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 The selection of parameters in grinding process remains as a crucial role to 

guarantee that the machined product quality is at the minimum production 

cost and maximum production rate. Therefore, it is required to utilize more 

advance and effective optimization methods to obtain the optimum 

parameters and resulting an improvement on the grinding performance. In 

this paper, three optimization algorithms which are particle swarm 

optimization (PSO), gravitational search, and Sine Cosine algorithms are 

employed to optimize the grinding process parameters that may either reduce 

the cost, increase the productivity or obtain the finest surface finish and 

resulting a higher grinding process performance. The efficiency of the three 

algorithms are evaluated and compared with previous results obtained by 

other optimization methods on similar studies. The experimental results 

showed that PSO algorithm achieves better optimization performance in the 

aspect of convergence rate and accuracy of best solution. Whereas in the 

comparison of results of previous researchers, the obtained result of PSO 

proves that it is efficient in solving the complicated mathematical model of 

surface grinding process with different conditions. 
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1. INTRODUCTION 

Grinding process remains as an important conventional machining process that is performed on 

various kind of surfaces for the shaping and finishing purpose in order to manufacture precision finished 

products [1]. By comparing with other conventional machining processes like turning and milling, grinding 

can produce better surface finish with smaller surface roughness. Grinding process involves material removal 

and surface transmission operation which having disadvantages in terms of resources, materials, energy 

consumptions and power emissions. The accuracy of the surface tolerance of the grinding process is high and 

it is capable to machine tough materials. Moreover, the machining process parameter are often decided based 

on the operator experience and referred the standard technical process parameters table. In any case, it is 

difficult even a skilled operator to achieve the optimum parameter value for every different grinding process. 

Consequently, a lot of factors that affect the performance of grinding process had occurred such as poor 

surface finish, short tool life, spindle speed exceed machine capacity and inconsistent process temperature. 

Therefore, it is crucial to resolve the grinding application issues by increase the process performance. 

In general, the optimization problems can be classified into two categories, which are single-

objective [2] and multi-objective [3, 5] problems. By reviewing the previous works with different methods, 

it can be seen that many researchers have conducted the optimization of grinding process using combined-

objective functions as one single-objective problem to optimize the process parameters [2, 4-10]. This is 
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because these optimization methods are having difficulties to expand to real multi objective problems since 

they are not introduced to solve the multiple ideal solutions. These optimization methods are lacking from the 

drawback that the decision maker needs to have detailed information to make decision on the ranking of the 

objective functions. In addition, these basic optimization methods fail to apply in the discontinuous objection 

function and consequently being modified or combined to form a new approach in order to solve the multi-

objective optimization problems. In this study, therefore, the single-objective approach is chosen for the 

optimization of grinding process. 

The motivation of this present works is aimed to evaluate the efficiency of three optimization 

algorithms; (1) particle swarm optimization (PSO), (2) gravitational search (GSA), and Sine Cosines (SCA) 

algorithms to the surface grinding process problem. The algorithms are utilized for both rough and finish 

grinding conditions of the surface grinding process. The findings of this study are analyzed and discussed to 

suggest the most efficient algorithm for grinding process problem. 

 

 

2. MATHEMATICAL FORMULATION OF SURFACE GRINDING PROCESS 

There are three sub-objectives that can be considered in this study which are the production cost, 

the production rate and the surface finish. The four variables that considered in this paper including the speed 

of wheel,   , speed of workpiece,   , depth of dressing,    , and lead of dressing,  . In both rough and finish 

surface grinding process, the process variables are necessarily to satisfy the standard boundary condition in 

order to obtain the boundary value. The parameters bounds for the    ,   ,    , and,  , are set to 

[1000,2023], [10,22.7], [0.01,0.137], [0.01,0.137], respectively. The three sub-objective functions would be 

separated into two different sections; (1) the rough grinding condition is aimed to minimize the production 

cost and maximize the production rate, (2) the finish grinding condition is aimed to minimize the production 

cost and reduce the surface roughness. 

