About existence of quasi-double lines of the partial mapping of space E_{n}

To cite this article: Gulbadan Matieva et al 2019 J. Phys.: Conf. Ser. 1366012061

View the article online for updates and enhancements.

IOP ebooks"'

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

About existence of quasi-double lines of the partial mapping of space E_{n}

Gulbadan Matieva ${ }^{1}$, Cholpon Abdullayeva ${ }^{2}$, Anvarjon Ahmedov ${ }^{3}$
${ }^{1}$ Faculty of Mathematics and Information Technology, Osh State University, Osh, Kyrgyz Republic
${ }^{2}$ Natural-Pedagogical Faculty, Kyrgyz-Uzbek university, Osh, Kyrgyz Republic ${ }^{3}$ Centre for Mathematical Sciences, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia

Email: cholpon2008@gmail.com
Abstract. In domain $\Omega \subset E_{n}$ it is considered a set of smooth lines such that through a point $X \in \Omega$ passed one line of given set. The moving frame $\mathfrak{R}=\left(X, \overrightarrow{e_{i}}\right) \quad(i, j, k=\overline{1, n})$ is frame of Frenet for the line ω^{i} of the given set. Integral lines of the vector fields $\overrightarrow{e_{i}}$ are formed net Σ_{n} of Frenet. There is exist the point $F_{i}^{n} \in\left(X, \overrightarrow{e_{1}}\right)$ on the tangent of the line ω^{i}. When the point X is shifted in the domain Ω, the point F_{i}^{n} describes it's domain Ω_{i}^{n} in E_{n}. It is defined the partial mapping $f_{i}^{n}: \Omega \rightarrow \Omega_{i}^{n}$ such that $f_{i}^{n}(X)=F_{i}^{n}$ Necessary and sufficient conditions of of quasi-double lines of the partial mapping f_{i}^{n} of space E_{n} are proved.

1. Introduction

In domain $\Omega \subset E_{n}$ it is considered a set of smooth lines such that through a point $X \in \Omega$ passed one line of given set. The moving frame $\mathfrak{R}=\left(X, \overrightarrow{e_{i}}\right) \quad(i, j, k=\overline{1, n})$ is frame of Frenet for the line ω^{1} of the given set of smooth lines. Derivation formulas of the frame \mathfrak{R} have a form:

$$
\begin{equation*}
d \vec{X}=\omega^{i} \vec{e}_{i}, d \overrightarrow{e_{i}}=\omega_{i}^{k} \vec{e}_{k} \tag{1}
\end{equation*}
$$

The forms $\omega^{i}, \omega_{i}^{k}$ satisfied structure equations of Euclidean space:

$$
\begin{equation*}
D \omega^{i}=\omega^{k} \wedge \omega_{k}^{i}, D \omega_{i}^{k}=\omega_{i}^{j} \wedge \omega_{j}^{k}, \omega_{i}^{j}+\omega_{j}^{i}=0 \tag{2}
\end{equation*}
$$

Integral lines of vector fields \vec{e}_{i} are formed the net Σ_{n} of Frenet for the line ω^{1} of the given set of lines. Since frame \mathfrak{R} is constructed on tangent of lines of the net Σ_{n}, the forms ω_{i}^{k} are principal forms [1]; in other words

$$
\begin{equation*}
\omega_{i}^{k}=\Lambda_{i j}^{k} \omega^{j} \tag{3}
\end{equation*}
$$

Using (3) with combination of the equation (2) it follows that

$$
\begin{equation*}
\Lambda_{i j}^{k}=-\Lambda_{k j}^{i} \tag{4}
\end{equation*}
$$

If we differentiate equation (3) externally, then we have:

$$
D \omega_{i}^{k}=d \Lambda_{i j}^{k} \wedge \omega^{j}+\Lambda_{i j}^{k} D \omega^{j}
$$

By using equation (2)

$$
\omega_{i}^{j} \wedge \omega_{j}^{k}=d \Lambda_{i j}^{k} \wedge \omega^{j}+\Lambda_{i j}^{k} \wedge \omega^{\ell} \wedge \omega_{\ell}^{j}
$$

