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 Examination timetabling problem is hard to solve due to its NP-hard nature, 

with a large number of constraints having to be accommodated. To deal with 

the problem effectually, frequently heuristics are used for constructing a 

feasible examination timetable, while meta-heuristics are applied for 

improving the solution quality. In this paper, we present the combination of 

graph heuristics and major trajectory metaheuristics for addressing both 

capacitated and un-capacitated examination timetabling problem. For 

constructing the feasible solution, six graph heuristics are used. They are 

largest degree (LD), largest weighted degree (LWD), largest enrolment degree 

(LE), and three hybrid heuristics with saturation degree (SD) such as SD-LD, 

SD-LE, and SD-LWD. Five trajectory algorithms comprising of tabu search 

(TS), simulated annealing (SA), late acceptance hill-climbing (LAHC), great 

deluge algorithm (GDA), and variable neighborhood search (VNS) are 

employed for improving the solution quality. Experiments have been tested on 

several instances of un-capacitated and capacitated benchmark datasets, which 

are Toronto and ITC2007 datasets, respectively. Experimental results indicate 

that hybrid graph heuristics produce the best initial solutions across both these 

benchmark problems. The study also reveals that, during improvement, GDA, 

SA, and LAHC can produce better quality solutions compared to TS and VNS 

for solving both benchmark datasets. Moreover, the performance of our 

method is comparable with other approaches in the scientific literature. 
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1. INTRODUCTION  

In the last few decades, the examination timetabling problem has been studied vastly in the artificial 

intelligence (AI) and operational research (OR) communities due to its complexity and practical significance 

in educational institutions [1]. Academic institutions frequently face a considerable amount of challenges in 

the effective scheduling of their examinations with limited resources in a reasonable time. An examination 

timetabling is a system of allocating a set of examinations into a limited number of time slots and rooms in 

order to satisfy all hard constraints and to minimize the soft constraint violations as much as possible. The 

satisfaction of all hard constraints leads to a feasible solution, while the quality of a solution depends on soft 

constraint satisfaction. It is observed that, according to the requirements and resources of educational 

institutions, these constraints can be different [2, 3]. 

Examination timetable problems can be categorized as capacitated and un-capacitated problems [4]. 

In an un-capacitated branch, room capacity is not considered. In a capacitated variant, however, room capacity 

is considered as a hard constraint. Usually, capacitated datasets are more complex to solve than un-capacitated 

datasets. Also, capacitated datasets closely resemble the real world timetabling problem, and they are highly 

constrained. An example of an un-capacitated problem is Toronto datasets, whereas ITC2007 datasets are a 

capacitated problem [5]. 
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Educational institutions require considerable work to generate an examination timetable due to 

accommodating examinations, which frequently conflict with each other, into limited resources being inherent 

difficulties. Moreover, the number of different constraints and the size of the examination instances makes 

examination timetabling more complex to solve. Violating constraints, such as assigning two conflicting 

examinations at the same time, is fatal and directly affects students’ careers. Considering all of the constraints, 

an optimal solution is rare to be obtained in a reasonable time, and therefore, researchers focus on sub-optimal 

solutions, i.e., quality solutions [6]. Examination timetabling is the ideal example of a combinatorial 

optimization problem where the best solution has to be searched from a very large solution space. Lately, 

considerable attention has been driven to heuristic and meta-heuristic search techniques for addressing the 

examination timetabling problem. This is because, for many larger instances (examinations) in real-world 

settings, these search techniques are capable of finding a good quality solution in reasonable time and limited 

resources. These include graph-based sequential techniques [7], trajectory-based meta-heuristics[8], 

population-based meta-heuristics [9], and recently hyper-heuristics [10]. Detail description of various methods 

related to examination timetabling can be found in different surveys in the examination timetabling domain 

[11] [12, 13] as well as in PATAT series of conference proceedings held from 1995 to 2018 (available at 

http://www.patatconference.org/). 

This paper focuses on graph colouring heuristics and well-known trajectory metaheuristics for 

addressing the examination timetabling problem. In the first step, feasible solutions are constructed using six 

graph heuristic algorithms. The first three approaches are largest degree (LD),  largest weighted degree (LWD), 

largest enrolment degree (LE). The rest of the three is the hybridization of above three with a saturation degree 

(SD) separately producing SD-LD, SD-LWD, and SD-LE. In the second step, the graph heuristic algorithm 

that produces the best quality solution is used for constructing an initial solution for each of the trajectory meta-

heuristic algorithms. Each meta-heuristic then optimize the solution vector and produce quality solutions. Five 

trajectory algorithms, which are tabu search (TS), simulated annealing (SA), late acceptance hill-climbing 

(LAHC), great deluge algorithm (GDA), and variable neighborhood search (VNS), are tested on two popular 

and complex benchmark datasets, namely Toronto datasets and ITC2007 datasets.  

The remaining of this paper is organized as follows. Section 2 describes the examination timetabling 

problem and mathematical formulation. Section 3 presents related works on the examination timetabling 

problem. Section 4 describes the heuristic and metaheuristic approaches being investigated. Section 5 contains 

materials and methods of the study, while section 6 presents experimental results. Finally, section 7 draws the 

overall conclusion. 

 

2. EXAMINATION TIMETABLING PROBLEM AND FORMULATION 

In this paper, two examination timetabling benchmark datasets are used to assess the performances of 

proposed approaches. The datasets are Toronto benchmark dataset, un-capacitated datasets, and ITC2007 

benchmark datasets, capacitated datasets. The motivation for using these datasets is that they are highly studied 

in research communities, and ITC2007 is more realistic and more complex. The description of two examination 

timetabling benchmarks is given below.  

 

2.1.  Un-capacitated benchmark datasets 

The most widely used examination benchmark datasets were introduced by Carter and Laporte [14]. 

These datasets are also known as Toronto datasets. It is available from 

http://www.asap.cs.nott.ac.uk/resources/data.shtml. These datasets are un-capacitated examination timetabling 

benchmark datasets, assuming an unlimited number of seats are available during exam assignments. The 

Toronto datasets consist of 13 problem instances. Table 1 summarises the datasets.  

The Toronto examination timetable hard constraint insists that no students are allowed to attend two 

or more exams simultaneously (also known as the clashing constraint). The soft constraint (i.e., how the quality 

of the timetable is measured) is to spread the exams evenly for all students.  

The objective function is shown in Eq.1. A penalty value of 16 is given for assigning two examinations 

consecutively for a given student. A penalty value of 8 is assigned if there is one timeslot between exams 

followed by a penalty value 4, 2 and 1 for 2, 3 and 4 timeslot gaps between exams, respectively. 

