log10max k , by applying Equation 3.40. The sample ACF with slowly 

decaying to zero up to 36max k  suggested that this log series needs differencing.  

 

Figure 4.5 The ACF and PACF of the log series 

To confirm statistically that the transformed data is nonstationary in-mean, the 

ADF-test is employed to the log series as given in Table 4.3. The ADF-test using EViews 

is based on the left-tailed t distribution as proposed by MacKinnon (1996). Based on the 

ADF-test with the maximum lag   31100/450012 4

1

max 







k , the t-test statistics is 

0016.1 , which is greater than the t-critical of 4108.3  at 5% significance level. Hence, 

the null hypothesis of a presence of unit root in the data series is not rejected.  If we 

consider the analysis based on p-value, the p-value is 0.9422 that is greater than 0.05, 



101 

therefore we arrive at the same conclusion. The presence of unit root suggests that the 

data series is nonstationary. Hence, data differencing is needed for the transformed data 

(log data) to make the series stationary.  

Table 4.3 Augmented Dickey-Fuller unit root test on transformed data 

testt  37,05.0t  p-value Number of lag 

-1.0016 -3.4108 0.9422 31 

 

Thus, the log gold price series need to be differenced, 
1 tt yy  in order to remove 

the trend and obtain a stationary series. The ADF-test for first order difference of the log 

series is 9454.13  which is much smaller than the 5% significance level of test critical 

value, as given by Table 4.4. The 𝑝-value = 0.0000 indicates that the ADF 𝑡-statistic is 

significant and there is no unit root in the data series, which suggests that the first 

differenced of log price series is stationary. The stationarity of the first differenced log 

price series is then supported by the sample ACF and PACF patterns for the series as 

shown in Figure 4.6, where the values are reduced drastically to zero. This is agreed with 

the previous studies that gold price has nonstationary characteristics (Dunis & Nathani, 

2007; Shafiee & Topal, 2010; Smith, 2002). Consequently, the gold price series is 

stationary after one lagged difference from the daily log price series or simply it is 

stationary in the form of the daily log return price series.  

 

Table 4.4 Augmented Dickey-Fuller unit root test on first differenced log data 
 

testt  37,05.0t  p-value Number of lag 

-13.9454 -3.4108 0.0000 31 

 

Figure 4.7 graphically illustrates the stationarity of the first order differenced log 

gold price series since most of the data are located around the mean of zero, 0 . 

However, there are some spikes in the figure which represents volatility clustering 

specifically starting year 2001 (around data of 1700-day in Figure 4.7) due to relatively 

weak supply of gold, geopolitical tensions since the 11 September terrorist attacks, the 

emergence of new markets in developing economies, growing speculation about the large 

US current-account imbalances and the required correction through a significant 

depreciation of the dollar which have contributed to the upward trend and higher volatility 

(Alcidi, De Grauwe, Gros, & Oh, 2010). As shown in the figure, there is clear evidence 
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of volatility clustering that is large or small asset price changes tend to be followed by 

other large or small price changes of either positive or negative sign. This implies that 

gold price return volatility changes over time. 

 

 

Figure 4.6 ACF and PACF for first differenced log series 

 
Figure 4.7 The first order difference of daily log gold price series  

The mean of stationary series as shown in Table 4.5 is 0.0003. It is numerically 

supports that the average return is positive but very close to zero, however, the value is 

statistically significant at 5% significance level. The standard deviation for stationary 

series is 0.0106 which shows that the log return series is less volatile up to 99.99% as 

compared to the original series. The distribution of stationary data is symmetric as the 

hypothesis of zero skewness is accepted since the t-test statistic is 1.1008 with p-value 

more than 5% significance level.  The symmetric characteristic of the stationary series is 

supported graphically by Figure 4.8. 
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Table 4.5 Descriptive statistics for stationary series 

Min Max Mean Median Std. 

dev. 

Skewness Kurtosis JB-test NoO 

-0.0797 0.0964 0.0003 

(0.0398) 

0.0002 0.0106 0.0402 

(0.2710) 

6.9142 

(0.0000) 

8974.38 

(0.0000) 

4499 

* Std. dev is abbreviated for standard deviation, the values in parenthesis denotes p-value and NoO is 

abbreviated for number of observation. 

On the other hand, the kurtosis for the log return has increased more than four 

times compared to the price data. The t-test of the excess kurtosis for the series is 94.6661 

with p-value close to zero, imply that the log return series is leptokurtic with a higher 

peak and fatter tails as compared to the price data. The leptokurtic or heavy-tailed 

characteristic implies that the log return of gold price puts more mass on the tails and 

contains more extreme values. The test of hypotheses for mean, skewness and kurtosis 

indicate that, in general, the stationary series or log return series has more gains than 

losses, but the profit obtained is close to zero for most of the time (refer to Figure 4.7).  

 

 
 

Figure 4.8 Histogram for stationary series 

4.2.1.2 Preliminary of Linearity Test  

Box-Jenkins approach is one of the widely used forecasting methods for linear 

data. Therefore, it is wise to conduct linearity test for the gold price data, specifically to 

stationary data, before the Box-Jenkins model is applied. The preliminary linearity step 

is necessary in identifying whether the data series fits the linear model or not at the early 

stage. Therefore, in the proposed Box-Jenkins framework, this step is applied in the 

identification stage.  

Figure 4.9 shows the plot of differenced log price series versus its lagged 1 series. 

It can be seen that the plot is nearly a straight line, implying that the Box-Jenkins’s linear 
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model is appropriate for the data series.  This is following the concept driven by Box and 

Jenkins (1968) for their models, that the deviation is linearly dependent on previous 

deviations.  The deviation in this study is the stationary data itself, *

ty  since the mean of 

*

ty  is very close to 0.  

 

Figure 4.9 The plot of the first differenced log price and its previous deviations 

4.2.1.3 Portmanteau Test  

Since the linearity is proven for the stationary series of gold price, then the serial 

correlation of the series is checked either it is serially correlated data or not. It can be seen 

that most values of the sample ACF and PACF for the stationary series, as shown in 

Figure 4.6, are close to zero which indicates that the stationary series has tendency to be 

uncorrelated series. On the assumption that the stationary series completely random, 

therefore the standard error limits for sample ACF and PACF are the same, that is 

    0149.0
4499

1
sese  kkk rr . Referring to the figure, most of the values of sample 

ACF and PACF are within two standard error limits of 0.0298, suggesting that the serial 

correlations in daily gold price returns are small, if any (Box et al., 2008; Box & Jenkins, 

1968; Tsay, 2013). Based on these results, it can be concluded that the Box-Jenkins model 

is not appropriate to analyse the stationary series of gold price. However, it is not wise to 

make the conclusion just based on graphical related results.  

Therefore, in the screening part of the proposed procedure of BJ-G, a Portmanteau 

test of LBQ-test is applied to verify whether the stationary series has no serial correlations 

as well as to verify the justification of application of the Box-Jenkins model to the data 

series. In the Portmanteau test, the hypothesis null of 
kH   ...: 210
 with 9k  

is tested for the stationary data. The choice of 94499ln k is based on Tsay (2013) 
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suggestion, since the in-sample log return price series is nonseasonal. For 9k , the LBQ-

test is 19.0700 with p-value 0.0246. It is clearly that the LBQ-test rejects the null 

hypothesis of no serial correlations in the log return price series at 5% significance level. 

Consequently, there exists serial correlations in the stationary series of the daily gold price 

series. Therefore, the serial correlations test leads to the justification of using Box-Jenkins 

models for the data series. The stationary data is now prepared well for the Box-Jenkins 

model identification part.    

4.2.1.4 Box-Jenkins Model Identification  

Based on the previous analysis, the daily gold price series has shown 

nonstationary and nonseasonal patterns. The series is stationary in-mean and variance 

after differencing of one lagged to the log price series which is agreed with the ADF unit 

root test and spikes patterns of the ACF and PACF for the differenced log series. The 

preliminary linearity test supports the use of the linear model, while the Portmanteau test 

for the stationary series leads to the application of Box-Jenkins models in handling the 

serial correlation in the series. Therefore, these results then reflect to the ),1,(ARIMA qp  

as the appropriate Box-Jenkins model in analysing the daily gold price data.  

The Box-Jenkins modelling makes use of the sample ACF and PACF to specify a 

model that can capture the dynamic dependence of the data. Thus, the 
kr and 

kkr  for the 

stationary series as shown in Figure 4.7 is investigated to identify the order of the ARIMA 

model. Referring to the figure, most of the values of 
kr and 

kkr  are close to zero and it is 

hard to identify graphically the appropriate order for the ARIMA model. Due to 

parsimony approach as practiced in the Box-Jenkins modelling, the values of both 

parameters p and q are suggested for 0, 1, and 2. These values of p and q are always 

appropriate for the stationary series in most application (Box & Jenkins, 1968).  

On the assumption that 
k  to be zero for all lags since most of the values of 

kr  

graphically are close to zero, that is 0q , then the estimated large lag standard error is 

  0149.0
4499

1
se kr . Referring to Figure 4.6, there are only seven lags that are 

greater than the two standard error limit of 0.0298, therefore the model with 0q  can 

be accepted. Since the value of 0070.01 r  is less than the two standard error of 
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0.0298, it can be concluded that 1  is zero. Therefore, it might be reasonable to 

investigate the model of 1q , that is to test the hypothesis of  2 0:0  kH k  versus 

0: 11 H . Using Equation 3.32, the estimated large-lag standard error under this 

hypothesis is      0149.00070.021
4499

1
se

2
kr  where 1k . Based on the 

values of 
kr  in Figure 4.6, there are seven of the estimated autocorrelations for lags 

greater than 1 are greater than two standard error limit, therefore there is no reason to 

doubt the adequacy of the model that consists of 1q .  

The same method of model adequacy is applied to other considered parameters p 

and q. The estimated standard errors of autocorrelations and partial autocorrelations for 

all considered models are the same that is 0.0149. It is observed that the number of lags 

of sample ACF and PACF with greater than two standard error limit (or 0.0298) for the 

ARIMA models of (0,1,0), (0,1,1), (0,1,2), (1,1,0), (1,1,1), (1,1,2), (2,1,0), (2,1,1) and 

(2,1,2) are not more than seven, indicates that all considered models are adequate.  

Alternatively, instead of using autocorrelation method in identifying the ARIMA 

model, we recommend one to apply the EACF method as introduced by Tsay and Tiao 

(1984) in the proposed framework. As shown in Table 4.6, the EACF result suggests the 

order of (0,1,0) since the triangle of “O” have its upper left vertex at the (0,0) position 

with the standard error of 0298.044992  . Referring to Figure 4.6, the behaviour of 

sample ACF and PACF of the stationary series likely agreed with the ARIMA(0,1,0) as 

suggested by the EACF result, but all other considered models are also worth entertaining.  

 

Table 4.6 The simplified EACF table for the differenced log series 

MA Order:q 

p 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 O O O X O X O O O O X X O 

1 X O O X O O O O O O O X O 

2 X X O O O O O O O O O O O 

3 X X X O O X O O O O O O O 

4 X X X X O O O O O O O O O 

5 X X X X X O O O O O O O O 

6 X X X X X O O O O O O O O 
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4.2.2 Stage II: Parameter Estimation of the Box-Jenkins Model  

In the estimation stage, as can be referred to Figure 3.10, all the possible ARIMA 

models are estimated using MLE and OLS methods. Table 4.7 shows the results from the 

estimation stage using EViews at 5% significance levels with normalised AIC and SIC 

values for the nine possible ARIMA models. In general, the model with smaller AIC and 

SIC values are concluded to be the better estimation model.  

Table 4.7 The results of estimation stage of the possible ARIMA models 

Models OLS MLE 

AIC SIC AIC SIC 

ARIMA(0,1,0) - 6.2646 - 6.2632 - 6.2642 - 6.2613 

ARIMA(0,1,1)* - 6.2642 - 6.2614 - 6.2638 - 6.2595 

ARIMA(0,1,2)* - 6.2638 - 6.2595 - 6.2634 - 6.2577 

ARIMA(1,1,0)* - 6.2640 - 6.2612 - 6.2638 - 6.2595 

ARIMA(1,1,1) - 6.2643 - 6.2600 - 6.2633 - 6.2576 

ARIMA(1,1,2)* - 6.2638 - 6.2581 - 6.2629 - 6.2558 

ARIMA(2,1,0)* - 6.2634 - 6.2591 - 6.2634 - 6.2577 

ARIMA(2,1,1)* - 6.2632 - 6.2575 - 6.2629 - 6.2558 

ARIMA(2,1,2)* - 6.2632 - 6.2561 - 6.2625 - 6.2539 

  *The insignificant model 

Based on the values of AIC and SIC for all significant models in Table 4.7, it can 

be concluded that the estimation using OLS is similar than MLE for ARIMA models, 

with very slight difference. Referring to the table, there are two possible models that are 

found to be significant at 5% significance level, ARIMA(0,1,0) and ARIMA(1,1,1). Since 

the AIC and SIC values for both models are equivalent, hence the models need to be 

chosen wisely. These results are in line with the models suggested by Box and Jenkins 

(1968) since there is similar characteristics in the sample ACF and the stationary series.  

In the proposed procedure of BJ-G, the EACF approach introduced by Tsay and 

Tiao (1984) is recommended to be used to overcome the uncertainty of model chosen. 

The result of the EACF approach is supported by the smallest values of AIC and SIC 

using OLS estimation method as well as agreed with the model suggestion based on 

behaviour of autocorrelation functions by Box et al. (2008). Furthermore, according to 

the principle of parsimony that simple models are preferred to complex models when all 

things being equal, hence the model of ARIMA(0,1,0) is chosen as the best estimate 

model to model daily gold price.  
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Consequently, the estimation results of ARIMA(0,1,0) for stationary data of in-

sample daily gold price data using OLS method is given by Table 4.8.  

Table 4.8 Estimation result for ARIMA (0,1,0) model 

Variable Coefficient Standard error 
testt  p-value 

c 0.0003 0.0002 2.0565 0.0398 

 

In Table 4.8, the constant c are statistically significant at 5% level, hence the 

model of ARIMA(0,1,0) for the daily log return of the gold price data is given by Equation 

4.1, where  0001.0,0~ NIDat  with 0001.0ˆ 2 a  and 
*

ty  is the differenced log price 

data at time t. As given by the equation, it implies that the series has no significant serial 

correlation.  

        
tt ay  0003.0*                4.1 

The significance of c in the estimated model implies that the expected daily log    

return for gold market is about 0.03%, which is positive and remarkable. In fact, it is 

small, but has an important long term implication, supporting the common belief that the 

return of gold investment performs well in the long term, as can be explained as follows.  

By using the n-period simple gross return as defined in Equation 4.2, 

 

   





1

1

11
n

j

jtt RnR       4.2 

 

where 
tR  is simple return, therefore, the average annual simple gross return for daily log 

return gold price is  

 

  0692.011
4499

250

4499

1

* 







 

t

tt yr  

 

where  tt Rr  1ln  which is called the log return and *

ty  is the daily log return (or 

stationary data). Hence, the average annual simple return is given by 

 

    0717.010692.0exp1exp  tt rR  
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This shows that the daily simple return of gold investment grew about 7.17% per 

annum from 1993 to 2011. The return value for the investment is given by the compound 

return for n-period as defined by Equation 4.3, 

 

 n

tR 1PVFV      4.3 

where FV is the future value and PV is the present value. By substituting ,1PV   and 

0717.0tR  in Equation 4.3, therefore, a one-dollar investment in gold at the end of 1993 

would be worth about   3.48  USD10717.01
18
  at the end of 2011. 

4.2.3 Stage III: Diagnostic Checking of the Box-Jenkins Model    

The chosen model, ARIMA(0,1,0) is then examined carefully in the diagnostic 

checking stage in detecting the adequacy of the model to the data series. In the diagnostic 

checking stage, referred to Figure 3.11, the residual series  tâ  of the model is 

investigated in terms of independence, homoscedasticity and normality for the closeness 

to the white noise criteria. The residuals plot for ARIMA(0,1,0) of the in-sample 

stationary series, shown as in Figure 4.10, illustrates randomness in the residuals with 

some spikes representing volatility clustering in certain periods as reflected by the 

differenced log data. 

 

 
Figure 4.10 Residuals plot for ARIMA(0,1,0) 

As in the serial correlation test, the result of DW-test is approximated to two 

 20139.2   which shows that there is no first-order serial correlation in the residuals. 

The LBQ-test is then tested on the residuals to test the null hypothesis that there is no 

remaining serial correlation in the residuals for higher lags. From the test, as shown in 
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Figure 4.11, the p-value of the LBQ-test is not significant up to lag 5 shows that the mean 

equation of the ARIMA(0,1,0) to the data is correctly specified up to lag 5, at 5% 

significance level. The ACF and PACF of the residuals are both relatively small and 

approximately equal to zero, support the independency in the residuals, as shown 

graphically in Figure 4.10. 

In testing of heteroscedasticity in the residuals, the ARCH LM test, or simply 

called as ARCH test is applied to the residuals of the ARIMA(0,1,0) model. The number 

of lag 10 and lag 15 are used for the ARCH test (Engle, 2001; Hyndman & 

Athanasopoulos, 2014). The ARCH test shows significant p-value which indicates the 

presence of ARCH in the residuals up to lag 15 as shown in Table 4.9.  

It is also very clear that various spikes of ACF and PACF of squared residuals of 

ARIMA(0,1,0), as shown in Figure 4.12, are beyond the two standard error limits of 

0.0298, showing that the residuals under consideration have ARCH effect. The LBQ-test 

which is tested on the squared residuals also agreed that there is the ARCH effect in the 

residuals. This means that the variance equation for the ARIMA model is not correctly 

specified due to the existence of volatility clustering in the data series. Furthermore, the 

PACF of the squared residuals of ARIMA(0,1,0) shows insignificant results up to lag 12, 

which indicate that at least 12 variables should be considered in ARCH model at 5% 

significance level. Hence, by applying parsimonious method, it is suggested to use 

GARCH model as compared to ARCH in handling the existence of heteroscedasticity in 

the residuals. 

 
 

Figure 4.11 LBQ-test on residuals for ARIMA(0,1,0) 
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Table 4.9 Heteroscedasticity test using ARCH test for ARIMA(0,1,1) 
 

test  p-value maxk  

372.0444 0.0000 10 

421.2442 0.0000 15 

 

 

 

Figure 4.12 Ljung-Box Q-test on squared residuals for ARIMA(0,1,0) 

On the other hand, the JB-test of normality as given by Table 4.10 strongly rejects 

the null hypothesis that the white noise innovation t  is a normal distribution. The 

rejection is supported by the existence of many outliers on the left and right tails of the 

normal QQ-plot as shown in Figure 4.13. Based on the descriptive statistics for the 

residuals of ARIMA(0,1,0), it can be seen that both mean and variance of the residuals 

are approximately zero, with value of 171058.1   and 0.0001, respectively. 

 

Table 4.10 Descriptive statistics for the residuals of ARIMA(0,1,0) 
 

Min Max Mean Median Std. 

dev. 

Skewness Kurtosis JB-test NoO 

-0.0800 0.0961 171058.1   -0.0001 0.0106 0.0402 9.9186 8974.38 

(0.0000) 

4199 

*Std. dev is abbreviated for standard deviation, the values in parenthesis denotes p-value and NoO is 

abbreviated for number of observation. 
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Figure 4.13 Normal QQ-plot for ARIMA(0,1,0)  

Based on the results of diagnostic checking, ARIMA(0,1,0) model is good in 

handling serial correlation test in the residuals, however it fails to satisfy other tests of 

white noise criteria. This is due to the presence of volatility clustering in the data series 

and non-Gaussian characteristics in the residuals of the series as shown in Figure 4.10 

and Figure 4.13, respectively. Therefore, in handling the existence of heteroscedasticity 

in the residuals, the stationary series is reanalysed using ARIMA-GARCH model. Then, 

the innovations of residuals of the proposed ARIMA-GARCH model will be tested 

including normal, t, skewed-t, GED and skewed-GED.   

 

4.2.4 Modelling Gold Price using Box-Jenkins – GARCH 

The previous analysis on the Box-Jenkins specifically ARIMA models determines 

that the ARCH effect occurred in the data series where conditional variance is not 

constant throughout the time, due to the presence of volatility in daily gold price data 

series. The considered ARIMA model did not handle the heteroscedasticity that exist in 

the data series. By referring to Figure 3.11, the standard GARCH models as the 

recommended volatility model is used to satisfy the non-constant behaviour in the 

residuals of the ARIMA models, by applying ARIMA-GARCH model to the gold price.  
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4.2.4.1  Stage I: Model Identification of ARIMA-GARCH  

In the combination model of ARIMA-GARCH, the best model of the Box-Jenkins 

that is ARIMA(0,1,0) is used as the mean model while GARCH(r, s) is used as the 

variance model. In identifying the appropriate value of r and s for GARCH model, the 

ACF and PACF for the squared residuals of the considered ARIMA is used, where the 

ACF is used to specify the r value and the PACF is used to specify the s value. Based on 

Figure 4.12, the ACF and PACF for squared residuals for ARIMA(0,1,0) suggested the 

values for 5,4,3,2,1r  and 4,3,2,1s , respectively. Therefore, there are 20 possible 

model combinations between ARIMA(0,1,0)-GARCH(r,s), as the details in Appendix 2. 

4.2.4.2 Stage II: Parameter Estimation of ARIMA-GARCH  

Even though OLS shows the best parameter estimate for the ARIMA models, but 

the method has disadvantages when volatility or ARCH effect is present in the series 

(Chand, Kamal, & Ali, 2012). Therefore, the parameter of the ARIMA-GARCH model 

is estimated using the MLE since it is widely applied in the combination of Box-Jenkins 

- ARCH/GARCH model in various data series (Chand et al., 2012; Chen et al., 2011; Liu 

& Shi, 2013; Tan et al., 2010; Zhou et al., 2006). The simultaneous estimation procedure 

of MLE for Box-Jenkins with ARCH/GARCH models is built-in, in statistical packages 

such as EViews and fGarch (in R language). 

From the analysis conducted in the estimation stage, five of the 20 possible 

ARIMA-GARCH models show significant results at 5% significance level. The 

significant models are ARIMA(0,1,0)-GARCH(1,1), ARIMA(0,1,0)-GARCH(1,2), 

ARIMA(0,1,0)-GARCH(2,1), ARIMA(0,1,0)-GARCH(2,2) and ARIMA(0,1,1)-

GARCH(1,4). Table 4.11 shows the empirical results for the significant ARIMA-

GARCH models with normal errors assumption on the stationary data of daily gold price 

using MLE method at 5% significance level. It can be observed that all the significant 

ARIMA-GARCH models have insignificant constant in the mean equation. 

The empirical results of the significant ARIMA-GARCH models indicate that the 

values of normalised AIC, normalised SIC and the log-likelihood are marginally 

decreased when the value of r and s is greater than one  1, i.e. sr . Based on Table 4.11, 

the models of ARIMA(0,1,0)-GARCH(4,4) produced the smallest values for AIC and 
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SIC, respectively. However, since the criterion values are marginally decreased with 

ARIMA(0,1,0) - GARCH(1,1), therefore ARIMA(0,1,0) - GARCH(1,1) model is chosen 

for the next stage due to the principle of parsimony that is well practised in the Box - 

Jenkins modelling.  

 

Table 4.11 Estimation results of the significant ARIMA-GARCH models 
 
 

Par ARIMA(0,1,0) 

-GARCH(1,1) 

ARIMA(0,1,0) 

- GARCH(1,2) 

ARIMA(0,1,0)   

- GARCH(2,1) 

ARIMA(0,1,0) 

- GARCH(2,2) 

ARIMA(0,1,0) 

-GARCH(4,4) 

c  4.29 x 10-5 

(0.7000) 

5.79 x 10-5 

(0.6030) 

7.61 x 10-5 

(0.4907) 

5.73 x 10-5 

(0.6068) 

3.21 x 10-5 

(0.7694) 

0  1.27 x 10-7 

(0.0000) 

1.75 x 10-7 

(0.0001) 

9.20 x 10-8 

(0.0001) 

1.16 x 10-8 

(0.0198) 

3.86 x 10-8 

(0.0235) 

1
  0.0428 

(0.0000) 

0.0620 

(0.0000) 

0.1128 

(0.0000) 

0.0970 

(0.0000) 

0.0943 

(0.0000) 

2
  - - -0.0775 

(0.0000) 

-0.0916 

(0.0000) 

0.0901 

(0.0000) 

3
  - - - - -0.0884 

(0.0000) 

4
  - - - - -0.0776 

(0.0000) 

1
  0.9594 

(0.0000) 

0.4564 

(0.0001) 

0.9663 

(0.0000) 

1.7484 

(0.0000) 

-0.0811 

(0.0213) 

2  - 0.4846 

(0.0000) 

- -0.7536 

(0.0000) 

1.5295 

(0.0000) 

3  - - - - 0.2768 

(0.0000) 

4  - - - - -0.7428 

(0.0000) 

AIC -6.5894 -6.5917 -6.5958 -6.6007 -6.6118 

SIC -6.5837 -6.5846 -6.5887 -6.5922 -6.5976 

Log-l 14826.8700 14833.8100 14842.24 14854.3000 14883.3300 

* values in parenthesis denotes p-value, Par is abbreaviated for parameter and Log-l is for log-likelihood. 

 

4.2.4.3 Stage III: Diagnostic Checking of ARIMA-GARCH  

Figure 4.14 shows the standardised residuals plot for ARIMA(0,1,0)- 

GARCH(1,1) of the in-sample stationary series. Except for several possible outliers due 

to volatility clustering in the data series, the standardised residuals look random and 

reasonable. While the corresponding diagnostic test results for the Box-Jenkins – 

GARCH model is given by Table 4.12. In the diagnostic checking tests, the DW-test value 

of approximately two, shows that there is no first-order serial correlation in the residuals 

for the considered BJ-G model. Even though the LBQ-test on the standardised residuals 

shows the existence of serial correlation (and the autocorrelation decreases in the higher 

lag), this is most probably due to small autocorrelations that should not be of practical 
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importance (Ruppert & Matteson, 2015). This situation is not surprising since the sample 

size used is 4499, which might lead to small autocorrelation due to its large sample size 

(Ruppert & Matteson, 2015).  

 

Figure 4.14 Standardised residuals plot for ARIMA(0,1,0)-GARCH(1,1) 

Table 4.12 Diagnostic tests on ARIMA(0,1,0)-GARCH(1,1) model 
 

Diagnostic Test Value p-value 

DW-test 2.0125 - 

LBQ  10  9.0971 0.5230 

LBQ  15  17.3830 0.2970 

LBQ  102  16.8210 0.0780 

LBQ  152  16.6610 0.2360 

ARCH(110) 17.8694 0.0822 

ARCH(15) 19.7402 0.2696 

JB-test 9221.6300 0.0000 

*LBQ(10) represents the LBQ-test on residuals at lag 10, LBQ  102  represents the LBQ-test on squared 

residuals at lag 10 and ARCH(10) represents the ARCH LM-test at lag 10. 

To validate the linearity assumption in the mean equation of the model, the 

Terasvirta test is applied. For the stationary data, the test statistic is 3915.4test f  with 

0.0124value p  which indicates that the null hypothesis of the test is rejected at 5% 

level of significance. Therefore, the result of the test supports the behaviour of random 

walk in mean model which implies that ARIMA(0,1,0) is correctly specified for the mean 

model. Otherwise, the p-value is insignificant for LBQ-test on the squared standardised 

residuals which interprets that there is no ARCH in the residuals up to both lag 10 and 

15, as supported by the result of LM ARCH. Therefore, the model checking statistics on 

serial correlations, linearity and heteroscedasticity suggest that the mean and variance 

equation of the combination model of BJ-G is adequate and correctly specified.  
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On the other hand, the JB-test of the ARIMA-GARCH model strongly rejects the 

null hypothesis that the innovations, 
t  is Gaussian. The rejection is supported 

graphically by the existence of more outliers in the tails of the normal QQ-plot on the 

ARIMA(0,l,0)-GARCH(1,1) as shown in Figure 4.15. The outliers may be a signal that 

the conditional variance is not constant which exist when the variance is large. 

 

Figure 4.15 The normal QQ-plot of standardised residuals of ARIMA(0,1,0)-

GARCH(1,1) 

In investigating the characteristics of the innovations of the BJ-G model, the tests 

on skewness and kurtosis of the model residuals are conducted. Based on Table 4.13, the 

sample skewness and sample kurtosis of the standardised residuals are 0.4664 and 9.9514, 

respectively. By considering the hypothesis 0:0 RSH  versus 0:0 RSH , where RS  

denotes the skewness of the standardised residuals, the test statistic is 12.7715 with p-

value zero. The distribution of stationary data looks symmetric as shown in Figure 4.16, 

however, the hypothesis of zero skewness is rejected at 5% significance level. As for the 

kurtosis, the hypothesis is 03:
0


R

KH  versus 03:
0


R

KH , where RK  denotes 

the kurtosis of the standardised residuals, the test statistic is 95.1754 with p-value zero. 

Therefore, the null hypothesis of zero kurtosis is rejected which indicates that the 

standardised residuals series is leptokurtic with a higher peak and fatter tails as can be 

seen in Figure 4.16.  

 

Table 4.13 Descriptive statistics of standardised residuals of ARIMA(0,1,0)-

GARCH(1,1)  
 

Min Max Mean Median Std. dev. Skewness Kurtosis NoO 

-5.7572 10.8021 0.0353 

(0.0297) 

0.0224 1.0000 0.4664 

(0.0000 ) 

9.9514 

(0.0000 ) 

4499 

*Std. dev is abbreviated for standard deviation, the values in parenthesis denotes p-value and NoO is 

abbreviated for number of observation. 
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Figure 4.16 Histogram for standardised residuals of ARIMA(0,1,0)-GARCH(1,1) 

The characteristics of non-normal, heavy-tailed and skewed in the standardised 

residuals derive the use of t, skewed-t, GED and SGED distributions to be employed to 

the innovations for ARIMA(0,1,0)-GARCH(1,1) model. Table 4.14 presents the joint 

parameter estimation and diagnostic checking for the ARIMA(0,1,0)-GARCH(1,1) with 

four types of innovations. It is noted that, all models are highly significant and provide a 

good fit to the data since model checking statistics fail to indicate inadequacy of the 

model. The results given in the table reveals that ARIMA(0,1,0)-GARCH(1,1) model 

with t innovations is preferred based on the smallest values of normalised AIC and SIC, 

as well as in line with the principle of parsimony. 

The QQ-plot shown in Figure 4.17 supports the decision of preference of t 

innovations for the ARIMA(0,1,0)-GARCH(1,1) model to the stationary series of gold 

price data. The good fit of the QQ-plot in Figure 4.17(a) that nearly a straight line except 

for four outliers on the left and right tails, support graphically the use of t innovations. 

The percentage of the outliers is a small fraction of the data, just about 0.09% compared 

to the in-sample size. It is clear that the heavy-tailed characteristic in the stationary series 

gives significant impact to the chosen innovations since t-related QQ-plot relatively fit 

better than GED-related QQ-plot. On the other hand, the skewness characteristic shows 

no impact since the non-skewed-related models have comparatively smaller AIC and SIC 

than skewed-related models. It is also hard to detect graphically any significant difference 

in the QQ-plot between skewed and non-skewed models.      
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Table 4.14 Parameter estimation and diagnostic testing on ARIMA(0,1,0)-

GARCH(1,1) model for t, skewed-t, GED and SGED innovations 
 

Stages Innovations 

t Skewed-t GED SGED 

Parameter Estimation 

c   4227.01058.7 5   6996.01090.3 5   6083.01065.5 5   5621.01010.6 5  

0   0000.01092.1 7   0183.01088.1 7   0000.01004.2 7   0000.01004.2 7  

1   0000.00663.0   0000.00663.0   0000.00606.0   0000.00607.0  

1   0000.09386.0   0000.09387.0   0000.09420.0   0000.09419.0  

   0000.06977.4   0000.06760.4   0000.01400.1   0000.01400.1  

  -  0000.09840.0  -  0000.00020.1  

AIC 7078.6  7073.6  7023.6  7019.6  
SIC 7006.6  6987.6  6952.6  6934.6  
Log-l 1500.15094  0600.15094  9100.15081  9300.15081  

Diagnostic Checking 

DW-test  2.0128 1.9396 1.9408 1.9410 

LBQ  10   4400.00070.10   4276.01482.10   4376.00333.10   4371.00392.10  

LBQ  15   2500.02380.18   2329.05904.18   2352.05428.18   2353.05399.18  

LBQ  102
  8130.00308.6   8057.01130.6   7379.08677.6   7389.08565.6  

LBQ  152
  9020.04942.8   8981.05863.8   8644.02438.9   8650.02325.9  

ARCH(10)  8055.01155.6   8055.01148.6   7377.08692.6   7415.08289.6  

ARCH(15)  9109.03064.8   9108.03080.8   8822.09089.8   8840.08739.8  

* values in parenthesis denotes p-value, Log-l is abbreaviated for log-likelihood, LBQ(10) represents the 

LBQ-test on residuals at lag 10, LB  102  represents the LBQ-test on squared residuals at lag 10 and 

ARCH(10) represents the ARCH LM-test at lag 10. 

 

 
a. QQ-plot for t  

 
b. QQ-plot for skewed t 

 
c. QQ-plot for GED 

 
d. QQ-plot for SGED 

 

Figure 4.17 The QQ-plot of standardized residuals of ARIMA(0,1,0)-GARCH(1,1) 

model for innovations of t, skewed-t, GED and SGED, respectively 



119 

4.2.4.4 Stage IV: Forecasting of ARIMA-GARCH  

Consequently, the model of ARIMA(0,1,0)-GARCH(1,1) with t innovations is 

used in the forecasting stage. The ARIMA(0,1,0)-GARCH(1,1) model with t innovations 

for the stationary series for gold price data is given by Equation 4.4, 
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where *

ty  is the log price data at time t and 
*

1

**

 ttt yyy  is the differenced log price 

data at time t. The BJ-G model is then applied to the series of out-of-sample data that 

consists of 500 observations in evaluating the forecasting performance of the model. 

Since the stationary series or the daily log return price series is in log differenced form, 

the out-of-sample data must be transformed as well in applying the BJ-G model to obtain 

the forecast data of one-step ahead and the prediction error.  

Referring to Figure 3.12, Equation 4.4 is then modified to be an appropriate model 

to apply to the original scale in evaluating the performance of the BJ-G model in 

forecasting gold price. By retransforming the log and rearranging Equation 4.4, the model 

for daily gold price is given by Equation 4.5, where ty  is the daily gold price and 

*

tt ys   is the stationary data for the daily gold prices.  
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The forecast evaluations for one-step ahead using the proposed model for 

stationary series and price series are generated. Table 4.15 shows the joint results of 

RMSE, MAE and MAPE for 500 stationary forecast data (daily log return price data) and 

the forecast price data (daily price) using the ARIMA(0,1,0)-GARCH(1,1) model with t 

innovations. There is no result of MAPE for the stationary series since there is zero value 

of the transformed series due to no changes of the price for two consecutive days.   

 

Table 4.15 Forecast evaluations of ARIMA(0,1,0)-GARCH(1,1) with t innovations 
 

Data series Forecast Evaluations 

RMSE MAE MAPE 

Log Return Price Series 0.0124 0.0084 - 

Price Series 12.6855 18.3716 0.8402% 
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The one-step ahead forecast using ARIMA(0,1,0)-GARCH(1,1) model with t 

innovations for daily gold prices from 21st December 2012 to 17th December 2013 is 

shown in Figure 4.18. In the plot, the dashed line (red colour) presents the forecasted 

prices with ±2 standard errors whereas the solid line (blue colour) shows the actual gold 

prices. It is observed that the forecast gold prices fluctuate between USD 1200 and USD 

1800 per ounce in the 500-day out-sample period. Graphically, the BJ-G model shows 

promising performance in forecasting daily gold price series which is the trend of forecast 

prices that follows closely the actual data for the 500 days out-of-sample period. The 

comparison between actual daily gold price and its one-step ahead forecast price using 

the proposed BJ-G model for the last ten days out-of-sample simulation period is given 

by Table 4.16. In the study, the last ten-day simulation data is sufficient enough to 

demonstrate the trend of one-day lag (where the second column (forecast) prices can be 

obtained from the first column (actual) prices by shifting the first column one row 

downward) in the forecasting part.  

 
 

Figure 4.18 Graph of the actual and forecast data using ARIMA(0,1,0)-GARCH(1,1) 

model with t innovations for out-of-sample period 

Table 4.16 The actual and forecast prices using ARIMA(0,1,0)-GARCH(1,1)  
 

Date Actual price 

(USD/Oz) 

Forecast price 

(USD/Oz) 

Difference 

(USD/Oz) 

4 Dec 2013 1227.50 1218.18 9.33 

5 Dec 2013 1222.50 1228.43 -5.93 

6 Dec 2013 1233.00 1223.43 9.57 

9 Dec 2013 1237.00 1233.94 3.06 

10 Dec 2013 1266.25 1237.94 28.31 

11 Dec 2013 1260.75 1267.21 -6.46 

12 Dec 2013 1225.25 1261.71 -36.46 

13 Dec 2013 1232.00 1226.18 5.82 

16 Dec 2013 1234.75 1232.94 1.81 

17 Dec 2013 1231.75 1235.69 -3.94 
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4.2.5 Comparison of the Box-Jenkins, GARCH and the Box-Jenkins – GARCH 

Model Performance in Forecasting Gold Price  

The Box-Jenkins models specifically ARIMA is widely used in research practice 

for gold price in comparison or forecasting model (Alcidi et al., 2010; Khan, 2013; 

Miswan, Ping, & Ahmad, 2013). While, Ping et al. (2013) applied GARCH model to 

forecast Malaysian gold. GARCH as one of widely used models for asset volatility. 

Volatility is defined as the conditional standard deviation of asset returns (Tsay, 2013). 

In general, a series of the asset returns is a stationary series in the form of log return. 

Therefore, in this case study, the performance of the appropriate Box-Jenkins model, 

GARCH model and the proposed BJ-G model is discussed further. However, the series 

of gold price in this case study is not a stationary series, therefore the GARCH model is 

not appropriate to be used to forecast the data and the model would not be considered in 

the model comparison. 

Table 4.17 presents the estimation results for the considered Box-Jenkins model 

ARIMA(0,1,0) and the BJ-G model (specifically ARIMA(0,1,0)-GARCH(1,1) with t 

innovations) for the daily gold price series. It is found that both the normalised AIC and 

SIC values as well as the log-likelihood value from the BJ-G model are smaller than that 

of ARIMA model, hence it shows that ARIMA(0,1,0)-GARCH(1,1) model with t 

innovations is a better model as compared to ARIMA(0,1,0) for estimating daily gold 

prices. Note that, the single ARIMA model fails to handle the heteroscedasticity that exist 

in the data series as discussed in section 4.2.3, as well as violating the assumption on the 

constant variance in the errors. Therefore, it can solely be concluded that ARIMA(0,1,0)-

GARCH(1,1) with t innovations is appropriate and preferred in forecasting gold price 

since it reflects its pattern without violating the errors assumptions of the ARIMA model. 

 

Table 4.17 Estimation evaluations for ARIMA and ARIMA-GARCH 
 

Parameter ARIMA(0,1,0) ARIMA(0,1,0)-GARCH(1,1)  

c 0.0003(0.0398)  7.58 x 10-5 (0.4227)  

0  - 1.92 x 10-7(0.0000)  

1  - 0.0663(0.0000)  

1  - 0.9386(0.0000)  

  - 4.6977(0.0000)  

AIC -6.2646 -6.7078 

SIC -6.2632 -6.7006 

Log-likelihood 14093.2400 15094.1500 

* values in parenthesis denotes p-value. 
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By applying ARIMA(0,1,0)-GARCH(1,1) to the data series, it can be seen that 

the ARCH and GARCH coefficients in the variance model are statistically significant and 

the sum of both coefficients is very close to one. This indicates that volatility shocks are 

quite persistent where this result is often observed in high frequency financial data such 

as intra-day, daily or weekly data. Based on Table 4.17, The large value of 9386.01   

is attributed to a long-term persistence of volatility clustering. Therefore, by applying the 

BJ-G model to the data series, it can be seen that the combination model is able to explain 

better about the characteristics of the gold price. 

