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Abstract. It is considered a set of smooth lines such that through   a point X ∈Ω  passed

one line of given set in domain 5Ω⊂ Ε . The moving frame ( ) ( ),, , , 1,5iX e i j kℜ = =


is frame of Frenet for the line 1ω of the given set. Integral lines of the vector fields ie


 are

formed net 5Σ  of Frenet. There exists a point ( ),4
5 5F X e∈



 on the tangent of the line 
5ω . When a point X is shifted in the domain Ω , the point 4

5F  describes it’s domain 4
5Ω  in 

5 .Ε It is defined  the partial mapping : ,4 4
5 5f Ω Ω→  such that ( ) .4 4

5 5f X F=

Necessary and sufficient conditions of immovability and degeneration of lines ( ), ,1X e

( ), 2X e and ( ), 3X e in partial mapping 4
5f  are obtained.

Key words: partial mapping, cyclic net of Frenet, Frenet frame, pseudofocus, immovability of 
line. 

1. Introduction
In domain 5Ω⊂ Ε  it is considered a set of smooth lines such that through a point X ∈Ω  passed one 

line of given set. The moving frame ( ) ( ),, , , 1,5iX e i j kℜ = =


 is frame of Frenet for the line 1ω  of 

the given set of smooth lines. Derivation formula of the frame ℜ have a form: 

,i k
i i i kd X e de eω ω= =

 

 

       (1) 

The forms  i k
i,ω ω  satisfied structure equations of Euclidean space:

, , 0i
i k i k j k j i

k i j i jD Dω ω ω ω ω ω ω ω= ∧ = ∧ + = . (2)
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 Integral lines of vector fields ie  are formed the net  5Σ  of Frenet for the line  1ω  of the given set 

of lines. Since frame  ℜ  is constructed on tangent of lines of the net 5Σ , the forms  k
iω  are principal 

forms [3]; in orther words:  
k k j
i ijω ω= Λ  (3) 

Taking into account (3) from (2) we have: 
k i
ij kjΛ = −Λ  (4) 

If we differentiate externally (3) then we have: 
                                                          i

k k j k j
ij ijD d Dω Λ ω Λ ω= ∧ + . 

By using formula (2) from here we have got: 
                                                          j k k j k j

i j ij ijdω ω Λ ω Λ ω ω∧ = ∧ + ∧ ∧


. 
By applying the latter with combination of the formula (3) we obtain: 
                                                          j k k j k j

i j ij ijdω Λ ω Λ ω Λ ω ω∧ = ∧ − ∧ 

 

 
or 
                                                          k j k j k j

j i ij ijdΛ ω ω Λ ω Λ ω ω∧ = ∧ − ∧ ∧ 

 

. 
From here we found: 
                                                         k j k j k j

ij i j j id 0Λ ω Λ ω ω Λ ω ω∧ − ∧ − ∧ = 

 

 
or 
                                                        ( )k k k j

ij i j j id 0Λ Λ ω Λ ω ω− − ∧ = 

 

. 

By using lemma of Cartan from [1] we conclude that: 
                                                        k k k k m

ij i j j i ijmdΛ Λ ω Λ ω Λ ω− − = 

 

 
or 

( )k k k l k l m
ij ijm il jm lj imd ωΛ = Λ +Λ Λ +Λ Λ  (5) 

The system of variable { }k k
ij ijm,Λ Λ  is formed geometrical object of second order. The formulas of 

Frenet for the line 1ω   of given set have a form 

      ,2
1 1 11 2d e eΛ= 

 

                                                              ,1 3
1 2 21 1 21 3d e e eΛ Λ= +
  

 

,2 4
1 3 31 2 31 4d e e eΛ Λ= +
  

 

,3 5
1 4 41 3 41 5d e e eΛ Λ= +
  

 

                                                             ,4
1 5 51 4d e eΛ= 

 
and  

              

3 3
11 11
4 1

11 41
5 1
11 51

0,
0,
0

Λ = −Λ =

Λ = −Λ =

Λ = −Λ =

                                                                                       (6) 

    .            

5 2
21 51
4 2
21 41
5 3
31 51

0,
0,
0

Λ = −Λ =

Λ = −Λ =

Λ = −Λ =

                                                                  (7) 
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There 1 2
1 11k Λ= , 1 3

2 21k Λ= , 1 4
3 31k Λ= , 1 5 4

4 41 51k = Λ = −Λ  – a first, a second, a third and a fourth 

curvature of line 1ω  respectively (there 1d  – symbol of differentiation  along line 1ω ). 

 A pseudofocus [4] j
iF  ( )i j≠  of tangent of the line iω of the net 5Σ  is defined by radius- vector: 

                                                 j
i i ij i

ij jj

1 1F X e X e
Λ Λ

= − = +
  

 

.    (8) 

There are exist four pseudofocuses on each tangent ( ), iX e :  

on the straight line ( ), 1X e  - 2 3 4 5
1 1 1 1, , ,F F F F ; 

on  ( )2,X e  – 1 3 4 5
2 2 2 2, , ,F F F F ; 

on ( )3,X e  – 1 2 4 5
3 3 3 3, , ,F F F F ; 

on ( )4,X e  – 1 2 3 4
4 4 4 5, , ,F F F F ; 

on ( )5,X e  – 1 2 3 4
5 5 5 5, , , .F F F F  

Definition. The net 5Σ  in 5Ω⊂ Ε  is called a cycle net of Frenet ([5]) if the frames  

( )1 1 2 3 4 5, , , , , ,X e e e e eℜ =
    

 

( )2 2 3 4 5 1, , , , ,X e e e e eℜ =
    

, 

( )3 3 4 5 1 2, , , , ,X e e e e eℜ =
    

,  

( )4 4 5 1 2 3, , , , ,X e e e e eℜ =
    

 
and  

( )5 5 1 2 3 4, , , , ,X e e e e eℜ =
    

  

are frames of Frenet for lines 1ω , 2ω , 3ω , 4ω , 5ω respectively of net 5Σ simultaneously. 
 