 

min
∑ ∑ 𝑐𝑖𝑗×𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 (𝑡𝑖,𝑡𝑗)𝑁

𝑗=𝑖+1
𝑁−1
𝑖=1

𝑀
     (1) 

Where  

𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦(𝑡𝑖 , 𝑡𝑗) = {
25

2|𝑡𝑖−𝑡𝑗|
    𝑖𝑓 1 ≤ |𝑡𝑖 − 𝑡𝑗| ≤ 5

0                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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N is the number of examinations  

M is the total number of students 

T is the number of available timeslots. 

cij is the conflict matrix, where each element in the  matrix is the number of students taking 

examination i and j, and where i, j ∈{1,..., N}{Qu, 2009 #444}  

tk (1≤ tk ≤ T) specifies the assigned timeslot for examination k (k ∈{1,..., N}) 

The objective for the Toronto datasets problem is to satisfy the hard constraint and minimize the 

penalty value of the soft constraint violations 

 
Table 1. Toronto benchmark datasets 

Instances No. of timeslots No. of exams No. of students Conflict density 

car-s-91 35 682 16925 0.13 

car-f-92 32 543 18419 0.14 

ear-f-83 24 190 1125 0.27 

hec-s-92 18 81 2823 0.42 

kfu-s-93 20 461 5349 0.06 

lse-f-91 18 381 2726 0.06 

pur-s-93 42 2419 30029 0.03 

rye-s-93 23 486 11483 0.07 

sta-f-83 13 139 611 0.14 

tre-s-92 23 261 4360 0.18 

uta-s-92 35 622 21267 0.13 

ute-s-92 10 184 2750 0.08 

yor-f-83 21 181 941 0.29 

 

2.2.  Capacitated benchmark datasets 

The 2nd international timetable competition (ITC2007) examination datasets were established to 

facilitate researchers to explore real-world examination timetabling problem and to reduce the gap between 

theory and practice. The ITC2007 examination datasets contain eight instances (see Table 2), comprising a 

variety of hard and soft constraints. Referring to Table 2, A1 is the number of students registered, A2 shows 

the number of exams, A3 is the number of timeslots, A4 indicates the number of available rooms, A5 is the 

period hard constraints, A6 is the room hard constraints, and A7 is the conflict density. They are available for 

download from the link http://www.cs.qub.ac.uk/itc2007/examtrack. 
 

Table 2. ITC2007 Benchmark datasets 

Instances A1 A2 A3 A4 A5 A6 A7 

Exam_1 7,833 607 54 7 12 0 5.05% 

Exam_2 12,484 870 40 49 12 2 1.17% 

Exam_3 16,365 934 36 48 170 15 2.62% 

Exam_4 4,421 273 21 1 40 0 15.0% 

Exam_5 8,719 1018 42 3 27 0 0.87% 

Exam_6 7,909 242 16 8 23 0 6.16% 

Exam_7 13,795 1096 80 15 28 0 1.93% 

Exam_8 7,718 598 80 8 20 1 4.55% 

 

The hard constraints for ITC2007 examination datasets are defined as follows:  

H1. One student can sit only one exam at a time. 

H2. The capacity of the exam will not exceed the capacity of the room. 

H3. The exam duration will not violate the period duration. 

H4. Three types of exam ordering must be respected. 

- Precedences: exam i will be scheduled before exam j. 

- Exclusions: exam i and exam j must not be scheduled at the same period. 

- Coincidences: exam i and exam j must be scheduled in the same period. 

H5. Room exclusiveness must be maintained. For example, exam i must take place only in room number 206.  

 

Soft constraints for ITC2007 examination datasets are summarized as follows: 

S1. Two Exams in a Row (𝐶𝑠
2𝑅): Restriction is imposed for a student to sit successive exams on the same day. 

S2. Two Exams in a Day(𝐶𝑠
2𝐷): Restriction is imposed for a student to sit two exams in a day. 

http://www.cs.qub.ac.uk/itc2007/examtrack
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S3. Spreading of Exams(𝐶𝑠
𝑃𝑆): Spread the exams as evenly as possible over the periods so that the preferences 

of students, such as avoiding closeness of exams are preserved. 

S4. Mixed Durations(𝐶𝑁𝑀𝐷): Avoid scheduling exams of different durations in the same room and period. 

S5. Scheduling of Larger Exams (𝐶𝐹𝐿): Restriction is imposed to assign larger exams at the late of the 

timetable. 

S6. Room Penalty (𝐶𝑅): Some rooms are restricted for assigning some exams with the associated penalty. 

S7. Period Penalty(𝐶𝑃): Some periods are restricted for assigning some exams with the associated penalty. 

 

The objective of solving these instances is to satisfy the hard constraints and minimize the soft 

constraint violations (penalty) as much as possible in order to produce a good quality timetable. The objective 

function can be formularized as in Eq.2 [15]. 

 

𝑚𝑖𝑛 ∑ (𝑊2𝑅𝐶𝑠
2𝑅 + 𝑊2𝐷𝐶𝑠

2𝐷 + 𝑊𝑃𝑆𝐶𝑠
𝑃𝑆) + 𝑊𝑁𝑀𝐷𝐶𝑁𝑀𝐷 +  𝑊𝐹𝐿𝐶𝐹𝐿 + 𝐶𝑃 + 𝐶𝑅

𝑠∈𝑆                             (2) 

 

Where W indicates weight for each soft constraint, and S defines the set of students. Table 3 shows 

the weights for the ITC2007 examination datasets. Note that the weights are not included in 𝐶𝑃 and 𝐶𝑅 in the 

equation. This is because these weights are already included in their definition. A more detailed description of 

this examination track, as well as their objective functions, can be found in [15, 16] 

 
Table 3. Weights of the ITC2007 examination datasets 

Instances 

weight for two 

in a day 

(𝑊2𝐷) 

weight for two 

in a row (𝑊2𝑅) 

weight for 

period spread 

(𝑊𝑃𝑆) 

weight for no 

mixed duration 

(𝑊𝑁𝑀𝐷) 

weight for the 

front load 

penalty 

(𝑊𝐹𝐿) 

Exam_1 5 7 5 10 5 

Exam_2 5 15 1 25 5 

Exam_3 10 15 4 20 10 

Exam_4 5 9 2 10 5 

Exam_5 15 40 5 0 10 

Exam_6 5 20 20 25 15 

Exam_7 5 25 10 15 10 

Exam_8 0 150 15 25 5 

 

3. RELATED WORKS 

The examination timetabling problem has been widely investigated, and a wide range of approaches 

have been reported in AI or OR literature over the last few decades. Popular techniques used often for solving 

examination timetabling are described below. 

The examination timetabling literature focuses on graph heuristics frequently because they are simple 

and tend to be useful in constructing a feasible solution quickly. Kahar and Kendall [3] used four graph 

heuristics, which are LD, LWD, LE, and SD, to solve University Malaysia Pahang examination timetabling 

problem. The authors reported that these heuristics produced feasible solutions for all instances of the datasets 

and better quality solutions than the university’s existing software. Sabar et al. [17] used graph colouring hyper-

heuristic for constructing an examination timetable. In their approach, four lists were prepared using 

hybridization of low-level heuristics, and ‘difficulty index’ (a parameter) was issued for the selection of 

examinations for scheduling. Abdul Rahman et al. [18] proposed the adaptive ordering strategy whereby 

adaptive mechanism was enabled by adding a heuristic modifier to graph heuristics. Another work is a fuzzy 

graph heuristic, where a fuzzy combination of LD, SD, and LE was investigated for ordering examinations 

[19]. Besides, several graph colouring approaches were hybridized with hill climbing for successfully solving 

both ITC 2007 and Toronto datasets [20, 21].  