The empirical results using 5000-daily data series indicate that the combination 

model of Box-Jenkins and GARCH (or BJ-G) is proven as a potential model to analyse 

and forecast a highly volatile time series data, specifically gold price data. The results of 

this preliminary study have been published in Yaziz, Azizan, Ahmad, Zakaria, Agrawal 

and Boland (2015), Yaziz et al., (2014), Yaziz, Azizan, Zakaria and Ahmad (2013). This 

is in line with other reports that use the BJ-G model for highly volatile data series such as 

electricity price (Liu & Shi, 2013; Tan et al., 2010), internet traffic (Zhou et al., 2006), 

traffic flow (C. Chen et al., 2011), stock market (Freedi et al., 2012) and gold price 

(Ahmad, Ping, Yaziz, & Miswan, 2014; Ahmad et al., 2015).  

 

4.3 The Empirical Results of Gold Price on the Second Proposed Procedure of 

BJ-G 

Given the positive results of the forecasting one-step ahead for the data series 

using BJ-G model in the preliminary study, the performance of the second proposed 

procedure of BJ-G as illustrated in Figure 3.14 is then evaluated using the gold price 

series. The data series of daily world gold price, as applied in section 4.2, is used as the 

pool of data set in this empirical study. Based on the previous studies,  the number of data 

from 500 to 5000 are usually considered for BJ-G model for daily basis (Babu & Reddy, 

2015; Ferenstein and Gasowski, 2004; Gaglianone & Marins, 2017; García-Ferrer et al., 

2012; Harrison & Paton, 2004; Koopman et al., 2007; Sohn & Lim, 2007). Note that, 

5000 data as considered in the preliminary study is the maximum number of data for daily 

basis in previous literatures to ensure all significant characteristics related to volatility of 

data can be captured.  
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The 5000 data series is then divided into six different data series ranges from 500 

to 5000 and each data series is tested using the second proposed procedure of BJ-G as 

shown in Figure 3.14. Basically, the number of data for each sample is approximately 

half from the previous duration, with a ratio of estimate to forecast at 90:10. The ratio of 

estimate to forecast used is the same as in Section 4.2 to maintain the continuity of the 

study. The details of the classification of sample data series are summarised in Table 4.18. 

 

Table 4.18  Classification of sample data series 
 

Sample Duration Number of 

Data 

In-Sample Out-of-Sample 

1 24/11/93 - 17/12/13 

(20-year) 

5 000 24/11/93 - 20/12/11 

(4500 data) 

21/12/11 - 17/12/13 

(500 data) 

2 5/12/03 - 17/12/13 

(10-year) 

2 500 5/12/03 - 18/12/12 

(2250 data) 

19/12/12-17/12/13 

(250 data) 

3 22/12/08 - 17/12/13 

(5-year) 

1 250 22/12/08 - 24/6/13 

(1125 data) 

25/6/13 - 17/12/13 

(125 data) 

4 21/12/09 - 17/12/13 

(4-year) 

1 000 21/12/09 - 29/7/13 

(900 data) 

30/7/13 - 17/12/13 

(100 data) 

5 20/12/10 - 17/12/13 

(3-year) 

750 20/12/10 - 3/9/13 

(675 data) 

4/9/13 - 17/12/13 

(75 data) 

6 21/12/11 - 17/12/13 

(2-year) 

500 21/12/11- 8/10/13 

(450 data) 

9/10/13 - 17/12/13 

(50 data) 

 

Since a significant modification is done on Stage I of the second proposed 

procedure of BJ-G (refer to Figure 3.14) where it involves eight steps and will be disussed 

in detail in-sample data series. The first step is to plot in-sample series for each sample 

considered, as shown in Figure 4.19. The purpose of this step is to check the occurrence 

of any trends and seasonality behaviour in the gold price movement graphically. Based 

on Figure 4.19, it is observed that the gold price series is nonseasonal for all data series. 

The stationarity behaviour based on the time series plots of all samples can be classified 

into three groups as follows:   

(i) The series for Sample 1 and 2 have the same characteristics, where it exhibits 

overall upward trend with inconsistent and large variation; 

(ii) The series for Sample 3 to 5 have an unclear trend but exhibit inconsistent and 

large variation; 

(iii) The series for Sample 6 has downward trend with consistent and small variation. 



124 

Sample 1 

 

Sample 2 

 

Sample 3 

 

Sample 4 

 

Sample 5 

 

Sample 6 

 
 

 

Figure 4.19 In-sample time series plot of original data for Sample 1 to 6 

 

In the second step, the descriptive statistics of all samples is obtained as tabulated 

in Table 4.19, which support the the behaviour of each sample as described in the first 

step. The test of hypothesis for skewness imply that the series for all samples is 

asymmetric. The data series in Sample 1 and 2 are positively skewed, while Sample 3 to 

6 are negatively skewed. The JB-test validates the asymmetric characteristics for all 

samples. Based on Table 4.19, it can be seen that all samples have excess kurtosis, 

specifically, Sample 1 is leptokurtic while Sample 2 to 6 are platykurtic. The reduction in 

the kurtosis value from Sample 1 to 6 implies that the peakedness in the data series is 

decreasing from Sample 1 to 6.  The graphical representation of distribution for each 

sample is shown by histogram in Figure 4.20.  

 

Table 4.19 Descriptive statistics for in-sample original data of Sample 1 to 6 
 

Sample Number 

of Data 

Mean Standard 

deviation 

Skewness Kurtosis JB - test Distribution 

1 4500 558.7877 

(0.0000) 

363.4643 1.5925 

(0.0000) 

1.7121 

(0.0000) 

2454.4068 

(0.0000) 

+vely skewed, 

leptokurtic 

2 2250 938.1378 

(0.0000) 

442.5005 5.0606 

(0.0000) 

-1.0278 

(0.0000) 

194.8672 

(0.0000) 

+vely skewed, 

platykurtic 

3 1125 1375.5310 

(0.0000) 

289.4461 -2.6388 

(0.0003) 

-1.2612 

(0.0000) 

87.2810 

(0.0000) 

-vely skewed, 

platykurtic 

4 900 1485.9270 

(0.0000) 

211.4332 -3.2810 

(0.0000) 

-1.1077 

(0.0000) 

61.8668 

(0.0000) 

-vely skewed, 

platykurtic 

5 675 1580.1060 

(0.0000) 

146.4332 -4.4476 

(0.0000) 

-6.8583 

(0.0003) 

35.3177 

(0.0000) 

-vely skewed, 

platykurtic 

6 450 1573.4772 

(0.0000) 

150.3654 -0.7256 

(0.0003) 

-0.7002 

(0.0024) 

48.6770 

(0.0000) 

-vely skewed, 

platykurtic 

*Values in parenthesis denotes p-value, +vely represents for positively and –vely represent for negatively 
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Sample 1 

 

Sample 2 

 

Sample 3 

 

Sample 4 

 

Sample 5 

 

Sample 6 

 

 

Figure 4.20 Histogram for in-sample original series of Sample 1 to 6 

The third step of Stage I in the second proposed procedure of BJ-G is checking 

the stationarity behavior for the samples. The Box-Cox transformation method is applied 

first to identify the nonstationary in-variance behaviour in the in-sample data series. The 

Box-Cox estimated value for the power of estimation, BC  for each sample with its 

appropriate transformation is summarised in Table 4.20. It can be seen that, 5 out of 6 

samples depict nonstationary in-variance. Hence, the in-sample data series of the samples 

need to be transformed first in order to stabilise the variance. This indicates the 

importance of the Box-Cox transformation especially when the time series plot shows 

inconsistent and large variations, which supports the observation in the first step. Figure 

4.21 graphically shows the transformed data series, *

ty  for Sample 1 to 6. Note that the 

series for Sample 6 does not need to be transformed since its BC  values is close to 1.   

  
Table 4.20 The transformed and stationary data for Sample 1 to 6 
 

Sample Box-Cox Transformation, BC  Transformed Data, *
ty  

1 02147.0 BC  
 

tt yy ln*   
 

2 01101.0 BC  
 

tt yy ln*   
 

3 00780.0 BC  
tt yy ln*   

4 5.04217.0 BC  

t

t
y

y
1*   

 

5 5.06421.0 BC  
 

tt yy *  
 

6 19999.0 BC  
tt yy *
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Sample 1 

 

Sample 2 

 

Sample 3 

 

Sample 4 

 

Sample 5 

 

Sample 6 

 
 

Figure 4.21 In-sample time series plot for transformed data of Sample 1 to 6 

The in-sample transformed data of Sample 1 to 5 and in-sample data of Sample 6 

are then tested for stationarity in-mean, using autocorrelation method (ACF and PACF) 

and unit root test (ADF-test). Table 4.21 summarises the behaviour of sample ACF and 

PACF up to lag 
maxk , where Tk log10max   and the ADF-test up to lag 

maxk  where 

 4

1

max 10012 Tk   and T is the number of data for in-sample series.  

 

Table 4.21 Checking the stationarity of the transformed series at level (if needed) 
 

Sample ACF and PACF ADF-test Stationarity 

Condition 

Behaviour 
max

k  t-test 
max

k   

1 ACF spikes too slowly decays to zero 

and on one-side, only 11r  nonzero 

36 -1.0016 

(0.9422) 

31 Not 

stationary 

2 ACF spikes too slowly decays to zero 

and on one-side, only 11r  nonzero 

34 -3.3392 

(0.0603) 

26 Not 

stationary 

3 ACF spikes too slowly decays to zero 

and on one-side, only 11r  nonzero 

31 0.1488 

(0.9977) 

21 Not 

stationary 

4 ACF spikes too slowly decays to zero 

and on one-side, only 11r  nonzero 

30 -0.5591 

(0.9806) 

21 Not 

stationary 

5 ACF spikes slowly decays to zero and 

on one-side, only 
11

r  nonzero 

29 -2.0605 

(0.5664) 

20 Not 

stationary 

6 ACF spikes slowly decays to zero and 

on one-side, only 11r  nonzero 

27 -1.7495 

(0.7274) 

18 Not 

stationary 

*Values in parenthesis denotes p-value. 
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Based on the table, all the series are not stationary at level  0d , therefore all 

the considered series need to be differenced in order to remove the trend. The details of 

the sample ACF and PACF and the ADF-test for the samples considered can be referred 

to Appendix 3. 

The behaviour of the sample ACF and PACF and the ADF-test at the first 

differenced transformed data are summarised in Table 4.22. The results in the table 

indicate that series for all samples are stationary after first differenced. It can also be 

concluded that the ADF-test is useful to confirm numerically the stationarity in a series, 

since the sample ACF and PACF is based on graphical representation.   

 

Table 4.22 Checking the stationarity at the first differenced series 
 

Sample ACF and PACF ADF-test Stationarity  

Behaviour 
maxk  

t-test 
maxk  

condition 

1 Only 1r  nonzero, PACF spikes 

decays to zero exponentially and 

cuts off at lag 20 

36 -13.9454 

(0.0000) 

31 Stationary 

2 ACF spikes dies down to zero from 

lag 1, PACF spikes is damped sine 

wave with most of spikes close to 

zero from lag 1 

34 -10.6504 

(0.0000) 

26 Stationary 

3 ACF spikes dies down to zero from 

lag 1, PACF spikes is damped sine 

wave with most of spikes close to 

zero from lag 1 

31 -6.8659 

(0.0000) 

21 Stationary 

4 ACF spikes dies down to zero from 

lag 1, only PACF spikes at lag 21 is 

nonzero 

30 -6.4382 

(0.0000) 

21 Stationary 

5 ACF and PACF spikes dies down to 

zero from lag 1 

29 -4.9654 

(0.0002) 

20 Stationary 

6 ACF spikes dies down to zero from 

lag 1, only 22r  and 88r  are nonzero 

27 -5.2250 

(0.0001) 

18 Stationary 

*Values in parenthesis denotes p-value. 

 

Figure 4.22 graphically shows the time plot for the stationary series for Sample 1 

to 6 where it can be seen that most of the stationary data in all samples are located around 

the mean of zero. As shown in the figure, there is clear evidence of volatility clustering 

changes over time in the stationary series which implies that the gold price is one of the 

volatile data. Since the series found to be volatile, hence it is wise to consider the GARCH 

model in handling volatility in the series. However, it can be observed that the volatility 

clustering in a time series decreases as the number of data decreases. 
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Sample 1 

 

Sample 2 

 

Sample 3 

 

Sample 4 

 

Sample 5 

 

Sample 6 

 
 

Figure 4.22 Time plot for stationary series of Sample 1 to 6 

The descriptive statistics for stationary series, ts  of Sample 1 to 6 is given in 

Table 4.23. The stationary series for all samples reject the normality assumption and show 

leptokurtic or heavy-tailed characteristics since the excess kurtosis of the stationary series 

is significant and positive. This implies that the stationary series of the gold price have 

more mass on the tails and contains more extreme values.  

Based on Table 4.23, it is also observed that the mean of the stationary series for 

Sample 1 and 2 are significant at 5% significance level while the mean for Sample 3 to 6 

are insignificant. The positive value and significance of the mean for Sample 1 and 2, 

implies that the average return for 9-year and above investment in gold market is positive, 

as summarised in Table 4.24. This supports the gold market return performs well in the 

long-term period. The annual simple return of the gold price for the Sample 1 and 2 are 

7.17% and 16.14% per annum, respectively, shows that the 9-year investment is the best 

minimum duration for the gold market.  

The fourth and fifth steps are testing the linearity and serial correlation in the 

stationary series by applying the preliminary of linearity test and Portmanteau test, 

respectively. These two steps are necessary in satisfying the Box-Jenkins’s conditions 

since the model performs for a linear and serially correlated series. Figure 4.23 shows the 

plot of the stationary series and its lagged series. Based on the figure, the plot for all 

samples are nearly straight line, which indicates that the series fits the linear model 

graphically. This implies that the Box-Jenkins model is appropriate for the data series. 
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Table 4.23 Descriptive statistics for in-sample stationary series of Sample 1 to 6 
 

Sample Stationary 

series, ts  

Mean Std. 

dev. 

Skewness Kurtosis JB - test Distribution 

1 
 

 

0.0003 

(0.0398) 

0.0105 0.0402 

(0.2710) 

6.9142 

(0.0000) 

8974.3798 

(0.0000) 

Symmetric, 

Leptokurtic 

2 
 

 

0.0006 

(0.0174) 

0.0127 -0.3374 

(0.0000) 

3.5419 

(0.0000) 

1222.1838 

(0.0000) 

Negatively 

skewed, 

Leptokurtic 

3 
 

0.0004 

(0.3112) 

0.0122 -0.5852 

(0.0000) 

5.9934 

(0.0000) 

1755.8600 

(0.0000) 

Negatively 

skewed, 

Leptokurtic 

4 
 

 

6103   

(0.5708) 

0.0002 0.9506 

(0.0000) 

6.7163 

(0.0000) 

1836.4894 

(0.0000) 

Positively 

skewed, 

Leptokurtic 

5 
 

0.0004 

(0.9678) 

0.2494 -1.0058 

(0.0000) 

6.8980 

(0.0000) 

1461.8425 

(0.0000) 

Negatively 

skewed, 

Leptokurtic 

6 
1 ttt yys

 
 

6203.0  

(0.4825) 

18.698

1 

-0.8445 

(0.0000) 

8.3118 

(0.0000) 

1361.9921 

(0.0000) 

Negatively 

skewed, 

Leptokurtic 

*Values in parenthesis denotes p-value and Std. Dev. is abbreviated of standard deviation. 

Table 4.24 Annual simple return for Sample 1 and 2 
 

Sample Duration 
tR  Valuation at the end of duration 

for $1 investment 

1 18 years 

(24/11/93 - 20/12/2011) 

7.17% $3.48 

2 9 years 

(5/12/2003 - 18/12/2012) 

16.14% $3.84 

 

Since the linearity is depicted for all stationary series of gold price graphically, 

then the Portmanteau test of LBQ-test is applied to check whether the series is a serially 

correlated series statistically. Table 4.25 summarises the results of the Q-test for maxk  

equals to ln T, 10 and 15, where T is the number of data for in-sample series. The maxk  of 

ln T, 10 and 15 for the LBQ-test are based on the recommendation for nonseasonal series 

by Tsay (2013), Hyndman and Anthanasopoulus (2014) and Engle (2001), respectively. 

Based on the results, it is clear that series in Sample 1 to 3 reject the null hypothesis of 

no serial correlations in the stationary series for all maxk  at 5% significance level, while 

other samples do not. However, it is found that series in Sample 6 rejects the null 

hypothesis for 15max k  at 5% significance level. Therefore, it can be concluded that the 

stationary series for Sample 1, 2, 3 and 6 are serially correlated, thus, the Box-Jenkins 

*

1

*

 ttt yys

*

1

*

 ttt yys

*

1

*

 ttt yys

*

1

*

 ttt yys

*

1

*

 ttt yys
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model is appropriate to be applied to the series. While, Sample 4 and 5 are not considered 

in the next step since the stationary series for the samples are not serially correlated. 

   

Sample 1 

 

Sample 2 

 

Sample 3 

 
Sample 4 

 

Sample 5 

 

Sample 6 

 
 

Figure 4.23 Plot of the stationary series and its lagged series 

Table 4.25 Portmanteau test of LBQ-test for Sample 1 to 6 
 

Data T LBQ-test for 
t

s  Is Serially Correlated at 

05.0 ? 
Tk ln

max
  10

max
k  15

max
k  

1 4500 19.0700 

(0.0246) 

19.2450 

(0.0373) 

35.9630 

(0.0018) 

Yes 

2 2250 15.9820 

(0.0426) 

20.0290 

(0.0290) 

31.3260 

(0.0079) 

Yes 

3 1125 12.2690 

(0.0921) 

18.1030 

(0.0532) 

31.8360 

(0.0068) 

Yes 

4 900 5.7932 

(0.5641) 

8.1145 

(0.6177) 

11.9120 

(0.6857) 

No 

5 675 5.6586 

(0.5801) 

9.0999 

(0.5227) 

11.8980 

(0.6867) 

No 

6 450 7.3670 

(0.2882) 

22.5090 

(0.0951) 

18.7180 

(0.0440) 
15for  Yes max k  

*Values in parenthesis denotes p-value. 

The sixth step in Stage I of the proposed procedure is to identify the appropriate 

Box-Jenkins model for the in-sample series. As discussed in Section 4.2, the model 

suggested by the EACF method is proven to be the best Box-Jenkins model as compared 

to other possible models as suggested by the ACF and PACF method. Therefore, in this 

study, the model chosen by the EACF method will be used for the next step in detecting 
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ARCH effect in the stationary series. Figure 4.24 shows the EACF table and the 

corresponding suggested Box-Jenkins model for stationary series of samples 1, 2, 3 and 

6. It can be seen that, all the stationary series suggest ARIMA(0,1,0). This means that all 

stationary series under consideration indicate random walk model. The suggested Box-

Jenkins model by the EACF method is observed to be the same as obtained by forecast 

package in R.   

Sample 1 

 
 

ARIMA(0,1,0) 
 

Sample 2 

 
 

ARIMA(0,1,0) 
 

 

Sample 3 

 
 

ARIMA(0,1,0) 

 

Sample 6 

 
 

ARIMA(0,1,0) 
 

 

Figure 4.24 EACF table and its Box-Jenkins model for stationary series of Sample 1, 

2, 3 and 6  

The seventh step in the identification stage of the modified procedure of BJ-G is 

to detect the existence of volatility clustering in the residuals of the Box-Jenkins model 

by doing the preliminary of heteroscedasticity test using LBQ-test for squared residuals 

of the Box-Jenkins model. If the test indicates the presence of ARCH in the residuals up 

to maxk , then there is a need to justify the use of GARCH as compared to ARCH model 

in handling heteroscedasticity in the residuals of the Box-Jenkins model for the volatile 

series by examining the value of PACF for the squared residuals of the model. 

Table 4.26 shows the LBQ-test for squared residuals of the Box-Jenkins model 

for the stationary series of the sample considered, at lag 10 and 15. The significant p-

value of the LBQ-test for samples 1 to 3 at 5% significance level reveals the presence of 

ARCH in the residuals of the Box-Jenkins model up to lag 20. This indicates the existence 

of highly volatile characteristic in the series, imply that the variance equation for the Box-
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Jenkins model is not correctly specified up to the lag. Since the PACF of the squared 

residuals for Sample 1 to 3 shows insignificant results at 5% significance level up to lag 

17, 20 and 18, respectively, indicates that the GARCH model is parsimony to be used as 

compared to ARCH in handling the existence of heteroscedasticity in the residuals. 

While, the LBQ-test for Sample 6 shows that the Box-Jenkins model is sufficient enough 

to analyse the stationary series, thus, Sample 6 is not considered for the next analysis. 

 

Table 4.26 The preliminary analysis of heteroscedasticity test for the Box-Jenkins 

model of the stationary series for the samples considered 
 

Sample Box-Jenkins 

Model 

LBQ-test for 2

t
a  

max
k  PACF for 2

t
a  at 05.0  

10
max

k  15
max

k  

1 ARIMA(0,1,0) 809.15000 

(0.0000) 

1097.9000 

(0.0000) 

17 

2 ARIMA(0,1,0) 393.2200 

(0.0000) 

601.0300 

(0.0000) 

20 

3 ARIMA(0,1,0) 16.0790 

(0.0790) 

32.1140 

(0.0062) 

18 

6 ARIMA(0,1,0) 1.8682 

(0.9973) 

3.2326 

(0.9994) 

- 

*Values in parenthesis denotes p-value 

The last step in Stage I of the second proposed procedure of BJ-G is to identify 

the appropriate order of r and s of GARCH (r,s) to combine with the appropriate Box-

Jenkins model for each sample considered. Figure 4.25 presents the kr  and kkr  for the 

squared residuals of the considered ARIMA model that will be used in identifying the 

appropriate value of r and s, respectively. On the assumption that the stationary series for 

the sample considered are random, the standard error limit of 
kr  and 

kkr  are the same, 

that are 0.0298, 0.0422 and 0.0597 for samples 1, 2 and 3, respectively.  

Referring to Figure 4.25, it can be seen that the pattern of 
kr  and 

kkr  for Sample 

1 and 2 are similar. By considering the appropriateness of GARCH in the model 

 0,0  sr , the suggested order values are 5,4,3,2,1r  and 4,3,2,1s  for the 

samples. On the other hand, most of 
kr  and 

kkr  values for Sample 3 are close to zero and 

it is hard to identify graphically the appropriate order of the GARCH model. Since the 

pattern for 
kr  and 

kkr  are similar to ARIMA model in the analysis of Section 4.2, 

therefore the values of r and s are suggested to be 1 and 2, respectively. Hence, there are 
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20 possible model combinations of ARIMA-GARCH that need to be considered for 

Samples 1 and 2, while four possible ARIMA-GARCH models for Sample 3. 

 

Sample 1 

 

Sample 2 

 

Sample 3 

 
 

Figure 4.25 The sample ACF and the sample PACF for squared residuals of the 

ARIMA model considered for Sample 1 to 3 

The details on how to choose the preferred BJ-G model for Sample 1 can be 

referred to Section 4.2. The empirical results on the possible BJ-G models for Sample 2 

and 3 can be referred to Appendix 3. Based on the empirical results, the similar 

characteristics as the series in Sample 1 are observed on the series of Sample 2 (refer 

Section 4.2 for details). Therefore, the same decision as for Sample 1 is decided for the 

order of r and s for the series of Sample 2, that is the ARIMA model is preferably 

combined with GARCH(1,1). Meanwhile, for the series of Sample 3, only GARCH(1,1) 

and GARCH(1,2) are significant to be combined with ARIMA(0,1,0), where 

GARCH(1,1) is the preferred one based on the principle of parsimony. 

The procedure for Stage II to Stage III in the proposed new procedure of BJ-G for 

the series of Sample 2 and 3 are the same as applied to Sample 1 in Section 4.2. Table 

4.27 tabulates the results of the preferred BJ-G model for stationary series of Sample 1 to 

3 from the parameter estimation and diagnostic checking results. Based on the table, it 

can be seen that the series of Sample 1 has the smallest value for both the selection criteria 

(AIC and SIC) as compared to the series of Sample 2 and 3. However, by applying the 

parsimonious principle, Sample 3 is more preferred since the estimation results are 

decreased marginally between the BJ-G models that is adequate to fit the data of the 
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sample considered. The one-step ahead out-of-sample forecast evaluations for daily gold 

price of Sample 1 to 3, as given in Table 4.28, also support the preference of Sample 3. 

 

Table 4.27 Results from Stage II to III of the proposed framework for the preferred 

Box-Jenkins – GARCH model for stationary series of Sample 1 to 3 
 

STAGES Sample 1 Sample 2 Sample 3 

ARIMA(0,1,0) -

GARCH(1,1) 

 with tt ~  

ARIMA(0,1,0) -

GARCH(1,1)  

with GEDt ~  

ARIMA(0,1,0)-

GARCH(1,1)  

with tt ~  

STAGE II: PARAMETER ESTIMATION 

c   4227.01058.7 5   0000.00008.0   0223.00007.0  

0
   0000.01092.1 7   0166.01019.1 6   0270.01050.2 6  

1
   0000.00663.0   0000.00461.0   0024.00345.0  

1
   0000.09386.0   0000.09466.0   0000.09474.0  

   0000.06977.4   0000.02738.1   0000.08148.4  

AIC 7078.6  1426.6  1641.6  

SIC 7006.6  1299.6  1417.6  

STAGE III: DIAGNOSTIC CHECKING 

DW-test  2.0128 1.9863 2.0326 

LBQ (10)   4400.00070.10   0670.0346.17   3080.06610.11  

LBQ (15)   2500.02380.18   0360.01810.26   1490.06320.20  

LBQ2 (10)  8130.00308.6   7860.03357.6   9970.08660.1  

LBQ2 (15)  9020.04942.8   6410.05020.12   0000.19469.2  

ARCH (10)  8055.01155.6   6472.04174.12   9972.08760.1  

ARCH (15)  9109.03064.8   7962.02228.6   9996.09419.2  

*Values in parenthesis denotes p-value 

Table 4.28 Forecast evaluations for the preferred Box-Jenkins – GARCH model for 

daily gold price series of Sample 1 to 3 
 

Forecasting 

Evaluation 

Sample 1 Sample 2 Sample 3 

ARIMA(0,1,0) -

GARCH(1,1) 

 with tt ~  

ARIMA(0,1,0) -

GARCH(1,1)  

with GEDt ~  

ARIMA(0,1,0)-

GARCH(1,1)  

with tt ~  

RMSE 

MAE 

MAPE (%) 

18.3716 

12.6855 

0.8402 

19.2190 

12.6869 

0.9155 

17.8764 

12.9301 

0.9956 

 

Based on the results of Stage II to III for Sample 1 to 3 in Table 4.27, it can be 

observed that the preferred combination model for the series of all samples are the random 

walk. The preferred BJ-G model for the series of Sample 1 are totally random walk since 
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the constant of ARIMA model is not significant, while the model for the series of Sample 

2 and 3 are random walk with drift. The innovations of all preferred model for the samples 

considered follow t distribution, except for the series of Sample 2, which follows the GED 

distribution. The standardised residuals of the ARIMA model appear to be random for 

each sample considered, but their magnitudes exhibit the characteristics of heavy tails, 

which support the non-normal innovations. The non-normality of the innovations could 

be related to the heavy tails distribution of the stationary series (see Table 4.21). 

The results from Stage II and Stage IV indicate that the optimal number of data to 

forecast gold price using the second proposed procedure of BJ-G is 1250 data of the 5-

year sample. The empirical results of model selection criteria and one-step-ahead 

forecasting evaluations suggested that the latest 25% of 5000 data is sufficient enough to 

be employed in the BJ-G model with similar forecasting performance as by using all the 

data. Consequently, the model of ARIMA(0,1,0)-GARCH(1,1) with t innovations for the 

series of Sample 3 of daily gold price is given by Equation 4.6, where ty  is the daily gold 

price, ts  is the stationary data for the daily gold prices, ta  is the random error at time t 

period and 
2

t is the conditional variance of ty . 

 

 
*

81.4

2

1

2

1

62

1

~  and 9474.00345.01050.2

            ,0007.0       ,exp

ta

aassyy

tttt

tttttttt














   4.6 

 

By referring to Equation 4.6, the significant of 0007.0c  in the mean model of 

ARIMA(0,1,0)-GARCH(1,1) shows the upward trend of the forecast model implies that 

the expected mean return of the series is about 0.07%, which is positive in long term 

duration. While, the value of  
3

1
0345.0ˆ 22

1 a  in the variance model shows that the 

unconditional fourth moment of the daily log returns of gold price exists (Tsay, 2013). 

This implies that the distribution of the daily log return tends to contain more extreme 

values or is said to be leptokurtic which is consistent with the nature of data series (refer 

to Table 4.23). The extreme values contribute to the existence of highly volatile 

characeristics in the data series. The large value of 9474.01   in the variance model 

reflects to a long-term persistence of volatility clustering.  
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The one-step ahead forecast using the ARIMA(0,1,0)-GARCH(1,1) model with t 

innovations for daily gold prices from 25th June 2013 to 17th December 2013 is 

graphically shown in Figure 4.26. It is observed that the forecast gold prices (in red dashed 

line) fluctuate between USD1200 and USD1400 per ounce and follows closely with one-

day lag to the actual data (in blue solid line) for the 125-day out-sample period. The 

characteristics that is reflected from the mean and variance models prove that the 

ARIMA-GARCH model is able to follow the nature of the highly volatile data series well 

so that it can be used in forecasting the actual gold price. The comparison values between 

actual data of daily gold price and its forecast price using the BJ-G model for the last ten 

days out-of-sample simulation period for the series of Sample 3 is given by Table 4.29. 

 
 

Figure 4.26 Plot of the actual and forecast data using ARIMA(0,1,0)-GARCH(1,1) 

with t innovations for out-of-sample period of the series of Sample 3 

Table 4.29 The comparison between actual and forecast gold prices for the last ten 

days out-of-sample simulation period of Sample 3 using the model of ARIMA(0,1,1)-

GARCH(1,1) with t innovations 
 

Date Actual price (USD/Oz) Forecast price 

(USD/Oz) 

Difference 

(USD/Oz) 

4 Dec 2013 1227.50 1218.07 -9.43 

5 Dec 2013 1222.50 1228.33 5.83 

6 Dec 2013 1233.00 1223.33 -9.67 

9 Dec 2013 1237.00 1233.83 -3.17 

10 Dec 2013 1266.25 1237.84 -28.41 

11 Dec 2013 1260.75 1267.12 6.37 

12 Dec 2013 1225.25 1261.60 36.35 

13 Dec 2013 1232.00 1226.08 -5.92 

16 Dec 2013 1234.75 1232.83 -1.92 

17 Dec 2013 1231.75 1235.58 3.83 
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4.4 Simulation study on the Multistep Forecasting for Highly Volatile Data 

using the Third Proposed Procedure of BJ-G 

Given the overall positive results at the one-step ahead forecast in the empirical 

results as described in Section 4.3, therefore the following study is aimed at assessing the 

forecasting performance of the BJ-G model for higher horizons or at n-step-ahead forecast. 

In evaluating the performance of the multistep ahead forecast, the third proposed 

procedure as illustrated in Figure 3.15 is employed to daily world gold price series for the 

last 5-year data (Sample 3), since the series is considered optimal for BJ-G model in the 

case study. The implementation of the third proposed procedure associated with R codes is 

explained explicitly in the following step 1 to 5. The Step 1 to 5 is repeated for 

nh ...,,3,2  in order to obtain the multistep ahead forecast evaluations for BJ-G model.   

 

Step 1: Based on the proposed model as in Equation 4.6 for Sample 3 of gold price series, 

the value of 
hTs 

ˆ  for ARIMA(0,1,0)-GARCH(1,1) using t innovations is obtained 

through simulation using Equation 4.7. 

*

81.4

2262 ~ˆ  and ˆ9474.0ˆ0345.01050.2ˆ

     ˆˆˆ      ,ˆ0007.0ˆ

ta

aas

hTTThT

hThThThThT
















      4.7 

The corresponding R codes for the proposed value of 
hTs 

ˆ  are written as follows. 

 

spec = garchSpec(model = list(mu=0.0007,omega = 2.5e-6, alpha = 3.45e-

2,beta = 9.474e-1, shape=4.81), cond.dist="std")  

st_AG=garchSim(spec, n = 125);st_AG 

Step 2: For the case study, the forecast data 
hTy 

ˆ is given by Equation 4.8. 

 

 hTThT syy   ˆexpˆ      4.8 

since the transformed data is in logarithm. Note that 
hTs 

ˆ  is obtained from Step 1. The 

corresponding R codes of 
hTy 

ˆ  for one-step ahead is written as follows. 

f_AG_1step<-matrix(0,125,1); f_AG_1step  

f_AG_1step[1]=dt[1125]*exp(st_AG[1]);f_AG_1step[1] 

for(i in 2:125){ 

  f_AG_1step[i]=dt_o[i-1]*exp(st_AG[i]) 

} 

f_AG_1step 
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Step 3: Obtain forecasting evaluations of MAE, RMSE and MAPE for h-step ahead 

forecast. The corresponding R codes for the forecasting evaluations of 
hTy 

ˆ  for one-step 

ahead of the daily gold price is written as follows. 

 
forecastevaluation<-function(dt4_o,f_AG_1step) 

  T<- 125 

error1_AG_1step=matrix(0,T,1);error1_AG_1step  

error2_AG_1step=matrix(0,T,1);error2_AG_1step 

error3_AG_1step=matrix(0,T,1);error3_AG_1step 

error4_AG_1step =matrix(0,T,1); error4_AG_1step 

rmse_AG_1step=rep(0,1); rmse_AG_1step   

mae_AG_1step=rep(0,1); mae_AG_1step 

mape_AG_1step =rep(0,1); mape_AG_1step 

for (i in 1:T){  

  error1_AG_1step[i]<-dt_o[i]-f_AG_1step[i] 

  error2_AG_1step[i]<-abs(error1_AG_1step[i]) 

  error3_AG_1step[i]<-error1_AG_1step[i]^2 

  error4_AG_1step[i]<-abs(error1_AG_1step[i]/dt_o[i])  

} 

cbind(error1_AG_1step,error2_AG_1step,error3_AG_1step,error4_AG_1step) 

mae_AG_1step=sum(error2_AG_1step)/T; mae_AG_1step 

rmse_AG_1step=sqrt(sum(error3_AG_1step)/T); rmse_AG_1step 

mape_AG_1step=(100/T)*sum(error4_AG_1step); mape_AG_1step   

forecastevaluation(dt_o,f_AG_1step) 

Step 4: Obtain the prediction intervals (PIs) for 
hTy 

ˆ . Since 
ta  for the series in the case 

study using the proposed BJ-G model follows t distribution with a degrees of freedom 

81.4v , therefore the 80% PIs and 95% PIs for h-step ahead are given in Equation 4.9 

and 4.10, respectively. In obtaining   heTVar , Equation 3.64 is applied since the 

proposed model for the data series is ARIMA(0,1,0)-GARCH(1,1), which is a random 

walk model. In practice, the   heTVar  is the variance of the residual for h-step ahead, as 

can be obtained from basic statistics of the residual for each forecast horizon (refer to 

Appendix 4). 

80% PI:   )]([Varˆ
81.4,1.0 hethy TT       4.9 

  90% PI:   )]([Varˆ
81.4,025.0 hethy TT      4.10 

The R codes for PIs of 80% and 95% of 
hTy 

ˆ  in the case study are as follows. 

 

resiAG_1step=matrix(0,125,1); resiAG_1step 

for(i in 1:125){ 

  resiAG_1step[i]<-dt_o[i]-f_AG_1step[i] 

} 

resiAG_1step;basicStats(resiAG4) 

v1<-qt(c(.025, .975), df=4.81);v1  
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v2<-qt(c(.1, .9), df=4.81);v2 

T<- 125 

lo95_AG_1step=matrix(0,T,1);lo95_AG_1step 

hi95_AG_1step=matrix(0,T,1);hi95_AG_1step  

lo80_AG_1step=matrix(0,T,1);lo80_AG_1step  

hi80_AG_1step =matrix(0,T,1);hi80_AG_1step 

h=matrix(0,T,1);h  

for(i in 1:125){ 

  h[i]=i 

  lo95_AG_1step[i]<-f_AG_1step[i]-(2.6014*(sqrt(h[i]*320.3818))) 

  hi95_AG_1step[i]<-f_AG_1step[i]+(2.6014*(sqrt(h[i]*320.3818))) 

  lo80_AG_1step[i]<-f_AG_1step[i]-(1.4847*(sqrt(h[i]*320.3818))) 

  hi80_AG_1step[i]<-f_AG4[i]+(1.4847*(sqrt(h[i]*320.3818))) 

} 

cbind(dt_o,f_AG_1step,lo95_AG_1step,hi95_AG_1step,lo80_AG_1step,hi80_A

G_1step) 

 

Step 5: Plot the graph of actual data in the out-of-sample series, 
hTy 
 and the h-step ahead 

forecast, 
hTy 

ˆ  with its prediction intervals. The R codes for PIs of 80% and 95% for one-

step ahead forecast in the case study are written as follows. 

 
date_AG<- dt[1126:1250,7];date_AG 

library(Hmisc) 

matplot(dt_o,xaxt="n",type="l",lwd=3,col="blue",xlab="Dates",ylab="Pri

ce(USD/oz)",mgp=c(2,0.4,0),ylim=c(700,1800),cex.lab=1.3,cex.axis=1.3,l

ab=c(4,4,7)) 

par(new = TRUE) 

matplot(dt_o,xaxt="n",type="points",pch=".",cex=5,col="black",xlab="Da

tes",ylab="Price(USD/oz)",mgp=c(2,0.4,0),ylim=c(700,1800),cex.lab=1.3,

cex.axis=1.3,lab=c(4,4,7)) 

par(new = TRUE) 

matplot(f_AG_1step,xaxt="n",type="l",col="red",lty=2,lwd=2,xlab="Dates

",ylab="Price(USD/oz)",mgp=c(2,0.4,0),ylim=c(700,1800),cex.lab=1.3,cex

.axis=1.3,lab=c(4,4,7)) 

par(new = TRUE) 

matplot(f_AG_1step,xaxt="n",col="black",type="points",pch="o",cex=1,xl

ab="Dates",ylab="Price(USD/oz)",mgp=c(2,0.4,0),ylim=c(700,1800),cex.la

b=1.3,cex.axis=1.3,lab=c(4,4,7)) 

par(new = TRUE) 

matplot(cbind(lo95_AG_1step,hi95_AG_1step,lo80_AG_1step,hi80_AG_1step)

,xaxt="n",type="l",lty=2,col=c("black","black","green","green"),xlab"D

ates",ylab="Price(USD/oz)",mgp=c(2,0.4,0),ylim=c(700,1800),cex.lab=1.3

,cex.axis=1.3,lab=c(4,4,7))axis(1.5,at=1:125,labels=date_AG,xaxp=c(2,1

0,124),tck=0,mgp=c(2,0.4,0),xlim=c(1,125),cex.lab=1.3,cex.axis=1.3,lab

=c(4,4,7)) 

minor.tick(nx=3) 

The empirical results of the forecasting performance of BJ-G model is based on 

1250 daily world gold price series, starting 22 December 2008 to 17 December 2013, that 

is Sample 3 in Section 4.3. Given the positive results of one-day ahead using the BJ-G 

model in Section 4.3, the forecasting performance of the model will be assessed at 

horizons greater than one day  1h . For the 5-year data series under study, the first 



140 

1125 data (90%) are used to estimate the model while the last 125 data (10%) are defined 

as the out-of-sample series.   

Table 4.30 presents the one-step to 125-step ahead forecast evaluation results with 

the number of data that lies outside the prediction intervals of 80% and 95% of the 

forecast value at the forecast origin 1125 for the daily gold price using ARIMA(0,1,0)-

GARCH(1,1) with t innovations. Referring to Equation 4.6 for the model and Equation 

4.8 for the updated point forecast, 
hTy 

ˆ . The details of the analysis can be referred to 

Appendix 4. Based on Table 4.30, the values of MAE, RMSE and MAPE are increasing 

as the forecast horizon increases. This is in agreement with common sense that 
2

ˆ
Ty  is 

more uncertain as compared to 
1

ˆ
Ty . It can be observed that the forecast evaluations, 

specifically the values of MAE and RMSE for one-step to seven-step forecast horizons 

increased gradually. However, there is significant increment of the forecast evaluations 

from seven-step to ten-step forecast horizons.  

On the other hand, by observing the prediction interval for each horizon under 

consideration, it can be seen that the ten-step ahead forecast results show the lowest 

number of actual price that lies outside 80% PIs and no actual prices are outside 95% PIs 

as compared to other multistep ahead forecast horizons. However, it is quite hard to make 

a decision based on the prediction interval in order to choose the appropriate forecast 

horizon for the model since the number of data outside the prediction intervals for 

multistep ahead forecast horizons are different marginally, specifically for 95% PIs.  

