
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)

Vol. 8, No. 1, March 2020, pp. 163~177

ISSN: 2089-3272, DOI: 10.11591/ijeei.v8i1.1660 163

Journal homepage: http://section.iaesonline.com/index.php/IJEEI/index

Performance Analysis of Graph Heuristics and Selected

Trajectory Metaheuristics on Examination Timetable Problem

Ashis Kumar Mandal1, M.N.M. Kahar 2
1Graduate School of Software and Information Science, Iwate Prefectural University, Iwate, Japan

2Faculty of Computer Systems & Software Engineering, Universiti Malaysia Pahang, Pahang, Malaysia

Article Info ABSTRACT

Article history:

Received Sep 24, 2019

Revised Feb 4, 2020

Accepted Feb 14, 2020

 Examination timetabling problem is hard to solve due to its NP-hard nature,

with a large number of constraints having to be accommodated. To deal with

the problem effectually, frequently heuristics are used for constructing a

feasible examination timetable, while meta-heuristics are applied for

improving the solution quality. In this paper, we present the combination of

graph heuristics and major trajectory metaheuristics for addressing both

capacitated and un-capacitated examination timetabling problem. For

constructing the feasible solution, six graph heuristics are used. They are

largest degree (LD), largest weighted degree (LWD), largest enrolment degree

(LE), and three hybrid heuristics with saturation degree (SD) such as SD-LD,

SD-LE, and SD-LWD. Five trajectory algorithms comprising of tabu search

(TS), simulated annealing (SA), late acceptance hill-climbing (LAHC), great

deluge algorithm (GDA), and variable neighborhood search (VNS) are

employed for improving the solution quality. Experiments have been tested on

several instances of un-capacitated and capacitated benchmark datasets, which

are Toronto and ITC2007 datasets, respectively. Experimental results indicate

that hybrid graph heuristics produce the best initial solutions across both these

benchmark problems. The study also reveals that, during improvement, GDA,

SA, and LAHC can produce better quality solutions compared to TS and VNS

for solving both benchmark datasets. Moreover, the performance of our

method is comparable with other approaches in the scientific literature.

Keywords:

Capacitated,

Combinatorial optimization,

Exam timetabling problems,

Graph heuristic,

Trajectory meta-heuristics,

Un-capacitated

Copyright © 2019 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Ashis Kumar Mandal

Graduate School of Software and Information Science,

Iwate Prefectural University

152-52 Sugo, Iwate, Japan.

Email: g236r004@s.iwate-pu.ac.jp

1. INTRODUCTION

In the last few decades, the examination timetabling problem has been studied vastly in the artificial

intelligence (AI) and operational research (OR) communities due to its complexity and practical significance

in educational institutions [1]. Academic institutions frequently face a considerable amount of challenges in

the effective scheduling of their examinations with limited resources in a reasonable time. An examination

timetabling is a system of allocating a set of examinations into a limited number of time slots and rooms in

order to satisfy all hard constraints and to minimize the soft constraint violations as much as possible. The

satisfaction of all hard constraints leads to a feasible solution, while the quality of a solution depends on soft

constraint satisfaction. It is observed that, according to the requirements and resources of educational

institutions, these constraints can be different [2, 3].

Examination timetable problems can be categorized as capacitated and un-capacitated problems [4].

In an un-capacitated branch, room capacity is not considered. In a capacitated variant, however, room capacity

is considered as a hard constraint. Usually, capacitated datasets are more complex to solve than un-capacitated

datasets. Also, capacitated datasets closely resemble the real world timetabling problem, and they are highly

constrained. An example of an un-capacitated problem is Toronto datasets, whereas ITC2007 datasets are a

capacitated problem [5].

 ISSN: 2089-3272

IJEEI, Vol.8, No. 1, March 2020: 163 - 177

164

Educational institutions require considerable work to generate an examination timetable due to

accommodating examinations, which frequently conflict with each other, into limited resources being inherent

difficulties. Moreover, the number of different constraints and the size of the examination instances makes

examination timetabling more complex to solve. Violating constraints, such as assigning two conflicting

examinations at the same time, is fatal and directly affects students’ careers. Considering all of the constraints,

an optimal solution is rare to be obtained in a reasonable time, and therefore, researchers focus on sub-optimal

solutions, i.e., quality solutions [6]. Examination timetabling is the ideal example of a combinatorial

optimization problem where the best solution has to be searched from a very large solution space. Lately,

considerable attention has been driven to heuristic and meta-heuristic search techniques for addressing the

examination timetabling problem. This is because, for many larger instances (examinations) in real-world

settings, these search techniques are capable of finding a good quality solution in reasonable time and limited

resources. These include graph-based sequential techniques [7], trajectory-based meta-heuristics[8],

population-based meta-heuristics [9], and recently hyper-heuristics [10]. Detail description of various methods

related to examination timetabling can be found in different surveys in the examination timetabling domain

[11] [12, 13] as well as in PATAT series of conference proceedings held from 1995 to 2018 (available at

http://www.patatconference.org/).

This paper focuses on graph colouring heuristics and well-known trajectory metaheuristics for

addressing the examination timetabling problem. In the first step, feasible solutions are constructed using six

graph heuristic algorithms. The first three approaches are largest degree (LD), largest weighted degree (LWD),

largest enrolment degree (LE). The rest of the three is the hybridization of above three with a saturation degree

(SD) separately producing SD-LD, SD-LWD, and SD-LE. In the second step, the graph heuristic algorithm

that produces the best quality solution is used for constructing an initial solution for each of the trajectory meta-

heuristic algorithms. Each meta-heuristic then optimize the solution vector and produce quality solutions. Five

trajectory algorithms, which are tabu search (TS), simulated annealing (SA), late acceptance hill-climbing

(LAHC), great deluge algorithm (GDA), and variable neighborhood search (VNS), are tested on two popular

and complex benchmark datasets, namely Toronto datasets and ITC2007 datasets.

The remaining of this paper is organized as follows. Section 2 describes the examination timetabling

problem and mathematical formulation. Section 3 presents related works on the examination timetabling

problem. Section 4 describes the heuristic and metaheuristic approaches being investigated. Section 5 contains

materials and methods of the study, while section 6 presents experimental results. Finally, section 7 draws the

overall conclusion.

2. EXAMINATION TIMETABLING PROBLEM AND FORMULATION

In this paper, two examination timetabling benchmark datasets are used to assess the performances of

proposed approaches. The datasets are Toronto benchmark dataset, un-capacitated datasets, and ITC2007

benchmark datasets, capacitated datasets. The motivation for using these datasets is that they are highly studied

in research communities, and ITC2007 is more realistic and more complex. The description of two examination

timetabling benchmarks is given below.

2.1. Un-capacitated benchmark datasets

The most widely used examination benchmark datasets were introduced by Carter and Laporte [14].

These datasets are also known as Toronto datasets. It is available from

http://www.asap.cs.nott.ac.uk/resources/data.shtml. These datasets are un-capacitated examination timetabling

benchmark datasets, assuming an unlimited number of seats are available during exam assignments. The

Toronto datasets consist of 13 problem instances. Table 1 summarises the datasets.

The Toronto examination timetable hard constraint insists that no students are allowed to attend two

or more exams simultaneously (also known as the clashing constraint). The soft constraint (i.e., how the quality

of the timetable is measured) is to spread the exams evenly for all students.

The objective function is shown in Eq.1. A penalty value of 16 is given for assigning two examinations

consecutively for a given student. A penalty value of 8 is assigned if there is one timeslot between exams

followed by a penalty value 4, 2 and 1 for 2, 3 and 4 timeslot gaps between exams, respectively.

min
∑ ∑ 𝑐𝑖𝑗×𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 (𝑡𝑖,𝑡𝑗)𝑁

𝑗=𝑖+1
𝑁−1
𝑖=1

𝑀
 (1)

Where

𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦(𝑡𝑖 , 𝑡𝑗) = {
25

2|𝑡𝑖−𝑡𝑗|
 𝑖𝑓 1 ≤ |𝑡𝑖 − 𝑡𝑗| ≤ 5

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

IJEEI ISSN: 2089-3272

Peformance Analysis of Graph Heuristics and Selected Trajectory Metaheuristics…(AK Mandal et al)

165

N is the number of examinations

M is the total number of students

T is the number of available timeslots.

cij is the conflict matrix, where each element in the matrix is the number of students taking

examination i and j, and where i, j ∈{1,..., N}{Qu, 2009 #444}

tk (1≤ tk ≤ T) specifies the assigned timeslot for examination k (k ∈{1,..., N})

The objective for the Toronto datasets problem is to satisfy the hard constraint and minimize the

penalty value of the soft constraint violations

Table 1. Toronto benchmark datasets

Instances No. of timeslots No. of exams No. of students Conflict density

car-s-91 35 682 16925 0.13

car-f-92 32 543 18419 0.14

ear-f-83 24 190 1125 0.27

hec-s-92 18 81 2823 0.42

kfu-s-93 20 461 5349 0.06

lse-f-91 18 381 2726 0.06

pur-s-93 42 2419 30029 0.03

rye-s-93 23 486 11483 0.07

sta-f-83 13 139 611 0.14

tre-s-92 23 261 4360 0.18

uta-s-92 35 622 21267 0.13

ute-s-92 10 184 2750 0.08

yor-f-83 21 181 941 0.29

2.2. Capacitated benchmark datasets

The 2nd international timetable competition (ITC2007) examination datasets were established to

facilitate researchers to explore real-world examination timetabling problem and to reduce the gap between

theory and practice. The ITC2007 examination datasets contain eight instances (see Table 2), comprising a

variety of hard and soft constraints. Referring to Table 2, A1 is the number of students registered, A2 shows

the number of exams, A3 is the number of timeslots, A4 indicates the number of available rooms, A5 is the

period hard constraints, A6 is the room hard constraints, and A7 is the conflict density. They are available for

download from the link http://www.cs.qub.ac.uk/itc2007/examtrack.

