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ABSTRAK 

 

Kajian ini menyelidiki prestasi kaedah Multi-Resolution Optimize Relative Step Size 

Random Search (MR-ORSSRS) untuk meningkatkan jumlah pengeluaran tenaga ladang 

angin. Penyelidikan ini telah dilakukan mengikut susunan ladang angin Horns Rev yang 

mempunyai 80 turbin angin untuk mengatasi masalah seperti perbezaan arah angin antara 

170°, 200°, 220°, 240°, 250° dan 270°, lima turbin angin yang mengalami kerosakan 

serta perubahan angin yang tidak tertentu. Pengenaan fungsi Multi-Resolution daripada 

(Ahmad et al., 2014) adalah digunakan untuk menambahbaik kadar penumpuan Optimize 

Relative Step Size Random Search demi meningkatkan jumlah pengeluaran tenaga ladang 

angin secara langsung. Fungsi Multi-Resolution (MR) ini boleh meningkatkan kelajuan 

kadar penumpuan dengan ketara kerana kaedah ini mengusahakan parameter kawalan 

berdimensi dengan beberapa tahap penambahbaikan. Secara khususnya, fungsi ini 

memulakan penambahbaikan dengan parameter kawalan dimensi rendah dan 

meningkatkan jumlah dimensi pada tahap penambahbaikan seterusnya. Oleh itu, usaha 

pengiraan untuk mendapatkan parameter kawalan optimum boleh dikurangkan. 

Walaupun MR-SPSA dikenalkan untuk menyelesaikan masalah berdimensi tinggi secara 

langsung dengan kadar penumpuan yang laju, ia tidak mampu menghasilkan jumlah 

tenaga ladang angin yang optimum. Ini disebabkan, SPSA merupakan kaedah 

penambahbaikan yang tidak mempunyai daya ingatan oleh itu, ia tidak berupaya untuk 

menyimpan parameter kawalan optimum yang dihasilkan. Di samping itu, ORSSRS 

adalah kaedah penambahbaikan yang mempunyai daya ingatan. Justeru, ia bermampu 

untuk menyimpan parameter kawalan optimum sementara menghasilkan 

penambahnaikan yang stabil. Namun demikian, kaedah ORSSRS sendiri tidak mampu 

membekalkan kadar penumpuan yang mencukupi untuk menyelesaikan masalah ladang 

angin secara langsung. Oleh itu, fungsi MR digabungkan demi meningkatkan kadar 

penumpuan kaedah ORSSRS. Dalam kajian ini, prestasi kaedah MR-ORSSRS 

dibandingkan dengan kaedah MR-SPSA dari segi kadar penumpuan, ketepatan dan 

kekukuhan dalam peningkatan jumlah pengeluaran tenaga ladang angin. Hasilnya 

menunjukan kaedah MR-ORSSRS telah menewaskan kaedah penanda aras MR-SPSA 

dari segi kadar penumpuan bagi semua kes kajian. Khususnya, ia telah menambahbaikan 

kadar penumpuan untuk kes perbezaan arah angin antara 170°, 200°, 220°, 240°, 250° 

dan 270°  sebanyak 88.89%, 88.89%, 41.66%, 88.89%, 88.89%  dan 66.67% . 

Sementara itu, 66.67% untuk kes lima turbin angin yang mengalami kerosakan. Selain 

itu, kaedah MR-ORSSRS telah berjaya meningkatkan jumlah pengeluaran tenaga ladang 

angin dalam mengatasi masalah pebezaan arah angin antara 170°, 200°, 220°, 240° dan 

270°  serta kegagalan turbin angin berbanding kaedah MR-SPSA. Dari segi kadar 

penumpuan, MR-ORSSRS juga menghasilkan kadar penumpuan yang lebih laju dalam 

mengatasi masalah perbezaan arah angin sementara kegagalan turbin angin melanda. 

Oleh demikian, ini telah menunjukan kaedah MR-ORSSRS yang dicadangkan adalah 

berkesan untuk menghasilkan jumlah pengeluaran tenaga dengan kadar penumpuan yang 

lebih laju walaupun berlaku kes kegagalan turbin angin dan perubahan angin yang tidak 

tertentu berbanding dengan kaedah penanda aras MR-SPSA. 
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ABSTRACT 

 

This study investigates the performance of Multi-Resolution Optimize Relative Step Size 

Random Search (MR-ORSSRS) based method in maximizing the total power production 

of wind farms. The performance is investigated based on the Horns Rev wind farm layout 

which consists of 80 wind turbines under the case studies of different wind directions at 

170°, 200°, 220°, 240°, 250° and 270°, five wind turbines failures and non-static wind 

variations. The implementation of Multi-Resolution (MR) function is used to improve the 

convergence speed of the Optimize Relative Step Size Random Search in the case of 

maximizing the total power production of a wind farm in real-time optimization. The MR 

function is significant in improving the convergence speed since this approach exploits 

the dimension of the design parameter using several optimization stages. In particular, it 

firstly adopts a small size of design parameter tuning followed by a bigger size of design 

parameter tuning in the following stages. Therefore, it is expected that less computation 

effort is required to obtain the optimal design parameter. Even though the Multi-

Resolution Stochastic Perturbation Simultaneous Approximation (MR-SPSA) is 

developed to solve the real-time high-dimensional problem with faster convergence, the 

obtained total power production of the wind farm is still not optimum. This is because the 

SPSA is a memory-less structure type optimization that limits the storage of the best 

design parameter. Alternatively, ORSSRS based method is a memory type optimization 

structure. Hence, it can store the best design parameter value while producing consistent 

objective function. However, the ORSSRS based method alone does not have the 

sufficient convergence speed to optimize wind farm problem in real time. Therefore, the 

MR function is implemented to improve the convergence speed of the ORSSRS based 

method. In this study, the performance of MR-ORSSRS based method is compared with 

MR-SPSA based method in terms of the convergence speed, accuracy, and robustness in 

maximizing the total power production of Horns Rev wind farm. The results show that 

MR-ORSSRS based method outperforms the benchmark MR-SPSA based method in 

terms of the convergence speed of all the study cases. In particular, it can improve the 

convergence speed of incoming wind direction at 170°, 200°, 220°, 240°, 250° and 270° 

by 88.89%, 88.89%, 41.66%, 88.89%, 88.89% and 66.67%, respectively. However, in 

the case of the five wind turbine failures, the speed of the incoming wind direction is 

66.67% . Moreover, the MR-ORSSRS based method produces better total power 

production for wind direction at 170°, 200°, 220°, 240°  and 270° , as well as wind 

turbines failures compared to the MR-SPSA based method. In term of the convergence 

speed, the MR-ORSSRS based method produces higher convergence speed for all the 

wind direction cases even in the wind turbines failure cases. Hence, it is proven that the 

proposed MR-ORSSRS based method is effective in producing better total power 

production with faster convergence speed even with turbines failure and time-varying 

wind compared to the benchmark MR-SPSA based method. 
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INTRODUCTION 

1.1 Background of Research   

Wind energy is one of the most popular sustainable energy. The number of wind 

farm is increasing rapidly, especially in countries with large, flat landscape such as China, 

Australia and Denmark. As shown in Figure 1.1 by GWEC (2017), the number of new 

wind farm installed globally between the year 2001 and 2017 had experienced 

tremendous fluctuations, skewing towards an increasing trend. The most significant 

progress had been recorded in the year 2015, where more than 63 𝑀𝑊 had been installed, 

bringing the total wind farm capacity to 432 𝑀𝑊 globally. This growth continued in the 

following years with more than 52 𝑀𝑊 being installed for both the year of 2016 and 

2017 independently. Further illustrated in Figure 1.2, the total wind farm capacity was 

accumulated to 539 𝑀𝑊  globally at the end of 2017, demonstrating the heightened 

intensity of wind farm development in recent years. However, many unresolved 

challenges and rooms for improvement remain to be studied, towards the expansion of 

wind farm usage and development. Thus, this has prevailed to be a significant research 

topic, especially within the control research community.  

 

Figure 1.1  Annual global capacity of the newly installed wind farm from the year 

2001 to the year 2017  

Source: GWEC (2017) 
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Figure 1.2 Annual global total capacity of installed wind farm from year 2001 to year 

2017 

Source: GWEC (2017) 

One of the most significant problems that needs to be addressed is wake interaction. 

Wake interaction between wind turbines is currently viewed as the most challenging 

problem in the optimization of wind farms. Figure 1.3 shows the occurrence of wake 

interaction between wind turbines, whereby the blue arrow represents the incoming wind 

and wake is generated by each wind turbine as the wind blows. As a result, the wake of 

the upstream turbines will directly affect the performance of its corresponding 

downstream turbines, chaining the effect towards the turbines in the final row. This would 

eventually create a hierarchy of complex interaction among all the wind turbines 

throughout the wind farm. In order to further understand the effect of the wake, an 

analysis of wake interaction is shown in Figure 1.4. As noted, the highest, moderate and 

lowest wind speeds are indicated with red, green and blue colors, respectively. Initially, 

the wind has the highest speed before passing through any wind turbine. Yet, it is 

degraded to a moderate speed when passing through wind turbines in the first row, 

causing the wind experienced by the downstream wind turbines to be at the lowest speed. 

This effect would continue to affect the other wind turbines downstream, causing an 

inconsistent wind pattern throughout the wind farm. With this, this figure has illustrated 

the difficulties in understanding the wake dynamic due to the complex interaction 

between wind turbines. 
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Figure 1.3 Wake interaction among wind turbines in wind farm 

Source: Joshua S Hill (2017) 

 

 

Figure 1.4 Analysis of wake effect between wind turbines in wind farm 

Source: Porté-Agel et al. (2013) 

 

Within the effort to improve the total power production of wind farms, two prevalent 

research problems are highlighted, which are the problems in micro-siting and the axial 

induction factor (controller) optimization.  

1.1.1 Micro-siting Optimization of Wind Farm 

Micro-siting optimization is a method used to evaluate the optimum number of wind 

turbines and the positioning of each wind turbine in the wind farm towards reducing the 
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cost of power production, while increasing the total power produced (Yin et al., 2017). 

This problem usually emerges when wind farms are to be newly installed in specific 

locations. Herewith, micro-siting would need to overcome the problems presented by 

wind dynamics since it is based on static wind models such as the wind rose model, which 

demonstrates no information on dynamic wind (Mosetti el al., 1994). As illustrated in the 

example of a wind rose model in Figure 1.5, micro-siting optimization is developed to 

resolve the problems affected by wind dynamics, in order to increase the performance of 

a wind farm.  

 

Figure 1.5 The indication of wind speed and direction occurrence frequency known 

as a wind rose  

Source: Yin, Wu and Hsu (2017) 

 

1.1.2 Axial Induction Factor (Controller) Optimization of Wind Farm   

A controller or axial induction factor optimization is a method used to tune the 

control parameters of each wind turbine in a wind farm, to maximize the total power 

production based on the wind dynamics. Normally, controller optimization is carried out 

for an existing wind farm, rather than to be newly installed. This occurs when the 

optimum controller of a standalone wind turbine is no longer working among an array of 
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turbines due to the wake interactions between turbines. Therefore, re-tuning will need to 

be done towards the existing optimum controller of that standalone turbine, so as 

improving the total power produced by the wind farm.  

However, the model-based approach is difficult to establish due to the complexity 

and uncertainties of the wake effect (Marden et al., 2012). Not to mention, the 

establishment of a model-based approach is time-consuming due to the lengthy time the 

wind requires to travel throughout the wind farm (Gebraad et al., 2013; Ahmad et al., 

2014). On the other hand, the model-free approach would be more practical as it does not 

require any explicit form of wind farm model. For example, Figure 1.6 shows the generic 

optimization block diagram of a model-free approach. In the figure, the specific model 

of system remains unknown and optimization is carried out only based on the information 

of input and output, further avoiding the difficulties and uncertainties of wind farm 

modelling. 

  

Figure 1.6 Generic optimization block diagram of model-free approach. 

 

1.2 Motivation and Problem Statement  

On one hand, Multi-agent optimization methods (MAOM) such as Particle Swarm 

Optimization (PSO) (Chowdhury et al., 2012) and Spiral Dynamic Algorithm (SDA) are 

more preferable for offline optimization due to their ability in providing highly accurate 

output. However, due to vast amount of computation effort required, MAOM have a slow 

convergence rate, making them unsuitable for real-time applications. On the other hand, 

single-agent optimization methods (SAOM) such as Random Search (RS) only require 

one evaluation process in the searching of optimum objective function, which can provide 

reasonably accurate outputs in a short period of time. Yet, based on our preliminary study, 

the conventional RS remains incapable of improving total production with reasonable 
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convergence rate. For instant, in the case of the Horns Rev wind farm with 80 turbines 

(Kristoffersen et al., 2003), the conventional RS requires more than 100 hours to 

maximize its total power production. Having the possibility of wind condition to change 

within an hour, this convergence rate would be impractical to apply for the total power 

optimization of real-time wind farms. The detail is shown in Mohd (2015), whereby the 

convergence speed is degraded when a higher dimensional design parameter is adopted. 

In Ahmad et al. (2014), a Multi-resolution Simultaneous Perturbation Stochastic 

Approximation (MR-SPSA) was introduced to solve the convergence rate issue while 

maximizing total power production. However, this approach still presents less accuracy 

towards maximizing total power produced due to its memory-less structure. Moreover, 

the MR-SPSA is also unable to save the best optimum values during the tuning process. 

With such limitations, this makes memorisable algorithms such as the RS a better option 

to be explored. Provided that the output fitness is improved, RS would be able to update 

the objective function in the next iteration. In the context of exploiting wind energy, 

multiple variations of RS based algorithms can be an interesting field of study, further 

exploring their potential in optimizing large scale wind farms for power production.  