Table 4.30 Forecast evaluation with prediction intervals for the considered forecast 

horizon 
 

Forecast Horizon Forecast evaluation Number of data outside 

prediction intervals 

MAE RMSE MAPE 80% 95% 

1-step ahead 12.9301 17.8764 0.9956 1 (0.8%) 0 (0%) 

2-step ahead 15.7938 21.3297 1.2132 20 (16%) 1 (0.8%) 

3-step ahead 18.2953 24.4472 1.4098 25 (20%) 2 (1.6%) 

4-step ahead 21.6096 28.3663 1.6716 20 (16%) 1 (0.8%) 

5-step ahead 22.8394 28.9304 1.7647 22 (17.6%) 1 (0.8%) 

7-step ahead 24.5981 30.1233 1.8941 17 (13.6%) 2 (1.6%) 

10-step ahead 32.2870 40.1970 2.4859 15 (12%) 0 (0%) 

15-step ahead 37.6551 46.2091 2.9068 21 (16.8%) 3 (2.4%) 

25-step ahead 43.7949 53.0116 3.3840 36 (28.8%) 4 (3.2%) 

125-step ahead 59.0288 76.2116 4.6135 23 (18.4%) 2 (1.6%) 

*Values in parenthesis denote the percentage for the number of data outside the prediction intervals. 
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Hence, by considering both results of forecast evaluations and prediction 

intervals, the seven-step ahead is suggested for practical use since the values of errors are 

gradually increased from one-step to seven-step ahead forecast and the number of data 

outside the prediction intervals of 80% and 95% are among the lowest for mustistep 

forecast horizon. The results indicate that the seven-step ahead forecast perform the best 

in forecasting as compared to other multistep ahead forecast horizons. However, the 

performance of seven-step ahead forecast horizon is weaker than the one-step ahead 

forecast horizon. 

Figure 4.27 shows the corresponding out-of-sample forecasting plot of seven-step 

ahead using the BJ-G model for the daily gold price. The forecast and actual prices are 

marked by “o” and “●”, which linked with red dashed line and blue solid line, 

respectively. The forecasting plot includes the prediction intervals of 80% and 95% which 

are presented by the dashed line of green and black, respectively. It can be seen that the 

forecasting performance of the BJ-G model for up to seven-step ahead forecast is 

supported graphically by the plot. It is observed that the trend of seven-day ahead forecast 

price mimics the actual price for the out-of-sample period. Therefore, it can be concluded 

that ARIMA(0,1,0)-GARCH(1,1) with t innovations can be considered for forecast 

horizons up to seven-day ahead price for five-year data series. For the details of other 

multistep ahead forecast under consideration, refer to Appendix 4.  

 

 
 

Figure 4.27 Plot of actual data and seven-step ahead forecast using ARIMA(0,1,0)-

GARCH(1,1) with 80% (in green dashed line) and 95% (in black dashed line) PIs 

Table 4.31 presents the forecast price of the first seven-day out-of-sample period 

for seven-step ahead forecast using the ARIMA(0,1,0)-GARCH(1,1) with t innovations 
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associated with its PIs of 80% and 95% at the forecast origin price of 24 June 2013. Based 

on the forecast price, only two actual data are not within the 80% PIs as highlighted in 

Table 4.31, while all actual data are within 95% PIs. This indicates that the proposed 

model of ARIMA-GARCH is able to follow the trend of actual data up to seven-day 

ahead, specifically within 95% PIs. 

 Table 4.31 Actual price and the seven-step ahead forecast price using the model of 

ARIMA(0,1,0)-GARCH(1,1) with t innovations  
 

Date Actual Price 

(USD/oz) 

Forecast Price 

(USD/oz) 

Prediction Interval 

80% 95% 

25 June 2013 1279.00 1287.62 (1228.12,1347.12) (1183.37,1391.87) 

26 June 2013 1236.25 1288.49 (1228.99,1347.99) (1184.24,1392.74) 

27 June 2013 1232.75 1289.36 (1229.86,1348.86) (1185.11,1393.61) 

28 June 2013 1192.00 1290.23 (1230.74,1349.73) (1185.99,1394.48) 

1 July 2013 1242.75 1291.11 (1231.61,1350.61) (1186.86,1395.36) 

2 July 2013 1252.50 1291.98 (1232.48,1351.48) (1187.73,1396.23) 

3 July 2013 1292.85 1188.60 (1233.36,1352.35) (1188.60,1397.10) 

 

4.5 The Empirical Results of the Box-Jenkins with GARCH-type Models using 

the Fourth Proposed Procedure of BJ-G  

Given the promising results of combination model of ARIMA with GARCH in 

following the trend of actual daily gold price up to seven-day ahead, therefore the fourth 

proposed procedure as illustrated in Figure 3.16 is then applied to all GARCH-type 

models that are used in previous studies for highly volatile data including GARCH-M, 

EGARCH, TGARCH and APARCH (Ahmed, 2017; Ferenstein & Gasowski, 2004; 

Girish, 2016; Walid et al., 2011; Ord, Koehler, Snyder & Hyndman, 2009; Girish, 2016; 

Ahmad et al., 2015; Freedi et al., 2012; Liu et al., 2011; Liu & Shi, 2013; Liu et al., 2013). 

The steps and methods used for Stage I to IV in the fourth proposed procedure of BJ-G 

are the same as applied to Section 4.3 and 4.4.  The ARIMA with standard GARCH or 

simply called as ARIMA-GARCH that assessed in previous sections (Section 4.3 and 4.4) 

will be used as a benchmark to other ARIMA-GARCH-type models under consideration. 

Hence, the empirical results in assessing the performance for the Box-Jenkins with 

GARCH-type models are based on the same data used in Section 4.4 (or the optimal data 

series in Section 4.3) to maintain the continuity of the study.  

Note that, ARIMA(0,1,0) is the best Box-Jenkins model to analyse the data series 

as discussed in Section 4.3. Therefore, in this empirical study, the model of 
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ARIMA(0,1,0) is maintained to be used as the mean model of Box-Jenkins with the 

considered GARCH-type models. By considering the GARCH-type models applied 

previously in handling volatility in the highly volatile series that are GARCH-M, 

EGARCH, TGARCH and APARCH, the estimation results for ARIMA(0,1,0) with the 

GARCH-type models are presented by Table 4.32. Note that, the modelling procedure of 

Box-Jenkins with standard GARCH is applied to ARIMA with the GARCH-type models. 

Therefore, the details on how to choose the order for parameter of the GARCH-type 

models, specifically r and s, can be referred to Section 4.2. The details of empirical results 

on the possible ARIMA-GARCH-type models for the gold price series can be referred to 

Appendix 5.  

By referring to the empirical results, the order of 1r  and 1s  is preferred for all 

GARCH-type models under consideration based on the principle of parsimony. Table 

4.32 displays the estimation results for the parameters of ARIMA(0,1,0)-GARCH(1,1), 

ARIMA(0,1,0)-EGARCH(1,1), ARIMA(0,1,0)-GARCH(1,1)-M, ARIMA(0,1,0)-

APARCH(1,1) and ARIMA(0,1,0)-TGARCH(1,1), respectively, with innovations t  

follows normal, t and GED distributions. The skewed innovations are not considered here 

due to non-skewed preference for errors distribution of ARIMA-GARCH model to the 

data series as discussed in Section 4.3. The estimation results for ARIMA-GARCH is 

represented in this section for benchmark. Note that, ARIMA(0,1,0)-GARCH(1,1) with t 

innovations is chosen as the preferred ARIMA-GARCH model for the data series, as 

discussed in Section 4.3.  

By considering other GARCH-type models in Table 4.32, it can be seen that the 

use of EGARCH(1,1) and TGARCH(1,1) are highly significant at 5% significance level, 

specifically for normal innovations. The large values of 
1 in the variance model of the 

three significant ARIMA-GARCH-type models (i.e. ARIMA(0,1,0)-GARCH(1,1) with t 

innovations, ARIMA(0,1,0)-EGARCH(1,1) with normal innovations, ARIMA(0,1,0)-

TGARCH(1,1) with normal innovations) are reflected by the conditional standard 

deviation processes which demonstrate a relatively long term persistence of volatility 

clustering. The negative sign of significant leverage effect term 
1g  in the asymmetric 

models of EGARCH and TGARCH with normal innovations implying that negative 

shocks (or bad news) gives a higher effect on the return of gold price than positive shocks. 
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Table 4.32 Estimation results for ARIMA(0,1,0) with selected GARCH-type models 
 

 

Model Parameter ~t  Normal ~t t  ~t GED 

ARIMA(0,1,0)-

GARCH(1,1) 

c  0.0006(0.0957)  0.0007(0.0223) 0.0006(0.0232) 

0  4.2x10-6 (0.0000) 2.5x10-6(0.0270) 2.8x10-6 (0.0100) 

1  0.0485(0.0000) 0.0345(0.0024) 0.0372(0.0031) 

1  0.9241(0.0000) 0.9474(0.0000) 0.9425(0.0000) 

  - 4.8148(0.0000) 1.1682(0.0000) 

AIC -6.0407 -6.1641 -6.1532 

SIC -6.0229 -6.1417 -6.1309 

ARIMA(0,1,0)-

EGARCH(1,1) 

c  0.0005(0.1696) 0.0007(0.0148) 0.0006(0.0332) 

0  -0.4646(0.0000) -0.2049(0.0098) -16.4524(0.0000) 

1  0.1411(0.0000) 0.0958(0.0003) -0.0220(0.5402) 

1g  -0.0492(0.0000) 0.0126(0.4506) -0.0728(0.0510) 

1  0.9594(0.0000) 0.9849(0.0000) -0.8604(0.0000) 

  - 4.8016(0.0000) 1.0974(0.0000) 

AIC -6.0457 -6.1634 -6.1075 

SIC -6.0233 -6.1365 -6.0807 

ARIMA(0,1,0)-

GARCH(1,1)-M 

c 0.0010(0.2547) 0.0011(0.1460) 0.0007(0.2711) 

M                           -3.4813(0.5736) -3.1885(0.5564) -1.0650(0.8318) 

0  4.1x10-6(0.0000) 2.5x10-6(0.0271) 2.7x10-6(0.0100) 

1  0.0485(0.0000) 0.0341(0.0023) 0.0370(0.0031) 

1  0.9247(0.0000) 0.9480(0.0000) 0.9427(0.0000) 

  - 4.8038(0.0000) 1.1687(0.0000) 

AIC -6.0392 -6.1626 -6.1515 

SIC -6.0169 -6.1358 -6.1247 

ARIMA(0,1,0)-

APARCH(1,1) 

c  0.0004(0.0000) 0.0007(0.0175) 0.0006(0.0077) 

0  0.0065(0.0004) 4.2x10-5(0.0408) 9.7x10-5(0.0294) 

1  0.0695(0.0000) 0.0525(0.0002) 0.0589(0.0004) 

1g  0.5534(0.0023) -0.1414(0.3793) 0.0324(0.8654) 

1  0.9059(0.0000) 0.9446(0.0000) 0.9344(0.0000) 

  0.4201(0.1575) 1.3290(0.0066) 1.2130(0.0461) 

  - 4.8210(0.0000) 1.1690(0.0000) 

AIC 3.0354 -6.1259 -6.0545 

SIC 3.0354 -6.1259 -6.0546 

ARIMA(0,1,0)-

TGARCH(1,1) 

c  0.0005(0.1743) 0.0007(0.0191) 0.0006(0.0240) 

0  4.5x10-6(0.0000) 2.3x10-6(0.0333) 2.7x10-6(0.0103) 

1  0.0518(0.0000) 0.0349(0.0022) 0.0349(0.0022) 

1g  -0.1463(0.0034) 0.1063(0.4126) 0.0374(0.7515) 

1  0.9173(0.0000) 0.9489(0.0000) 0.9428(0.0000) 

  - 4.8158(0.0000) 1.1679(0.0000) 

AIC -6.0413 -6.1628 -6.1514 

SIC -6.0189 -6.1360 -6.1246 

   *Values in the parenthesis are p-values. 
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The normalised AIC and SIC results for the three significant models indicate that 

ARIMA-GARCH shows the smallest value for both information criteria as compared to 

other models, indicating that ARIMA(0,1,0)-GARCH(1,1) with t innovations is the 

preferred one in modelling the gold price data.  However, all the significant ARIMA-

GARCH-type models are considered in the next stage of the fourth proposed BJ-G 

procedure for further investigation.  

On the other hand, the models of GARCH(1,1)-M and APARCH(1,1) for all 

innovations are insignificant. The insignificant of the GARCH-M model due to the 

estimated risk premium, M are negative and highly insignificant for all innovations. The 

value of M for the GARCH-M models implying that there are no serial correlations in the 

stationary series of daily gold price, or in other words, although the extra risk is hold for 

the asset, the return is indifferent with those who are not taking extra risk. Meanwhile, 

the insignificant of APARCH model for the stationary gold price series is due to   and 

1g  are highly insignificant for normal innovations and both t and GED innovations, 

respectively. The insignificant of APARCH models implying that the existence of 

leverage effect in the gold price series is not significant. Therefore, all models with 

GARCH-M and APARCH are not considered for Stage III and IV of the fourth proposed 

procedure of BJ-G in forecasting gold price series. 

Table 4.33 presents the joint diagnostic checking for the three significant ARIMA-

GARCH-type models. The model checking statistics shows that all considered models 

are adequate and correctly specified in describing the mean and variance of the stationary 

series of gold price. Even though the LBQ-test on the standardised residuals shows the 

existence of serial correlation (and the autocorrelation decreases in the higher lag), this is 

most probably due to small autocorrelations because of the large number of data used

 1125T  that should not be of practical importance (Ruppert & Matteson, 2015). This 

statement supports by the standardised residuals plot for the ARIMA-GARCH-type 

models to the in-sample stationary series as illustrated in Figure 4.28. Based on the figure, 

the standardised residuals using the considered models look random and reasonable 

except for several possible outliers.  

Otherwise, the p-value is insignificant for LBQ-test on the squared standardised 

residuals for all considered models as shown in Table 4.33 which interprets that there is 

no ARCH in the residuals up to both lag 10 and 15, as supported by the result of LM 
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ARCH. This demonstrated that the ARIMA-GARCH-type models are able to handle the 

heteroscedasticity in the stationary series of gold price very well. Regarding the 

innovations, the good fit of the QQ-plot in Figure 4.29 that nearly a straight line except 

for not more than five outliers (or small fraction of the data) on the left and right tails, 

support graphically the use of t and normal innovations for the ARIMA-GARCH-type 

models.   

Table 4.33 Model diagnostics for ARIMA with significant GARCH-type models 
 

Diagnostic test ARIMA(0,1,0)-

GARCH(1,1) 

with ~t t  

ARIMA(0,1,0)-

EGARCH(1,1) 

with ~t  Normal 

ARIMA(0,1,0)-

TGARCH(1,1) 

with ~t  Normal 

DW-test 2.0128 2.0338 2.0337 

LBQ(10) 10.0070(0.4400) 11.9030(0.2920) 11.9050(0.2910) 

LBQ(15) 18.2380(0.2500) 21.5240(0.1210) 21.7890(0.1130) 

LBQ2(10) 6.0308(0.8130) 2.4849(0.9910) 1.8738(0.9970) 

LBQ2(15) 8.4942(0.9020) 5.3342(0.9890) 3.7900(0.9980) 

ARCH(10) 6.1155(0.8055) 2.6457(0.9886) 1.9639(0.9966) 

ARCH(15) 8.3064(0.9109) 5.5423(0.9865) 3.9084(0.9980) 

*Values in parenthesis denote p-values. Q(10) is the Ljung-Box statistics for standardised residuals at lag 

10, Q2(10) is the Ljung-Box statistics for squared standardised residuals at lag 10, ARCH(10) is the Engle’s 

Lagrange Multiplier test for heteroscedasticity at lag 10. 

 

 

(a) 

 

(b) 

 

(c) 

 
 

Figure 4.28 Standardised residual plot for in-sample stationary series of gold prices 

using ARIMA(0,1,0) and (a) GARCH(1,1) with ~t t, (b) EGARCH(1,1) with  

~t Normal, (c) TGARCH(1,1) with ~t Normal 

Forecasting performance results for multistep ahead of the daily gold price using 

ARIMA with the significant GARCH-type models have been reported in Table 4.34. For 

the one-step ahead (as highlighted in Table 4.34), all the considered models show similar 

performance with marginal differences in forecasting, as presented graphically in Figure 
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4.30. While, for multistep ahead forecast, it is observed that the model of EGARCH and 

TGARCH have the same characteristics as GARCH, that is the values of MAE and RMSE 

for one-step to seven-step forecast horizons increased gradually and there is significant 

increment of the forecast evaluations from seven-step to ten-step forecast horizons. 

Hence, by using the same consideration as for GARCH model, the seven-step ahead 

having the best performance of multistep forecasting using EGARCH and TGARCH 

models.  

(a) 

 

(b) 

 

(c) 

 
 

Figure 4.29 QQ-plot for in-sample stationary series of gold prices using 

ARIMA(0,1,0) and (a) GARCH(1,1) with ~t t, (b) EGARCH(1,1) with ~t Normal, 

(c) TGARCH(1,1) with ~t Normal 

Figure 4.31 shows the actual and the seven-step forecast of the daily gold price 

using the considered ARIMA-GARCH-type models. The forecast and actual prices are 

marked by “o” and “●”, which linked with red dashed line and blue solid line, 

respectively. The forecasting plot includes the prediction intervals of 80% and 95% which 

are presented by the dashed line of green and black, respectively. It can be seen that the 

forecasting performance of the BJ-G models for up to seven-step ahead forecast is 

supported graphically by the plot since the trend of seven-day ahead forecast price mimics 

the actual price for the out-of-sample period. 

 Therefore, the seven-step ahead forecast evaluations of the ARIMA-GARCH-

type models as highlighted in Table 4.34 are used in finding the best model of Box-

Jenkins-GARCH-type model in multistep forecasting gold price using the fourth 

proposed model of BJ-G. It can be observed that all the considered models having similar 

results of forecast evaluations of RMSE, MAE and MAPE for the seven-step ahead, as 

the model of EGARCH shows the lowest error evaluations with marginal difference as 
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compared to others. However, by looking at the prediction intervals evaluations, it reveals 

that GARCH model having the lowest number of data outside the prediction intervals of 

both 80% and 95%. Surprisingly, the ARIMA-GARCH model shows consistent 

performance as the lowest number of data outside the prediction intervals for other 

multistep ahead forecast horizon with significant difference as compared to other models, 

specifically at 95% PIs. 

 

Table 4.34 Multistep forecast evaluation of ARIMA with significant GARCH-type 

models under consideration  
 

Model Forecast 

Horizon 

Forecast evaluation Number of data 

outside the PIs 
 

MAE RMSE MAPE 80% 95% 

ARIMA(0,1,0)-

GARCH(1,1) 

with ~t t 

1-step ahead 12.9301 17.8764 0.9956 1(0.8%) 0(0%) 

2-step ahead 15.7938 21.3297 1.2132 20(16%) 1(0.8%) 

3-step ahead 18.2953 24.4472 1.4098 25(20%) 2(1.6%) 

4-step ahead 21.6096 28.3663 1.6716 20(16%) 1(0.8%) 

5-step ahead 22.8394 28.9304 1.7647 22(17.6%) 1(0.8%) 

7-step ahead 24.5981 30.1233 1.8941 17(13.6%) 2(1.6%) 

10-step ahead 32.2870 40.1970 2.4859 15(12%) 0(0%) 

15-step ahead 37.6551 46.2091 2.9068 21(16.8%) 3(2.4%) 

25-step ahead 43.7949 53.0116 3.3840 36(28.8%) 4(3.2%) 

125-step ahead 59.0288 76.2116 4.6135 23(18.4%) 2(1.6%) 

ARIMA(0,1,0)-

EGARCH(1,1) 

with  

~t  Normal 

1-step ahead 12.9024 17.9129 0.9930 1(0.8%) 0(0%) 

2-step ahead 15.6431 21.4087 1.1990 23(18.4%) 9(7.2%) 

3-step ahead 18.1892 24.4896 1.3988 26(20.8%) 9(7.2%) 

4-step ahead 21.8222 28.4818 1.6812 29(23.2%) 6(4.8%) 

5-step ahead 22.4658 28.3566 1.7296 22(17.6%) 7(5.6%) 

7-step ahead 23.3542 29.2521 1.7853 27(21.6%) 5(4%) 

10-step ahead 32.0150 41.2452 2.4403 30(24%) 8(6.4%) 

15-step ahead 35.0348 42.5039 2.6747 23(18.4%) 5(4%) 

25-step ahead 35.9671 47.1370 2.7217 23(18.4%) 6(4.8%) 

125-step ahead 140.4588 152.7912 10.7086 91(72.8%) 79(63.2%) 

ARIMA(0,1,0)-

TGARCH(1,1) 

with  

~t  Normal 

 

 

1-step ahead 12.9144 17.8579 0.9943 1(0.8%) 0(0%) 

2-step ahead 15.7330 21.2976 1.2083 25(20%) 11(8.8%) 

3-step ahead 18.2081 24.3872 1.4028 30(24%) 7(5.6%) 

4-step ahead 21.5550 28.2882 1.6668 31(24.8%) 6(4.8%) 

5-step ahead 22.7189 28.7512 1.7549 27(21.6%) 5(4%) 

7-step ahead 24.3465 29.8233 1.8736 25(20%) 4(3.2%) 

10-step ahead 32.1432 39.9784 2.4727 25(20%) 6(4.8%) 

15-step ahead 37.0640 45.2896 2.8587 30(24%) 8(6.4%) 

25-step ahead 42.2841 51.0354 3.2625 42(33.6%) 14(11.2%) 

125-step ahead 49.0475 63.3683 3.8175 29(23.2%) 10(8%) 

*Values in parenthesis denote the percentage for the number of data outside the prediction intervals. 
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Hence, by considering both results of forecast evaluations and prediction 

intervals, the model of ARIMA(0,1,0)-GARCH(1,1) with t innovations is suggested for 

practical use. The preference of the ARIMA-GARCH model in forecasting the gold prices 

is supported by the smallest values of normalised AIC and SIC, as well as in line with the 

principle of parsimony. Yet, it can be said that world daily gold price can be forecasted 

accurately using ARIMA(0,1,0)-GARCH(1,1) with MAPE statistic values of less than or 

around 5%  which is considered to be relatively good (Girish, 2016). Therefore, by using 

the fourth procedure of BJ-G, the ARIMA-GARCH model has the best forecasting 

performance for the daily gold prices as compared to other models. 

(a) 

 

(b) 

 

(c) 

 
 

Figure 4.30 Plot of actual data and one-step ahead forecast of gold prices using 

ARIMA(0,1,0) and  (a) GARCH(1,1) with ~t t, (b) EGARCH(1,1) with ~t Normal, 

(c) TGARCH(1,1) with ~t Normal; with 80% (in green dashed line) and 95% (in black 

dashed line) PIs  
 

 

(a) 

 

(b) 

 

(c) 

 
 

Figure 4.31 Plot of actual data and the seven-step ahead forecast of daily gold price 

using ARIMA(0,1,0) (a) GARCH(1,1) with ~t t, (b) EGARCH(1,1) with ~t Normal, 

(c) TGARCH(1,1) with ~t Normal; with 80% (in green dashed line) and 95% (in black 

dashed line) PIs  
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4.6 Conclusion 

This case study evaluates the performance of four proposed procedures of Box-

Jenkins – GARCH (or BJ-G) in modelling and forecasting a highly volatile time series 

data, specifically the world daily gold prices. The first proposed procedure of BJ-G is 

used to justify and evaluate the performance of BJ-G model using the world gold price 

which is thoroughly discussed in Section 4.2. Based on the empirical results in Section 

4.2, the first proposed procedure of BJ-G shows a promising approach in analysing and 

forecasting the data series which simultaneously proves that a combination model of BJ-

G is reliable in forecasting a highly volatile data. The good performance of BJ-G in 

forecasting the data series due to its capability to understand the characteristics of a highly 

volatile data series better without violating the basic assumptions of errors as a Box-

Jenkins model does as well as the combination model overcome the weaknesses of 

GARCH model in dealing with nonstationary series.  

Since the first proposed procedure of BJ-G have shown promising approach, then 

the second proposed procedure of BJ-G is tested on the daily gold price data by 

emphasizing on the identification of highly volatile characteristic in the data at the early 

stage before further analysis is conducted since it is focuses on handling the highly 

volatile time series data specifically. Based on the empirical results of Section 4.3, the 

second proposed procedure of BJ-G provides a systematic procedure in modelling and 

forecasting a highly volatile data, being simultaneously practical to be used in 

determining the optimal number of data while working with any univariate highly volatile 

data at any frequency. The empirical results of the world daily gold price suggest that the 

latest 25% (or 1250) is sufficient enough to be employed in the BJ-G model with similar 

forecasting performance as by using 5000 data.  

Given the overall positive results at the one-step ahead forecast in the empirical 

results in Section 4.3, therefore the case study in Section 4.4 is aimed at assesing the 

forecasting performance of the BJ-G model for higher horizons by applying the third 

proposed procedure of BJ-G to the daily world gold price series of Sample 3. Based on 

the empirical results, the third proposed procedure provides a promising procedure to 

assess the performance of the BJ-G model, specifically ARIMA(0,1,0)-GARCH(1,1) 

with t innovations, in forecasting up to seven-day ahead gold price. The procedure adds 

the value of the BJ-G model since it allows the model to follow the nature of the series 
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well and able to explain more about the characteristics of the highly volatile series up to 

n-step-ahead forecast. 

  In Section 4.5, the fourth proposed procedure of BJ-G is applied to Box-Jenkins 

with all GARCH-type models under consideration in previous studies on highly volatile 

data that are GARCH-M, EGARCH, TGARCH and APARCH by employing the same 

data series in Section 4.4. The results of ARIMA-GARCH model from Section 4.3 and 

4.4 are used as benchmark in determining the best Box-Jenkins – GARCH-type model in 

handling the data series. The empirical results reveal that ARIMA(0,1,0)-GARCH(1,1) 

with t innovations outperforms other ARIMA-GARCH-type models.   
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CHAPTER 5 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Introduction 

This chapter summarises the modelling of highly volatile data using time series 

model, specifically the combination model of Box-Jenkins with GARCH or BJ-G model. 

This chapter briefly outlines the major conclusions of this doctoral research and 

recommendations for further improvement. 

5.2 Conclusions 

This doctoral research focuses on the modelling and forecasting of the univariate 

highly volatile time series data with Box-Jenkins as the base model and GARCH-type as 

the variance model. In this study, four proposed procedures are developed in evaluating 

the performance of Box Jenkins – GARCH-type model in modelling and forecasting 

highly volatile time series data: the first procedure is proposed for pre-evaluation 

performance of Box-Jengkins with standard GARCH (or BJ-G) based on the theoretical 

Box-Jenkins procedure (refer to Figure 3.5); the second procedure is to emphasize on the 

identification of highly volatile characteristics in the data at the early stage since it is 

focuses on handling the highly volatile time series data specifically (refer to Figure 3.14); 

the third is to evaluate the multistep forecasting performance of BJ-G model (refer to 

Figure 3.15); and the fourth is the comprehensive procedure of BJ-G to apply the 

procedure to Box-Jenkins with all GARCH-type models in modelling and forecasting 

highly volatile data for practical purposes (see Figure 3.16). The steps and methods used 

for each stage in the proposed procedures are investigated and discussed in detail. All the 

proposed procedures are illustrated using the daily world gold price. 
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The contributions of this study can be summarised as follows. 

1. A literature review on the models and related studies for highly volatile time series 

data is identified and it is vital to develop the procedure of reliable model that is 

able to analyse and forecast data which reflects its pattern and volatility clustering 

characteristic. Primary criteria for the Box-Jenkins as the base model in the 

proposed procedure is the model comes from the established forecasting 

techniques in research practice, its reputation as the benchmark model and the 

forecasting model as well and its capability to analyse almost any time series data. 

The GARCH-type model is widely applied to handle volatility in a data series. 

This study combines the Box-Jenkins and GARCH-type models to achieve 

optimum forecasting performance for highly volatile time series data. 

2. The theoretical Box-Jenkins framework and procedure are used in developing the 

first proposed procedure of BJ-G. With current practices, Box-Jenkins procedures 

are quite general and not thorough enough to describe the nature of time series 

data, specifically for non-constant variance that exist in highly volatile data series. 

In this study, every method used in each step for every stage specifically in model 

identification and diagnostic checking stages are thoroughly investigated and 

explained in the proposed procedure of BJ-G. The preliminary empirical results 

from the case study in Section 4.2 show that the proposed procedure of BJ-G 

provides a systematic approach in modelling and forecasting gold price, or in 

general for highly volatile time series data, as well as justify the capability of BJ-

G in handling the data series. 

3. In the first proposed procedure of BJ-G, the study suggested new steps and 

methods, specifically in Stage I (or model identification stage) and Stage III (or 

diagnostic checking stage). In Stage I, the proposed steps and methods are the step 

of data descriptive, 
maxk  for ACF and PACF as well as for ADF-test in the data 

differenced step, the step of prelinearity test, the step of Portmanteau test and the 

EACF method. In Stage III, the study proposed a system in detecting and handling 

the heteroscedasticity in the residuals of the Box-Jenkins model which consists of 

new steps and methods including the DW-test and 
maxk  for LBQ-test in checking 

on autocorrelation, 
maxk  for ARCH test and LBQ-test for heteroscedasticity test 
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and introduced the step of linearity test using Terasvirta test in checking the 

linearity of mean model for BJ-G.  

4. The appropriate distribution of innovations of the BJ-G model is also investigated 

in Stage III of the first proposed procedure of BJ-G to ensure the model fits the 

data series well. There are five types of widely used innovations t  considered in 

this study that are Normal, t, skewed-t, GED and Skewed-GED. The steps in 

considering the appropriate t  are discussed thoroughly in the case study of 

Section 4.2.  

5. The promising performance of BJ-G model using the first proposed procedure is 

lead to the second proposed procedure of BJ-G that focuses on handling the highly 

volatile time series data specifically, using BJ-G model by emphasizing on the 

identification of highly volatile characteristics in the data at the early stage. A 

significant modification is done specifically to Stage I in the second proposed 

procedure, by proposing the step of preliminary heteroscedasticity test and the 

identification step of the BJ-G model. This proposed procedure of BJ-G is to 

accomplish the second objective in the thesis, which is the empirical results are 

thoroughly discussed in Section 4.3.  

6. The empirical results of the world daily gold price in Section 4.3 indicate that the 

second procedure of BJ-G is more practical than the first propose procedure in 

modelling highly volatile data using BJ-G model which simultaneously ensures 

an optimal number of data in dealing with the model to any univariate highly 

volatile data at any frequency. Hence, it is suggested that the latest 25% of data or 

1250 data is sufficient to be employed using BJ-G model with similar forecasting 

performance as by using all data.  

7. This study supports the use of Box-Cox transformation method in the data 

transformation step to address the issue of nonstationarity in-variance. By 

applying the method, analyst will choose the appropriate transformation for data 

series that best suits the nature of data. The importance of the method is proven in 

the case study of Section 4.3 using the second proposed procedure of BJ-G, where 

it can be observed that some of the samples considered are not suitable for 

logarithmic transformation. The implication of using inappropriate transformation 

data will lead to inaccurate forecasting results. 
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8. Given the overall positive results at the one-step ahead forecast of BJ-G model 

using the second proposed procedure, the third proposed procedure of BJ-G is 

proposed in evaluating the performance of the model at higher horizons. In the 

proposed procedure, sets of codes in R language are constructed since the software 

including EViews is only able to provide the results for one-step ahead forecast. 

The steps are clearly explained in the proposed procedure with consideration of 

95% and 80% prediction intervals. This proposed procedure of BJ-G is to cater 

the third objective in the thesis. 

9. The latest 5-year (or 1250 data) world daily gold price is employed to the third 

proposed procedure in evaluating the multistep forecasting performance of BJ-G 

model. Based on the empirical results, the model is able to follow the trend of 

actual data up to seven days ahead, specifically within 95% prediction interval. 

This indicates that, the third proposed procedure provides a promising procedure 

in evaluating the forecasting performance of BJ-G model up to n-step ahead for a 

univariate highly volatile time series data.  

10. This study contributes to a comprehensive procedure in modelling and forecasting 

up to n-step ahead for highly volatile time series data using Box-Jenkins with all 

GARCH-type models, as proposed by the fourth proposed procedure of BJ-G. The 

fourth proposed procedure is a combination of the second proposed procedure of 

BJ-G and the third proposed procedure of BJ-G. The fourth proposed procedure 

of BJ-G is not only applicable for Box-Jenkins with standard GARCH model but 

it can also be applied to Box-Jenkins with all GARCH-type models including 

GARCH-M, EGARCH, TGARCH and APARCH which heve been widely used 

in the previous studies. The capability of the fourth proposed procedure of BJ-G 

in providing an efficient procedure in handling highly volatile data using Box-

Jenkins – GARCH-type models is evaluated in Section 4.5. The empirical results 

in Section 4.5 reveal that ARIMA with standard GARCH, or specifically 

ARIMA(0,1,0)-GARCH(1,1) with t innovations outperforms other ARIMA-

GARCH-type models.   

11. This study enhances the capability of standard Box-Jenkins’s procedure in 

handling a highly volatile data by considering GARCH-type model to handle 

variance without violating the basic assumptions of errors. The proposed 

procedure of BJ-G adds the value of the Box-Jenkins model since it allows the BJ 

model with a combination of GARCH to follow the nature of the series well and 



156 

understand better the characteristics of the highly volatile series up to n-step-

ahead forecast. 

12. Improving forecasting method is one of the main issues in time series research. 

Therefore, the comprehensive proposed procedure of BJ-G (or the fourth propose 

procedure) improves the effectiveness of the forecasting model of Box-Jenkins – 

GARCH-type in modelling and forecasting a univariate highly volatile time series 

data. The guidelines given by the proposed procedure of BJ-G package with R 

codes developed provide a good tool to demonstrate the capability of the model 

of Box-Jenkins – GARCH-type in handling the highly volatile data systematically 

and practically. 

 

5.3 Recommendations 

There are many possible extensions to enhance the performance of the comprehensive 

proposed procedure of BJ-G (the fourth proposed procedure). Empirical experience 

suggests that:  

1. The proposed procedure of BJ-G is applicable for any univariate highly volatile 

time series data such as commodity prices, stock price, temperature data and 

rainfall data, of any frequencies, i.e. weekly, monthly, quarterly and yearly. 

2. The steps and methods used in the proposed procedures of BJ-G are also practical 

to be used for the Box-Jenkins modelling. It is noted that current practices in the 

Box-Jenkins modelling are quite general and the steps and methods used are lack 

of details.    

3. The performance of the proposed procedure of BJ-G is suggested to be tested 

using different ratios of estimate to forecast such as 95:5, 80:20 (as recommended 

by Hyndman and Athanasopoulus (2014)), 70:30 or 50:50.  

4. The proposed procedure of BJ-G is suggested to consider highly volatile time 

series data with outlier, seasonality effect and missing data. 

