# Existence of immovability lines of a partial mapping of Euclidean space $E_{5}$ 

To cite this article: Gulbadan Matieva et al 2019 J. Phys.: Conf. Ser. 1366012060

View the article online for updates and enhancements.


## IOP ebooks"'

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

# Existence of immovability lines of a partial mapping of Euclidean space E $_{5}$ 

Gulbadan Matieva ${ }^{1}$, Cholpon Abdullayeva ${ }^{2}$, Anvarjon Ahmedov ${ }^{3}$<br>${ }^{1}$ Faculty of Mathematics and Information Technology, Osh State University, Osh, Kyrgyz Republic<br>${ }^{2}$ Natural-Pedagogical Faculty, Kyrgyz-Uzbek university, Osh, Kyrgyz Republic<br>${ }^{3}$ Centre for Mathematical Sciences, Universiti Malaysia Pahang<br>Email: cholpon2008@gmail.com

Abstract. It is considered a set of smooth lines such that through a point $X \in \Omega$ passed one line of given set in domain $\Omega \subset \mathrm{E}_{5}$. The moving frame $\mathfrak{R}=\left(X, \vec{e}_{i,}\right) \quad(i, j, k=\overline{1,5})$ is frame of Frenet for the line $\omega^{1}$ of the given set. Integral lines of the vector fields $\overrightarrow{e_{i}}$ are formed net $\Sigma_{5}$ of Frenet. There exists a point $F_{5}^{4} \in\left(X, \vec{e}_{5}\right)$ on the tangent of the line $\omega^{5}$. When a point X is shifted in the domain $\Omega$, the point $F_{5}^{4}$ describes it's domain $\Omega_{5}^{4}$ in $\mathrm{E}_{5}$. It is defined the partial mapping $f_{5}^{4}: \Omega \rightarrow \Omega_{5}^{4}$, such that $f_{5}^{4}(X)=F_{5}^{4}$.
Necessary and sufficient conditions of immovability and degeneration of lines $\left(X, \vec{e}_{1}\right)$, $\left(X, \vec{e}_{2}\right)$ and $\left(X, \vec{e}_{3}\right)$ in partial mapping $f_{5}^{4}$ are obtained.

Key words: partial mapping, cyclic net of Frenet, Frenet frame, pseudofocus, immovability of line.

## 1. Introduction

In domain $\Omega \subset \mathrm{E}_{5}$ it is considered a set of smooth lines such that through a point $X \in \Omega$ passed one line of given set. The moving frame $\mathfrak{R}=\left(X, \vec{e}_{i,}\right)(i, j, k=\overline{1,5})$ is frame of Frenet for the line $\omega^{1}$ of the given set of smooth lines. Derivation formula of the frame $\mathfrak{R}$ have a form:

$$
\begin{equation*}
d \vec{X}=\omega^{i} \vec{e}_{i}, d \overrightarrow{e_{i}}=\omega_{i}^{k} \vec{e}_{k} \tag{1}
\end{equation*}
$$

The forms $\omega^{i}, \omega_{i}^{k}$ satisfied structure equations of Euclidean space:

$$
\begin{equation*}
D \omega^{i}=\omega^{k} \wedge \omega_{k}^{i}, D \omega_{i}^{k}=\omega_{i}^{j} \wedge \omega_{j}^{k}, \omega_{i}^{j}+\omega_{j}^{i}=0 \tag{2}
\end{equation*}
$$

Integral lines of vector fields $\vec{e}_{i}$ are formed the net $\Sigma_{5}$ of Frenet for the line $\omega^{1}$ of the given set of lines. Since frame $\mathfrak{R}$ is constructed on tangent of lines of the net $\Sigma_{5}$, the forms $\omega_{i}^{k}$ are principal forms [3]; in orther words:

$$
\begin{equation*}
\omega_{i}^{k}=\Lambda_{i j}^{k} \omega^{j} \tag{3}
\end{equation*}
$$

Taking into account (3) from (2) we have:

$$
\begin{equation*}
\Lambda_{i j}^{k}=-\Lambda_{k j}^{i} \tag{4}
\end{equation*}
$$