 

2.1. Objective functions 

The three objective functions that considered in this paper are minimize the production cost 

   (   ⁄ ), maximize the production rate in terms of workpiece removal parameter    , (        ⁄ ) 
and minimize the surface roughness    (  ). 

 

2.2. Production cost 

The total production cost,    in the surface grinding process include the cost specifically related to 

the grinding of the part, the cost of non-beneficial time and lastly the cost of material consumption. For the 

rough grinding process, it is necessarily to minimize the   , considering the various optimization parameter 

mentioned above is shown in (1) which is introduced by Wen et. al. [2]. 
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Where    cost per hour labor and administration,   =length of workpiece,  =empty length of 

grinding,   =width of workpiece,   =empty width of grinding,    cross-feed rate,   =total thickness of cut, 

  =down-feed of grinding,   =number of spark out grinding,   =diameter of wheel,   =width of wheel, 

 =grinding ratio,    distance of wheel idling,  =number of workpieces loaded on the table,   =speed of 

wheel idling,   =time of loading and unloading workpieces,   =time of adjusting machine tool,   =batch 

size of the workpieces,  =total number of workpieces to be ground between two dressing,    =total number 

of workpieces to be ground during the life of dresser,   =cost of wheel per    , and   =cost of dressing. 

 

2.3. Production rate 

The production rate in the rough grinding process is represented by the workpieces removal 

rate,    . For the rough grinding process, the maximization of production rate in terms of     is given 

by (2) [2]. 
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Where     is the percentage of wheel bond,   , is the grind size, and    is the workpiece hardness. 

 

2.4. Surface finish 

The surface finish of the workpiece is commonly determined to be within a particular value surface 

roughness,    that is highly affected by the process parameters and the wheel dressing parameter where the 

mathematical model is expressed as follow [2], 
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where,      is an average chip thickness during grinding. 

 

2.5. Constraints 

The major constraints that involve in the optimization problem in surface grinding process are the 

process and variable constraints. The three major process constraints in both rough and finish grinding 

process are thermal damage   wheel wear parameter,     and machine tool stiffness. In addition, surface 

finish will exists as a constraint in the rough grinding process in behalf of a specific surface finish needs to be 

maintained to obtain the maximum production rate. While in the finish grinding, the production rate exists as 

a constraint. The grinding process need a high energy per unit volume of material removed. Then, the energy 

will be converted into heat energy which is thought inside the grinding region. The workpiece will be 

damaged by the high thermal energy and it prompts to the decreased production rate. The specific energy   

is expressed as (5) [2]. 
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where    is an initial waer flat area percentage,  and   is the wera constant per   . The critical specific 

energy   , which resulting the start of thermal damages, is expressed in term of operating parameter as 

shown in Equation (6) [2]. 
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Practically, the specific energy must be equal or less than the critical specific energy   , or else the 

workpiece burn will be occurred. Based on the relationship between the grinding process parameters and the 

specific energy, the thermal damage constraint will be specified as Equation (7) [2]. 

 

     (7) 

 

Wheel wear parameter,     is directly related to the grinding process condition and the wheel 

dressing preceding is shown as Equation (8) [2]. 
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Where   =constant dependant on coolant and wheel grain type. The wheel wear constraint is 

obtained from the Equation (2) and (9) is expressed as Equation (9) [2]. 

 
   

   
    (9) 

 

The low machining production rate and poor surface quality may cause the chatter results. Chatter 

avoidance is an obvious constraint in the selection of machining parameters. The relationship between 

grinding stiffnes,  , wheel wear stiffness,   and the process parameters is shown in (10) and (11) [2]. 
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In order to avoid chatter during machining, the machine tool stiffness constraint,     is given as 

(12). 
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,   =static machine stiffness and    =dynamics machine 

characteristics. 

In the rough grinding condition, it is necessarily to maintain a finest surface finish with the maximum 

production rate. Therefore, the sub-objective of the rough grinding will be the production rate while the 

surface finish is a constraint in the rough grinding process. The constraints can be expressed as (13) [2]. 

