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Abstract. Ethnicity identification for demographic information has been studied for soft 

biometric analysis, and it is essential for human identification and verification. Ethnicity 

identification remains popular and receives attention in a recent year especially in automatic 

demographic information. Unfortunately, ethnicity identification in a multi-class which consist 

of several ethnic classes may degrade the accuracy of the ethnic identification. Thus, this paper 

purposely analyses the accuracy of the texture-based ethnicity identification model from facial 

components under four-class ethnics. The proposed model involved several phases such as face 

detection, feature selection, and classification. The detected face then exploited by three 

proposed face block which are 1×1, 1×2 and 2×2. In the feature extraction process, a Grey 

Level Co-occurrence Matrix (GLCM) under different face blocks were employed. Then, final 

stage was undergone with several classification algorithms such as Naïve Bayes, BayesNet, k-

Nearest Neighbour (k-NN), Random Forest, and Multilayer Perceptron (MLP). From the 

experimental result, we achieved a better result 2×2 face block feature compared to 1×1 and 

2×2 feature representation under Random Forest algorithm. 

1.  Introduction 

An ethnic group or ethnicity is a category of people which are identified based on the similarities of 

society, culture, ancestry, language or nation [1]. The ethnic group generally is formed based on the 

biological unit which made up from skin colour, head shape, hair, face shape and blood type. 

Ethnicity identification can be referred as multi-class and inter-class identification problem. Multi-

class problem involved several different ethnic groups and it was the most frequently studies by 

researchers [2]. Ethnic group exploited normally are Asian, African American, and Caucasian ethnics 

[3-5]. Meanwhile inter-class identification involved sub-ethnic group such as Chinese, Koreans, and 

Japanese. Several researchers adopted this dataset issue in intra-class ethnic problem such as [6, 7]. In 

multi-class ethnic, most of the researchers employed ethnicity identification based on two or three 

class ethnics. Two-class ethnic such as Asian and non-Asian [8], or Asian and Caucasian [9] are 

frequently employed. Three-class ethnic also showed a popularity where majority of researchers 

exploited three ethnics such as Asian, African American and Caucasian ethnics [10]. However, lack of 

ethnicity identification methods that exploited more than three ethnics since the performance of the 

methods reported to be dropped. The performance of two and three class problem reported with 

average accuracy of above 90%. Two-class ethnic revealed in superior accuracy with most of the 
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results are above 94% until 99%. In addition to the ethnic class, Hispanic ethnic was only tested and 

reported by [11, 12]. According to [2], to have an accurate performance for ethnicity identification in 

uncontrolled environment is challenging. Feature representation also affect the performance of the 

ethnicity identification. Therefore, several searchers have been experimental with different feature 

representations such as skin tone feature [13, 14], and texture feature [15, 16]. Texture feature can be 

categorized into two: global and local features. Global feature known as holistic representation is most 

studied feature extraction used in ethnicity identification. It has the capability to preserve configural 

information which is the interrelations between facial regions. Meanwhile local feature also has gain 

popularity which capable in term of unconstrained ethnic identification [7]. One of example local 

texture is local binary pattern used by [15, 16]. Gabor feature is reported as a suitable feature for 

ethnicity identification. Unfortunately, Gabor feature produced high dimension of feature vector which 

might increasing the processing time.  

The aim of this paper is to investigate the performance of ethnicity identification method by using 

different face blocks and GLCM feature extraction technique. This study also reveals the analysis on 

four-class ethnic groups which are Asian, African American, Caucasian and Hispanic. 

2.  Methodology 

This section provides a brief on the methodology of the proposed methods. There are three main 

stages involved which are face detection, feature extraction, and classification. Figure 1 shows the 

flow of the proposed ethnicity identification method. 

 

 
Figure 1. Texture feature using GLCM analysis and face blocks representation 

2.1.  FacePlace Database 

FacePlace was created by the Tarrlab at Brown University. This database includes multiple image for 

over 200 individuals of many different races with consistent lighting, multiple views, real emotions, 

and disguises (and some participants returned for a second session several weeks later with a haircut, 

or new beard, etc). FacePlace is obtained from the Internet that contains four major ethnics such as 

Asian, Caucasian, African-American, and Hispanic groups. The images from this database were 

examined through the following stages.  

2.2.  Face Detection 

A face detection is necessary to locate the existence of human in the image. For this purpose, a well-

known Viola-Jones face detector was employed because of the face detection algorithm was not 

require color information to local the face region. 
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Figure 2. The design of multi-blocks face in three representations 

2.3.  Feature Extraction with GLCM 

In this face, GLCM was employed to access the performance of ethnicity identification using textural 

features. GLCM also known as gray-level spatial dependence matrix. It calculates the frequency of 

pair pixels with specific values and in specified spatial relationship occur in the input image. Some of 

the textural features such as contrast, correlation, energy, and homogeneity are commonly derived to 

represent statistical texture information. Despite of these features, a total of 22 texture features 

employed to analyse the performance of the proposed method. 

In this phase, three input representation which were applied to form the blocks. Example of blocks 

can be found in Figure 1 showing the flowchart of extracting texture feature. The detected face region 

was transformed into grayscale with fix scale for all detected faces. The gray-scale face region was 

then divided into r×c, where is the horizontal (row) and c is the vertical (column). The first block is the 

original size 1×1 representation. The second block divided the face region into two separated columns. 

The last block divided the face region into two row and two columns. Therefore, each sub-block in 

each blocks were calculated to extract the texture feature. The feature space for this study is the total 

of GLCM feature (22)×r×c. Labels in Figure 2 L1and R1is the first row, while L2 and R2 is the 

second row. Each of blocks represent different characteristic of ethnic groups. The 1×1 utilised the 

original gray-scale format as the global feature. Meanwhile 1×2 slicing the gray-scale face into two 

sub blocks. The 1×2 illustrated two sub blocks that slicing the left and right eye independently. The 

nose and mouth are separated each other. On the other hands, 2×2 slicing into more blocks which is 

four sub blocks. Each sub blocks in L1, R1, L2 and R2 have independently separated each other. 

