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Abstract. Polycaprolactone (PCL) has many advantages for use in biomedical engineering 

field. In the present work PCL microcarriers of 150-200 µm were fabricated using oil-in-water 

(o/w) emulsification coupled with solvent evaporation method. The surface charge of PCL 

microcarrier was then been improved by using ultraviolet/ozone treatment to introduce oxygen 

functional group. Immobilisation of gelatin onto PCL microspheres using zero-length 

crosslinker provides a stable protein-support complex, with no diffusional barrier which is 

ideal for mass processing. The optimum concentration of carboxyl group (COOH) absorbed on 

the surface was 1495.9 nmol/g and the amount of gelatin immobilized was 1797.3 µg/g on 

UV/O3 treated microcarriers as compared to the untreated (320 µg/g) microcarriers. The 

absorption of functional oxygen groups on the surface and the immobilized gelatin was 

confirmed with Fourier Transformed Infrared spectroscopy and the enhancement of 

hydrophilicity of the surface was  confirmed using water contact angle measurement which 

decreased (86.93
o
 – 49.34

o
) after UV/O3 treatment and subsequently after immobilisation of 

gelatin. The attachment and growth kinetics for human skin fibroblast cell (HSFC) showed that 

adhesion occurred much more rapidly for gelatin immobilised surface as compared to untreated 

PCL and UV/O3 PCL microcarrier. 

1.  Introduction 

Microcarrier is a term used in reference to microspheres that support cells in mammalian cell culture 

in which cells grow as monolayer on the surface of microspheres’ surface [1],[2].  In a laboratory scale 
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cell culture anchorage-dependent cells are commonly cultivated on the walls of roller bottles or non-

agitated vessels such as tissue culture flasks [3].   

    Moving upscale, particularly to produce large amounts of bioproducts, animal cells, are routinely 

carried out in a bioreactor. In this condition, microcarriers are required as substrate to the anchorage-

dependent cells. Different types of bioreactors such as stirred tank and fluidised bed bioreactor have 

utilised microcarrier to grow anchorage-dependent cells. Microcarriers are among the most established 

technological platforms for industrial production to increase productivity [4]. Biomaterials such as 

biodegradable polymer are particularly suited for the development of microcarrier. The surface can be 

further improved as desired by introducing functional groups such as hydroxyl and carbonyl onto the 

surface of polymer microparticle. For instance, a combination of ozone aeration and UV irradiation 

have been reported to improve immobilisation of gelatin onto the microcarrier, therefore, enhancing 

the anchorage dependent cell proliferation [5].  

     This study was set to fabricate biodegradable microcarrier beads using solvent evaporation method 

and identify the controlling parameters that affect particle size. Ultraviolet ozone (UV/O3) process 

conditions were then optimised to improve the surface of the microcarrier beads by introducing 

functional groups prior to optimisation of gelatin immobilisation on the microcarrier surface. Finally, 

the fabricated microcarrier beads were evaluated for their cytocompatibility by culturing mammalian 

cell lines on the microcarrier in spinner vessel culture system. 

2.  Experimental procedures  

2.1Materials 

Polycaprolactone (PCL) (MW=45,000) in pellet form, dichloromethane used to dissolve PCL, and 

poly(vinyl alcohol) (PVA) were supplied by Sigma Aldrich (USA). Pure oxygen (>99%;  Linde 

Malaysia Sdn. Bhd), toluidine blue O (Bendosen Laboratory Chemical, Germany), phosphate buffer 

(PBS; EMD Chemical Inc, USA), sodium dodecyl sulfate (SDS; Merck, Germany), and absolute 

ethanol (HmbG Chemicals, Germany) were used. Bovine gelatin was purchased from Halagel 

(Malaysia). Absolute ethanol from HmbG Chemicals, (Germany) and olive oil was obtained from a 

local hypermarket. Dulbecco’s modification of eagle’s medium (DMEM) in powder form, fetal bovine 

serum (FBS) and antibiotics (100 U/ml penicillin, 0.1 g/l streptomycin) were supplied by Gibco 

(USA). Sodium bicarbonate, hydrochloric acid, sodium hydroxide and trypan blue were supplied by 

Sigma-Aldrich. Silicone oil and ethyl acetate were purchased from Merck Millipore (Germany). 