If we note the formula (3), then from the latter formula it follows that

$$
\omega_{i}^{j} \wedge \Lambda_{j \ell}^{k} \omega^{\ell}=d \Lambda_{i j}^{k} \wedge \omega^{j}-\Lambda_{i j}^{k} \omega_{\ell}^{j} \wedge \omega^{\ell}
$$

or

$$
\Lambda_{j \ell}^{k} \omega_{i}^{j} \wedge \omega^{\ell}=d \Lambda_{i j}^{k} \wedge \omega^{j}-\Lambda_{i j}^{k} \wedge \omega_{\ell}^{j} \wedge \omega^{\ell}
$$

From here we found:

$$
d \Lambda_{i j}^{k} \wedge \omega^{j}-\Lambda_{i \ell}^{k} \omega_{j}^{\ell} \wedge \omega^{j}-\Lambda_{j \ell}^{k} \omega_{i}^{j} \wedge \omega^{\ell}=0
$$

or

$$
\left(d \Lambda_{i j}^{k}-\Lambda_{i \ell}^{k} \omega_{j}^{\ell}-\Lambda_{\ell j}^{k} \omega_{i}^{\ell}\right) \wedge \omega^{j}=0
$$

By using Lemma of Cartan [2] we have:

$$
d \Lambda_{i j}^{k}-\Lambda_{i \ell}^{k} \omega_{j}^{\ell}-\Lambda_{\ell j}^{k} \omega_{i}^{\ell}=\Lambda_{i j m}^{k} \omega^{m}
$$

or

$$
\begin{equation*}
d \Lambda_{i j}^{k}=\left(\Lambda_{i j m}^{k}+\Lambda_{i l}^{k} \Lambda_{j m}^{l}+\Lambda_{l j}^{k} \Lambda_{i m}^{l}\right) \omega^{m} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{i k m}^{j}=\left(\Lambda_{i j m}^{k}+\Lambda_{i l}^{k} \Lambda_{i m}^{l}+\Lambda_{l j}^{k} \Lambda_{i m}^{l}\right) \tag{6}
\end{equation*}
$$

The system of variable $\left\{\Lambda_{i j}^{k}, \Lambda_{i j m}^{k}\right\}$ is formed geometrical object of second order. The formulas of Frenet (see for details to [3]) for the line ω^{l} of the given set have a form

$$
\begin{aligned}
& d_{1} \vec{e}_{1}=\Lambda_{11}^{2} \vec{e}_{2} \\
& d_{1} \vec{e}_{2}=\Lambda_{21}^{1} \vec{e}_{1}+\Lambda_{21}^{3} \vec{e}_{3} \\
& d_{1} \vec{e}_{3}=\Lambda_{31}^{2} \vec{e}_{2}+\Lambda_{31}^{4} \vec{e}_{4}
\end{aligned}
$$

$$
d_{1} \overrightarrow{e_{n-1}}=-\Lambda_{n-2,1}^{n-1} \overrightarrow{e_{n-2}}+\Lambda_{n-1,1}^{n} \overrightarrow{e_{n}}
$$

$$
d_{1} \overrightarrow{e_{n}}=-\Lambda_{n-1,1}^{n} \overrightarrow{e_{n-1}}
$$

where d_{1} - symbol of differentiation along the line $\omega^{1}, K_{i}^{(1)}=\Lambda_{i 1}^{i+1}-i$-curvature of the line ω^{1} of given set,

$$
\begin{equation*}
\Lambda_{i 1}^{i}=0 \quad(i<j, i=1,2, \ldots, n-2, ; j=3,4, \ldots, i+1, \ldots, n) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda_{i 1}^{i+1} \neq 0 \quad(i<j, i=1,2, \ldots, n-2) \tag{8}
\end{equation*}
$$

