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Abstract. Biological wastewater treatment via biofilm colonies are still in their early stages of 

evolution. Solid carriers made of wide range of materials in different designs have been 

introduced to increase biofilm growth by delivering high surface area which expands microbes’ 

attachment. It reduces 70-90% of total wastewater contamination (Based on the treatment 

circumstances and influent properties). In addition, it is considered a low-cost biological process 

and highly preferred by wastewater industries. Despite that, biofilm carriers failed to deliver a 

stable biotreatment. Unsteady bioremediation could occur because of using ineffective designed 

carrier which disturbs the microbial growth. Numerous biofilm carriers had been reviewed and 

mentioned in this paper like K1, AMT, BioBall, …etc. Then, two carrier designs named as Ultra 

and Micro media were introduced to carry and protect biofilm and microbial colonies from being 

removed during the process. Its expected that the new biofilm carriers can improve moving bed 

biofilm reactor (MBBR) performance in terms of stability, biomass accumulation, clogging, and 

biofilm growth. At the end, unharmful wastewater can be discharged to the waterways or 

recycled back into the industry. Finally, this study suggests designing carriers having crimped 

surfaces to enhance the extracellular polymeric substance attachment. 

 

 

1. Introduction

Every day, natural water resources suffer from releasing spectacular amounts of effluents having risky 

ranges of phosphorus, nitrogen, ammonia, chemical oxygen demand (COD), nitrate, and organic matters 

[1][2][3]. Hence, ammonia oxidizing bacteria consume oxygen, perform eutrophication and turn 

wastewater environment into anoxic and anaerobic which is considered fatal medium for aquatic life 

[4][5][6][7]. Mechanical, chemical, biological, and hybrid treatments have been proposed for pollutants 

removal, decomposition, and biodegradation. Currently, biotreatment or bioremediation is preferred 

among wastewater treatments because of being simple, ecofriendly, and cost effective [8][9][10]. 

Bioremediation process by microorganisms comprises from nitrification and denitrification. 

Nitrification process involves ammonia transformation into nitrite and nitrate via nitrite oxidizing 

bacteria (NOB), and ammonia oxidizing bacteria (AOB), respectively. Denitrification process uses 

organic compounds as electron donors to degrade ammonia to simple form (nitrogen gas) [11][12], as 

shown in Figure 1. Modified activated sludge processes and ponding systems have been chosen as 

traditional biotreatments to remove nutrients and reduce COD concentration. However, it still have 



Energy Security and Chemical Engineering Congress

IOP Conf. Series: Materials Science and Engineering 736 (2020) 072006

IOP Publishing

doi:10.1088/1757-899X/736/7/072006

2

weaknesses such as biomass recycling, settling ability, retention time, ammonium nitrification, unstable 

performance, odors, emission of greenhouse gases, and occupying large area [13][14][15][16][17][18]. 

The nature of wastewater microbial cells tend them to attach and aggregate onto solid surfaces [19]. 

Besides, storing slow growing Nitrifiers colonies and biofilm in the bioreactor increases the 

bioremediation efficiency against wastewater contaminants (e.g., carbon, phosphorus, ammonia) 

[20][21]. Wide range of artificial solids (e.g., polyurethane, polypropylene, polyethylene) and natural 

solid materials like parts of plants, and stones have been investigated to colonize microbes without 

biomass recycling to increase solid retention and reduce required space area. Biofilm can be defined as 

a microbiological colony involve protozoa, fungi, and bacteria where they live together on a solid 

surface. These microbes produce extra cellular polymeric substances (EPS) to stabilise the microbial 

community and adsorb and accumulate organic and inorganic compounds (e.g., pesticides [22], 

chlorophenols, polyaromatic hydrocarbons, heavy metals [23]). The main components of EPS like 

Lipids, nucleic acids, proteins, and polysaccharides determine the metabolic activity, elasticity, strength, 

diffusivity, porosity, and density of a biofilm [24]. 

 

 
Figure 1. Illustration of biofilm growth on different carriers’ surfaces. IFAS system is used for low 

influent concentration, while AnoxKaldnes Anita operation is employed for high strength wastewater. 

Biofilms protect wastewater microbes from free radicals, UV light, and it’s considered the cheapest 

and most used method for wastewater treatments. Since years, biofilm carriers are preferred over the 

activated sludge method to treat various types of wastewater (e.g., municipal wastewater, industrial 

wastewater). It’s worth mentioning that it possesses resistance to water quality fluctuation (toxic 

compounds, pH, temperature), operational flexibility, good nutrients and organics removal efficiency, 

can manage high biomass concentration, and doesn’t require filter bed channeling and low head loss or 

backwashing [25]. Although, wastewater microorganisms (AOB, NOB) show sensitivity to pH changes, 

toxic amounts, varying circumstances (aerobic, anaerobic, anoxic), temperature, biofilm carrier type, 
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and sun light intensity [26][27][28]. Other factors like sorption properties, percentage of the bed void, 

surface porosity and roughness, specific surface area, durability, and density are preferably to be 

analyzed and optimized.  

Biofilm carriers are varied in their sizes, shapes, and materials and have been used to improve mixing 

between microorganisms and nutrients and enhancing oxygen transfer. It was successfully occupied for 

municipal wastewater, paper mill wastewater, and dairy wastewater [13][29][30]. In addition, it was 

integrated and involved with other methods such as suspended carrier biofilm reactors (SCBR), 

biological fluidized bed, aerated biofilters, fixed media reactors, rotating biological contactors (RBCs), 

integrated fixed film activated sludge (IFAS), and trickling filters [31][32][33][34][35]. Carrier pores 

clog is the main drawback of using biofilm technique. Clogging leads to backwashing, short circuit, and 

excess head loss. Fortunately, the main disadvantage was solved by circulating the biofilm bed such as 

moving bed biofilm reactor (MBBR) [17][29][36]. 

