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Abstract. This manuscript examines the performance of automotive air conditioning (AAC) 

with the variation of the concentration of Al2O3/PAG nanolubricant, initial refrigerant charges, 

and compressor speed. Today, the response surface methodology (RSM) is one of the most 

commonly used optimization techniques for designing experimental work and for optimizing 

variables for a system. In this study, RSM was used to predict response parameters such as 

cooling capacity and compressor work. Besides, critical relationships between input and 

response factors will be identified using RSM. Independent variable optimization is carried out 

using a desirability approach to maximize cooling capacity and minimize the compressor. The 

results of the RSM analysis found that the optimum conditions with high desirability of 100% 

were at a concentration of 0.010%, cooling charge of 168 grams and compressive speed of 1160 

rpm. At this optimum condition, the AAC system produces a cooling capacity of 1314 kW and 

a compressor work of 14.19 kJ/kg. The model predicted by RSM is accurate and has been 

validated in experiments with a deviation of less than 3.4%. Therefore, it can be concluded that 

RSM can predict optimization parameters that affect AAC performance. 

1. Introduction 

Air conditioning (AC) is an essential component in the automotive system. Modern air conditioning 

provides thermal comfort in the car’s compartment, mostly in countries facing hot and humid 

atmospheres like Malaysia. Furthermore, the compressor of air conditioning turns out to be a singular 

major secondary load on an automotive engine. The compressor used in air conditioning loads the 

engine. This will result in reduced engine efficiency and increased fuel consumption and thus release 

excess greenhouse gases. The costs of using air conditioning (AAC) systems in terms of energy 

efficiency have required researchers to explore new possibilities and technologies to improve their 

efficiency [1]. Nanotechnology can be applied to refrigerants or compressor lubricants to improve the 

efficiency of the AAC system. Nanoparticles are usually added to a refrigerant or compressor lubricant 

to improve performance in terms of heat transfer. A systematic study was performed by Redhwan et al. 

[2] to study the development of nanorefrigerant and nanolubricant and different performance 
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advancements. The use of nanorefrigerant and nanolubricant is confirmed to have the potential to save 

energy, especially in cooling systems [3]. 

     Studies on nanorefrigerant/nanolubricant have been extensively carried out by scientists to improve 

cooling performance in domestic refrigerators [4, 5] air conditioning (RAC) systems [6] and vapor 

compression refrigeration systems (VCRS) [7-9]. Researchers have been able to reduce the energy 

consumption of cooling systems to 26% [5], improve the coefficient of performance (COP) up to 33% 

[9], and increase energy efficiency ratio (EER) to 6% [6] using nanorefrigerant/nanolubricant. The 

addition of nanoparticles into refrigerant /lubricant can lessen the energy consumption of the cooling 

system by increasing the efficiency of the compressor [10]. 

     The studies on the effect of operating parameters by employing an individual approach are done in 

various studies [8, 11]. Their research work is done by changing the control factor for an appropriate 

time only under certain circumstances. However, the method used is not suitable in this study because 

the performance of the AAC depends not only on compressor speed, refrigerant charge, nanolubricant 

concentration, but also on some of these parameters collectively. Henceforth, a systematized multifactor 

investigation which offer a comprehensible performance characteristic of the AAC system in 

comparison with an individual approach is required. In such multifactor problems, the using of non-

linear method namely Design of Experiments (DoE) is suitable to examine the interaction effects of 

experiment variables. DoE is remarked as one of the most efficient and cost-effective technique to assess 

the specific and collective effects of experiment factors on output responses [12]. Numerous techniques, 

for example, Taguchi method, factorial design and response surface method might be utilized for 

experiment design purpose. 

     In the present study, RSM is used to investigate the factors’ effect on the response parameters. RSM 

is a combination of both mathematical and statistical methods that were used to establish mathematical 

modeling among factors and responses and recognize the cause of factors affecting response in a specific 

process [13]. RSM is also well-known as a practical method to evaluate engineering problems based on 

both modelings and optimizing the response surface, which is affected by the experimental inputs [14]. 

The use of RSM in designing an experiment will require less testing and less time than full factorial 

experimental testing. Besides, the long calculation of work can also be shortened. Therefore, the time 

required to determine and solve some objectives can be reduced by using RSM. 

     To date, research work to determine the performance evaluation of cooling systems using the RSM 

method is still limited. For example Costa and Garcia [15] used RSM in optimizing the efficiency of a 

refrigeration cycle demonstration unit using a multi-response optimization method In their study, a 

statistically designed experiment using RSM was carried out to reduce the energy consumption of the 

cooling system and to maximize the effect of cooling. The most recent paper was presented by Redhwan 

et al. [16]. RSM was used to evaluate the optimization of AAC performance employing SiO2/PAG 

nanolubricants. The authors considered experimental variable parameters such as refrigerant charge, 

compressor speed and nanolubricants concentrations. However, in their previous works Redhwan et al. 