Previous studies based on a various type of RS-based methods such as Fixed Step 

Size Random Search (FSSRS), Adaptive Step Size Random Search (ASSRS), Sequential 

Random Search (SRS) and Optimized Relative Step Size Random Search (ORSSRS) had 

shown that ORSSRS has the most promising performance to optimize large scale wind 

farm, due to its ability to produce the highest and most stable total power production 

among all the RS-based methods. While ORSSRS evaluates all possible steps around the 

current solution to perform optimization, this approach does not fulfil the requirement of 

real-time optimization as the simulated optimization has required more than 100 hours to 

be completed. Therefore, the dimension number of problems is significantly affecting the 

overall convergence time of ORSSRS. Consequently, it is necessary to improve the 

convergence time of ORSSRS for real-time optimization of wind farm, while maintaining 

the ability to produce maximum total power production.                                                                                                                                                                                                                

1.3 Objectives 

The main objectives of this research study are:  
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I. To develop a Multi-resolution Optimized Relative Step Size Random Search 

(MR-ORSSRS) for real-time wind farm power production optimization. 

II. To evaluate the robustness of MR-ORSSRS in term of different wind directions, 

wind speed, and wind turbine failure. 

III. To compare the performance of MR-ORSSRS with other existing methods in term 

of its convergence rate, and the maximum total power production. 

1.4 Scope and Limitations   

This research is mainly focused on the optimization of power production in a model-

free wind farm. The result validation is based on the real-time wind farm dynamic model 

employed by Horns Rev wind farm in Denmark, as proposed by Gebraad et al. (2013). 

The wind farm system, including the wake expansion and decay of wind speed due to the 

wake effect, is referred to as the Park Model (Porté-Agel et al., 2013). It also includes the 

addition of a delay structure to illustrate the real situation of wind transition. Meanwhile, 

the term ‘model-free’ means that optimization is carried out based only on the input and 

output data of the wind farm model. Herewith, several variants of the Random Search 

methods are tested to optimize the power production of the wind farm. The best Random 

Search method would then be selected to hybrid alongside the multi-resolution functions. 

Following this, as demonstrated by Ahmad et al. (2014), the results will be compared to 

the existing MR-SPSA for the wind direction variation at the angle of 170°, 200°, 220°, 

240°, 250° and 270°, since the wake effect is utmost significant at these angles. Time-

varying (wind direction and speeds) and wind turbine failures are further compared in the 

results. 

1.5 Overview of the Thesis   

The brief introduction of wind farm optimization was presented in Chapter 1, where 

the problems and objectives have been clearly stated.  

Chapter 2 presents a comprehensive overview of the literature related to this study. 

The literature includes wind farm optimization techniques, design approaches and 

optimization methods which are variables that will be investigated in the current study.  
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The methodology is presented in Chapter 3 where the algorithmic steps and problem 

formulation are discussed in detail. An in-depth explanation on the operations of the 

ORSSRS is presented, and the function of Multi-resolution is well illustrated. 

Subsequently, a dynamic wind farm model will be formulated based on the Horns Rev 

wind farm model as proposed by Gebraad et al. (2013).  

In Chapter 4, the simulated results are validated and compared with the MR-SPSA 

(Ahmad et al., 2014). Lastly, the overviews and future recommendations of the study are 

concluded in Chapter 5
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LITERATURE REVIEW 

2.1 Introduction 

Existing wind farm optimization techniques and methods are reviewed, and being 

discussed in this chapter. First and foremost, the optimization of micro-siting planning is 

discussed in Section 2.2. Due to some existing limitations, controller optimization is 

introduced in two approaches, which are the model-based and the model-free approaches. 

Both approaches are studied and summarized in Section 2.3 and Section 2.4, respectively. 

Lastly, Section 2.5 summarizes the reviewed approaches and methods. Figure 2.1 

presents the overview of the literature reviewed for this study. 

 

Figure 2.1 Summarized reviews of related literature of this study. 
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2.2 Micro-siting Optimization 

Micro-siting planning is crucial towards the development of new wind farms. It is 

used to forecast the potential wind power extraction on the landscape, in minimizing the 

wind farm installation costs, while maximizing the total energy produced annually. The 

literature regarding micro-siting planning of wind farms is briefly reviewed in this 

section. 

2.2.1 Software-based Optimization 

There are several software packages developed to assess micro-siting performance 

of wind farms. WAsP (Sveinbjornsson, 2013) is the most popular among the micro-siting 

performance assessment software. This software mainly focuses on wind resource 

assessment, basing its assessment on the wind data obtained from nearby meteorological 

stations. With this, it is able to predict the amount of wind resource within a landscape; 

yet, unable to provide an accurate measurement due to complexity of the terrain. In 

resolution, a later version of the software, WAsP 11 has included a new feature that 

allows micro-siting performance of wind farm on complex terrain to be assessed, through 

using the Computational Fluid Dynamics (CFD). This software is also implemented with 

measurement of extractable wind power due to the placement of wind turbines, as 

according to the Katic model (Katic et al., 1986). Another similar software is Wind Sim 

(Serrano Gonzlez et al., 2014). This software focuses on determining the best placement 

of wind turbines in order to get the best wind condition on complex terrain. Herewith, A 

3D Reynolds-averaged Navier–Stokes solver based CFD model is included in the 

assessment of wind resource. These two software packages mainly focus on the 

evaluation of wind resource on a landscape, which prove important for developers to 

forecast and utilize the available wind power through confirming the wind frequency of 

the landscape. However, noted that these software do not provide information regarding 

optimum wind turbines placement towards optimizing the total power production of wind 

farms. 

Nevertheless, there are other software packages that provide assistance towards the 

optimization of wind farms such as Wind Farmer (Vincent, 2009), Wind Pro (Nielsen, 

2013) and Open Wind (Truepower, 2010). The optimization via these software are based 

on different objectives. As such, Wind Farmer optimizes wind turbines placement to 
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obtain maximum return on investment (ROI). It also includes the wake effect based on 

the Reynolds-averaged Navier–Stokes solver CFD model. However, the detail of 

optimization method implemented in this software remains unknown. On the other hand, 

Wind Pro evaluates the optimization quality based on the total annual power production, 

whereby the wake effect is based on the Katic model (Katic et al., 1986). Meanwhile, the 

wind turbines placement optimization policy can be both random and symmetrical. 

Alternatively, the micro-siting optimization is carried out in Open Wind by referring to 

the cost of energy (COE), with the wake effect also based on the Katic model (Katic et 

al., 1986). The software-based wind farm micro-siting optimization is user-friendly with 

the Graphical User Interfaces (GUI) as shown in Figure 2.2 and Figure 2.3. For example, 

the GUI in Figure 2.2 has a good presentation of wind turbines arrangement with different 

viewing perspectives, which allows user to visualize the arrangement results of wind 

farm. Whereas, the GUI in Figure 2.3 has a good illustration of landscape terrains and 

wind rose, which allows users to identify the power production efficiency and effective 

wind directions on the landscape. Consequently, GUIs are useful to investigate the fitness 

of a landscape for the purpose of wind farm development.  

 

Figure 2.2 GUI of Wind Farmer 4.2 wind from micro-siting optimization software 

with the illustration of wind farm layout and the appearance of with turbines arrangement. 

Source: Herman (2011) 
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Figure 2.3 GUI of Wind Farmer 4.2 with the illustration of wind speed and direction 

according to the wind data acquired from wind rose model  

Source: Herman (2011) 

However, the software packages mentioned above are not available for advance 

investigation. As previously noted, each of these software packages focuses solely on one 

optimization objective and most of them use the Katic model as the basis for their wake 

effect. Therefore, users are unable to explore extensive details including dynamic and 

static wake effect comparisons, multi-objective optimization and the effectiveness of 

optimization algorithms, towards evaluating the fitness of landscape for wind farm 

development. This has entailed more investigations and reporting conducted on micro-

siting optimization of wind farms by other scientific journals.  

 

2.2.2 Optimization Algorithms 

Genetic Algorithm (GA) is the most studied algorithm in the optimization of wind 

farm micro-siting. The investigation on economical improvement of wind farms through 

micro-siting optimization was initially proposed by Grady et al. (2005). Later, the study 

was extended by implementing a considerably complex economic model, as proposed by 

Mora et al. (2007). A model-free approach of the similar study was then proposed in 

Marmidis et al. (2008). An investigation on the levelized cost of energy (LCOE) in the 
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case of offshore wind farms was also suggested in Elkinton et al. (2008). Furthermore, 

Şişbot et al. (2010) has recommended a multi-objective wind farm micro-siting 

optimization, where the objectives aim to maximize the annual power production and 

minimize the cost of energy. Besides GA, the performance of wind farm micro-siting 

optimization was also investigated by using other optimization algorithms. Among 

others, Particle Swarm Optimization (PSO) algorithm was proposed to optimize wind 

farm micro-siting in a continuous way (Mora et al., 2007). This method was used to 

choose the best combination of wind turbine model and diameter on a given landscape in 

order to maximize power production (Mustakerov et al., 2010). Besides, Wan et al. 

(2012) further introduced the innovative Gaussian Particle Swarm Algorithm (GPSO) to 

optimize the problem highlighted by Mora et al. (2007). In view of a multi-objective 

approach, Strong Pareto Evolution Algorithm (SPEA) had also been implemented in the 

micro-siting optimization of wind farms; yet, with the argument presented by Bazacliu et 

al. (2015), stating that continuous computation domain should be used in the process of 

optimization shall SPEA is implemented.  

2.2.3 Limitation of Wind Farm Micro-Siting Optimization 

Micro-siting optimization of wind farms is useful for new wind farm development 

as it can assist in forecasting the wind power availability of the landscape, providing the 

best wind farm layout solution  within complex terrains and evaluating minimum 

installation cost towards obtaining the highest power production profit (Serrano Gonzlez 

et al., 2014). However, it is not adaptive to chaotic weather changes and wind disturbance 

such as wind gust and hurricane, as well as the occurance of turbine failure, which would 

reduce the optimization efficiency (Spudic, 2010). The potential of improving the 

performance in term of real-time tuning has led to new research efforts in controller 

optimization. Many approaches to optimize the controller of wind turbines have been 

established. The model-based approach is carried out according to actual conditions of 

existing wind farms, while the model-free approach is established based on the input and 

output information of wind farms. 

2.3 Model-based Controller Optimization 

The controllers reviewed in this section are model-based optimization. Researchers 

often try to design the optimization controller according to a real wind farm. Normally, 
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these controllers are designed for wind farm development projects such as the Horns Rev 

wind farm in Denmark (Kristoffersen et al., 2003), the Yerga wind farm in Spain (Dash, 

2002) and the Aeolus wind farm in Canada (Spudic, 2010). As such, These controllers 

can work towards optimizing power production of the dedicated wind farm.  

2.3.1 Doubly Fed Induction Generation (DFIG) 

DFIG is a model-based controller which can optimize power production of each 

turbine in a wind farm. As mentioned earlier, it is applied on the Horns Rev wind farm in 

Denmark (Kristoffersen et al., 2003) and the Yerga wind farm in Spain (Dash, 2002). 

The controller is mainly used to detect turbine’s fault which would cause the lost of power 

production due to wound rotor induction generator. In accordance to the current wind 

condition, this controller enable adjustments to the control parameter such as the faulty 

turbine’s yaw angle and rotor blade’s pitch angle to obtain the desired power production. 

However, with DFIG being a single turbine controller, it is unable to maintain the total 

power production of a wind farm if the faulty turbine is heavily wounded or damaged, 

thereby resulted total power production lost. On the other hand, centralized power control 

of DFIG as proposed by Hansen et al. (2006), harnesses the ability of DFIG to maintain 

total power production of a wind farm with a centralized power controller. Following 

this, the DFIG monitors then change in active power and reactive power produced by the 

wind turbine generator, further obtain the available power of each turbine. Subsequently, 

the available power production is fed back to the central controller, where it will decide 

whether to adjust the control parameter of wind turbines in compensating for the power 

lost. The proposed method has shown promising results in controlling the power 

production of the wind farm. However, the results in a study conducted by Hansen et al. 

(2006) have only based on a simplified wind farm with three wind turbines. Therefore, 

the ability to tune high-dimensional parameter is yet to be defined. 

2.3.2 Hierarchical wind farm control (HWFC) 

HWFC was first introduced by Spudic (2010) and was designed for the Aeolus wind 

farm development in Canada. The hierarchical controller is a multi-level controller, 

consisting of a decentralized low-level controller and a centralized high-level controller. 

The low-level controller has a higher adjustment rate used to readjust each wind turbine 

quickly upon unpredictable disturbances such as sudden wind gust and turbine failure, in 
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order to maintain power production of the corresponding wind turbine. Yet, the control 

of this level solely provides nominal adjustment, since it is a single turbine controller. 

Hence, in the effort to ensure accurate adjustments applied in accordance to the power 

reference of the wind farm, a high-level controller is further used to tune the turbines 

within the wind farm thoroughly. High-level controller has a comparatively lower 

adjustment rate, as it takes into account varying of the wind propagation due to wakes 

along the period of time.  

Meanwhile, a similar method by Spudic et al. (2011) was proposed with wind turbine 

structural stress consideration. In this case, a turbine rotor rotational speed and a turbine 

shaft moment stress are used as the power feedback. The low-level controller is used to 

monitor the wind speed and turbine shaft moment in deciding the desired rotor rotational 

speed, which then manipulates the blade pitch angle of the corresponding wind turbine. 

Meanwhile, the high-level controller monitors the overall power production of the wind 

farm and controlled each wind turbine to extract the available power according to its 

power reference. This way, both the structural stress of each wind turbine and the power 

production of the entire wind farm can be maintained. Thus, the method proposed in 

Spudic et al. (2011) can simultaneously reduce wind turbine maintenance cost, while 

sustaining power productivity. However, the multi-level controller method requires 

increased computation effort to carry out the optimization, making it inefficient for large-

dimensional parameter tuning. 

2.3.3 Distributed Controller 

The distributed controller is designed to reduce the load of wind turbines in wind 

farm, by evenly distributing the load throughout all the wind turbines within a wind farm. 

