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Abstract. In domain nE  it is considered a set of smooth lines such that through   a point

X  passed one line of given set. The moving frame    , , , 1,iX e i j k n   is 

frame of  Frenet  for the line 
i of the given set. Integral lines of the vector fields ie are 

formed net n of Frenet. There is exist the point   1,n

iF X e  on the tangent of the line 

i . When the point X is shifted in the domain  , the point  
n

iF describes  it’s domain 
n

i

in nE . It is defined the partial mapping :n n

i if  such that  n n

i if X F Necessary 

and sufficient conditions of of quasi-double lines of the partial mapping 
n

if of space Еn are 

proved.  

1. Introduction

In  domain nE it is considered a set of smooth lines such that through a point X  passed one 

line of given set. The moving frame    , , , 1,iX e i j k n   is frame of Frenet for the line 
1 of 

the given set of smooth lines. Derivation formulas of the frame   have a form: 

,i k

i i i k
d X e de e   (1) 

The forms 
i k

i
,  satisfied structure equations of Euclidean space:

, , 0i

i k i k j k j i

k i j i jD D             (2)
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Integral lines of vector fields 
i

e  are formed the net  n of Frenet for the line 
1  of the given set of 

lines. Since frame   is constructed on tangent of lines of the net ,n the forms  
k

i  are principal forms 

[1]; in other words 
k k j

i ij    (3) 

Using (3) with combination of the equation (2) it follows that 

 
k i

ij kj    (4) 

If we differentiate equation (3) externally, then we have: 

                               i

k k j k j

ij ij
D d D       . 

By using equation (2) 

                                                              
j k k j k j

i j ij ij
d            . 

If we note the formula (3), then from the latter formula it follows that 

                                                            
j k k j k j

i j ij ij
d             

or 

                                                            
k j k j k j

j i ij ij
d             . 

From here we found: 

                                                          
k j k j k j

ij i j j i
d 0              

or 

                                                                     k k k j

ij i j j i
d 0         . 

By using Lemma of Cartan [2] we have: 

                                                                      
k k k k m

ij i j j i ijm
d          

or 

 k k k l k l m

ij ijm il jm lj imd        , (5) 

   

where  

 j k k l k l

ikm ijm il im lj imB        (6) 

The system of variable  k k

ij ijm
,   is formed geometrical object of second order. The formulas of Frenet 

(see for details to [3]) for the line 
1   of the given set have a form 

     ,2

1 1 11 2
d e e  

,1 3

1 2 21 1 21 3
d e e e    

,2 4

1 3 31 2 31 4
d e e e    

………………………………………… 
1

1 1 2, 1 2 1, 1 ,n n

n n n n nd e e e

       

1 1, 1 1,
n

n n nd e e    

where 1d – symbol of differentiation along the line
1 ,  1 1

1

i

i iK    – i  –curvature  of the line  
1  of 

given set , 

 1 0 , 1,2,..., 2,; 3,4,..., 1,...,i

i i j i n j i n        (7) 
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and 

 1

1 0 , 1,2,..., 2i

i i j i n      (8) 

 (here symbol  from above noted the meaning which cannot take index j ). 

 A pseudo focus [5] 
j

iF   i j  of tangent of the line 
i    of the net n  is defined by radius- 

vector: 

j

i i ij i

ij jj

1 1
F X e X e

 
     

 

(9) 

There exist 1n pseudo focuses on each tangent  , iX e . Let net n is cycle net of Frenet.  The net 

n in nE  is called a cycle net of Frenet [4] if the frames   1 1 2 3 4 5, , , , ,X e e e e e  , 

 2 2 3 4 5 1, , , , ,X e e e e e  ,…,  1 2 3 1, , , , ,...,n n nX e e e e e   ,   are frames of Frenet for lines  
1 , 

2

, 
3 ,…, 

n respectively of net  n simultaneously. 

We will denote it by  .n  Pseudo focus  1 ,n

iF X e  defined by radius -vector: 

1 1n

i i in i

in nn

F X e X e   
 

 
 

(10) 

When the point  X  is moving in the domain  nE , pseudo focus 
n

iF  describes it’s domain 
n

i . 

Such defined the partial mapping :n n

i if   such that  n n

i if X F . 

If differentiate the equation (10) we have:  

 
2

1
.

n
n in

i i inn
inin

d
d F d X e de


  


 

Considering equations (1), (2) and (5) we derive: 

 
2

1
n j

injn i k j

i j i ij knn
inin

B
d F e e e


    


 

or  

 
2

n k

inj ijn j

i j i knn
inin

B
d F e e e 

  
   

  

 

 The vector ic is following:  

 
2

n k

inj ij

j i j knn
inin

B
c e e e


  


 

 

(11) 

 We will join to 
n

i nE   with the moving frame  ,n

i jF c   . 

Definition 1. Lines ,i  i ig   are called quasi-double lines of a mapping  ,g if tangents of this 

lines in the points , ( )X g X are parallel or intersect [7] . 

2. A line is called a double line of a pair  , ,pg  if a line  is a double line of a mapping g and 

belonging to a distribution 
p . 
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3. A line  is called a quasi-double line of a pair  , pg   if a line  is a quasi-double line of a 

mapping g and belonging to a distribution
p . 

2.  Main Results 

Theorem. The line belonging to p – dimensional distribution 
p , is quasi-double line of the pair 

 ,n

i pf    if and only if when realized the conditions 

0, , , 1,..., .a k

ia i j k a n     

Proof. Let the line  is belonging to a distribution  1 1 2, , , ,...,p pX e e e e   and with tangent vector  

 , , 1,2,..., , .a

ae a b c p p n    

It is found that the tangent vector   of the line    : .n a

i af c   

By applying (10) it gives 

 
2

.
n k

a ina ia
i a knn

inin

B
e e e

 
   

 
 

 

 From a condition  , , n

i pXF   we obtain  

 0 , , 1,...,a k

ia i j k a n     (12) 

Inversely, if  take place conditions (12)  then the line  is quasi-double line of the pair  , .n

i pf   

The geometrical meaning of the equation (12) is following: ,
k
  

where we used following notations: 
k

ia ak
a

e    and .k

ia a ik
e d e   
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