Pais and Amaral [22] implemented an improved tabu search for the examination timetabling. Here, 

tabu list is automatically tuned by a fuzzy inference rule-based system (FIRBS), and this improves tabu search 

in exploring a promising area of solution space. Abdullah et al. [23] hybridized tabu search with a memetic 

algorithm for solving university timetabling problem. This algorithm employed a set of neighbourhood 

structures that was controlled using a tabu list. 

Simulated annealing has been extensively used for examination timetabling problem. Battistutta et al. 

[24] presented simulated annealing with a feature-based tuning approach for solving ITC2007 examination 

timetabling. The tuning stage was started by selecting the most important parameters. Then a regression model 

was developed that correlated the value of the most important parameter to the features of the instances. Results 

indicate that proper tuning can produce competitive results. Simulated annealing for solving examination 

timetabling can also be found in [25] and [26]. 
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Burke and Bykov [27] observed that late acceptance hill-climbing produced better solutions than other 

local search methods while implemented in Toronto and ITC2007 datasets. Subsequently, Alzaqebah and 

Abdullah [28] combined late-acceptance hill-climbing as well as simulated annealing with bee colony 

optimization algorithms for solving Toronto and ITC2007 datasets. Besides, Bykov and Petrovic [29] recently 

have proposed another single-parameter local search similar to LAHC, which is step counting hill climbing. 

The approach was tested on all instances of ITC2007 examination datasets and produces some good results. 

Another successful metaheuristic for the examination timetabling problem is great deluge algorithm.  

Kahar and Kendall [30] proposed a modified-great deluge for solving UMP examination timetabling problem. 

They used a dynamic decrease of boundary level, and when there was no improvement for certain iterations, 

the boundary level was increased. They conducted experiments with different initial solutions and 

neighbourhood structures. Mandal and Kahar [8] proposed a novel approach where partially selected 

examinations were constructed using hybrid graph heuristics, and then these scheduled examinations were 

improved using a modified great deluge algorithm. Great deluge algorithm was hybridized with an 

electromagnetic-like mechanism for moving simple solution(s) to high-quality solution(s) avoiding local 

optima [31].  

 Population-based metaheuristics work with more than one solution for the optimization process. 

Pillay and Banzhaf [32] implemented an informed genetic algorithm (IGA) to solve Toronto benchmark 

datasets. A two-phase approach was used. In the first phase, the timetable was evolved with satisfying hard 

constraints, and soft constraints were considered during the improvement phase. In both cases, genetic 

algorithm was employed to be guided by some domain knowledge. Results indicate that IGA tends to produce 

better examination timetabling than other evolutionary algorithms. Hosny and Al-Olayan [33] proposed a 

mutation-based genetic algorithm for examination timetabling problem whereby crossover was avoided, and 

mutation was used as the main genetic operator during the evolutionary process. Alinia Ahandani et al. [34] 

investigated the discrete PSO algorithm for solving the examination timetabling problem. The particles’ 

positions were updated using genetic operations like mutation and crossover. The quality of particles’ position 

was improved using three approaches of local search applied to hybridize discrete particle swarm optimization. 

The approach showed satisfactory results while tested on the Toronto datasets. Sainte and Larabi [35] proposed 

a hybrid PSO that produces stable solutions for examination timetabling. Alzaqebah and Abdullah [28] used 

the artificial bee colony algorithm by incorporating late acceptance hill-climbing, adaptive approach in 

neighbourhood selection, and disrupting selection strategy. They observed that disrupting selection strategy 

diversifies the population and prevents early convergence. Bolaji et al. [36] proposed a hybridization of an 

artificial bee colony with a local search and harmony search algorithm for solving un-capacitated examination 

timetabling.  

Memetic algorithms are well-known population-based approaches that are known as the hybridization 

of evolutionary algorithms and local search methods. The combination of genetic algorithm with modified 

violation directed hierarchical hill climbing (VDHC) was used for solving examination timetabling problem 

[37]. Memetic algorithm for examination timetabling problem was also found in research conducted by 

Abdullah and Turabieh [38],  Lei et al. [39], and Leite et al. [40]. 

Hyper-heuristic is a relatively new domain that can effectively solve the educational timetabling 

problem. It is the domain independence high-level search strategy that modifies solutions indirectly by 

adequately selecting and employing some low-level heuristics Pillay [41]. Anwar et al. [42] investigated the 

harmony search hyper-heuristic approach for solving the ITC2007 examination problem. A basic harmony 

search algorithm was employed in the high-level heuristic, which controlled the low-level heuristics. These 

were two neighbourhood structures: move and swap operation on examinations. Results revealed that the 

approach can produce some competitive results compared to state-of-the-art approaches. Demeester et al. [43] 

presented a hyper-heuristic framework based on the mechanism of tournament selection in genetic algorithms. 

In low-level heuristic, the number of moves operations based on problem types was selected. Recently,  

Muklason[10] has proposed hyper-heuristic for multi-objective examination timetabling problem. 

 

4. GRAPH COLORING HEURISTICS AND TRAJECTORY META-HEURISTICS 

 In examination timetabling literature, AI techniques like heuristics and meta-heuristics are used for 

solving examination timetabling. For instance, heuristics are often employed for solution construction. These 

heuristics contain domain-specific knowledge that guides search in finding feasible timetabling or even better 

timetabling from the solution space. Meta-heuristics are usually used widely to optimize the timetabling. They 

are problem-independent algorithms that guide subordinate heuristics with some intelligent strategies for 

exploring and exploiting the search space so that efficient solutions (optimal or near-optimal) can be found 

[44]. It is often classified into two main branches, including trajectory-based (i.e., local search meta-heuristics) 

and population-based approaches. Trajectory-based methods take one single solution at a time and explore the 

search space to generate near-optimal solutions. Simulated annealing and tabu search are the two examples of 
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trajectory-based methods. In population-based search, more than one different initial solutions (i.e., population) 

are considered at a time for generating near-optimal solutions. Genetic algorithm and ant colony algorithm are 

two population-based approaches.  The algorithms used in this study are described below. 