 

2.2 Microcarrier preparation  

The preparation of microcarrier was achieved by a solvent evaporation method [6,7] with slight 

modifications [8]. PCL was dissolved in organic solvent. The dissolved mixture was then added 

dropwise into a polyvinyl alcohol (PVA). The resulting emulsion was stirred at appropriate speed for 6 

hours at room temperature. The microcarrier was collected and washed with distilled water prior 

drying overnight at 30 
o
C. Parameters tested to study the effect of operation condition on the size of 

PCL microcarrier was stirring speed, PVA concentration and polymer matrix ratio. The UV/O3 system 

equipped with ozone generator that supply with pure oxygen at flowrate of 0.5 lpm at constant 

standard working pressure of 20 psig. The generated ozone was supply to the Dresher bottle 

containing microcarrier that was placed in the UV box for 60 minutes to introduce oxygen functional 

group [9]. The UV/O3 surface of PCL microcarrier were activated using 1-ethyl-3-(3-

dimethylaminopropyl)-carbodiimide hydrochloride (EDAC) and N-hydroxysuccinimide (NHS). The 

microcarrier was then washed with MES buffer prior to gelatin immobilized in 80 mg/ml gelatin 

solution. Lastly the microcarrier was washed and dried in an oven overnight. 

 

2.3 Characterization 

For characterization, analytical techniques were used to magnify the microcarrier, visualized the 

structure and investigate the distribution elements on the surface of microcarrier by means of scaning 
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electron microscope (SEM) (Hitachi, S3400N), contact angle (Phoenix, 300), attenuated total 

reflectant Fourier transform infrared spectroscopy (ATR-FTIR) (Thermo scientific, Nilolet iS50), and 

gel permeation chromatography (GPC) (Waters, 2690/DAD 996/RID V2410/LSD CD 432). 

Lastly, in the biological testing component, the microcarriers were tested in mammalian 

suspension cell culture (human fibroblast cell, HSFC) to determine the biocompatibility of the 

microarrier.   

3. Results and Discussion 

 

3.1 Effect of preparation condition on particle size of PCL microcarrier  

The effects of the preparation conditions on the size and morphology of the microspheres were 

investigated. The result showed that high stirring speed (300 rpm), the emulsion is easily dispersed 

therefore producing smaller droplets. The size of microspheres was independent of surfactant at low 

concentrations (0.05-0.1%) as the surfactant is not sufficient to stabilize the droplet formation. 

However, the size of microspheres decreased from 384.50-190.77 µm as the surfactant concentration 

is increased. The microspheres size was not only affected by those two parameters, but also by the 

amount of (PCL) in dichloromethane (DCM) solvent. At high ratio (1:30) of the polymer matrix to the 

organic solvent, small microspheres size (94.64 µm) was observed and as the ratio decrease (1:10), the 

microspheres size increase (293.26). Convincingly, the size of microspheres can be control by 

controlling the parameter’s variables by mean of solvent emulsion method.  

 

 

3.2 Optimised microcarrier 

Polycaprolactone (PCL) microcarrier was successfully produced using solvent evaporation method. 

The microcarrier was then treated with UV/O3 treatment, which intendedly to introduce the oxygen 

functional group on the surface of the microcarrier to make it susceptible for gelatin immobilisation. 

The amount of oxygen functional group increased from 283.4 nmo/g to 1495.9 nmol/g [10]. 

Subsequently, gelatin was immobilised on the surface of treated also shows increment (Table 1) in 

amount of gelatin immobilised on the microcarrier surface with optimised condition.  

 

Table 1. Amount of absorbed gelatin on untreated PCL microcarrier and UV/O3 treated PCL 

microcarrier. 

 

 

 

 

 

 

 

 

3.3 Contact angle measurement 

The wettability of UV/O3 treated film was compared to the untreated and gelatin coated film. Table 2 

shows the water contact angle values and surface energy of untreated PCL film, UV/O3 treated PCL 

film and gelatin coated PCL film. Treatment was made by relative measurement under similar 

condition as the microcarrier. 

 

 

 

 

Microcarrier Concentration of immobilised 

gelatin (µg/g) 

% increased 

Non-optimised PCL 

microcarrier 
320.00±0.9 

82.2% 
Optimised PCL 

microcarrier 
1797.33±21 
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Table 2.  Contact angle values and surface energy of untreated, UV/O3 treated and UV/O3 treated and 

gelatin immobilised PCL microspheres. 