Table 2. ITC2007 Benchmark datasets

Instances A1 A2 A3 A4 A5 A6 A7

Exam_1 7,833 607 54 7 12 0 5.05%

Exam_2 12,484 870 40 49 12 2 1.17%

Exam_3 16,365 934 36 48 170 15 2.62%

Exam_4 4,421 273 21 1 40 0 15.0%

Exam_5 8,719 1018 42 3 27 0 0.87%

Exam_6 7,909 242 16 8 23 0 6.16%

Exam_7 13,795 1096 80 15 28 0 1.93%

Exam_8 7,718 598 80 8 20 1 4.55%

The hard constraints for ITC2007 examination datasets are defined as follows:

H1. One student can sit only one exam at a time.

H2. The capacity of the exam will not exceed the capacity of the room.

H3. The exam duration will not violate the period duration.

H4. Three types of exam ordering must be respected.

- Precedences: exam i will be scheduled before exam j.

- Exclusions: exam i and exam j must not be scheduled at the same period.

- Coincidences: exam i and exam j must be scheduled in the same period.

H5. Room exclusiveness must be maintained. For example, exam i must take place only in room number 206.

Soft constraints for ITC2007 examination datasets are summarized as follows:

S1. Two Exams in a Row (𝐶𝑠
2𝑅): Restriction is imposed for a student to sit successive exams on the same day.

S2. Two Exams in a Day(𝐶𝑠
2𝐷): Restriction is imposed for a student to sit two exams in a day.

http://www.cs.qub.ac.uk/itc2007/examtrack

 ISSN: 2089-3272

IJEEI, Vol.8, No. 1, March 2020: 163 - 177

166

S3. Spreading of Exams(𝐶𝑠
𝑃𝑆): Spread the exams as evenly as possible over the periods so that the preferences

of students, such as avoiding closeness of exams are preserved.

S4. Mixed Durations(𝐶𝑁𝑀𝐷): Avoid scheduling exams of different durations in the same room and period.

S5. Scheduling of Larger Exams (𝐶𝐹𝐿): Restriction is imposed to assign larger exams at the late of the

timetable.

S6. Room Penalty (𝐶𝑅): Some rooms are restricted for assigning some exams with the associated penalty.

S7. Period Penalty(𝐶𝑃): Some periods are restricted for assigning some exams with the associated penalty.

The objective of solving these instances is to satisfy the hard constraints and minimize the soft

constraint violations (penalty) as much as possible in order to produce a good quality timetable. The objective

function can be formularized as in Eq.2 [15].

𝑚𝑖𝑛 ∑ (𝑊2𝑅𝐶𝑠
2𝑅 + 𝑊2𝐷𝐶𝑠

2𝐷 + 𝑊𝑃𝑆𝐶𝑠
𝑃𝑆) + 𝑊𝑁𝑀𝐷𝐶𝑁𝑀𝐷 + 𝑊𝐹𝐿𝐶𝐹𝐿 + 𝐶𝑃 + 𝐶𝑅

𝑠∈𝑆 (2)

Where W indicates weight for each soft constraint, and S defines the set of students. Table 3 shows

the weights for the ITC2007 examination datasets. Note that the weights are not included in 𝐶𝑃 and 𝐶𝑅 in the

equation. This is because these weights are already included in their definition. A more detailed description of

this examination track, as well as their objective functions, can be found in [15, 16]

Table 3. Weights of the ITC2007 examination datasets

Instances

weight for two

in a day

(𝑊2𝐷)

weight for two

in a row (𝑊2𝑅)

weight for

period spread

(𝑊𝑃𝑆)

weight for no

mixed duration

(𝑊𝑁𝑀𝐷)

weight for the

front load

penalty

(𝑊𝐹𝐿)

Exam_1 5 7 5 10 5

Exam_2 5 15 1 25 5

Exam_3 10 15 4 20 10

Exam_4 5 9 2 10 5

Exam_5 15 40 5 0 10

Exam_6 5 20 20 25 15

Exam_7 5 25 10 15 10

Exam_8 0 150 15 25 5

3. RELATED WORKS

The examination timetabling problem has been widely investigated, and a wide range of approaches

have been reported in AI or OR literature over the last few decades. Popular techniques used often for solving

examination timetabling are described below.

The examination timetabling literature focuses on graph heuristics frequently because they are simple

and tend to be useful in constructing a feasible solution quickly. Kahar and Kendall [3] used four graph

heuristics, which are LD, LWD, LE, and SD, to solve University Malaysia Pahang examination timetabling

problem. The authors reported that these heuristics produced feasible solutions for all instances of the datasets

and better quality solutions than the university’s existing software. Sabar et al. [17] used graph colouring hyper-

heuristic for constructing an examination timetable. In their approach, four lists were prepared using

hybridization of low-level heuristics, and ‘difficulty index’ (a parameter) was issued for the selection of

examinations for scheduling. Abdul Rahman et al. [18] proposed the adaptive ordering strategy whereby

adaptive mechanism was enabled by adding a heuristic modifier to graph heuristics. Another work is a fuzzy

graph heuristic, where a fuzzy combination of LD, SD, and LE was investigated for ordering examinations

[19]. Besides, several graph colouring approaches were hybridized with hill climbing for successfully solving

both ITC 2007 and Toronto datasets [20, 21].

Pais and Amaral [22] implemented an improved tabu search for the examination timetabling. Here,

tabu list is automatically tuned by a fuzzy inference rule-based system (FIRBS), and this improves tabu search

in exploring a promising area of solution space. Abdullah et al. [23] hybridized tabu search with a memetic

algorithm for solving university timetabling problem. This algorithm employed a set of neighbourhood

structures that was controlled using a tabu list.

Simulated annealing has been extensively used for examination timetabling problem. Battistutta et al.

[24] presented simulated annealing with a feature-based tuning approach for solving ITC2007 examination

timetabling. The tuning stage was started by selecting the most important parameters. Then a regression model

was developed that correlated the value of the most important parameter to the features of the instances. Results

indicate that proper tuning can produce competitive results. Simulated annealing for solving examination

timetabling can also be found in [25] and [26].

IJEEI ISSN: 2089-3272

Peformance Analysis of Graph Heuristics and Selected Trajectory Metaheuristics…(AK Mandal et al)

167

Burke and Bykov [27] observed that late acceptance hill-climbing produced better solutions than other

local search methods while implemented in Toronto and ITC2007 datasets. Subsequently, Alzaqebah and

Abdullah [28] combined late-acceptance hill-climbing as well as simulated annealing with bee colony

optimization algorithms for solving Toronto and ITC2007 datasets. Besides, Bykov and Petrovic [29] recently

have proposed another single-parameter local search similar to LAHC, which is step counting hill climbing.

The approach was tested on all instances of ITC2007 examination datasets and produces some good results.

Another successful metaheuristic for the examination timetabling problem is great deluge algorithm.

Kahar and Kendall [30] proposed a modified-great deluge for solving UMP examination timetabling problem.

They used a dynamic decrease of boundary level, and when there was no improvement for certain iterations,

the boundary level was increased. They conducted experiments with different initial solutions and

neighbourhood structures. Mandal and Kahar [8] proposed a novel approach where partially selected

examinations were constructed using hybrid graph heuristics, and then these scheduled examinations were

improved using a modified great deluge algorithm. Great deluge algorithm was hybridized with an

electromagnetic-like mechanism for moving simple solution(s) to high-quality solution(s) avoiding local

optima [31].