With all the turbines equally sharing the total load, turbine stress is reduced while power 

production is maintained. The distributed control was introduced by Soleimanzadeh et 

al. (2011), who have proposed two control strategies, namely low-wind speed and high-

wind speed. On this note, high-wind speed has applied the linearized wind propagated 

wake model for the purpose of power and stress prediction. Whereas, wind turbines can 

extract maximum available power at low-wind speed, with the turbine structural stress 

being minimized in this state. Herewith, it is mentioned the wake interactions among the 

wind turbines, where the power generated by a turbine is not only affected by the control 

parameter of itself, but also the control parameter of both the upstream and downstream 
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turbines. Another similar research has applied linear-quadratic regulator (LQR) controller 

(Soleimanzadeh et al., 2012) based on NREL 5MW wind turbine (Jonkman et al., 2009). 

The LQR obtains wind prediction from the linearized wind propagated wake model and 

wind farm power reference, towards deciding the power distribution for each turbine in 

the wind farm. The results have been presented based on a wind farm with an array of 

five wind turbines, which shows that LQR is the best method to distribute the load of a 

wind farm to all the turbines evenly, as compared to the numerical method and the 

controller-less wind farm model. 

2.3.4 Limitation of Model-based Approaches  

Model-based approaches can provide the exact solution for wind farm optimization. 

However, it is only limited to the dedicated wind farm and wind turbine. This suggests 

that their optimization are targeted to single-turbine tuning, as proposed by Hansen et al. 

(2006) and Spudic (2010) who have presented a lack of effective communication between 

wind turbines due to the wake effect. Moreover, the development of model-based 

approaches require considerable time and efforts, as it accounts for the analysis of wind 

farm behaviour such as the wake interaction between wind turbines. Therefore, small-

scale wind farm is always preferred in the application to minimize the complexity for 

optimization. For these approaches, Hansen et al. (2006) has presented optimization 

based on a simplified wind farm consisting of an array of three wind turbines; while 

Soleimanzadeh et al. (2012) has proposed optimization based on a single-array wind farm 

of five wind turbines. Noted that existing wind farms are built on a large-scale consisting 

of multi-array of multiple wind turbines, model-based approaches would not be suitable 

within this context. 

2.4 Model-free Controller Optimization 

The uniqueness of a model-free based optimization is its data-driven characteristic. 

This optimization can be carried out without the need of modelling the system, as it based 

its algorithm on the input and output data of the system, as illustrated in Figure 2.4. Noted 

that the effort for system analysis and modelling is not required in this approach, further 

simplifies the optimization development. However, the significance of the optimization 

efficiency relies on the convergent rate of the optimization methods. Following are the 
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reviews of existing model-free approaches that optimize the total power production of 

wind farms. 

 

Figure 2.4 An example of model-free optimization approach based on the 

information of input and output. 

2.4.1 Game Theoretic (GT) 

The first model-free approach wind farm optimization using GT has been proposed 

by Marden et al. (2012), and an extended study is further conducted by Marden et al. 

(2013). The performance between the two GT-based distributed learning algorithms, 

known as safe experimental dynamics (SED) and payoff-based distributed learning for 

Pareto optimality (PDLPO) was also compared by Marden et al. (2013). The differences 

between the learning algorithms are global and local knowledge-based optimization. In 

SED, knowledge on the total power production of wind farms is shared among each of 

the wind turbines. On the other hand, PDLPO solely demonstrates that each individual 

wind turbine only assess its own power production, with limited knowledge on the power 

production of neighbouring wind turbines. Comparatively, the results has shown that 

SED can entail the optimization towards a higher total power production of a wind farm, 

as compared to PDLPO. Furthermore, a different type of GT was proposed by Park et al. 

(2013), where the control relations between the wind turbine yaw-angle offset and axial 

induction factor to maximize total power production of the wind farm has been utilized. 

The results were compared with the Non-cooperative Game and Cooperative Game 

control methods. In the Non-cooperative Game control method, the objective is 

distributed to each of the wind turbines individually; whereas, all the wind turbines in 

Cooperative Game control method share the same objective as a whole. Eventually, the 
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Cooperative Game control will have a better performance than the Non-cooperative 

control, in term of maximizing the total power production of the wind farm. 

The proposed studies mentioned above have presented the comparison between the 

local and global maximization of wind farms’ total power production. However, the 

optimization are validated based on the static wind model. Being an offline optimization 

method, its reliability for real-time optimization remains unknown.  

2.4.2 Maximum Power Point Tracking (MPPT) 

The performance of MPPT optimization methods is investigated, in order to be 

applied in the real-time optimization of wind farms. The MPPT method was proposed by 

Gebraad et al. (2013) using a dynamic wind farm model, where the wake delay generated 

by the wind turbines was approximated in the optimization process. In this context, the 

authors compared performance of Fixed Step Maximum Power Point Tracking (FS-

MPPT) with the Gradient-Descent Maximum Power Point Tracking (GD-MPPT) on 

maximizing the total power production of wind farms. Results show both MPPT-based 

variations can produce a higher power with faster convergence rate, as compared to GT. 

However, the power production optimized by FS-MPPT fluctuates around the optimal 

power production, due to its fixed-step characteristic. GD-MPPT, on the other hand, can 

perform better in reducing the power oscillation as compared to the FS-MPPT. 

Nevertheless, this study only covers the varying time effects of the wake; while the ability 

to recover from an unlikely event such as wind turbine failure is more crucial to be 

evaluated than the performance of real-time optimization. 

2.4.3 Simultaneous Perturbation Stochastic Approximation (SPSA) 

The preliminary investigation on real-time optimization of the wind farm’s total 

power production was reported by Ahmad et al. (2014) based on the dynamic wind farm 

model proposed in Gebraad et al. (2013); whereby the wake delay generated from a wind 

farm to another was approximated. In this study, optimization was carried in a distributed 

manner to achieve global maxima. However, the wind farm validated in this study was a 

simplified, single array wind farm consisting of four wind turbines, so as to reduce the 

complexity of the investigation. Comparing its performance to GT (Marden, Ruben and 

Pao, 2013) and FS-MTTP (Gebraad et al., 2013), results show that SPSA enables 
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maximum total power production of the wind farm, topping those of the fore-mentioned 

methods, as it can provide a faster convergence speed.  

However, the capability of SPSA to optimize a large-scale wind farm was undefined 

as the validation was conducted only upon a simplified single array wind farm. This 

called for a more extended study of this application (Ahmad et al., 2014). In this case, 

the SPSA optimization method was modified into Multi-Resolution Simultaneous 

Perturbation Stochastic Approximation (MR-SPSA) in order to further improve the 

convergence rate. A dynamic wind farm model consisting of 80 wind turbines based on 

the Horns Rev wind farm in Denmark has been used to validate its performance, in term 

of wind speed and direction variations. To consider the real-time optimization constraints, 

the validation of time varying and turbine failure were further included. In comparing its 

performance with GT (Marden et al., 2013), FS-MTTP (P. M. O. Gebraad et al., 2013) 

and SPSA (Ahmad et al., July 2014), MR-SPSA had successfully optimized the wind 

farm’s total power production with a higher convergence rate and capability for real-time 

optimization. Yet, it was unable to provide a stable optimal results due to the memory-

less characteristic of MR-SPSA. Thus, this makes the use of memorisable optimization 

methods such as Bayesian Ascent (BA) and Random Search (RS) more preferable. 

2.4.4 Bayesian Ascent (BA) 

A concept investigation of the wind farm’s total power production optimization using 

BA was proposed by J Park et al. (2016). The BA was developed based on the Bayesian 

Optimization (BO) method, with the implementation of a trust region method to increase 

the search-ability of the BO-based algorithm. This is because BO tends to search for the 

optimum input in large input space, which may cause ineffective convergence. In this 

study, the concept was tested to optimize a single array wind farm with three wind 

turbines in both the cooperative and greedy modes.  

Cooperative mode is the global optimization where the wind turbines are 

cooperatively controlled to maximize the overall power production of the wind farm; 

whereas, greedy mode is the local optimization where the wind turbines are set to extract 

wind power at a maximum capacity. Eventually, BA can increase the total power 

production of the wind farm by 27% as compared to the greedy mode. Jinkyoo Park et 

al. (2016) further extended the investigation of BA to optimize a large-scale wind farm 
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under dynamic wind conditions such as the variations in wind speed and direction. Yet, 

with BA unable to optimize large dimensional problem, the authors subsequently 

proposed the use of a decentralized method to increase the rate of convergence, through 

defining the wind farm into clusters of wind turbines. BA algorithm was then applied to 

each cluster to maximize the power production of the wind turbines in that cluster, 

equivalent to a single array wind farm optimization. Nevertheless, with multiple BA 

algorithms required for each optimization, this method has been found to be expensive in 

execution. Hence, optimization methods with high convergence rate such as Random 

Search (RS), would be a comparatively better application option within this context.  

2.4.5 Spiral Dynamic Algorithm (SDA) 

A preliminary investigation of the wind farm’s total power production optimization 

using SDA has been proposed and conducted in a previous study, based upon a single-

array wind farm consisting of ten wind turbines. In this field of study, the performance 

was compared in term of total power maximization with other multi-agent based 

optimization methods, namely PSO and GT. Through the study that focused on offline 

optimization, SDA was shown to produce a higher total power production, as compared 

to PSO and GT. Yet, noted that offline optimization does not account for the convergence 

rate, which presents vague guarantee on the validity of the SDA application in real-time 

wind farm optimization. 

2.4.6 Extremum-Seeking Control (ESC) 

The investigation towards the optimization of total power production using ESC via 

a model-free wind farm model was initially reported in a study by Ciri et al. (2017). This 

study accounted for the comparison between performances of both Individual ESC 

(IESC) and Nested EST (NEST). IESC has been known to operate based on greedy 

optimization, with the power production of each turbine in the wind farm individually 

tuned to extract the maximum available wind power. Meanwhile, NEST operates using 

global optimization, where every wind turbine in the wind farm is cooperatively 

optimized with careful consideration of the wake effect to maximize the total power 

production throughout the wind farm. Based on the findings, it is deduced that the wake 

delay due to wind transitions from the upstream to the downstream wind turbines had 

been extensively studied in Ciri et al. (2017). However, take note that the results were 
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obtained based on a single array wind farm with three turbines. Indirectly, the study might 

have overlooked the ability of ESC in optimizing a large-scale wind farm.  

2.4.7 Random Search (RS) 

The preliminary investigation of the RS-based method to optimize the wind farm 

power was reported in a previous study by Marden et al. (2013). Here, the standard 

Sequential Random Search (SRS) was applied, and its performance was then compared 

with GT (Marden et al., 2013). The validation was carried out based on the Horns Rev 

wind farm in Denmark, consisting of 80 wind turbines, while taking into considerations 

wake interactions among the wind turbines. With this, SRS was shown to provide a higher 

power production with a faster convergence rate. The output was also found to be highly 

stable where the standard deviation of power production was recorded at only 

0.627 × 10−3 𝑀𝑊, compared to 2.172 𝑀𝑊 in GT. With regards to such findings, the 

RS-based optimization method presents promising prospect to optimize a wind farm’s 

total power production in a model-free approach. This entails the potential for further 

investigation on the capability of RS-based methods for real-time optimization.  

2.4.8 Optimize Relative Step Size Random Search (ORSSRS) 

The performance of Random Search-based algorithm on the optimization of a wind 

farm’s total power production has been investigated in a previous study. In particular, the 

study based its evaluations on a static wind farm model, where the dynamic wake 

interaction between the wind farms was not included. Meanwhile, the investigated 

algorithms used were the Fixed Step Size Random Search (FSSRS), Adaptive Step Size 

Random Search (ASSRS), Sequential Random Search (SRS) and Optimize Relative Step 

Size Random Search (ORSSRS) based on the Horns Rev wind farm in Denmark. FSSRS 

is the fundamental RS-based algorithm; yet, extensive care required to define the step 

size has presented difficulties for its implementation. Step size is proven to be important, 

as it can affect both the convergence time and the stability of total power production. For 

example, a big step size can result in faster convergence time with higher fluctuations in 

total power production; conversely, small step size entails more stable power production 

with the requirement of a longer convergence time. Therefore, ASSRS was introduced to 

resolve the problem of FSSRS, by comparing the fitness of the total power productions 

acquired in two steps with different sizes (Schumer et al., 1968). Emphasis on the big 
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step size can improve the convergence time, while focus on the small step size can 

improve stability in total power production. However, ASSRS requires more monetary 

spending in evaluating multiple total power production within each iteration, making this 

approach less cost effective. 

On the other hand, the step size of SRS is iteratively reduced in every iteration to 

minimize the overall power production fluctuation at the end of the optimization. Having 

said that, the step size reduction policy is sensitive to the overall performance of the SRS. 

Overly rapid reduction of step size would cause difficulties towards achieving the 

optimum level in total power production; whereas, overly slow reduction in step size 

would require a longer time to achieve a steady total power production. Alternatively, the 

ORSSRS would optimize the step size reduction policy of SRS by adapting the fitness 

evaluation of total power production from ASSRS, whereby the step size is reduced 

according to the fitness of the total power production in every iteration, such that the step 

size is only reduced if the total power production is higher than the ones in the previous 

iteration. Therefore, ORSSRS can produce the highest and the most stable total power 

production, with the fastest convergence speed among tested RS-based algorithms. Based 

on the findings, it is deduced that ORSSRS would be the most suitable optimization 

algorithm to optimize the total power production of a wind farm based on the static wake 

model.  

2.5 Summary  

Many efforts have been carried out to improve a wind farm’s performance from the 

beginning of construction until the end of installation. The micro-siting of a wind farm is 

important at the initial stage of construction as it can estimate the cost needed for power 

production; also known as the cost of energy (COE). Therefore, most of the micro-siting 

optimization for wind farms have based their objective on COE minimization. However, 

the optimization are based on historical static wind models which limit the their reliability 

for long-term applications. Therefore, investigations on controller optimization have 

become an increasingly popular research field for the control community. 