[17] and Redhwan et al. [18] found that Al2O3/PAG lubricant show better performance in term of thermal 

conductivity compared to SiO2/PAG nanolubricants. It is expected that the performance of AAC is much 

better when Al2O3/PAG nanolubricant is used. Aminullah et al. [19] and Zawawi et al. [20] also found 

that dispersing Al2O3 nanoparticle into PAG based enhance its tribology performance in term of 

lowering the wear rate and reducing the coefficient of friction. 

     Henceforth, the present work employs RSM approach to examine the effect of refrigerant charge, 

compressor speed and Al2O3/PAG nanolubricants volume concentration on the AAC performance. 

Design Expert software is used, while the experiments are designed utilizing Faced Centered Design 

(FCD) procedure. Based on the FCD design, 20 experiments were conducted. The cooling capacity (QL) 

and compressor work (Win) are used as the response factors in the RSM evaluation. 

 

2. Methodology 

This section presents information concerning the experimental design and desirability approach in 

achieving optimal conditions of the AAC experiment. The methodology of preparation and stability 
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investigation of Al2O3/PAG nanolubricant is done by following in the previous research [21-25]. The 

experimental setup of AAC system was designed and developed for the performance analysis of 

Al2O3/PAG nanolubricants in the previous study [26, 27]. For further evaluation, the experimental data 

presented by [28] are used in the present study. 

     Three experiment variables in the present study namely compressor speed, refrigerant charge, and 

volume concentration of Al2O3/PAG nanolubricant were believed to be as active factors on the cooling 

capacity (QL) and compressor work (Win) as responses. Designs that can suit model required minimum 

three levels of each factors. This is satisfied by Central Composite Designs (CCD) which has three levels 

per parameter. Since the region of concern and area of operability are almost identical, the face-centered 

design (FCD) which consider the eight corners of the cube are centered and scaled to (+1, +1, +1) and 

= 1. FCD was used for the current study to achieve the experimental data, which would outfit full second-

order polynomial models in place of the response surfaces above a reasonably wide range of parameters. 

In CCD, the number of experiment point is determined by using Equation 1: 

 

02 2nN n n= + +  (1) 

 

     Where N is the number of running test of experiment, n is the number of factors and n0 is the number 

of central points. In the Equation 1, the “2n” term is known as factorial experiment points. These points 

permit apparent approximates of all major causes and 2-factors interrelations. Meanwhile, “2n” term is 

identified as axial points which permit the pure quadratic effects estimations. Finally, “n0” represents 

the center point and can be designed to be run concurrently both as axial and factorial points. 

     In the recent study, FCD with three factors was noted to have a total of 20 runs of experiments which 

entail of eight factorial points, six axial points, and six central points. It was used to assess the data 

gained from the experimental work. A multiple regression analysis was used to gain the coefficients. 

Later, the equations were used to predict the responses. The relationship between the factors and 

responses was achieved by applying a statistically significant model. 

     Desirability approach is a favored choice amid optimization methods since it has advantageous 

characteristic such as unfussiness, availability in the software, flexibility in weighting and giving 

importance ranking for individual response [14]. The same technique was also utilized by Khoobbakht 

et al. [29]. Hence, the present work used desirability approach in optimizing experiment variables, 

namely, compressor speed, refrigerant charge and volume concentration for the response properties of 

cooling capacity and compressor work. In the current work, each response has its own goal, either to 

maximize or minimize. For example, cooling capacity required maximize goal while compressor work 

is set to be minimize. The response desirability is then collectively combined using the geometric 

approach which eventually presents the total general desirability, D. 

     Three AAC system design parameters with their constraints are investigated: design parameter A is 

the compressor speed, B is the volume concentrations of Al2O3/PAG nanolubricants, while C is the 

refrigerant charge. The range for compressor speed is set to 900 to 2100 rpm. The volume concentrations 

vary from 0.006 to 0.014% while the refrigerant charges from 90 to 170 g were selected. Table 1 shows 

the suitable levels of the factors used to design the parameters of the AAC system. From the design of 

experiment, the experimental work on the AAC systems was run. The responses of 20 runs in the design 

matrix along with their corresponding points on the fitted models are based on the RSM demonstrated 

in Table 2. 