 Population-based metaheuristics work with more than one solution for the optimization process.

Pillay and Banzhaf [32] implemented an informed genetic algorithm (IGA) to solve Toronto benchmark

datasets. A two-phase approach was used. In the first phase, the timetable was evolved with satisfying hard

constraints, and soft constraints were considered during the improvement phase. In both cases, genetic

algorithm was employed to be guided by some domain knowledge. Results indicate that IGA tends to produce

better examination timetabling than other evolutionary algorithms. Hosny and Al-Olayan [33] proposed a

mutation-based genetic algorithm for examination timetabling problem whereby crossover was avoided, and

mutation was used as the main genetic operator during the evolutionary process. Alinia Ahandani et al. [34]

investigated the discrete PSO algorithm for solving the examination timetabling problem. The particles’

positions were updated using genetic operations like mutation and crossover. The quality of particles’ position

was improved using three approaches of local search applied to hybridize discrete particle swarm optimization.

The approach showed satisfactory results while tested on the Toronto datasets. Sainte and Larabi [35] proposed

a hybrid PSO that produces stable solutions for examination timetabling. Alzaqebah and Abdullah [28] used

the artificial bee colony algorithm by incorporating late acceptance hill-climbing, adaptive approach in

neighbourhood selection, and disrupting selection strategy. They observed that disrupting selection strategy

diversifies the population and prevents early convergence. Bolaji et al. [36] proposed a hybridization of an

artificial bee colony with a local search and harmony search algorithm for solving un-capacitated examination

timetabling.

Memetic algorithms are well-known population-based approaches that are known as the hybridization

of evolutionary algorithms and local search methods. The combination of genetic algorithm with modified

violation directed hierarchical hill climbing (VDHC) was used for solving examination timetabling problem

[37]. Memetic algorithm for examination timetabling problem was also found in research conducted by

Abdullah and Turabieh [38], Lei et al. [39], and Leite et al. [40].

Hyper-heuristic is a relatively new domain that can effectively solve the educational timetabling

problem. It is the domain independence high-level search strategy that modifies solutions indirectly by

adequately selecting and employing some low-level heuristics Pillay [41]. Anwar et al. [42] investigated the

harmony search hyper-heuristic approach for solving the ITC2007 examination problem. A basic harmony

search algorithm was employed in the high-level heuristic, which controlled the low-level heuristics. These

were two neighbourhood structures: move and swap operation on examinations. Results revealed that the

approach can produce some competitive results compared to state-of-the-art approaches. Demeester et al. [43]

presented a hyper-heuristic framework based on the mechanism of tournament selection in genetic algorithms.

In low-level heuristic, the number of moves operations based on problem types was selected. Recently,

Muklason[10] has proposed hyper-heuristic for multi-objective examination timetabling problem.

4. GRAPH COLORING HEURISTICS AND TRAJECTORY META-HEURISTICS

 In examination timetabling literature, AI techniques like heuristics and meta-heuristics are used for

solving examination timetabling. For instance, heuristics are often employed for solution construction. These

heuristics contain domain-specific knowledge that guides search in finding feasible timetabling or even better

timetabling from the solution space. Meta-heuristics are usually used widely to optimize the timetabling. They

are problem-independent algorithms that guide subordinate heuristics with some intelligent strategies for

exploring and exploiting the search space so that efficient solutions (optimal or near-optimal) can be found

[44]. It is often classified into two main branches, including trajectory-based (i.e., local search meta-heuristics)

and population-based approaches. Trajectory-based methods take one single solution at a time and explore the

search space to generate near-optimal solutions. Simulated annealing and tabu search are the two examples of

 ISSN: 2089-3272

IJEEI, Vol.8, No. 1, March 2020: 163 - 177

168

trajectory-based methods. In population-based search, more than one different initial solutions (i.e., population)

are considered at a time for generating near-optimal solutions. Genetic algorithm and ant colony algorithm are

two population-based approaches. The algorithms used in this study are described below.

4.1. Graph Heuristics (GH)

Examination timetabling problem can be modeled using a graph colouring algorithm, and therefore,

it exhibits similarity with graph colouring problem [45]. In graph colouring problem, an undirected graph is a

representation comprising a set of n vertices. In graph colouring problem, an undirected graph 𝐺 = (𝑉, 𝐸) is a

representation comprising a set of 𝑛 vertices 𝑉 = (𝑣1 , 𝑣2 , 𝑣3 , … , 𝑣𝑛) and a set of edges 𝐸. If (𝑣𝑖 , 𝑣𝑗) is an

edge in a graph 𝐺 = (𝑉, 𝐸) then vertex 𝑣𝑖 is adjacent to vertex 𝑣𝑗. The graph colouring problem involves

assigning 𝑘-colours in 𝑉 = (𝑣1 , 𝑣2 , 𝑣3 , … , 𝑣𝑛) such that no two adjacent vertices are assigned the same colour.

It is straightforward to convert the graph colouring problem to the examination timetable problem (vice-versa)

by considering all vertices as events (i.e., examinations) and an edge between any pair of vertices as conflicting

examinations. That is, these examinations have taken at least one student and do not exist in the same time slot.

Finally, k-colours is equivalent to the number of time slots.

In graph theory, colouring a graph with a predefined limited number of colours (k-colouring of a

graph) is complex tasks. This graph problem is in the class of NP-complexity [46, 47]. Graph colouring

heuristics (Graph heuristics) are popular sequential approaches that are used for constructing an initial

timetable [17]. As the brute-force approach of solving graph colouring problem is NP-hard, graph heuristics

encompass some heuristic colouring techniques, such as vertex ordering, to find optimal or near-optimal

colourings in polynomial time. In the context of examination timetabling, graph heuristics are based on

ordering strategies where examination with most ‘difficulty’ is chosen for scheduling first so that finally, a

feasible solution can be obtained. The examination difficulty is measured with various graph heuristic

techniques. The most commonly used graph heuristics ordering strategies seen in the literature are described

as follows:

 Largest degree (LD): In this ordering, the number of conflicts is counted for each examination by

checking its conflict with all other examinations. Then, examinations are ordered in decreasing manure

such that exams with the largest number of conflicts come fast.

 Largest weighted degree (LWD): This ordering has a similarity with LD. The difference is that in the

ordering process, the number of students associated with the conflict is considered.

 Largest enrolment (LE): The examinations are ordered decreasingly with the value of registered students

of these examinations.

 Saturation degree (SD): Examination ordering is based on the availability of remaining time slots where

unscheduled examinations with the lowest number of available time slots for scheduling are given

priority for scheduling first. The ordering is dynamic as it is updated after scheduling each exam.

4.2. Tabu search (TS)

Tabu search is a local search meta-heuristic algorithm, which is firstly proposed by Glover [48]. The

basic mechanism of tabu search is based on hill-climbing algorithm. However, it can avoid trapping into local

optima by accepting the worst solutions. A memory structure called tabu list is used for avoiding the exploration

of the same neighbourhood solutions for a certain number of iterations. In other words, tabu list occupies

recently visited solutions and remains it tabu for avoiding cycling. A mechanism like aspiration criteria is also

used to allow promising solutions with tabu free status if the penalty value of the solution vector is better than

that of the current best-known solution. Figure 1 illustrates the simple tabu search approach.

1. Create initial solution 𝑠

2. Initialize tabu list T

3. while termination criterion not satisfied do

4. Determine complete neighbourhood N of current solution 𝑠

5. Choose best non-tabu solution 𝑠′ from N

6. Switch over to solution 𝑠′ (current solution s is replaced by 𝑠’)

7. Update tabu list T

8. Update best found solution (if necessary)

9. end while

10. return Best found solution

Figure 1. Tabu search procedure.

IJEEI ISSN: 2089-3272

Peformance Analysis of Graph Heuristics and Selected Trajectory Metaheuristics…(AK Mandal et al)

169

4.3. Simulated annealing (SA)

Simulated annealing (SA) is a local search meta-heuristic technique based on a physical annealing

process that probabilistically accepts some worst solutions to escape from the local optimum. It was introduced

by Kirkpatrick and Vecchi [49]. Simulated annealing starts with a randomly generated initial solution, and in

each iteration, it tries to improve the solution quality. If the neighbouring solution is better than or equal to the

current solution, it is replaced with the current one. Otherwise, acceptance of neighbouring solution is decided

on probability function exp (−(𝑓(𝑠′) − 𝑓(𝑠))/𝑇), where 𝑓(𝑠′) is neighbouring solution, 𝑓(𝑠) is current

solution, and 𝑇 is a parameter known as temperature. Initially, the algorithm starts with a high 𝑇 and

periodically decreases the value using the cooling schedule until the temperature is zero or any terminal

condition. Figure 2 illustrates the simulated annealing process for the minimization problem.