Optimization of the controller can be categorized into two different approaches 

which are the model-based and model-free approaches. Model-based approaches 

investigate the control method of a wind farm, base on existing wind farms and wind 
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turbines. Most of the optimization focus on a single wind turbine tuning, which have 

resulted in an ineffective communication between wind turbines and reduced the 

optimization effect. Meanwhile, model-based optimization is difficult to practice as it 

requires considerable effort in the analysis and formulation of complex wind farm 

dynamics. Therefore, the proposed methods are often being validated through simplified 

wind farm models.  

Model-free optimization, on the other hand, can be carried out without the 

requirements for model formulation, minimize the optimization efforts. However, the 

performance of optimization relies heavily on the convergence speed and output stability 

of the optimization methods. GT was the first method proposed to investigate the model-

free approach wind farm power production. The proposed SED and PDLPO further 

contributed the primary ideal of local knowledge and global knowledge-based controls. 

Another optimization ideal was investigated by proposing two MPPT-based methods 

which were FS-MPPT and GD-MPPT. Here, the author compared the performance 

difference between fixed step and variable step algorithm in the wind farm’s total power 

optimization. Eventually, the variable step algorithm (GD-MPPT) was found to be better 

than fixed step algorithm (FS-MPPT) in both higher power production and faster 

convergence rate. Moreover, a dynamic wind farm model with approximated wake delay 

to investigate the optimization performance in practical manner was established.  

An advanced study to provide improvements on the convergence speed and high-

dimensional parameter tuning was conducted by modifying the basic SPSA to MR-SPSA. 

In this study, the performance was evaluated based on an actual wind farm model. The 

findings further suggested that MR-SPSA was capable in producing high powered 

production at a faster rate. However, the output would fluctuate around the optimal, due 

to the memory-less characteristics of the SPSA-based methods which prefers the use of 

memorisable based methods. BA is one of the memorisable-based optimization methods. 

The authors tried to improve the convergence rate by using a decentralized method. 

However, it was not suitable for the optimization of actual wind farms as multiple 

algorithms are required to execute an optimization. Meanwhile, a preliminary 

investigation on SRS seems to be promising as it has the potential to produce high power 

production at a faster rate, as compared to GT, in the context of the Horns Rev wind farm 

in Denmark. However, the performance evaluation was not base on an actual wind farm 
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model and did not take wake dynamics into consideration. Therefore, the capability to 

optimize a large-scale wind farm in real-time is still far from being guaranteed. 

Nevertheless, further investigations on various types of RS-based optimization method 

continued in a later study by comparing the performance of SRS, Fixed Step Size Random 

Search (FSSRS), Adaptive Step Size Random Search (ASSRS) and Optimized Relative 

Step Size Random Search (ORSSRS). Based on the study, ORSSRS was found as the 

most suitable method to be applied. Lastly, MR-ORSSRS is proposed as the mean to 

further increase the convergence speed for real-time optimization of a large-scale wind 

farm, further improve its total power production.  
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METHODOLOGY 

3.1 Introduction 

In this chapter, a model-free optimization algorithm for maximizing the total power 

production of wind farm is discussed and proposed. Firstly, the wind farm system is 

introduced in Section 3.2, and the dynamic model of a wind farm system with wake 

aerodynamic interactions is presented. Section 3.3 discusses the problem formulation, 

which aims to find the optimal axial induction factor which ensures that the total power 

of wind farm is maximized. 

Next, the operation of a standard Optimize Relative Step Size Random Search 

(ORSSRS) is reviewed in Chapter 3.4.1. In that chapter, the step-by-step operation of the 

algorithm is discussed. It is shown that the standard ORSSRS is capable of tuning high-

dimensional parameter problem, but with an insufficient convergence speed for real-time 

optimization. Therefore, a Multi Resolution-Optimize Relative Step Size Random Search 

(MR-ORSSRS) is proposed based on a standard ORSSRS algorithm to increase the 

convergence speed, while maintaining the capability to solve a high-dimensional 

parameter problem. The operation of MR-ORSSRS is explained in Section 3.4.2. The 

clustering and transition of design parameters from one resolution to another and the 

formulation of a clustered objective function are discussed. 

Section 3.5 discusses the implementation of MR-ORSSRS algorithm in maximizing 

the total power production of the wind farm. In particular, a step-by-step procedure of a 

model-free design is explained by defining the objective function as total power 

production and the design parameters as axial induction factors. Furthermore, the 
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implemented design parameters clustering technique is also explained in this section. 

Lastly, Section 3.6 summarizes the methodology applied in this study.  

3.2 Wind Farm System 

In this section, the wind farm system based on the Park model is briefly described. 

The conventional Park model illustrates a static wake propagation, which means that it is 

unable to evaluate the practicality of real-time optimization. Hence, a delay structure is 

added to the Park model in illustrating the duration of wake propagation. 

Park model is the most discussed wind farm model among the studies that had been 

previously conducted (Scholbrock, 2011) (Porté-Agel et al., 2013). This model illustrates 

the expansion of the wake effect according to the distance between two wind turbines, 

and further classifies the wake effect by estimating the velocity profile of a single turbine, 

as shown in Figure 3.1 and Figure 3.2, respectively. However, the model does not 

illustrate the duration of a wake travelling from one wind turbine to the next. In order to 

evaluate the time efficiency of the optimization process, a delay structure was applied to 

the Park model (Gebraad et al., 2013). Consequently, the time interval for the wake to 

travel from one wind turbine to another is considered in the wind farm system. Hence, 

the actual transition time of the wake effect can be determined. 

 

Figure 3.1 The expansion of wake in Park model 
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Figure 3.2 Classification of wake effect in Park model by estimating velocity profile 

of single turbine  

Source: Churchfield (2013) 

First, the static wake interaction between two wind turbines is briefly described 

according to Figure 3.1. Let 𝑋 = {1,2, … , 𝑛} be a set of 𝑛 wind turbines in the wind farm. 

𝑉𝜔 is the incoming wind speed, 𝛼𝑖 and 𝐷𝑖 are the axial induction factor and rotor diameter 

of the wind turbine 𝑖, respectively. 𝐴𝑖+1 is the rotor swept area of the wind turbine, 𝑖 + 1, 

𝐴𝑖→𝑖+1
𝑜𝑣  is the overlapped area between the wake interaction generated by the upstream 

wind turbine 𝑖 and downstream wind turbine 𝑖 + 1 and ∅ is the roughness coefficient that 

represents the slope of wake expansion. If (𝑥, 𝑟) is a point in the wake of the wind turbine, 

where 𝑥 is the distance to the rotor disk plane of the turbine and 𝑟 is the distance to the 

centerline of the wind turbine rotor axis; then, the aggregate wind velocity is given as: 

𝑉̅𝑖+1 = 𝑉𝜔(1 + ∆𝑉̅𝑖+1), 3.1 

for 

∆𝑉̅𝑖+1 = √∑ (𝛼𝑖 (
𝐴𝑖→𝑖+1

𝑜𝑣

𝐴𝑖+1
) (

𝐷𝑖

𝐷𝑖+2∅(𝑥𝑖+1−𝑥𝑖)
)

2

)
2

𝑖∈𝑋:𝑥𝑖<𝑥𝑖+1
, 

 

3.2 

where 𝑥𝑖  and 𝑥𝑖+1 are the distances to the rotor disk plane of the wind turbines 𝑖 and  

𝑖 + 1, respectively. The wake interaction between the two turbines is illustrated in Figure 

3.1. Noted that the aggregated wind velocity, 𝑉𝑖+1 for (𝑖 + 1) ∈ 𝑋 is evaluated based on 

the aggregation of the wind velocity deficit created by each upstream turbine. 

Furthermore, the diameter of the wake is assumed to have a circular cross-section and 

expands proportionally to the distance 𝑥. Then, the power production of each turbine can 

be represented as: 
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𝑄𝑖 = 2𝜌𝐴𝑖𝛼𝑖(1 − 𝛼𝑖)2𝑉̅𝑖
3

, 3.3 

where 𝜌 is the air density. Then, the total power production of the wind farm is the 

submission of 𝑄_𝑖 (𝑖 = 1,2, … , 𝑛), which is given as: 

𝑄̅(𝛼1, 𝛼2, … , 𝛼𝑛) = ∑ 𝑄𝑖(𝛼1, 𝛼2, … , 𝛼𝑛)𝑛
𝑖=1 . 3.4 

Next, the dynamics of the wake interaction is illustrated based on the estimation of 

the wake travel time from one turbine to another, as studied in Gebraad et al. (2013). Let 

𝜏(𝑖) be the index of the nearest neighbour downstream turbine of turbine 𝑖, where it is 

directly influenced by turbine 𝑖 . Let also 𝜆(𝑖)  =  {𝑖, 𝜏(𝑖), 𝜏(𝜏(𝑖)), . . . } be the set that 

includes turbine 𝑖 and the other downstream turbines in a row that is affected by turbine 

𝑖 . Then, the time interval 𝑇𝜔  for the wake to travel to the whole wind farm can be 

approximated as: 

𝑇𝜔 ≈ 𝑚𝑎𝑥
𝑖∈𝑋

(∑
𝑥𝜏(𝑖)−𝑥𝑖+1

1

2
(𝑉̅𝑖+1(1−2𝛼𝑖+1)+𝑉̅𝜏(𝑖+1))

(𝑖+1)∈𝜆(𝑖) ). 
3.5 

Remark 3.1: Please note that the Multi-Resolution Optimize Relative Step Size Random 

Search (MR-ORSSRS) based method optimizes the wind farm based on the inputs and 

outputs information as shown in Figure 3.3, where the inputs are the incoming wind speed 

𝑉𝜔  and axial induction factor 𝛼𝑖 (𝑖 = 1,2, … , 𝑛)  while the output is the total power 

production 𝑄̅(𝛼1, 𝛼2, … 𝛼𝑛 ). The wind farm system is only applied for performance 

evaluation, where the relation between 𝑉𝜔 , 𝛼𝑖 (𝑖 = 1,2, … , 𝑛)  and 𝑄̅(𝛼1, 𝛼2, … 𝛼𝑛 ) 

remains unknown. 

 

Figure 3.3 Model-free approach optimization of MR-ORSSRS based method 

 



29 

3.3 Problem Formulation 

Considering a wind farm system in Section 3.2 consisting of 𝑛 turbines, which are 

randomly placed in a location, and wind speed 𝑉𝜔 is occurring in an arbitrarily direction. 

Meanwhile, the control parameter of each wind turbine is 𝛼𝑖, where (𝑖 = 1,2, … , 𝑛) is the 

number of wind turbines and the power production of the wind turbine 𝑖  is 

𝑄̅(𝛼1, 𝛼2, … 𝛼𝑛 ). Here, 𝛼𝑖 is the corresponding axial induction factor of the wind turbine 

𝑖 which is generalized from the control parameters such as the blade pitch angle and the 

wind turbine yaw angle (Bianchi et al., 2011). Following this, this study is executed based 

on a dynamic wind model, which means that the variations of wind speed and direction 

are included in the investigation of the real-time optimization performance. Therefore, it 

is expected that the power production of wind turbine 𝑖, 𝑄𝑖 is not only relying on the 

control parameter of itself, 𝛼𝑖 but also affected by the control parameters of the other 

wind turbines, 𝛼1, 𝛼2, … , 𝛼𝑖−1, 𝛼𝑖+1, … 𝛼𝑛 due to the interaction of the wake among the 

wind turbines. Similarly, the control parameter of turbine 𝑖, 𝛼𝑖 is not only affecting the 

changes in the power production of itself, which is the 𝑄𝑖 but also affecting the changes 

in the power production of the other wind turbines, 𝑄1, 𝑄2, … , 𝑄𝑖−1, 𝑄𝑖+1, … 𝑄𝑛 . 

Consequently, 𝑄𝑖  is directly affected by 𝛼𝑖  and indirectly affected by 

𝛼1, 𝛼2, … , 𝛼𝑖−1, 𝛼𝑖+1, … 𝛼𝑛. Hence, the relations between 𝑄𝑖 and 𝛼1, 𝛼2, … , 𝛼𝑛 is difficult 

to be accurately modeled due to the complexity of the wake dynamic, which interacts 

between the wind turbines throughout the wind farm, as shown in Figure 3.4.  

 

Figure 3.4 Illustration of wake aerodynamic interaction between wind turbines in 

wind farm. 

Nevertheless, the optimization problem is described as follow: 



30 

Problem 3.1: Find axial induction factors (𝛼1, 𝛼2, … , 𝛼𝑛) to maximize the total power 

production 𝑄̅(𝛼1, 𝛼2, … , 𝛼𝑛), while the exact formulation of 𝑄𝑖(𝛼1, 𝛼2, … , 𝛼𝑛) remains 

unknown. 

3.4 Random Search Based Optimization Methods 

This section presents the method to solve Problem 3.1. Firstly, the operation of the 

standard ORSSRS is briefly reviewed. Then, the MR-ORSSRS is proposed as a new 

method to solve the problem in the standard ORSSRS algorithm.  

3.4.1 Optimized Relative Step Size Random Search 

Random Search (RS) based method is a non-gradient optimization algorithm to 

optimize the design parameters according to the fitness of the objective function, which 

presents suitability for a model-free optimization. With this, the essential feature of RS-

based algorithm is to store the best objective function for the fitness evaluation in every 

iteration. Hence, RS-based algorithm such as ORSSRS can provide a more stable 

objective function.  

Next, the fundamental operation of ORSSRS is explained as follows. Let the 

optimization problem, given by: 

𝑚𝑎𝑥
𝜗∈ℝ𝑁

𝐹(𝜗), 3.6 

where 𝐹: ℝ𝑁 → ℝ  is the objective function and 𝜗 ∈ ℝ𝑁 is the design parameter. 