If we differentiate externally (3) then we have:

$$
D \omega_{i}^{k}=d \Lambda_{i j}^{k} \wedge \omega^{j}+\Lambda_{i j}^{k} D \omega^{j}
$$

By using formula (2) from here we have got:

$$
\omega_{i}^{j} \wedge \omega_{j}^{k}=d \Lambda_{i j}^{k} \wedge \omega^{j}+\Lambda_{i j}^{k} \wedge \omega^{\ell} \wedge \omega_{\ell}^{j} .
$$

By applying the latter with combination of the formula (3) we obtain:

$$
\omega_{i}^{j} \wedge \Lambda_{j \ell}^{k} \omega^{\ell}=d \Lambda_{i j}^{k} \wedge \omega^{j}-\Lambda_{i j}^{k} \omega_{\ell}^{j} \wedge \omega^{\ell}
$$

or

$$
\Lambda_{j \ell}^{k} \omega_{i}^{j} \wedge \omega^{\ell}=d \Lambda_{i j}^{k} \wedge \omega^{j}-\Lambda_{i j}^{k} \wedge \omega_{\ell}^{j} \wedge \omega^{\ell}
$$

From here we found:

$$
d \Lambda_{i j}^{k} \wedge \omega^{j}-\Lambda_{i \ell}^{k} \omega_{j}^{\ell} \wedge \omega^{j}-\Lambda_{j \ell}^{k} \omega_{i}^{j} \wedge \omega^{\ell}=0
$$

or

$$
\left(d \Lambda_{i j}^{k}-\Lambda_{i \ell}^{k} \omega_{j}^{\ell}-\Lambda_{\ell j}^{k} \omega_{i}^{\ell}\right) \wedge \omega^{j}=0
$$

By using lemma of Cartan from [1] we conclude that:

$$
d \Lambda_{i j}^{k}-\Lambda_{i \ell}^{k} \omega_{j}^{\ell}-\Lambda_{\ell j}^{k} \omega_{i}^{\ell}=\Lambda_{i j m}^{k} \omega^{m}
$$

or

$$
\begin{equation*}
d \Lambda_{i j}^{k}=\left(\Lambda_{i j m}^{k}+\Lambda_{i l}^{k} \Lambda_{j m}^{l}+\Lambda_{l j}^{k} \Lambda_{i m}^{l}\right) \omega^{m} \tag{5}
\end{equation*}
$$

The system of variable $\left\{\Lambda_{i j}^{k}, \Lambda_{i j m}^{k}\right\}$ is formed geometrical object of second order. The formulas of Frenet for the line $\omega^{l}$ of given set have a form

$$
\begin{aligned}
& d_{1} \vec{e}_{1}=\Lambda_{11}^{2} \vec{e}_{2}, \\
& d_{1} \vec{e}_{2}=\Lambda_{2 l}^{1} \vec{e}_{1}+\Lambda_{2 l}^{3} \vec{e}_{3}, \\
& d_{1} \vec{e}_{3}=\Lambda_{31}^{2} \vec{e}_{2}+\Lambda_{31}^{4} \vec{e}_{4}, \\
& d_{1} \vec{e}_{4}=\Lambda_{41}^{3} \vec{e}_{3}+\Lambda_{41}^{5} \vec{e}_{5}, \\
& d_{1} \vec{e}_{5}=\Lambda_{51}^{4} \vec{e}_{4}
\end{aligned}
$$

and

$$
\begin{align*}
& \Lambda_{11}^{3}=-\Lambda_{11}^{3}=0, \\
& \Lambda_{11}^{4}=-\Lambda_{41}^{1}=0,  \tag{6}\\
& \Lambda_{11}^{5}=-\Lambda_{51}^{1}=0 \\
& \Lambda_{21}^{5}=-\Lambda_{51}^{2}=0, \\
& \Lambda_{21}^{4}=-\Lambda_{41}^{2}=0,  \tag{7}\\
& \Lambda_{31}^{5}=-\Lambda_{51}^{3}=0
\end{align*}
$$

There $k_{1}^{l}=\Lambda_{11}^{2}, k_{2}^{l}=\Lambda_{21}^{3}, k_{3}^{l}=\Lambda_{31}^{4}, k_{4}^{1}=\Lambda_{41}^{5}=-\Lambda_{51}^{4}-\mathrm{a}$ first, a second, a third and a fourth curvature of line $\omega^{1}$ respectively (there $d_{1}$ - symbol of differentiation along line $\omega^{1}$ ).