1. Choose, at random, an initial solution 𝑆 for the system to be optimized
2. Initialize the temperature 𝑇

3. while the stopping criterion is not satisfied do
4. repeat

5. Randomly select 𝑆′ ∈ 𝑁(𝑆)

6. if 𝑓(𝑆′) ≤ 𝑓(𝑆) then
7. 𝑆 ← 𝑆′
8. else
9. 𝑆 ← 𝑆′ with a probability 𝑒𝑥𝑝 (−

𝑓(𝑆′)−𝑓(𝑆)

𝑇
)

10. end if
11. until the "thermodynamic equilibrium" of the system is reached

12. Decrease 𝑇

13. end while
14. return the best solution met

Figure 2. Simulated annealing procedure.

4.4. Late acceptance hill-climbing (LAHC)

LAHC is a single point meta-heuristic inspired room hill-climbing search proposed by Burke [50].

Unlike Hill-climbing, LAHC can escape local optimums by maintains a list of a given length 𝐿, which is a kind

of memory unit. This list retains solutions of several iterations earlier for comparison with the current candidate

solution. LAHC starts with a single feasible solution, and iteratively improves the solution in order to get a

new improve one. Each time the candidate solution is compared with the last value of the list, 𝐿 and if better,

it is accepted. When the acceptance procedure is activated, the new cost is added at the beginning of the list,

and the last element is deleted. The procedure is performed base on 𝑣 = 𝐼 𝑚𝑜𝑑 𝐿 formula, where 𝐿 is the length

of the frame, 𝐼 is the ith iteration and 𝑣 is the position. Figure 3 shows the LAHC procedure.

1. Calculate initial cost function C(s)

2. .for all 𝑘 ∈ {0. . . 𝐿 − 1} do Ĉ𝑘 ← 𝐶(𝑠)
3. Assign the initial number of iteration I ← 0

4. do until a stopping criterion is satisfied:

5. Construct a candidate solution s*
6. Calculate its cost function C(s*)

7. v ← I mod L

8. if 𝐶(𝑠 ∗) ≤ Ĉ𝑣 or 𝐶(𝑠 ∗) ≤ 𝐶(𝑠)

9. then accept candidate (s ← s*)

10. else
11. accept candidate (s ← s)

12. Insert cost value into the list Ĉ𝑣 ← 𝐶(𝑠)

13. Increment the number of iteration I ← I+1
14. end do

Figure 3. Late acceptance hill-climbing search algorithm.

4.5. Great deluge algorithm (GDA)

Great deluge algorithm (GDA) is a local search algorithm developed by Dueck [51]. The inspiration

of this algorithm originated from the behaviour that a hill climber seeks a higher place to avoid the rising water

level during the deluge. Like SA, this algorithm devises a mechanism to avoid local optima by accepting the

worst solution. However, SA uses a probabilistic function for accepting the worst solutions, whereas GDA uses

a more deterministic approach for this purpose. It is also considered that GDA depends less on parameter tuning

compared to SA. The only parameter in the GDA is decay rate, which is used for controlling the boundary or

acceptance level. In the minimization problem, the initial boundary level (water level) usually starts with an

initial solution. During the search, a new candidate solution is accepted if it is better than or equal to the current

solution. However, the solution worse than the current one will be accepted if the quality of the candidate

solution is less than or equal to a predefined boundary level B. The boundary level then is lowered by

 ISSN: 2089-3272

IJEEI, Vol.8, No. 1, March 2020: 163 - 177

170

subtracting a parameter called decay rate (∆B). This parameter is vital because the speed of the search depends

on the decay rate. Figure 4 describes the procedure of the GDA algorithm in a minimization context.

1. Set the initial solution 𝑆

2. Calculate initial cost function 𝑓(𝑆)

3. Initial level 𝐵0 = 𝑓(𝑆)

4. 𝐵 = 𝐵0
5. Specify input parameter ∆𝐵 =?
6. while not some stopping condition do

7. Define neighbourhood 𝑁(𝑆)

8. Randomly select the candidate solution 𝑆∗ ∈ 𝑁(𝑆)
9. If 𝑓(𝑆∗) ≤ 𝑓(𝑆) 𝑜𝑟 𝑓(𝑆∗) ≤ 𝐵 then
10. Accept 𝑆∗

11. Lower the level 𝐵 = 𝐵0 − ∆𝐵

Figure 4. Great deluge algorithm procedure.

4.6. Variable neighbourhood search (VNS)

Variable neighbourhood search (VNS), a local search descent method, was first introduced by

Mladenović and Hansen [52]. VNS does not accept non-improving neighbours. The basic idea of VNS is based

on changing the landscape of the problem using more than one neighbourhood searches. The algorithm has

three basic steps: shaking, local search, and move. Initially, a set of neighbourhood structures and initial

solutions is defined. In each iteration, an initial solution is shaken from the current neighbour 𝑁𝑘 (x' is generated

in current neighbour). A local search approach is then used to transform this 𝑥′ solution to 𝑥′′ solution. When

𝑓(𝑥′′) is better than 𝑓(𝑥), current solution 𝑥 will be replaced by the solution 𝑥′′ , and the search starts over

from the first neighbourhood (𝑘 = 1). Otherwise, the algorithm uses the next neighbourhood (𝑘 = 𝑘 + 1).

Several variations of VNS are found. Figure 5 presents a basic variable neighbourhood search approach.

1. Input: a set of neighbourhood structures 𝑁𝑘 for 𝑘 = 1, … , 𝑘𝑚𝑎𝑥 for shaking

2. .𝑥 = 𝑥0; /∗ Generate the initial solution ∗/

3. repeat

4. 𝑘 = 1;

5. repeat

6. Shaking: pick a random solution 𝑥′ from the 𝑘𝑡ℎ neighbourhood 𝑁𝑘(𝑥) for 𝑥;

7. 𝑥′′ =local search(𝑥′) ;
8. if 𝑓(𝑥′′) < 𝑓(𝑥) then
9. 𝑥 = 𝑥′′ ;
10. Continue to search with 𝑁1 ; 𝑘 = 1;

11. otherwise 𝑘 = 𝑘 + 1;

12. until 𝑘 = 𝑘𝑚𝑎𝑥
13. until Stopping criteria

14. output: Best found solution

Figure 5. Variable neighborhood search algorithm.

5. MATERIALS AND METHODS

5.1 Hybridization of Graph heuristics

The first step is to construct initial feasible solutions for examination timetabling problem. We use LD,

LWD, and LE, which are static ordering. Besides, we also hybridize each of LD, LWD, and LE with SD as

dynamic ordering heuristics. It is observed that SD tends to perform better than the three heuristics on many

occasions [18, 53]. However, at the very beginning of the solution construction, SD may not be efficient like

LE, LWD, and LD due to most of the time slots being unoccupied, resulting in difficulties for SD in the

appropriate ordering of examinations [17]. Here we describe three hybridized graph heuristics SD-LD, SD-

LWD, and SD-LWD and provide an illustrative example for better understanding the procedure.

5.1.1 Definition

 SD-LD: It means ordering the examinations according to SD followed by LD and taking the most crucial

examination from the top of the list for scheduling.

 SD-LWD: It indicates ordering the examinations according to SD followed by LWD and taking the

most crucial examination from the top of the list for scheduling.

 SD-LE: It denotes ordering the examinations according to SD, followed by LE and taking the most

crucial examination from the top of the list for scheduling.

IJEEI ISSN: 2089-3272

Peformance Analysis of Graph Heuristics and Selected Trajectory Metaheuristics…(AK Mandal et al)

171

5.1.2 An illustrative example

Conflicting of examinations and ordering procedure can be illustrated using the following examples.

Consider a conflict matrix M consisting of 9 examinations (𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7, 𝑒8, 𝑒9) in Figure 6. Here

an entry 𝑀 (𝑒2, 𝑒7) has value 2. It means that there is a conflict between examination 𝑒2 and examination 𝑒7

and 2 students have taken these two courses. Similarly, the entry 𝑀 (𝑒1, 𝑒4) has value 0, indicating no conflict

between these two examinations (i.e., no common students have taken these two courses). In this way, other

entities can be defined. Note that 𝑀 (𝑒2, 𝑒7) = 𝑀(𝑒7, 𝑒2), as the matrix is symmetrical and diagonal items in

the matrix have zero values, meaning no conflict exists between two same examinations.

exams e1 e2 e3 e4 e5 e6 e7 e8 e9

e1 0 1 2 0 2 2 3 0 1

e2 1 0 1 1 1 1 2 1 0

e3 2 1 0 0 1 1 2 0 1

e4 0 1 0 0 0 0 0 0 0

e5 2 1 1 0 0 1 3 1 0

e6 2 1 1 0 1 0 4 1 2

e7 3 2 2 0 3 4 0 2 2

e8 0 1 0 0 1 1 2 0 0

e9 1 0 1 0 0 2 2 0 0

Figure 6. Conflict matrix

Each row is considered a vector of the matrix is dedicated to a particular examination (i.e., 𝑒1), and

its column values with non-zero are all conflicted examinations with that particular examination. For example,

𝑒2, 𝑒3, 𝑒5, 𝑒6, 𝑒7, 𝑒9 are conflicting with 𝑒1. For getting LD ordering, all the column examinations which

conflict with each row of the matrix that is not zero are considered first, and then the number of conflicting

exams is counted. This specifies LD value of the examination in this row. Now the LD ordering is obtained by

sorting these LD values in decreasing order. Figure 7 (a) illustrates the LD ordering. Here 𝑒2 examination is

top of the LD ordering as it has the maximum value 7, whereas 𝑒4 is at the bottom of the list because of its

lower ordering value 1.