 

Table 1. The AAC system design parameter and its level for central composite design 

 Parameter -1 0 1 

 A- Compressor Speed, (rpm) 900 1500 2100 

 B- Volume Concentration, ø (%) 0.006 0.010 0.014 

 C- Refrigerant charge, (g) 90 130 170 
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Table 2. The un-coded experimental design and result of experiment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3. Results and discussion 

3.1. ANOVA Analysis on the Responses 

The analysis of response, namely cooling capacity and compressor work was performed using variance 

analysis (ANOVA) and RSM by utilizing Design-Expert software. The results attained are applied in 

the software for statistical accuracy and to develop a model equation for the responses. The Box-Cox 

power transformation evaluation was used to check the suitability of the polynomial equations 
suggested. If the results are not correctly predicted, the power of the polynomial for the model will be 

increased to achieve reasonable accuracy. Figure 1(a) & (b) represented the Box-Cox power 

transformation, which was done on to the cooling capacity and compressor work to obtain higher 

accuracy of the prediction. While the normal probability plots depicted in Figure 1(c)&(d) are the results 

of normality testing for the experimental results. The figures depict the predicted versus actual values 

for the design matrix. The normal probability plot should be verified for the range of residuals, which 

should lie close to the mean line. It was found that the values of residuals are minimal and tightly fitted 

to the mean line depicted in the graph since it is normally fitted for all responses after power altered was 

done on both responses. 

  Process parameter settings Experimental 

 

Run A-Speed B-ø C-Ref. QL Win  

  (rpm) (%) Charge 

(g) 

(kW) (kJ/kg) 

      

 1 1500 0.014 130 0.956 25.100 

 2 1500 0.010 130 1.301 20.400 

 3 2100 0.006 170 1.199 23.100 

 4 1500 0.010 130 1.210 22.000 

 5 2100 0.014 90 0.682 46.300 

 6 1500 0.010 130 1.230 23.200 

 7 900 0.014 90 0.363 30.700 

 8 1500 0.010 130 1.220 19.400 

 9 1500 0.010 130 1.121 18.700 

 10 900 0.006 90 0.461 25.200 

 11 2100 0.010 130 1.235 24.800 

 12 1500 0.010 90 1.030 23.400 

 13 1500 0.010 170 1.225 19.000 

 14 900 0.014 170 1.162 16.100 

 15 1500 0.010 130 1.123 19.100 

 16 900 0.010 130 1.066 15.400 

 17 2100 0.006 90 0.647 39.200 

 18 900 0.006 170 1.059 14.700 

 19 2100 0.014 170 1.208 25.900 

 20 1500 0.006 130 0.912 23.400 
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a) Box-Cox plot for Cooling Capacity 

 

(b) Box-Cox plot for Compressor Work 

 

(c) Normal probability plot for Cooling Capacity 

 

(d) Normal probability plot for Compressor Work 

Figure 1. Box-Cox and Normal probability plots for Cooling Capacity and 

Compressor work. 
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     The model summary of a quadratic model (with power transformation) for cooling capacity and 

compressor work was carried out and represented in Table 3. Table 3 shows that the model fit is 

expressed as the coefficient of R-squared. The values show 0.9108 and 0.9291 for cooling capacity and 

compressor work of the variability in response that can be elucidated by the model for the responses 

mentioned. The closer the R2 value to 1, the better the model fits the experimental data [30]. Table 3 

also shows the Predicted R-Squared value of 0.8586 and 0.8839 for cooling capacity and compressor 

work, respectively, which is in reasonable agreement with the Adjusted R-squared value of 0.8870 and 

0.9102 in which the difference between these values is less than 0.2 as desired. The adequate precision 

values for these responses are 20.710 and 25.314, as depicted in Table 3, where this parameter reflects 

the signal-to-noise ratio. A value higher than four is sought. Both responses show values higher than 

four, meaning that they are sufficient signals and can be used to navigate the design space as indicated 

from the table. 

Table 3. Model summary for AAC system response surface model 

 

Source QL (kW) Win (kJ/kg) Remarks 

 

 

 
R- squared 0.9108 0.9291 - 
 
Adjusted R-squared 0.8870 0.9102 - 

 
Predicted R-squared 0.8586 0.8839 

Closed to Adj. 
R2 

 
Adequate precision 20.710 25.314 > 4 

 

3.2. Cooling Capacity ANOVA Analysis 

Further analysis of variance (ANOVA) for the cooling capacity was carried out as depicted in Table 

4. 