A pseudofocus [4] $F_{i}^{j}(i \neq j)$ of tangent of the line $\omega^{i}$ of the net $\Sigma_{5}$ is defined by radius- vector:

$$
\begin{equation*}
\vec{F}_{i}^{j}=\vec{X}-\frac{1}{\Lambda_{i j}^{j}} \vec{e}_{i}=\vec{X}+\frac{1}{\Lambda_{j j}^{i}} \vec{e}_{i} . \tag{8}
\end{equation*}
$$

There are exist four pseudofocuses on each tangent $\left(X, \vec{e}_{i}\right)$ :
on the straight line $\left(X, \vec{e}_{1}\right)-F_{1}^{2}, F_{1}^{3}, F_{1}^{4}, F_{1}^{5}$;
on $\left(X, \vec{e}_{2}\right)-F_{2}^{1}, F_{2}^{3}, F_{2}^{4}, F_{2}^{5}$;
on $\left(X, \vec{e}_{3}\right)-F_{3}^{1}, F_{3}^{2}, F_{3}^{4}, F_{3}^{5}$;
on $\left(X, \vec{e}_{4}\right)-F_{4}^{1}, F_{4}^{2}, F_{4}^{3}, F_{5}^{4}$;
on $\left(X, \vec{e}_{5}\right)-F_{5}^{1}, F_{5}^{2}, F_{5}^{3}, F_{5}^{4}$.
Definition. The net $\Sigma_{5}$ in $\Omega \subset \mathrm{E}_{5}$ is called a cycle net of Frenet ([5]) if the frames
$\mathfrak{R}_{1}=\left(X, \vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}, \vec{e}_{4}, \vec{e}_{5}\right)$,
$\mathfrak{R}_{2}=\left(X, \vec{e}_{2}, \vec{e}_{3}, \vec{e}_{4}, \vec{e}_{5}, \vec{e}_{1}\right)$,
$\mathfrak{R}_{3}=\left(X, \vec{e}_{3}, \vec{e}_{4}, \vec{e}_{5}, \vec{e}_{1}, \vec{e}_{2}\right)$,
$\mathfrak{R}_{4}=\left(X, \vec{e}_{4}, \vec{e}_{5}, \vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)$
and
$\mathfrak{R}_{5}=\left(X, \vec{e}_{5}, \vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}, \vec{e}_{4}\right)$
are frames of Frenet for lines $\omega^{1}, \omega^{2}, \omega^{3}, \omega^{4}, \omega^{5}$ respectively of net $\Sigma_{5}$ simultaneously.

## 2. Main results

In this section we formulate and prove the main results of the paper.
Theorem 1. Partial mapping $f_{5}^{4}$ is degenerate if and only if it is related to the one of the conditions

1) $D_{541}^{4}=0$, where $D_{541}^{4}=-\overrightarrow{e_{5}} d_{1} \overrightarrow{k_{54}}$.
2) $\frac{\Lambda_{54}^{1}}{\Lambda_{55}^{1}}=\frac{D_{544}^{4}}{\left(\Lambda_{54}^{4}\right)^{2}+D_{545}^{4}}$.

Proof. Let net $\Sigma_{5}$ is cycle net of Frenet. We will denote it by $\tilde{\Sigma}_{5}$. Pseudofocus $F_{5}^{4} \in\left(X, \vec{e}_{5}\right)$ defined by radius -vector:

$$
\begin{equation*}
\overrightarrow{F_{5}^{4}}=\vec{X}-\frac{1}{\Lambda_{54}^{4}} \vec{e}_{5}=\vec{X}+\frac{1}{\Lambda_{44}^{5}} \vec{e}_{5} \tag{9}
\end{equation*}
$$