Exams LD

e2 7

e6 7

e7 7

e1 6

e3 6

e5 6

e8 4

e9 4

e4 1

(a)

Exams LWD

e7 18

e6 12

e1 11

e5 9

e3 8

e2 8

e9 6

e8 5

e4 1

(b)

Exams LE

e7 6

e1 4

e3 4

e4 4

e6 4

e2 3

e5 3

e9 3

e8 2

(c)

Exams SD LD

e7 2 7

e5 3 6

e3 3 6

e9 3 4

e1 4 6

e8 4 4

e4 4 1

e6 5 7

e2 5 7

(d)

Exams SD LWD

e7 2 18

e5 3 9

e3 3 8

e9 3 6

e1 4 11

e8 4 5

e4 4 1

e6 5 12

e2 5 8

(e)

Exams SD LE

e7 2 6

e3 3 4

e5 3 3

e9 3 3

e1 4 4

e4 4 4

e8 4 2

e6 5 4

e2 5 3

(f)

Figure 7. Example of various graph heuristic orderings (a) Ordered by LD (b) Ordered by LWD (c) Ordered

by LE (d) Ordered by SD-LD (e) Ordered by SD-LWD (f) Ordered by SD-LE.

In the case of LWD ordering, all column examinations that are conflicting with each row examination

are collected. Next, the sum of all conflicting values of all column examinations in each row of the matrix

produces LWD value of that row examination. Finally, when all the LWD values are arranged in decreasing

order, LWD ordering is found. Figure 7 (b) describes LWD ordering where 𝑒7 is at the top of the list due to

its largest value of 18 followed by 𝑒6 with the second largest value of 12.

LE ordering, however, considers student enrolment data and avoids conflict matrix for the ordering

process. Examination with the largest enrolment of students is considered at the top of the list. For instance,

the enrolment of students is like this: e1 has been taken by 4, e2 has been taken by 3, e3 has been taken by 4,

e4 has been taken by 4, e5 has been taken by 3, e6 has been taken by 4, and e7 has been taken by 6 students.

Arranging them in decreasing order based on enrolments, LE ordering of these examinations is obtained, which

is shown in Figure 7 (c).

SD is a dynamic process that needs information about the current timetabling state. In a particular

time, each unscheduled examination checks the number of available time slots for scheduling without violating

hard constraints. This number indicates SD values of that examination. For example, if 𝑒6 has SD value 5, it

means that 𝑒6 has 5 free time slots where it can be assigned. Unlike other orderings, SD ordering is obtained

by sorting the unscheduled examinations in ascending order so that examination with the least number of

available time slots gets the first priority for scheduling. From Figure 7 (d-f), it can be seen that 𝑒7 is at the top

of the SD ordering list. This is because 𝑒7 has the least number of free time slots, only two-time slots available

 ISSN: 2089-3272

IJEEI, Vol.8, No. 1, March 2020: 163 - 177

172

for scheduling. Likewise, 𝑒6 is at the bottom of the list because of its five available time slots for the allocation

of examination 𝑒6.

SD-LD, SD-LWD, SD-LE orderings are produced by hybridizing SD with other heuristic orderings

in such a way that SD is employed for ordering examinations fast followed by employing other orderings.

Figure 7(d), Figure 7(e), and Figure 7(f) indicate the ordering of SD-LD, SD-LWD, and SD-LE, respectively.

In these cases, SD orders the examinations first, and then the adjacent heuristic is employed for ordering. For

example, in SD-LWD ordering, it is observed that e7 is at the top of the list because it has the lowest SD value.

It is observed that 𝑒5, 𝑒3, and 𝑒9 have the same SD value, but they have different LWD values. If two or more

examinations have the same SD value, then LWD is considered. Examination e5 comes first because its LWD

value is higher than both 𝑒5 and 𝑒3. Therefore, the ordering of these three examinations will be 𝑒5 followed

by 𝑒3 and then e9. Since SD is solely unable to order the examinations 𝑒5, 𝑒3, and 𝑒9 properly, second time

ordering (in this example LWD) assists in producing robust ordering.

5.2 Improvement with Trajectory search

 In this step, the initial feasible solution is further improved by trajectory-based methods in order to

produce a near-optimal solution(s). The initial solution for trajectory metaheuristic is calculated using a graph

heuristic that produces the best solution during the construction phase. Five trajectory-based methods

comprising of tabu search (TS), late acceptance hill-climbing search (LAHC), simulated annealing(SA), great

deluge algorithm(GDA), and variable neighbourhood search (VNS) have been used during improvement phase.

5.3 Experimental setup

 We have considered two commonly used benchmark datasets in examination timetabling research, which

are Toronto and ITC2007 datasets, to assess the performance of our approach. We have used 12 instances of

Toronto benchmark datasets and 8 instances of ITC2007 benchmark datasets.

 Neighbourhood structure for Toronto datasets during the improvement phase is described as below:

 N1: Move – an examination is selected randomly and moves it to a random time slot.

 N2: Swap – Two examinations are selected randomly, and swapping is occurred between their time

slots.

 N3: Swap time slot – Two-time slots are selected randomly, and all examinations between the two-time

slots are swapped.

The above three (3) neighbourhood structures are used during the improvement phase. However, a

neighbourhood structure is only accepted that gives an improvement on the penalty value in each iteration.

The neighbourhood operations employed in the improvement phase for ITC2007 exam datasets are as

follows:

 N1: An examination is selected randomly and moves it to a random time slot and room

 N2: Two examinations are selected randomly and swapping is occurred between their time slots and

rooms

 N3: An examination is selected and moves it to a different room within the same time slot

 N4: Two random examinations are selected and move them to different time slots and rooms

During the improvement phase, a neighbourhood move from these neighbourhood structures is

selected randomly and applied only if the solution is feasible; otherwise, a different neighbourhood move is

selected. Besides, stopping criteria for Toronto and ITC2007 are set to 30 min and one hour, respectively.

Finally, each experiment is run 30 individuals using different random seeds to obtain computational results.

The programs were implemented in Java (Java SE 7) and performed on Intel Core-i7 PCs with 8 GB

RAM running Windows 7 Professional SP3. For getting the appropriate values of the parameters in meta-

heuristic algorithms, some preliminary experiment has been conducted. Table 4 shows the details of the

parameters used for the study.

Table 4. Parameter settings
Name Parameter Value

SA Cooling rate 0.1

Temperature 5000

LAHC List size 500
GDA Decay rate 0.1

VNS Neighbourhood, K 3 (for Toronto)

4 (for itc2007)

Local search Hill-climbing

TS Tabu list size 100

IJEEI ISSN: 2089-3272

Peformance Analysis of Graph Heuristics and Selected Trajectory Metaheuristics…(AK Mandal et al)

173

6. RESULTS AND DISCUSSION

A comparative study of different graph colouring algorithms on the Toronto datasets for constructing

initial solutions is highlighted in Table 5. In this table, the best and the corresponding average value produced

by graph colouring algorithms for each instance is highlighted. Note that, from now to subsequent tables, the

best results obtained from all the approaches for each problem instance are highlighted in the table with bold

font, while ‘–‘ indicates no solution obtained. As it is observed from the table, SD-LD achieved the best results

on 5 instances (car-f-92, kfu-s-93, rye-s-93, ute-s-92, yor-f-83), whereas SD-LWD outperformed others on 4

instances (ear-f-83, lse-f-91, sta-f-83, tre-s-92). The rest of the 3 instances SD-LE produced the best results. It

is also noticed that without the hybridization of SD, individually 3 heuristics LD, LE, and LWD could not

produce the best solutions for any of the instances.

