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Abstract. In this work, generalize solution based on linear Legendre multi-wavelets are proposed for 
single, double and triple integrals with variable limits. To obtain the numerical approximations for 
integrals, an algorithm with the properties of linear Legendre multi-wavelets are applied. The main 
benefits of this method are its simple applicable and efficient. Furthermore, the error analysis for single, 
double and triple integrals is worked out to show the efficiency of the method. Numerical examples 
for the integrals are conducted by using linear Legendre multi-wavelets in order to validate the error 
estimation.

1. Introduction

Numerical integration has several applications in science and engineering. There are many engineering 
problems require the evaluation of the integral such as skin friction coefficient for the governing boundary 
layer equations in fluid d ynamic. To d etermined t he p robability o f e lectron i n a  r egion o f s pace by 
solving the Schrodinger equation in quantum mechanics and several other problems. A lot of research 
have been done to solve numerical integration problems in terms of quadrature rule such as Newton-
Cotes formulas and Gauss quadrature [1, 2, 3, 4, 5, 6, 7]. Regardless of the simplicity of quadrature rule, 
there exists a few disadvantages. For example, the Newton-Cotes formulas cause erratic behavior with 
high degree polynomial interpolation when the equally spaced nodes are large. The Gaussian quadrature 
rule is derived by method of undetermined coefficients but t he r esulting e quations f or t he n odes and 
weights are nonlinear. This procedure is complicated to find the nodes and w eights. Other than that, 
there is limitation with Gaussian quadrature rule method where the limits of integration need to convert 
into -1 to 1 [7]. To overcome the disadvantages, a new method based on wavelets approximation is 
propose to find the numerical solutions of i ntegrals. There are several types of wavelets have been used 
in numerical approximations, for examples, Daubechies’ [8], Chebyshev wavelets [9] and Haar wavelets 
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double and triple integrals. Linear Legendre multi wavelets display similar properties to the Haar
wavelets. Due to this similarities, the linear Legendre multi-wavelets should also be able to solve the
multi-dimensional integral easily [14]. There are numerous research have been done to solve problems
such as integral equations by using linear Legendre multi-wavelets [15, 16].

In this work, we deduce generalized solution based on linear Legendre multi-wavelets. The
organization of this paper is as follows. We introduce about linear Legendre multi-wavelets in section 2,
and in section 3 numerical system by linear Legendre multi-wavelets are shown for single, double and
triple integrals with variable limits. Error analysis are describe in section 4 to show the convergence of
the method and numerical results are reported in section 5. Finally further discussion and conclusion are
drawn in section 6 and 7.

2. Linear Legendre multi-wavelets (LLMW)
In this paper, we used LLMW to handle with the problems of single, double and triple integrals with
variable limits. Generally, wavelets have been used in various fields of engineering and science. It
consists of two functions which are scaling function and mother wavelet. To construct the linear Legendre
mother wavelets, we first introduce the scaling functions. There are two scaling functions for linear
Legendre multi-wavelets which are as follows:

φ0(x) = 1, φ1(x) =
√

3(2x− 1), a ≤ x < b.

We let ψ0(x) and ψ1(x) as the corresponding mother wavelets, then by multiresolution of analysis
(MRA) we have

ψ0(x) = a0φ0(2x) + a1φ1(2x) + a2φ0(2x− 1) + a3φ1(2x− 1),

ψ1(x) = b0φ0(2x) + b1φ1(2x) + b2φ0(2x− 1) + b3φ1(2x− 1)

and there are suitable conditions that applied on ψ0(x) and ψ1(x). As a result, the formulas for linear
Legendre mother wavelets are obtained as

ψ0(x) =


−
√

3(4x− 1),

[
a,
a+ b

2

)
√

3(4x− 3),

[
a+ b

2
, b

) , ψ1(x) =


6x− 1,

[
a,
a+ b

2

)
6x− 5,

[
a+ b

2
, b

) ,

By translating and dilating the mother wavelets, the linear Legendre multi-wavelets is constructed as

ψjkn(x) =

2
k
2ψj

(
2k
x− a
b− a

− n
)
, a+ n

(b− a)

2k
≤ x < a+ (n+ 1)

(b− a)

2k
,

0, otherwise,

here k,∈ Z, n = 0, 1, ..., 2k − 1, and j = 0, 1 are defined on the interval [a, b).
Any function f(x) in the interval [a, b) can be written as

f(x) ≈ c0φ0(x) + c1φ1(x) +

M∑
k=0

1∑
j=0

2k−1∑
n=0

cjknψ
j
kn(x) = CTΨ(x), (1)

where C and Ψ(x) are
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3. Numerical integration based on LLMW
In this section, we apply LLMW for integration of double and triple integrals with variable limits by
according to [14].