 

      
  (13) 

 

While for the finish grinding condition, it is aimed to obtain an optimum surface finish at a particular 

production rate. Hence, the surface finish is chosen as the sub-objective while the production rate is a 

constraint. The constraints can be expressed as Equation (14) [2]. 

 

          (14) 

 

2.6. Combined-objective function model 

The sub-objectives of the both rough and finish grinding operation will be normalized to a single-

weighted objective as (15) [2]. By combining the sub-objectives, it may effectively overcome the large 

differences of value between the numerical value and the sub-objectives. 

 

   (              )     
  

   
    

   

    
    

  

  
          (15) 

 

Where    =expected total production cost limitation and    ,    ,   =weighting factors for the 

  ,      and    respectively. For the rough grinding process, the combined objective function model 

which shown in the Equation (15) is modified as Equation (16) since      . 
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Where   =        and       based on the analysis and researches on previous papers [2]. 

While for finish grinding process, the combined objective function model which shown in (15) is modified as 

(17) since     . 
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where   =         and        based on the analysis and researches on previous papers [2]. 

 

 

3. OPTIMIZATION ALGORITHM METHODS 

3.1.  Particle swarm optimization 

PSO algorithm is a population-based optimization method that introduced by Kennedy, J and 

Eberhart, R. in 1995 [11]. To date, the PSO algorithm has widely been employed in various kind of 

applications such feature selection [12], feature scaling [13]-[14], and routing in VLSI [15]. The concept of 

PSO involves the changing the velocity of each particle in each level at each step and weighting the 

acceleration by the generated random number separately against the ‘     ’ and ‘     ’ locations. 

The updates of the particles are expert according to the following (18). 
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The equation for the new velocity       for each particle according to the initial velocity, when the 

‘     ’ and ‘     ’ have achieved is shown in (18). 

 

                (         )         (         )  (18) 

 

Where  =inertia coefficient ,   =initial velocity,      =acceleration constant,       =initial      , 
  =individual particle’s position,       =initial       and   ,   =random number from 0      where 

    and  . The equation for the personal particle’s position,      in solution hyperspace is shown in (19). 

 

              (19) 

 

The optimum selection of process parameters of PSO like the    and    as well as   is very 

important for the convergence of methods. By take into account the particle velocity and position at discrete 

time step, the (18) and (19) are substituted to form the non-homogeneous recurrence relation which is shown 

in (20). 

 

     (         )                              (20) 

 

where          and         . 

Provide a statement that what is expected, as stated in the "Introduction" chapter can ultimately 

result in "Results and Discussion" chapter, so there is compatibility. Moreover, it can also be added the 

prospect of the development of research results and application prospects of further studies into the next 

(based on result and discussion). 

 

3.2. Gravitational search algorithm 

The GSA, proposed by Rashedi et. al. in year 2009 [16], is a law of gravity-based optimization 

method which is also has been used in different applications [17-19]. In GSA, the agents are treated as 

objects and the performance is calculated by their masses. These objects attract each other by the gravity 

force which is caused by a global movement of all objects towards the objects with heavier masses. 

The overall force acquired by all other agents calculates the direction of the agent. There are four major 

specifications in each mass or agent which including the position, inertia mass, active gravitational mass and 

lastly passive gravitational mass. The position of the mass is corresponding to the problem solution while the 

inertia and gravitational masses are determined utilizing a fitness function. Particularly, each mass represent a 

solution and the inertia and gravitational mass will navigate the algorithm. Theoretically, the masses will be 

attracted by the heaviest mass that present an optimum solution in the search space. When considering an 

optimization method with   masses, the position of the  th agents is expressed as (26). 

 

   (  
     

     
 )  Where             (26) 

 

Where   
  is the position of  th agent in the  th dimension. At certain times ‘ ’, the force acting on 

the mass ‘ ’ from mass ‘ ’ is expressed as (27). 
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Where     is the active gravitational mass related to agent  ,     is the passive gravitational mass 

related to agent   ,  ( ) is gravitational constant at time  , ε is a minor constant and    ( ) is the Euclidean 

distance between two agents   and   and expressed as (28). 