(here symbol Λ from above noted the meaning which cannot take index j).
A pseudo focus [5] $F_{i}^{j}(i \neq j)$ of tangent of the line ω^{i} of the net Σ_{n} is defined by radiusvector:

$$
\begin{equation*}
\vec{F}_{i}^{j}=\vec{X}-\frac{l}{\Lambda_{i j}^{j}} \vec{e}_{i}=\vec{X}+\frac{1}{\Lambda_{i j}^{i}} \vec{e}_{i} \tag{9}
\end{equation*}
$$

There exist $n-1$ pseudo focuses on each tangent $\left(X, \vec{e}_{i}\right)$. Let net Σ_{n} is cycle net of Frenet. The net Σ_{n} in $\Omega \subset E_{n}$ is called a cycle net of Frenet [4] if the frames $\mathfrak{R}_{1}=\left(X, \vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}, \vec{e}_{4}, \vec{e}_{5}\right)$, $\mathfrak{R}_{2}=\left(X, \vec{e}_{2}, \vec{e}_{3}, \vec{e}_{4}, \vec{e}_{5}, \vec{e}_{1}\right), \ldots, \Re_{n}=\left(X, \overrightarrow{e_{n}}, \overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \overrightarrow{e_{3}}, \ldots, \overrightarrow{e_{n-1}}\right)$, are frames of Frenet for lines ω^{1}, ω^{2} , $\omega^{3}, \ldots, \omega^{n}$ respectively of net Σ_{n} simultaneously.
We will denote it by $\tilde{\Sigma}_{n}$. Pseudo focus $F_{1}^{n} \in\left(X, \overrightarrow{e_{i}}\right)$ defined by radius -vector:

$$
\begin{equation*}
\overrightarrow{F_{i}^{n}}=\vec{X}-\frac{1}{\Lambda_{i n}^{n}} \overrightarrow{e_{i}}=\vec{X}+\frac{1}{\Lambda_{n n}^{i}} \overrightarrow{e_{i}} \tag{10}
\end{equation*}
$$

When the point X is moving in the domain $\Omega \subset E_{n}$, pseudo focus F_{i}^{n} describes it's domain Ω_{i}^{n}. Such defined the partial mapping $f_{i}^{n}: \Omega \rightarrow \Omega_{i}^{n}$ such that $f_{i}^{n}(X)=F_{i}^{n}$. If differentiate the equation (10) we have:

$$
d \overrightarrow{F_{i}^{n}}=d \vec{X}-\frac{d \Lambda_{i n}^{n}}{\left(\Lambda_{i n}^{n}\right)^{2}} \overrightarrow{e_{i}}-\frac{1}{\Lambda_{i n}^{n}} d \overrightarrow{e_{i}} .
$$

Considering equations (1), (2) and (5) we derive:

$$
d \overrightarrow{F_{i}^{n}}=\omega^{i} \overrightarrow{e_{j}}+\frac{B_{i n j}^{n} \omega^{j}}{\left(\Lambda_{i n}^{n}\right)^{2}} \overrightarrow{e_{i}}-\frac{1}{\Lambda_{i n}^{n}} \Lambda_{i j}^{k} \omega^{j} \overrightarrow{e_{k}}
$$

or

$$
d \overrightarrow{F_{i}^{n}}=\left\{\overrightarrow{e_{j}}+\frac{B_{i n j}^{n}}{\left(\Lambda_{i n}^{n}\right)^{2}} \overrightarrow{e_{i}}-\frac{\Lambda_{i j}^{k}}{\Lambda_{i n}^{n}} \overrightarrow{e_{k}}\right\} \omega^{j}
$$

The vector $\overrightarrow{c_{i}}$ is following:

$$
\begin{equation*}
\overrightarrow{c_{j}}=\frac{B_{i n j}^{n}}{\left(\Lambda_{i n}^{n}\right)^{2}} \overrightarrow{e_{i}}+\overrightarrow{e_{j}}-\frac{\Lambda_{i j}^{k}}{\Lambda_{i n}^{n}} \overrightarrow{e_{k}} \tag{11}
\end{equation*}
$$