5. The proposed procedure can be applied to bivariate and multivariate highly 

volatile time series data. For example, analysis on the comparison between local 

and world data could be an interesting research in bivariate analysis. 
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APPENDIX 2 

ANALYSIS OF CHAPTER 4 SECTION 4.2 

 

A. Data for Preliminary Study (24 Nov 1993 – 17 Dec 2013)  

 
1. Time plot for estimate data (24 Nov 1993 – 20 Dec 2011) 

 
 

2. Descriptive Statistics for original data 

 

test test statistic p-value 

mean 103.1316 0.0000 

skewness 43.6124 0.0000 

kurtosis 23.4439 0.0000 

normality 2454.4068 0.0000 
 

 

 

3. Data Stationarity 

i. Nonstationary in-Variance: Box-Cox Transformation 

> lambda <- BoxCox.lambda(dt2, method=c("guerrero","loglik

"), lower=-1, upper=1);lambda # to get the value of lambda 

[1] -0.2146852 

 
 
4. Time plot for ln data- estimate (24 Nov 1993 – 20 Dec 2011) 
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5. Descriptive Statistics for ln data 

 

test test statistic p-value 

mean 778.1264 0.0000 

skewness 24.5352 0.0000 

kurtosis -5.6237 0.0000 

normality 633.8854 0.0000 
 

 

 

6. Data Stationarity: in- Mean 

i. Analysis on ACF and PACF for Log Data 

using EViews 

 

using R 

 

 

 

ii. ADF test 
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7. Time plot for the first differenced of ln data - Stationary data 

 
 

8. Descriptive Statistics for the first differenced of ln data- Stationary series 

 

test test statistic p-value 

mean 2.0565 0.0398 

skewness 1.1008 0.2710 

kurtosis 94.6661 0.0000 

normality 8974.3798 0.0000 
 

 

 

9. Data Stationarity for the first differenced of ln data: in- Mean 

i. Analysis on ACF and PACF for Log Data 

 

 
ii. ADF test 
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10. Preliminary of Linearity Test 

- Plot of stationary data vs lagged stationary data 

 
 

11. Portmanteau Test 
 

Tk ln (Tsay’s suggestion): 
 

X-squared = 19.07, df = 9, p-value = 0.0246 
k = 10 (Hyndman’s suggestion) 
 

X-squared = 19.245, df = 10, p-value = 0.03726 
k =15 (Engle’s suggestion) 
 

X-squared = 35.963, df = 15, p-value = 0.00179 

 

 

MODELLING GOLD PRICE USING BOX-JENKINS MODEL 

12. Stage I: BJ Model Identification 
 

i. Method 1: ACF and PACF 

 

ii. Method 2: EACF 

 

Data: dldt2 
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13. Stage II: BJ Parameter Estimation 

i. Method 1: Ordinary Least Square (OLS) 
 

BJ Models Estimation Results 

ARIMA(0,1,0) 
 

 
 

ARIMA(0,1,1) 
 

 

ARIMA(0,1,2) 
 

 

ARIMA(1,1,0) 
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ARIMA(1,1,1) 
 

 

ARIMA(1,1,2) 
 

 

ARIMA(2,1,0) 
 

 

ARIMA(2,1,1) 
 

 

ARIMA(2,1,2) 
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ii. Method 2: Maximum Likelihood Estimator (MLE) 
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14. Stage III: BJ Diagnostic Checking  

i. ARIMA(0,1,0) using OLS 

a. Residual Plot 

 
 

b. LBQ-statistic Test for Residuals 

 
 

c. Durbin-Watson Test 

 

d. LBQ-statistic Test on Squared Residuals 

 
 

e. ARCH Test 

 

 

 
f. Descriptive statistics for the residuals 

 
g. Normal QQ-plot 
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ii. ARIMA(0,1,0) using MLE 

 
Standardized residuals: to examine IID assumption and to detect possible outliers 

ACF of Residuals:  ideally,should be within the limit of 2 standard errors 

P-values: Ljung-Box Q-stat for residuals, P-value>0.05 up to lag 5 
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B. MODELLING GOLD PRICE USING BOX-JENKINS - GARCH MODEL 

1. Stage I: BJ-GARCH Model Identification 

i. Mean Model: ARIMA(0,1,0)  

ii. Variance Model 

ACF and PACF on Squared Residuals 

 
 

 

2. Stage II: BJ-GARCH Parameter Estimation (using MLE) 

 

1. ARIMA (0,1,0)-GARCH (1,1) 

 

 
 
 

2. ARIMA (0,1,0)-GARCH (1,2) 
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3. ARIMA (0,1,0)-GARCH (1,3) 
 

 
 

 

4. ARIMA (0,1,0)-GARCH (1,4) 
 

 
 

5. ARIMA (0,1,0)-GARCH (2,1) 
 

 
 

6. ARIMA (0,1,0)-GARCH (2,2) 
 

 

7. ARIMA (0,1,0)-GARCH (2,3) 
 

 

8. ARIMA (0,1,0)-GARCH (2,4) 
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9. ARIMA (0,1,0)-GARCH (3,1) 

 

 

10. ARIMA (0,1,0)-GARCH (3,2) 

 

 

11. ARIMA (0,1,0)-GARCH (3,3) 

 

 

12. ARIMA (0,1,0)-GARCH (3,4) 

 

 
 

13. ARIMA (0,1,0)-GARCH (4,1) 

 

 

14. ARIMA (0,1,0)-GARCH (4,2) 

 

 



182 

15. ARIMA (0,1,0)-GARCH (4,3) 
 

 

16. ARIMA (0,1,0)-GARCH (4,4) 
 

 
 

17. ARIMA (0,1,0)-GARCH (5,1) 

 

 

18. ARIMA (0,1,0)-GARCH (5,2) 

 

 
 

19. ARIMA (0,1,0)-GARCH (5,3) 

 

 

20. ARIMA (0,1,0)-GARCH (5,4) 
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3. Stage III: BJ Diagnostic Checking for ARIMA(0,1,0)-GARCH(1,1)  

 

i. ARIMA (0,1,0)-GARCH (1,1) with Normal distribution 

 

Teraesvirta Neural Network Test 

 

data:  dlnx2 

F = 4.3915, df1 = 2, df2 = 4496, p-value = 0.01243 
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> # estimate model ARIMA(1,1,1)-GARCH(1,1) with cond.dist=normal 

> fit21<-garchFit(formula = ~ arma(0,0)+garch(1, 1), data = dldt2, con

d.dist="norm", include.mean = TRUE,trace=F) # for model with constant 
> sum21<-summary(fit21) 

Title: GARCH Modelling  

Call: garchFit(formula = ~arma(0, 0) + garch(1, 1), data = dldt2, cond.dist = "norm",inc

lude.mean = TRUE, trace = F)  

Mean and Variance Equation: data ~ arma(0, 0) + garch(1, 1) 

 [data = dldt2] 

Conditional Distribution: norm  

Coefficient(s): 

        mu       omega      alpha1       beta1   

4.4334e-05  1.2762e-07  4.2918e-02  9.5914e-01   

Std. Errors:based on Hessian  

 

Error Analysis: 

        Estimate  Std. Error  t value Pr(>|t|)     

mu     4.433e-05   1.072e-04    0.414 0.679161     

omega  1.276e-07   3.799e-08    3.359 0.000782 *** 

alpha1 4.292e-02   3.787e-03   11.332  < 2e-16 *** 

beta1  9.591e-01   3.206e-03  299.142  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Log Likelihood: 

 14826.16    normalized:  3.295435  
 

Standardised Residuals Tests: 

                                Statistic p-Value    

 Jarque-Bera Test   R    Chi^2  9453.627  0          

 Shapiro-Wilk Test  R    W      0.9546877 0          

 Ljung-Box Test     R    Q(10)  9.327292  0.5013495  

 Ljung-Box Test     R    Q(15)  17.69191  0.2792092  

 Ljung-Box Test     R    Q(20)  29.1451   0.08494138 

 Ljung-Box Test     R^2  Q(10)  16.81045  0.07866499 

 Ljung-Box Test     R^2  Q(15)  18.55147  0.2347828  

 Ljung-Box Test     R^2  Q(20)  21.85274  0.3485547  

 LM Arch Test       R    TR^2   17.17721  0.143052   
 

 

Information Criterion Statistics: 

      AIC       BIC       SIC      HQIC  

-6.589091 -6.583391 -6.589093 -6.587083  

 

> #to calculate Durbin-Watson Test: Method 2 

> x21<-residuals(fit21,standardize=TRUE) 

> f21<-acf(x21,lag=40);f21 

 
> dw21<-2*(1-f21$acf[2]);dw21 #use formula dw=2(1-r1) 

[1] 1.946512 

 

> basicStats(x21) #to get the descriptive of the standardized residuals 

 

 

 
 

 



185 

ii. ARIMA (0,1,0)-GARCH (1,1) with t distribution 
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iii. ARIMA (0,1,0)-GARCH (1,1) with skewed-t distribution 

 
 

 

 

 

 

 

   
 
> # estimate model ARIMA(0,1,1)-GARCH(1,1) with cond.dist=skewed t 

> fit23<-garchFit(formula = ~ arma(0,0)+garch(1, 1), data = dldt2, cond.dist="

sstd", include.mean = TRUE,trace=F) # for model with constant 
> sum23<-summary(fit23) 

Title:GARCH Modelling  

Call:garchFit(formula = ~arma(0, 0) + garch(1, 1), data = dldt2, cond.dist = "sstd",  

    include.mean = TRUE, trace = F)  

Mean and Variance Equation:data ~ arma(0, 0) + garch(1, 1) 

[data = dldt2] 

Conditional Distribution: sstd  

Coefficient(s): 

        mu       omega      alpha1       beta1        skew       shape   

3.8961e-05  1.8769e-07  6.6340e-02  9.3867e-01  9.8397e-01  4.6757e+00   
 

Std. Errors:based on Hessian  
 

Error Analysis: 

        Estimate  Std. Error  t value Pr(>|t|)     

mu     3.896e-05   1.010e-04    0.386   0.6996     

omega  1.877e-07   7.953e-08    2.360   0.0183 *   
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alpha1 6.634e-02   7.780e-03    8.527   <2e-16 *** 

beta1  9.387e-01   6.337e-03  148.130   <2e-16 *** 

skew   9.840e-01   1.870e-02   52.618   <2e-16 *** 

shape  4.676e+00   3.381e-01   13.830   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Log Likelihood: 

 15094.06    normalized:  3.35498  
 

Standardised Residuals Tests: 

                                Statistic p-Value    

 Jarque-Bera Test   R    Chi^2  15634.1   0          

 Shapiro-Wilk Test  R    W      0.9491605 0          

 Ljung-Box Test     R    Q(10)  10.14822  0.4275869  

 Ljung-Box Test     R    Q(15)  18.59038  0.2328994  

 Ljung-Box Test     R    Q(20)  30.64627  0.06003686 

 Ljung-Box Test     R^2  Q(10)  6.113017  0.8056803  

 Ljung-Box Test     R^2  Q(15)  8.586274  0.8981381  

 Ljung-Box Test     R^2  Q(20)  11.40931  0.9349096  

 LM Arch Test       R    TR^2   7.280071  0.8385639  
 

Information Criterion Statistics: 

      AIC       BIC       SIC      HQIC  

-6.707293 -6.698742 -6.707297 -6.704280  
 

 

 

 
 

 

 

> #to calculate Durbin-Watson Test: Method 2 

> x23<-residuals(fit23,standardize=TRUE) 

> f23<-acf(x23,lag=40);f23 

Autocorrelations of series ‘x23’, by lag 

1      2      3      4      5      6      7      8      9     10     11     12     13     14     15  

   16     17     18     19     20 

0.011  0.030  0.009 -0.001 -0.011 -0.008 -0.023  0.012  0.006  0.016 -0.023 -0.032 -0.003  0.003 -0.0

17  0.034  0.014  0.015  0.017  0.028 

21     22     23     24     25     26     27     28     29     30     31     32     33     34     35 

    36     37     38     39     40 

 -0.003 -0.002 -0.020 -0.022 -0.029 -0.011 -0.007 -0.017 -0.007 -0.009 -0.010 -0.001 0.007 -0.002  0.

021  0.011 -0.015  0.012 0.012 -0.002 
     

> dw23<-2*(1-f23$acf[2]);dw23 #use formula dw=2(1-r1) 

[1] 1.939565 

> basicStats(x23) #to get the descriptive of the standardized residuals 
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iv. ARIMA (0,1,0)-GARCH (1,1) with GED distribution 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 
> # estimate model ARIMA(0,1,0)-GARCH(1,1) with cond.dist=GED 

> fit24<-garchFit(formula = ~ arma(0,0)+garch(1, 1), data = dldt2,algorithm ="

lbfgsb+nm",hessian = "ropt",cond.dist="ged", include.mean = TRUE,trace=F) 

> sum24<-summary(fit24) 

Title:GARCH Modelling  

Call:garchFit(formula = ~arma(0, 0) + garch(1, 1), data = dldt2, cond.dist = "ged",  

    include.mean = TRUE, trace = F, algorithm = "lbfgsb+nm", hessian = "ropt")  

Mean and Variance Equation: data ~ arma(0, 0) + garch(1, 1) 

[data = dldt2] 

Conditional Distribution:ged  

Coefficient(s): 

        mu       omega      alpha1       beta1       shape   

5.6492e-05  2.0368e-07  6.0634e-02  9.4196e-01  1.1401e+00   

Std. Errors:based on Hessian  
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Error Analysis: 

        Estimate  Std. Error  t value Pr(>|t|)     

mu     5.649e-05   1.102e-04    0.513   0.6083     

omega  2.037e-07   8.171e-08    2.493   0.0127 *   

alpha1 6.063e-02   7.884e-03    7.691 1.47e-14 *** 

beta1  9.420e-01   6.851e-03  137.484  < 2e-16 *** 

shape  1.140e+00   3.081e-02   37.008  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Log Likelihood: 

 15081.91    normalized:  3.352281  
 

Standardised Residuals Tests: 

                                Statistic p-Value   

 Jarque-Bera Test   R    Chi^2  14719.6   0         

 Shapiro-Wilk Test  R    W      0.949981  0         

 Ljung-Box Test     R    Q(10)  10.0333   0.4375771 

 Ljung-Box Test     R    Q(15)  18.54279  0.2352048 

 Ljung-Box Test     R    Q(20)  30.58091  0.0609718 

 Ljung-Box Test     R^2  Q(10)  6.867687  0.7378743 

 Ljung-Box Test     R^2  Q(15)  9.24379   0.8644292 

 Ljung-Box Test     R^2  Q(20)  12.09128  0.9128982 

 LM Arch Test       R    TR^2   7.971098  0.7873849 
 

Information Criterion Statistics: 

      AIC       BIC       SIC      HQIC  

-6.702339 -6.695214 -6.702342 -6.699828  
 

 

 

 

 

 

> #to calculate Durbin-Watson Test: Method 2 

> x24<-residuals(fit24,standardize=TRUE) 

> f24<-acf(x24,lag=40);f24 

Autocorrelations of series ‘x24’, by lag 

1      2      3      4      5      6      7      8      9     10     11     12     13     14     15  

   16     17     18     19     20      

0.011  0.030  0.009  0.000 -0.011 -0.008 -0.023  0.013  0.007  0.016 -0.023 -0.033 -0.003  0.003 -0.0

17  0.034  0.014  0.015  0.016 0.028 

21     22     23     24     25     26     27     28     29     30     31     32     33     34     35 

    36     37     38     39     40  

 -0.003 -0.002 -0.020 -0.021 -0.029 -0.011 -0.007 -0.017 -0.007 -0.009 -0.010 -0.001  0.007 -0.001  0

.021  0.011 -0.016  0.012 0.013 -0.002  

> dw24<-2*(1-f24$acf[2]);dw24 #use formula dw=2(1-r1) 

[1] 1.940839 

> basicStats(x24) #to get the descriptive of the standardized residuals 
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v. ARIMA (0,1,0)-GARCH (1,1) with skewed-GED distribution 

>fit25<-garchFit(formula = ~ arma(0,0)+garch(1, 1), data = dldt2, proc

edure ="lbfgsb+nm",hessian = "ropt",cond.dist="sged", include.mean = T

RUE,trace=F)#ARIMA with constant 
> sum25<-summary(fit25) 

Title:GARCH Modelling  

Call:garchFit(formula = ~arma(0, 0) + garch(1, 1), data = dldt2, cond.dist = "sged",incl

ude.mean = TRUE, trace = F, procedure = "lbfgsb+nm", hessian = "ropt")  

Mean and Variance Equation:data ~ arma(0, 0) + garch(1, 1) 

[data = dldt2] 

Conditional Distribution: sged  

Coefficient(s): 

        mu       omega      alpha1       beta1        skew       shape   

6.0983e-05  2.0440e-07  6.0677e-02  9.4191e-01  1.0025e+00  1.1398e+00   
 

Std. Errors:based on Hessian  

Error Analysis: 

        Estimate  Std. Error  t value Pr(>|t|)     

mu     6.098e-05   1.052e-04    0.580   0.5621     

omega  2.044e-07   8.194e-08    2.494   0.0126 *   

alpha1 6.068e-02   7.887e-03    7.693 1.44e-14 *** 

beta1  9.419e-01   6.857e-03  137.355  < 2e-16 *** 

skew   1.002e+00   1.049e-02   95.559  < 2e-16 *** 

shape  1.140e+00   3.086e-02   36.938  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Log Likelihood: 

 15081.93    normalized:  3.352286  
 

Standardised Residuals Tests: 

                                Statistic p-Value    

 Jarque-Bera Test   R    Chi^2  14735.41  0          

 Shapiro-Wilk Test  R    W      0.9499696 0          

 Ljung-Box Test     R    Q(10)  10.03918  0.4370627  

 Ljung-Box Test     R    Q(15)  18.53988  0.2353464  

 Ljung-Box Test     R    Q(20)  30.59644  0.06074859 
 Ljung-Box Test     R^2  Q(10)  6.856489  0.7389203  

 Ljung-Box Test     R^2  Q(15)  9.232515  0.8650494  

 Ljung-Box Test     R^2  Q(20)  12.07892  0.9133329  

 LM Arch Test       R    TR^2   7.960352  0.788221   

 

Information Criterion Statistics: 

      AIC       BIC       SIC      HQIC  

-6.701905 -6.693354 -6.701908 -6.698892  
 
 

 
Standardized residuals: 
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4. STAGE IV: BJ-GARCH FORECASTING (ARIMA(0,1,0)-GARCH(1,1) with t ) 

i. For Stationary Data (Daily Log Return Gold Price) 

 
 

> mae_st_AG2=sum(error2st_AG2)/T; mae_st_AG2; [1] 0.008388001 

> rmse_st_AG2=sqrt(sum(error3st_AG2)/T); rmse_st_AG2; [1] 0.01235061 

> #mape_st_AG2=(100/T)*sum(error4s_AG); mape_st_AG2 #cannot calculate mape because of ex

ist of "0" data in stationary data 

 

ii. For Daily Gold Price 

> mae_AG2=sum(error2_AG2)/T; mae_AG2;[1] 12.6855 

> rmse_AG2=sqrt(sum(error3_AG2)/T); rmse_AG2;[1] 18.37164 

> mape_AG2=(100/T)*sum(error4_AG2); mape_AG2;[1] 0.8401619 

 

Actual and Forecast data for the last 10 days (model ARIMA(0,1,0)-GARCH(1,1) with t): 
   [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]     [,8]     [,9]    [,10] 

[1,] 1614.726 1706.295 1555.181 1618.979 1775.348 1695.287 1580.950 1369.790 1330.760 1330.510 

[2,] 1609.222 1670.268 1590.708 1623.232 1762.588 1666.265 1575.196 1355.779 1325.156 1304.991 

[3,] 1607.721 1678.775 1593.710 1600.215 1770.344 1651.754 1580.700 1361.784 1315.499 1299.487 

[4,] 1572.194 1691.284 1583.702 1598.213 1768.092 1652.755 1582.952 1409.570 1315.999 1266.462 

[5,] 1532.163 1688.782 1550.177 1603.217 1737.319 1656.758 1580.200 1381.549 1310.245 1286.477 

[6,] 1532.163 1698.790 1569.692 1611.223 1747.827 1658.759 1595.211 1391.306 1305.741 1271.465 

[7,] 1599.214 1691.284 1570.693 1612.224 1750.329 1695.037 1590.458 1377.546 1281.473 1274.468 

[8,] 1614.226 1645.499 1575.796 1614.476 1744.324 1680.776 1587.205 1383.550 1283.474 1320.252 

[9,] 1600.215 1649.252 1580.700 1616.227 1738.320 1649.252 1596.712 1414.574 1299.236 1317.500 

[10] 1617.728 1659.260 1541.170 1619.730 1728.062 1646.500 1604.969 1395.560 1309.995 1318.501 

[11] 1616.227 1662.762 1559.184 1623.733 1712.300 1657.258 1611.974 1403.566 1342.019 1334.013 

[12] 1638.244 1658.009 1607.220 1598.964 1707.797 1659.010 1608.721 1400.563 1329.509 1332.262 

[13] 1635.742 1650.503 1636.242 1602.967 1716.803 1676.273 1614.976 1405.067 1327.508 1345.772 

[14] 1662.262 1636.743 1607.220 1605.719 1717.304 1658.759 1608.972 1401.064 1330.760 1348.774 

[15] 1636.743 1665.264 1577.698 1615.977 1708.297 1667.766 1600.465 1387.053 1370.290 1362.034 

[16] 1642.247 1681.527 1585.204 1616.227 1711.299 1681.777 1599.214 1384.301 1366.037 1350.275 

[17] 1657.258 1693.286 1604.718 1640.746 1720.306 1677.524 1604.218 1375.294 1373.543 1355.779 

[18] 1648.251 1677.273 1620.731 1643.248 1717.554 1676.273 1599.464 1383.801 1364.036 1325.006 

[19] 1656.257 1658.759 1614.726 1666.515 1686.280 1689.783 1584.703 1386.052 1376.545 1307.743 

[20] 1654.256 1663.763 1628.486 1668.267 1684.779 1688.782 1575.947 1392.307 1378.547 1321.503 

[21] 1676.773 1678.775 1616.727 1669.267 1692.285 1691.784 1547.675 1385.802 1420.328 1308.243 

[22] 1666.765 1677.524 1626.735 1661.261 1716.553 1691.534 1569.191 1367.788 1420.579 1320.002 

[23] 1651.254 1622.232 1602.216 1661.762 1718.305 1672.270 1576.197 1373.793 1408.820 1308.243 

[24] 1728.312 1632.239 1583.202 1649.753 1739.571 1661.261 1578.448 1293.482 1395.810 1286.477 

[25] 1727.311 1645.249 1566.689 1692.785 1736.568 1657.759 1576.197 1296.234 1393.308 1283.474 

[26] 1730.314 1659.260 1571.193 1698.289 1727.562 1664.764 1566.189 1287.728 1400.563 1282.224 

[27] 1745.325 1669.768 1577.197 1691.284 1727.562 1678.775 1536.667 1279.972 1391.056 1273.467 

[28] 1741.322 1667.766 1574.696 1702.292 1711.299 1666.015 1396.060 1237.189 1386.052 1286.977 

[29] 1752.330 1654.256 1559.684 1729.313 1714.802 1670.268 1381.049 1233.687 1388.054 1288.228 

[30] 1735.318 1636.743 1599.715 1733.316 1731.815 1667.266 1393.058 1192.906 1391.056 1284.475 

[31] 1720.306 1645.249 1593.210 1738.070 1733.566 1674.772 1394.809 1243.694 1359.282 1276.719 

[32] 1725.310 1651.254 1618.729 1738.320 1725.310 1675.522 1406.568 1253.452 1364.786 1257.955 

[33] 1747.327 1642.747 1614.726 1734.567 1732.315 1669.267 1425.582 1250.950 1329.009 1240.942 

[34] 1749.328 1630.238 1605.219 1776.849 1735.818 1669.518 1409.070 1252.701 1319.502 1247.197 
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[35] 1712.800 1650.753 1588.206 1771.345 1751.830 1653.255 1429.585 1213.671 1325.006 1243.944 

[36] 1721.307 1638.994 1586.204 1770.844 1747.577 1648.752 1452.102 1236.189 1313.247 1248.448 

[37] 1723.308 1654.756 1596.462 1768.092 1709.298 1646.250 1472.618 1256.454 1301.989 1245.946 

[38] 1734.317 1664.764 1578.198 1759.836 1726.311 1647.251 1468.615 1256.954 1366.538 1246.446 

[39] 1714.302 1652.505 1557.432 1785.856 1727.311 1613.475 1470.116 1285.976 1350.275 1253.952 

[40] 1724.309 1665.264 1596.712 1763.839 1721.307 1611.974 1455.855 1280.722 1324.005 1230.434 

[41] 1734.317 1649.252 1590.958 1772.846 1699.040 1608.972 1470.366 1285.726 1315.249 1218.175 

[42] 1749.328 1638.994 1586.455 1746.076 1695.287 1589.707 1470.366 1292.481 1323.755 1228.433 

[43] 1753.331 1644.999 1576.447 1764.340 1695.537 1578.198 1445.347 1298.236 1334.013 1223.429 

[44] 1778.350 1603.718 1585.204 1777.349 1702.793 1577.698 1469.115 1284.225 1342.019 1233.937 

[45] 1778.851 1583.702 1577.448 1788.358 1713.801 1587.455 1466.614 1296.735 1327.508 1237.940 

[46] 1773.346 1599.715 1573.445 1776.849 1711.299 1591.708 1427.584 1328.008 1291.731 1267.212 

[47] 1782.353 1584.203 1584.453 1776.599 1717.554 1605.469 1431.837 1334.513 1307.243 1261.708 

[48] 1771.345 1559.684 1602.216 1793.111 1694.036 1589.707 1434.839 1336.014 1317.000 1226.181 

[49] 1715.302 1557.683 1619.229 1785.356 1697.539 1583.452 1411.071 1327.008 1310.745 1232.936 

[50] 1708.297 1549.677 1619.480 1774.848 1697.038 1575.446 1382.049 1332.011 1324.506 1235.688 
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APPENDIX 3 

ANALYSIS OF CHAPTER 4 SECTION 4.3 

1. Data of Study 

Sample Duration Number 

of Data 

In-Sample Data Out-of-Sample Data 

1 24/11/1993 - 17/12/2013 

(20-year) 

5 000 24/11/1993 - 20/12/2011 

(4500 data) 

21/12/2011 - 17/12/2013 

(500 data) 

2 5/12/2003 - 17/12/2013 

(10-year) 

2 500 5/12/2003 - 18/12/2012 

(2250 data) 

19/12/2012-17/12/2013 

(250 data) 

3 22/12/2008 - 17/12/2013 

(5-year) 

1 250 22/12/2008 - 24/6/2013 

(1125 data) 

25/6/2013 - 17/12/2013 

(125 data) 

4 21/12/2009 - 17/12/2013 

(4-year) 

1 000 21/12/2009 - 29/7/2013 

(900 data) 

30/7/2013 - 17/12/2013 

(100 data) 

5 20/12/2010 - 17/12/2013 

(3-year) 

750 20/12/2010 - 3/9/2013 

(675 data) 

4/9/2013 - 17/12/2013 

(75 data) 

6 21/12/2011 - 17/12/2013 

(2-year) 

500 21/12/2011- 8/10/2013 

(450 data) 

9/10/2013 - 17/12/2013 

(50 data) 

 

STAGE I: MODEL IDENTIFICATION 

 

1. Time Plot 

Data Original Data, y Transformed Data, 
*

ty  Stationary Data, ts  

1 

 

ttBC yy ln:02147.0
*
  

 

*
tt ys   

 

2 

 
 

ttBC yy ln:01101.0 *   

 

*
tt ys   

 
 

3 

 
 

ttBC yy ln:00780.0 *   

 

*
tt ys   

 

4 

 

t

tBC
y

y
1

:5.04217.0
*
  

 

*
tt ys   
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5 

 

ttBC yy 
*

:5.06421.0  

 

*
tt ys   

 

6 

 

yytBC  *:19999.0  

 
 

yst   

 
 

 

2. Descriptive Statistics for original data, transformed data and stationary data 
 

Data Original Data Transformed Data Stationary Data 

1 y 

 
 

test test statistic p-value 

mean 103.1316 0.0000 

skewness 43.6124 0.0000 

kurtosis 23.4439 0.0000 

normality 2454.4068 0.0000 
 
 

 

Box-Cox Transformation: 

yy ln:02147.0 *   

 

Stationary data: Differenced ln y 

 
 

test test statistic p-value 

mean 2.0565 0.0398 

skewness 1.1008 0.2710 

kurtosis 94.6661 0.0000 

normality 8974.3798 0.0000 
 
 

 

 
2 y 

 
 

test test statistic p-value 

mean 100.5644 0.0000 

skewness 9.8006 0.0000 

kurtosis -9.9516 0.0000 

normality 194.8672 0.0000 
 

 

Box-Cox Transformation: 
yln:01101.0   

 
 
 

Stationary data: Differenced ln y 

 
test test statistic p-value 

mean 2.3803 0.0174 

skewness -6.5323 0.0000 

kurtosis 34.2867 0.0000 

normality 1222.1838 0.0000 
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Data Original Data Transformed Data Stationary Data 

3 
 

 
test test statistic p-value 

mean 159.3966 0.0000 

skewness -3.6136 0.0003 

kurtosis -8.6348 0.0000 

normality 87.2810 0.0000 
 

 

 

Box-Cox Transformation: 
yln:00780.0   

 

Stationary data: Differenced log y 

 
 

test test statistic p-value 

mean 1.0131 0.3112 

skewness -8.0096 0.0000 

kurtosis 41.0178 0.0000 

normality 1755.86 0.0000 
 

 
 

4 

 
 

test test statistic p-value 

mean 210.8364 0.0000 

skewness -4.0184 0.0000 

kurtosis -6.7832 0.0000 

normality 61.8668 0.0000 
 

 

Box-Cox Transformation: 

t

t
y

y
1

5.04217.0

*




 

 

Stationary data: First Differenced 

of transformed data 

 
 

test test statistic p-value 

mean -0.5671 0.5708 

skewness 11.6360 0.0000 

kurtosis 41.1059 0.0000 

normality 1836.4894 0.0000 
 

 
5 

 
 

test test statistic p-value 

mean 280.3487 0.0000 

skewness -4.7178 0.0000 

kurtosis -3.6370 0.0003 

normality 35.3177 0.0000 
 

 

Box-Cox Transformation: 

tt yy 


*

5.06421
 

 

Stationary data: First Differenced 

of transformed data 

 
 

test test statistic p-value 

mean 0.0404 0.9678 

skewness -10.6602 0.0000 

kurtosis 36.5551 0.0000 

normality 1461.8425 0.0000 
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Data Original Data Transformed Data Stationary Data 

6 
 

 
test test statistic p-value 

mean 221.9825 0.0000 

skewness -6.2839 0.0003 

kurtosis -3.0320 0.0024 

normality 48.6770 0.0000 
 

 

Box-Cox Transformation: 
y:19999.0   

No transformation 

 

Stationary data: Differenced y 

 
test test statistic p-value 

mean -0.7029 0.4825 

skewness -7.3054 0.0000 

kurtosis 35.9511 0.0000 

normality 1361.9921 0.0000 
 

 
 

Average Annual Return for Sample 1 – Sample 3 (significant mean) 

Sample 1 

> t2=prod(dldt2+1);t2 #product 

[1] 3.336908 

> r2=t2^(250/4499)-1;r2 #annual log retur

n 

[1] 0.06925463 

> R2=exp(r2)-1;R2 #annual simple return 

[1] 0.07170906 

> fv2=1*((R2+1)^18);fv2#compound return(f

v)=pv*[(Rt+1)^T] 

[1] 3.478438 

Sample 2 

> t3=prod(dldt3+1);t3 #product 

[1] 3.505386 

> r3=t3^(250/2249)-1;r3 #annual log retur

n 

[1] 0.1496169 

> R3=exp(r3)-1;R3 #annual simple return 

[1] 0.1613892 

> fv3=1*((R3+1)^9);fv3#compound return(fv

=pv*[(Rt+1)^T] 

[1] 3.844147 

 

 

3. Nonstationary in-mean: (i) using sample ACF and sample PACF; (ii) using ADF-test 

Data Transformed Data Stationary Data 

1 

 
36max k  

 

 

 

 

 

 

 
31max k  
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2 

 
34max k  

 

 

 

 

 

 

 

 

 

 
26max k  
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Data Transformed Data Stationary Data 

3
31max k  

 

 

 

 

 

 

 

 

 

 
22max k  

 
 

 
 

 
 

 

 

 

 
 

 

4 
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5 
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Data Transformed Data Stationary Data 

6 
27max k  

 

 

 

 

 

 

 

 

 

 
18max k  
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4. Preliminary of Linearity Test and Portmanteau Test 
 

Data Linearity Test Portmanteau Test: Ljung-Box Q-test 

1 data:  dldt2 

 

Tk ln (Tsay’s suggestion): 
 
X-squared = 19.07, df = 9, p-value = 0.0246 
k = 10 (Hyndman’s suggestion) 
 
X-squared = 19.245, df = 10, p-value = 0.03726 
k =15 (Engle’s suggestion) 
 
X-squared = 35.963, df = 15, p-value = 0.00179 

2 data:  dldt3 

 

Tk ln (Tsay’s suggestion) 
 
X-squared = 15.982, df = 8, p-value = 0.04263 
k = 10 (Hyndman’s suggestion) 
 
X-squared = 20.029, df = 10, p-value = 0.02898 
k =15 (Engle’s suggestion) 
 
X-squared = 31.326, df = 15, p-value = 0.00794
3 

3 data:  dldt4 
 

 

Tk ln (Tsay’s suggestion) 
 
X-squared = 12.269, df = 7, p-value = 0.09206 
k = 10 (Hyndman’s suggestion) 
 
X-squared = 18.103, df = 10, p-value = 0.05325 
k =15 (Engle’s suggestion) 
 
X-squared = 31.836, df = 15, p-value = 0.00677
7 

4 data:  dtdt5 
 

 
 

5 data:  dtdt6 

 
 

6 data:  ddt7 
 

 

Tk ln (Tsay’s suggestion) 
 

X-squared = 7.367, df = 6, p-value = 0.2882 
k = 10 (Hyndman’s suggestion) 
 

X-squared = 22.509, df = 15, p-value = 0.09514 
k =15 (Engle’s suggestion) 
 

X-squared = 18.718, df = 10, p-value = 0.04399 
k = 10 (Hyndman’s suggestion) 
 

X-squared = 7.2201, df = 10, p-value = 0.7045 
k =15 (Engle’s suggestion) 
 

X-squared = 9.9381, df = 15, p-value = 0.8236 
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5. Possible Box-Jenkins model and Preliminary of Heteroscedasticity test  
 

Data Possible Model Heteroscedaticity test 

1 Data: dldt2 

 

 

ARIMA(0,1,0) 

 
 
 

 

 

 

2 Data: dldt3 

 
 

ARIMA(0,1,0) 

 

 
 

 
3 Data: dldt4 

 
 

ARIMA(0,1,0) 
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Data Possible Model Heteroscedaticity test 

4 data:dtdt5 

 
 

ARIMA(0,1,0) 

 

 

5 data:  dtdt6 
 

 
 

ARIMA(0,1,0) 
 

 

 

6 data:  ddt7 

 
 

ARIMA(1,1,0) or (0,1,0) 

 

 

Based on (0,1,0) 
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STAGE II: BOX-JENKINS – GARCH PARAMETER ESTIMATION 
 

SAMPLE 1: Refer to Chapter 4.2 and Appendix 2 
 

SAMPLE 2 

1. ARIMA (0,1,0)-GARCH (1,1) 
 

 
 

2. ARIMA (0,1,0)-GARCH (1,2) 
 

 

3. ARIMA (0,1,0)-GARCH (1,3) 
 

 

4. ARIMA (0,1,0)-GARCH (1,4) 
 

 
5. ARIMA (0,1,0)-GARCH (2,1) 
 

 

6. ARIMA (0,1,0)-GARCH (2,2) 
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7. ARIMA (0,1,0)-GARCH (2,3) 
 

 

8. ARIMA (0,1,0)-GARCH (2,4) 
 

 
 

9. ARIMA (0,1,0)-GARCH (3,1) 
 

 

10. ARIMA (0,1,0)-GARCH (3,2) 
 

 
 

11. ARIMA (0,1,0)-GARCH (3,3) 
 

 

12. ARIMA (0,1,0)-GARCH (3,4) 
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13. ARIMA (0,1,0)-GARCH (4,1) 
 

 
 

14. ARIMA (0,1,0)-GARCH (4,2) 
 

 
 

15. ARIMA (0,1,0)-GARCH (4,3) 
 

 

16. ARIMA (0,1,0)-GARCH (4,4) 
 

 
 

17. ARIMA (0,1,0)-GARCH (5,1) 
 

 

18. ARIMA (0,1,0)-GARCH (5,2) 
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19. ARIMA (0,1,0)-GARCH (5,3) 
 

 

20. ARIMA (0,1,0)-GARCH (5,4) 
 

 
 

 

SAMPLE 3 

1. ARIMA (0,1,0)-GARCH (1,1) 
 

 

2. ARIMA (0,1,0)-GARCH (1,2) 
 

 

3. ARIMA (0,1,0)-GARCH (2,1) 
 

 

4. ARIMA (0,1,0)-GARCH (2,2) 
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STAGE II - STAGE III: BJ - G model’s Parameter Estimation and Diagnostic Checking 
 

SAMPLE 1: Refer to Appendix 2 
 

SAMPLE 2 

i. ARIMA (0,1,0)-GARCH (1,1) with Normal distribution 
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ii. ARIMA (0,1,0)-GARCH (1,1) with t distribution 
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iii. ARIMA (0,1,0)-GARCH (1,1) with skewed-t distribution 
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iv. ARIMA (0,1,0)-GARCH (1,1) with GED distribution 
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v. ARIMA (0,1,0)-GARCH (1,1) with skewed-GED distribution 

 
Standardised residuals: 
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SAMPLE 3 

i. ARIMA (0,1,0)-GARCH (1,1) with Normal distribution 
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ii. ARIMA (0,1,0)-GARCH (1,1) with t distribution 
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iii. ARIMA (0,1,0)-GARCH (1,1) with skewed-t distribution 

 

Standardised residuals 
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iv. ARIMA (0,1,0)-GARCH (1,1) with GED distribution 

 
 

 
 

 

 

 

 

 

 

 

 



217 

v. ARIMA (0,1,0)-GARCH (1,1) with skewed-GED distribution 

 
 

Standardised residuals 
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STAGE IV:  BOX-JENKINS – GARCH FORECASTING 
 

Sample 1: Refer Appendix 2 
 

Sample 2: ARIMA (0,1,0)-GARCH (1,1) with GED innovations 

i. For Stationary Data (Daily Log Return Gold Price) 
 

 

 

 

 

 
 

> mae_st_AG3=sum(error2st_AG3)/T; mae_st_

AG3 

[1] 0.009118529 

> rmse_st_AG3=sqrt(sum(error3st_AG3)/T); 

rmse_st_AG3 

[1] 0.01389693 

 

For Daily Gold Price 

> mae_AG3=sum(error2_AG3)/T; mae_AG3 

[1] 12.68691 

> rmse_AG3=sqrt(sum(error3_AG3)/T); rmse_

AG3 

[1] 19.21902 

> mape_AG3=(100/T)*sum(error4_AG3); mape_

AG3 

[1] 0.9154706 

 

 

 

Sample 3: ARIMA (0,1,0)-GARCH (1,1) with t innovations 

i. For Stationary Data (Daily Log Return Gold Price) 

 

 

 

 
 
> mae_st_AG4=sum(error2st_AG4)/T; mae_st_AG4 

[1] 0.009951418 

> rmse_st_AG4=sqrt(sum(error3st_AG4)/T); rmse

_st_AG4 

[1] 0.01380593 

 

For Daily Gold Price 

> mae_AG4=sum(error2_AG4)/T; mae_AG4 

[1] 12.93009 

> rmse_AG4=sqrt(sum(error3_AG4)/T); rmse_AG4 

[1] 17.87645 

> mape_AG4=(100/T) *sum(error4_AG4); mape_AG4 

[1] 0.9956225 
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APPENDIX 4 

ANALYSIS OF CHAPTER 4 SECTION 4.4 

A. OUT-OF-SAMPLE DATA 

 25 June -17 Dec 2013 (125 data) 

i) Original data (Price in USD) 

Date Price ($) Date Price($) Date Price($) Date Price($) Date Price($) 

25/6/2013 1279.00 30/7/2013 1324.15   4/9/2013 1390.00   9/10/2013 1304.00 13/11/2013 1272.50 

26/6/2013 1236.25 31/7/2013 1314.50   5/9/2013 1385.00 10/10/2013 1298.50 14/11/2013 1286.00 

27/6/2013 1232.75   1/8/2013 1315.00   6/9/2013 1387.00 11/10/2013 1265.50 15/11/2013 1287.25 

28/6/2013 1192.00   2/8/2013 1309.25   9/9/2013 1390.00 14/10/2013 1285.50 16/11/2013 1283.50 

  1/7/2013 1242.75   5/8/2013 1304.75 10/9/2013 1358.25 15/10/2013 1270.50 17/11/2013 1275.75 

  2/7/2013 1252.50   6/8/2013 1280.50 11/9/2013 1363.75 16/10/2013 1273.50 18/11/2013 1257.00 

  3/7/2013 1250.00   7/8/2013 1282.50 12/9/2013 1328.00 17/10/2013 1319.25 19/11/2013 1240.00 

  4/7/2013 1251.75   8/8/2013 1298.25 13/9/2013 1318.50 18/10/2013 1316.50 20/11/2013 1246.25 

  5/7/2013 1212.75   9/8/2013 1309.00 16/9/2013 1324.00 19/10/2013 1317.50 21/11/2013 1243.00 

  8/7/2013 1235.25 12/8/2013 1341.00 17/9/2013 1312.25 20/10/2013 1333.00 22/11/2013 1247.50 

  9/7/2013 1255.50 13/8/2013 1328.50 18/9/2013 1301.00 21/10/2013 1331.25 23/11/2013 1245.00 

10/7/2013 1256.00 14/8/2013 1326.50 19/9/2013 1365.50 22/10/2013 1344.75 24/11/2013 1245.50 

11/7/2013 1285.00 15/8/2013 1329.75 20/9/2013 1349.25 23/10/2013 1347.75 25/11/2013 1253.00 

12/7/2013 1279.75 16/8/2013 1369.25 21/9/2013 1323.00 24/10/2013 1361.00   2/12/2013 1229.50 

15/7/2013 1284.75 19/8/2013 1365.00 22/9/2013 1314.25 25/10/2013 1349.25   3/12/2013 1217.25 

16/7/2013 1291.50 20/8/2013 1372.50 23/9/2013 1322.75 26/10/2013 1354.75   4/12/2013 1227.50 

17/7/2013 1297.25 21/8/2013 1363.00 24/9/2013 1333.00 27/10/2013 1324.00   5/12/2013 1222.50 

18/7/2013 1283.25 22/8/2013 1375.50 25/9/2013 1341.00   1/11/2013 1306.75   6/12/2013 1233.00 

19/7/2013 1295.75 23/8/2013 1377.50 26/9/2013 1326.50   4/11/2013 1320.50   9/12/2013 1237.00 

22/7/2013 1327.00 27/8/2013 1419.25 1/10/2013 1290.75   5/11/2013 1307.25 10/12/2013 1266.25 

23/7/2013 1333.50 28/8/2013 1419.50 2/10/2013 1306.25   6/11/2013 1319.00 11/12/2013 1260.75 

24/7/2013 1335.00 29/8/2013 1407.75 3/10/2013 1316.00   7/11/2013 1307.25 12/12/2013 1225.25 

25/7/2013 1326.00 30/8/2013 1394.75 4/10/2013 1309.75   8/11/2013 1285.50 13/12/2013 1232.00 

26/7/2013 1331.00   2/9/2013 1392.25 7/10/2013 1323.50 11/11/2013 1282.50 16/12/2013 1234.75 

29/7/2013 1329.75   3/9/2013 1399.50 8/10/2013 1329.50 12/11/2013 1281.25 17/12/2013 1231.75 
 

Out-of-sample data in original scale (Price) 

[1]  1279.00 1236.25 1232.75 1192.00 1242.75 1252.50 1250.00 1251.75 1212.75 1235.25 

[11] 1255.50 1256.00 1285.00 1279.75 1284.75 1291.50 1297.25 1283.25 1295.75 1327.00 

[21] 1333.50 1335.00 1326.00 1331.00 1329.75 1324.15 1314.50 1315.00 1309.25 1304.75 

[31] 1280.50 1282.50 1298.25 1309.00 1341.00 1328.50 1326.50 1329.75 1369.25 1365.00 

[41] 1372.50 1363.00 1375.50 1377.50 1419.25 1419.50 1407.75 1394.75 1392.25 1399.50 

[51] 1390.00 1385.00 1387.00 1390.00 1358.25 1363.75 1328.00 1318.50 1324.00 1312.25 

[61] 1301.00 1365.50 1349.25 1323.00 1314.25 1322.75 1333.00 1341.00 1326.50 1290.75 

[71] 1306.25 1316.00 1309.75 1323.50 1329.50 1304.00 1298.50 1265.50 1285.50 1270.50 

[81] 1273.50 1319.25 1316.50 1317.50 1333.00 1331.25 1344.75 1347.75 1361.00 1349.25 

[91] 1354.75 1324.00 1306.75 1320.50 1307.25 1319.00 1307.25 1285.50 1282.50 1281.25 

[101] 1272.50 1286.00 1287.25 1283.50 1275.75 1257.00 1240.00 1246.25 1243.00 1247.50 