Table 4. ANOVA analysis for cooling capacity response surface quadratic model 

 

Source 

Sum of 

Squares df 

Mean 

Squares f-value 

p-value 

Prob > f Significant 
 

 
Model 4.390 4 1.100 38.30 <0.0001 ✓ 
 
A-Speed 0.210 1 0.210 7.24 <0.0168 ✓ 
 
B- ø 0.012 1 0.012 0.41 <0.5324 X 
 
C-Chg 2.390 1 2.390 83.43 <0.0001 ✓ 
 
B2 1.780 1 1.780 62.12 <0.0001 ✓ 
 
Residual 0.430 15 0.029 - - - 
 
LoF 0.260 10 0.026 0.73 0.6864 X 
 
Pure Error 0.170 5 0.035 - - - 

 

     Table 4 shows that this model is statistically significant, with a sum of squared models of 4.39 and a 

f-value of 38.30. P-values are values that are commonly used to assess the importance of each 

coefficient. A "Prob> f" value of less than 0.05 indicates that the model terms are significant and better. 

The term of the model is not significant if the value of "Prob> f" is greater than 0.1.  In the case of this 

study, the p-value for the model is less than 0.0001. This means that there is a maximum probability of 

0.01% that "Model f-value" occurs due to noise. Factors such as speed (A), initial cooling charge (C), 

and combined squared concentration (B2) show values with "Prob> f" values less than 0.05. Apart from 

the concentration (B) term, other non-significant factor model combinations with values of "Prob> f" 

greater than 0.100 were excluded in the model reduction. Model reductions are made by removing non-
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significant factors that will improve the model. Therefore, the cooling capacity is QL = f (A, b, C, B2). 

Unlike model values, the value of "LoF" (standing for Lack of Fit) is not important, and the value of 

"Prob> f" is greater than 0.100. The f-value was 0.73 for cooling capacity indicating that "LoF" was not 

significant due to pure error.  A non-significant "LoF" is desired to make certain models fit. 

     The developed actual quadratic models of cooling capacity QL as fitted based on RSM in terms of 

the experimental factors is presented in Equation 2. 

 

( )
42.18 24.333 2.401 10 754.682 0.0122 37306.3210LQ A B C B
−

= − + + + −  (2) 

      

     Where QL is the cooling capacity (kW), A is the speed (rpm), B the volume concentration of 

Al2O3/PAG nanolubricant (%), and C is the refrigerant charge (g). Negative signs indicate that they 

have antagonistic effects, while positive coefficients in the equation reflect synergistic results, on the 

responses analyzed [29]. The predicted value of the cooling capacity, QL determined through Equation 

2, is close to the experimental value. 

     Based on the ANOVA analysis, the refrigerant charge (C) and concentration-squared (B2) show 

significant interaction effects.  It can be seen that the cooling capacity increases with the increase in 

refrigerant charges. This is mainly due to the increase in the mass flow rate due to the increase in cooling 

charges. Figure 2 shows the interaction between the refrigerant charge and volume concentration. 

 

Figure 2. Cooling capacity as the function of Refrigerant charge and 

Nanolubricant Concentration 

 

Figure 2 shows the curvature of the plot indicating the interaction between the variables. The increase 

in the refrigeration charges has led to a significant increase in cooling capacity, especially at a volume 

concentration of 0.006%. Furthermore, increasing the volume concentration will increase cooling 

capacity up to 0.010% volume concentration. This can be seen at 0.010% volume concentration, where 

across the refrigerant charge, the cooling capacity value is decreasing. The figure also shows that cooling 

capacity is optimum at 0.010% volume concentration. 

 

3.3. Compressor Work ANOVA Analysis 

Table 5 shows the analysis of variance (ANOVA) for compressor work was carried out. The table shows 

that the f-value is 49.15, which confirms that the model is significant. In terms of factors, Speed (A), 

volume concentration (B), the refrigerant charge (C), and a combination of B2 show significance with 

“Prob > f” values of less than 0.05. Other combinations of factor models are not significant with “Prob 

> f” values to be more than 0.100. Therefore, compressor work is given by Win = f(A, B, C, B2). 
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Furthermore, for the “LoF” value for compressor work, the f-value is 0.5408, which means that the lack 

of fit is not significant relative 

to the pure error. 

 

Table 5. ANOVA analysis for 

compressor work response surface 

quadratic model 

 

 

 

 

 

     The developed actual quadratic model of compressor work (Win) as fitted based on RSM in terms of 

the experimental factors corresponded to Equation 3. The predicted value of win determined by Equation 

3 was adequately close to the experimental values. 

 

( ) ( ) ( )
4 24

10 115l .456 6og 1.95 7 2.7170 10 119.94496 1.6333 10in BA Cw B
−−

= −+ − −  (3) 

 

     Based on ANOVA analysis, speed (A), concentration (B), refrigerant charge (C) and concentration-

squared (B2) show a significant interaction effect. Interaction of AAC parameters between compressor 

speed and volume concentration and its effects toward the compressor work is shown in Figure 3. 