2. Main results 
In this section we formulate and prove the main results of the paper. 
Theorem 1. Partial mapping 4

5f is degenerate if and only if it is related to the one of the conditions  

1) 4
541 0,D =  where 4

541 5 1 54 .D e d k= −
 

 

2) 
( )

1 4
54 544

21 4 4
55 54 545

.D

D

Λ
=

Λ Λ +
 

Proof. Let net 5Σ  is cycle net of Frenet. We will denote it by 5Σ . Pseudofocus ( ),4
5 5F X e∈



 defined 
by radius -vector: 

                                                              4
5 5 54 5

54 44

1 1F X e X e
Λ Λ

= − = +


 

 

.   (9) 

When the point X  is moving in the domain 5Ω⊂ Ε , pseudofocus 4
5F  describes it’s domain 4

5Ω
Thus defined the partial mapping :4 4

5 5f Ω Ω→  such that ( ) .4 4
5 5f X F=  We will join to 

4
5 5Ω ⊂ Ε  the moving frame ( ), ,4

5 iF d′ℜ =


where vectors id


 have a form [8]: 
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( )

( )

( )

( )

( )

,

,

,

,

.

4 4
51 541

21 1 4 54 4
54 54

1 4 4
52 52 542

22 1 2 4 54 4 4
54 54 54

1 4 4
53 53 543

23 1 4 3 54 4 4
54 54 54

1 4
54 544

24 1 54 4
54 54

1 4
55 545

25 1 54 4
54 54

Dd e e e

Dd e e e e

Dd e e e e

Dd e e

Dd e 1 e

Λ
Λ Λ

Λ Λ
Λ Λ Λ

Λ Λ
Λ Λ Λ

Λ
Λ Λ

Λ
Λ Λ

= − +

= − + − +

= − − + +

= − +

 
 = − + +
  



  



   



   



 



 

                                          (10) 

 
 

In general case vectors id


are linearly independent. We shall demand that vectors id


 are linearly 
dependent. From here we have: 
     1) 4

541 0D =                                         (11) 
or  

     2) 
( )

1 4
54 544

21 4 4
55 54 545

,D

D

Λ
=

Λ Λ +
    (12) 

where 
     4

541 5 1 54 ,D e d k= −
 

 

1d – symbol of differentiation along of direction  1 ,e


 1
55Λ – first curvature of the line 5ω  of the net  

5Σ , 1
54Λ  – second curvature of the line 4ω of the net 5Σ  . Inversely, if satisfied one of conditions (11), 

(12), then the partial mapping 4
5f  is degenerate. Thus, we have obtained a statement of the Theorem 

1. The proof of Theorem 1 is completed. 
Theorem 2 Let 4

5f  be partial mapping. Then 

1) Straight line ( ) ( ) ( ), , , , ,3 2 1X e X e X e  

 is immovable in the partial mapping 4
5f  if and only if 

, , .1 4 4
53 53 5430 0 D 0Λ Λ= = =  

2) Straight line ( ) ( ) ( ), , , , ,3 2 1X e X e X e  

 is immovable in the partial mapping 4
5f  if and only if 

, , .1 4 4
52 52 5420 0 D 0Λ Λ= = =  

3) Straight line ( ) ( ) ( ), , , , ,3 2 1X e X e X e  

 is immovable in the partial mapping 4
5f  if and only if 

, .4 4
51 5410 D 0Λ = =  

Proof. Let us take straight line ( ), 3X e  is immovable in the partial mapping .4
5f  From (10) we derive: 
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,
,
,

1
53

4
53

4
543

0
0

D 0

Λ
Λ

=

=

=

 

 
 
(13) 
 

     
where 1 5

53 13Λ Λ= − –third; 4 5
53 43Λ Λ= − –second curvature of the line 3ω  of the net 5Σ , 

4
543 5 3 54D e d k= − ⋅





 (where 54k


–a vector of first curvature of the line 4ω  of the net 5Σ ). 

Inversely, if take place conditions (13), then the straight line ( ), 3X e  is immovable in the partial 

mapping 4
5f . 

 Analogously, we have necessary and sufficient conditions of the immovability of the straight lines 
( ), 2X e , ( ), 1X e  in the partial mapping 4

5f  respectively: 

     

,
,
,

1
52

4
52

4
542

0
0

D 0

Λ
Λ

=

=

=

 

and 

     
,
,

4
51

4
541

0
D 0
Λ =

=
 

where 1 5
52 12Λ Λ= − –fourth, 4 5

52 42Λ Λ= −  – third  curvature of the line 2ω  of the net 5Σ . The proof 
of the Theorem 2 is completed. 
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