[111] 1245.00 1245.50 1253.00 1229.50 1217.25 1227.50 1222.50 1233.00 1237.00 1266.25 

[121] 1260.75 1225.25 1232.00 1234.75 1231.75           
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ii. Out-of-sample data in Transformed scale (log price) 

 

[1]  7.153834 7.119838 7.117003 7.083388 7.125082 7.132897 7.130899 7.132298 7.100646 7.119029 

[11] 7.135289 7.135687 7.158514 7.154420 7.158319 7.163560 7.168002 7.157151 7.166845 7.190676 

[21] 7.195562 7.196687 7.189922 7.193686 7.192746 7.188526 7.181212 7.181592 7.177210 7.173767 

[31] 7.155006 7.156567 7.168772 7.177019 7.201171 7.191806 7.190299 7.192746 7.222018 7.218910 

[41] 7.224389 7.217443 7.226573 7.228026 7.257884 7.258060 7.249748 7.240470 7.238676 7.243870 

[51] 7.237059 7.233455 7.234898 7.237059 7.213952 7.217994 7.191429 7.184250 7.188413 7.179499 

[61] 7.170888 7.219276 7.207304 7.187657 7.181021 7.187468 7.195187 7.201171 7.190299 7.162979 

[71] 7.174916 7.182352 7.177592 7.188035 7.192558 7.173192 7.168965 7.143223 7.158903 7.147166 

[81] 7.149524 7.184819 7.182732 7.183491 7.195187 7.193874 7.203963 7.206192 7.215975 7.207304 

[91] 7.211372 7.188413 7.175298 7.185766 7.175681 7.184629 7.175681 7.158903 7.156567 7.155591 

[101] 7.148739 7.159292 7.160263 7.157346 7.151290 7.136483 7.122867 7.127894 7.125283 7.128897 

[111] 7.126891 7.127292 7.133296 7.114363 7.104349 7.112735 7.108653 7.117206 7.120444 7.143815 

[121] 7.139462 7.110900 7.116394 7.118624 7.116191           

 

iii. Out-of-sample data in Stationary scale (First differenced of log price) 

 

[1]  -0.0060411370 -0.0339959186 -0.0028351578 -0.0336148775 0.0416940973 0.0078148880 

[7] -0.0019980027 0.0013990209 -0.0316520641 0.0183828706 0.0162605209 0.0003981684 

[13] 0.0228266503 -0.0040939720 0.0038994005 0.0052401867 0.0044423057 -0.0108507168 

[19] 0.0096937556 0.0238310773 0.0048863093 0.0011242272 -0.0067644001 0.0037636476 

[25] -0.0009395848 -0.0042202105 -0.0073143790 0.0003803004 -0.0043822115 -0.0034430026 

[31] -0.0187608249 0.0015606714 0.0122059057 0.0082462832 0.0241521174 -0.0093651181 

[37] -0.0015065916 0.0024470600 0.0292721900 -0.0031087160 0.0054794658 -0.0069457417 

[43] 0.0091291487 0.0014529607 0.0298583010 0.0001761339 -0.0083120118 -0.0092774974 

[49] -0.0017940443 0.0051938865 -0.0068112828 -0.0036036075 0.0014430017 0.0021606058 

[55] -0.0231066407 0.0040411517 -0.0265642071 -0.0071793242 0.0041627307 -0.0089142364 

[61] -0.0086100216 0.0483874624 -0.0119717794 -0.0196469974 -0.0066357244 0.0064467421 

[67] 0.0077191384 0.0059835631 -0.0108717097 -0.0273204498 0.0119369920 0.0074363962 

[73] -0.0047605536 0.0104434634 0.0045231890 -0.0193664682 -0.0042267114 -0.0257424511 

[79] 0.0156804467 -0.0117372239 0.0023584917 0.0352943779 -0.0020866933 0.0007593015 

[85] 0.0116960398 -0.0013136907 0.0100897717 0.0022284132 0.0097831883 -0.0086708412 

[91] 0.0040680529 -0.0229594779 -0.0131143189 0.0104673141 -0.0100847587 0.0089481796 

[97] -0.0089481796 -0.0167779464 -0.0023364497 -0.0009751342 -0.0068526945 0.0105531564 

[103] 0.0009715341 -0.0029174386 -0.0060564804 -0.0148063114 -0.0136165500 0.0050276627 

[109] -0.0026112298 0.0036137361 -0.0020060187 0.0004015258 0.0060036202 -0.0189330932 

[115] -0.0100133666 0.0083853646 -0.0040816383 0.0085522818 0.0032388692 0.0233706832 

[121] -0.0043529946 -0.0285618772 0.0054939603 0.0022296553 -0.0024325980   
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B. SIMULATION DATA USING ARIMA(0,1,0)-GARCH(1,1) WITH t INNOVATIONS 
 

1. 1-STEP AHEAD OF ARIMA(0,1,0)-GARCH(1,1) 
 

a. Simulation data in original scale (price) with 95% and 80% prediction intervals  

Date 
Actual 

Price 

Forecast 

1-step 

AG 

95% PI 80% PI Date 
Actual 

Price 

Forecast 

1-step 

AG 

95% PI 80% PI 

25/6/2013 1279.00 1287.62 (1241.06, 1334.18) (1261.05, 1314.20) 10/9/2013 1358.25 1390.94 (1045.62, 1736.26) (1193.85, 1588.03) 

26/6/2013 1236.25 1279.87 (1214.02, 1345.72) (1242.28, 1317.45) 11/9/2013 1363.75 1359.17 (1010.72, 1707.61) (1160.30, 1558.04) 

27/6/2013 1232.75 1237.09 (1156.44, 1317.74) (1191.06, 1283.12) 12/9/2013 1328.00 1364.67 (1013.13, 1716.22) (1164.04, 1565.31) 

28/6/2013 1192.00 1233.58 (1140.46, 1326.71) (1180.43, 1286.73) 13/9/2013 1318.50 1328.90 (974.28, 1683.51) (1126.51, 1531.29) 

1/7/2013 1242.75 1192.81 (1088.69, 1296.92) (1133.38, 1252.23) 16/9/2013 1324.00 1319.39 (961.73, 1677.05) (1115.27, 1523.52) 

2/7/2013 1252.50 1243.59 (1129.53, 1357.65 (1178.50, 1308.69) 17/9/2013 1312.25 1324.90 (964.22, 1685.57) (1119.05, 1530.74) 

3/7/2013 1250.00 1253.35 (1130.15, 1376.54 (1183.04, 1323.66) 18/9/2013 1301.00 1313.14 (949.47, 1676.81) (1105.58, 1520.70) 

4/7/2013 1251.75 1250.85 (1119.15, 1382.55 (1175.68, 1326.01) 19/9/2013 1365.50 1301.88 (935.24, 1668.52) (1092.63, 1511.13) 

5/7/2013 1212.75 1252.60 (1112.91, 1392.29 (1172.87, 1332.32) 20/9/2013 1349.25 1366.42 (996.84, 1736.01) (1155.49, 1577.36) 

8/7/2013 1235.25 1213.57 (1066.33, 1360.82 (1129.53, 1297.61) 21/9/2013 1323.00 1350.16 (977.66, 1722.67) (1137.56, 1562.76) 

9/7/2013 1255.50 1236.09 (1081.65, 1390.52 (1147.95, 1324.23) 22/9/2013 1314.25 1323.90 (948.49, 1699.30) (1109.64, 1538.15) 

10/7/2013 1256.00 1256.35 (1095.05, 1417.65 (1164.29, 1348.41) 23/9/2013 1322.75 1315.14 (936.86, 1693.42) (1099.24, 1531.04) 

11/7/2013 1285.00 1256.85 (1088.96, 1424.74 (1161.03, 1352.67) 24/9/2013 1333.00 1323.65 (942.51, 1704.78) (1106.12, 1541.17) 

12/7/2013 1279.75 1285.87 (1111.65, 1460.09 (1186.43, 1385.30) 25/9/2013 1341.00 1333.90 (949.93, 1717.87) (1114.76, 1553.04) 

15/7/2013 1284.75 1280.62 (1100.28, 1460.95 (1177.69, 1383.54) 26/9/2013 1326.50 1341.91 (955.13, 1728.69) (1121.16, 1562.66) 

16/7/2013 1291.50 1285.62 (1099.37, 1471.87 (1179.32, 1391.92) 1/10/2013 1290.75 1327.40 (937.82, 1716.97) (1105.06, 1549.74) 

17/7/2013 1297.25 1292.37 (1100.39, 1484.36 (1182.80, 1401.95) 2/10/2013 1306.25 1291.62 (899.28, 1683.97) (1067.70, 1515.55) 

18/7/2013 1283.25 1298.13 (1100.58, 1495.68 (1185.38, 1410.88) 3/10/2013 1316.00 1307.13 (912.03, 1702.23) (1081.64, 1532.63) 

19/7/2013 1295.75 1284.12 (1081.15, 1487.08 (1168.28, 1399.96) 4/10/2013 1309.75 1316.89 (919.06, 1714.73) (1089.83, 1543.95) 

22/7/2013 1327.00 1296.63 (1088.39, 1504.86 (1177.78, 1415.47) 7/10/2013 1323.50 1310.64 (910.09, 1711.19) (1082.03, 1539.24) 

23/7/2013 1333.50 1327.90 (1114.52, 1541.28 (1206.12, 1449.68) 8/10/2013 1329.50 1324.40 (921.15, 1727.64) (1094.25, 1554.54) 

24/7/2013 1335.00 1334.40 (1116.00, 1552.80 (1209.75, 1459.05) 9/10/2013 1304.00 1330.40 (924.47, 1736.33) (1098.72, 1562.07) 

25/7/2013 1326.00 1335.90 (1112.59, 1559.21 (1208.45, 1463.35) 10/10/2013 1298.50 1304.88 (896.29, 1713.47) (1071.69, 1538.08) 

26/7/2013 1331.00 1326.90 (1098.79, 1555.01 (1196.71, 1457.09) 11/10/2013 1265.50 1299.38 (888.14, 1710.61) (1064.67, 1534.08) 

29/7/2013 1329.75 1331.90 (1099.09, 1564.72 (1199.03, 1464.78) 14/10/2013 1285.50 1266.36 (852.49, 1680.22) (1030.15, 1502.56) 

30/7/2013 1324.15 1330.65 (1093.22, 1568.08 (1195.14, 1466.16) 15/10/2013 1270.50 1286.37 (869.90, 1702.84) (1048.68, 1524.06) 

31/7/2013 1314.50 1325.05 (1083.10, 1566.99 (1186.96, 1463.13) 16/10/2013 1273.50 1271.36 (852.29, 1690.43) (1032.18, 1510.53) 

1/8/2013 1315.00 1315.39 (1069.00, 1561.78 (1174.77, 1456.01) 17/10/2013 1319.25 1274.36 (852.72, 1696.01) (1033.71, 1515.01) 

2/8/2013 1309.25 1315.89 (1065.14, 1566.64 (1172.78, 1459.00) 18/10/2013 1316.50 1320.14 (895.93, 1744.35) (1078.03, 1562.25) 

5/8/2013 1304.75 1310.14 (1055.10, 1565.17 (1164.58, 1455.69) 19/10/2013 1317.50 1317.39 (890.63, 1744.15) (1073.83, 1560.95) 

6/8/2013 1280.50 1305.63 (1046.38, 1564.88 (1157.67, 1453.60) 20/10/2013 1333.00 1318.39 (889.10, 1747.68) (1073.38, 1563.40) 

7/8/2013 1282.50 1281.37 (1017.97, 1544.77 (1131.04, 1431.70) 21/10/2013 1331.25 1333.90 (902.09, 1765.71) (1087.46, 1580.35) 

8/8/2013 1298.25 1283.37 (1015.88, 1550.85 (1130.71, 1436.03) 22/10/2013 1344.75 1332.15 (897.84, 1766.46) (1084.28, 1580.03) 

9/8/2013 1309.00 1299.13 (1027.62, 1570.64) (1144.17, 1454.09) 23/10/2013 1347.75 1345.66 (908.86, 1782.46) (1096.36, 1594.96) 

12/8/2013 1341.00 1309.89 (1034.41, 1585.36) (1152.67, 1467.11) 24/10/2013 1361.00 1348.66 (909.39, 1787.94) (1097.95, 1599.37) 

13/8/2013 1328.50 1341.91 (1062.53, 1621.29) (1182.46, 1501.36) 25/10/2013 1349.25 1361.92 (920.18, 1803.66) (1109.81, 1614.03) 

14/8/2013 1326.50 1329.40 (1046.17, 1612.63) (1167.75, 1491.05) 26/10/2013 1354.75 1350.16 (905.98, 1794.35) (1096.65, 1603.67) 

15/8/2013 1329.75 1327.40 (1040.36, 1614.43) (1163.58, 1491.22) 27/10/2013 1324.00 1355.67 (909.05, 1802.28) (1100.77, 1610.56) 

16/8/2013 1369.25 1330.65 (1039.86, 1621.44) (1164.69, 1496.61) 1/11/2013 1306.75 1324.90 (875.86, 1773.93) (1068.62, 1581.18) 

19/8/2013 1365.00 1370.18 (1075.69, 1664.67) (1202.10, 1538.25) 4/11/2013 1320.50 1307.63 (856.19, 1759.08) (1049.98, 1565.29) 

20/8/2013 1372.50 1365.92 (1067.77, 1664.07) (1195.76, 1536.09) 5/11/2013 1307.25 1321.39 (867.55, 1775.23) (1062.37, 1580.41) 

21/8/2013 1363.00 1373.43 (1071.67, 1675.19) (1201.20, 1545.65) 6/11/2013 1319.00 1308.13 (851.91, 1764.36) (1047.75, 1568.51) 

22/8/2013 1375.50 1363.92 (1058.59, 1669.26) (1189.66, 1538.19) 7/11/2013 1307.25 1319.89 (861.30, 1778.49) (1058.16, 1581.63) 

23/8/2013 1377.50 1376.43 (1067.57, 1685.29) (1200.15, 1552.71) 8/11/2013 1285.50 1308.13 (847.18, 1769.08) (1045.06, 1571.21) 

27/8/2013 1419.25 1378.43 (1066.08, 1690.79) (1200.16, 1556.70) 11/11/2013 1282.50 1286.37 (823.07, 1749.67) (1021.95, 1550.79) 

28/8/2013 1419.50 1420.21 (1104.40, 1736.02) (1239.97, 1600.45) 12/11/2013 1281.25 1283.37 (817.74, 1749.00) (1017.62, 1549.12) 

29/8/2013 1407.75 1420.46 (1101.24, 1739.68) (1238.27, 1602.65) 13/11/2013 1272.50 1282.12 (814.16, 1750.07) (1015.04, 1549.19) 

30/8/2013 1394.75 1408.70 (1086.10, 1731.30) (1224.59, 1592.82) 14/11/2013 1286.00 1273.36 (803.10, 1743.62) (1004.97, 1541.76) 

2/9/2013 1392.25 1395.69 (1069.75, 1721.63) (1209.67, 1581.72) 15/11/2013 1287.25 1286.87 (814.31, 1759.43) (1017.16, 1556.58) 

3/9/2013 1399.50 1393.19 (1063.94, 1722.44) (1205.28, 1581.11) 16/11/2013 1283.50 1288.12 (813.27, 1762.97) (1017.11, 1559.13) 

4/9/2013 1390.00 1400.45 (1067.92, 1732.97) (1210.66, 1590.23) 17/11/2013 1275.75 1284.37 (807.24, 1761.50) (1012.06, 1556.68) 

5/9/2013 1385.00 1390.94 (1055.17, 1726.71) (1199.31, 1582.58) 18/11/2013 1257.00 1276.61 (797.22, 1756.01) (1003.01, 1550.22) 

6/9/2013 1387.00 1385.94 (1046.95, 1724.92) (1192.47, 1579.41) 19/11/2013 1240.00 1257.85 (776.20, 1739.50) (982.96, 1532.74) 

9/9/2013 1390.00 1387.94 (1045.77, 1730.11) (1192.65, 1583.22) 20/11/2013 1246.25 1240.84 (756.94, 1724.74) (964.66, 1517.01) 
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Date 
Actual 

Price 

Forecast 

1-step 

AG 

95% PI 80% PI Date 
Actual 

Price 

Forecast 

1-step 

AG 

95% PI 80% PI 

21/11/2013 1243.00 1247.09 (760.96, 1733.23) (969.64, 1524.54) 6/12/2013 1233.00 1223.33 (717.52, 1729.13) (934.65, 1512.01) 

22/11/2013 1247.50 1243.84 (755.48, 1732.20) (965.12, 1522.56) 9/12/2013 1237.00 1233.83 (725.89, 1741.78) (943.94, 1523.73) 

23/11/2013 1245.00 1248.34 (757.77, 1738.92) (968.36, 1528.33) 10/12/2013 1266.25 1237.84 (727.76, 1747.91) (946.72, 1528.95) 

24/11/2013 1245.50 1245.84 (753.07, 1738.62) (964.60, 1527.09) 11/12/2013 1260.75 1267.11 (754.91, 1779.30) (974.78, 1559.43) 

25/11/2013 1253.00 1246.34 (751.37, 1741.31) (963.85, 1528.84) 12/12/2013 1225.25 1261.60 (747.30, 1775.91) (968.07, 1555.13) 

2/12/2013 1229.50 1253.85 (756.69, 1751.00) (970.10, 1537.59) 13/12/2013 1232.00 1226.08 (709.67, 1742.49) (931.35, 1520.81) 

3/12/2013 1217.25 1230.33 (731.00, 1729.66) (945.35, 1515.32) 16/12/2013 1234.75 1232.83 (714.33, 1751.34) (936.91, 1528.76) 

4/12/2013 1227.50 1218.07 (716.57, 1719.57) (931.85, 1504.29) 17/12/2013 1231.75 1235.59 (714.99, 1756.18) (938.47, 1532.70) 

5/12/2013 1222.50 1228.33 (724.67, 1731.99) (940.88, 1515.78)        

 

To find Prediction Interval for 1-step ahead ARIMA-GARCH: 

Residual data for 1-step AG 

for(i in 1:125){ 

  resiAG4[i]<- dt4_o[i]-f_AG4[i];resiAG4[125]  

} 

resiAG4 

 

Data Residual Data Residual Data Residual Data Residual Data Residual 

[1,] -8.620238 [26,] -6.499319 [51,] -10.446491 [76,] -26.399150 [101,] -9.616518 

[2,] -43.614997 [27,] -10.545531 [52,] -5.940066 [77,] -6.381903 [102,] 12.639400 

[3,] -4.336084 [28,] -0.389005 [53,] 1.063315 [78,] -33.878184 [103,] 0.380270 

[4,] -41.583717 [29,] -6.639344 [54,] 2.061963 [79,] 19.144134 [104,] -4.620576 

[5,] 49.943842 [30,] -5.385454 [55,] -32.690066 [80,] -15.869393 [105,] -8.618039 

[6,] 8.909520 [31,] -25.132412 [56,] 4.581407 [81,] 2.140752 [106,] -19.612798 

[7,] -3.347074 [32,] 1.133989 [57,] -36.672313 [82,] 44.888724 [107,] -17.850118 

[8,] 0.904617 [33,] 14.882637 [58,] -10.398135 [83,] -3.642217 [108,] 5.411379 

[9,] -39.846567 [34,] 9.871985 [59,] 4.608290 [84,] 0.109642 [109,] -4.092847 

[10,] 21.679809 [35,] 31.114715 [60,] -12.645429 [85,] 14.608967 [110,] 3.659350 

[11,] 19.414592 [36,] -13.406927 [61,] -12.137483 [86,] -2.651516 [111,] -3.343693 

[12,] -0.349103 [37,] -2.898473 [62,] 63.620125 [87,] 12.599668 [112,] -0.342002 

[13,] 28.150559 [38,] 2.352879 [63,] -17.173497 [88,] 2.090537 [113,] 6.657660 

[14,] -6.119054 [39,] 38.600681 [64,] -27.162506 [89,] 12.338508 [114,] -24.347412 

[15,] 4.134497 [40,] -5.176033 [65,] -9.644754 [90,] -12.670454 [115,] -13.081519 

[16,] 5.881115 [41,] 6.576841 [66,] 7.611164 [91,] 4.587494 [116,] 9.426766 

[17,] 4.876549 [42,] -10.428230 [67,] 9.355415 [92,] -31.666226 [117,] -5.830167 

[18,] -14.877338 [43,] 11.578194 [68,] 7.098484 [93,] -18.145429 [118,] 9.673216 

[19,] 11.632130 [44,] 1.069741 [69,] -15.406927 [94,] 12.866236 [119,] 3.166114 

[20,] 30.373676 [45,] 40.818388 [70,] -36.647121 [95,] -14.143063 [120,] 28.413409 

[21,] 5.602542 [46,] -0.709848 [71,] 14.627057 [96,] 10.865898 [121,] -6.356374 

[22,] 0.598145 [47,] -12.710017 [72,] 8.866574 [97,] -12.642049 [122,] -36.352654 

[23,] -9.902870 [48,] -13.952070 [73,] -7.140020 [98,] -22.634102 [123,] 5.921355 

[24,] 4.103217 [49,] -3.443279 [74,] 12.864208 [99,] -3.869393 [124,] 1.916790 

[25,] -2.150164 [50,] 6.308413 [75,] 5.104908 [100,] -2.117363 [125,] -3.835069 
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> v1<-qt(c(.025, .975), df=4.81);v1 #t dist with alpha 0.025 and v=4.8

1, for PI 95% 

[1] -2.601425  2.601425 

> v2<-qt(c(.1, .9), df=4.81); v2#t dist with alpha 0.1 and v=4.81, for

 PI 80% 

[1] -1.484687  1.484687 

for(i in 1:125){ 

  h[i]=i;h[1] 

  lo95_AG4[i]<-f_AG4[i]-(2.6014*(sqrt(h[i]*320.3818)))#lower limit 95% 

  hi95_AG4[i]<-f_AG4[i]+(2.6014*(sqrt(h[i]*320.3818)))#upper limit 95% 

  lo80_AG4[i]<-f_AG4[i]-(1.4847*(sqrt(h[i]*320.3818)))#lower limit 80% 

  hi80_AG4[i]<-f_AG4[i]+(1.4847*(sqrt(h[i]*320.3818)))#upper limit 80% 

} 

cbind(dt4_o,f_AG4,lo95_AG4,hi95_AG4,lo80_AG4,hi80_AG4) 

 

b. Simulation data in transformation scale (log) - based on EViews results 
 

[1]  7.160551 7.154510 7.120514 7.117679 7.084064 7.125758 7.133573 7.131575 7.132974 7.101322 

[11] 7.119705 7.135965 7.136363 7.159190 7.155096 7.158996 7.164236 7.168678 7.157827 7.167521 

[21] 7.191352 7.196238 7.197363 7.190598 7.194362 7.193422 7.189202 7.181888 7.182268 7.177886 

[31] 7.174443 7.155682 7.157243 7.169449 7.177695 7.201847 7.192482 7.190975 7.193422 7.222695 

[41] 7.219586 7.225065 7.218120 7.227249 7.228702 7.258560 7.258736 7.250424 7.241147 7.239352 

[51] 7.244546 7.237735 7.234131 7.235574 7.237735 7.214628 7.218670 7.192105 7.184926 7.189089 

[61] 7.180175 7.171565 7.219952 7.207980 7.188333 7.181698 7.188144 7.195863 7.201847 7.190975 

[71] 7.163655 7.175592 7.183028 7.178268 7.188711 7.193234 7.173868 7.169641 7.143899 7.159579 

[81] 7.147842 7.150200 7.185495 7.183408 7.184167 7.195863 7.194550 7.204639 7.206868 7.216651 

[91] 7.207980 7.212048 7.189089 7.175974 7.186442 7.176357 7.185305 7.176357 7.159579 7.157243 

[101] 7.156268 7.149415 7.159968 7.160940 7.158022 7.151966 7.137159 7.123543 7.128570 7.125959 

[111] 7.129573 7.127567 7.127968 7.133972 7.115039 7.105026 7.113411 7.109329 7.117882 7.121120 

[121] 7.144491 7.140138 7.111576 7.117070 7.119300           

 

Simulation data in stationary scale (First differenced of log data) - based on R  

(simulation for 1 series only) 

library("fGarch", lib.loc="~/R/win-library/3.4") 

set.seed(1234) 

spec = garchSpec(model = list(mu=0.0007,omega = 2.5e-6, alpha = 3.45e-

2, 

                              beta = 9.474e-1, shape=4.81), 

cond.dist="std") #simulation for ARIMA(0,1,0)-GARCH(1,1)-t dist 

f1=garchSim(spec, n = 125);f1 #results of the 125 simulation data 

 

[1]  0.0032336690 0.0035946250 -0.0096160530 0.0021458690 -0.0118923500 -0.0019453350 

[7] -0.0117594500 -0.0052013150 0.0185603600 0.0009740198 -0.0062786830 0.0229451100 

[13] -0.0044352470 -0.0107953100 0.0155319800 0.0096796750 -0.0100745300 0.0050352500 

[19] 0.0015485060 0.0017492980 0.0117372000 -0.0030484830 0.0026762660 0.0016542430 

[25] 0.0107005100 0.0009504282 0.0083335200 0.0049469740 0.0128437100 0.0348630800 

[31] 0.0063654970 0.0202228200 -0.0023715650 -0.0144468700 0.0117994200 0.0087944170 

[37] 0.0040368000 0.0346885400 -0.0000290915 0.0066798420 0.0006408244 0.0154800400 

[43] 0.0078802900 0.0137405700 0.0044007740 0.0034056120 -0.0031219260 -0.0136936100 

[49] -0.0080342930 -0.0465339800 -0.0351341300 0.0058209920 0.0009878060 0.0190192600 

[55] -0.0093911090 0.0019784160 -0.0165331400 -0.0013902020 -0.0085223650 0.0114143700 

[61] 0.0046950500 -0.0089345740 -0.0120049900 -0.0024123590 -0.0101578500 0.0189279500 

[67] -0.0137561300 0.0065717330 0.0111003600 -0.0033840930 0.0207243500 0.0113094300 

[73] -0.0028587170 -0.0036971970 -0.0072829290 0.0048327740 -0.0096956680 0.0024382980 

[79] 0.0021914480 0.0074380220 -0.0164284900 -0.0045731370 -0.0139514400 0.0017935680 

[85] -0.0382821500 -0.0069438830 0.0156552400 -0.0035594270 -0.0085826680 -0.0075571530 

[91] -0.0100078500 -0.0000245724 -0.0051379020 -0.0038235180 0.0125958500 0.0006047664 

[97] -0.0018435180 0.0061130170 -0.0119203300 0.0157608900 0.0004433674 0.0022603040 

[103] -0.0009655506 0.0080645190 -0.0110209400 0.0035320880 0.0166671700 -0.0165803400 

[109] -0.0139785000 0.0055407800 -0.0222916800 -0.0030069800 -0.0009050866 -0.0204717200 

[115] 0.0092287740 0.0107621900 0.0056033040 -0.0070149470 0.0204072100 0.0028432990 

[121] -0.0007357040 -0.0059651230 -0.0243788200 -0.0071469930 -0.0165564800   
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2. n-step ahead of ARIMA(0,1,0)-GARCH(1,1) – in original scale (price) 

Date 
Actual 

Price 

Forecast n-

step AG 
95% PI 80% PI Date 

Actual 

Price 

Forecast n-

step AG 
95% PI 80% PI 

25/6/2013 1279.00 1287.62 (1116.44, 1458.80) (1189.92, 1385.32) 6/9/2013 1387.00 1333.69 (1162.52, 1504.87) (1236.00, 1431.39) 

26/6/2013 1236.25 1288.49 (1117.31, 1459.67) (1190.80, 1386.19) 9/9/2013 1390.00 1334.60 (1163.42, 1505.77) (1236.90, 1432.29) 

27/6/2013 1232.75 1289.36 (1118.19, 1460.54) (1191.67, 1387.06) 10/9/2013 1358.25 1335.50 (1164.32, 1506.68) (1237.80, 1433.19) 

28/6/2013 1192.00 1290.23 (1119.06, 1461.41) (1192.54, 1387.93) 11/9/2013 1363.75 1336.40 (1165.22, 1507.58) (1238.71, 1434.10) 

1/7/2013 1242.75 1291.11 (1119.93, 1462.28) (1193.41, 1388.80) 12/9/2013 1328.00 1337.31 (1166.13, 1508.48) (1239.61, 1435.00) 

2/7/2013 1252.50 1291.98 (1120.80, 1463.16) (1194.28, 1389.68) 13/9/2013 1318.50 1338.21 (1167.03, 1509.39) (1240.51, 1435.91) 

3/7/2013 1250.00 1292.85 (1121.68, 1464.03) (1195.16, 1390.55) 16/9/2013 1324.00 1339.11 (1167.94, 1510.29) (1241.42, 1436.81) 

4/7/2013 1251.75 1293.73 (1122.55, 1464.91) (1196.03, 1391.42) 17/9/2013 1312.25 1340.02 (1168.84, 1511.20) (1242.32, 1437.72) 

5/7/2013 1212.75 1294.60 (1123.43, 1465.78) (1196.91, 1392.30) 18/9/2013 1301.00 1340.93 (1169.75, 1512.10) (1243.23, 1438.62) 

8/7/2013 1235.25 1295.48 (1124.30, 1466.66) (1197.78, 1393.18) 19/9/2013 1365.50 1341.83 (1170.66, 1513.01) (1244.14, 1439.53) 

9/7/2013 1255.50 1296.36 (1125.18, 1467.53) (1198.66, 1394.05) 20/9/2013 1349.25 1342.74 (1171.56, 1513.92) (1245.04, 1440.44) 

10/7/2013 1256.00 1297.23 (1126.06, 1468.41) (1199.54, 1394.93) 21/9/2013 1323.00 1343.65 (1172.47, 1514.83) (1245.95, 1441.35) 

11/7/2013 1285.00 1298.11 (1126.93, 1469.29) (1200.41, 1395.81) 22/9/2013 1314.25 1344.56 (1173.38, 1515.73) (1246.86, 1442.25) 

12/7/2013 1279.75 1298.99 (1127.81, 1470.16) (1201.29, 1396.68) 23/9/2013 1322.75 1345.47 (1174.29, 1516.64) (1247.77, 1443.16) 

15/7/2013 1284.75 1299.87 (1128.69, 1471.04) (1202.17, 1397.56) 24/9/2013 1333.00 1346.38 (1175.20, 1517.55) (1248.68, 1444.07) 

16/7/2013 1291.50 1300.75 (1129.57, 1471.92) (1203.05, 1398.44) 25/9/2013 1341.00 1347.29 (1176.11, 1518.46) (1249.59, 1444.98) 

17/7/2013 1297.25 1301.62 (1130.45, 1472.80) (1203.93, 1399.32) 26/9/2013 1326.50 1348.20 (1177.02, 1519.38) (1250.50, 1445.89) 

18/7/2013 1283.25 1302.51 (1131.33, 1473.68) (1204.81, 1400.20) 1/10/2013 1290.75 1349.11 (1177.93, 1520.29) (1251.41, 1446.81) 

19/7/2013 1295.75 1303.39 (1132.21, 1474.56) (1205.69, 1401.08) 2/10/2013 1306.25 1350.02 (1178.85, 1521.20) (1252.33, 1447.72) 

22/7/2013 1327.00 1304.27 (1133.09, 1475.44) (1206.57, 1401.96) 3/10/2013 1316.00 1350.94 (1179.76, 1522.11) (1253.24, 1448.63) 

23/7/2013 1333.50 1305.15 (1133.97, 1476.33) (1207.45, 1402.85) 4/10/2013 1309.75 1351.85 (1180.67, 1523.03) (1254.15, 1449.55) 

24/7/2013 1335.00 1306.03 (1134.86, 1477.21) (1208.34, 1403.73) 7/10/2013 1323.50 1352.76 (1181.59, 1523.94) (1255.07, 1450.46) 

25/7/2013 1326.00 1306.92 (1135.74, 1478.09) (1209.22, 1404.61) 8/10/2013 1329.50 1353.68 (1182.50, 1524.86) (1255.98, 1451.37) 

26/7/2013 1331.00 1307.80 (1136.62, 1478.98) (1210.10, 1405.50) 9/10/2013 1304.00 1354.59 (1183.42, 1525.77) (1256.90, 1452.29) 

29/7/2013 1329.75 1308.68 (1137.51, 1479.86) (1210.99, 1406.38) 10/10/2013 1298.50 1355.51 (1184.33, 1526.69) (1257.81, 1453.21) 

30/7/2013 1324.15 1309.57 (1138.39, 1480.75) (1211.87, 1407.27) 11/10/2013 1265.50 1356.43 (1185.25, 1527.60) (1258.73, 1454.12) 

31/7/2013 1314.50 1310.45 (1139.28, 1481.63) (1212.76, 1408.15) 14/10/2013 1285.50 1357.34 (1186.17, 1528.52) (1259.65, 1455.04) 

1/8/2013 1315.00 1311.34 (1140.16, 1482.52) (1213.64, 1409.04) 15/10/2013 1270.50 1358.26 (1187.09, 1529.44) (1260.57, 1455.96) 

2/8/2013 1309.25 1312.23 (1141.05, 1483.40) (1214.53, 1409.92) 16/10/2013 1273.50 1359.18 (1188.00, 1530.36) (1261.48, 1456.88) 

5/8/2013 1304.75 1313.12 (1141.94, 1484.29) (1215.42, 1410.81) 17/10/2013 1319.25 1360.10 (1188.92, 1531.28) (1262.40, 1457.80) 

6/8/2013 1280.50 1314.00 (1142.83, 1485.18) (1216.31, 1411.70) 18/10/2013 1316.50 1361.02 (1189.84, 1532.20) (1263.32, 1458.72) 

7/8/2013 1282.50 1314.89 (1143.71, 1486.07) (1217.20, 1412.59) 19/10/2013 1317.50 1361.94 (1190.76, 1533.12) (1264.24, 1459.64) 

8/8/2013 1298.25 1315.78 (1144.60, 1486.96) (1218.09, 1413.48) 20/10/2013 1333.00 1362.86 (1191.68, 1534.04) (1265.17, 1460.56) 

9/8/2013 1309.00 1316.67 (1145.49, 1487.85) (1218.98, 1414.37) 21/10/2013 1331.25 1363.78 (1192.61, 1534.96) (1266.09, 1461.48) 

12/8/2013 1341.00 1317.56 (1146.38, 1488.74) (1219.87, 1415.26) 22/10/2013 1344.75 1364.71 (1193.53, 1535.88) (1267.01, 1462.40) 

13/8/2013 1328.50 1318.45 (1147.28, 1489.63) (1220.76, 1416.15) 23/10/2013 1347.75 1365.63 (1194.45, 1536.81) (1267.93, 1463.32) 

14/8/2013 1326.50 1319.34 (1148.17, 1490.52) (1221.65, 1417.04) 24/10/2013 1361.00 1366.55 (1195.38, 1537.73) (1268.86, 1464.25) 

15/8/2013 1329.75 1320.24 (1149.06, 1491.41) (1222.54, 1417.93) 25/10/2013 1349.25 1367.48 (1196.30, 1538.65) (1269.78, 1465.17) 

16/8/2013 1369.25 1321.13 (1149.95, 1492.31) (1223.43, 1418.83) 26/10/2013 1354.75 1368.40 (1197.22, 1539.58) (1270.71, 1466.10) 

19/8/2013 1365.00 1322.02 (1150.85, 1493.20) (1224.33, 1419.72) 27/10/2013 1324.00 1369.33 (1198.15, 1540.50) (1271.63, 1467.02) 

20/8/2013 1372.50 1322.92 (1151.74, 1494.09) (1225.22, 1420.61) 1/11/2013 1306.75 1370.25 (1199.08, 1541.43) (1272.56, 1467.95) 

21/8/2013 1363.00 1323.81 (1152.63, 1494.99) (1226.12, 1421.51) 4/11/2013 1320.50 1371.18 (1200.00, 1542.36) (1273.48, 1468.88) 

22/8/2013 1375.50 1324.71 (1153.53, 1495.88) (1227.01, 1422.40) 5/11/2013 1307.25 1372.11 (1200.93, 1543.28) (1274.41, 1469.80) 

23/8/2013 1377.50 1325.60 (1154.43, 1496.78)) (1227.91, 1423.30) 6/11/2013 1319.00 1373.03 (1201.86, 1544.21) (1275.34, 1470.73) 

27/8/2013 1419.25 1326.50 (1155.32, 1497.68) (1228.80, 1424.20) 7/11/2013 1307.25 1373.96 (1202.79, 1545.14) (1276.27, 1471.66) 

28/8/2013 1419.50 1327.40 (1156.22, 1498.57) (1229.70, 1425.09) 8/11/2013 1285.50 1374.89 (1203.72, 1546.07) (1277.20, 1472.59) 

29/8/2013 1407.75 1328.29 (1157.12, 1499.47) (1230.60, 1425.99) 11/11/2013 1282.50 1375.82 (1204.65, 1547.00) (1278.13, 1473.52) 

30/8/2013 1394.75 1329.19 (1158.02, 1500.37) (1231.50, 1426.89) 12/11/2013 1281.25 1376.75 (1205.58, 1547.93) (1279.06, 1474.45) 

2/9/2013 1392.25 1330.09 (1158.91, 1501.27) (1232.40, 1427.79) 13/11/2013 1272.50 1377.68 (1206.51, 1548.86) (1279.99, 1475.38) 

3/9/2013 1399.50 1330.99 (1159.81, 1502.17) (1233.30, 1428.69) 14/11/2013 1286.00 1378.62 (1207.44, 1549.79) (1280.92, 1476.31) 

4/9/2013 1390.00 1331.89 (1160.71, 1503.07) (1234.20, 1429.59) 15/11/2013 1287.25 1379.55 (1208.37, 1550.73) (1281.85, 1477.24) 

5/9/2013 1385.00 1332.79 (1161.62, 1503.97) (1235.10, 1430.49) 16/11/2013 1283.50 1380.48 (1209.30, 1551.66) (1282.79, 1478.18) 
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Date 
Actual 

Price 

Forecast n-

step AG 
95% PI 80% PI Date 

Actual 

Price 

Forecast n-

step AG 
95% PI 80% PI 

17/11/2013 1275.75 1381.41 (1210.24, 1552.59) (1283.72, 1479.11) 4/12/2013 1227.50 1391.73 (1220.55, 1562.90) (1294.03, 1489.42) 

18/11/2013 1257.00 1382.35 (1211.17, 1553.53) (1284.65, 1480.05) 5/12/2013 1222.50 1392.67 (1221.49, 1563.84) (1294.97, 1490.36) 

19/11/2013 1240.00 1383.28 (1212.11, 1554.46) (1285.59, 1480.98) 6/12/2013 1233.00 1393.61 (1222.43, 1564.79) (1295.91, 1491.31) 

20/11/2013 1246.25 1384.22 (1213.04, 1555.40) (1286.52, 1481.92) 9/12/2013 1237.00 1394.55 (1223.38, 1565.73) (1296.86, 1492.25) 

21/11/2013 1243.00 1385.16 (1213.98, 1556.33) (1287.46, 1482.85) 10/12/2013 1266.25 1395.50 (1224.32, 1566.67) (1297.80, 1493.19) 

22/11/2013 1247.50 1386.09 (1214.92, 1557.27) (1288.40, 1483.79) 11/12/2013 1260.75 1396.44 (1225.26, 1567.62) (1298.74, 1494.14) 

23/11/2013 1245.00 1387.03 (1215.85, 1558.21) (1289.33, 1484.73) 12/12/2013 1225.25 1397.38 (1226.21, 1568.56) (1299.69, 1495.08) 

24/11/2013 1245.50 1387.97 (1216.79, 1559.14) (1290.27, 1485.66) 13/12/2013 1232.00 1398.33 (1227.15, 1569.51) (1300.63, 1496.02) 

25/11/2013 1253.00 1388.91 (1217.73, 1560.08) (1291.21, 1486.60) 16/12/2013 1234.75 1399.27 (1228.10, 1570.45) (1301.58, 1496.97) 

2/12/2013 1229.50 1389.85 (1218.67, 1561.02) (1292.15, 1487.54) 17/12/2013 1231.75 1400.22 (1229.04, 1571.40) (1302.52, 1497.92) 

3/12/2013 1217.25 1390.79 (1219.61, 1561.96) (1293.09, 1488.48)        

 

Note: 