 

The value of contact angle of untreated microcarrier (86.93°) imposed a relatively hydrophobic 

behaviour. The angle was consequently decreased to 69.34° after UV/O3 treatment, thus leading to the 

increased surface energy from 24.94 mJ/m
2
 to 41.12 mJ/m

2
. This increase in surface energy could be 

due to the incorporation of oxygen-containing functional groups like O–C=O, C=O, C–O and OH [11] 

on the surface of the microcarrier. According to Gomathi and Neogi [12], an increase in surface 

energy is due to the incorporation of the polar components on the surface by the presence of polar 

groups, electric charges and free radicals.  

The introduction of the functional polar components on the PCL microcarrier surface not only 

improved its hydrophilicity but may also accommodate biomolecules components such as protein and 

cell growth factors to make the surface more biocompatible for cell growth and proliferation [13]. A 

drastic decrease in contact angle from 69.34° to 49.34° for gelatin coated PCL microcarrier was 

observed. This indicates further improvement in hydrophilicity as compared to UV/O3 treated PCL 

microcarrier which could be due to the presence of large amount of amino terminal and carboxyl 

groups [14]. Figure 1 shows the decrement of contact angle of water drops on the raw PCL surface, 

UV/O3 treated and gelatin coated PCL surface, respectively.  

 

Figure 1. Water drop images of contact angle analysis on the surface of: (a) raw PCL, (b) UV/O3 

treated PCL and (c) gelatin coated PCL. 

 

3.4 ATR-FTIR analysis 

Figure 2 shows the ATR-FTIR spectra of PCL, UV/O3 treated PCL and gelatin coated PCL, 

respectively.  The peaks at 1723, 1175 and 1230 cm
-1

 are the signature peaks of polyesters which 

correspond to C=O, C-O-C and C-C respectively in the IR spectra [15].  

 

 

Microcarrier 
Contact angle 

(
o
) 

Surface energy (mJ/m
2
) 

Untreated PCL 86.93 24.94 

UV/O3 treated PCL 69.34 41.12 

UV/O3 treated + gelatin immobilisation 

(i.e. gelatin coated PCL) 
49.34 61.28 

                     (a)                    (b)                       (c) 
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Figure 2. ATR- FTIR spectra of untreated PCL, UV/O3 treated PCL (UV/O3 PCL) and gelatin coated 

PCL (GEL PCL). 

 

Interestingly, figure 2 shows the presence of a new peak in UV/O3 PCL spectra at 3445 cm
-1

. This 

suggests that the oxidation process by UV/O3 could introduce O-H group in the main chain of PCL 

[16]. Meanwhile, marked broadening in the region of 1600-1750 cm
-1 

could be attributed to the free 

acids, modification of chemical environment around the carbonyl group or the formation of vinyl 

groups [17]. Subsequently, the successful immobilisation of gelatin onto the UV/O3 treated PCL 

surface could be deduced by the presence of a broadband at 3300 cm
-1

, possibly due to the overlapping 

of a hydroxyl group (O–H) and an amine group (N–H) stretching vibrations. An increase in the 

relative intensity of amide I band (at 1654 cm
-1

) and amide II (at 1544 cm
-1

) [14] also attributed to the 

successful of gelatin immobilisation. 

 

3.5 SEM analysis 

The morphology of the PCL microcarrier was examined by SEM, as displayed in figure 3. The 

microcarriers were observed to be spherical with a uniform particle size in the range of 100 to 150 µm. 

The surface of the untreated PCL (figure 3 (a)) appears to be smoother than the surface of the UV/O3 

treated PCL microcarrier (figure 3 (b)). Upon UV/O3 treatment the surface appears to crease and has 

plenty of holes which can be clearly seen in figure 3 (e). According to Teare and Bradley [18], the 

roughness of the PCL surface were due to distortion caused by a series of photo-cleavage reaction 

involving UV rays and ozone on the polymer surface.  

Further, microcarrier coated with gelatin exhibit rather smooth surface as compared to UV/O3 

treated PCL (figure 3 (c) & (f)). The creases were covered by gelatins that were immobilised onto the 

surface through covalent bonding with intermediate crosslink. The immobilisation was uniform over 

the microcarrier surface and this may help improve the biocompatibility of the microcarrier [19].  