We will join to $\Omega_{i}^{n} \in E_{n}$ with the moving frame $\mathfrak{R}^{\prime}=\left(F_{i}^{n}, \overrightarrow{c_{j}}\right)$.
Definition 1. Lines $\omega^{i}, g\left(\omega^{i}\right)=\overline{\omega^{i}}$ are called quasi-double lines of a mapping g, if tangents of this lines in the points $X, g(X)$ are parallel or intersect [7].
2. A line ℓ is called a double line of a pair $\left(g, \Delta_{p}\right)$, if a line ℓ is a double line of a mapping g and belonging to a distribution Δ_{p}.
3. A line ℓ is called a quasi-double line of a pair $\left(g, \Delta_{p}\right)$ if a line ℓ is a quasi-double line of a mapping g and belonging to a distribution Δ_{p}.

2. Main Results

Theorem. The line ℓ belonging to p-dimensional distribution Δ_{p}, is quasi-double line of the pair $\left(f_{i}^{n}, \Delta_{p}\right)$ if and only if when realized the conditions
$\ell^{a} \Lambda_{i a}^{\hat{k}}=0, \tilde{i}, \tilde{j}, \tilde{k}=a+1, \ldots, n$.
Proof. Let the line ℓ is belonging to a distribution $\Delta_{p}=\left(X, \overrightarrow{e_{1}}, \overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \ldots, \overrightarrow{e_{p}}\right)$ and with tangent vector $\vec{\ell}=\ell^{a} \overrightarrow{e_{a}}(a, b, c=1,2, \ldots, p, \quad p<n)$.
It is found that the tangent vector $\vec{\ell}$ of the line $\bar{\ell}=f_{i}^{n}(\ell): \vec{\ell}=\ell^{a} \overrightarrow{c_{a}}$.
By applying (10) it gives
$\vec{\ell}=\ell^{a}\left(\frac{B_{i n a}^{n}}{\left(\Lambda_{i n}^{n}\right)^{2}} \overrightarrow{e_{i}}+\overrightarrow{e_{a}}-\frac{\Lambda_{i a}^{k}}{\Lambda_{i n}^{n}} \overrightarrow{e_{k}}\right)$.
From a condition $\vec{\ell}, \vec{\ell}, \overrightarrow{X F_{i}^{n}} \in \Delta_{p}$ we obtain

$$
\begin{equation*}
\ell^{a} \Lambda_{i a}^{\tilde{k}}=0 \quad(\tilde{i}, \tilde{j}, \tilde{k}=a+1, \ldots, n) \tag{12}
\end{equation*}
$$

Inversely, if take place conditions (12) then the line ℓ is quasi-double line of the pair $\left(f_{i}^{n}, \Delta_{p}\right)$.
The geometrical meaning of the equation (12) is following: $\vec{\ell} \perp \overrightarrow{\theta_{\tilde{k}}}$,
where we used following notations: $\overrightarrow{\theta_{\tilde{k}}}=\sum_{a} \Lambda_{i a}^{\tilde{k}} \overrightarrow{e_{a}}$ and $\Lambda_{i a}^{\tilde{k}}=\overrightarrow{e_{\tilde{k}}} d_{a} \overrightarrow{e_{i}}$.

References

[1] Bazylev V T, Litov 1966 About many dimensional nets in Euclidean space Math. Journal 1 (4) p 475
[2] Phinikov S P 1948 Method of exterior form of Kartan in differential geometry (in Russian) Gosttexizdat
[3] Rashevskey P K 1967 Riemann geometry and tensor analysis Moscow Nauka
[4] Matieva G 2003 Geometry of a partial mappings, nets and distributions of Euclidean space (in Russian) Osh Monography
[5] Bazylev V T 1975 Many- dimensional nets of double Lines Kaliningrad Issue 6 p 19
[6] Matieva G, Abdullaeva Ch H 2016 Necessary and sufficient conditions of degeneracy of some partial mapping of the space E5 Science periodical edition "IN SITU" 6 p 5
[7] Abdullaeva Ch H, Matieva G, Kurmanbaeva N N 2016 Necessary and sufficient conditions for the existence of a quazidouble line of a partial mapping of space E4 Innovative Science 4 p 8