1. Actual data outside 80% prediction interval: 23/125 (18.4%), specifically starting at 104th data 

2. Actual data outside 95% prediction interval: 2/125 (1.6%) 

To find Prediction Interval for n-step ahead ARIMA-GARCH: 

Residual data for 125-step AG 

for(i in 1:125){ 

  resiAG4_n[i]<- dt4_o[i]-f_AG4_n[i];resiAG4_n[125]  

} 

resiAG4_n 
 

Data Residual Data Residual Data Residual Data Residual Data Residual 

[1,] -8.620238 [26,] 14.581507 [51,] 58.109129 [76,] -50.593745 [101,] -105.183600 

[2,] -52.241065 [27,] 4.045837 [52,] 52.208363 [77,] -57.009865 [102,] -92.615336 

[3,] -56.612480 [28,] 3.659569 [53,] 53.306987 [78,] -90.926605 [103,] -92.297703 

[4,] -98.234484 [29,] -2.977300 [54,] 55.405002 [79,] -71.843965 [104,] -96.980700 

[5,] -48.357079 [30,] -8.364768 [55,] 22.752406 [80,] -87.761946 [105,] -105.664328 

[6,] -39.480263 [31,] -33.502837 [56,] 27.349201 [81,] -85.680548 [106,] -125.348587 

[7,] -42.854038 [32,] -32.391506 [57,] -9.304615 [82,] -40.849770 [107,] -143.283479 

[8,] -41.978403 [33,] -17.530776 [58,] -19.709043 [83,] -44.519614 [108,] -137.969004 

[9,] -81.853360 [34,] -7.670647 [59,] -15.114083 [84,] -44.440081 [109,] -142.155160 

[10,] -60.228908 [35,] 23.438880 [60,] -27.769734 [85,] -29.861170 [110,] -138.591950 

[11,] -40.855050 [36,] 10.047805 [61,] -39.925998 [86,] -32.532881 [111,] -142.029374 

[12,] -41.231784 [37,] 7.156127 [62,] 23.667124 [87,] -19.955216 [112,] -142.467431 

[13,] -13.109110 [38,] 9.513846 [63,] 6.509634 [88,] -17.878175 [113,] -135.906123 

[14,] -19.237029 [39,] 48.120961 [64,] -20.648470 [89,] -5.551758 [114,] -160.345449 

[15,] -15.115542 [40,] 42.977472 [65,] -30.307188 [90,] -18.225966 [115,] -173.535411 

[16,] -9.244650 [41,] 49.583379 [66,] -22.716521 [91,] -13.650799 [116,] -164.226009 

[17,] -4.374353 [42,] 39.188682 [67,] -13.376469 [92,] -45.326256 [117,] -170.167243 

[18,] -19.254650 [43,] 50.793379 [68,] -6.287033 [93,] -63.502340 [118,] -160.609112 

[19,] -7.635542 [44,] 51.897472 [69,] -21.698211 [94,] -50.679051 [119,] -157.551619 

[20,] 22.732970 [45,] 92.750958 [70,] -58.360007 [95,] -64.856389 [120,] -129.244763 

[21,] 28.350886 [46,] 92.103838 [71,] -43.772419 [96,] -54.034354 [121,] -135.688546 

[22,] 28.968205 [47,] 79.456111 [72,] -34.935449 [97,] -66.712946 [122,] -172.132966 

[23,] 19.084927 [48,] 65.557778 [73,] -42.099096 [98,] -89.392166 [123,] -166.328026 

[24,] 23.201051 [49,] 62.158836 [74,] -29.263360 [99,] -93.322015 [124,] -164.523724 

[25,] 21.066578 [50,] 68.509287 [75,] -24.178243 [100,] -95.502493 [125,] -168.470062 
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> basicStats(f_AG4_n) 
                  f_AG4_n 
nobs           125.000000 
NAs              0.000000 
Minimum       1287.620238 
Maximum       1400.220062 
1. Quartile   1314.891506 
3. Quartile   1371.179051 
Mean          1343.139947 
Median        1342.740366 
Sum         167892.493435 
SE Mean          2.942299 
LCL Mean      1337.316313 
UCL Mean      1348.963582 
Variance      1082.140728 
Stdev           32.895907 
Skewness         0.028917 
Kurtosis        -1.227913 

> basicStats(resiAG4_n)                 
  

              resiAG4_n 
nobs          125.000000 
NAs             0.000000 
Minimum      -173.535411 
Maximum        92.750958 
1. Quartile   -85.680548 
3. Quartile     4.045837 
Mean          -38.896747 
Median        -30.307188 
Sum         -4862.093435 
SE Mean         5.885497 
LCL Mean      -50.545795 
UCL Mean      -27.247700 
Variance     4329.884925 
Stdev          65.801861 
Skewness       -0.337425 
Kurtosis       -0.568069 

 

> v1<-qt(c(.025, .975), df=4.81);v1 #t dist with alpha 0.025 and v=4.8

1, for PI 95% 

[1] -2.601425  2.601425 

> v2<-qt(c(.1, .9), df=4.81); v2#t dist with alpha 0.1 and v=4.81, for

 PI 80% 

[1] -1.484687  1.484687 

for(i in 1:125){ 

  h[i]=i;h[1] 

  lo95_AG4_n[i]<-f_AG4_n[i]-(2.6014*65.8019)#lower limit 95% 

  hi95_AG4_n[i]<-f_AG4_n[i]+(2.6014*65.8019)#upper limit 95% 

  lo80_AG4_n[i]<-f_AG4_n[i]-(1.4847*65.8019)#lower limit 80% 

  hi80_AG4_n[i]<-f_AG4_n[i]+(1.4847*65.8019)#upper limit 80% 

} 

cbind(dt4_o,f_AG4_n,lo95_AG4_n,hi95_AG4_n,lo80_AG4_n,hi80_AG4_n) 
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C. ERRORS CALCULATION 

1(a) 1-step ahead error of ARIMA(0,1,0)-GARCH(1,1) in original scale 

Data Error Abs. error error ^2 
Abs 

(error/y) 
Data Error Abs. error error ^2 

Abs 

(error/y) 

[1,] -8.620238 8.620238 74.308510 0.006740 [64,] -27.162506 27.162506 737.801700 0.020531 

[2,] -43.614997 43.614997 1902.268000 0.035280 [65,] -9.644754 9.644754 93.021270 0.007339 

[3,] -4.336084 4.336084 18.801630 0.003517 [66,] 7.611164 7.611164 57.929810 0.005754 

[4,] -41.583717 41.583717 1729.206000 0.034886 [67,] 9.355415 9.355415 87.523790 0.007018 

[5,] 49.943842 49.943842 2494.387000 0.040188 [68,] 7.098484 7.098484 50.388470 0.005293 

[6,] 8.909520 8.909520 79.379550 0.007113 [69,] -15.406927 15.406927 237.373400 0.011615 

[7,] -3.347074 3.347074 11.202900 0.002678 [70,] -36.647121 36.647121 1343.011000 0.028392 

[8,] 0.904617 0.904617 0.818332 0.000723 [71,] 14.627057 14.627057 213.950800 0.011198 

[9,] -39.846567 39.846567 1587.749000 0.032856 [72,] 8.866574 8.866574 78.616140 0.006738 

[10,] 21.679809 21.679809 470.014100 0.017551 [73,] -7.140020 7.140020 50.979880 0.005451 

[11,] 19.414592 19.414592 376.926400 0.015464 [74,] 12.864208 12.864208 165.487800 0.009720 

[12,] -0.349103 0.349103 0.121873 0.000278 [75,] 5.104908 5.104908 26.060080 0.003840 

[13,] 28.150559 28.150559 792.454000 0.021907 [76,] -26.399150 26.399150 696.915100 0.020245 

[14,] -6.119054 6.119054 37.442820 0.004781 [77,] -6.381903 6.381903 40.728690 0.004915 

[15,] 4.134497 4.134497 17.094070 0.003218 [78,] -33.878184 33.878184 1147.731000 0.026771 

[16,] 5.881115 5.881115 34.587510 0.004554 [79,] 19.144134 19.144134 366.497900 0.014892 

[17,] 4.876549 4.876549 23.780730 0.003759 [80,] -15.869393 15.869393 251.837600 0.012491 

[18,] -14.877338 14.877338 221.335200 0.011593 [81,] 2.140752 2.140752 4.582820 0.001681 

[19,] 11.632130 11.632130 135.306500 0.008977 [82,] 44.888724 44.888724 2014.998000 0.034026 

[20,] 30.373676 30.373676 922.560200 0.022889 [83,] -3.642217 3.642217 13.265750 0.002767 

[21,] 5.602542 5.602542 31.388470 0.004201 [84,] 0.109642 0.109642 0.012021 0.000083 

[22,] 0.598145 0.598145 0.357777 0.000448 [85,] 14.608967 14.608967 213.421900 0.010959 

[23,] -9.902870 9.902870 98.066820 0.007468 [86,] -2.651516 2.651516 7.030539 0.001992 

[24,] 4.103217 4.103217 16.836390 0.003083 [87,] 12.599668 12.599668 158.751600 0.009370 

[25,] -2.150164 2.150164 4.623203 0.001617 [88,] 2.090537 2.090537 4.370345 0.001551 

[26,] -6.499319 6.499319 42.241150 0.004908 [89,] 12.338508 12.338508 152.238800 0.009066 

[27,] -10.545531 10.545531 111.208200 0.008022 [90,] -12.670454 12.670454 160.540400 0.009391 

[28,] -0.389005 0.389005 0.151325 0.000296 [91,] 4.587494 4.587494 21.045100 0.003386 

[29,] -6.639344 6.639344 44.080880 0.005071 [92,] -31.666226 31.666226 1002.750000 0.023917 

[30,] -5.385454 5.385454 29.003120 0.004128 [93,] -18.145429 18.145429 329.256600 0.013886 

[31,] -25.132412 25.132412 631.638100 0.019627 [94,] 12.866236 12.866236 165.540000 0.009743 

[32,] 1.133989 1.133989 1.285931 0.000884 [95,] -14.143063 14.143063 200.026200 0.010819 

[33,] 14.882637 14.882637 221.492900 0.011464 [96,] 10.865898 10.865898 118.067700 0.008238 

[34,] 9.871985 9.871985 97.456080 0.007542 [97,] -12.642049 12.642049 159.821400 0.009671 

[35,] 31.114715 31.114715 968.125500 0.023203 [98,] -22.634102 22.634102 512.302600 0.017607 

[36,] -13.406927 13.406927 179.745700 0.010092 [99,] -3.869393 3.869393 14.972200 0.003017 

[37,] -2.898473 2.898473 8.401146 0.002185 [100,] -2.117363 2.117363 4.483227 0.001653 

[38,] 2.352879 2.352879 5.536038 0.001769 [101,] -9.616518 9.616518 92.477420 0.007557 

[39,] 38.600681 38.600681 1490.013000 0.028191 [102,] 12.639400 12.639400 159.754400 0.009828 

[40,] -5.176033 5.176033 26.791320 0.003792 [103,] 0.380270 0.380270 0.144605 0.000295 

[41,] 6.576841 6.576841 43.254840 0.004792 [104,] -4.620576 4.620576 21.349720 0.003600 

[42,] -10.428230 10.428230 108.748000 0.007651 [105,] -8.618039 8.618039 74.270600 0.006755 

[43,] 11.578194 11.578194 134.054600 0.008417 [106,] -19.612798 19.612798 384.661900 0.015603 

[44,] 1.069741 1.069741 1.144345 0.000777 [107,] -17.850118 17.850118 318.626700 0.014395 

[45,] 40.818388 40.818388 1666.141000 0.028761 [108,] 5.411379 5.411379 29.283030 0.004342 

[46,] -0.709848 0.709848 0.503884 0.000500 [109,] -4.092847 4.092847 16.751390 0.003293 

[47,] -12.710017 12.710017 161.544500 0.009029 [110,] 3.659350 3.659350 13.390840 0.002933 

[48,] -13.952070 13.952070 194.660300 0.010003 [111,] -3.343693 3.343693 11.180280 0.002686 

[49,] -3.443279 3.443279 11.856170 0.002473 [112,] -0.342002 0.342002 0.116965 0.000275 

[50,] 6.308413 6.308413 39.796070 0.004508 [113,] 6.657660 6.657660 44.324430 0.005313 

[51,] -10.446491 10.446491 109.129200 0.007515 [114,] -24.347412 24.347412 592.796500 0.019803 

[52,] -5.940066 5.940066 35.284380 0.004289 [115,] -13.081519 13.081519 171.126100 0.010747 

[53,] 1.063315 1.063315 1.130638 0.000767 [116,] 9.426766 9.426766 88.863910 0.007680 

[54,] 2.061963 2.061963 4.251692 0.001483 [117,] -5.830167 5.830167 33.990840 0.004769 

[55,] -32.690066 32.690066 1068.640000 0.024068 [118,] 9.673216 9.673216 93.571100 0.007845 

[56,] 4.581407 4.581407 20.989290 0.003359 [119,] 3.166114 3.166114 10.024280 0.002560 

[57,] -36.672313 36.672313 1344.859000 0.027615 [120,] 28.413409 28.413409 807.321800 0.022439 

[58,] -10.398135 10.398135 108.121200 0.007886 [121,] -6.356374 6.356374 40.403490 0.005042 

[59,] 4.608290 4.608290 21.236330 0.003481 [122,] -36.352654 36.352654 1321.515000 0.029670 

[60,] -12.645429 12.645429 159.906900 0.009636 [123,] 5.921355 5.921355 35.062450 0.004806 

[61,] -12.137483 12.137483 147.318500 0.009329 [124,] 1.916790 1.916790 3.674085 0.001552 

[62,] 63.620125 63.620125 4047.520000 0.046591 [125,] -3.835069 3.835069 14.707750 0.003114 

[63,] -17.173497 17.173497 294.929000 0.012728      
 

> mae_AG4=sum(error2_AG4)/T; mae_AG4  [1] 12.93009 

> rmse_AG4=sqrt(sum(error3_AG4)/T); rmse_AG4 [1] 17.87645 

> mape_AG4=(100/T)*sum(error4_AG4); mape_AG4 [1] 0.9956225 
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1(b) 1-step ahead error of ARIMA(0,1,0)-GARCH(1,1) in transformed (log) scale 
 

Data Error Abs. 

error 

error 

^2 

Abs 

(error/y*) 

Data Error Abs. 

error 

error ^2 Abs 

(error/y*) 
[1,]  -0.006717 0.006717 0.000045 0.000939 [64,] -0.020323 0.020323 0.000413 0.002827 

[2,] -0.034672 0.034672 0.001202 0.004870 [65,] -0.007312 0.007312 0.000053 0.001018 

[3,] -0.003511 0.003511 0.000012 0.000493 [66,] 0.005771 0.005771 0.000033 0.000803 

[4,] -0.034291 0.034291 0.001176 0.004841 [67,] 0.007043 0.007043 0.000050 0.000979 

[5,] 0.041018 0.041018 0.001682 0.005757 [68,] 0.005307 0.005307 0.000028 0.000737 

[6,] 0.007139 0.007139 0.000051 0.001001 [69,] -0.011548 0.011548 0.000133 0.001606 

[7,] -0.002674 0.002674 0.000007 0.000375 [70,] -0.027997 0.027997 0.000784 0.003909 

[8,] 0.000723 0.000723 0.000001 0.000101 [71,] 0.011261 0.011261 0.000127 0.001569 

[9,] -0.032328 0.032328 0.001045 0.004553 [72,] 0.006760 0.006760 0.000046 0.000941 

[10,] 0.017707 0.017707 0.000314 0.002487 [73,] -0.005437 0.005437 0.000030 0.000757 

[11,] 0.015584 0.015584 0.000243 0.002184 [74,] 0.009767 0.009767 0.000095 0.001359 

[12,] -0.000278 0.000278 0.000000 0.000039 [75,] 0.003847 0.003847 0.000015 0.000535 

[13,] 0.022151 0.022151 0.000491 0.003094 [76,] -0.020043 0.020043 0.000402 0.002794 

[14,] -0.004770 0.004770 0.000023 0.000667 [77,] -0.004903 0.004903 0.000024 0.000684 

[15,] 0.003223 0.003223 0.000010 0.000450 [78,] -0.026419 0.026419 0.000698 0.003698 

[16,] 0.004564 0.004564 0.000021 0.000637 [79,] 0.015004 0.015004 0.000225 0.002096 

[17,] 0.003766 0.003766 0.000014 0.000525 [80,] -0.012413 0.012413 0.000154 0.001737 

[18,] -0.011527 0.011527 0.000133 0.001611 [81,] 0.001682 0.001682 0.000003 0.000235 

[19,] 0.009018 0.009018 0.000081 0.001258 [82,] 0.034618 0.034618 0.001198 0.004818 

[20,] 0.023155 0.023155 0.000536 0.003220 [83,] -0.002763 0.002763 0.000008 0.000385 

[21,] 0.004210 0.004210 0.000018 0.000585 [84,] 0.000083 0.000083 0.000000 0.000012 

[22,] 0.000448 0.000448 0.000000 0.000062 [85,] 0.011020 0.011020 0.000121 0.001532 

[23,] -0.007440 0.007440 0.000055 0.001035 [86,] -0.001990 0.001990 0.000004 0.000277 

[24,] 0.003088 0.003088 0.000010 0.000429 [87,] 0.009414 0.009414 0.000089 0.001307 

[25,] -0.001616 0.001616 0.000003 0.000225 [88,] 0.001552 0.001552 0.000002 0.000215 

[26,] -0.004896 0.004896 0.000024 0.000681 [89,] 0.009107 0.009107 0.000083 0.001262 

[27,] -0.007990 0.007990 0.000064 0.001113 [90,] -0.009347 0.009347 0.000087 0.001297 

[28,] -0.000296 0.000296 0.000000 0.000041 [91,] 0.003392 0.003392 0.000012 0.000470 

[29,] -0.005058 0.005058 0.000026 0.000705 [92,] -0.023636 0.023636 0.000559 0.003288 

[30,] -0.004119 0.004119 0.000017 0.000574 [93,] -0.013790 0.013790 0.000190 0.001922 

[31,] -0.019437 0.019437 0.000378 0.002717 [94,] 0.009791 0.009791 0.000096 0.001363 

[32,] 0.000885 0.000885 0.000001 0.000124 [95,] -0.010761 0.010761 0.000116 0.001500 

[33,] 0.011530 0.011530 0.000133 0.001608 [96,] 0.008272 0.008272 0.000068 0.001151 

[34,] 0.007570 0.007570 0.000057 0.001055 [97,] -0.009624 0.009624 0.000093 0.001341 

[35,] 0.023476 0.023476 0.000551 0.003260 [98,] -0.017454 0.017454 0.000305 0.002438 

[36,] -0.010041 0.010041 0.000101 0.001396 [99,] -0.003013 0.003013 0.000009 0.000421 

[37,] -0.002183 0.002183 0.000005 0.000304 [100,] -0.001651 0.001651 0.000003 0.000231 

[38,] 0.001771 0.001771 0.000003 0.000246 [101,] -0.007529 0.007529 0.000057 0.001053 

[39,] 0.028596 0.028596 0.000818 0.003960 [102,] 0.009877 0.009877 0.000098 0.001380 

[40,] -0.003785 0.003785 0.000014 0.000524 [103,] 0.000295 0.000295 0.000000 0.000041 

[41,] 0.004803 0.004803 0.000023 0.000665 [104,] -0.003594 0.003594 0.000013 0.000502 

[42,] -0.007622 0.007622 0.000058 0.001056 [105,] -0.006733 0.006733 0.000045 0.000941 

[43,] 0.008453 0.008453 0.000071 0.001170 [106,] -0.015482 0.015482 0.000240 0.002169 

[44,] 0.000777 0.000777 0.000001 0.000107 [107,] -0.014293 0.014293 0.000204 0.002007 

[45,] 0.029182 0.029182 0.000852 0.004021 [108,] 0.004352 0.004352 0.000019 0.000611 

[46,] -0.000500 0.000500 0.000000 0.000069 [109,] -0.003287 0.003287 0.000011 0.000461 

[47,] -0.008988 0.008988 0.000081 0.001240 [110,] 0.002938 0.002938 0.000009 0.000412 

[48,] -0.009954 0.009954 0.000099 0.001375 [111,] -0.002682 0.002682 0.000007 0.000376 

[49,] -0.002470 0.002470 0.000006 0.000341 [112,] -0.000275 0.000275 0.000000 0.000039 

[50,] 0.004518 0.004518 0.000020 0.000624 [113,] 0.005328 0.005328 0.000028 0.000747 

[51,] -0.007487 0.007487 0.000056 0.001035 [114,] -0.019609 0.019609 0.000385 0.002756 

[52,] -0.004280 0.004280 0.000018 0.000592 [115,] -0.010689 0.010689 0.000114 0.001505 

[53,] 0.000767 0.000767 0.000001 0.000106 [116,] 0.007709 0.007709 0.000059 0.001084 

[54,] 0.001485 0.001485 0.000002 0.000205 [117,] -0.004758 0.004758 0.000023 0.000669 

[55,] -0.023783 0.023783 0.000566 0.003297 [118,] 0.007876 0.007876 0.000062 0.001107 

[56,] 0.003365 0.003365 0.000011 0.000466 [119,] 0.002563 0.002563 0.000007 0.000360 

[57,] -0.027240 0.027240 0.000742 0.003788 [120,] 0.022695 0.022695 0.000515 0.003177 

[58,] -0.007855 0.007855 0.000062 0.001093 [121,] -0.005029 0.005029 0.000025 0.000704 

[59,] 0.003487 0.003487 0.000012 0.000485 [122,] -0.029238 0.029238 0.000855 0.004112 

[60,] -0.009590 0.009590 0.000092 0.001336 [123,] 0.004818 0.004818 0.000023 0.000677 

[61,] -0.009286 0.009286 0.000086 0.001295 [124,] 0.001554 0.001554 0.000002 0.000218 

[62,] 0.047711 0.047711 0.002276 0.006609 [125,] -0.003109 0.003109 0.000010 0.000437 

[63,] -0.012648 0.012648 0.000160 0.001755      

> mae_t_AG4=sum(error2t_AG4)/T; mae_t_AG4 [1] 0.009951418 

> rmse_t_AG4=sqrt(sum(error3t_AG4)/T); rmse_t_AG4 [1] 0.01380593 

> mape_t_AG4=(100/T)*sum(error4t_AG4); mape_t_AG4 [1] 0.1388268 
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1(c) 1-step ahead error of ARIMA(0,1,0)-GARCH(1,1) in stationary scale  
 

Data Error 
Absolute 

error 
error ^2 Data Error 

Absolute 

error 
error ^2 

[1,]  -0.006717 0.006717 0.000045 [64,] -0.020323 0.020323 0.000413 

[2,] -0.034672 0.034672 0.001202 [65,] -0.007312 0.007312 0.000053 

[3,] -0.003511 0.003511 0.000012 [66,] 0.005771 0.005771 0.000033 

[4,] -0.034291 0.034291 0.001176 [67,] 0.007043 0.007043 0.000050 

[5,] 0.041018 0.041018 0.001682 [68,] 0.005307 0.005307 0.000028 

[6,] 0.007139 0.007139 0.000051 [69,] -0.011548 0.011548 0.000133 

[7,] -0.002674 0.002674 0.000007 [70,] -0.027997 0.027997 0.000784 

[8,] 0.000723 0.000723 0.000001 [71,] 0.011261 0.011261 0.000127 

[9,] -0.032328 0.032328 0.001045 [72,] 0.006760 0.006760 0.000046 

[10,] 0.017707 0.017707 0.000314 [73,] -0.005437 0.005437 0.000030 

[11,] 0.015584 0.015584 0.000243 [74,] 0.009767 0.009767 0.000095 

[12,] -0.000278 0.000278 0.000000 [75,] 0.003847 0.003847 0.000015 

[13,] 0.022151 0.022151 0.000491 [76,] -0.020043 0.020043 0.000402 

[14,] -0.004770 0.004770 0.000023 [77,] -0.004903 0.004903 0.000024 

[15,] 0.003223 0.003223 0.000010 [78,] -0.026419 0.026419 0.000698 

[16,] 0.004564 0.004564 0.000021 [79,] 0.015004 0.015004 0.000225 

[17,] 0.003766 0.003766 0.000014 [80,] -0.012413 0.012413 0.000154 

[18,] -0.011527 0.011527 0.000133 [81,] 0.001682 0.001682 0.000003 

[19,] 0.009018 0.009018 0.000081 [82,] 0.034618 0.034618 0.001198 

[20,] 0.023155 0.023155 0.000536 [83,] -0.002763 0.002763 0.000008 

[21,] 0.004210 0.004210 0.000018 [84,] 0.000083 0.000083 0.000000 

[22,] 0.000448 0.000448 0.000000 [85,] 0.011020 0.011020 0.000121 

[23,] -0.007440 0.007440 0.000055 [86,] -0.001990 0.001990 0.000004 

[24,] 0.003088 0.003088 0.000010 [87,] 0.009414 0.009414 0.000089 

[25,] -0.001616 0.001616 0.000003 [88,] 0.001552 0.001552 0.000002 

[26,] -0.004896 0.004896 0.000024 [89,] 0.009107 0.009107 0.000083 

[27,] -0.007990 0.007990 0.000064 [90,] -0.009347 0.009347 0.000087 

[28,] -0.000296 0.000296 0.000000 [91,] 0.003392 0.003392 0.000012 

[29,] -0.005058 0.005058 0.000026 [92,] -0.023636 0.023636 0.000559 

[30,] -0.004119 0.004119 0.000017 [93,] -0.013790 0.013790 0.000190 

[31,] -0.019437 0.019437 0.000378 [94,] 0.009791 0.009791 0.000096 

[32,] 0.000885 0.000885 0.000001 [95,] -0.010761 0.010761 0.000116 

[33,] 0.011530 0.011530 0.000133 [96,] 0.008272 0.008272 0.000068 

[34,] 0.007570 0.007570 0.000057 [97,] -0.009624 0.009624 0.000093 

[35,] 0.023476 0.023476 0.000551 [98,] -0.017454 0.017454 0.000305 

[36,] -0.010041 0.010041 0.000101 [99,] -0.003013 0.003013 0.000009 

[37,] -0.002183 0.002183 0.000005 [100,] -0.001651 0.001651 0.000003 

[38,] 0.001771 0.001771 0.000003 [101,] -0.007529 0.007529 0.000057 

[39,] 0.028596 0.028596 0.000818 [102,] 0.009877 0.009877 0.000098 

[40,] -0.003785 0.003785 0.000014 [103,] 0.000295 0.000295 0.000000 

[41,] 0.004803 0.004803 0.000023 [104,] -0.003594 0.003594 0.000013 

[42,] -0.007622 0.007622 0.000058 [105,] -0.006733 0.006733 0.000045 

[43,] 0.008453 0.008453 0.000071 [106,] -0.015482 0.015482 0.000240 

[44,] 0.000777 0.000777 0.000001 [107,] -0.014293 0.014293 0.000204 

[45,] 0.029182 0.029182 0.000852 [108,] 0.004352 0.004352 0.000019 

[46,] -0.000500 0.000500 0.000000 [109,] -0.003287 0.003287 0.000011 

[47,] -0.008988 0.008988 0.000081 [110,] 0.002938 0.002938 0.000009 

[48,] -0.009954 0.009954 0.000099 [111,] -0.002682 0.002682 0.000007 

[49,] -0.002470 0.002470 0.000006 [112,] -0.000275 0.000275 0.000000 

[50,] 0.004518 0.004518 0.000020 [113,] 0.005328 0.005328 0.000028 

[51,] -0.007487 0.007487 0.000056 [114,] -0.019609 0.019609 0.000385 

[52,] -0.004280 0.004280 0.000018 [115,] -0.010689 0.010689 0.000114 

[53,] 0.000767 0.000767 0.000001 [116,] 0.007709 0.007709 0.000059 

[54,] 0.001485 0.001485 0.000002 [117,] -0.004758 0.004758 0.000023 

[55,] -0.023783 0.023783 0.000566 [118,] 0.007876 0.007876 0.000062 

[56,] 0.003365 0.003365 0.000011 [119,] 0.002563 0.002563 0.000007 

[57,] -0.027240 0.027240 0.000742 [120,] 0.022695 0.022695 0.000515 

[58,] -0.007855 0.007855 0.000062 [121,] -0.005029 0.005029 0.000025 

[59,] 0.003487 0.003487 0.000012 [122,] -0.029238 0.029238 0.000855 

[60,] -0.009590 0.009590 0.000092 [123,] 0.004818 0.004818 0.000023 

[61,] -0.009286 0.009286 0.000086 [124,] 0.001554 0.001554 0.000002 

[62,] 0.047711 0.047711 0.002276 [125,] -0.003109 0.003109 0.000010 

[63,] -0.012648 0.012648 0.000160     

> mae_st_AG4=sum(error2st_AG4)/T; mae_st_AG4 [1] 0.009951418 

> rmse_st_AG4=sqrt(sum(error3st_AG4)/T); rmse_st_AG4 [1] 0.01380593 
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2. n-step ahead forecasting performance for ARIMA(0,1,0)-GARCH(1,1) in original scale 
 

Data Error Abs. 

error 

error ^2 Abs 

(error/y*) 

Data Error Abs. 

error 

error ^2 Abs 

(error/y*) 
[1,]  -8.620238 8.620238 74.308505 0.006740 [64,] -20.648470 20.648470 426.359307 0.015607 

[2,] -52.241065 52.241065 2729.128842 0.042258 [65,] -30.307188 30.307188 918.525645 0.023060 

[3,] -56.612480 56.612480 3204.972868 0.045924 [66,] -22.716521 22.716521 516.040340 0.017174 

[4,] -98.234484 98.234484 9650.013847 0.082411 [67,] -13.376469 13.376469 178.929936 0.010035 

[5,] -48.357079 48.357079 2338.407048 0.038911 [68,] -6.287033 6.287033 39.526778 0.004688 

[6,] -39.480263 39.480263 1558.691153 0.031521 [69,] -21.698211 21.698211 470.812371 0.016357 

[7,] -42.854038 42.854038 1836.468543 0.034283 [70,] -58.360007 58.360007 3405.890434 0.045214 

[8,] -41.978403 41.978403 1762.186317 0.033536 [71,] -43.772419 43.772419 1916.024706 0.033510 

[9,] -81.853360 81.853360 6699.972503 0.067494 [72,] -34.935449 34.935449 1220.485591 0.026547 

[10,] -60.228908 60.228908 3627.521404 0.048758 [73,] -42.099096 42.099096 1772.333852 0.032143 

[11,] -40.855050 40.855050 1669.135083 0.032541 [74,] -29.263360 29.263360 856.344220 0.022111 

[12,] -41.231784 41.231784 1700.059983 0.032828 [75,] -24.178243 24.178243 584.587430 0.018186 

[13,] -13.109110 13.109110 171.848765 0.010202 [76,] -50.593745 50.593745 2559.727019 0.038799 

[14,] -19.237029 19.237029 370.063298 0.015032 [77,] -57.009865 57.009865 3250.124694 0.043904 

[15,] -15.115542 15.115542 228.479622 0.011765 [78,] -90.926605 90.926605 8267.647497 0.071850 

[16,] -9.244650 9.244650 85.463557 0.007158 [79,] -71.843965 71.843965 5161.555346 0.055888 

[17,] -4.374353 4.374353 19.134964 0.003372 [80,] -87.761946 87.761946 7702.159226 0.069077 

[18,] -19.254650 19.254650 370.741538 0.015005 [81,] -85.680548 85.680548 7341.156336 0.067280 

[19,] -7.635542 7.635542 58.301497 0.005893 [82,] -40.849770 40.849770 1668.703740 0.030964 

[20,] 22.732970 22.732970 516.787932 0.017131 [83,] -44.519614 44.519614 1981.996069 0.033817 

[21,] 28.350886 28.350886 803.772749 0.021261 [84,] -44.440081 44.440081 1974.920804 0.033731 

[22,] 28.968205 28.968205 839.156887 0.021699 [85,] -29.861170 29.861170 891.689446 0.022401 

[23,] 19.084927 19.084927 364.234425 0.014393 [86,] -32.532881 32.532881 1058.388365 0.024438 

[24,] 23.201051 23.201051 538.288769 0.017431 [87,] -19.955216 19.955216 398.210646 0.014839 

[25,] 21.066578 21.066578 443.800729 0.015843 [88,] -17.878175 17.878175 319.629139 0.013265 

[26,] 14.581507 14.581507 212.620340 0.011012 [89,] -5.551758 5.551758 30.822015 0.004079 

[27,] 4.045837 4.045837 16.368798 0.003078 [90,] -18.225966 18.225966 332.185846 0.013508 

[28,] 3.659569 3.659569 13.392442 0.002783 [91,] -13.650799 13.650799 186.344302 0.010076 

[29,] -2.977300 2.977300 8.864316 0.002274 [92,] -45.326256 45.326256 2054.469525 0.034234 

[30,] -8.364768 8.364768 69.969342 0.006411 [93,] -63.502340 63.502340 4032.547205 0.048596 

[31,] -33.502837 33.502837 1122.440066 0.026164 [94,] -50.679051 50.679051 2568.366251 0.038379 

[32,] -32.391506 32.391506 1049.209657 0.025257 [95,] -64.856389 64.856389 4206.351220 0.049613 

[33,] -17.530776 17.530776 307.328096 0.013503 [96,] -54.034354 54.034354 2919.711380 0.040966 

[34,] -7.670647 7.670647 58.838829 0.005860 [97,] -66.712946 66.712946 4450.617200 0.051033 

[35,] 23.438880 23.438880 549.381077 0.017479 [98,] -89.392166 89.392166 7990.959410 0.069539 

[36,] 10.047805 10.047805 100.958379 0.007563 [99,] -93.322015 93.322015 8708.998561 0.072766 

[37,] 7.156127 7.156127 51.210154 0.005395 [100,] -95.502493 95.502493 9120.726141 0.074539 

[38,] 9.513846 9.513846 90.513257 0.007155 [101,] -105.183600 105.183600 11063.589666 0.082659 

[39,] 48.120961 48.120961 2315.626851 0.035144 [102,] -92.615336 92.615336 8577.600409 0.072018 

[40,] 42.977472 42.977472 1847.063091 0.031485 [103,] -92.297703 92.297703 8518.865911 0.071701 

[41,] 49.583379 49.583379 2458.511457 0.036126 [104,] -96.980700 96.980700 9405.256161 0.075560 

[42,] 39.188682 39.188682 1535.752806 0.028752 [105,] -105.664328 105.664328 11164.950150 0.082825 

[43,] 50.793379 50.793379 2579.967390 0.036927 [106,] -125.348587 125.348587 15712.268363 0.099720 

[44,] 51.897472 51.897472 2693.347606 0.037675 [107,] -143.283479 143.283479 20530.155477 0.115551 

[45,] 92.750958 92.750958 8602.740278 0.065352 [108,] -137.969004 137.969004 19035.445988 0.110707 

[46,] 92.103838 92.103838 8483.117046 0.064885 [109,] -142.155160 142.155160 20208.089451 0.114365 

[47,] 79.456111 79.456111 6313.273654 0.056442 [110,] -138.591950 138.591950 19207.728610 0.111096 

[48,] 65.557778 65.557778 4297.822225 0.047003 [111,] -142.029374 142.029374 20172.342983 0.114080 

[49,] 62.158836 62.158836 3863.720885 0.044646 [112,] -142.467431 142.467431 20296.968870 0.114386 

[50,] 68.509287 68.509287 4693.522424 0.048953 [113,] -135.906123 135.906123 18470.474228 0.108465 

[51,] 58.109129 58.109129 3376.670906 0.041805 [114,] -160.345449 160.345449 25710.663130 0.130415 

[52,] 52.208363 52.208363 2725.713154 0.037696 [115,] -173.535411 173.535411 30114.539037 0.142563 

[53,] 53.306987 53.306987 2841.634820 0.038433 [116,] -164.226009 164.226009 26970.181944 0.133789 

[54,] 55.405002 55.405002 3069.714207 0.039860 [117,] -170.167243 170.167243 28956.890477 0.139196 

[55,] 22.752406 22.752406 517.671998 0.016751 [118,] -160.609112 160.609112 25795.286928 0.130259 

[56,] 27.349201 27.349201 747.978804 0.020054 [119,] -157.551619 157.551619 24822.512655 0.127366 

[57,] -9.304615 9.304615 86.575866 0.007006 [120,] -129.244763 129.244763 16704.208743 0.102069 

[58,] -19.709043 19.709043 388.446383 0.014948 [121,] -135.688546 135.688546 18411.381473 0.107625 

[59,] -15.114083 15.114083 228.435507 0.011415 [122,] -172.132966 172.132966 29629.758155 0.140488 

[60,] -27.769734 27.769734 771.158131 0.021162 [123,] -166.328026 166.328026 27665.012267 0.135007 

[61,] -39.925998 39.925998 1594.085323 0.030689 [124,] -164.523724 164.523724 27068.055902 0.133245 

[62,] 23.667124 23.667124 560.132767 0.017332 [125,] -168.470062 168.470062 28382.161753 0.136773 

[63,] 6.509634 6.509634 42.375330 0.004825      

> mae_AG4_n=sum(error2_AG4_n)/T; mae_AG4_n [1] 59.02881 

> rmse_AG4_n=sqrt(sum(error3_AG4_n)/T); rmse_AG4_n [1] 76.21157 

> mape_AG4_n=(100/T)*sum(error4_AG4_n); mape_AG4_n [1] 4.613464 
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D. SUMMARY OF 1-STEP AHEAD AND MULTISTEP AHEAD FORECASTING 

RESULTS OF ARIMA-GARCH (AG)  
 

1-step ahead forecast AG 2-step ahead forecast AG 

> mae_AG4=sum(error2_AG4)/T;[1] 12.93009 

> rmse_AG4=sqrt(sum(error3_AG4)/T;  

17.87645 

> mape_AG4=(100/T)*sum(error4_AG4); 

0.9956225 

 
> outAG_1_lo80<-dt4_o[dt4_o<lo80_AG4; 1236.25 

> outAG_1_hi80<-dt4_o[dt4_o>hi80_AG4;  

numeric(0) 

> outAG_1_lo95<-dt4_o[dt4_o<lo95_AG4;  

numeric(0) 

> outAG_1_hi95<-dt4_o[dt4_o>hi95_AG4;  

numeric(0) 

% Forecast data NOT within prediction interval 

80% PI: 1/125 = 0.8%                          95% PI: 0% 

 

> mae_AG4_2=sum(error2_AG4_2)/T;[1] 15.79385 

> rmse_AG4_2=sqrt(sum(error3_AG4_2)/T);     

[1] 21.32971 

> mape_AG4_2=(100/T)*sum(error4_AG4_2);     

[1] 1.213224 

 
> outAG_2_lo80<-dt4_o[dt4_o<lo80_AG4_2; 

1236.25 1192.00 1212.75 1358.25 1328.00 1318

.50 1323.00 1290.75 1265.50 1285.50 1225.25 

> outAG_2_hi80<-dt4_o[dt4_o>hi80_AG4_2; 

[1] 1242.75 1252.50 1327.00 1369.25 1365.00 

1419.25 1419.50 1365.50 1319.25 

> outAG_2_lo95<-dt4_o[dt4_o<lo95_AG4_2;  

numeric(0) 

> outAG_2_hi95<-dt4_o[dt4_o>hi95_AG4_2; 

[1] 1252.5 

% Forecast data NOT within prediction interval 

80% PI: 20/125 = 16%              95% PI: 1/125 = 0.8% 

3-step ahead forecast AG 4-step ahead forecast AG 

> mae_AG4_3=sum(error2_AG4_3)/T; [1] 18.29534 

> rmse_AG4_3=sqrt(sum(error3_AG4_3)/T);      

24.44724 

> mape_AG4_3=(100/T)*sum(error4_AG4_3);      

1.409793 

 
> outAG_3_lo80<-dt4_o[dt4_o<lo80_AG4_3]; 

[1] 1236.25 1232.75 1192.00 1212.75 1328.00 1

314.25 1290.75 1265.50 1306.75 1282.50 [11] 1

240.00 1225.25 1232.00 

> outAG_3_hi80<-dt4_o[dt4_o>hi80_AG4_3]; 

[1] 1255.50 1256.00 1327.00 1333.50 1341.00 1

369.25 1419.25 1365.50 1319.25 1316.50 [11] 1

317.50 1266.25 

>outAG_3_lo95<-dt4_o[dt4_o<lo95_AG4_3]; 

1328.0 1265.5 

> outAG_3_hi95<-dt4_o[dt4_o>hi95_AG4_3]; 

numeric(0) 

% Forecast data NOT within prediction interval 

80% PI: 25/125 = 20%            95% PI: 2/125 = 1.6% 

> mae_AG4_4=sum(error2_AG4_4)/T; 21.60963 

> rmse_AG4_4=sqrt(sum(error3_AG4_4)/T);     

28.36626 

> mape_AG4_4=(100/T)*sum(error4_AG4_4);     

1.67163 

 
> outAG_4_lo80<-dt4_o[dt4_o<lo80_AG4_4]; 

[1] 1236.25 1232.75 1192.00 1318.50 1324.00 

1312.25 1290.75 1240.00 1225.25 

> outAG_4_hi80<-dt4_o[dt4_o>hi80_AG4_4]; 

 [1] 1242.75 1252.50 1250.00 1251.75 1341.00

 1328.50 1365.50 1319.25 1316.50 1317.50 

> outAG_4_lo95<-dt4_o[dt4_o<lo95_AG4_4]; 

[1] 1192 

> outAG_4_hi95<-dt4_o[dt4_o>hi95_AG4_4]; 

numeric(0) 

% Forecast data NOT within prediction interval 

80% PI: 20/125 = 16%             95% PI: 1/125 = 0.8% 
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5-step ahead forecast AG 7-step ahead forecast AG 
> mae_AG4_5=sum(error2_AG4_5)/T; [1] 22.83944 

> rmse_AG4_5=sqrt(sum(error3_AG4_5)/T);  

[1] 28.93036 

> mape_AG4_5=(100/T)*sum(error4_AG4_5); 

[1] 1.764663 

 

> outAG_5_lo80<-dt4_o[dt4_o<lo80_AG4_5]; 

[1] 1236.25 1232.75 1192.00 1242.75 1358.25 1

318.50 1312.25 1265.50 1285.50 1270.50 [11] 1

306.75 1307.25 1225.25 

> outAG_5_hi80<-dt4_o[dt4_o>hi80_AG4_5]; 

[1] 1285.00 1284.75 1419.25 1365.50 1319.25 1

316.50 1317.50 1333.00 1266.25 

> outAG_5_lo95<-dt4_o[dt4_o<lo95_AG4_5]; 

[1] 1192 

> outAG_5_hi95<-dt4_o[dt4_o>hi95_AG4_5]; 

numeric(0) 

% Forecast data NOT within prediction interval 

80% PI: 22/125 = 17.6%           95% PI: 1/125 = 0.8% 

 
 

> mae_AG4_7=sum(error2_AG4_7)/T;[1] 24.59806 

> rmse_AG4_7=sqrt(sum(error3_AG4_7)/T);  

[1] 30.12332 

> mape_AG4_7=(100/T)*sum(error4_AG4_7);  

[1] 1.894061 

 

> outAG_7_lo80<-dt4_o[dt4_o<lo80_AG4_7]; 

[1] 1236.25 1232.75 1192.00 1242.75 1250.00 

1318.50 1324.00 1312.25 1301.00 1290.75 1306

.75 1307.25 1307.25 1285.50 

> outAG_7_hi80<-dt4_o[dt4_o>hi80_AG4_7]; 

[1] 1333.50 1419.25 1419.50 

>outAG_7_lo95<-dt4_o[dt4_o<lo95_AG4_7]; 

1192.0 1285.5 

> outAG_7_hi95<-dt4_o[dt4_o>hi95_AG4_7]; 

numeric(0) 

% Forecast data NOT within prediction interval 

80% PI: 17/125 = 13.6%           95% PI: 2/125 = 1.6% 

10-step ahead forecast AG 15-step ahead forecast AG 

> mae_AG4_10=sum(error2_AG4_10)/T; 32.28698 

> rmse_AG4_10=sqrt(sum(error3_AG4_10)/T);    

40.19701 

> mape_AG4_10=(100/T)*sum(error4_AG4_10);    

2.485947 

 

 

 
> outAG_10_lo80<-dt4_o[dt4_o<lo80_AG4_10]; 

 [1] 1192.00 1212.75 1235.25 1328.00 1318.50 

1324.00 1312.25 1285.50 1282.50 1281.25 

> outAG_10_hi80<-dt4_o[dt4_o>hi80_AG4_10]; 

[1] 1327.00 1344.75 1347.75 1361.00 1349.25 

> outAG_10_lo95<-dt4_o[dt4_o<lo95_AG4_10]; 

numeric(0) 

> outAG_10_hi95<-dt4_o[dt4_o>hi95_AG4_10]; 

numeric(0) 

% Forecast data NOT within prediction interval 

80% PI: 15/125 = 12%                             95% PI: 0% 

 

> mae_AG4_15=sum(error2_AG4_15)/T; 37.65506 

> rmse_AG4_15=sqrt(sum(error3_AG4_15)/T);   

46.20913 

> mape_AG4_15=(100/T)*sum(error4_AG4_15);   

2.906795 

 

 
> outAG_15_lo80<-dt4_o[dt4_o<lo80_AG4_15];  

1192.00 1212.75 1358.25 1363.75 1328.00 1318

.50 1324.00 1312.25 1265.50 1270.50 1285.50 

1282.50 1281.25 1272.50 1286.00 1287.25 1283

.50 1275.75 1217.25 1222.50 

> outAG_15_hi80<-dt4_o[dt4_o>hi80_AG4_15]; 

 1419.25 

> outAG_15_lo95<-dt4_o[dt4_o<lo95_AG4_15]; 

[1] 1318.50 1324.00 1312.25 

> outAG_15_hi95<-dt4_o[dt4_o>hi95_AG4_15]; 

numeric(0) 

% Forecast data NOT within prediction interval 

80% PI: 21/125 = 16.8%           95% PI: 3/125 =2.4% 
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25-step ahead forecast AG 125-step ahead forecast AG 

> mae_AG4_25=sum(error2_AG4_25)/T;[1] 43.7949 

> rmse_AG4_25=sqrt(sum(error3_AG4_25)/T);  

53.01155 

> mape_AG4_25=(100/T)*sum(error4_AG4_25); 

[1] 3.38398 

 
>outAG_25_lo80<-dt4_o[dt4_o<lo80_AG4_25]; 

1192.00 1212.75 1328.00 1318.50 1324.00 1312.