 

4.1.  Graph Heuristics (GH) 

Examination timetabling problem can be modeled using a graph colouring algorithm, and therefore, 

it exhibits similarity with graph colouring problem [45]. In graph colouring problem, an undirected graph is a 

representation comprising a set of n vertices. In graph colouring problem, an undirected graph 𝐺 = (𝑉, 𝐸) is a 

representation comprising a set of  𝑛 vertices 𝑉 = (𝑣1 , 𝑣2 , 𝑣3 , … , 𝑣𝑛 ) and a set of edges 𝐸. If (𝑣𝑖 , 𝑣𝑗) is an 

edge in a graph 𝐺 = (𝑉, 𝐸) then vertex 𝑣𝑖 is adjacent to vertex 𝑣𝑗. The graph colouring problem involves 

assigning 𝑘-colours in 𝑉 = (𝑣1 , 𝑣2 , 𝑣3 , … , 𝑣𝑛 ) such that no two adjacent vertices are assigned the same colour. 

It is straightforward to convert the graph colouring problem to the examination timetable problem (vice-versa) 

by considering all vertices as events (i.e., examinations) and an edge between any pair of vertices as conflicting 

examinations. That is, these examinations have taken at least one student and do not exist in the same time slot. 

Finally, k-colours is equivalent to the number of time slots.  

In graph theory, colouring a graph with a predefined limited number of colours ( k-colouring of a 

graph) is complex tasks. This graph problem is in the class of NP-complexity [46, 47]. Graph colouring 

heuristics (Graph heuristics) are popular sequential approaches that are used for constructing an initial 

timetable [17]. As the brute-force approach of solving graph colouring problem is NP-hard, graph heuristics 

encompass some heuristic colouring techniques, such as vertex ordering, to find optimal or near-optimal 

colourings in polynomial time. In the context of examination timetabling, graph heuristics are based on 

ordering strategies where examination with most ‘difficulty’ is chosen for scheduling first so that finally, a 

feasible solution can be obtained. The examination difficulty is measured with various graph heuristic 

techniques. The most commonly used graph heuristics ordering strategies seen in the literature are described 

as follows: 

 Largest degree (LD): In this ordering, the number of conflicts is counted for each examination by 

checking its conflict with all other examinations. Then, examinations are ordered in decreasing manure 

such that exams with the largest number of conflicts come fast. 

 Largest weighted degree (LWD): This ordering has a similarity with LD. The difference is that in the 

ordering process, the number of students associated with the conflict is considered. 

 Largest enrolment (LE): The examinations are ordered decreasingly with the value of registered students 

of these examinations. 

 Saturation degree (SD): Examination ordering is based on the availability of remaining time slots where 

unscheduled examinations with the lowest number of available time slots for scheduling are given 

priority for scheduling first. The ordering is dynamic as it is updated after scheduling each exam. 

 

4.2.  Tabu search (TS) 

Tabu search is a local search meta-heuristic algorithm, which is firstly proposed by Glover [48]. The 

basic mechanism of tabu search is based on hill-climbing algorithm. However, it can avoid trapping into local 

optima by accepting the worst solutions. A memory structure called tabu list is used for avoiding the exploration 

of the same neighbourhood solutions for a certain number of iterations. In other words, tabu list occupies 

recently visited solutions and remains it tabu for avoiding cycling. A mechanism like aspiration criteria is also 

used to allow promising solutions with tabu free status if the penalty value of the solution vector is better than 

that of the current best-known solution. Figure 1 illustrates the simple tabu search approach. 

 
1. Create initial solution 𝑠 

2. Initialize tabu list T  

3. while termination criterion not satisfied do 

4.      Determine complete neighbourhood N of current solution 𝑠 

5.     Choose best non-tabu solution 𝑠′ from N  

6.     Switch over to solution 𝑠′ (current solution s is replaced by 𝑠’) 

7.     Update tabu list T  

8.     Update best found solution (if necessary) 

9. end while 

10. return Best found solution 

Figure 1. Tabu search procedure. 
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4.3.  Simulated annealing (SA) 

Simulated annealing (SA) is a local search meta-heuristic technique based on a physical annealing 

process that probabilistically accepts some worst solutions to escape from the local optimum. It was introduced 

by Kirkpatrick and Vecchi [49]. Simulated annealing starts with a randomly generated initial solution, and in 

each iteration, it tries to improve the solution quality. If the neighbouring solution is better than or equal to the 

current solution, it is replaced with the current one. Otherwise, acceptance of neighbouring solution is decided 

on probability function exp (−(𝑓(𝑠′ ) − 𝑓(𝑠))/𝑇), where 𝑓(𝑠′) is neighbouring solution, 𝑓(𝑠) is current 

solution, and 𝑇 is a parameter known as temperature. Initially, the algorithm starts with a high 𝑇 and 

periodically decreases the value using the cooling schedule until the temperature is zero or any terminal 

condition. Figure 2 illustrates the simulated annealing process for the minimization problem. 

 
1. Choose, at random, an initial solution 𝑆 for the system to be optimized 
2.  Initialize the temperature 𝑇 

3. while the stopping criterion is not satisfied do 
4.        repeat 

5.               Randomly select  𝑆′ ∈ 𝑁(𝑆)  

6. if 𝑓(𝑆′) ≤ 𝑓(𝑆) then 
7.                          𝑆 ← 𝑆′ 
8. else  
9. 𝑆 ← 𝑆′ with a probability 𝑒𝑥𝑝 (−

𝑓(𝑆′)−𝑓(𝑆)

𝑇
) 

10. end if  
11.         until the "thermodynamic equilibrium" of the system is reached 

12.         Decrease 𝑇 

13. end while 
14. return  the best solution met 

Figure 2. Simulated annealing procedure. 

4.4.  Late acceptance hill-climbing (LAHC) 

LAHC is a single point meta-heuristic inspired room hill-climbing search proposed by Burke [50]. 

Unlike Hill-climbing, LAHC can escape local optimums by maintains a list of a given length 𝐿, which is a kind 

of memory unit. This list retains solutions of several iterations earlier for comparison with the current candidate 

solution. LAHC starts with a single feasible solution, and iteratively improves the solution in order to get a 

new improve one. Each time the candidate solution is compared with the last value of the list, 𝐿 and if better, 

it is accepted. When the acceptance procedure is activated, the new cost is added at the beginning of the list, 

and the last element is deleted. The procedure is performed base on 𝑣 = 𝐼 𝑚𝑜𝑑 𝐿 formula, where 𝐿 is the length 

of the frame, 𝐼 is the ith iteration and 𝑣 is the position. Figure 3 shows the LAHC procedure. 

 
1. Calculate initial cost function C(s) 

2. .for all 𝑘 ∈ {0. . . 𝐿 − 1} do Ĉ𝑘  ←  𝐶(𝑠) 
3. Assign the initial number of iteration I ← 0 

4. do until a stopping criterion is satisfied: 

5.      Construct a candidate solution s* 
6.      Calculate its cost function C(s*) 

7.       v ← I mod L 

8.       if 𝐶(𝑠 ∗) ≤ Ĉ𝑣 or 𝐶(𝑠 ∗) ≤ 𝐶(𝑠) 

9.           then accept candidate (s ← s*) 

10.       else   
11.          accept candidate (s ← s) 

12.      Insert cost value into the list Ĉ𝑣  ←  𝐶(𝑠) 

13.      Increment the number of iteration I ← I+1 
14. end do 

Figure 3. Late acceptance hill-climbing search algorithm. 