Table 5. Different graph coloring algorithms on the Toronto datasets for constructing solutions

Instances
LD LE LWD SD-LD SD-LE SD-LWD

Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg

car-s-91 8.70 8.97 8.59 9.14 8.56 9.07 8.48 8.90 8.33 8.80 8.52 8.90

car-f-92 7.88 7.98 7.45 7.67 7.44 7.77 7.00 7.44 7.25 7.56 7.35 7.50

ear-f-83 54.23 57.99 54.40 58.11 54.40 58.11 54.14 57.76 53.05 57.73 52.35 57.17

hec-s-92 17.51 20.40 17.24 20.24 16.94 20.92 16.95 20.18 16.21 20.37 16.37 20.51

kfu-s-93 24.99 28.3 25.01 28.47 24.98 28.53 23.68 27.99 23.85 28.43 24.19 28.21

lse-f-91 19.78 24.14 20.01 24.47 19.42 25.17 19.36 23.89 19.71 24.04 18.83 24.09

rye-s-93 20.17 21.92 19.33 20.98 18.75 20.79 18.28 20.61 19.15 20.72 18.62 20.40

sta-f-83 166.77 180.36 169.13 178.31 171.81 179.97 168.35 178.36 167.95 178.50 166.43 177.08

tre-s-92 12.53 13.34 12.40 13.32 12.46 13.30 12.39 13.23 12.35 13.20 12.07 13.17

uta-s-92 5.78 6.18 5.71 6.20 5.54 6.19 5.68 6.17 5.53 6.17 5.70 6.02

ute-s-92 - - - - 39.9 43.1 38.03 42.14 38.77 42.83 38.15 42.98

yor-f-83 51.12 53.77 51.11 54.16 51.58 53.60 49.80 53.67 9.82 53.63 51.02 54.02

Table 6 shows the comparison of the best and average results of six graph colouring approaches on

ITC2007 datasets. It is observed that 4 out of 8 instances (Exam_2, Exam_4, Exam_5, Exam_8), SD-LD

reported the best results, while SD-LWD reported the best results for the other four instances. LD, LE, and

LWD, however, could not produce any solution for Exam_4. Besides, for the rest of the instances, they were

not able to perform well than their hybridization with SD counterparts, which indicates the strength of the

hybridization approaches for solution construction.

Table 6. Different graph coloring algorithms on the ITC2007 datasets for constructing solutions

Instances
LD LE LWD SD-LD SD-LE SD-LWD

Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg

Exam_1 26540 30796.83 27967 30241.30 28135 30555.47 26245 29742.13 26578 29668.00 25989 29963.90

Exam_2 15567 21849.59 14887 19859.56 14375 1876.58 11684 17234.34 12345 19345.34 12257 18856.32

Exam_3 45956 54869.95 45898 53639.47 45778 5534.69 44678 52568.89 43968 51849.53 43588 52879.78

Exam_4 - - - - - - 41702 48616.27 43853 50240.50 43042 514321.67

Exam_5 64856 73945.48 65438 73172.29 65485 72394.34 63895 70367.53 64265 71567.56 63885 71767.78

Exam_6 45588 54737.67 46390 54565.17 45390 54165.17 45300 54375.17 45195 54263.67 44160 52832.50

Exam _7 35789 43667.36 36158 4266.84 35338 43854.47 34567 42385.42 34857 41945.88 33557 42475.63

Exam _8 44576 54837.85 44978 53685.64 45069 53857.46 43866 52475.26 44012 51845.79 44234 52476.46

Table 7 shows the performance of different trajectory algorithms employed on Toronto datasets in

obtaining quality solutions. The best and average values are shown for each instance. It is apparent from the

table that GDA outperformed other algorithms because, in 7 out of 12 cases, it resulted in the best results. SA

is the second best algorithm that reported the best values for four instances. There are two instances (kfu-s-93

and ute-s-92) in which LAHC produced the best solutions. However, VNS and TS could not produce better

results in comparison with GDA, LAHC, and SA.

 ISSN: 2089-3272

IJEEI, Vol.8, No. 1, March 2020: 163 - 177

174

Table 7. Different Trajectory meta-heuristics on the Toronto datasets for improving solutions

Instances
TS SA LAHC GDA VNS

Best Avg Best Avg Best Avg Best Avg Best Avg

car-s-91 5.58 5.83 5.57 5.78 5.55 5.77 5.54 5.76 5.61 5.85

car-f-92 4.58 4.93 4.61 4.82 4.57 4.93 4.57 4.83 4.72 4.92

ear-f-83 35.57 37.47 33.68 36.16 33.72 36.56 34.01 35.96 37.65 38.62

hec-s-92 10.73 11.76 10.55 11.53 10.60 11.25 10.53 11.32 10.61 11.78

kfu-s-93 14.89 17.01 14.95 16.26 14.79 15.57 14.83 15.69 15.21 16.12

lse-f-91 11.23 12.12 11.15 12.14 10.94 11.02 10.85 11.12 10.95 11.23

rye-s-93 11.31 11.51 11.41 11.48 11.27 11.56 11.24 11.54 11.45 11.55

sta-f-83 157.47 157.78 157.39 157.72 157.41 157.76 157.43 157.68 157.56 157.69

tre-s-92 8.64 8.74 8.24 8.50 8.38 8.65 8.25 8.57 8.27 8.51

uta-s-92 3.28 3.49 3.22 3.29 3.28 3.39 3.27 3.41 3.25 3.52

ute-s-92 27.01 27.98 27.14 27.97 26.98 28.07 26.98 28.10 27.32 28.23

yor-f-83 35.67 36.78 35.53 26.78 35.66 36.91 35.51 36.71 35.89 38.01

Table 8 highlights the best and average results of the instances of ITC2007 datasets when the trajectory

metaheuristic approaches are employed for improving solution quality. It is observed that the performance of

the algorithms under investigation here produces comparable results. However, a closer look reveals that GDA

is the most successful in producing quality solutions. It produced the best results for Exam_1, Exam_3,

Exam_5, and Exam_6. The next best metaheuristic is LAHC, which produced the best results for three datasets

(Exam_6, Exam_7, Exam_8). The rest of the instances (Exam_2 and Exam_4) had the best solutions with SA

approach. Results also reveal that, during the improvement process, TS and VNS are not as robust as the rest

of the approaches in terms of producing the best solutions.

Table 8. Different trajectory meta-heuristics on the ITC2007 datasets for improving solutions

Instances
TS SA LAHC GDA VNS

Best Avg Best Avg Best Avg Best Avg Best Avg

Exam_1 10475 11576.49 10875 11674.78 9791 10465.34 8571 10710.93 10123 11282.64

Exam_2 996 1170.77 895 1172.56 984 1165.33 923 1134.56 989 1234.74

Exam_3 23052 27456.67 24635 27375.48 24012 27846.95 22345 26955.67 22175 26487.38

Exam_4 26194 28880.72 25658 27947.58 26547 28012.47 25975 27859.48 26012 28210.45

Exam_5 7684 7984.94 7584 7845.74 7475 7785.75 7415 7877.17 7748 8012.34

Exam_6 30018 31237.56 3028 30457.34 29960 30985.74 29960 30855.74 30123 30894.05

Exam _7 9465 9849.56 9101 9584.89 8899 9457.41 9399 9757.41 9123 9763.47

Exam _8 11893 12547.07 11354 12565.97 11345 12847.34 11845 12461.24 11924 13127.56

Tables 9 and 10 show the best results obtained in our experiment and a selection of the best results

available in the literature on Toronto and ITC2007 datasets, respectively. As shown in Table 9, our results are

better than both Carter et al. [14] and Pillay and Banzhaf [54] for 8 problem instances, Sabar et al. [17] for 10

problem instances, Abdul Rahman et al. [18] for 7 problem instances, Caramia et al. [55] for 6 problem

instances, and Turabieh and Abdullah [56] for 4 problem instances. Finally, from Table 10, it is observed that

our method obtains the best results on five out of 13 instances compared to Pillay [57]. Besides, our results are

better than Atsuta et al. [58] and Abdul Rahman et al. [18] for 3 and 2 problem instances, respectively. De

Smet [59] produced better results than our method, but they could not produce feasible solutions for three

instances. Overall, our results are competitive with other approaches in the literature.

Table 9. Comparison of our best results with results of state-of-the-art approaches on Toronto datasets

Instances
Our

results

Carter et al.

[14]

Abdul Rahman

et al. [18]

Turabieh and

Abdullah [56]

Caramia et

al. [55]

Pillay and

Banzhaf [54]

Sabar et al.