L1andR1in the first row holds the eyes and eyebrow of left and right face view. L2 and R2 holds half 

of nose and mouth. Both nose and mouth are calculated independently. Therefore, each of three 

introduced blocks might characterised the ethnic group differently according to the texture appearance 

of sub blocks. 

2.4.  Classification Algorithms 

During the experimental stage, there were five different classification algorithms were employed 

which are Naive Bayes, BayesNet, k-NN, Random Forest and MLP. Results of the study are presented 

in the following section. 

3.  Results and Discussion 

This section described the findings and discussion on texture feature of human face using GLCM 

measures. There are three parts in this section where the results are based on the three types of input 

representation (face blocks) of 1×1, 1×2, and 2×2. The face blocks were designed to search for the 

best performance using GLCM measures. The results of texture-based feature are described in the 

following sections. 
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(a) 

 
(b) 

Figure 3. Comparison of TPR and FPR in texture-based 1×1 input face block using different 

classification algorithms in (a) TrainSet and (b) TestSet 

3.1.  GLCM Texture Feature with 1×1 Face Blocks 

The texture feature for 1×1 face block was obtained from the original human face (the gray-scale 

input). The 1×1 face block produced a total of 22 texture features. Figure 3 present the train and test 

set results of ethnic identification based in the 1×1 face block using different classifiers. 

In train set as shown in Figure 4, Random Forest presented the highest TPR with 0.922 and FPR 

0.081. It is then followed by MLP with TPR 0.914, k-NN with TPR 0.603. In addition to the analysis, 

Figure 3(b) illustrates the comparison of testset which was also tested using different classifiers. Based 

on the Figure 5, MLP has the superiority with TPR 0.901 and FPR 0.109 compared to Random Forest 

which conquered in train set. According to the results collected in both train and test set, Random 

Forest and MLP showed a good performance with almost equal to TPR. Even though Random Forest 

and MLP produced the highest overall accuracy, they suffer in identifying Hispanic group 

successfully. Majority of the Hispanic ethnic was identified as Asian and Caucasian ethnic. 

Meanwhile, MLP identified all Hispanic as Caucasian ethnic. The findings show that the Hispanic 

could be having a similar characteristic as in Asian and Caucasian feature. Weak correlation in 

characterizing the Hispanic uniquely is the factor that Hispanic ethnic is challenging to identified. 

3.2.  GLCM Texture Feature with 1×2 Face Blocks 

The texture feature further was investigated using 1×2 face blocks. This block was formed by dividing 

the human face region onto 1 row and 2 columns. Then, each subblocks was exploited to calculate the 

GLCM features. Hence, a total of 44 features were obtained using 1×2 face blocks. Figure 4 showed 

the results of TPR and FPR in train and test set data. According to Figure 4(a), the train set data 
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achieved the highest TPR by Random Forest classifier with 0.930, followed by MLP with TPR 0.919, 

and k-NN with 0.914. Meanwhile, the test set in Figure 4(b), the Random Forest also revealed the 

superiority by producing TPR 0.899. Then, it was followed by MLP and k-NN respectively with TPR 

0.869 and 0.857. The Naive Bayes and BayesNet produced TPR with less than 0.8. 

 
(a) 

 
(b) 

Figure 4. Comparison of TPR and FPR in texture-based 1×2 input face block using different 

classification algorithms in (a) TrainSet and (b) TestSet 

 
(a) 
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(b) 

 

Figure 5. Comparison of TPR and FPR in texture-based 2×2 input face block using different 

classification algorithms in (a) TrainSet and (b) TestSet 

 
Figure 6. Confusion matrix results texture-based 2×2 input face block using MLP classifier 

3.3.  GLCM Texture Feature with 2×2 Face Blocks 

This block was formed by dividing the human face region onto 2 rows and 2 columns. Then, each sub 

blocks exploited to calculate the GLCM feature. Hence, a total of 88 features were obtained using 2×2 

face blocks. 

Figure 5 showed the results of TPR and FPR for train and test using different classification 

algorithms. In the train set as displayed in Figure 5(b), k-NN classifier has the highest TPR with 0.944, 

followed by the comparable TPR using MLP with 0.942, and Random Forest with TPR 0.938. The 

Random Forest classifier in Figure 5(b), surpass the MLP and k-NN classifiers. Despite TPR and FPR 

results, the confusion matrix shown in Figure 6 indicates MLP classifier fails to successfully to 

identify correct Hispanic group. However, the Hispanic group mostly was identified in Caucasian 

ethnic group.  

4.  Conclusion 

As a conclusion, we have presented an experimental result using different classification algorithm 

under three face blocks and GLCM texture feature. From the experimental, we can see the accuracy of 

ethnicity identification was influenced by classifier and type of face block used. Four ethnics which 

are Asian, African American, Caucasian and Hispanic were used. Based on the findings, the proposed 

method performs well when employing 2×2 face block and using Random Forest classifier in the test 

set. However, the results also revealed that, the proposed method sometimes difficult to identify 

Hispanic class successfully. Hispanic mostly was wrongly identified as Caucasian ethnic group. This 

might due to close interrelation feature class between Hispanic and Caucasian ethnic group. Therefore, 

hybrid or fusion feature from relevant color or texture feature would help to reduce the gaps. For 

future enhancement, feature selection will be implemented in texture-based feature to reduce the 
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dimension of feature vector. Other than that, deep learning method also one of potential advancement 

can be made for ethnicity identification. 
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