4.5.  Great deluge algorithm (GDA) 

Great deluge algorithm (GDA) is a local search algorithm developed by Dueck [51]. The inspiration 

of this algorithm originated from the behaviour that a hill climber seeks a higher place to avoid the rising water 

level during the deluge. Like SA, this algorithm devises a mechanism to avoid local optima by accepting the 

worst solution. However, SA uses a probabilistic function for accepting the worst solutions, whereas GDA uses 

a more deterministic approach for this purpose. It is also considered that GDA depends less on parameter tuning 

compared to SA. The only parameter in the GDA is decay rate, which is used for controlling the boundary or 

acceptance level. In the minimization problem, the initial boundary level (water level) usually starts with an 

initial solution. During the search, a new candidate solution is accepted if it is better than or equal to the current 

solution. However, the solution worse than the current one will be accepted if the quality of the candidate 

solution is less than or equal to a predefined boundary level B. The boundary level then is lowered by 
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subtracting a parameter called decay rate (∆B). This parameter is vital because the speed of the search depends 

on the decay rate. Figure 4 describes the procedure of the GDA algorithm in a minimization context.  

 
1. Set the initial solution 𝑆 

2. Calculate initial cost function 𝑓(𝑆) 

3. Initial level 𝐵0 = 𝑓(𝑆) 

4.  𝐵 = 𝐵0 
5. Specify input parameter ∆𝐵 =? 
6. while not some stopping condition do  

7.     Define neighbourhood 𝑁(𝑆) 

8.     Randomly select the candidate solution 𝑆∗ ∈ 𝑁(𝑆) 
9.     If 𝑓(𝑆∗) ≤ 𝑓(𝑆) 𝑜𝑟 𝑓(𝑆∗) ≤ 𝐵 then 
10.  Accept 𝑆∗ 

11.      Lower the level 𝐵 = 𝐵0 − ∆𝐵 

Figure 4. Great deluge algorithm procedure. 

4.6.  Variable neighbourhood search (VNS) 

Variable neighbourhood search (VNS), a local search descent method, was first introduced by 

Mladenović and Hansen [52]. VNS does not accept non-improving neighbours. The basic idea of VNS is based 

on changing the landscape of the problem using more than one neighbourhood searches. The algorithm has 

three basic steps: shaking, local search, and move. Initially, a set of neighbourhood structures and initial 

solutions is defined. In each iteration, an initial solution is shaken from the current neighbour 𝑁𝑘 (x' is generated 

in current neighbour). A local search approach is then used to transform this 𝑥′ solution to 𝑥′′ solution. When 

𝑓(𝑥′′) is better than 𝑓(𝑥), current solution 𝑥 will be replaced by the solution 𝑥′′ , and the search starts over 

from the first neighbourhood (𝑘 = 1). Otherwise, the algorithm uses the next neighbourhood (𝑘 = 𝑘 + 1). 

Several variations of VNS are found. Figure 5 presents a basic variable neighbourhood search approach. 

 
1. Input: a set of neighbourhood structures 𝑁𝑘 for 𝑘 = 1, … , 𝑘𝑚𝑎𝑥 for shaking 

2. .𝑥 = 𝑥0; /∗ Generate the initial solution ∗/ 

3. repeat 

4.      𝑘 = 1; 

5.      repeat 

6.            Shaking: pick a random solution 𝑥′ from the 𝑘𝑡ℎ neighbourhood 𝑁𝑘(𝑥) for 𝑥; 

7.             𝑥′′ =local search(𝑥′) ; 
8.             if 𝑓(𝑥′′) < 𝑓(𝑥) then 
9.                     𝑥 = 𝑥′′ ; 
10.                     Continue to search with 𝑁1 ; 𝑘 = 1; 

11.            otherwise 𝑘 = 𝑘 + 1; 

12.      until 𝑘 = 𝑘𝑚𝑎𝑥 
13.  until Stopping criteria 

14. output: Best found solution 

Figure 5. Variable neighborhood search algorithm. 

5. MATERIALS AND METHODS  

5.1 Hybridization of Graph heuristics 

The first step is to construct initial feasible solutions for examination timetabling problem. We use LD, 

LWD, and LE, which are static ordering. Besides, we also hybridize each of LD, LWD, and LE with SD as 

dynamic ordering heuristics. It is observed that SD tends to perform better than the three heuristics on many 

occasions [18, 53]. However, at the very beginning of the solution construction, SD may not be efficient like 

LE, LWD, and LD due to most of the time slots being unoccupied, resulting in difficulties for SD in the 

appropriate ordering of examinations [17]. Here we describe three hybridized graph heuristics  SD-LD, SD-

LWD, and SD-LWD and provide an illustrative example for better understanding the procedure. 

5.1.1 Definition 

 SD-LD: It means ordering the examinations according to SD followed by LD and taking the most crucial 

examination from the top of the list for scheduling. 

 SD-LWD: It indicates ordering the examinations according to SD followed by LWD and taking the 

most crucial examination from the top of the list for scheduling. 

 SD-LE: It denotes ordering the examinations according to SD, followed by LE and taking the most 

crucial examination from the top of the list for scheduling. 
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5.1.2 An illustrative example 

Conflicting of examinations and ordering procedure can be illustrated using the following examples. 

Consider a conflict matrix M consisting of 9 examinations (𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7, 𝑒8, 𝑒9) in Figure 6. Here 

an entry 𝑀 (𝑒2, 𝑒7) has value 2. It means that there is a conflict between examination 𝑒2 and examination 𝑒7 

and 2 students have taken these two courses. Similarly, the entry 𝑀 (𝑒1, 𝑒4) has value 0, indicating no conflict 

between these two examinations (i.e., no common students have taken these two courses). In this way, other 

entities can be defined. Note that 𝑀 (𝑒2, 𝑒7) = 𝑀(𝑒7, 𝑒2), as the matrix is symmetrical and diagonal items in 

the matrix have zero values, meaning no conflict exists between two same examinations.  

 

exams e1 e2 e3 e4 e5 e6 e7 e8 e9 

e1 0 1 2 0 2 2 3 0 1 

e2 1 0 1 1 1 1 2 1 0 

e3 2 1 0 0 1 1 2 0 1 

e4 0 1 0 0 0 0 0 0 0 

e5 2 1 1 0 0 1 3 1 0 

e6 2 1 1 0 1 0 4 1 2 

e7 3 2 2 0 3 4 0 2 2 

e8 0 1 0 0 1 1 2 0 0 

e9 1 0 1 0 0 2 2 0 0 

Figure 6. Conflict matrix 

Each row is considered a vector of the matrix is dedicated to a particular examination (i.e., 𝑒1), and 

its column values with non-zero are all conflicted examinations with that particular examination. For example, 

𝑒2, 𝑒3, 𝑒5, 𝑒6, 𝑒7, 𝑒9 are conflicting with 𝑒1. For getting LD ordering, all the column examinations which 

conflict with each row of the matrix that is not zero are considered first, and then the number of conflicting 

exams is counted. This specifies LD value of the examination in this row. Now the LD ordering is obtained by 

sorting these LD values in decreasing order. Figure 7 (a) illustrates the LD ordering. Here 𝑒2 examination is 

top of the LD ordering as it has the maximum value 7, whereas 𝑒4 is at the bottom of the list because of its 

lower ordering value 1.  