[17]

car-s-91 5.54 7.10 5.12 4.8 6.6 4.97 5.14

car-f-92 4.57 6.20 4.41 4.1 6.0 4.28 4.70

ear-f-83 33.68 36.40 36.91 34.92 29.3 35.86 37.86

hec-s-92 10.53 10.80 11.31 10.73 9.2 11.85 11.90

kfu-s-93 14.79 14.00 14.75 13.0 13.8 14.62 15.30

lse-f-91 10.85 10.5 11.41 10.01 9.6 11.14 12.33

rye-s-93 11.24 7.3 9.61 9.65 6.8 9.65 10.71

sta-f-83 157.39 161.5 157.52 158.26 158.2 158.33 160.12

tre-s-92 8.24 9.6 8.76 7.88 9.4 8.48 8.32

uta-s-92 3.22 3.5 3.54 3.2 3.5 3.40 3.88

ute-s-92 26.98 25.8 26.25 26.11 24.4 28.88 32.67

yor-f-83 35.51 41.7 39.67 36.22 36.2 40.74 40.53

IJEEI ISSN: 2089-3272

Peformance Analysis of Graph Heuristics and Selected Trajectory Metaheuristics…(AK Mandal et al)

175

Table 10. Comparison of our best results with results of state-of-the-art approaches on ITC2007 datasets
Instances Our results Pillay [57] Atsuta et al. [58] De Smet [59] Abdul Rahman et al. [18]

Exam_1 8571 12035 8006 6670 5231

Exam_2 895 3074 3470 623 433

Exam_3 22345 15917 18622 - 9265

Exam_4 25658 23582 22559 - 17787

Exam_5 7415 6860 4714 3847 3083

Exam_6 29960 32250 29155 27815 26060

Exam _7 8899 17666 10473 5420 10712

Exam _8 11345 16184 14317 - 12713

7. CONCLUSIONS

Academic institutions face challenges when scheduling exams into a limited number of timeslots and

rooms. This is because constructing good quality timetables is a computationally expensive task. In this paper,

we have examined different graph colouring heuristics and trajectory metaheuristics to solve the examination

timetabling problem. Feasible solutions are constructed using six different graph colouring algorithms, which

are LD, LWD, LE, SD-LE, SD-LWD, SD-LE. Among the graph heuristics that produce the best solution is

considered to produce the initial solution of trajectory metaheuristics. Next, this solution is improved separately

using five trajectory meta-heuristics comprising TS, SA, LAHC, GDA, and VNS. We have tested the approach

on Toronto and ITC2007 examination timetable datasets. Based on the experimental results, we have drawn

several conclusions.

During feature construction, hybridization of graph colorant algorithms (i.e., SD-LE, SD-LWD, and

SD-LE) perform better than their non-hybridization counterparts for both of the datasets. The reason is that the

dynamic nature of SD can effectively select more sophisticated and suitable exams early in the scheduling list

during construction. On the other hand, in the optimization step, in general, GDA has proved to be more

effective in finding quality solutions for ITC2007 datasets then the SA, LAHC, TS, and VNS in that order. In

the case of Toronto datasets, GDA also performs better than others, followed by LAHC, SA, VNS, and TS.

The main reason for obtaining better performance with GDA, SA, and LAHC is that they can properly explore

and exploit the search space, which results in fewer occasions of trapping into local optima. Finally, we have

been able to produce competitive results compared to other state-of-the-art methods.

Future studies should include applying graph heuristics with population metaheuristics on the

examination timetabling problem. Another possible extension of this research would be to solve other

scheduling problems such as course timetabling problem.

ACKNOWLEDGMENTS

This work was supported in part by grants from University Malaysia Pahang (Grant Id:

RDU1703212).

REFERENCES
[1] N. Pillay and R. Qu, "Examination Timetabling Problems," in Hyper-Heuristics: Theory and Applications, ed:

Springer, 2018, pp. 75-82.

[2] R. Lewis, "A survey of metaheuristic-based techniques for University Timetabling problems," OR Spectrum, vol.

30, pp. 167-190, 2008.

[3] M. N. M. Kahar and G. Kendall, "The examination timetabling problem at Universiti Malaysia Pahang:

Comparison of a constructive heuristic with an existing software solution," European Journal of Operational

Research, vol. 207, pp. 557-565, Dec 1 2010.

[4] N. Leite, R. Neves, N. Horta, F. Melício, and A. C. Rosa, "Solving a Capacitated Exam Timetabling Problem

Instance Using a Bi-objective NSGA-II," in Computational Intelligence: International Joint Conference, IJCCI

2012 Barcelona, Spain, October 5-7, 2012 Revised Selected Papers, K. Madani, D. A. Correia, A. Rosa, and J.

Filipe, Eds., ed Cham: Springer International Publishing, 2015, pp. 115-129.

[5] N. R. Sabar, M. Ayob, G. Kendall, and Q. Rong, "Grammatical Evolution Hyper-Heuristic for Combinatorial

Optimization Problems," Evolutionary Computation, IEEE Transactions on, vol. 17, pp. 840-861, 2013.

[6] N. Leite, F. Melício, and A. C. Rosa, "A Hybrid Shuffled Frog-Leaping Algorithm for the University Examination

Timetabling Problem," in Computational Intelligence: Revised and Selected Papers of the International Joint

Conference, IJCCI 2013, Vilamoura, Portugal, September 20-22, 2013, K. Madani, A. Dourado, A. Rosa, J.

Filipe, and J. Kacprzyk, Eds., ed Cham: Springer International Publishing, 2016, pp. 173-188.

[7] N. S. Othman and F. Mashhod, "Graph Colouring and Clustering Heuristic Approach for Minimizing

Examination Duration: A Case Study," IBIMA Business Review, vol. 2012, pp. 1-9, 2012.

 ISSN: 2089-3272

IJEEI, Vol.8, No. 1, March 2020: 163 - 177

176

[8] A. K. Mandal and M. N. M. Kahar, "Solving examination timetabling problem using partial exam assignment

with great deluge algorithm," in 2015 International Conference on Computer, Communications, and Control

Technology (I4CT), 2015, pp. 530-534.

[9] M. Alzaqebah and S. Abdullah, "Hybrid bee colony optimization for examination timetabling problems,"

Computers & Operations Research, vol. 54, pp. 142-154, Feb 2015.

[10] A. Muklason, A. J. Parkes, E. Özcan, S. N. Kingston, B. McCollum, and P. McMullan, "Hyper-heuristics for

Solving a Multi-objective Examination Timetabling Problem," in

Proceedingsofthe12thInternationalConferenceonthePracticeandTheoryofAuto-matedTimetabling, Austria, 2018.

[11] S. Larabi Marie-Sainte, "A survey of Particle Swarm Optimization techniques for solving university Examination

Timetabling Problem," Artificial Intelligence Review, vol. 44, pp. 537-546, 2015/07/12 2015.

[12] S. Abdullah, H. Turabieh, B. McCollum, and P. McMullan, "A hybrid metaheuristic approach to the university

course timetabling problem," Journal of Heuristics, vol. 18, pp. 1-23, Feb 2012.

[13] R. Qu, E. Burke, B. McCollum, L. Merlot, and S. Lee, "A survey of search methodologies and automated system

development for examination timetabling," Journal of Scheduling, vol. 12, pp. 55-89, Feb 2009.

[14] M. W. Carter, G. Laporte, and S. Y. Lee, "Examination timetabling: Algorithmic strategies and applications,"

Journal of the Operational Research Society, vol. 47, pp. 373-383, 1996.

[15] B. McCollum, P. McMullan, E. K. Burke, A. J. Parkes, and R. Qu, "The second international timetabling

competition: Examination timetabling track," University of Nottingham, Technical Report

QUB/IEEE/Tech/ITC2007/Exam/v4. 0/17, 2007.

[16] B. McCollum, P. McMullan, A. J. Parkes, E. K. Burke, and R. Qu, "A new model for automated examination

timetabling," Annals of Operations Research, vol. 194, pp. 291-315, Apr 2012.

[17] N. R. Sabar, M. Ayob, R. Qu, and G. Kendall, "A graph coloring constructive hyper-heuristic for examination

timetabling problems," Applied Intelligence, vol. 37, pp. 1-11, Jul 2012.

[18] S. Abdul Rahman, A. Bargiela, E. K. Burke, E. Özcan, B. McCollum, and P. McMullan, "Adaptive linear

combination of heuristic orderings in constructing examination timetables," European Journal of Operational

Research, vol. 232, pp. 287-297, 1/16/ 2014.

[19] S. Abdullah, E. K. Burke, and B. Mccollum, "An investigation of variable neighbourhood search for university

course timetabling," in The 2nd Multidisciplinary International Conference on Scheduling: Theory and

Applications (MISTA 2005), 2005, pp. 413-427.

[20] A. K. Mandal and M. N. M. Kahar, "Combination of graph heuristic with hill climbing search for solving

capacitated examination timetabling problem," in 2015 4th International Conference on Software Engineering

and Computer Systems (ICSECS), 2015, pp. 118-123.