The ORSSRS updates the design parameter, 𝜗  by performing hypersphere 

neighborhood search as follows:  

𝜗(𝑡) = 𝜗(𝑡 − 1) − 𝛽(𝑡), 3.7 

where 𝛽(𝑡) is the updated sequence with relative to the step size of 𝑡th iteration (𝑡 =

0,1, … ) and it is given as: 

𝛽(𝑡) = 𝑅(𝑡)𝑆𝑒(𝑡+1)𝛿 . 3.8 

Here, 𝛽(𝑡) is decreasing exponentially as the number of iteration 𝑡 increases, 𝑒(𝑡+1)δ is 

the exponent gain and δ is a negative constant (δ < 0). Next, the symbol 𝑆 is the step 



31 

size constant and 𝑅(𝑡) is the 𝑁-dimensional random vector given in the element-wise 

Bernoulli distribution: 

{
ℙ(𝑅(𝑡) = −1) = 0.5,
ℙ(𝑅(𝑡) = 1) = 0.5.

 
3.9 

Next, the operation of the standard ORSSRS is described in Algorithm 3.1. 

Algorithm 3.1: Standard ORSSRS algorithm. 

Determine constant coefficients 𝑆 and 𝛿 for update sequence 𝛽(𝑡) in Equation 3.8, 

set 𝑡 = 0 and initialize 𝜗(0) randomly.  

 

Step (1)  Initiate optimum design parameter and objective function  

𝜗∗= 𝜗(0) 

𝐹∗ = 𝐹(𝜗(0)) 

 

Step (2)  Calculate hypersphere design parameters 

𝜗(𝑡) = 𝜗(𝑡 − 1) − 𝛽(𝑡) 

where 𝛽(𝑡) and 𝑅(𝑡) are from Equation 3.8 and 3.9, respectively. 

 

Step (3)  Update the optimum design parameters and objective function 

if 𝐹(𝜗(𝑡)) > 𝐹∗ then 

𝜗∗ ≡  𝜗(𝑡) 

𝐹∗ ≡  𝐹(𝜗(𝑡)) 

else  

remain 𝜗∗ and 𝐹∗ 

end if 

 

Step (4)  Check the termination criterion 

if 𝑡 fulfills termination then 

algorithm ends with an optimum solution  

𝜗∗ ≡ arg max
𝜗∈(𝜗(0),𝜗(1),…,𝜗(𝑡+1) )

𝐹(𝜗) 

else 

set 𝑡 = 𝑡 + 1 and repeat Step (2) to Step (4) 

end if 

In general, a standard ORSSRS can solve the high-dimensional optimization 

problem. Nevertheless, the ORSSRS does not have the capability of a real-time 

optimization due to an insufficient convergence rate. This is because the number of 
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evaluation needed to achieve successful convergence is proportional to the dimension of 

design parameter (Spall et al., 1999).  

In order to verify this statement, consider the optimization of the objective function 

as: 

𝐹(𝜗) = ((𝝑 − 1)⏉(𝝑 − 1)), 3.10 

where 𝝑 = [𝜗1, 𝜗2, … , 𝜗𝑁]⏉  and 𝐹(𝜗∗) = 0  at 𝜗∗ = [1,1, … ,1]⏉  and the termination 

criterion is: 

|𝐹(𝜗(𝑡 + 1)) − 𝐹(𝜗(𝑡))| < 𝜀, 3.11 

where 𝜀 is a small number 𝜀 = 0.01. Then, convergence time required to optimize the 

problem consisting of the number of dimensions 𝑁 = (10, 50, 100, 500, 1000) as shown 

in Table 3.1. It evidently shows that the larger number of design parameters require a 

longer convergence time. 

Table 3.1 The required convergence time for different sizes of dimension 

Dimension number 𝑵 10 50 100 500 1000 

Convergence time (s) 0.201 1.563 10.873 150.673 532.276 

Moreover, the application of wind farm is also included to verify shall larger number 

of wind turbines would cause a longer optimization convergence time. Problem 3.1 is 

considered as the optimization problem in this case. Here, the objective function 𝑄̅ and 

design parameters 𝛼 of Equation 3.4 are applied to 𝐹 and 𝜗 of Equation 3.6, respectively. 

Let the termination criterion of step (4) in Algorithm 3.1 be as the Equation 3.11. The 

convergence time required to optimize the wind farm consisting of different numbers of 

wind turbine 𝑛 = (16, 32, 48, 64, 80)  as shown in Table 3.2. It is expected that the 

convergence time increases proportionally to the number of wind turbines 𝑛. 

Table 3.2 The required convergence time for different number of wind turbines 

Number of wind turbines 

𝒏 

16 32 48 64 80 

Convergence time (hours) 46.732 116.056 150.209 196.517 222.308 



33 

In the case of maximizing the total power of wind farm, the application of a standard 

ORSSRS is still not capable of producing an acceptable convergence rate. For example, 

in the case of the Horns Rev wind farm in Denmark that has 80 wind turbines, the standard 

ORSSRS requires more than 200 hours to maximize the total power and it will be 

discussed in detail in Chapter 4. It shows that the high dimensional design parameter 

searching in the standard ORSSRS may not be a good solution from this problem. 

Therefore, the Multi-Resolution Optimize Relative Step Size Random Search (MR-

ORSSRS) is introduced, which it is expected to produce a considerably better 

convergence rate, while maximizing the total power production. 

3.4.2 Multi-Resolution Optimize Relative Step Size Random Search 

Herewith, Equation 3.6 as the optimization problem is reconsidered. The new MR-

ORSSRS is developed based on the standard ORSSRS to solve the problem. Unlike the 

standard ORSSRS, the optimization process of MR-ORSSRS is distributed to several 

stages consisting of different sizes of design parameter clusters (Ahmad et al., August 

2014). The details of the formulation is explained as follows:- 

 Consider the output of standard ORSSRS in Algorithm 3.1 as 

𝑂𝑅𝑆𝑆𝑅𝑆𝜗(𝐹(𝜗), 𝜗(0), 𝑆, 𝛿) . Let 𝑚  be the resolution step and it is a positive whole 

number, while 𝐺(𝑗) (𝑗 = 1,2, … , 𝑚) is a series of the design parameter’s groups which 

satisfies 𝐺(1) < 𝐺(2) < ⋯ < 𝐺(𝑚) . Supposed that function 𝛾𝑗: ℝ𝐺(𝑗) → ℝ𝑁  (𝑗 =

1,2, … , 𝑚)  is given. The termination criterion in Step (4) of Algorithm 3.1 is 

|𝐹 (𝛾𝑗(𝑡 + 1)) − 𝐹 (𝛾𝑗(𝑡))| < 𝜀, where 𝜀 is a small constant value. Then, the algorithm 

of MR-ORSSRS is given by: 

𝜑𝑗
∗ = 𝑂𝑅𝑆𝑆𝑅𝑆𝜑𝑗

(𝐹 (𝛾𝑗(𝜑𝑗)) , 𝜑𝑗(0), 𝑆𝑗, 𝛿𝑗) 3.12 

for 𝑗 = 1,2, … , 𝑚. 

Here, 𝜑1(0) is randomly initialized and 𝜑𝑗(0) is a vector which satisfies 𝛾𝑗(𝜑𝑗) =

𝛾𝑗−1(𝜑𝑗−1
∗ ) for 𝑗 = 1,2, … , 𝑚. Meanwhile, 𝜑𝑚

∗  is denoted as the optimal output of MR-

ORSSRS. 



34 

Next, the operation of MR-ORSSRS is demonstrated in a simple illustration. 𝜗 ∈ ℝ9 

is represented by the grey colored cross symbols as shown in Figure 3.5. The MR-

ORSSRS is going to maximize 𝐹(𝜗)  for 𝑚 = 3 . Noted that, the groups of design 

parameters in the same dashed-box have the same value. Thus, the solution of the problem 

for each resolution is described as follows: 

 

Figure 3.5 The illustration of MR-ORSSRS with three resolution step, 𝑚 = 3 and 

the grey colored crosses are the design parameters, 𝜗 ∈ ℝ9. 

I. First resolution, 𝑗 = 1 

𝜑1
∗ = 𝑂𝑅𝑆𝑆𝑅𝑆𝜑1

(𝐹(𝛾1(𝜑1)), 𝜑1(0), 𝑆1, 𝛿1) 3.13 

Figure 3.5(a) is the illustration of the first resolution. 𝑆1  and 𝛿1  are the constant 

coefficients for Equation 3.12 of 𝑗 = 1 . Here, the objective functions are  

clustered as one group such that 𝐺(1) = 1 ; thus, 𝜑1 = 𝜑11 ∈ ℝ  for  

𝛾1(𝜑1) = [𝜑11 𝜑11 … 𝜑11] ∈ ℝ9. Whereas, 𝜑1(0) is the random initial condition. 

II. Second resolution, 𝑗 = 2 

𝜑2
∗ = 𝑂𝑅𝑆𝑆𝑅𝑆𝜑2

(𝐹(𝛾2(𝜑2)), 𝜑2(0), 𝑆2, 𝛿2) 3.14 

Figure 3.5(b) is the illustration of the second resolution. 𝑆2 and 𝛿2 are the constant 

coefficients for Equation 3.12 of 𝑗 = 2. Here, the objective functions are clustered as 

three groups such that, 𝐺(2) = 3 ; thus, 𝜑2 = [𝜑21 𝜑22 𝜑23] ∈ ℝ3  for 𝛾2(𝜑2) =

[𝜑21 𝜑21 𝜑21 𝜑22 𝜑22 𝜑22 𝜑23 𝜑23 𝜑23] ∈ ℝ9. Meanwhile, 𝜑2(0) = [𝜑11
∗  𝜑11

∗  𝜑11
∗ ]. 

III. Third resolution, 𝑗 = 3 
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𝜑3
∗ = 𝑂𝑅𝑆𝑆𝑅𝑆𝜑3

(𝐹(𝛾3(𝜑3)), 𝜑3(0), 𝑆3, 𝛿3) 3.15 

Figure 3.5(c) is the illustration of the second resolution. 𝑆3 and 𝛿3 are the constant 

coefficients for Equation 3.12 of 𝑗 = 3 . Here, the objective  

functions are in stand-alone group such that, 𝐺(3) = 9 ; thus,  

𝜑3 = [𝜑31 𝜑32 … 𝜑39] ∈ ℝ9  for 𝛾3(𝜑3) = [𝜑31 𝜑34 𝜑37 𝜑32 𝜑35 𝜑38 𝜑33 𝜑36 𝜑39] ∈

ℝ9 . Whereas, 𝜑3(0) = [𝜑21
∗  𝜑22

∗  𝜑23
∗  𝜑21

∗  𝜑22
∗  𝜑23

∗  𝜑21
∗  𝜑22

∗  𝜑23
∗ ] . In the end of the 

resolution, the optimal solution  𝜗∗ = 𝜑3
∗ . 

Then, the procedure of the MR-ORSSRS is described in Algorithm 3.2 

Algorithm 3.2: MR-ORSSRS algorithm. 

Define the values for 𝑚, 𝜀, 𝐺(𝑗) (𝑗 = 1,2, … , 𝑚), 𝛾𝑗 (𝑗 = 1,2, … , 𝑚), 𝑆𝑗  (𝑗 =

1,2, … , 𝑚) and 𝛿𝑗 (𝑗 = 1,2, … , 𝑚). Initialize 𝜑1(0) and set 𝑗 = 1. 

 

Step (1)  Acquire output of resolution 

𝜑𝑗
∗ = 𝑂𝑅𝑆𝑆𝑅𝑆𝜑𝑗

(𝐹 (𝛾𝑗(𝜑𝑗)) , 𝜑𝑗(0), 𝑆𝑗 , 𝛿𝑗) 

 

Step (2)  Check termination of resolution 

if |𝐹 (𝜑𝑗(𝑡 + 1)) − 𝐹 (𝜑𝑗(𝑡))| ≥ 𝜀  then 

set 𝑡 = 𝑡 + 1 and repeat Step (1) to (2) 

else 

Check the number of resolution 

if 𝑗 < 𝑚 then 

set  𝑗 = 𝑗 + 1, 𝜑𝑗(0) = 𝜑𝑗−1
∗  and repeat Step (1) 

else 

Algorithm ends with the optimal solution, 𝜗∗ = 𝜑𝑗
∗ 

end if 

end if 

The operation of MR-ORSSRS algorithm is illustrated and described in Figure 3.5 

and Algorithm 3.2, respectively. It is notable that MR-ORSSRS only works for a certain 

classes of problems which satisfies the condition such that a group of design parameters 

of the problem can have the same solution (Ahmad et al., 2014). For example, in the 

optimization of the wind farm, wind turbines with the same number of upstream wind 

turbines will have the same solution. Therefore, MR-ORSSRS is suitable to optimize the 

wind farm problem. 
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3.5 Model-free Design for Wind Farm Total Power Production Maximization  

The implementation of an MR-ORSSRS algorithm to solve Problem 3.1 is explained 

in this section. Here, the objective function, 𝑄̅  and design parameters 𝛼

∶= (𝛼1, 𝛼2, … , 𝛼𝑛) of the wind farm from Equation 3.4 are applied to 𝐹 and 𝜗 of Equation 

3.12, respectively. Hence, the implementation of MR-ORSSRS algorithm for the wind 

farm optimization is expressed as follow: 

𝜑𝑗
∗ = 𝑂𝑅𝑆𝑆𝑅𝑆𝜑𝑗

(𝑄̅ (𝛾𝑗(𝜑𝑗)) , 𝜑𝑗(0), 𝑆𝑗 , 𝛿𝑗) 3.16 

for 𝑗 = 1,2, … , 𝑚 . Then, refer to Algorithm 3.2, the implemented MR-ORSSRS 

algorithm for the wind farm optimization is presented in Algorithm 3.3. 