 

Exams LD 

e2 7 

e6 7 

e7 7 

e1 6 

e3 6 

e5 6 

e8 4 

e9 4 

e4 1 

(a) 

Exams LWD 

e7 18 

e6 12 

e1 11 

e5 9 

e3 8 

e2 8 

e9 6 

e8 5 

e4 1 

(b) 

Exams LE 

e7 6 

e1 4 

e3 4 

e4 4 

e6 4 

e2 3 

e5 3 

e9 3 

e8 2 

(c) 

Exams SD LD 

e7 2 7 

e5 3 6 

e3 3 6 

e9 3 4 

e1 4 6 

e8 4 4 

e4 4 1 

e6 5 7 

e2 5 7 

(d) 

Exams SD LWD 

e7 2 18 

e5 3 9 

e3 3 8 

e9 3 6 

e1 4 11 

e8 4 5 

e4 4 1 

e6 5 12 

e2 5 8 

(e) 

Exams SD LE 

e7 2 6 

e3 3 4 

e5 3 3 

e9 3 3 

e1 4 4 

e4 4 4 

e8 4 2 

e6 5 4 

e2 5 3 

(f) 

Figure 7. Example of various graph heuristic orderings (a) Ordered by LD (b) Ordered by LWD (c) Ordered 

by LE (d) Ordered by SD-LD (e) Ordered by SD-LWD (f) Ordered by SD-LE. 

In the case of LWD ordering, all column examinations that are conflicting with each row examination 

are collected. Next, the sum of all conflicting values of all column examinations in each row of the matrix 

produces LWD value of that row examination. Finally, when all the LWD values are arranged in decreasing 

order, LWD ordering is found.  Figure 7 (b)  describes LWD ordering where 𝑒7 is at the top of the list due to 

its largest value of 18 followed by 𝑒6 with the second largest value of 12.  

LE ordering, however, considers student enrolment data and avoids conflict matrix for the ordering 

process. Examination with the largest enrolment of students is considered at the top of the list. For instance, 

the enrolment of students is like this: e1 has been taken by 4, e2 has been taken by 3, e3 has been taken by 4, 

e4 has been taken by 4, e5 has been taken by 3, e6 has been taken by 4, and e7 has been taken by 6 students. 

Arranging them in decreasing order based on enrolments, LE ordering of these examinations is obtained, which 

is shown in Figure 7 (c). 

SD is a dynamic process that needs information about the current timetabling state. In a particular 

time, each unscheduled examination checks the number of available time slots for scheduling without violating 

hard constraints. This number indicates SD values of that examination. For example, if 𝑒6 has SD value 5, it 

means that 𝑒6 has 5 free time slots where it can be assigned. Unlike other orderings, SD ordering is obtained 

by sorting the unscheduled examinations in ascending order so that examination with the least number of 

available time slots gets the first priority for scheduling. From Figure 7 (d-f), it can be seen that 𝑒7 is at the top 

of the SD ordering list. This is because 𝑒7 has the least number of free time slots, only two-time slots available 
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for scheduling. Likewise, 𝑒6 is at the bottom of the list because of its five available time slots for the allocation 

of examination 𝑒6. 

SD-LD, SD-LWD, SD-LE orderings are produced by hybridizing SD with other heuristic orderings 

in such a way that SD is employed for ordering examinations fast followed by employing other orderings. 

Figure 7(d), Figure 7(e), and Figure 7(f) indicate the ordering of SD-LD, SD-LWD, and SD-LE, respectively. 

In these cases, SD orders the examinations first, and then the adjacent heuristic is employed for ordering. For 

example, in SD-LWD ordering, it is observed that e7 is at the top of the list because it has the lowest SD value. 

It is observed that 𝑒5, 𝑒3, and 𝑒9 have the same SD value, but they have different LWD values. If two or more 

examinations have the same SD value, then LWD is considered. Examination e5 comes first because its LWD 

value is higher than both 𝑒5 and 𝑒3. Therefore, the ordering of these three examinations will be 𝑒5 followed 

by 𝑒3 and then e9. Since SD is solely unable to order the examinations 𝑒5, 𝑒3, and 𝑒9 properly, second time 

ordering (in this example LWD) assists in producing robust ordering. 

 

5.2 Improvement with Trajectory search 

 In this step, the initial feasible solution is further improved by trajectory-based methods in order to 

produce a near-optimal solution(s).  The initial solution for trajectory metaheuristic is calculated using a graph 

heuristic that produces the best solution during the construction phase. Five trajectory-based methods 

comprising of tabu search (TS), late acceptance hill-climbing search (LAHC), simulated annealing(SA), great 

deluge algorithm(GDA), and variable neighbourhood search (VNS) have been used during improvement phase.  

 

5.3 Experimental setup 

 We have considered two commonly used benchmark datasets in examination timetabling research, which 

are Toronto and ITC2007 datasets, to assess the performance of our approach. We have used 12 instances of 

Toronto benchmark datasets and  8 instances of ITC2007 benchmark datasets. 

   Neighbourhood structure for Toronto datasets during the improvement phase is described as below: 

 N1: Move – an examination is selected randomly and moves it to a random time slot.  

 N2: Swap – Two examinations are selected randomly, and swapping is occurred between their time 

slots.  

 N3: Swap time slot – Two-time slots are selected randomly, and all examinations between the two-time 

slots are swapped. 

The above three (3) neighbourhood structures are used during the improvement phase. However, a 

neighbourhood structure is only accepted that gives an improvement on the penalty value in each iteration. 

The neighbourhood operations employed in the improvement phase for ITC2007 exam datasets are as 

follows:  

 N1: An examination is selected randomly and moves it to a random time slot and room 

 N2: Two examinations are selected randomly and swapping is occurred between their time slots and 

rooms 

 N3: An examination is selected and moves it to a different room within the same time slot 

 N4: Two random examinations are selected and move them to different time slots and rooms 

During the improvement phase, a neighbourhood move from these neighbourhood structures is 

selected randomly and applied only if the solution is feasible; otherwise, a different neighbourhood move is 

selected. Besides, stopping criteria for Toronto and ITC2007 are set to 30 min and one hour, respectively. 

Finally, each experiment is run 30 individuals using different random seeds to obtain computational results.  