3.1. Numerical system for single integral by LLMW

In [14], numerical integration formula by using LLMW were derived for single, double and triple
integrals with definite limits. In this work, we apply LLMW for double and triple integrals with variable
limits using the similar system derived for single integral with definite limits. The following equation is
the numerical system derived in [14] for single integral with definite limits∫ b

a
f(x) dx ≈ (b− a)

K

K−1∑
i=0

f

(
a+

(b− a)(i+ 0.5)

K

)
. (2)

where K = 2k1+2 and k1 is the level of resolution of the LLMW.

3.2. Numerical system for double integral with variable limits

Consider the double integral with variable limits as follows:∫ d

c

∫ b(y)

a(y)
F (x, y) dxdy.

We apply equation (2) to the integral ∫ b(y)

a(y)
F (x, y) dx.

while variable y is constant. Then, we obtain the following approximations.∫ b(y)

a(y)
F (x, y) dx ≈ (b(y)− a(y))

K

K−1∑
i=0

F

(
a(y) +

(b(y)− a(y))(i+ 0.5)

K
, y

)
= G(y). (3)

In the following, we get the numerical system for double integral with variable limits by using the same 
steps as in equation (2)∫ d

c

∫ b(y)

a(y)
F (x, y) dx ≈

∫ d

c
G(y) dy (4)

≈ (d− c)
L

L−1∑
j=0

F

(
c+

(d− c))(j + 0.5)

L

)
. (5)

where L = 2k2+2 and k2 is the level of resolution of the LLMW.

3.3. Numerical system for triple integral with variable limits

By using the same way as previous numerical systems, we obtained the numerical integration formula
for triple integrals with variable limits as below∫ f

e

∫ d(z)

c(z)

∫ b(y,z)

a(y,z)
F (x, y, z) dxdydz ≈ (f − e)

P

P−1∑
l=0

H

(
f +

(f − e))(l + 0.5)

P

)
. (6)
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where H(z) and G(y, z) are

H(z) =
(d(z)− c(z))

L

L−1∑
j=0

G

(
c(z) +

(d(z)− c(z)))(j + 0.5)

L
, z

)
.

G(y, z) =
(b(y, z)− a(y, z))

K

K−1∑
i=0

F

(
a(y, z) +

(b(y, z)− a(y, z))(i+ 0.5)

K
, y, z

)
.

In the equation (6), P = 2k3+2 where k3 is the level of resolution of the LLMW.

4. Error Analysis
We continued with the definition of t he Holder c lasses of order Hs[0, 1], 0  <  s  <  1 . The set of all 
continuous functions on [0, 1], which satisfies the inequality :

|f(x) − f(y)| 6 L |x − y|s , L > 0, ∀x, y ∈ [0, 1].

Holder classes are medium spaces between C[0, 1] and C1[0, 1] such that:

C1[0, 1] ⊂ Hs[0, 1] ⊂ C[0, 1].

Consider f(x) ∈ Hs[0, 1] , 0 < s < 1, then

‖f − fM‖L2[0,1]
≤ L2

4Ms(4s − 1)

 3

16
+

4s

9

[
8
(
2
3

)s − 3 + 3s

(s+ 2)(s+ 1)

]2 .

where

fM (x) = c0φ0(x) + c1φ1(x) +
M−1∑
k=0

1∑
j=0

2k−1∑
n=0

cjknψ
j
kn(x), M ∈ Z+,

refer to [17]. The error bound are inversely proportion to the level of resolution M of the LLMW and
will establish better approximation if increase the value of M .

5. Numerical Examples
In this section, we applied LLMW for solving numerical integration problems for double and triple
integrals. The results will show the efficiency of LLMW by comparing it with reported in [11]. In
[11] Haar wavelets have been applied to approximate double and triple integrals with variable limits of
integration. We solved all of the examples in [11] using LLMW numerically and compare the numerical
results with Haar wavelets at the same level dilation (Ji is the dilation for Haar and value of ki is the
dilation for LLMW, i = 1, 2, 3) to validate the error estimation.