Algorithm 3.3: Implementation of an MR-ORSSRS algorithm for a wind farm 

optimization. 

Define the values for 𝑚, 𝜀, 𝐺(𝑗) (𝑗 = 1,2, … , 𝑚), 𝛾𝑗 (𝑗 = 1,2, … , 𝑚), 𝑆𝑗 

(𝑗 = 1,2, … , 𝑚) and 𝛿𝑗 (𝑗 = 1,2, … , 𝑚). Initialize 𝜑1(0) and set 𝑗 = 1. 

 

Step (1)  Acquire output of resolution 

𝜑𝑗
∗ = 𝑂𝑅𝑆𝑆𝑅𝑆𝜑𝑗

(𝑄̅ (𝛾𝑗(𝜑𝑗)) , 𝜑𝑗(0), 𝑆𝑗, 𝛿𝑗) 

 

Step (2)  Check termination of resolution 

if |𝑄̅ (𝜑𝑗(𝑡 + 1)) − 𝑄̅ (𝜑𝑗(𝑡))| ≥ 𝜀  then 

set 𝑡 = 𝑡 + 1 and repeat Step (1) 

else 

Check number of resolution 

if 𝑗 < 𝑚 then 

set 𝑗 = 𝑗 + 1, 𝜑𝑗(0) = 𝜑𝑗−1
∗  and repeat Step (1) 

else 

MR-ORSSRS ends with optimal solution, 𝛼∗ = 𝜑𝑗
∗ 

end if 

end if 

In the greedy control of the wind farm, the control parameters of wind turbines are 

set to the maximum, which produces the axial induction factor of 1 ⁄ 3 (Marden et al., 

2013). However, because of the wake dynamic, the axial induction factor is required to 

be reduced as a compensation between the wind turbines to obtain maximum power 
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production. Therefore, in this study, the axial induction factor of the wind turbines is set 

to a maximum before the optimization starts. Hence, at the beginning of the optimization, 

𝜑1(0) is set to 1 ⁄ 3. 

According to Algorithm 3.3, the value of 𝑚 , 𝐺(𝑗)  (𝑗 = 1,2, … , 𝑚)  and 𝛾𝑗  (𝑗 =

1,2, … , 𝑚)  can significantly affect the optimization performance. Meanwhile, these 

values are considered based on the conditions of wind farm layout, wind direction and 

group strategy. For example, 𝑚 is the maximum number of resolution with the reasonable 

value set between 3 to 5. This is because a bigger value of 𝑚  will prolong the 

optimization computation time, while having insignificant improvement to the power 

production (Ahmad et al., August 2014). Since most of the existing wind farm layouts 

are symmetrically distributed such that the distance between the rows and columns are 

identical, 3 ≤ 𝑚 ≤ 5  is preferable in this study due to the time constraints for 

computation. In the meantime, 𝛾𝑗 and 𝐺(𝑗) are the group strategy and number of group 

at the resolution 𝑗, respectively, with 𝑗 = 1,2, … , 𝑚. On this note, the strategy of grouping 

in MR-ORSSRS is based on the design parameters, where they have similar optimum 

output.  

 

Figure 3.6 Wind farm consists 9 wind turbines wind direction at 270°. 

For example, Figure 3.6 shows a wind farm with 9 wind turbines and the wind is 

occurring at the direction of 270°. The wind turbines covered by a dash-line are at the 

last row, while the wind turbines covered by the dotted-line are in the middle row. Here, 

the wind turbines in the last row do not have any other downstream wind turbines. 

Without the need to further tolerate with any downstream wind turbines due to the wake 

effects, these turbines are able to extract wind power at a maximum rate. Thus, they have 

the same axial induction factor at a maximum, 𝛼 = 1 ⁄ 3. On the other hand, the wind 
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turbines covered with the doted-lines have a downstream wind turbine for each of them. 

Following similar perspective, their axial induction factor would definitely be less than 

1 ⁄ 3 while having the similar axial induction factors, as they are required to only tolerate 

for one downstream wind turbine. Consequently, the grouping strategy of wind turbines 

can be decided base on the number of downstream wind turbines.  

Next, the detail explanation of grouping strategy is discussed in Table 3.3. 

Table 3.3 Group strategy with the corresponded resolution, 𝑗. 

Resolution Strategy 

𝑗 = 1 2 groups are formed, 𝐺(1) = 2.  The wind turbines which have 

downstream wind turbines are merged in a group, 𝑔11. Meanwhile, the 

wind turbines without downstream wind turbines are grouped in 

another group, 𝑔12. With this, the turbines in 𝑔12 are set to maximum 

induction factor, 𝛼 = 1 ⁄ 3 as they do not have to tolerate with wake 

interaction.  

2 ≤ 𝑗 < 𝑚 
𝑔11  is divided into several groups according to the number of 

corresponded downstream wind turbines, while the group 𝑔12  is 

remained as the previous resolution. 

𝑗 = 𝑚 
In the last resolution, each group consists of a standalone wind turbine 

such that 𝐺(𝑚) = 𝑛 , where 𝑛  is the maximum number of wind 

turbines in the wind farm. 

Next, an example on the implementation of MR-ORSSRS to optimize a wind farm 

with 16 wind turbines is demonstrated. Considering the wind farm layout in Figure 3.7; 

the wind is occurring at the direction of 225°. Here, the objective is to find the optimal 

axial induction factor 𝛼𝑖 (𝑖 = 1,2, … ,16) in order to maximize the total power production 

𝑄̅(𝛼1, 𝛼2, … , 𝛼16). The number of resolution 𝑚 = 3 is selected for this case.  

First, there are two groups of wind turbines, 𝐺(1) = 2  in the first resolution, 

𝑗 = 1 which are 𝜑1 and 𝜑2. Meanwhile, the corresponding wind turbines in each group 

are 𝑔11 = (5, 6, 7, 9, 10, 11, 13, 14, 15)  and 𝑔12 = (1, 2, 3, 4, 8, 12, 16) , respectively. 

The group strategy is in accordance to 𝑗 = 1  as shown Table 3.3 and 𝛾1(𝐺(1)) =

[𝜑12, 𝜑12, 𝜑12, 𝜑12, 𝜑11, 𝜑11, 𝜑11, 𝜑12, 𝜑11, 𝜑11, 𝜑11, 𝜑12, 𝜑11, 𝜑11, 𝜑11, 𝜑12]⏉ ∈ ℝ16. 

In the second resolution, 𝑗 = 2, the wind turbines are distributed into four groups, 

𝐺(2) = 4. Therefore, there are four parameters 𝜑1, 𝜑2,  𝜑3 and 𝜑4 that are required to 

be optimized. Meanwhile, the corresponding wind turbines in each group are 𝑔21 = (13), 
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𝑔22 = (9, 10, 14), 𝑔23 = (5, 6, 7, 11, 15) and 𝑔24 = (1, 2, 3, 4, 8, 12, 16) , respectively. 

Here, the grouping strategy is based on 2 ≤ 𝑗 < 𝑚 as shown in Table 3.3, where the  

wind turbines in 𝑔11  is divided into several smaller groups, 𝑔21 , 𝑔22  and 𝑔23 ,  

while the wind turbines in 𝑔12  remains in 𝑔24  and 𝛾2(𝐺(2)) =

[𝜑24, 𝜑24, 𝜑24, 𝜑24, 𝜑23, 𝜑23, 𝜑23, 𝜑24, 𝜑22, 𝜑22, 𝜑23, 𝜑24, 𝜑21, 𝜑22, 𝜑23, 𝜑24]⏉ ∈ ℝ16 .  

The distribution is according to this structure because the 5th, 6th, 7th, 11th and 15th wind 

turbines have to contend solely with one downstream wind turbine at the same time, 

which means that they should have the same axial induction factor. Therefore, they are 

grouped in the same group 𝑔23. However, the distribution is more adaptable in this stage, 

which can have more options such as 𝑔21 = (9, 10, 13, 14), 𝑔22 = (5, 6, 7, 11, 15) and 

𝑔23 = (1, 2, 3, 4, 8, 12, 16)  or 𝑔21 = (13) , 𝑔22 = (5, 6, 7, 9, 10 11, 14, 15)  and 𝑔23 =

(1, 2, 3, 4, 8, 12, 16). 

Lastly, 𝑗 = 𝑚 is the final resolution. According to the group strategy in Table 3.3, 

each wind turbine is distributed such that they are standalone, 𝜑𝑖 (𝑖 = 1,2, … ,16). Here, 

𝛾3(𝐺(3)) = [𝜑31, 𝜑32, … , 𝜑316]⏉ ∈ ℝ16. 

 

Figure 3.7 Wind farm layout of 16 wind turbines with incoming wind occurring at 

𝟐𝟐𝟓° direction. 

 

3.6 Summary  

The methodology to execute this study is discussed in this chapter. First, the wind 

farm system based on Park model is introduced. Park model is among the most studied 

wind farm models, as the representation of the wake effect provided in the Park model is 

simple and well-illustrated. It also includes the decay of the airspeed and expansion 

pattern of the wind (Scholbrock, 2011). However, the Park model is unable to provide a 
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practical evaluation of real-time optimization, because it is only representing a static 

wake interaction between the wind turbines. Therefore, a dynamic Park model is created 

by adding a delay structure to illustrate the duration required for the wake to travel from 

one wind turbine to the next wind turbines. Although the wind farm model is provided in 

this section, it is to emphasize that the model is only for evaluating the performance of 

the optimization algorithms. The optimization are carried out based on the information 

of inputs and outputs, while the relation between the inputs and outputs remains 

unknown. 

Next, the wind farm problem is formulated. At this stage, the axial induction factor 

𝛼 is assigned as the designed parameter, where the optimization algorithm is required to 

tune 𝛼𝑖  (𝑖 = 1,2, … , 𝑛) such that the total power production 𝑄̅  is maximized. However, 

take note that 𝛼𝑖  is not the only contributing factor that will impact the power 

production of turbine  𝑖 𝑄𝑖. The existence of wake interaction has further complicated 

the relation between 𝛼  and 𝑄̅ . In fact, it presents substantial effect on the power 

production of all downstream wind turbines which correspond with it. Hence, the relation 

between 𝛼 and 𝑄̅ is formulated, as per Equation 3.4. 

Furthermore, the step-by-step process of standard ORSSRS and MR-ORSSRS is 

presented. The generic features of the ORSSRS-based optimization algorithm include its 

ability to optimize large dimensional problems and its memorisable structure which 

allows a more stable objective function to achieved. However, the standard ORSSRS 

does not provide reasonable performance for real-time optimization, since its 

optimization convergence time is increasing proportionally to the size of problem 

dimension and the evidence is provided in Table 3.1 and Table 3.2. On the other hand, 

MR-ORSSRS solves the problem in convergence time by dividing a large dimensional 

optimization into several stages. In order to understand the processes for ORSSRS and 

MR-ORSSRS, the algorithm procedures are presented in Algorithm 3.1 and Algorithm 

3.2, respectively. Furthermore, Algorithm 3.3 shows the implementation of Algorithm 

3.2 for wind farm optimization. In totality, the group strategies of each resolution and the 

transition of designed parameters from one resolution to the next resolution are well-

explained accompanied by some examples. The results, and discussion of the study will 

be presented in Chapter 4.  



41 

 

 

 

 

RESULTS AND DISCUSSION  

4.1 Introduction 

Performance of the Multi-Resolution Optimized Relative Step Size Random Search 

(MR-ORSSRS) based method is presented and discussed in this chapter. The presented 

results are obtained using a standard Optimize Relative Step Size Random Search 

(ORSSRS), Multi-Resolution Simultaneous Perturbation Stochastic Approximation 

(MR-SPSA) and MR-ORSSRS based methods in assessing the improvement and 

performance of the new MR-ORSSRS algorithm. Noted that the results of the MR-SPSA 

based method presented in this study are referred according to Ahmad et al. (2014). 

In Section 4.2, the layout of the Horns Rev wind farm is briefly illustrated and 

discussed. A time interval for the wake to travel throughout the wind farm is included to 

illustrate the real situation in a wind farm. However, the time interval is different for each 

incoming wind direction. Hence, the formation of the time interval is discussed in detail. 

Each parameter of the Horns Rev wind farm is then summarized. 

Next, the optimization performance on the wind farm’s total power production is 

presented in Section 4.3. First, the algorithm parameters of the ORSSRS and MR-

ORSSRS algorithms are given. Next, the results of the total power production according 

to the wind direction at 170°, 200°, 220°, 240°, 250° and 270° under static wind speed 

𝑉𝜔 = 8 𝑚 ⁄ 𝑠 are presented (Ahmad et al., 2014). The total power production when the 

wind occurs at the directions of 170° and 220° is illustrated in order to observe the 

convergence patterns of the methods. Meanwhile, discussion on the group strategy for 

the first and second resolutions of the MR-ORSSRS is provided. The statistical analysis 

of all the directions is then summarized.  
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 Following this, Section 4.4 presents a special case of wind turbine failure to evaluate 

the robustness of the MR-ORSSRS, MR-SPSA and ORSSRS methods in handling 

unpredictable events. Moreover, the experiment on non-static wind variation is included 

in Chapter 4.5, in order to validate the performance on real-time optimization by using 

the MR-ORSSRS, MR-SPSA and ORSSRS based methods. Lastly, Section 4.6 

summarizes the results and discussion presented in this chapter. 

4.2 Horns Rev Wind Farm 

Horns Rev wind farm is located in Denmark. It is an offshore wind farm consisting 

of 80 (Vesta V80 2MW) wind turbines. A (Vesta V80 2MW) wind turbine has 80 𝑚 

turbine diameter 𝐷 and is able to produce the power up to 2 𝑀𝑊. Figure 4.1 shows the 

layout of the wind farm, which is in parallelogram. Each wind turbine is 7 𝐷 away from 

each other, which is equivalent to 560 𝑚 in both the 𝑥 and 𝑦 directions. The roughness 

coefficient is ∅ = 0.04  and the air density is 𝜌 = 1.225 𝑘𝑔 ⁄ 𝑚3 . Furthermore, the 

incoming wind direction at 170°, 200°, 220°, 240°, 250° and 270° are indicated by the 

red, orange, yellow, green, blue and purple doted arrows, respectively. Table 4.1 

summarizes the wind farm parameters. 