When the point $X$ is moving in the domain $\Omega \subset \mathrm{E}_{5}$, pseudofocus $F_{5}^{4}$ describes it's domain $\Omega_{5}^{4}$ Thus defined the partial mapping $f_{5}^{4}: \Omega \rightarrow \Omega_{5}^{4}$ such that $f_{5}^{4}(X)=F_{5}^{4}$. We will join to $\Omega_{5}^{4} \subset \mathrm{E}_{5}$ the moving frame $\mathfrak{R}^{\prime}=\left(F_{5}^{4}, \vec{d}_{i}\right)$, where vectors $\vec{d}_{i}$ have a form [8]:

$$
\begin{align*}
& \vec{d}_{1}=\vec{e}_{1}-\frac{\Lambda_{51}^{4}}{\Lambda_{54}^{4}} \vec{e}_{4}+\frac{D_{541}^{4}}{\left(\Lambda_{54}^{4}\right)^{2}} \vec{e}_{5}, \\
& \vec{d}_{2}=-\frac{\Lambda_{52}^{l}}{\Lambda_{54}^{4}} \vec{e}_{1}+\vec{e}_{2}-\frac{\Lambda_{52}^{4}}{\Lambda_{54}^{4}} \vec{e}_{4}+\frac{D_{542}^{4}}{\left(\Lambda_{54}^{4}\right)^{2}} \vec{e}_{5}, \\
& \vec{d}_{3}=-\frac{\Lambda_{53}^{l}}{\Lambda_{54}^{4}} \vec{e}_{1}-\frac{\Lambda_{53}^{4}}{\Lambda_{54}^{4}} \vec{e}_{4}+\vec{e}_{3}+\frac{D_{543}^{4}}{\left(\Lambda_{54}^{4}\right)^{2}} \vec{e}_{5},  \tag{10}\\
& \vec{d}_{4}=-\frac{\Lambda_{54}^{l}}{\Lambda_{54}^{4}} \vec{e}_{1}+\frac{D_{544}^{4}}{\left(\Lambda_{54}^{4}\right)^{2}} \vec{e}_{5}, \\
& \vec{d}_{5}=-\frac{\Lambda_{55}^{l}}{\Lambda_{54}^{4}} \vec{e}_{1}+\left[1+\frac{D_{545}^{4}}{\left(\Lambda_{54}^{4}\right)^{2}}\right] \vec{e}_{5} .
\end{align*}
$$

In general case vectors $\vec{d}_{i}$ are linearly independent. We shall demand that vectors $\vec{d}_{i}$ are linearly dependent. From here we have:

$$
\begin{equation*}
\text { 1) } D_{541}^{4}=0 \tag{11}
\end{equation*}
$$

or

$$
\begin{equation*}
\text { 2) } \frac{\Lambda_{54}^{1}}{\Lambda_{55}^{1}}=\frac{D_{544}^{4}}{\left(\Lambda_{54}^{4}\right)^{2}+D_{545}^{4}} \tag{12}
\end{equation*}
$$

where

$$
D_{541}^{4}=-\overrightarrow{e_{5}} d_{1} \overrightarrow{k_{54}},
$$

$d_{1}$ - symbol of differentiation along of direction $\vec{e}_{1}, \Lambda_{55}^{1}-$ first curvature of the line $\omega^{5}$ of the net $\tilde{\Sigma}_{5}, \Lambda_{54}^{1}$ - second curvature of the line $\omega^{4}$ of the net $\tilde{\Sigma}_{5}$. Inversely, if satisfied one of conditions (11), (12), then the partial mapping $f_{5}^{4}$ is degenerate. Thus, we have obtained a statement of the Theorem 1. The proof of Theorem 1 is completed.