The programs were implemented in Java (Java SE 7) and performed on Intel Core-i7 PCs with 8 GB 

RAM running Windows 7 Professional SP3. For getting the appropriate values of the parameters in meta-

heuristic algorithms, some preliminary experiment has been conducted. Table 4 shows the details of the 

parameters used for the study.  

Table 4. Parameter settings 
Name Parameter Value 

SA Cooling rate 0.1 

Temperature 5000 

LAHC List size 500 
GDA Decay rate 0.1 

VNS Neighbourhood, K 3 (for Toronto) 

4 (for itc2007) 
 

Local search Hill-climbing 

TS Tabu list size 100 
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6. RESULTS AND DISCUSSION 

A comparative study of different graph colouring algorithms on the Toronto datasets for constructing 

initial solutions is highlighted in Table 5. In this table, the best and the corresponding average value produced 

by graph colouring algorithms for each instance is highlighted. Note that, from now to subsequent tables, the 

best results obtained from all the approaches for each problem instance are highlighted in the table with bold 

font, while ‘–‘ indicates no solution obtained.  As it is observed from the table, SD-LD achieved the best results 

on 5 instances (car-f-92, kfu-s-93, rye-s-93, ute-s-92, yor-f-83), whereas SD-LWD outperformed others on 4 

instances (ear-f-83, lse-f-91, sta-f-83, tre-s-92). The rest of the 3 instances SD-LE produced the best results. It 

is also noticed that without the hybridization of SD, individually 3 heuristics LD, LE, and LWD could not 

produce the best solutions for any of the instances. 

 

Table 5. Different graph coloring algorithms on the Toronto datasets for constructing solutions 

Instances 
LD LE LWD SD-LD SD-LE SD-LWD 

Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg 

car-s-91 8.70 8.97 8.59 9.14 8.56 9.07 8.48 8.90 8.33 8.80 8.52 8.90 

car-f-92 7.88 7.98 7.45 7.67 7.44 7.77 7.00 7.44 7.25 7.56 7.35 7.50 

ear-f-83 54.23 57.99 54.40 58.11 54.40 58.11 54.14 57.76 53.05 57.73 52.35 57.17 

hec-s-92 17.51 20.40 17.24 20.24 16.94 20.92 16.95 20.18 16.21 20.37 16.37 20.51 

kfu-s-93 24.99 28.3 25.01 28.47 24.98 28.53 23.68 27.99 23.85 28.43 24.19 28.21 

lse-f-91 19.78 24.14 20.01 24.47 19.42 25.17 19.36 23.89 19.71 24.04 18.83 24.09 

rye-s-93 20.17 21.92 19.33 20.98 18.75 20.79 18.28 20.61 19.15 20.72 18.62 20.40 

sta-f-83 166.77 180.36 169.13 178.31 171.81 179.97 168.35 178.36 167.95 178.50 166.43 177.08 

tre-s-92 12.53 13.34 12.40 13.32 12.46 13.30 12.39 13.23 12.35 13.20 12.07 13.17 

uta-s-92 5.78 6.18 5.71 6.20 5.54 6.19 5.68 6.17 5.53 6.17 5.70 6.02 

ute-s-92 - - - - 39.9 43.1 38.03 42.14 38.77 42.83 38.15 42.98 

yor-f-83 51.12 53.77 51.11 54.16 51.58 53.60 49.80 53.67 9.82 53.63 51.02 54.02 

 

Table 6 shows the comparison of the best and average results of six graph colouring approaches on 

ITC2007 datasets. It is observed that 4 out of 8 instances (Exam_2, Exam_4, Exam_5, Exam_8), SD-LD 

reported the best results, while SD-LWD reported the best results for the other four instances. LD, LE, and 

LWD, however, could not produce any solution for Exam_4. Besides, for the rest of the instances, they were 

not able to perform well than their hybridization with SD counterparts, which indicates the strength of the 

hybridization approaches for solution construction. 

 

Table 6. Different graph coloring algorithms on the ITC2007 datasets for constructing solutions  

Instances 
LD LE LWD SD-LD SD-LE SD-LWD 

Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg 

Exam_1 26540 30796.83 27967 30241.30 28135 30555.47 26245 29742.13 26578 29668.00 25989 29963.90 

Exam_2 15567 21849.59 14887 19859.56 14375 1876.58 11684 17234.34 12345 19345.34 12257 18856.32 

Exam_3 45956 54869.95 45898 53639.47 45778 5534.69 44678 52568.89 43968 51849.53 43588 52879.78 

Exam_4 - - - - - - 41702 48616.27 43853 50240.50 43042 514321.67 

Exam_5 64856 73945.48 65438 73172.29 65485 72394.34 63895 70367.53 64265 71567.56 63885 71767.78 

Exam_6 45588 54737.67 46390 54565.17 45390 54165.17 45300 54375.17 45195 54263.67 44160 52832.50 

Exam _7 35789 43667.36 36158 4266.84 35338 43854.47 34567 42385.42 34857 41945.88 33557 42475.63 

Exam _8 44576 54837.85 44978 53685.64 45069 53857.46 43866 52475.26 44012 51845.79 44234 52476.46 

 

Table 7 shows the performance of different trajectory algorithms employed on Toronto datasets in 

obtaining quality solutions. The best and average values are shown for each instance. It is apparent from the 

table that GDA outperformed other algorithms because, in 7 out of 12 cases, it resulted in the best results. SA 

is the second best algorithm that reported the best values for four instances. There are two instances (kfu-s-93 

and ute-s-92) in which LAHC produced the best solutions. However, VNS and TS could not produce better 

results in comparison with GDA, LAHC, and SA. 
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Table 7. Different Trajectory meta-heuristics on the Toronto datasets for improving solutions  

Instances 
TS SA LAHC GDA VNS 

Best Avg Best Avg Best Avg Best Avg Best Avg 

car-s-91 5.58 5.83 5.57 5.78 5.55 5.77 5.54 5.76 5.61 5.85 

car-f-92 4.58 4.93 4.61 4.82 4.57 4.93 4.57 4.83 4.72 4.92 

ear-f-83 35.57 37.47 33.68 36.16 33.72 36.56 34.01 35.96 37.65 38.62 

hec-s-92 10.73 11.76 10.55 11.53 10.60 11.25 10.53 11.32 10.61 11.78 

kfu-s-93 14.89 17.01 14.95 16.26 14.79 15.57 14.83 15.69 15.21 16.12 

lse-f-91 11.23 12.12 11.15 12.14 10.94 11.02 10.85 11.12 10.95 11.23 

rye-s-93 11.31 11.51 11.41 11.48 11.27 11.56 11.24 11.54 11.45 11.55 

sta-f-83 157.47 157.78 157.39 157.72 157.41 157.76 157.43 157.68 157.56 157.69 

tre-s-92 8.64 8.74 8.24 8.50 8.38 8.65 8.25 8.57 8.27 8.51 

uta-s-92 3.28 3.49 3.22 3.29 3.28 3.39 3.27 3.41 3.25 3.52 

ute-s-92 27.01 27.98 27.14 27.97 26.98 28.07 26.98 28.10 27.32 28.23 

yor-f-83 35.67 36.78 35.53 26.78 35.66 36.91 35.51 36.71 35.89 38.01 

 

Table 8 highlights the best and average results of the instances of ITC2007 datasets when the trajectory 

metaheuristic approaches are employed for improving solution quality. It is observed that the performance of 

the algorithms under investigation here produces comparable results. However, a closer look reveals that GDA 

is the most successful in producing quality solutions. It produced the best results for Exam_1, Exam_3, 

Exam_5, and Exam_6. The next best metaheuristic is LAHC, which produced the best results for three datasets 

(Exam_6, Exam_7, Exam_8). The rest of the instances (Exam_2 and Exam_4)  had the best solutions with SA 

approach. Results also reveal that, during the improvement process, TS and VNS are not as robust as the rest 

of the approaches in terms of producing the best solutions. 