 

 

Figure 3. Compressor Work as the function of compressor speed and Nanolubricant 

Concentration 

 

     Compressor work is high at low nanolubricant concentrations. Increasing the volume concentration 

will reduce the compressor work before it increases again after the volume concentration of 0.010%.  

Besides, the figure shows that the compressor work also increases with increasing speed. This is mainly 

due to the increase in mass flow rate as the compressor speed increases. Figure 3 indicates that the 

compressor work is minimal at 0.010% volume concentration and low compressor speed. The 

compressor work will decrease with the increasing volume concentration up to 0.010% volume 

concentration. Above 0.010% volume concentration, the compressor work is again increased. Hence, 

 Source Sum of df Mean f-value p-value Signi- 

  Squares  Squares  Prob > f ficant 

 Model 0.270 4 0.067 49.15 <0.0001 ✓ 

 A-Speed 0.096 1 0.096 69.98 <0.0001 ✓ 

 B- ø 0.008 1 0.008 5.62 <0.0316 ✓ 

 C- Chg 0.120 1 0.120 86.06 <0.0001 ✓ 

 B2 0.048 1 0.048 34.93 <0.0001 ✓ 

 Residual 0.021 15 0.001 - - - 

 LoF 0.014 10 0.001 0.99 0.5408 X 

 Pure Error 0.007 5 0.001 - - - 
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from Figure 3, it can be concluded that the minimum compressor work occurs when the volume 

concentration of Al2O3/PAG nanolubricant is at 0.010% and at 900 rpm compressor speed. 

 

3.4. Optimization of the Responses 

The optimization of the responses was done according to the desirability approach. In the desirability 

analysis, the total desirability (D) is the geometric (multiplicative) mean of all individual desirability. 

The individual desirability is ranging from 0 (least) to 1 (most). Table 6 The best combination of 

parameters was selected via the highest desirability value. 

 

Table 6. Optimum response target value and limit for optimization of AAC performances 

 

  Factors  Responses  

   Ref. 

Charge 

   Desirability 

 Speed ø QL win  

 1160.29 0.010 167.78 1.314 14.19 1.000 

 

The highest desirability value is 1.000 which reflected the maximum cooling capacity of 1.314 kW and 

minimum compressor work of 14.19 kJ/kg. This can be attained by employing the AAC parameters of 

1160.29 rpm of compressor speed, Al2O3/PAG nanolubricant with concentration of 0.010% and 

refrigerant charge of 167.78 g, represented in ramp form as shown in Figure 4. The highest desirability 

value is also best portrayed in graphical form as shown in contour and 3D view in Figure 5. 

 

 

Figure 4. Ramp solution for desirability approach 

 

Table 7 represents the predicted results of desirability were then validated through the experiment. The 

parameter, namely compressor speed rounded to 1160 rpm, volume concentration of 0.010%, and 168 

g initial refrigerant charge (rounded value), are used in the experiment for validation.  It can be 

concluded that the predicted result with certain desirability is compared, as shown in Table 7. 

Considering all responses, these are the outcomes of the optimum conditions of the AAC system. The 

results show a close agreement between the predicted and experimental results with a maximum 

deviation of 3.35%. 

 

Table 7. The predicted result versus the validation result through experiment 

 

 
Factors Response 

Speed  Ref. Charge QL win 

Prediction 1160.29 0.010 167.78 1.314 14.19 

Validation 1160 0.010 168.00 1.280 14.40 

Deviation (%)    3.35 1.48 
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4. Conclusion 

The optimization of operating factors for automotive air-conditioning (AAC) systems was performed in 

the present study by changing the compressor speed, refrigerant charge and Al2O3/PAG nanolubricant 

volume concentration. RSM has been used as DOE to assist in designing experiments and statistical 

analysis. As a result, important variables that contribute to the AAC system performance coefficient can 

be identified. The experimental design predicted by the RSM reduces the time required. The reduction 

of time is assisted by reducing the number of experiments to be performed and representing a statistically 

proven model for all reactions. Therefore, the method required in RSM is effective in this study.  A 

highest desirability of 100% was achieved at the compressor speed of 1160 rpm, refrigerant charge of 

167 gram and nanolubricant volume concentration of 0.010%. This situation was regarded as the 

optimum parameter for the AAC system having cooling capacity (QL) of 1.314 kW and compressor 

work (Win) of 14.19 kJ/kg. The validation via experiment found that the prediction by RSM is valid 

with deviation is less than 3.4%. 
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