 

Figure 4.1 Horns Rev wind farm layout with incoming wind direction indicator.  
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Table 4.1 Wind farm parameters 

Wind farm parameters value 

Incoming wind direction 170° 200° 220° 240° 250° 270° 

Air density 𝝆 1.225 𝑘𝑔 𝑚3⁄  

Number of wind turbine 

𝒏 

80 

Roughness coefficient ∅ 0.04 

Turbine diameter 𝑫 80 𝑚 

Wind speed 𝑽𝝎 8 𝑚 𝑠⁄  

 

In this case study, the wind speed is set to 𝑉𝜔 = 8 𝑚 ⁄ 𝑠 (Ahmad et al., 2014) and 

the incoming wind direction is suggested to occur at 170°, 200°, 220°, 240°, 250° and 

270° . The axial induction factors of the 80 wind turbines are selected as design 

parameters, 𝑛 = 80, and the time interval for the wake to travel throughout the wind farm 

𝑇𝜔  as mentioned in Equation 3.5  is different according to the wind direction - for 

example, in the case of 220°, 𝑇𝜔 = 1400 𝑠 and in the case of 240°, 𝑇𝜔 = 1200 𝑠. This 

is because the number of wind turbine and distance between each wind turbine for the 

wake to travel thoroughly is different in each direction. Based on the fore-mentioned 

wind directions of 220° and 240°, the wake would travel through 7 and 4 wind turbines, 

while the distance for the wake to travel to the next wind turbine is 10 𝐷 and 15 𝐷, as 

shown in Figure 4.2 and Figure 4.3, respectively. Herewith, Table 4.2 summarizes the 

time interval 𝑇𝜔 for the wake to travel throughout the wind farm with incoming wind 

directions at 170°, 200°, 220°, 240°, 250° and 270°. 

 

Figure 4.2 The number of wind turbines for the wake to travel through when the wind 

direction is at 220°. 
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Figure 4.3 The number of wind turbine for the wake to travel through when wind 

direction occurs at 240°. 

 

Table 4.2 Time interval 𝑇𝜔 for wake to travel throughout wind farm 

Wind farm parameters value 

Wind direction  170° 200° 220° 240° 250° 270° 

Time interval of wake 𝑻𝝎 980 𝑠 900 𝑠 1400 𝑠 1200 𝑠 1260 𝑠 1260 𝑠 

 

4.3 The Performance of methods with Different Wind Direction 

The algorithm parameters of ORSSRS and MR-ORSSRS algorithms must be 

initially defined, in order to perform the optimization of the wind farm total power 

production using ORSSRS and MR-ORSSRS based methods.  

The step size and negative constant of Algorithm 3.1 is set to 𝑆 = 0.04  and  

𝛿 = −0.003, respectively. Note that the performance comparisons carried out in this 

study are limited to 700 hours of simulation time. Therefore, the termination criterion 

𝑡𝑚𝑎𝑥 of Algorithm 3.1 (ORSSRS) is different in each case of incoming wind direction, 

where 𝑡𝑚𝑎𝑥  is the maximum number of iterations. For example, 𝑡𝑚𝑎𝑥 = 2571 for the 

incoming wind direction of 170°, with the time interval for the wake to travel throughout 

the wind farm at 𝑇𝜔 = 980 𝑠 , as according to Equation 3.5. On the other hand, when the 

incoming wind direction is now at 200° , the time interval for the wake to travel 

throughout the wind farm is 𝑇𝜔 = 900 𝑠. Then, the termination criterion in this case is 

𝑡𝑚𝑎𝑥 = 2800. Table 4.3 summarizes the termination criterion 𝑡𝑚𝑎𝑥 of Algorithm 3.1 for 

the incoming wind directions of 170° , 200° ,  220° , 240° , 250°  and 270° . Here, the 

formulation of the termination criterion 𝑡𝑚𝑎𝑥 for Algorithm 3.1 is given as: 
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𝑡𝑚𝑎𝑥 =
700 × 3600

𝑇𝜔
  

4.1 

 

Table 4.3 Parameters for Algorithm 3.1 (ORSSRS) for wind direction at 170° 

Wind farm parameters value 

Wind direction  170° 200° 220° 240° 250° 270° 

Termination criterion 𝒕𝒎𝒂𝒙 2571 2800 1800 2100 2000 2000 

 

Next, Table 4.4 presents the parameter of Algorithm 3.3. The maximum number of 

resolution and termination criterion are set to 𝑚 = 3  (𝑗 = 1, 2, 3)  and 𝜀 = 0.01 , 

respectively. Meanwhile, the step size 𝑆𝑗  and negative constant 𝛿𝑗  for each resolution  

𝑗 = 1, 2, 3 are summarized in Table 4.4.  

Table 4.4 Parameters for Algorithm 3.3 (MR-ORSSRS) 

Parameters Value 

Maximum resolution 𝑚 = 3 

Termination criterion  𝜀 = 0.01 

Step size 𝑆1 = 0.085 𝑆2 = 0.0085 𝑆3 = 0.0028 

Negative constant 𝛿1 = −0.095 𝛿2 = −0.023 𝛿3 = −0.003 

 

The algorithm parameters of MR-ORSSRS must be reconsidered because the wind 

farm configuration is different for each of the cases. Eventually, in this study, the value 

of step size 𝑆𝑗 and negative constant 𝛿𝑗 for all resolution 𝑗 = 1,2, … are carefully tuned 

by trial and error. Besides, one of the objectives is to evaluate the robustness of the MR-

ORSSRS based method. Therefore, the parameters in Algorithm 3.3 are remained similar 

for all cases of wind direction as shown in Table 4.4. Nevertheless, the group selection 

of the first resolution and second resolution is different in each case of wind directions. 

Eventually, 𝛾𝑗  (𝑗 = 1,2) is different for each wind direction; yet, the function 𝛾𝑗 (𝑗 = 𝑚) 

is similar for all wind directions as according to the grouping strategy in Section 3.5. In 

particular, the group number for the second resolution 𝐺(2) is sensitive to the variation 

in wind direction. For example, Figure 4.4 and Figure 4.5 show the group strategy of the 

first and second resolutions for the wind direction at 170°, respectively. Meanwhile, the 

group strategy for the first and second resolutions for the wind direction at 200° are 
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shown in Figure 4.6 and Figure 4.7, respectively. Based on the illustrations, it is clearly 

noted that group number of the second resolution 𝐺(2) is changing due to the variations 

in the incoming wind direction. Meanwhile, the group number in the first and last 

resolutions are 𝐺(1) = 2  and 𝐺(3) = 80 , respectively for all the incoming wind 

directions. With this, the group numbers of the second resolution 𝐺(2) for the wind 

direction of 170°, 200°, 220°, 240°, 250° and 270° are presented in Table 4.5. 

 

Figure 4.4 Group selection in the first resolution for the wind direction of 170°. 

 

 

Figure 4.5 Group selection in the second resolution for the wind direction of 170°. 
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Figure 4.6 Group selection in the first resolution for the wind direction of 200°. 

 

 

Figure 4.7 Group selection in the second resolution for the wind direction of 200°. 

 

Table 4.5 Group number of the second resolution 𝐺(2) for Algorithm 3.3 (MR-

ORSSRS). 

Wind farm parameters Value 

Wind direction  170° 200° 220° 240° 250° 270° 

𝑮(𝟐) 8 4 8 5 4 10 

In the following, findings on the total power production optimized using the MR-

ORSSRS, MR-SPSA and ORSSRS based methods are presented. Figure 4.8 and Figure 

4.9 present the results of the total power production 𝑄̅(𝛼1, 𝛼2, … , 𝛼80) of each method 

when wind occurs in the directions of 170° and 200°, respectively for the first 10 hours 

of simulation time. Meanwhile, Figure 4.10 and Figure 4.11 illustrate the results for 700 
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hours of simulation time. Here, the results of the MR-ORSSRS, MR-SPSA and ORSSRS 

based methods are represented by the blue line, green line and red line, respectively. The 

presented results are obtained after 100 trials due to the stochastic nature of the 

algorithms. Basically, the total power production of the wind farm has been successfully 

improved using each method during the 700 hours simulation time.  

 

Figure 4.8 Results of the total power production 𝑄̅(𝛼1, 𝛼2, … 𝛼80) during the first 10 

hours of simulation time when wind occurs at the 170° direction 

 

 

Figure 4.9 Results of the total power production 𝑄̅(𝛼1, 𝛼2, … 𝛼80)  in the first 10 

hours of simulation time when wind occurs at the 200° direction. 
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Noticed that the MR-ORSSRS based method is leading the MR-SPSA and ORSSRS 

based methods for both the incoming wind directions at 170° and 200°, which shows 

that MR-ORSSRS has the shortest convergence time. Meanwhile, the MR-ORSSRS 

based method displays a tremendous convergence speed, and the convergence is precise 

for all the 100 trials such that all the lines merge into a single fine blue line as observed 

in Figure 4.8 and Figure 4.9. In general, the MR-ORSSRS based method has the highest 

total power production, which is comparable with the MR-SPSA based method; with the 

ORSSRS method producing the lowest total power production in the overall comparison, 

as shown in both Figure 4.10 and Figure 4.11.  

 

Figure 4.10 Results of full simulation time of total power production 𝑄̅(𝛼1, 𝛼2, … 𝛼80) 

when wind is occurring at 170° direction. 
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Figure 4.11 Results of the total power production 𝑄̅(𝛼1, 𝛼2, … 𝛼80)  during the full 

simulation time when the wind occurs at the 200° direction. 

Moreover, the full statistical analysis on the total power production is recorded in 

Table 4.6. The findings indicate that MR-ORSSRS is able to produce the highest total 

power production, as compared to the MR-SPSA and ORSSRS based methods, where 

the maximum total power production yielded is 63.693124 𝑀𝑊 when the wind direction 

is at 250° , as compared to 63.6931204 𝑀𝑊  and 63.692154 𝑀𝑊 , respectively. The 

MR-ORSSRS dominates the total power production in terms of mean, best, worst and 

standard deviations for the incoming wind direction of 170°, 200°, 220°  and 240° . 

However, MR-ORSSRS based method produces less total power production in terms of 

the mean when the incoming wind directions occur at 250° and 270°, where the results 

obtained are 63.6931077 𝑀𝑊 and 38.1186700 𝑀𝑊 , as compared to the MR-SPSA 

based method which yields 63.6931087 𝑀𝑊 and 38.1186721 𝑀𝑊, respectively. On 

the other hand, the MR-ORSSRS based method produces the lowest standard deviation 

of the total power production among the tested methods. With the overall standard 

deviation of the total power production as the basis, it shows that the MR-ORSSRS based 

method can produce higher consistency in total power production as compared to the 

MR-SPSA and ORSSRS based methods.  

Furthermore, Table 4.7 shows the performance in convergence time through the MR-

ORSSRS, MR-SPSA and ORSSRS based methods. The convergence time is defined as 

the time required to achieve 90% of the final value of the total power production during 
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the 700 hours. MR-ORSSRS based method has the fastest convergence time, where the 

shortest time is required to converge to 90% of the total power production, which is only 

0.250 hours when incoming wind direction occurs at 200°; while the MR-SPSA and 

ORSSRS based methods each require 2.250 hours and 205.25 hours to achieve this 

value. Noted that the longest convergence time is required when the wind direction is at 

220°. This is because the wind farm will experience a significantly greater wake effect 

when the wind comes from the direction of 220° (Porté-Agel et al., 2013).  

Table 4.6 Performance analysis of the total power production (𝑀𝑊)  for MR-

ORSSRS, MR-SPSA and ORSSRS with different wind directions. Std.: Standard 

deviation. 

 

Wind 

direction 

 ORSSRS MR-SPSA MR-ORSSRS 

170° 

Mean 39.6020710 39.6055637 39.6055672 

Best 39.6052702 39.6055694 39.6055768 

Worst 39.5580275 39.6053917 39.6054755 

Std.  5378.131 17.625 16.086 

200° 

Mean 57.8580633 57.8581957 57.8582120 

Best 57.8581958 57.8582077 57.8582177 

Worst 57.8574196 57.8581800 57.8581967 

Std.  127.174 5.301 4.583 

220° 

Mean 48.2176232 48.2246182 48.2253053 

Best 48.2235997 48.2260427 48.2264942 

Worst 48.2012265 48.2193766 48.2224691 

Std.  4022.443 1128.643 𝟖𝟗𝟐. 𝟒𝟖𝟐 

240° 

Mean 57.1768681 57.1787754 57.1788215 

Best 57.1782301 57.1788280 57.1788466 

Worst 57.1729688 57.1786632 57.1787613 

Std.  969.889 28.879 17.541 

250° 

Mean 63.6908652 63.6931087 63.6931077 

Best 63.6921514 63.6931204 63.6931244 

Worst 63.6881174 63.6930852 63.6930740 

Std.  942.328 6.931 9.414 

270° 

Mean 38.0984522 38.1187021 38.1186700 

Best 38.1155485 38.1187237 38.1187321 

Worst 37.8723097 38.1170564 38.1182603 

Std.  346.364 × 102  166.404 94.426 

 



52 

Table 4.7 Performance analysis of the convergence time (h) for MR-ORSSRS, MR-

SPSA and ORSSRS with different wind directions. 