 

   ( )  ‖  ( )   ( )‖   (28) 

The total force that acts on the agent   in a dimension   be a random weighted sum of  th 

components of the force that exerted from other agents is expressed as Equation (29) where       is a 

random number in the interval ,   -. 
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The acceleration of the agent   at time   and the in direction  th   
 ( ) by the law of motion is 

expressed as Equation (30), where     is the inertia weight of the  th agent. 
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Moreover, the next velocity is considered as a fraction of its current velocity added to its 

acceleration. The position and velocity is calculated and expressed as (31) and (32), where       is a random 

number in the interval [0,1]. 
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The gravitational constant,   is initialized and decreased with time to control the accuracy of search 

space. Generally,   is a function of the primarily value of (  ) and time ( )n which is expressed as follow, 

 

 ( )   (    )  (33) 

 

The fitness evaluation measures the gravitational and inertia masses. A heavier mass indicates 

higher efficiency of the agent. The better agent will walk slowly and higher attractions. The gravitational and 

inertia masses are updated as (34), (35) and (36). 

 

                                   (34) 

  

  ( )  
    ( )      ( )

    ( )      ( )
  (35) 

  

  ( )  
  ( )

∑   ( )
 
   

  (36) 

 

    ( ) indicates the fitness value of the agent   at time  . For the optimization problem, 

the      ( ) and     ( ) are formulated as (37) and (38). 

 

    ( )       *    +     ( )  (37) 

  

     ( )       *    +     ( )  (38) 

 

In order to perform better compromise between the exploration and exploitation, the numbers of 

agents are reduced with lapse of time in Equation (29). Therefore, a set of agents with larger mass apply their 

force to the other is proposed. This policy may decrease the exploration energy and increase the exploitation 

ability. Initially, the exploration must be used in the algorithm to prevent trapping in a local optimum. 

By a lapse of interactions, the exploration is necessary to fade out while the exploitation is necessary to fade 

in. The performance of the GSA will be improved through controlling the exploration and exploitation, only 

the       agents will attract to each other.       is the function of time with the primarily value of    at the 

starting and reducing with time. Initially, the force is applied on all agents and through a period,       is 

decreased gradually and lastly there will only an agent is applying force to others. The equation (29) is 

modified as (39). 

 

  
 ( )  ∑         

 ( ) 
            

  (39) 

 

      is the set of the first   agents with the best fitness value and a larger mass. 

 

3.3. Sine cosines algorithm 

Sine and Cosine Algorithm (SCA) is a population-based optimization method which begin the 

optimization process with a set of random solutions [20]. The SCA algorithm has been successfully 

implemented in various engineering problem including parameter optimization of PID controller [21], 

support vector regression [22], short-term hydrothermal scheduling [23], and other fields at present [24]. 
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Basically, SCA is typically divided to two stages which involving the former and exploitation. The position 

updating equations for both former and exploitation stages are expressed as follow, 
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where,   
  is the position of the current solution in  -thdimension at  -th iteration,   ,    and    are random 

numbers,    is the position of the destination point in  -th dimension, and   represents the absolute value. 

These two equations are combined and expressed as follow, 
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where,    is a random number in the interval ,   -. 
In SCA, there are four major parameters which are             as shown in (42). The parameter    

defines the next position’s that could be either in the space between the solution and destination or outside it. 

The parameter    defines the distance of the movement which supposedly toward or outward the destination. 

The parameter    indicates a random weight for the destination in order to stochastically emphasize (    ) 
or deemphasize (    )  the effect of destination in characterizing thr distance. Lastly, the parameter    

switches equally between the sine and cosine elements in Equation (42). 

In order to balance the exploration and exploitation to search for the promising areas of the search 

space and converge to the global optimum eventually, the range of sine and cosine in Equations (40) to (42) 

is modified as, 

 

      
 

 
  (43) 

  

          (44) 

  

         (45) 

 

where,   is the current iteration,   is the maximum number of iterations and   is a constant. Over the course 

of iterations will reduce the range of sine and cosine functions. The SCA explores the search space when the 

range of the sine and cosine functions are in the interval ,   - and ,     -. 
 

