Thermodynamic and experimental explorations of CO₂ methanation over highly active metal-free fibrous silica-beta zeolite (FS@SiO₂-BEA) of innovative morphology

I.Hussain^a, A. A. Jalil^{b,c}, S. M. Izan^a, M. S. Azami^a, K. Kidam^b, N. Ainirazali^d, A. Ripin^{b,c} ^a Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia ^b School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

^c Centre of Hydrogen Energy, Institute of Future Energy, 81310 UTM Johor Bahru, Johor, Malaysia

^d Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia

ABSTRACT

CO₂ methanation is a novel way for climate change mitigation by converting CO₂ into substitute natural gas. In this study, a highly active fibrous silica-beta zeolite (FS@SiO₂-BEA) catalyst was prepared for CO₂ methanation by a microemulsion process, and examined by N₂ adsorption–desorption, field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), and electron spin resonance (ESR) spectroscopy techniques. It was found that the FS@SiO₂-BEA catalyst possessed a fibrous silica morphology, leading to high surface area (609 m²/g), oxygen vacancies, and basicity. A thermodynamic study was also carried out using Gibbs free energy minimization method, and it was found that low temperatures (25–350 °C) and high H₂: CO₂ ≥ 4 ratios have enhanced the CO₂ methanation activity. The prepared FS@SiO₂-BEA catalyst exhibited high CO₂ conversion (65%), and CH₄ selectivity (61%) with a space–time yield of 3.30 g g_{cat}⁻¹ h⁻¹. The obtained experimental results highly followed the thermodynamic calculations.

KEYWORDS

CO₂ methanation; Fibrous silica-beta zeolite; Gibbs free energy minimization; Microemulsion; Thermodynamics; Substitute natural gas

ACKNOWLEDGMENT

This work was supported by the financial support of Universiti Teknologi Malaysia through Transdisciplinary Research Grant (Grant No. 06G52 and 06G53)