25 1301.00 1349.25 1323.00 1314.25 1322.75 13

33.00 1341.00 1326.50 1290.75 1306.25 1316.00

 1309.75 1323.50 1329.50 1265.50 1270.50 1285

.50 1282.50 1281.25 1229.50 1217.25 1227.50 1

222.50 1233.00 1225.25 1232.00 1234.75 1231.7

5 

> outAG_25_hi80<-dt4_o[dt4_o>hi80_AG4_25]; 

[1] 1419.25 1419.50 

> outAG_25_lo95<-dt4_o[dt4_o<lo95_AG4_25]; 

[1] 1301.00 1290.75 1306.25 1309.75 

> outAG_25_hi95<-dt4_o[dt4_o>hi95_AG4_25]; 

numeric(0) 

% Forecast data NOT within prediction interval 

80% PI: 36/125 = 28.8%           95% PI: 4/125 =3.2% 

> mae_AG4_n=sum(error2_AG4_n)/T; 59.02881 

> rmse_AG4_n=sqrt(sum(error3_AG4_n)/T); 

[1] 76.21157 

> mape_AG4_n=(100/T)*sum(error4_AG4_n);  

[1] 4.613464 

 
> outAG_n_lo80<-dt4_o[dt4_o<lo80_AG4_n]; 

1192.00 1272.50 1275.75 1257.00 1240.00 1246

.25 1243.00 1247.50 1245.00 1245.50 1253.00 

1229.50 1217.25 1227.50 1222.50 1233.00 1237

.00 1266.25 1260.75 1225.25 1232.00 1234.75 

1231.75 

> outAG_n_hi80<-dt4_o[dt4_o>hi80_AG4_n];  

numeric(0) 

> outAG_n_lo95<-dt4_o[dt4_o<lo95_AG4_n]; 

1217.25 1225.25 

> outAG_n_hi95<-dt4_o[dt4_o>hi95_AG4_n];  

numeric(0) 

% Forecast data NOT within prediction interval 

80% PI: 23/125 = 18.4%           95% PI: 2/125 =1.6% 

 

To find Prediction Intervals for 7-step ahead ARIMA-GARCH: 
 

  

 
v1<-qt(c(.025,.975), df=4.81);v1 #t dist, alpha 0.025, v=4.81, PI 95% 

v2<-qt(c(.1, .9), df=4.81); v2#t dist, alpha 0.1, v=4.81, for PI 80% 

T<- 125 

lo95_AG4_7=matrix(0,T,1); lo95_AG4_7 #lower limit PI 95% 

hi95_AG4_7=matrix(0,T,1); hi95_AG4_7 # upper limit PI 95% 

lo80_AG4_7=matrix(0,T,1); lo80_AG4_7 #lower limit PI 80% 

hi80_AG4_7=matrix(0,T,1); hi80_AG4_7 #upper limit PI 80% 

for(i in 1:125){ 

  lo95_AG4_7[i]<-f_AG4_7[i]-(2.6014*28.5844)#lower limit 95% 

  hi95_AG4_7[i]<-f_AG4_7[i]+(2.6014*28.5844)#upper limit 95% 

  lo80_AG4_7[i]<-f_AG4_7[i]-(1.4847*28.5844)#lower limit 80% 

  hi80_AG4_7[i]<-f_AG4_7[i]+(1.4847*28.5844)#upper limit 80% 

} 

cbind(dt4_o,f_AG4_7,lo95_AG4_7,hi95_AG4_7,lo80_AG4_7,hi80_AG4_7) 
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Simulation Price Data of 7-step ahead using ARIMA(0,1,0)-GARCH(1,1) with t 

innovations  
 
> cbind(dt4_o,f_AG4_7,lo95_AG4_7,hi95_AG4_7,lo80_AG4_7,hi80_AG4_7) 
          [,1]     [,2]     [,3]     [,4]     [,5]     [,6] 
  [1,] 1279.00 1287.620 1213.261 1361.980 1245.181 1330.059 
  [2,] 1236.25 1288.491 1214.132 1362.851 1246.052 1330.930 
  [3,] 1232.75 1289.362 1215.003 1363.722 1246.923 1331.802 
  [4,] 1192.00 1290.234 1215.875 1364.594 1247.795 1332.674 
  [5,] 1242.75 1291.107 1216.748 1365.467 1248.668 1333.546 
  [6,] 1252.50 1291.980 1217.621 1366.340 1249.541 1334.420 
  [7,] 1250.00 1292.854 1218.495 1367.213 1250.415 1335.293 
  [8,] 1251.75 1250.845 1176.486 1325.205 1208.406 1293.285 
  [9,] 1212.75 1251.691 1177.332 1326.051 1209.252 1294.131 
 [10,] 1235.25 1252.538 1178.178 1326.897 1210.099 1294.977 
 [11,] 1255.50 1253.385 1179.026 1327.744 1210.946 1295.824 
 [12,] 1256.00 1254.233 1179.873 1328.592 1211.793 1296.672 
 [13,] 1285.00 1255.081 1180.721 1329.440 1212.642 1297.520 
 [14,] 1279.75 1255.930 1181.570 1330.289 1213.490 1298.369 
 [15,] 1284.75 1280.616 1206.256 1354.975 1238.176 1323.055 
 [16,] 1291.50 1281.482 1207.122 1355.841 1239.042 1323.921 
 [17,] 1297.25 1282.348 1207.989 1356.708 1239.909 1324.788 
 [18,] 1283.25 1283.216 1208.856 1357.575 1240.776 1325.655 
 [19,] 1295.75 1284.083 1209.724 1358.443 1241.644 1326.523 
 [20,] 1327.00 1284.952 1210.592 1359.311 1242.513 1327.391 
 [21,] 1333.50 1285.821 1211.461 1360.180 1243.382 1328.260 
 [22,] 1335.00 1334.402 1260.042 1408.761 1291.963 1376.841 
 [23,] 1326.00 1335.304 1260.945 1409.664 1292.865 1377.744 
 [24,] 1331.00 1336.207 1261.848 1410.567 1293.768 1378.647 
 [25,] 1329.75 1337.111 1262.752 1411.471 1294.672 1379.550 
 [26,] 1324.15 1338.015 1263.656 1412.375 1295.576 1380.455 
 [27,] 1314.50 1338.920 1264.561 1413.280 1296.481 1381.360 
 [28,] 1315.00 1339.826 1265.466 1414.185 1297.387 1382.265 
 [29,] 1309.25 1315.889 1241.530 1390.249 1273.450 1358.329 
 [30,] 1304.75 1316.779 1242.420 1391.139 1274.340 1359.219 
 [31,] 1280.50 1317.670 1243.310 1392.029 1275.231 1360.109 
 [32,] 1282.50 1318.561 1244.202 1392.920 1276.122 1361.000 
 [33,] 1298.25 1319.453 1245.093 1393.812 1277.013 1361.892 
 [34,] 1309.00 1320.345 1245.986 1394.705 1277.906 1362.784 
 [35,] 1341.00 1321.238 1246.879 1395.598 1278.799 1363.677 
 [36,] 1328.50 1341.907 1267.547 1416.266 1299.468 1384.346 
 [37,] 1326.50 1342.814 1268.455 1417.174 1300.375 1385.254 
 [38,] 1329.75 1343.723 1269.363 1418.082 1301.283 1386.162 
 [39,] 1369.25 1344.631 1270.272 1418.991 1302.192 1387.071 
 [40,] 1365.00 1345.541 1271.181 1419.900 1303.102 1387.980 
 [41,] 1372.50 1346.451 1272.091 1420.810 1304.012 1388.890 
 [42,] 1363.00 1347.361 1273.002 1421.721 1304.922 1389.801 
 [43,] 1375.50 1363.922 1289.562 1438.281 1321.483 1406.361 
 [44,] 1377.50 1364.844 1290.485 1439.204 1322.405 1407.283 
 [45,] 1419.25 1365.767 1291.408 1440.127 1323.328 1408.207 
 [46,] 1419.50 1366.691 1292.332 1441.050 1324.252 1409.130 
 [47,] 1407.75 1367.615 1293.256 1441.975 1325.176 1410.055 
 [48,] 1394.75 1368.540 1294.181 1442.900 1326.101 1410.979 
 [49,] 1392.25 1369.466 1295.106 1443.825 1327.026 1411.905 
 [50,] 1399.50 1393.192 1318.832 1467.551 1350.752 1435.631 
 [51,] 1390.00 1394.134 1319.774 1468.493 1351.695 1436.573 
 [52,] 1385.00 1395.077 1320.717 1469.436 1352.637 1437.516 
 [53,] 1387.00 1396.020 1321.661 1470.380 1353.581 1438.459 
 [54,] 1390.00 1396.964 1322.605 1471.324 1354.525 1439.404 
 [55,] 1358.25 1397.909 1323.550 1472.269 1355.470 1440.348 
 [56,] 1363.75 1398.855 1324.495 1473.214 1356.415 1441.294 
 [57,] 1328.00 1364.672 1290.313 1439.032 1322.233 1407.112 
 [58,] 1318.50 1365.595 1291.236 1439.955 1323.156 1408.035 
 [59,] 1324.00 1366.519 1292.159 1440.878 1324.080 1408.958 
 [60,] 1312.25 1367.443 1293.084 1441.802 1325.004 1409.882 
 [61,] 1301.00 1368.368 1294.008 1442.727 1325.929 1410.807 
 [62,] 1365.50 1369.293 1294.934 1443.653 1326.854 1411.733 
 [63,] 1349.25 1370.219 1295.860 1444.579 1327.780 1412.659 
 [64,] 1323.00 1350.163 1275.803 1424.522 1307.723 1392.602 
 [65,] 1314.25 1351.076 1276.716 1425.435 1308.636 1393.515 
 [66,] 1322.75 1351.989 1277.630 1426.349 1309.550 1394.429 
 [67,] 1333.00 1352.904 1278.544 1427.263 1310.464 1395.343 
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 [68,] 1341.00 1353.819 1279.459 1428.178 1311.379 1396.258 
 [69,] 1326.50 1354.734 1280.375 1429.094 1312.295 1397.174 
 [70,] 1290.75 1355.651 1281.291 1430.010 1313.211 1398.090 
 [71,] 1306.25 1291.623 1217.263 1365.982 1249.184 1334.062 
 [72,] 1316.00 1292.496 1218.137 1366.856 1250.057 1334.936 
 [73,] 1309.75 1293.371 1219.011 1367.730 1250.931 1335.810 
 [74,] 1323.50 1294.245 1219.886 1368.605 1251.806 1336.685 
 [75,] 1329.50 1295.121 1220.761 1369.480 1252.681 1337.560 
 [76,] 1304.00 1295.997 1221.637 1370.356 1253.557 1338.436 
 [77,] 1298.50 1296.873 1222.514 1371.232 1254.434 1339.312 
 [78,] 1265.50 1299.378 1225.019 1373.738 1256.939 1341.817 
 [79,] 1285.50 1300.257 1225.898 1374.616 1257.818 1342.696 
 [80,] 1270.50 1301.136 1226.777 1375.496 1258.697 1343.576 
 [81,] 1273.50 1302.016 1227.657 1376.376 1259.577 1344.456 
 [82,] 1319.25 1302.897 1228.537 1377.256 1260.458 1345.336 
 [83,] 1316.50 1303.778 1229.419 1378.137 1261.339 1346.217 
 [84,] 1317.50 1304.660 1230.300 1379.019 1262.221 1347.099 
 [85,] 1333.00 1318.391 1244.032 1392.750 1275.952 1360.830 
 [86,] 1331.25 1319.283 1244.923 1393.642 1276.843 1361.722 
 [87,] 1344.75 1320.175 1245.815 1394.534 1277.736 1362.614 
 [88,] 1347.75 1321.068 1246.708 1395.427 1278.628 1363.507 
 [89,] 1361.00 1321.961 1247.602 1396.321 1279.522 1364.400 
 [90,] 1349.25 1322.855 1248.496 1397.215 1280.416 1365.295 
 [91,] 1354.75 1323.750 1249.390 1398.109 1281.311 1366.189 
 [92,] 1324.00 1355.666 1281.307 1430.026 1313.227 1398.105 
 [93,] 1306.75 1356.583 1282.224 1430.943 1314.144 1399.022 
 [94,] 1320.50 1357.501 1283.141 1431.860 1315.061 1399.940 
 [95,] 1307.25 1358.419 1284.059 1432.778 1315.979 1400.858 
 [96,] 1319.00 1359.337 1284.978 1433.697 1316.898 1401.777 
 [97,] 1307.25 1360.257 1285.897 1434.616 1317.817 1402.696 
 [98,] 1285.50 1361.177 1286.817 1435.536 1318.737 1403.616 
 [99,] 1282.50 1286.369 1212.010 1360.729 1243.930 1328.809 
[100,] 1281.25 1287.239 1212.880 1361.599 1244.800 1329.679 
[101,] 1272.50 1288.110 1213.750 1362.469 1245.671 1330.549 
[102,] 1286.00 1288.981 1214.622 1363.341 1246.542 1331.420 
[103,] 1287.25 1289.853 1215.493 1364.212 1247.414 1332.292 
[104,] 1283.50 1290.725 1216.366 1365.085 1248.286 1333.164 
[105,] 1275.75 1291.598 1217.239 1365.958 1249.159 1334.037 
[106,] 1257.00 1276.613 1202.253 1350.972 1234.174 1319.052 
[107,] 1240.00 1277.476 1203.117 1351.836 1235.037 1319.915 
[108,] 1246.25 1278.340 1203.981 1352.700 1235.901 1320.779 
[109,] 1243.00 1279.205 1204.845 1353.564 1236.765 1321.644 
[110,] 1247.50 1280.070 1205.710 1354.429 1237.631 1322.509 
[111,] 1245.00 1280.936 1206.576 1355.295 1238.496 1323.375 
[112,] 1245.50 1281.802 1207.442 1356.161 1239.363 1324.241 
[113,] 1253.00 1246.342 1171.983 1320.702 1203.903 1288.782 
[114,] 1229.50 1247.185 1172.826 1321.545 1204.746 1289.625 
[115,] 1217.25 1248.029 1173.669 1322.388 1205.589 1290.468 
[116,] 1227.50 1248.873 1174.513 1323.232 1206.434 1291.312 
[117,] 1222.50 1249.717 1175.358 1324.077 1207.278 1292.157 
[118,] 1233.00 1250.563 1176.203 1324.922 1208.123 1293.002 
[119,] 1237.00 1251.408 1177.049 1325.768 1208.969 1293.848 
[120,] 1266.25 1237.837 1163.477 1312.196 1195.397 1280.276 
[121,] 1260.75 1238.674 1164.314 1313.033 1196.234 1281.113 
[122,] 1225.25 1239.511 1165.152 1313.871 1197.072 1281.951 
[123,] 1232.00 1240.350 1165.990 1314.709 1197.911 1282.789 
[124,] 1234.75 1241.189 1166.829 1315.548 1198.749 1283.628 
[125,] 1231.75 1242.028 1167.669 1316.388 1199.589 1284.467 
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APPENDIX 5 

ANALYSIS OF CHAPTER 4 SECTION 4.5 

OUT-OF-SAMPLE DATA 

 25 June -17 Dec 2013 (125 data) 

 

A) ARIMA-EGARCH Model 

 

* Note: ARIMA(0,1,0) - EGARCH(1,1) with normal distribution is significant 

 

(i) ARIMA-EGARCH(1,1) normal distribution 
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ARIMA(0,1,0)-EGARCH(1,1) with normal distribution 
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ARIMA(1,1,1)-EGARCH(1,1) with normal distribution 

 

 
 

 
 

 

 

 

 

 

 

 
 

(ii) ARIMA-EGARCH(1,1) with t distribution 
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(iii) ARIMA-EGARCH(1,1)  with GED distribution 
 

  
 

 
 

 

 

 

 

B) ARIMA-APARCH Model 
> m1=garchFit(~1+aparch(1,1), data=dldt4, trace=F)#aparch(1,1) 

> summary (m1) 

Title:GARCH Modelling  

Call:garchFit(formula = ~1 + aparch(1, 1), data = dldt4, trace = F)  

Mean and Variance Equation:data ~ 1 + aparch(1, 1) 

<environment: 0x0000000004f88f90>[data = dldt4] 

Conditional Distribution:norm  

Coefficient(s): 

       mu      omega     alpha1     gamma1      beta1      delta   

0.0004012  0.0065080  0.0694739  0.5535739  0.9058669  0.4201452   
 

Error Analysis: 

        Estimate  Std. Error  t value Pr(>|t|)     

mu     4.012e-04   7.754e-05    5.174 2.29e-07 *** 

omega  6.508e-03   1.821e-03    3.574 0.000352 *** 

alpha1 6.947e-02   1.751e-02    3.968 7.25e-05 *** 

gamma1 5.536e-01   1.814e-01    3.051 0.002280 **  

beta1  9.059e-01   1.608e-02   56.345  < 2e-16 *** 

delta  4.201e-01   2.972e-01    1.414 0.157505     

--- 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Log Likelihood: -1699.917    normalized:  -1.512382  

Standardised Residuals Tests: 

                               Statistic  p-Value      

 Jarque-Bera Test   R    Chi^2  40015205   0            

 Shapiro-Wilk Test  R    W      0.02701801 0            

 Ljung-Box Test     R    Q(10)  102.544    0            

 Ljung-Box Test     R    Q(15)  102.5723   4.218847e-15 

 Ljung-Box Test     R    Q(20)  102.5903   4.319878e-13 

 Ljung-Box Test     R^2  Q(10)  12.19241   0.2723854    

 Ljung-Box Test     R^2  Q(15)  12.19241   0.6644103    

 Ljung-Box Test     R^2  Q(20)  12.19241   0.909294     

 LM Arch Test       R    TR^2   24.17223   0.01927104   

Information Criterion Statistics: 

     AIC      BIC      SIC     HQIC  

3.035440 3.062262 3.035383 3.045576  

 

> m3=garchFit(~1+aparch(1,1), data=dldt4, trace=F, cond.dist="std")#aparch(1,1) with t 

> summary (m3) 

Title:GARCH Modelling  

Call:garchFit(formula = ~1 + aparch(1, 1), data = dldt4, cond.dist = "std", trace = F)  

Mean and Variance Equation:data ~ 1 + aparch(1, 1) 

<environment: 0x0000000017028298>[data = dldt4] 

Conditional Distribution:std  

Coefficient(s): 

mu        omega       alpha1       gamma1        beta1        delta        shape   

7.0276e-04   4.2577e-05   5.2499e-02  -1.4137e-01   9.4462e-01   1.3289e+00   4.8214e+00

   

Error Analysis: 

         Estimate  Std. Error  t value Pr(>|t|)     

mu      7.028e-04   2.957e-04    2.377 0.017468 *   

omega   4.258e-05   2.082e-05    2.045 0.040814 *   

alpha1  5.250e-02   1.416e-02    3.708 0.000209 *** 

gamma1 -1.414e-01   1.608e-01   -0.879 0.379301     

beta1   9.446e-01   1.297e-02   72.851  < 2e-16 *** 

delta   1.329e+00   4.888e-01    2.718 0.006559 **  

shape   4.821e+00   6.928e-01    6.959 3.42e-12 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Log Likelihood:3449.734    normalized:  3.069159  

Standardised Residuals Tests: 

                                Statistic p-Value    

 Jarque-Bera Test   R    Chi^2  221063    0          

 Shapiro-Wilk Test  R    W      0.7925914 0          

 Ljung-Box Test     R    Q(10)  15.57377  0.1125012  

 Ljung-Box Test     R    Q(15)  23.15934  0.08081493 

 Ljung-Box Test     R    Q(20)  29.36809  0.08076042 

 Ljung-Box Test     R^2  Q(10)  4.374218  0.9288905  

 Ljung-Box Test     R^2  Q(15)  4.855187  0.9932831  

 Ljung-Box Test     R^2  Q(20)  5.405159  0.999495   

 LM Arch Test       R    TR^2   6.25924   0.9024539  

Information Criterion Statistics: 

      AIC       BIC       SIC      HQIC  

-6.125862 -6.094570 -6.125939 -6.114036  

 

> m4=garchFit(~1+aparch(1,1), data=dldt4, trace=F, cond.dist="ged")#aparch(1,1) with ged 

> summary (m4) 

Title:GARCH Modelling  

Call:garchFit(formula = ~1 + aparch(1, 1), data = dldt4, cond.dist = "ged", trace = F)  

Mean and Variance Equation:data ~ 1 + aparch(1, 1) 

<environment: 0x0000000009bc5b48>[data = dldt4] 

Conditional Distribution:ged  

 

Coefficient(s): 

mu       omega      alpha1      gamma1       beta1       delta    shape   

6.2446e-04  9.7087e-05  5.8887e-02  3.2423e-02  9.3436e-01  1.2132e+00  1.1686e+00   

Error Analysis: 

        Estimate  Std. Error  t value Pr(>|t|)     

mu     6.245e-04   2.344e-04    2.664 0.007715 **  

omega  9.709e-05   4.459e-05    2.177 0.029459 *   

alpha1 5.889e-02   1.663e-02    3.541 0.000398 *** 

gamma1 3.242e-02   1.912e-01    0.170 0.865364     

beta1  9.344e-01   1.654e-02   56.491  < 2e-16 *** 

delta  1.213e+00   6.083e-01    1.995 0.046097 *   

shape  1.169e+00   6.107e-02   19.134  < 2e-16 *** 

--- 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Log Likelihood:3409.638    normalized:  3.033486  

 

Standardised Residuals Tests: 

                                Statistic p-Value     

 Jarque-Bera Test   R    Chi^2  483061.4  0           

 Shapiro-Wilk Test  R    W      0.7451382 0           

 Ljung-Box Test     R    Q(10)  25.60213  0.004313801 

 Ljung-Box Test     R    Q(15)  33.46694  0.004043101 

 Ljung-Box Test     R    Q(20)  40.05189  0.004920489 

 Ljung-Box Test     R^2  Q(10)  9.696887  0.4674767   

 Ljung-Box Test     R^2  Q(15)  9.937081  0.8236789   

 Ljung-Box Test     R^2  Q(20)  10.26936  0.9630205   

 LM Arch Test       R    TR^2   6.340672  0.8979447   

 

Information Criterion Statistics: 

      AIC       BIC       SIC      HQIC  

-6.054516 -6.023223 -6.054593 -6.042690  

 

 

 

C) ARIMA-TGARCH Model (or APARCH model with delta=2) 
 

 

* Note: only ARIMA(0,1,0)-TGARCH(1,1) with normal distribution is significant 

 

(i)  ARIMA-TGARCH(1,1)  with normal distribution, delta=2 (or TGARCH) 
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ARIMA(0,1,0)-TGARCH(1,1) with normal distribution 
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(ii)  ARIMA-TGARCH(1,1) with t distribution 
 

 

 

 

 
 

 

 
 

 

 
 

(iii) ARIMA-TGARCH(1,1)  with GED distribution 
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D) ARIMA-GARCH-M Model 
 

(i) ARIMA-GARCH-M(1,1) with normal distribution 
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(ii)  ARIMA-GARCH-M(1,1) with t distribution 
 

  

  
 

(iii) ARIMA-GARCH-M(1,1) with GED distribution 
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1-STEP AND MULTISTEP AHEAD FORECASTING OF ARIMA-EGARCH (AEG)  
 

 

1-step ahead forecast AEG 2-step ahead forecast AEG 
> mae_AEG4=sum(error2_AEG4)/T; [1] 12.90242 

> rmse_AEG4=sqrt(sum(error3_AEG4)/T); rmse_A

EG4 [1] 17.91294 

> mape_AEG4=(100/T)*sum(error4_AEG4); mape_A

EG4 [1] 0.99303 

 

 
> outAEG_1_lo80<-dt4_o[dt4_o<lo80_AEG4];[1] 

1236.25 

> outAEG_1_hi80<-dt4_o[dt4_o>hi80_AEG4];[1] 

1242.75 

> outAEG_1_lo95<-dt4_o[dt4_o<lo95_AEG4];nume

ric(0) 

> outAEG_1_hi95<-dt4_o[dt4_o>hi95_AEG4];nume

ric(0) 

% Forecast data NOT within prediction interval 

80% PI: 1/125 = 0.8%              95% PI: 0/125 = 0% 

 

> mae_AEG4_2=sum(error2_AEG4_2)/T; 15.64307 

> rmse_AEG4_2=sqrt(sum(error3_AEG4_2)/T); 

[1] 21.4087 

> mape_AEG4_2=(100/T)*sum(error4_AEG4_2); 

[1] 1.198982 

 

 
> outAEG_2_lo80<-dt4_o[dt4_o<lo80_AEG4_2]; 

1236.25 1192.00 1212.75 1358.25 1328.00 1318

.50 1323.00 1290.75 1265.50 1285.50 1225.25 

> outAEG_2_hi80<-dt4_o[dt4_o>hi80_AEG4_2]; 

 [1] 1242.75 1252.50 1285.00 1279.75 1327.00

 1309.00 1341.00 1369.25 1365.00 1419.25 141

9.50 1365.50 1316.00 1319.25 1266.25 

> outAEG_2_lo95<-dt4_o[dt4_o<lo95_AEG4_2]; 

[1] 1236.25 1290.75 

> outAEG_2_hi95<-dt4_o[dt4_o>hi95_AEG4_2]; 

[1] 1242.75 1252.50 1327.00 1419.25 1419.50 

1365.50 1319.25 

% Forecast data NOT within prediction interval 

80% PI: 23/125 = 18.4%           95% PI: 9/125 = 7.2% 
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3-step ahead forecast AEG 4-step ahead forecast AEG 
> mae_AEG4_3=sum(error2_AEG4_3)/T; 18.18917 

> rmse_AEG4_3=sqrt(sum(error3_AEG4_3)/T); 

[1] 24.48962 

> mape_AEG4_3=(100/T)*sum(error4_AEG4_3); 

[1] 1.398816 

 

 

> outAEG_3_lo80<-dt4_o[dt4_o<lo80_AEG4_3]; 

 [1] 1236.25 1232.75 1192.00 1212.75 1328.00 

1290.75 1265.50 1306.75 1240.00 1225.25 

> outAEG_3_hi80<-dt4_o[dt4_o>hi80_AEG4_3]; 

 [1] 1255.50 1256.00 1284.75 1327.00 1333.50 

1341.00 1328.50 1369.25 1419.25 1365.50 1349.

25 1319.25 1316.50 1317.50 1344.75 1266.25 

> outAEG_3_lo95<-dt4_o[dt4_o<lo95_AEG4_3]; 

[1] 1232.75 1328.00 1265.50 

> outAEG_3_hi95<-dt4_o[dt4_o>hi95_AEG4_3]; 

[1] 1256.00 1333.50 1419.25 1365.50 1317.50  

1266.25 

% Forecast data NOT within prediction interval 

80% PI: 26/125 = 20.8%           95% PI: 9/125 = 7.2% 
 
 

> mae_AEG4_4=sum(error2_AEG4_4)/T; 21.82219 

> rmse_AEG4_4=sqrt(sum(error3_AEG4_4)/T);  

[1] 28.48176 

> mape_AEG4_4=(100/T)*sum(error4_AEG4_4); 

[1] 1.681157 

 

 
> outAEG_4_lo80<-dt4_o[dt4_o<lo80_AEG4_4]; 

[1] 1236.25 1232.75 1192.00 1212.75 1318.50 

1312.25 1290.75 1240.00 1225.25 

> outAEG_4_hi80<-dt4_o[dt4_o>hi80_AEG4_4]; 

 [1] 1242.75 1252.50 1250.00 1251.75 1291.50

 1327.00 1341.00 1328.50 1369.25 1365.00 141

9.25 1419.50 1407.75 1365.50 1349.25 1319.25

 1316.50 1317.50 1347.75 1266.25 

> outAEG_4_lo95<-dt4_o[dt4_o<lo95_AEG4_4]; 

[1] 1192 

> outAEG_4_hi95<-dt4_o[dt4_o>hi95_AEG4_4]; 

[1] 1252.50 1250.00 1251.75 1341.00 1365.50 

% Forecast data NOT within prediction interval 

80% PI: 29/125 = 23.2%           95% PI: 6/125 = 4.8% 

5-step ahead forecast AEG 7-step ahead forecast AEG 
> mae_AEG4_5=sum(error2_AEG4_5)/T; 22.46578 

> rmse_AEG4_5=sqrt(sum(error3_AEG4_5)/T);  

[1] 28.35659 

> mape_AEG4_5=(100/T)*sum(error4_AEG4_5);  

[1] 1.729642 

 

 
> outAEG_5_lo80<-dt4_o[dt4_o<lo80_AEG4_5]; 

[1] 1236.25 1232.75 1192.00 1265.50 1270.50  

1225.25 

> outAEG_5_hi80<-dt4_o[dt4_o>hi80_AEG4_5]; 

 [1] 1285.00 1279.75 1284.75 1327.00 1341.00 

1369.25 1419.25 1365.50 1349.25 1323.50 1329.

50 1319.25 1316.50 1317.50 1333.00 1266.25 

> outAEG_5_lo95<-dt4_o[dt4_o<lo95_AEG4_5]; 

[1] 1192.0 1265.5 

> outAEG_5_hi95<-dt4_o[dt4_o>hi95_AEG4_5]; 

[1] 1284.75 1419.25 1365.50 1333.00 1266.25 

% Forecast data NOT within prediction interval 

80% PI: 22/125 = 17.6%           95% PI: 7/125 = 5.6% 

 

> mae_AEG4_7=sum(error2_AEG4_7)/T; 23.35416 

> rmse_AEG4_7=sqrt(sum(error3_AEG4_7)/T); 

[1] 29.25207 

> mape_AEG4_7=(100/T)*sum(error4_AEG4_7); 

[1] 1.785301 

 

 
> outAEG_7_lo80<-dt4_o[dt4_o<lo80_AEG4_7]; 

 [1] 1236.25 1232.75 1192.00 1318.50 1312.25

 1301.00 1290.75 1306.75 1307.25 1285.50 

> outAEG_7_hi80<-dt4_o[dt4_o>hi80_AEG4_7]; 

 [1] 1285.00 1279.75 1327.00 1333.50 1341.00

 1372.50 1419.25 1419.50 1407.75 1394.75 139

2.25 1323.50 1329.50 1347.75 1361.00 1349.25

 1354.75 

> outAEG_7_lo95<-dt4_o[dt4_o<lo95_AEG4_7]; 

[1] 1192 

> outAEG_7_hi95<-dt4_o[dt4_o>hi95_AEG4_7]; 

[1] 1327.00 1333.50 1419.25 1419.50 

% Forecast data NOT within prediction interval 

80% PI: 27/125 = 21.6%           95% PI: 5/125 = 4% 
 



248 

10-step ahead forecast AEG 15-step ahead forecast AEG 
> mae_AEG4_10=sum(error2_AEG4_10)/T; 32.01497 

> rmse_AEG4_10=sqrt(sum(error3_AEG4_10)/T);  

[1] 41.2452 

> mape_AEG4_10=(100/T)*sum(error4_AEG4_10);  

[1] 2.440347 

 
> outAEG_10_lo80<-dt4_o[dt4_o<lo80_AEG4_10]; 

[1] 1192.00 1212.75 1328.00 1318.50 1324.00  

1312.25 

> outAEG_10_hi80<-dt4_o[dt4_o>hi80_AEG4_10]; 

 [1] 1285.00 1279.75 1284.75 1291.50 1297.25 

1283.25 1295.75 1327.00 1369.25 1365.00      

1419.25 1419.50 1407.75 1399.50 1365.50      

1319.25 1316.50 1317.50 1333.00 1331.25      

1344.75 1347.75 1361.00 1349.25 

> outAEG_10_lo95<-dt4_o[dt4_o<lo95_AEG4_10]; 

[1] 1192 

> outAEG_10_hi95<-dt4_o[dt4_o>hi95_AEG4_10];o

utAEG_10_hi95 

[1] 1327.00 1369.25 1365.00 1344.75 1347.75 1

361.00 1349.25 

% Forecast data NOT within prediction interval 

80% PI: 30/125 = 24%           95% PI: 8/125 = 6.4% 
 

> mae_AEG4_15=sum(error2_AEG4_15)/T;35.03482 

> rmse_AEG4_15=sqrt(sum(error3_AEG4_15)/T);  

[1] 42.50387 

> mape_AEG4_15=(100/T)*sum(error4_AEG4_15);  

[1] 2.674686 

 
> outAEG_15_lo80<-dt4_o[dt4_o<lo80_AEG4_15]; 

[1] 1192.00 1212.75 1328.00 1318.50 1324.00 

1312.25 1265.50 

> outAEG_15_hi80<-dt4_o[dt4_o>hi80_AEG4_15]; 

 [1] 1333.50 1335.00 1326.00 1331.00 1329.75

 1324.15 1315.00 1369.25 1365.00 1372.50 136

3.00 1375.50 1377.50 1419.25 1365.50 1361.00 

> outAEG_15_lo95<-dt4_o[dt4_o<lo95_AEG4_15]; 

[1] 1192 

> outAEG_15_hi95<-dt4_o[dt4_o>hi95_AEG4_15]; 

[1] 1372.50 1375.50 1377.50 1419.25 

% Forecast data NOT within prediction interval 

80% PI: 23/125 = 18.4%           95% PI: 5/125 =4% 

25-step ahead forecast AEG 125-step ahead forecast AEG 
> mae_AEG4_25=sum(error2_AEG4_25)/T; 35.96708 

> rmse_AEG4_25=sqrt(sum(error3_AEG4_25)/T); 

[1] 47.13697 

> mape_AEG4_25=(100/T)*sum(error4_AEG4_25); 

[1] 2.721687 

 
> outAEG_25_lo80<-dt4_o[dt4_o<lo80_AEG4_25]; 

[1] 1192.00 1318.50 1312.25 1301.00 1290.75 

> outAEG_25_hi80<-dt4_o[dt4_o>hi80_AEG4_25]; 

 [1] 1327.00 1333.50 1335.00 1326.00 1331.00 

1329.75 1369.25 1365.00 1372.50 1363.00      

1375.50 1377.50 1419.25 1419.50 1407.75 1394.