 

3.6 Gel Permeation Chromatography (GPC) 

The effect of PCL microcarrier surface modification on weight-average molecular weight (Mw) were 

examined by using GPC. HPLC-grade tetrahydrofuran (THF) was used as mobile phase at room 

temperature with a solvent flow rate of 1 ml/min with 35 bar pressure. From the analysis, the average 

molecular weight of untreated PCL microcarrier was 23×10
4
. After the treatment with UV/O3, Mw of 

PCL microcarrier slightly decreased to 22×10
4
. The change in Mw of PCL microcarrier was due to the 
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oxidation and chain scissions of polymer through the formation of many free radicals which 

consequently lowers the molecular weight of the treated sample [20,21].  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. SEM images of the untreated PCL microcarrier (a), UV/O3 treated PCL microcarrier (b), 

and gelatin coated PCL microcarrier (c). (d), (e) and (f) are higher magnification of (a), (b) and (c) 

respectively. 

 

3.7 Cell attachment on gelatin coated PCL microcarrier  

The growth of human skin fibroblast cells (HSFC) (1184 (ECACC 90011883) on different PCL 

microcarrier surfaces was investigated by suspension culture in stirred spinner flasks. Figure 4 shows 

the growth kinetics of HSFC on gelatin coated PCL microcarrier, UV/O3 treated PCL microcarrier and 

untreated PCL microcarrier as a control. Table 3 shows the number of maximum cells attached on 

microcarrier, growth rate and doubling time of the three different cultures. From the graph, HSFCs 

were observed to attach and proliferate well on the gelatin coated microcarrier (Gel PCL) within two 

days after inoculation. The attached cells continued to grow until it reached maximum number of cells 

of 2.06×106 cells/ml (14 fold) as compared to the seeding concentration (1.5×105 cell/ml) at 72 hours 

after cultivation, with the fastest doubling time of 25.4 hours as compared to the cell growth on UV/O3 

PCL microcarrier (maximum cell number of 6.1×105 cells/ml, 84 hours after inoculation).  

Meanwhile, in the untreated PCL microcarrier culture, slow cell growth with doubling time of 

193.37 h and a low maximum number of cells (1.2×105 cells/ml) was observed. This low yield can be 

attributed to the difficulties of cells to attach on the surface of the untreated microcarrier which is less 

biocompatible as compared to gelatin coated PCL microcarrier. 

 

 

(c) 

(e) (f) 

(d) (f) (e) 

(b) (c) (a) 
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Figure 4. Growth kinetics of human skin fibroblast cell (HSFC) on different microcarriers in stirred 

spinner flasks: (x) UV/O3 treated PCL, (▲) gelatin coated PCL, (●) untreated PCL. 

 

   

Table 3. Values of maximum cell concentration, growth kinetics and doubling time of HSFC on 

different types of microcarrier. 

 

In the light of the selection of dermal related cells (skin fibroblast) as models in this study, the aim 

was to demonstrate the usability of the biodegradable PCL microcarrier in tissue engineering 

applications.  Microcarriers offer the advantage of mass production of cells, large scale production of 

bioproduct, as well as more specific application such as transplantation tools to carry cells in wound 

healing therapies. Skin fibroblasts have been reported to have great potential for treating skin diseases 

such as genetic abnormalities, infections and skin cancer [22]. They are also commonly utilized as an 

in vitro cell model for toxicity testing and the discernment of process of chemically induced skin 

carcinogenesis [23]. 

4.  Conclusion 

The characterization of PCL microcarrier indicates the presence of new functional groups on the 

surface as were evident by ATR-IR spectroscopy. The oxidation process by UV/O3 treatment 

introduced O-H group in the main chain of PCL. The successful immobilisation of gelatin onto the 

UV/O3 treated PCL surface was also revealed by FTIR measurement. A drastic decrease in contact 

angle from "69.34°" to "49.34°" for gelatin coated PCL microcarrier was observed, indicating further 

improvement in hydrophilicity as compared to UV/O3 treated PCL microcarrier. The ability of gelatin 

coated PCL microcarriers to support growth and proliferation of cells were assessed using primary cell 

(human skin fibroblast cell, HSFC) shows that gelatin coated PCL microcarriers were able to support 

the growth of HSFC which is the primary type of cell that have low plating efficiency. The oxidation 

Microcarrier Maximum cell concentration 

(x10
5
 cell/ml) 

Growth rate, µ 

(h
-1

) 

Doubling time, td 

(h) 

Untreated PCL 1.2 ± 14.1 0.004 193.37 

UV/O3 

treatedPCL 
6.1 ± 8.4 0.017 41.51 

Gelatin coated 

PCL 
20.6 ± 4.7 0.027 25.40 
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of PCL microcarrier surface by UV/O3 treatment enhances surface wettability and promotes higher 

gelatin immobilisation and in turn improved cell adhesion and proliferation on the microcarrier. 
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