 

On the other hand, the optimal axial induction factor of the wind 

turbines in the same row are expected to be the same because the wake 

propagation is symmetrical as in the case of wind direction at 170°. Eventually, the 

optimal axial induction factors for each column are represented as {1, 2, 3, 4, 5, 6, 7, 8} =

{0.2066, 0.1616, 0.1657, 0.166, 0.1728, 0.1160, 0.2640, 0.334} , where the incoming 

wind speed 𝑉𝜔 is directly experienced by the wind turbine in the first row. Noticed that, 

the axial induction factor of the wind turbines in the last row remains unchanged as the 

initial axial induction factor. However, the other axial induction factor of the wind 

turbines in the other rows decreases due to the compensation of the wake effect to the 

Wind 

direction 

 ORSSRS MR-SPSA MR-ORSSRS 

170° 

Mean 199.193 11.376 0.544 

Best 149.450 4.900 0.544 

Worst 259.700 27.766 0.544 

Std.  18.773 5.481 0 

200° 

Mean 229.155 3.262 0.250 

Best 206.250 2.250 0.250 

Worst 274.000 7.500 0.250 

Std.  13.797 1.294 0 

220° 

Mean 297.204 7.594 4.246 

Best 245.388 4.666 2.722 

Worst 349.611 19.833 12.833 

Std.  22.486 3.068 1.649 

240° 

Mean 300.606 4.690 0.333 

Best 239.000 3.000 0.333 

Worst 348.333 10.000 0.333 

Std.  17.747 1.846 𝟑. 𝟗𝟎𝟓 × 𝟏𝟎−𝟔 

250° 

Mean 375.483 4.336 0.350 

Best 318.500 3.150 0.350 

Worst 429.100 12.600 0.350 

Std.  20.875 1.519 𝟔. 𝟔𝟗𝟒 × 𝟏𝟎−𝟏𝟔 

270° 

Mean 255.136 6.121 0.700 

Best 188.650 2.100 0.700 

Worst 322.700 13.650 0.700 

Std.  25.222 3.330 𝟏. 𝟑𝟑𝟖 × 𝟏𝟎−𝟔 
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downstream wind turbines. Consequently, this fact justifies the validity of the proposed 

grouping strategy, where the convergence time has been significantly improved.  

4.4 Performance of Methods with Wind Turbine Failure 

In this section, the ability for the MR-ORSSRS, MR-SPSA and ORSSRS based 

methods to optimize the wind farm in the case of wind turbines failure is presented. Here, 

the Horns Rev wind farm is simulated to have 5 malfunctioned wind turbines as shown 

by the circles in Figure 4.12. Meanwhile, the wind is assumed to occur at the direction of 

270° with a constant wind speed of 𝑉𝜔 = 8 𝑚 𝑠⁄ , and the algorithm parameters for MR-

ORSSRS, MR-SPSA and ORSSRS are set to resemble the case where the wind direction 

is at 170°, as in the previous section. 

 

Figure 4.12 Horns Rev wind farm layout with five wind turbine failures. 

Figure 4.13 shows the results of the total power production 𝑄̅(𝛼1, 𝛼2, … , 𝛼𝑛)  of MR-

ORSSRS, MR-SPSA and ORSSRS based methods for the remaining 75 wind turbines 

during the first 10 hours of simulation time. The incoming wind is set at 270° with a 

constant wind speed of 𝑉𝜔 = 8 𝑚 𝑠⁄ . Noticed that the MR-ORSSRS based method 

converges faster than the MR-SPSA and ORSSRS based methods, as the blue lines are 

shown to be higher than the green lines and red lines. Meanwhile, Figure 4.14 shows the 

overall performance of all the methods. All the methods are comparable to obtain the 

maximum total power production at the 700th hour. However, ORSSRS has demonstrated 

the slowest convergence speed among all three methods. 
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Figure 4.13 Results of the total power production 𝑄̅(𝛼1, 𝛼2, … , 𝛼80) during the first 10 

hours of simulation time with failure in five wind turbines. 

 

Figure 4.14 Results of the total power production 𝑄̅(𝛼1, 𝛼2, … , 𝛼80) of 700 hours of 

simulation time with failure in five wind turbines. 

The statistical analysis of 100 trials is summarized in Table 4.8. Once again, the MR-

ORSSRS method outperforms the MR-SPSA and ORSSRS methods to produce  

the highest total power production in the shortest time. The maximum total power 

produced by the MR-ORSSRS based method is 36.4142628 𝑀𝑊, while MR-SPSA and 

ORSSRS based methods merely produce a total power of 36.4139406 𝑀𝑊  and 

36.4130753 𝑀𝑊 . This achievement is yielded by the MR-ORSSRS method within 
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0.700 hours, while the MR-SPSA and ORSSRS based methods each require 2.100 hours 

and 186.200 hours to achieve the same result.  

Table 4.8 Performance evaluation of the MR-ORSSRS, MR-SPSA and ORSSRS-

based methods with five wind turbine failures.  

Performance  ORSSRS MR-SPSA MR-ORSSRS 

 

Total power 

production 

(𝑀𝑊) 

Mean 36.4083418 36.4133001 𝟑𝟔. 𝟒𝟏𝟒𝟎𝟕𝟓𝟑 

Best 36.4130753 36.4139406 𝟑𝟔. 𝟒𝟏𝟒𝟐𝟔𝟐𝟖 

worst 36.3863769 36.4115262 𝟑𝟔. 𝟒𝟏𝟑𝟓𝟗𝟐𝟎 

Std. (× 10−6) 5135.991 467.422 𝟏𝟐𝟕. 𝟒𝟐𝟗 

Convergence 

time (h) 

Mean 239.246 3.181 𝟎. 𝟕𝟎𝟎 

Best 186.200 2.100 𝟎. 𝟕𝟎𝟎 

worst 285.600 18.900 𝟎. 𝟕𝟎𝟎 

Std.  22.811 2.517 𝟏. 𝟑𝟑𝟗 × 𝟏𝟎−𝟏𝟓 

 

4.5 Performance of methods with non-static Wind Variation 

The results presented in previous sections are based on the static wind speed 𝑉𝜔 =

8 𝑚 𝑠⁄ . However, the fact that the wind condition will vary over time within actual 

situations should not be overlooked. Therefore, the findings in this section account for 

the variations in speeds and directions of the incoming wind. Figure 4.15 and Figure 4.16 

show the variations of wind speed and direction, respectively, within the duration of 10 

hours in simulated time. Here, similar algorithm parameters are applied in MR-ORSSRS, 

MR-SPSA and ORSSRS from Section 4.3. 

 

Figure 4.15 Non-Static incoming wind speed variations of 10 hours simulation time. 
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Figure 4.16 Non-Static incoming wind direction variations during 10 hours of 

simulation time. 

Figure 4.17 shows the result of the MR-ORSSRS, MR-SPSA and ORSSRS based 

methods to improve the total power production 𝑄̅(𝛼1, 𝛼2, … , 𝛼𝑛) in the case of varying 

wind speed and direction, in accordance to the patterns shown in Figure 4.15 and Figure 

4.16. As evaluated, the MR-ORSSRS based method produces the highest power 

improvement among the model-free methods when the incoming wind speed and 

direction vary hourly; yet, with fluctuations in the objective function of this method, in 

view of the changes in wind condition. Hence, it is understood that the MR-ORSSRS 

based method will always compute the first resolution of its algorithm during the non-

static incoming wind, which further produce responsive power improvements. 

 

Figure 4.17 Total power improvements of the MR-ORSSRS, MR-SPSA and ORSSRS 

based methods under non-static incoming wind speed and direction during 10 hours of 

simulation time. 
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4.6 Summary 

In this chapter, the performance of the wind farm’s total power production 

optimization using the MR-ORSSRS, MR-SPSA and ORSSRS based methods have been 

evaluated. First, the evaluation was conducted according to the static incoming wind, 

with a constant incoming wind speed of 𝑉𝜔 = 8 𝑚 𝑠⁄  and wind directions at 

170°, 200°, 220°, 240°, 250° and 270°, respectively. Generally, MR-ORSSRS is able to 

produce the highest total power production with the shortest convergence time, as 

compared to the MR-SPSA and ORSSRS based methods. 

Moreover, the same methods are tested to improve the total power production of a 

wind farm in the case of wind turbine failure. Five wind turbines are set as failed, where 

the total power production is produced by the remaining 75 wind turbines in the layout 

of the Horns Rev wind farm. As expected, the MR-ORSSRS based method remains the 

option which produces the highest total power production with the shortest convergence 

time, as compared to the MR- SPSA and ORSSRS based methods.  

Lastly, the evaluation of non-static wind speed and direction is provided to validate 

the performance of real-time application using the new MR-ORSSRS based method. 

Here, 10 sets of incoming wind speed and direction are simulated within 10 hours of 

simulation time. Through findings, the performance comparisons show that the MR-

ORSSRS based method is responsive to the wind condition, and able to produce the 

highest total power production in all the variations of incoming wind speed and direction 

following a real-time manner, overshadowing the performance presented by both the 

MR-SPSA and ORSSRS methods.  
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CONCLUSION 

5.1 Introduction 

This chapter outlines the achievements of this research, including its contributions 

and recommendations for future works. All the objectives of this research have been 

mentioned in Chapter 1 and have been achieved as a result of the simulations. 

In this research, the new Multi-Resolution Optimize Relative Step Size Random 

Search (MR-ORSSRS) has been used to optimize total power production of a high-

dimension wind farm in real-time. Three case studies have been conducted to evaluate 

the effectiveness and convergence performance of this method, including the incoming 

wind direction variations, wind turbines failure and non-static incoming wind direction 

and speed variations. Moreover, another new method known as the standard Optimize 

Relative Step Size Random Search (ORSSRS) has also been included in this study. The 

performance of ORSSRS is evaluated based on the same study cases. These two methods 

have demonstrate their ability in obtaining near optimal solutions for solving high-

dimensional wind farm problems. When the simulation results between these two 

methods are compared, the proposed MR-ORSSRS has improved tremendously from the 

original ORSSRS, with a higher total power production in a faster convergence speed, in 

relation to ORSSRS. 

Undeniably, the proposed MR-ORSSRS has also proven its superiority against the 

best results of the other methods reported in recent literature, which include the recently 

developed MR-SPSA based method. It offers outstanding solutions with the highest total 

power production and the fastest convergence speed for the three case studies. It 

demonstrates a stable performance in addressing the six different incoming wind 
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directions, wind turbines failure and non-static wind speed and direction variations. The 

proposed MR-ORSSRS based method is shown to perform effectively on a large-scale 

wind farm, such that of the Horns Rev wind farm which contain 80 wind turbines. 

Additionally, the proposed method possesses high robustness, and it can minimize 

fluctuation on the objective function. In this research, it is vital to emphasize that the 

model-free approach does not require any explicit function of the real-model. This makes 

it superior in term of simplicity. 

Nevertheless, the proposed MR-ORSSRS based method has its weakness. The group 

strategy must be carefully considered to obtain an optimum optimization performance. 

This can be seen in Section 3.5 where the group strategy is discussed in detail. Since a 

group of design parameters of the wind farm problem implement the same solution, it 

conforms to the characteristics of the MR-ORSSRS based method. In this research, a 

promising wind farm configuration is implemented in order to fairly analyse the 

optimized results.  

5.2 Contribution 

The main contributions of this research towards the advancements in wind farm 

development are summarized below: 

1. A newly developed MR-ORSSRS based optimization algorithm has been 

implemented to solve the problem in total power production of high-dimensional 

wind farms. As expected, this method validates its superiority in the ability to 

produce the highest total power production at the fastest convergence speed, 

among other rival methods. In the economic point of view,this achievement will 

further benefit the economic dispatch and secure the operation of the wind farm 

towards exploiting wind energy for power production. Since MR-ORSSRS has 

outperformed other options in improving the total power production of high-

dimensional wind farms, it might be useful to solve the high-dimensional 

optimization problems in other fields as well. 

2. In term of research objective achievements, the proposed MR-ORSSRS based 

method has successfully improved the high-dimensional wind farm total power 

production problem, through its stochastic searching ability, as well as its 

memorisable characteristics for the evaluation of the objective function in every 
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iteration. Additionally, the MR-ORSSRS based method is also able to maximize 

the total power production of large scale wind farm, up to one consisting of 80 

wind turbines, by finding the best combination of the optimal settings of the 

design parameter. In all the study cases presented, Other methods are 

demonstrated to be comparatively inferior to the proposed MR-ORSSRS based 

method, by producing a more optimum performance for both total power 

production and convergence time. This achievement will be able to assist in 

solving the critical problems of a high-dimensional wind farm, by reducing the 

dimension of the design parameter while maintaining the reliability of the total 

power production. 

3. The performance evaluation conducted in this study has fulfilled the equality 

constrains in the MR-ORSSRS and MR-SPSA based optimization methods. Both 

the methods have indicated comparable performance in term of total power 

production. However, the proposed MR-ORSSRS based method can achieve 

higher stability in total power production as compared to the MR-SPSA. 

Meanwhile, MR-ORSSRS can achieve faster convergence speed than the 

existing MR-SPSA based method in all the study cases. In general, the proposed 

MR-ORSSRS based method has surpassed the existing MR-SPSA based method 

to consistently produce a higher total power production faster.  

5.3 Recommendations and Future Works 

This study is mainly focused on the optimization of a wind farm’s total power 

production. Yet, noted that another crucial problem in the wind farm optimization is the 

fatigue load of the wind turbines in the wind farm, whereby wind turbines which 

experiences colossal fatigue load will encounter higher potential for damages and 

breakdowns (Toft et al., 2016). This will subsequently increase the maintenance cost, at 

the expense of a reduction in productivity of the total power. Nevertheless, minimizing 

the fatigue load of wind turbines in the wind farm will reduce a wind farm’s total power 

production, further decreases the overall ability for efficient power production. Therefore, 

a multi-objective optimization of a wind farm for the maximization of the total power 

production with the minimization of the total fatigue load using MR-ORSSRS based 

method should be the focus of a future study. This would be an essential field of study, 
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in maintaining the total power production of the wind farm, while lowering the 

maintenance cost through minimizing the fatigue load of the wind turbines. 
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