Table 8. Different trajectory meta-heuristics on the ITC2007 datasets for improving solutions 

Instances 
TS SA LAHC GDA VNS 

Best Avg Best Avg Best Avg Best Avg Best Avg 

Exam_1 10475 11576.49 10875 11674.78 9791 10465.34 8571 10710.93 10123 11282.64 

Exam_2 996 1170.77 895 1172.56 984 1165.33 923 1134.56 989 1234.74 

Exam_3 23052 27456.67 24635 27375.48 24012 27846.95 22345 26955.67 22175 26487.38 

Exam_4 26194 28880.72 25658 27947.58 26547 28012.47 25975 27859.48 26012 28210.45 

Exam_5 7684 7984.94 7584 7845.74 7475 7785.75 7415 7877.17 7748 8012.34 

Exam_6 30018 31237.56 3028 30457.34 29960 30985.74 29960 30855.74 30123 30894.05 

Exam _7 9465 9849.56 9101 9584.89 8899 9457.41 9399 9757.41 9123 9763.47 

Exam _8 11893 12547.07 11354 12565.97 11345 12847.34 11845 12461.24 11924 13127.56 

 

Tables 9 and 10 show the best results obtained in our experiment and a selection of the best results 

available in the literature on Toronto and ITC2007 datasets, respectively. As shown in Table 9, our results are 

better than both Carter et al. [14] and Pillay and Banzhaf [54] for 8 problem instances, Sabar et al. [17] for 10 

problem instances,  Abdul Rahman et al. [18] for 7 problem instances, Caramia et al. [55] for 6 problem 

instances, and  Turabieh and Abdullah [56] for 4 problem instances. Finally, from Table 10, it is observed that 

our method obtains the best results on five out of 13 instances compared to Pillay [57]. Besides, our results are 

better than Atsuta et al. [58] and Abdul Rahman et al. [18] for 3 and 2 problem instances, respectively.  De 

Smet [59]  produced better results than our method, but they could not produce feasible solutions for three 

instances. Overall, our results are competitive with other approaches in the literature.  

Table 9. Comparison of our best results with results of state-of-the-art approaches on Toronto datasets 

Instances 
Our 

results 

Carter et al. 

[14] 

Abdul Rahman 

et al. [18] 

Turabieh and 

Abdullah [56] 

Caramia et 

al. [55] 

Pillay and 

Banzhaf [54] 

Sabar et al. 

[17] 

car-s-91 5.54 7.10 5.12 4.8 6.6 4.97 5.14 

car-f-92 4.57 6.20 4.41 4.1 6.0 4.28 4.70 

ear-f-83 33.68 36.40 36.91 34.92 29.3 35.86 37.86 

hec-s-92 10.53 10.80 11.31 10.73 9.2 11.85 11.90 

kfu-s-93 14.79 14.00 14.75 13.0 13.8 14.62 15.30 

lse-f-91 10.85 10.5 11.41 10.01 9.6 11.14 12.33 

rye-s-93 11.24 7.3 9.61 9.65 6.8 9.65 10.71 

sta-f-83 157.39 161.5 157.52 158.26 158.2 158.33 160.12 

tre-s-92 8.24 9.6 8.76 7.88 9.4 8.48 8.32 

uta-s-92 3.22 3.5 3.54 3.2 3.5 3.40 3.88 

ute-s-92 26.98 25.8 26.25 26.11 24.4 28.88 32.67 

yor-f-83 35.51 41.7 39.67 36.22 36.2 40.74 40.53 
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Table 10. Comparison of our best results with results of state-of-the-art approaches on ITC2007 datasets 
Instances Our results Pillay [57] Atsuta et al. [58] De Smet [59] Abdul Rahman et al. [18] 

Exam_1 8571 12035 8006 6670 5231 

Exam_2 895 3074 3470 623 433 

Exam_3 22345 15917 18622 - 9265 

Exam_4 25658 23582 22559 - 17787 

Exam_5 7415 6860 4714 3847 3083 

Exam_6 29960 32250 29155 27815 26060 

Exam _7 8899 17666 10473 5420 10712 

Exam _8 11345 16184 14317 - 12713 

 

7. CONCLUSIONS 

Academic institutions face challenges when scheduling exams into a limited number of timeslots and 

rooms. This is because constructing good quality timetables is a computationally expensive task. In this paper, 

we have examined different graph colouring heuristics and trajectory metaheuristics to solve the examination 

timetabling problem. Feasible solutions are constructed using six different graph colouring algorithms, which 

are LD, LWD, LE, SD-LE, SD-LWD, SD-LE. Among the graph heuristics that produce the best solution is 

considered to produce the initial solution of trajectory metaheuristics. Next, this solution is improved separately 

using five trajectory meta-heuristics comprising TS, SA, LAHC, GDA, and VNS. We have tested the approach 

on Toronto and ITC2007 examination timetable datasets. Based on the experimental results, we have drawn 

several conclusions.  

During feature construction, hybridization of graph colorant algorithms (i.e., SD-LE, SD-LWD, and 

SD-LE) perform better than their non-hybridization counterparts for both of the datasets. The reason is that the 

dynamic nature of SD can effectively select more sophisticated and suitable exams early in the scheduling list 

during construction. On the other hand, in the optimization step, in general, GDA has proved to be more 

effective in finding quality solutions for ITC2007 datasets then the SA, LAHC, TS, and VNS in that order. In 

the case of Toronto datasets, GDA also performs better than others, followed by LAHC, SA, VNS, and TS.  

The main reason for obtaining better performance with GDA, SA, and LAHC is that they can properly explore 

and exploit the search space, which results in fewer occasions of trapping into local optima. Finally, we have 

been able to produce competitive results compared to other state-of-the-art methods.  

Future studies should include applying graph heuristics with population metaheuristics on the 

examination timetabling problem. Another possible extension of this research would be to solve other 

scheduling problems such as course timetabling problem. 
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