Theorem 2 Let $f_{5}^{4}$ be partial mapping. Then

1) Straight line $\left(X, \vec{e}_{3}\right),\left(X, \vec{e}_{2}\right),\left(X, \vec{e}_{1}\right)$ is immovable in the partial mapping $f_{5}^{4}$ if and only if $\Lambda_{53}^{1}=0, \Lambda_{53}^{4}=0, D_{543}^{4}=0$.
2) Straight line $\left(X, \vec{e}_{3}\right),\left(X, \vec{e}_{2}\right),\left(X, \vec{e}_{1}\right)$ is immovable in the partial mapping $f_{5}^{4}$ if and only if $\Lambda_{52}^{1}=0, \Lambda_{52}^{4}=0, D_{542}^{4}=0$.
3) Straight line $\left(X, \vec{e}_{3}\right),\left(X, \vec{e}_{2}\right),\left(X, \vec{e}_{1}\right)$ is immovable in the partial mapping $f_{5}^{4}$ if and only if $\Lambda_{5 l}^{4}=0, D_{541}^{4}=0$.
Proof. Let us take straight line $\left(X, \vec{e}_{3}\right)$ is immovable in the partial mapping $f_{5}^{4}$. From (10) we derive:

$$
\begin{align*}
& \Lambda_{53}^{1}=0 \\
& \Lambda_{53}^{4}=0  \tag{13}\\
& D_{543}^{4}=0
\end{align*}
$$

where $\Lambda_{53}^{1}=-\Lambda_{13}^{5}$-third; $\Lambda_{53}^{4}=-\Lambda_{43}^{5}$-second curvature of the line $\omega^{3}$ of the net $\tilde{\Sigma}_{5}$, $D_{543}^{4}=-\vec{e}_{5} \cdot d_{3} \vec{k}_{54}$ (where $\vec{k}_{54}$-a vector of first curvature of the line $\omega^{4}$ of the net $\tilde{\Sigma}_{5}$ ).
Inversely, if take place conditions (13), then the straight line $\left(X, \vec{e}_{3}\right)$ is immovable in the partial mapping $f_{5}^{4}$.

Analogously, we have necessary and sufficient conditions of the immovability of the straight lines $\left(X, \vec{e}_{2}\right),\left(X, \vec{e}_{1}\right)$ in the partial mapping $f_{5}^{4}$ respectively:

$$
\begin{aligned}
& \Lambda_{52}^{1}=0 \\
& \Lambda_{52}^{4}=0 \\
& D_{542}^{4}=0
\end{aligned}
$$

and

$$
\begin{aligned}
& \Lambda_{5 l}^{4}=0 \\
& D_{541}^{4}=0
\end{aligned}
$$

where $\Lambda_{52}^{1}=-\Lambda_{12}^{5}$-fourth, $\Lambda_{52}^{4}=-\Lambda_{42}^{5}$ - third curvature of the line $\omega^{2}$ of the net $\tilde{\Sigma}_{5}$. The proof of the Theorem 2 is completed.

## Acknowledgment

The research is supported by the grant from the Ministry of Science and Education of the Republic of Kyrgyz Republic and Universiti Malaysia Pahang under Universiti Research Grant Scheme RDU170364

## References

[1] Rashevskey P K, Riemann 1967 Geometry and tensor analysis Moscow Science 481-82.
[2] Phinikov S P 1948 Method of exterior form of Kartan in differential geometry (in Russian) Gosttexizdat 432
[3] Bazylev V T 1966 About many dimensional nets in Euclidean space (in Russian) Math. Journal Vl №4 475-91
[4] Matieva G 2003 Geometry of a partial mappings, nets and distributions of Euclidean space Osh Monography pp 12-19
[5] Bazylev V T 1975 Many- dimensional nets of double Lines Kaliningrad Issue 6 pp 19-25
[6] Matieva G, Abdullaeva Ch H 2016 Necessary and sufficient conditions of degeneracy of some partial mapping of the space $\mathrm{E}_{5}$ Science periodical edition "IN SITU" 6 pp 5-9
[7] Abdullaeva Ch H 2016 About double lines of the partial mapping $\mathrm{f}_{5}$ in Euclidean space $\mathrm{E}_{5}$ Information as thruster of science progress. International science-practical Conference MCII "Omega science" Chelyabinsk p 3-7
[8] Abdullaeva Ch H 2016 About double lines of partial mapping $f_{5}^{4}$ of Euclidean space $\mathrm{E}_{5}$ Actual problems in modern science and ways to solve them. XXIX-International sciencepractical conference Eurasian Union of Scientists-Moscow, $\mathbf{8}$ pp 85-89