 

4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

4.1.  Comparison performance of PSO, GSA, and SCA 

A comparison of performance of the best solution at           of PSO (blue line), GSA (red 

line), and SCA (green line) in both rough and finish grinding conditions are presented in the convergence 

plots as shown in Figure 1 and Figure 2. Referring to these figures, PSO algorithm shows better optimization 

performance and the obtained results are more consistent and accurate when compared with GSA and SCA. 

Generally, GSA and SCA tend to find the global optimum faster than PSO algorithm but the final results are 

more crucial because they are reflecting the capability of the algorithms to escape from the bad local optima 

as well as locating a close-global optimum. For this situation, PSO algorithm is able to converge the best 

solution accurately at maximum iterations of 100, meanwhile for the GSA and SCA, they tend to converge 

immediately when      is large and maximum iterations of 100 as they are commonly used to optimize an 

immerse range of problems with the fixed small population size. 
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Figure 1. Convergence curve of rough grinding condition 

 

 

 
 

Figure 2. Convergence plot in finish grinding condition 

 

 

Next, the optimal solution of these PSO, GSA and SCA algorithms are compared to the results of 

previous researches on similar optimization problem in both rough and finish grinding condition. The smaller 

value of COF indicates the better optimization. In Table 1, RSFS algorithm shows significant better COF 

when compared with the optimization algorithms that done by previous researchers as well as PSO algorithm, 

GSA and SCA. The reasons of RSFS shows better performance may due to the parameters of RSFS are tuned 

by robust design methodology and providing optimal values for the algorithm. Next, the best solution of PSO 

algorithm is having similar COF with HPSO, TDEOA and Mod-εDE. The best solution obtained by PSO in 

this paper shows an improvement of results when compared with the previous research paper that presented 

by Pawar and Rao (2013) which may influenced by using different value of the parameters and optimzation 

problem is achieved by the average best solution of 50 independent runs which resulting a more accurate and 

better results. This proves that PSO algorithm is efficient in solving these optimization problems. 

Besides, the comparison results of the finish grinding condition for the surface grinding process are 

tabulated in Table 2. In Table 2, it can be clearly seen that PSO algorithm shows better optimization 

performance when compared to most of the optimization algorithms except EP-PSO. Although EP-PSO 

proposes a superior optimization performance with the minimum COF value in finish grinding condition, 

nonetheless its optimization performance in rough grinding condition is just average of these entire 

optimization algorithms. For this reason, the optimization performance of EP-PSO is slightly inconsistent in 

solving the optimization problem with different conditions. On the other hand, SCA shows average best 

solution while the best solution of the GSA is quite unpleasant in the comparison of optimization 

performance. Briefly, the optimization performance of PSO algorithm is better than GSA and SCA as the 

solution implemented by PSO algorithm has significant smaller COF value comparing to GSA and SCA. 

This is because the update operators in PSO algorithm are systematic which allow PSO algorithm to refrain 
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trapping in local optima. Moreover, when the population size of the optimization problem is large, PSO 

algorithm was able to evaluate the best solution within a short time. Meanwhile, GSA and SCA required 

longer time to evaluate the best solution yet unable to obtain a better solution with smaller value of COF. 

Subsequently, the obtained result of PSO algorithm proves that it is efficient in solving the complicated 

mathematical model of the surface grinding process in both rough and finish grinding condition. 

 

 

Table 1. Comparison results of various optimization algorithms in rough grinding condition 
Method Vs Vw Doc L CT WRP Ra COF 

RSFS [4] 2023 13.150 0.0740 0.137 7.273 23.716 1.7999 -0.2293 

HPSO [9] 2023 13.290 0.0730 0.137 7.236 23.641 1.7999 -0.2292 

TDEOA [8] 2023 13.170 0.0740 0.167 7.267 23.701 1.8000 -0.2292 
PSO [This study] 2023 13.115 0.0745 0.137 7.281 23.730 1.7999 -0.2292 