75 1392.25 1399.50 

> outAEG_25_lo95<-dt4_o[dt4_o<lo95_AEG4_25]; 

numeric(0) 

> outAEG_25_hi95<-dt4_o[dt4_o>hi95_AEG4_25]; 

[1] 1419.25 1419.50 1407.75 1394.75 1392.25  

1399.50 

% Forecast data NOT within prediction interval 

80% PI: 23/125 = 18.4%          95% PI: 6/125 =4.8% 
 

> mae_AEG4_n=sum(error2_AEG4_n)/T;  140.4588 

> rmse_AEG4_n=sqrt(sum(error3_AEG4_n)/T); 

[1] 152.7912 

> mape_AEG4_n=(100/T)*sum(error4_AEG4_n); 

[1] 10.7086 

 
> outAEG_n_lo80<-dt4_o[dt4_o<lo80_AEG4_n]; 

numeric(0) 

> outAEG_n_hi80<-dt4_o[dt4_o>hi80_AEG4_n]; 

1341.00 1328.50 1326.50 1329.75 1369.25 1365

.00 1372.50 1363.00 1375.50 1377.50 1419.25 

1419.50 1407.75 1394.75 1392.25 1399.50 1390

.00 1385.00 1387.00 1390.00 1358.25 1363.75 

1328.00 1318.50 1324.00 1312.25 1301.00 1365

.50 1349.25 1323.00 1314.25 1322.75 1333.00 

1341.00 1326.50 1290.75 1306.25 1316.00 1309

.75 1323.50 1329.50 1304.00 1298.50 1265.50 

1285.50 1270.50 1273.50 1319.25 1316.50 1317

.50 1333.00 1331.25 1344.75 1347.75 1361.00 

1349.25 1354.75 1324.00 1306.75 1320.50 1307

.25 1319.00 1307.25 1285.50 1282.50 1281.25 
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1272.50 1286.00 1287.25 1283.50 1275.75     

1257.00 1240.00 1246.25 1243.00 1247.50 1245

.00 1245.50 1253.00 1229.50 1217.25 1227.50 

1222.50 1233.00 1237.00 1266.25 1260.75 1225

.25 1232.00 1234.75 1231.75 

> outAEG_n_lo95<-dt4_o[dt4_o<lo95_AEG4_n]; 

numeric(0) 

> outAEG_n_hi95<-dt4_o[dt4_o>hi95_AEG4_n]; 

1369.25 1365.00 1372.50 1363.00 1375.50 1377

.50 1419.25 1419.50 1407.75 1394.75 1392.25 

1399.50 1390.00 1385.00 1387.00 1390.00 1358

.25 1363.75 1328.00 1324.00 1365.50 1349.25 

1323.00 1314.25 1322.75 1333.00 1341.00 1326

.50 1306.25 1316.00 1309.75 1323.50 1329.50 

1304.00 1298.50 1285.50 1319.25 1316.50 1317

.50 1333.00 1331.25 1344.75 1347.75 1361.00 

1349.25 1354.75 1324.00 1306.75 1320.50 1307

.25 1319.00 1307.25 1285.50 1282.50 1281.25 

1272.50 1286.00 1287.25 1283.50 1275.75 1257

.00 1240.00 1246.25 1243.00 1247.50 1245.00 

1245.50 1253.00 1229.50 1227.50 1222.50 1233

.00 1237.00 1266.25 1260.75 1225.25 1232.00 

1234.75 1231.75 

% Forecast data NOT within prediction interval 

80% PI: 91/125 = 72.8%        95% PI: 79/125 =63.2% 

 

 
 

To find Prediction Intervals for 7-step ahead ARIMA-EGARCH: 

for(i in 1:125){ 

  lo95_AEG4_7[i]<-f_AEG4_7[i]-(1.96*29.3230)#lower limit 95% 

  hi95_AEG4_7[i]<-f_AEG4_7[i]+(1.96*29.3230)#upper limit 95% 

  lo80_AEG4_7[i]<-f_AEG4_7[i]-(1.2816*29.3230)#lower limit 80% 

  hi80_AEG4_7[i]<-f_AEG4_7[i]+(1.2816*29.3230)#upper limit 80% 

} 

cbind(dt4_o,f_AEG4_7,lo95_AEG4_7,hi95_AEG4_7,lo80_AEG4_7,hi80_AEG4_7) 

 
 

 

 

 
 

Simulation Price Data of 7-step ahead using ARIMA(0,1,0)-EGARCH(1,1) with normal  
 

> cbind(dt4_o,f_AEG4_7,lo95_AEG4_7,hi95_AEG4_7,lo80_AEG4_7,hi80_AEG4_7) 
          [,1]     [,2]     [,3]     [,4]     [,5]     [,6] 
  [1,] 1279.00 1284.778 1227.305 1342.251 1247.198 1322.359 
  [2,] 1236.25 1282.810 1225.337 1340.283 1245.230 1320.390 
  [3,] 1232.75 1280.844 1223.371 1338.317 1243.264 1318.425 
  [4,] 1192.00 1278.882 1221.409 1336.355 1241.301 1316.462 
  [5,] 1242.75 1276.922 1219.449 1334.395 1239.342 1314.503 
  [6,] 1252.50 1274.966 1217.493 1332.439 1237.385 1312.546 
  [7,] 1250.00 1273.012 1215.539 1330.485 1235.432 1310.593 
  [8,] 1251.75 1248.085 1190.612 1305.558 1210.504 1285.665 
  [9,] 1212.75 1246.172 1188.699 1303.645 1208.592 1283.753 
 [10,] 1235.25 1244.263 1186.790 1301.736 1206.683 1281.843 
 [11,] 1255.50 1242.357 1184.883 1299.830 1204.776 1279.937 
 [12,] 1256.00 1240.453 1182.980 1297.926 1202.873 1278.033 
 [13,] 1285.00 1238.552 1181.079 1296.025 1200.972 1276.133 
 [14,] 1279.75 1236.655 1179.181 1294.128 1199.074 1274.235 
 [15,] 1284.75 1277.789 1220.316 1335.262 1240.209 1315.370 
 [16,] 1291.50 1275.831 1218.358 1333.304 1238.251 1313.412 
 [17,] 1297.25 1273.876 1216.403 1331.350 1236.296 1311.457 
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 [18,] 1283.25 1271.925 1214.452 1329.398 1234.344 1309.505 
 [19,] 1295.75 1269.976 1212.503 1327.449 1232.395 1307.556 
 [20,] 1327.00 1268.030 1210.557 1325.503 1230.449 1305.610 
 [21,] 1333.50 1266.087 1208.614 1323.560 1228.507 1303.667 
 [22,] 1335.00 1331.457 1273.984 1388.930 1293.876 1369.037 
 [23,] 1326.00 1329.417 1271.944 1386.890 1291.836 1366.997 
 [24,] 1331.00 1327.380 1269.907 1384.853 1289.799 1364.960 
 [25,] 1329.75 1325.346 1267.873 1382.819 1287.766 1362.926 
 [26,] 1324.15 1323.315 1265.842 1380.788 1285.735 1360.896 
 [27,] 1314.50 1321.288 1263.815 1378.761 1283.707 1358.868 
 [28,] 1315.00 1319.263 1261.790 1376.736 1281.683 1356.843 
 [29,] 1309.25 1312.985 1255.512 1370.458 1275.405 1350.565 
 [30,] 1304.75 1310.973 1253.500 1368.446 1273.393 1348.554 
 [31,] 1280.50 1308.965 1251.492 1366.438 1271.384 1346.545 
 [32,] 1282.50 1306.959 1249.486 1364.432 1269.379 1344.539 
 [33,] 1298.25 1304.956 1247.483 1362.430 1267.376 1342.537 
 [34,] 1309.00 1302.957 1245.484 1360.430 1265.377 1340.537 
 [35,] 1341.00 1300.961 1243.488 1358.434 1263.380 1338.541 
 [36,] 1328.50 1338.945 1281.472 1396.418 1301.365 1376.526 
 [37,] 1326.50 1336.894 1279.421 1394.367 1299.313 1374.474 
 [38,] 1329.75 1334.845 1277.372 1392.318 1297.265 1372.426 
 [39,] 1369.25 1332.800 1275.327 1390.273 1295.220 1370.380 
 [40,] 1365.00 1330.758 1273.285 1388.231 1293.178 1368.338 
 [41,] 1372.50 1328.719 1271.246 1386.192 1291.139 1366.299 
 [42,] 1363.00 1326.683 1269.210 1384.156 1289.103 1364.263 
 [43,] 1375.50 1360.912 1303.439 1418.385 1323.331 1398.492 
 [44,] 1377.50 1358.826 1301.353 1416.299 1321.246 1396.407 
 [45,] 1419.25 1356.744 1299.271 1414.217 1319.164 1394.325 
 [46,] 1419.50 1354.666 1297.192 1412.139 1317.085 1392.246 
 [47,] 1407.75 1352.590 1295.117 1410.063 1315.010 1390.170 
 [48,] 1394.75 1350.517 1293.044 1407.991 1312.937 1388.098 
 [49,] 1392.25 1348.448 1290.975 1405.921 1310.868 1386.029 
 [50,] 1399.50 1390.117 1332.644 1447.590 1352.536 1427.697 
 [51,] 1390.00 1387.987 1330.514 1445.460 1350.406 1425.567 
 [52,] 1385.00 1385.860 1328.387 1443.333 1348.280 1423.440 
 [53,] 1387.00 1383.737 1326.264 1441.210 1346.156 1421.317 
 [54,] 1390.00 1381.616 1324.143 1439.090 1344.036 1419.197 
 [55,] 1358.25 1379.500 1322.026 1436.973 1341.919 1417.080 
 [56,] 1363.75 1377.386 1319.913 1434.859 1339.806 1414.966 
 [57,] 1328.00 1361.660 1304.187 1419.134 1324.080 1399.241 
 [58,] 1318.50 1359.574 1302.101 1417.047 1321.994 1397.154 
 [59,] 1324.00 1357.491 1300.018 1414.964 1319.911 1395.071 
 [60,] 1312.25 1355.411 1297.938 1412.884 1317.831 1392.991 
 [61,] 1301.00 1353.334 1295.861 1410.807 1315.754 1390.915 
 [62,] 1365.50 1351.261 1293.787 1408.734 1313.680 1388.841 
 [63,] 1349.25 1349.190 1291.717 1406.663 1311.610 1386.770 
 [64,] 1323.00 1347.183 1289.710 1404.656 1309.602 1384.763 
 [65,] 1314.25 1345.118 1287.645 1402.592 1307.538 1382.699 
 [66,] 1322.75 1343.057 1285.584 1400.531 1305.477 1380.638 
 [67,] 1333.00 1341.000 1283.527 1398.473 1303.419 1378.580 
 [68,] 1341.00 1338.945 1281.472 1396.418 1301.365 1376.525 
 [69,] 1326.50 1336.893 1279.420 1394.366 1299.313 1374.474 
 [70,] 1290.75 1334.845 1277.372 1392.318 1297.265 1372.425 
 [71,] 1306.25 1288.772 1231.299 1346.245 1251.192 1326.353 
 [72,] 1316.00 1286.798 1229.325 1344.271 1249.217 1324.378 
 [73,] 1309.75 1284.826 1227.353 1342.299 1247.246 1322.406 
 [74,] 1323.50 1282.857 1225.384 1340.330 1245.277 1320.438 
 [75,] 1329.50 1280.892 1223.419 1338.365 1243.311 1318.472 
 [76,] 1304.00 1278.929 1221.456 1336.402 1241.349 1316.509 
 [77,] 1298.50 1276.970 1219.496 1334.443 1239.389 1314.550 
 [78,] 1265.50 1296.510 1239.037 1353.983 1258.930 1334.091 
 [79,] 1285.50 1294.524 1237.051 1351.997 1256.944 1332.104 
 [80,] 1270.50 1292.540 1235.067 1350.013 1254.960 1330.121 
 [81,] 1273.50 1290.560 1233.087 1348.033 1252.980 1328.140 
 [82,] 1319.25 1288.583 1231.109 1346.056 1251.002 1326.163 
 [83,] 1316.50 1286.608 1229.135 1344.081 1249.028 1324.188 
 [84,] 1317.50 1284.637 1227.164 1342.110 1247.056 1322.217 
 [85,] 1333.00 1315.481 1258.008 1372.954 1277.901 1353.062 
 [86,] 1331.25 1313.466 1255.993 1370.939 1275.885 1351.046 
 [87,] 1344.75 1311.453 1253.980 1368.926 1273.873 1349.034 
 [88,] 1347.75 1309.444 1251.971 1366.917 1271.863 1347.024 
 [89,] 1361.00 1307.437 1249.964 1364.910 1269.857 1345.018 
 [90,] 1349.25 1305.434 1247.961 1362.907 1267.854 1343.014 
 [91,] 1354.75 1303.434 1245.961 1360.907 1265.854 1341.014 
 [92,] 1324.00 1352.674 1295.201 1410.147 1315.094 1390.255 
 [93,] 1306.75 1350.602 1293.129 1408.075 1313.021 1388.182 
 [94,] 1320.50 1348.532 1291.059 1406.005 1310.952 1386.113 
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 [95,] 1307.25 1346.466 1288.993 1403.939 1308.886 1384.046 
 [96,] 1319.00 1344.403 1286.930 1401.876 1306.823 1381.983 
 [97,] 1307.25 1342.343 1284.870 1399.816 1304.763 1379.923 
 [98,] 1285.50 1340.286 1282.813 1397.759 1302.706 1377.867 
 [99,] 1282.50 1283.530 1226.057 1341.003 1245.950 1321.111 
[100,] 1281.25 1281.564 1224.091 1339.037 1243.983 1319.144 
[101,] 1272.50 1279.600 1222.127 1337.073 1242.020 1317.180 
[102,] 1286.00 1277.639 1220.166 1335.113 1240.059 1315.220 
[103,] 1287.25 1275.682 1218.209 1333.155 1238.101 1313.262 
[104,] 1283.50 1273.727 1216.254 1331.200 1236.147 1311.308 
[105,] 1275.75 1271.776 1214.302 1329.249 1234.195 1309.356 
[106,] 1257.00 1273.795 1216.322 1331.268 1236.215 1311.376 
[107,] 1240.00 1271.844 1214.370 1329.317 1234.263 1309.424 
[108,] 1246.25 1269.895 1212.422 1327.368 1232.314 1307.475 
[109,] 1243.00 1267.949 1210.476 1325.422 1230.369 1305.529 
[110,] 1247.50 1266.006 1208.533 1323.479 1228.426 1303.587 
[111,] 1245.00 1264.066 1206.593 1321.540 1226.486 1301.647 
[112,] 1245.50 1262.130 1204.657 1319.603 1224.549 1299.710 
[113,] 1253.00 1243.592 1186.119 1301.065 1206.011 1281.172 
[114,] 1229.50 1241.686 1184.213 1299.159 1204.106 1279.267 
[115,] 1217.25 1239.784 1182.311 1297.257 1202.203 1277.364 
[116,] 1227.50 1237.884 1180.411 1295.357 1200.304 1275.464 
[117,] 1222.50 1235.987 1178.514 1293.460 1198.407 1273.568 
[118,] 1233.00 1234.094 1176.620 1291.567 1196.513 1271.674 
[119,] 1237.00 1232.203 1174.730 1289.676 1194.622 1269.783 
[120,] 1266.25 1235.105 1177.632 1292.578 1197.524 1272.685 
[121,] 1260.75 1233.212 1175.739 1290.685 1195.632 1270.793 
[122,] 1225.25 1231.323 1173.850 1288.796 1193.742 1268.903 
[123,] 1232.00 1229.436 1171.963 1286.909 1191.856 1267.016 
[124,] 1234.75 1227.552 1170.079 1285.025 1189.972 1265.133 
[125,] 1231.75 1225.671 1168.198 1283.144 1188.091 1263.252 

 

 

1-STEP AND MULTISTEP AHEAD FORECASTING OF ARIMA-TGARCH (ATG)  
 

 

 

1-step ahead forecast ATG 2-step ahead forecast ATG 
> mae_ATG4=sum(error2_ATG4)/T; 12.91445 

> rmse_ATG4=sqrt(sum(error3_ATG4)/T);  

[1] 17.85786 

> mape_ATG4=(100/T)*sum(error4_ATG4); 

[1] 0.9943338 

 

 
> outATG_1_lo80<-dt4_o[dt4_o<lo80_ATG4]; 

[1] 1236.25 

> outATG_1_hi80<-dt4_o[dt4_o>hi80_ATG4]; 

numeric(0) 

> outATG_1_lo95<-dt4_o[dt4_o<lo95_ATG4]; 

numeric(0) 

> outATG_1_hi95<-dt4_o[dt4_o>hi95_ATG4]; 

numeric(0) 

% Forecast data NOT within prediction interval 

80% PI: 1/125 = 0.8%              95% PI: 0/125 = 0% 
 

 

> mae_ATG4_2=sum(error2_ATG4_2)/T; 15.73296 

> rmse_ATG4_2=sqrt(sum(error3_ATG4_2)/T); 

[1] 21.29756 

> mape_ATG4_2=(100/T)*sum(error4_ATG4_2); 

[1] 1.208305 

 

 
> outATG_2_lo80<-dt4_o[dt4_o<lo80_ATG4_2]; 

 [1] 1236.25 1192.00 1212.75 1358.25 1363.75

 1328.00 1318.50 1323.00 1290.75 1265.50 128

5.50 1257.00 1225.25 

> outATG_2_hi80<-dt4_o[dt4_o>hi80_ATG4_2]; 

 [1] 1242.75 1252.50 1285.00 1327.00 1341.00

 1369.25 1365.00 1419.25 1419.50 1365.50 131

9.25 1266.25 

> outATG_2_lo95<-dt4_o[dt4_o<lo95_ATG4_2]; 

[1] 1236.25 1192.00 1318.50 1323.00 1290.75 

1225.25 

> outATG_2_hi95<-dt4_o[dt4_o>hi95_ATG4_2]; 

[1] 1242.75 1252.50 1327.00 1365.50 1319.25 
% Forecast data NOT within prediction interval 

80% PI: 25/125 = 20%           95% PI: 11/125 = 8.8% 
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3-step ahead forecast ATG 4-step ahead forecast ATG 
> mae_ATG4_3=sum(error2_ATG4_3)/T; 18.20806 

> rmse_ATG4_3=sqrt(sum(error3_ATG4_3)/T); 

[1] 24.38725 

> mape_ATG4_3=(100/T)*sum(error4_ATG4_3); 

[1] 1.40284 

 

 
> outATG_3_lo80<-dt4_o[dt4_o<lo80_ATG4_3]; 

1236.25 1232.75 1192.00 1212.75 1358.25 1328.

00 1314.25 1290.75 1298.50 1265.50 1306.75 12

85.50 1282.50 1240.00 1246.25 1225.25 1232.00 

> outATG_3_hi80<-dt4_o[dt4_o>hi80_ATG4_3]; 

 [1] 1255.50 1256.00 1327.00 1333.50 1341.00 

1369.25 1419.25 1365.50 1349.25 1319.25 1316.

50 1317.50 1266.25 

> outATG_3_lo95<-dt4_o[dt4_o<lo95_ATG4_3]; 

[1] 1236.25 1232.75 1328.00 1265.50 

> outATG_3_hi95<-dt4_o[dt4_o>hi95_ATG4_3]; 

[1] 1333.50 1419.25 1365.50 

% Forecast data NOT within prediction interval 

80% PI: 30/125 = 24%           95% PI: 7/125 = 5.6% 
 

> mae_ATG4_4=sum(error2_ATG4_4)/T; 21.55504 

> rmse_ATG4_4=sqrt(sum(error3_ATG4_4)/T); 

[1] 28.28821 

> mape_ATG4_4=(100/T)*sum(error4_ATG4_4); 

[1] 1.66681 

 

 
>outATG_4_lo80<-dt4_o[dt4_o<lo80_ATG4_4];123

6.25 1232.75 1192.00 1212.75 1280.50 1328.00

 1318.50 1324.00 1312.25 1290.75 1306.25 126

5.50 1282.50 1281.25 1240.00 1246.25 1225.25 

> outATG_4_hi80<-dt4_o[dt4_o>hi80_ATG4_4]; 

 [1] 1242.75 1252.50 1250.00 1251.75 1341.00

 1328.50 1369.25 1419.25 1419.50 1365.50 131

9.25 1316.50 1317.50 1266.25 

> outATG_4_lo95<-dt4_o[dt4_o<lo95_ATG4_4]; 

[1] 1232.75 1192.00 

> outATG_4_hi95<-dt4_o[dt4_o>hi95_ATG4_4]; 

[1] 1252.50 1250.00 1251.75 1341.00 

% Forecast data NOT within prediction interval 

80% PI: 31/125 = 24.8%           95% PI: 6/125 = 4.8% 

 

5-step ahead forecast ATG 7-step ahead forecast ATG 
> mae_ATG4_5=sum(error2_ATG4_5)/T; 22.71886 

> rmse_ATG4_5=sqrt(sum(error3_ATG4_5)/T); 

[1] 28.75122 

> mape_ATG4_5=(100/T)*sum(error4_ATG4_5);  

[1] 1.754874 

 

 
> outATG_5_lo80<-dt4_o[dt4_o<lo80_ATG4_5]; 

 [1] 1236.25 1232.75 1192.00 1242.75 1358.25 

1318.50 1324.00 1312.25 1265.50 1285.50 1270.

50 1306.75 1307.25 1240.00 1225.25 1231.75 

> outATG_5_hi80<-dt4_o[dt4_o>hi80_ATG4_5]; 

 1285.00 1279.75 1284.75 1327.00 1419.25 1365

.50 1319.25 1316.50 1317.50 1333.00 1266.25 

> outATG_5_lo95<-dt4_o[dt4_o<lo95_ATG4_5]; 

[1] 1232.75 1192.00 1265.50 1270.50 

> outATG_5_hi95<-dt4_o[dt4_o>hi95_ATG4_5]; 

[1] 1333 

% Forecast data NOT within prediction interval 

80% PI: 27/125 = 21.6%           95% PI: 5/125 = 4% 

 

> mae_ATG4_7=sum(error2_ATG4_7)/T; 24.34648 

> rmse_ATG4_7=sqrt(sum(error3_ATG4_7)/T); 

[1] 29.82328 

> mape_ATG4_7=(100/T)*sum(error4_ATG4_7); 

[1] 1.873586 

 

 
> outATG_7_lo80<-dt4_o[dt4_o<lo80_ATG4_7]; 

1236.25 1232.75 1192.00 1242.75 1252.50 1250

.00 1212.75 1358.25 1318.50 1324.00 1312.25 

[12] 1301.00 1290.75 1306.75 1307.25 1319.00

 1307.25 1285.50 1240.00 

> outATG_7_hi80<-dt4_o[dt4_o>hi80_ATG4_7]; 

[1] 1327.00 1333.50 1419.25 1419.50 1407.75 

1361.00 

> outATG_7_lo95<-dt4_o[dt4_o<lo95_ATG4_7]; 

[1] 1192.00 1301.00 1290.75 1285.50 

> outATG_7_hi95<-dt4_o[dt4_o>hi95_ATG4_7]; 

numeric(0) 

% Forecast data NOT within prediction interval 

80% PI: 25/125 = 20%           95% PI: 4/125 = 3.2% 
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10-step ahead forecast ATG 15-step ahead forecast ATG 
> mae_ATG4_10=sum(error2_ATG4_10)/T; 32.14324 

> rmse_ATG4_10=sqrt(sum(error3_ATG4_10)/T);  

[1] 39.9784 

> mape_ATG4_10=(100/T)*sum(error4_ATG4_10);  

[1] 2.472696 

 
> outATG_10_lo80<-dt4_o[dt4_o<lo80_ATG4_10]; 

1236.25 1232.75 1192.00 1212.75 1235.25 1328.

00 1318.50 1324.00 1312.25 1285.50 1282.50 12

81.25 

> outATG_10_hi80<-dt4_o[dt4_o>hi80_ATG4_10]; 

 [1] 1291.50 1297.25 1295.75 1327.00 1369.25 

1365.00 1365.50 1333.00 1331.25 1344.75 1347.

75 1361.00 1349.25 

> outATG_10_lo95<-dt4_o[dt4_o<lo95_ATG4_10]; 

[1] 1192.00 1212.75 1318.50 1324.00 1312.25 

> outATG_10_hi95<-dt4_o[dt4_o>hi95_ATG4_10]; 

[1] 1327 1361 

% Forecast data NOT within prediction interval 

80% PI: 25/125 = 20%           95% PI: 6/125 = 4.8% 

 

> mae_ATG4_15=sum(error2_ATG4_15)/T;37.06404 

> rmse_ATG4_15=sqrt(sum(error3_ATG4_15)/T); 

[1] 45.28961 

> mape_ATG4_15=(100/T)*sum(error4_ATG4_15);  

[1] 2.858706 

 
> outATG_15_lo80<-dt4_o[dt4_o<lo80_ATG4_15]; 

1232.75 1192.00 1212.75 1235.25 1358.25 1363

.75 1328.00 1318.50 1324.00 1312.25 1265.50 

1270.50 1273.50 1285.50 1282.50 1281.25 1272

.50 1286.00 1287.25 1283.50 1275.75 1217.25 

1227.50 1222.50 

> outATG_15_hi80<-dt4_o[dt4_o>hi80_ATG4_15]; 

1369.25 1365.00 1372.50 1375.50 1377.50 1419

.25 

> outATG_15_lo95<-dt4_o[dt4_o<lo95_ATG4_15]; 

1192.00 1328.00 1318.50 1324.00 1312.25 1272

.50 1275.75 

> outATG_15_hi95<-dt4_o[dt4_o>hi95_ATG4_15]; 

1419.25 

% Forecast data NOT within prediction interval 

80% PI: 30/125 =24 %           95% PI: 8/125 =6.4% 

25-step ahead forecast ATG 125-step ahead forecast ATG 
> mae_ATG4_25=sum(error2_ATG4_25)/T; 42.28412 

> rmse_ATG4_25=sqrt(sum(error3_ATG4_25)/T); 

[1] 51.03541 

> mape_ATG4_25=(100/T)*sum(error4_ATG4_25); 

[1] 3.262471 

 
> outATG_25_lo80<-dt4_o[dt4_o<lo80_ATG4_25]; 

1232.75 1192.00 1212.75 1235.25 1328.00 1318.50 

1324.00 1312.25 1301.00 1349.25 1323.00 1314.25 

1322.75 1333.00 1341.00 1326.50 1290.751306.25 1

316.00 1309.75 1323.50 1329.50 1265.50 1270.50 1

273.50 1285.50 1282.50 1281.25 1229.50 1217.25 1

227.50 1222.50 1233.00 1237.00 1225.25 1232.00 1

234.75 1231.75 

> outATG_25_hi80<-dt4_o[dt4_o>hi80_ATG4_25]; 

[1] 1419.25 1419.50 1407.75 1399.50 

> outATG_25_lo95<-dt4_o[dt4_o<lo95_ATG4_25]; 

1192.00 1318.50 1312.25 1301.00 1323.00 1314.25 

1322.75 1326.50 1290.75 1306.25 1316.00 1309.75 

1323.50 1329.50 

> outATG_25_hi95<-dt4_o[dt4_o>hi95_ATG4_25]; 

numeric(0) 

% Forecast data NOT within prediction interval 

80% PI: 42/125 = 33.6%       95% PI: 14/125 =11.2% 

> mae_ATG4_n=sum(error2_ATG4_n)/T; 49.04749 

> rmse_ATG4_n=sqrt(sum(error3_ATG4_n)/T); 

[1] 63.36834 

> mape_ATG4_n=(100/T)*sum(error4_ATG4_n);  

[1] 3.817525 

 
> outATG_n_lo80<-dt4_o[dt4_o<lo80_ATG4_n]; 

 [1] 1192.00 1212.75 1272.50 1275.75 1257.00

 1240.00 1246.25 1243.00 1247.50 1245.00 124

5.50 1253.00 1229.50 1217.25 1227.50 1222.50

 1233.00 1237.00 1266.25 1260.75 1225.25 123

2.00 1234.75 1231.75 

> outATG_n_hi80<-dt4_o[dt4_o>hi80_ATG4_n]; 

[1] 1419.25 1419.50 1407.75 1394.75 1399.50 

> outATG_n_lo95<-dt4_o[dt4_o<lo95_ATG4_n]; 

 [1] 1229.50 1217.25 1227.50 1222.50 1233.00

 1237.00 1225.25 1232.00 1234.75 1231.75 

> outATG_n_hi95<-dt4_o[dt4_o>hi95_ATG4_n]; 

numeric(0) 

% Forecast data NOT within prediction interval 

80% PI: 29/125 = 23.2%           95% PI: 10/125 =8% 
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To find Prediction Interval for 7-step ahead ARIMA-TGARCH: 

for(i in 1:125){ 

  lo95_ATG4_7[i]<-f_ATG4_7[i]-(1.96*28.6036)#lower limit 95% 

  hi95_ATG4_7[i]<-f_ATG4_7[i]+(1.96*28.6036)#upper limit 95% 

  lo80_ATG4_7[i]<-f_ATG4_7[i]-(1.2816*28.6036)#lower limit 80% 

  hi80_ATG4_7[i]<-f_ATG4_7[i]+(1.2816*28.6036)#upper limit 80% 

} 

cbind(dt4_o,f_ATG4_7,lo95_ATG4_7,hi95_ATG4_7,lo80_ATG4_7,hi80_ATG4_7) 

 

Simulation Price Data of 7-step ahead using ARIMA(0,1,0)-TGARCH(1,1) with normal  

 
> cbind(dt4_o,f_ATG4_7,lo95_ATG4_7,hi95_ATG4_7,lo80_ATG4_7,hi80_ATG4_7) 
          [,1]     [,2]     [,3]     [,4]     [,5]     [,6] 
  [1,] 1279.00 1287.369 1231.306 1343.432 1250.710 1324.027 
  [2,] 1236.25 1287.987 1231.924 1344.051 1251.329 1324.646 
  [3,] 1232.75 1288.607 1232.544 1344.670 1251.948 1325.265 
  [4,] 1192.00 1289.226 1233.163 1345.289 1252.568 1325.884 
  [5,] 1242.75 1289.846 1233.783 1345.909 1253.187 1326.504 
  [6,] 1252.50 1290.466 1234.403 1346.529 1253.808 1327.124 
  [7,] 1250.00 1291.086 1235.023 1347.149 1254.428 1327.745 
  [8,] 1251.75 1250.601 1194.538 1306.664 1213.943 1287.259 
  [9,] 1212.75 1251.202 1195.139 1307.265 1214.544 1287.860 
 [10,] 1235.25 1251.804 1195.741 1307.867 1215.145 1288.462 
 [11,] 1255.50 1252.405 1196.342 1308.468 1215.747 1289.064 
 [12,] 1256.00 1253.007 1196.944 1309.070 1216.349 1289.666 
 [13,] 1285.00 1253.610 1197.547 1309.673 1216.951 1290.268 
 [14,] 1279.75 1254.212 1198.149 1310.276 1217.554 1290.871 
 [15,] 1284.75 1280.365 1224.302 1336.428 1243.707 1317.024 
 [16,] 1291.50 1280.981 1224.918 1337.044 1244.322 1317.639 
 [17,] 1297.25 1281.597 1225.533 1337.660 1244.938 1318.255 
 [18,] 1283.25 1282.213 1226.150 1338.276 1245.554 1318.871 
 [19,] 1295.75 1282.829 1226.766 1338.892 1246.171 1319.487 
 [20,] 1327.00 1283.446 1227.383 1339.509 1246.787 1320.104 
 [21,] 1333.50 1284.063 1228.000 1340.126 1247.404 1320.721 
 [22,] 1335.00 1334.141 1278.078 1390.204 1297.483 1370.799 
 [23,] 1326.00 1334.782 1278.719 1390.845 1298.124 1371.441 
 [24,] 1331.00 1335.424 1279.361 1391.487 1298.766 1372.082 
 [25,] 1329.75 1336.066 1280.003 1392.129 1299.408 1372.724 
 [26,] 1324.15 1336.708 1280.645 1392.771 1300.050 1373.367 
 [27,] 1314.50 1337.351 1281.288 1393.414 1300.693 1374.009 
 [28,] 1315.00 1337.994 1281.931 1394.057 1301.335 1374.652 
 [29,] 1309.25 1315.632 1259.569 1371.695 1278.974 1352.291 
 [30,] 1304.75 1316.265 1260.202 1372.328 1279.606 1352.923 
 [31,] 1280.50 1316.897 1260.834 1372.960 1280.239 1353.556 
 [32,] 1282.50 1317.530 1261.467 1373.594 1280.872 1354.189 
 [33,] 1298.25 1318.164 1262.101 1374.227 1281.505 1354.822 
 [34,] 1309.00 1318.798 1262.734 1374.861 1282.139 1355.456 
 [35,] 1341.00 1319.431 1263.368 1375.495 1282.773 1356.090 
 [36,] 1328.50 1341.645 1285.582 1397.708 1304.986 1378.303 
 [37,] 1326.50 1342.290 1286.227 1398.353 1305.631 1378.948 
 [38,] 1329.75 1342.935 1286.872 1398.998 1306.277 1379.593 
 [39,] 1369.25 1343.580 1287.517 1399.644 1306.922 1380.239 
 [40,] 1365.00 1344.226 1288.163 1400.289 1307.568 1380.885 
 [41,] 1372.50 1344.873 1288.810 1400.936 1308.214 1381.531 
 [42,] 1363.00 1345.519 1289.456 1401.582 1308.861 1382.177 
 [43,] 1375.50 1363.655 1307.592 1419.718 1326.997 1400.314 
 [44,] 1377.50 1364.311 1308.248 1420.374 1327.652 1400.969 
 [45,] 1419.25 1364.967 1308.904 1421.030 1328.308 1401.625 
 [46,] 1419.50 1365.623 1309.560 1421.686 1328.964 1402.281 
 [47,] 1407.75 1366.279 1310.216 1422.342 1329.621 1402.938 
 [48,] 1394.75 1366.936 1310.873 1422.999 1330.278 1403.594 
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 [49,] 1392.25 1367.593 1311.530 1423.656 1330.935 1404.252 
 [50,] 1399.50 1392.919 1336.856 1448.982 1356.261 1429.578 
 [51,] 1390.00 1393.589 1337.526 1449.652 1356.931 1430.247 
 [52,] 1385.00 1394.259 1338.196 1450.322 1357.600 1430.917 
 [53,] 1387.00 1394.929 1338.866 1450.992 1358.271 1431.587 
 [54,] 1390.00 1395.600 1339.537 1451.663 1358.941 1432.258 
 [55,] 1358.25 1396.271 1340.208 1452.334 1359.612 1432.929 
 [56,] 1363.75 1396.942 1340.879 1453.005 1360.283 1433.600 
 [57,] 1328.00 1364.406 1308.343 1420.469 1327.747 1401.064 
 [58,] 1318.50 1365.062 1308.998 1421.125 1328.403 1401.720 
 [59,] 1324.00 1365.718 1309.655 1421.781 1329.059 1402.376 
 [60,] 1312.25 1366.374 1310.311 1422.437 1329.716 1403.033 
 [61,] 1301.00 1367.031 1310.968 1423.094 1330.373 1403.689 
 [62,] 1365.50 1367.688 1311.625 1423.751 1331.030 1404.347 
 [63,] 1349.25 1368.346 1312.283 1424.409 1331.687 1405.004 
 [64,] 1323.00 1349.899 1293.836 1405.962 1313.240 1386.557 
 [65,] 1314.25 1350.548 1294.485 1406.611 1313.889 1387.206 
 [66,] 1322.75 1351.197 1295.134 1407.260 1314.538 1387.855 
 [67,] 1333.00 1351.846 1295.783 1407.909 1315.188 1388.505 
 [68,] 1341.00 1352.496 1296.433 1408.559 1315.838 1389.155 
 [69,] 1326.50 1353.146 1297.083 1409.209 1316.488 1389.805 
 [70,] 1290.75 1353.797 1297.734 1409.860 1317.139 1390.455 
 [71,] 1306.25 1291.371 1235.307 1347.434 1254.712 1328.029 
 [72,] 1316.00 1291.991 1235.928 1348.054 1255.333 1328.650 
 [73,] 1309.75 1292.612 1236.549 1348.675 1255.954 1329.271 
 [74,] 1323.50 1293.234 1237.171 1349.297 1256.575 1329.892 
 [75,] 1329.50 1293.855 1237.792 1349.919 1257.197 1330.514 
 [76,] 1304.00 1294.477 1238.414 1350.541 1257.819 1331.136 
 [77,] 1298.50 1295.100 1239.037 1351.163 1258.441 1331.758 
 [78,] 1265.50 1299.124 1243.061 1355.187 1262.466 1335.783 
 [79,] 1285.50 1299.749 1243.686 1355.812 1263.090 1336.407 
 [80,] 1270.50 1300.374 1244.311 1356.437 1263.715 1337.032 
 [81,] 1273.50 1300.999 1244.936 1357.062 1264.340 1337.657 
 [82,] 1319.25 1301.624 1245.561 1357.687 1264.966 1338.283 
 [83,] 1316.50 1302.250 1246.187 1358.313 1265.591 1338.908 
 [84,] 1317.50 1302.876 1246.813 1358.939 1266.218 1339.534 
 [85,] 1333.00 1318.133 1262.070 1374.196 1281.475 1354.792 
 [86,] 1331.25 1318.767 1262.704 1374.830 1282.109 1355.425 
 [87,] 1344.75 1319.401 1263.338 1375.464 1282.743 1356.059 
 [88,] 1347.75 1320.035 1263.972 1376.098 1283.377 1356.694 
 [89,] 1361.00 1320.670 1264.607 1376.733 1284.011 1357.328 
 [90,] 1349.25 1321.305 1265.242 1377.368 1284.646 1357.963 
 [91,] 1354.75 1321.940 1265.877 1378.003 1285.282 1358.598 
 [92,] 1324.00 1355.401 1299.338 1411.464 1318.743 1392.060 
 [93,] 1306.75 1356.053 1299.990 1412.116 1319.394 1392.711 
 [94,] 1320.50 1356.705 1300.642 1412.768 1320.046 1393.363 
 [95,] 1307.25 1357.357 1301.294 1413.420 1320.699 1394.015 
 [96,] 1319.00 1358.009 1301.946 1414.073 1321.351 1394.668 
 [97,] 1307.25 1358.662 1302.599 1414.725 1322.004 1395.321 
 [98,] 1285.50 1359.315 1303.252 1415.379 1322.657 1395.974 
 [99,] 1282.50 1286.118 1230.055 1342.181 1249.460 1322.776 
[100,] 1281.25 1286.736 1230.673 1342.799 1250.078 1323.395 
[101,] 1272.50 1287.355 1231.292 1343.418 1250.696 1324.013 
[102,] 1286.00 1287.974 1231.911 1344.037 1251.315 1324.632 
[103,] 1287.25 1288.593 1232.530 1344.656 1251.934 1325.251 
[104,] 1283.50 1289.212 1233.149 1345.275 1252.554 1325.871 
[105,] 1275.75 1289.832 1233.769 1345.895 1253.174 1326.490 
[106,] 1257.00 1276.363 1220.300 1332.426 1239.705 1313.022 
[107,] 1240.00 1276.977 1220.914 1333.040 1240.318 1313.635 
[108,] 1246.25 1277.591 1221.528 1333.654 1240.932 1314.249 
[109,] 1243.00 1278.205 1222.142 1334.268 1241.547 1314.863 
[110,] 1247.50 1278.819 1222.756 1334.882 1242.161 1315.478 
[111,] 1245.00 1279.434 1223.371 1335.497 1242.776 1316.093 
[112,] 1245.50 1280.049 1223.986 1336.112 1243.391 1316.708 
[113,] 1253.00 1246.099 1190.036 1302.162 1209.440 1282.757 
[114,] 1229.50 1246.698 1190.635 1302.761 1210.039 1283.356 
[115,] 1217.25 1247.297 1191.234 1303.360 1210.639 1283.955 
[116,] 1227.50 1247.897 1191.834 1303.960 1211.238 1284.555 
[117,] 1222.50 1248.497 1192.434 1304.560 1211.838 1285.155 
[118,] 1233.00 1249.097 1193.034 1305.160 1212.438 1285.755 
[119,] 1237.00 1249.697 1193.634 1305.760 1213.039 1286.356 
[120,] 1266.25 1237.595 1181.532 1293.658 1200.936 1274.253 
[121,] 1260.75 1238.190 1182.127 1294.253 1201.531 1274.848 
[122,] 1225.25 1238.785 1182.722 1294.848 1202.126 1275.443 
[123,] 1232.00 1239.380 1183.317 1295.443 1202.722 1276.039 
[124,] 1234.75 1239.976 1183.913 1296.039 1203.318 1276.635 
[125,] 1231.75 1240.572 1184.509 1296.635 1203.914 1277.231 
 

 

 
 

 