5.1. Test Problems
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Example Problem Exact Solution

1.
∫ 1
0

∫ y
0 e
|x+y−1| dxdy −2 + e

2.
∫ π

4
0

∫ sin y
0

1√
1−x2 dxdy

π2

32

3.
∫ ∫

R(x+ y)−
1
2 dxdy 2

3(2− 7
√

3− 15
√

5 + 20
√

6)

=
∫ 2
1

∫ 1
2
(y+3)

(5−3y) (x+ y)−
1
2dxdy

+
∫ 3
2

∫ 1
2
(y+3)

(y−3) (x+ y)−
1
2dxdy

+
∫ 4
3

∫ (9−2y)
(y−3) (x+ y)−

1
2 dxdy

4.
∫ π
0

∫ z
0

∫ zy
0

1
y sin(xy ) dxdydz 1

2(4 + π2)

5.2. Numerical Results

Absolute Absolute
LLMW Errors Haar Errors

k1, k2 = 3 1.1857E-04 J1, J2 = 3 4.7400E-04

k1, k2 = 4 2.7875E-05 J1, J2 = 4 9.7811E-05

k1, k2 = 5 6.7701E-06 J1, J2 = 5 2.7875E-05

k1, k2 = 6 1.7065E-06 J1, J2 = 6 6.7700E-06

Table 1. Absolute errors of Example 1

Absolute Absolute
LLMW Errors Haar Errors

k1, k2 = 3 6.2347E-06 J1, J2 = 3 2.4839E-05

k1, k2 = 4 1.5604E-06 J1, J2 = 4 6.2348E-06

k1, k2 = 5 3.9030E-07 J1, J2 = 5 1.5601E-06

k1, k2 = 6 9.7300E-08 J1, J2 = 6 3.9030E-07

Table 2. Absolute errors of Example 2

Absolute Absolute
LLMW Errors Haar Errors

k1, k2 = 3 1.8930E-04 J1, J2 = 3 7.5503E-04

k1, k2 = 4 4.7363E-05 J1, J2 = 4 1.8930E-04

k1, k2 = 5 1.1852E-05 J1, J2 = 5 4.7365E-05

k1, k2 = 6 3.0528E-06 J1, J2 = 6 1.1855E-05

Table 3. Absolute errors of Example 3

Absolute Absolute
LLMW Errors Haar Errors

k1, k2, k3 = 3 9.0291E-04 J1, J2, J3 = 3 3.5959E-03

k1, k2, k3 = 4 2.2597E-04 J1, J2, J3 = 4 9.0291E-04

k1, k2, k3 = 5 5.6516E-05 J1, J2, J3 = 5 2.2598E-04

k1, k2, k3 = 6 1.4127E-05 J1, J2, J3 = 6 5.6507E-05

Table 4. Absolute errors of Example 4

6. Discussion
All the test problems in this work are from [11]. [11] approximate the double and triple integrals by
using Haar wavelets hi(x) where i = 1, 2...., 2M . They denote M = 2J and J = 0, 1, 2, ... is the is the
maximum level of resolution of Haar wavelets see [11] equation (1). Regarding table (1) and (3) for
absolute errors in [11] suggest letting M = 3, 5 or 6, where else this research favours taking the value of
M as an order of 2. Therefore Haar wavelets functions of order 2 (M = 8, 16, ..., ) are consider to
approximate the double and triple integrals. Concerning table (4), the problem are related to three
dimensional case and the bsolute errors are equivalent to the previous work. Moreover the absolute
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error between this two methods for Haar wavelets and LLMW functions are compared using the same 
order of dilation in all the test problems.

7. Conclusion
In this work, numerical integration based on LLMW has been applied to approximate the numerical
examples for double and triple integrals with variable limits of integration. Generalized solution for
LLMW are obtained to approximate the integrals. By analyzing the numerical results in terms of absolute
errors between LLMW and Haar wavelets from [11], LLMW performs a better results in approximating
the examples as shown in the tables (1) to (4). From the tables, it is clearly observed that the error
estimation by linear Legendre multi-wavelets gives less error for the approximation. Therefore, it has
been proved that the present method is more efficient and accurate than the Haar wavelets method.
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