Mod-εDE[6] 2023 12.950 0.0760 0.137 7.261 23.690 1.7999 -0.2292 

HCL-PSO [4] 2023 13.860 0.0680 0.137 7.096 23.353 1.7996 -0.2290 
EP-PSO [5] 2023 10.490 0.1160 0.082 7.400 24.300 1.8000 -0.2233 

SCA [This study] 2023 10.000 0.1040 0.137 8.311 25.090 1.7587 -0.2117 

MPEDE [4] 1991 15.110 0.0580 0.128 6.828 22.024 1.7923 -0.2092 
GSA [This study] 1983 10.708 0.0932 0.137 6.978 24.108 1.7696 -0.2019 

GA [7] 1998 11.300 0.1010 0.065 7.863 22.256 1.7747 -0.1632 

QP [2] 2000 19.960 0.0550 0.044 6.204 17.506 1.7477 -0.1275 

Rough Grinding Condition:                     (         ,                 ,       ) 

 

 

Table 2. Comparison results of the performance of various optimization algorithms in finish  

grinding condition 
Method Vs Vw Doc L CT WRP Ra COF 

EP-PSO [5] 2023 20.22 0.015 0.137 6.700 20.000 0.7600 0.5040 

PSO [This study] 2023 22.70 0.0109 0.137 7.13 20.000 0.7934 0.5224 

RSFS [4] 2023 22.70 0.0109 0.137 7.130 20.000 0.7934 0.5224 
HPSO [16] 2023 22.70 0.0109 0.137 7.130 20.000 0.7934 0.5224 

TDEOA [8] 2023 22.66 0.011 0.137 7.136 20.001 0.7931 0.5225 

Mod-εDE [6] 2023 22.70 0.011 0.137 7.132 20.005 0.7935 0.5225 
MPEDE [4] 2023 22.14 0.012 0.137 7.212 20.020 0.7891 0.5232 

ACO [10] 2023 19.36 0.019 0.134 7.694 20.012 0.7644 0.5281 

SCA [This study] 2017 17.34 0.041 0.115 8.207 20.334 0.7756 0.5332 

GA [7] 1986 21.40 0.024 0.136 7.371 20.616 0.8268 0.5427 

HCL-PSO [4] 1965 18.74 0.0338 0.127 7.875 20.260 0.8037 0.5488 

GSA [This study] 1944 19.10 0.036 0.127 7.361 20.259 0.8196 0.5531 

QP [2] 2000 19.99 0.052 0.091 7.719 20.088 0.8309 0.5547 

Finish Grinding Condition:                     (            n: ,                  ,       
   

    
 ) 

 

 

5. CONCLUSIONS 
In this paper, PSO algorithm is applied to optimize the surface grinding process parameter in both 

rough and finish grinding condition. The optimal value of the decision variables which including   ,   ,     

and   were obtained by using the mathematical model with the purpose of reducing the production cost and 

increasing the production rate as well as improving the surface finish. An experiment had conducted to 

evaluate the efficiency of these proposed algorithms as well as obtain results that are more reliable According 

to the obtained results from the experiment, it can be observed that PSO algorithm shows superior results 

when compared to the proposed GSA and SCA. Thus, the experimental results were compared with previous 

studies and successful evaluated the performance of PSO algorithm. Throughout the comparison, it can be 

found that the obtained results of proposed PSO algorithms shows better optimization performance when 

compared to most of the optimization algorithms except EP-PSO. Moreover, the obtained result of this paper 

is showing significant improvement when compared with the similar study of PSO algorithm by Pawar and 

Rao [25].  

Furthermore, the optimization performance of PSO algorithm in aspects of convergence rate and 

accuracy of the best solution was successfully achieved. By comparing with GSA and SCA, PSO algorithm is 

able to achieve good convergence time of the best solution with higher accuracy. Additionally, the maximum 

iteration of 100 is sufficient for PSO algorithm to convergence accurate and consistent best solution and it 

meant it could be easily redesign to optimize various process parameters of different conventional machining 

processes like turning, milling and so on. Subsequently, the obtained result of PSO algorithm proves that it is 

efficient in solving the complicated multi objective optimization model of the surface grinding process in 

both rough and finish grinding condition. 
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