[21] A. K. Mandal and M. N. M. Kahar, "Solving examination timetabling problem using partial exam assignment

with hill climbing search," in 2015 IEEE Symposium on Computer Applications & Industrial Electronics

(ISCAIE), 2015, pp. 84-89.

[22] T. C. Pais and P. Amaral, "Managing the tabu list length using a fuzzy inference system: an application to

examination timetabling," Annals of Operations Research, vol. 194, pp. 341-363, Apr 2012.

[23] S. Abdullah, H. Turabieh, B. McCollum, and P. McMullan, "A Tabu-Based Memetic Approach for Examination

Timetabling Problems," in Rough Set and Knowledge Technology. vol. 6401, J. Yu, S. Greco, P. Lingras, G.

Wang, and A. Skowron, Eds., ed: Springer Berlin Heidelberg, 2010, pp. 574-581.

[24] M. Battistutta, A. Schaerf, and T. Urli, "Feature-based tuning of single-stage simulated annealing for examination

timetabling," Annals of Operations Research, pp. 1-16, 2015.

[25] T. L. June, J. H. Obit, Y.-B. Leau, and J. Bolongkikit, "Implementation of Constraint Programming and Simulated

Annealing for Examination Timetabling Problem," in Computational Science and Technology, ed: Springer,

2019, pp. 175-184.

[26] C. Gogos, P. Alefragis, and E. Housos, "An improved multi-staged algorithmic process for the solution of the

examination timetabling problem," Annals of Operations Research, vol. 194, pp. 203-221, Apr 2012.

[27] E. K. Burke and Y. Bykov, "The late acceptance hill-climbing heuristic," Technical report CSM-192 Computing

Science and Mathematics, University of Stirling, UK, University of Stirling, UK, Technical report CSM-192,

2012.

[28] M. Alzaqebah and S. Abdullah, "An adaptive artificial bee colony and late-acceptance hill-climbing algorithm

for examination timetabling," Journal of Scheduling, vol. 17, pp. 249-262, 2014/06/01 2014.

[29] Y. Bykov and S. Petrovic, "A Step Counting Hill Climbing Algorithm applied to University Examination

Timetabling," Journal of Scheduling, pp. 1-14, 2016.

[30] M. N. M. Kahar and G. Kendall, "A great deluge algorithm for a real-world examination timetabling problem,"

Journal of the Operational Research Society, vol. 66, pp. 16–133, 2013.

[31] H. Turabieh and S. Abdullah, "An integrated hybrid approach to the examination timetabling problem," Omega-

International Journal of Management Science, vol. 39, pp. 598-607, Dec 2011.

[32] N. Pillay and W. Banzhaf, "An informed genetic algorithm for the examination timetabling problem," Applied

Soft Computing, vol. 10, pp. 457-467, Mar 2010.

[33] M. Hosny and M. Al-Olayan, "A mutation-based genetic algorithm for room and proctor assignment in

examination scheduling," in Science and Information Conference (SAI), 2014, 2014, pp. 260-268.

[34] M. Alinia Ahandani, M. T. Vakil Baghmisheh, M. A. Badamchi Zadeh, and S. Ghaemi, "Hybrid particle swarm

optimization transplanted into a hyper-heuristic structure for solving examination timetabling problem," Swarm

and Evolutionary Computation, vol. 7, pp. 21-34, 12// 2012.

IJEEI ISSN: 2089-3272

Peformance Analysis of Graph Heuristics and Selected Trajectory Metaheuristics…(AK Mandal et al)

177

[35] S. L. Marie-Sainte, "A new hybrid particle swarm optimization algorithm for real-world university examination

timetabling problem," in 2017 Computing Conference, 2017, pp. 157-163.

[36] A. L. Bolaji, A. T. Khader, M. A. Al-Betar, and M. A. Awadallah, "A hybrid nature-inspired artificial bee colony

algorithm for uncapacitated examination timetabling problems," Journal of Intelligent Systems, vol. 24, pp. 37-

54, 2015.

[37] E. Ozcan and E. Ersoy, "Final exam scheduler - FES," in IEEE Congress on Evolutionary Computation, 2005,

pp. 1356-1363

[38] S. Abdullah and H. Turabieh, "On the use of multi neighbourhood structures within a Tabu-based memetic

approach to university timetabling problems," Information Sciences, vol. 191, pp. 146-168, May 15 2012.

[39] Y. Lei, J. Shi, and Z. Yan, "A memetic algorithm based on MOEA/D for the examination timetabling problem,"

Soft Computing, vol. 22, pp. 1511-1523, 2018.

[40] N. Leite, C. M. Fernandes, F. Melicio, and A. C. Rosa, "A cellular memetic algorithm for the examination

timetabling problem," Computers & Operations Research, vol. 94, pp. 118-138, 2018.

[41] N. Pillay, "A review of hyper-heuristics for educational timetabling," Annals of Operations Research, vol. 239,

pp. 3-38, Apr 2016.

[42] K. Anwar, A. T. Khader, M. A. Al-Betar, and M. A. Awadallah, "Harmony Search-based Hyper-heuristic for

examination timetabling," in 9th IEEE International Colloquium on Signal Processing and its Applications

(CSPA), 2013, pp. 176-181.

[43] P. Demeester, B. Bilgin, P. De Causmaecker, and G. Vanden Berghe, "A hyperheuristic approach to examination

timetabling problems: benchmarks and a new problem from practice," Journal of Scheduling, vol. 15, pp. 83-

103, Feb 2012.

[44] I. H. Osman and G. Laporte, "Metaheuristics: A bibliography," Annals of Operations Research, vol. 63, pp. 511-

623, 1996/10/01 1996.

[45] B. Hussin, A. S. H. Basari, A. S. Shibghatullah, S. A. Asmai, and N. S. Othman, "Exam timetabling using graph

colouring approach," in IEEE Conference on Open Systems (ICOS), Lankawi, Malaysia, 2011, pp. 133-138.

[46] D. Marx, "Graph colouring problems and their applications in scheduling," Electrical Engineering, vol. 48, pp.

11-16, 2004.

[47] P. Galinier, J.-P. Hamiez, J.-K. Hao, and D. Porumbel, "Recent Advances in Graph Vertex Coloring," in

Handbook of Optimization: From Classical to Modern Approach, I. Zelinka, V. Snášel, and A. Abraham, Eds.,

ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 505-528.

[48] F. Glover, "Future paths for integer programming and links to artificial intelligence," Computers & operations

research, vol. 13, pp. 533-549, 1986.

[49] S. Kirkpatrick and M. Vecchi, "Optimization by simmulated annealing," science, vol. 220, pp. 671-680, 1983.

[50] E. K. Burke and Y. Bykov, "A late acceptance strategy in hill-climbing for exam timetabling problems," in The

7th International Conference on the Practice and Theory of Automated Timetabling (PATAT 2008) Montreal,

Canada, 2008.

[51] G. Dueck, "New optimization heuristics: the great deluge algorithm and the record-to-record travel," Journal of

Computational physics, vol. 104, pp. 86-92, 1993.

[52] N. Mladenović and P. Hansen, "Variable neighborhood search," Computers & Operations Research, vol. 24, pp.

1097-1100, 11// 1997.

[53] A. Soghier and R. Qu, "Adaptive selection of heuristics for assigning time slots and rooms in exam timetables,"

Applied Intelligence, vol. 39, pp. 438-450, Sep 2013.

[54] N. Pillay and W. Banzhaf, "A study of heuristic combinations for hyper-heuristic systems for the uncapacitated

examination timetabling problem," European Journal of Operational Research, vol. 197, pp. 482-491, Sep 1 2009.

[55] M. Caramia, P. Dell'Olmo, and G. F. Italiano, "Novel local-search-based approaches to university examination

timetabling," Informs Journal on Computing, vol. 20, pp. 86-99, Win 2008.

[56] H. Turabieh and S. Abdullah, "A Hybrid Fish Swarm Optimisation Algorithm for Solving Examination

Timetabling Problems," in Learning and Intelligent Optimization. vol. 6683, C. C. Coello, Ed., ed: Springer

Berlin Heidelberg, 2011, pp. 539-551.

[57] N. Pillay, "A developmental approach to the examination timetabling problem," presented at the The 7th

International Conference on the Practice and Theory of Automated Timetabling (PATAT 2008), 2008.

[58] M. Atsuta, K. Nonobe, and T. Ibaraki, "ITC-2007 Track2: an approach using general CSP solver," 2008.

[59] G. De Smet, "ITC2007—examination track," in The 7th International Conference on the Practice and Theory of

Automated Timetabling (PATAT 2008), Montreal, 2008.