In the 1980s, MBBR was developed to perform as sludge process and biofilm reactor in one time for 

nitrogen and organic removal [17]. The MBBR acts as a house for the biofilm carriers providing the 

possible appropriate circumstances for mass transfer and metabolic processing of nitrogenous and 

carbonaceous constituents by microbes. The invention of MBBR was made to fulfill the requirements 

of high specific surface area for biofilm growth, low head loss, non-cloggable, and continuously 

operating [13]. It has been used for treating fish farms wastewater and producing potable water. It was 

reported that treatment efficiency is dependent on media size, shape, and specific surface area [37]. 

Media structure has the capability to change biofilm thickness, depth, and diffusion. Hence, using an 

appropriate carrier can cause turbulence which transport nutrients and dissolved oxygen to the attached 

colonies and retain a thin biofilm by the shear forces. Moreover, its preferred that the carrier possesses 

positive surface charge because the surface charge of the bacteria is negative. Other reports confirmed 

that the microbiology colony is negatively charged and looking to attach on cationic solid surfaces 

[38][39]. 

Researchers studied MBBR performance on nitrogen and carbon removal from urban synthetic 

wastewater [40]. The bioreactor was occupied for 5, and 7 hour of hydraulic retention time with 20, 30, 

and 40% packing rate of polyurethane foam (PUF). The study found that 20% packing rate delivers 

37.4% ammonium removal, while 40% packing rate removes 96.3% at 5 h of HRT. In 2012, Martín-

Pascual et al. investigated three different biofilm carriers (BIO-CONS, Kaldnes, Aqwise) inside MBBR 

for treating municipal wastewater. The experiment was operated under 20, 35, and 50 of filling ratio, 

and 5, 10, 15 h of HRT. The highest COD reduction was achieved under 15 hr of HRT, and 50% filling 

ratio. BIOCONS, Kaldnes, and Aqwise accomplished 46.13, 58.92, 56.97% of COD removal, 

respectively [41]. Another study confirms high media concentration produces denser, smoother and 

thinner biofilm. Thinner biofilm can possess high bacterial activity and deliver higher contaminates 

removal [1][11][12][14][15][16]. Nevertheless, very high filling ratio causes microorganisms 

detachment, and requires aeration system because of low oxygen diffusion, while low media 

concentration leads to low density, fluffy and rough biofilm [1][42]. It was found that 50% filling ratio 

is the optimum for biofilm growth, and bacterial activity with considering oxygen diffusion, while 

another researcher recommends using filling ratio less than 70% [37][43]. Further studies had occurred 

on different carrier materials such as dried-up pieces of stem of Opuntia imbricata cacti, strips of 

polyvinyl chloride sponge, natural rice husk, fireclay, coir geotextiles, fiber threads, bamboo charcoal, 

peach pit, and polyurethane spheres [44][45][46][47][48]. Additionally, carrier texture (surface) has 

major impact on the performance [33][49].  
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Figure 2. Drawing of moving bed biofilm reactor (MBBR) during aerobic and anerobic conditions. 

Black dots represent biofilm carriers. 

2. Recent studies 

Waste tires are a global issue that threats the environment because it requires large landfill and its almost 

non-degradable, and their improper disposal leads to spreed of mosquito-brone disease. The current 

scrap tire recycling market (e.g., buidings materials, bumpers, protective cushions, roadway guard rails, 

rubber mats, roadway pavement material, fuel, reproduced tires) is insufficient to manage the 17 million 

tons of the global annual scrap tires [50][51][52]. Currently, incineration method of waste tires results 

in soil pollution and serious air and water contamination [53]. Therefore, it’s important to promote new 

markets to re-use waste tires like producing biofilm carriers made of scrap tires. In 2017, Zahra 

Derakhshan et al. manufactured fixed bed biofilm carriers from reclaimed waste tires for wastewater 

treatment under different organic loading rates. The laboratory experiments showed that the carriers 

reduced higher amounts of sludge, COD, and total suspended solids (TSS) than having no carriers inside 

the sequencing batch reactor and the authors recommend apply the manufactured carriers to different 

wastewater applications [54]. 

Nacheva et al. (2008) studied seven types of carriers (polyurethane, polypropylene, cubes of 

polyethylene, grains of polyethylene, crushed tezontle, and ceramic spheres) placed inside continuous 

downflow reactors. Polyurethane carriers produced the best phosphors and nitrogen removal, while 

polyethylene delivered the best COD removal [25]. In another research, 10% BioBall filling ratio was 

placed inside 15 L sequencing batch reactor for 72 days to treat synthetic wastewater having 8.7–12.0 

of COD/N, and 32.4–54.6 of COD/TP [33]. It resulted 97.7 ± 0.5%, 87.8 ± 2.6% and 94.3 ± 1.3% 

removal of COD, total nitrogen, and total phosphorus, respectively and achieved 96.5–99.7% of 

nitrification efficiency. Szilvia et al. (2013) studied biofilm growth on zerolite, Biolite™, and Perl™ in 

municipal wastewater in terms of nutrient removal efficiency and dehydrogenase enzyme activity 

(DHA) [55]. Perl™ and Biolite™ are manufactured carriers made from glass waste and ceramics. 

During the first 45 days, biofilms on Perl™ were very effective in removing organic matter, while 

Biolite™ had the best dehydrogenase enzyme activity. Moreover, the authors reported that the artificial 

carriers are more promising than natural zeolite for wastewater mediation. In 1990, Samuelsson and 

Kirchman et al. used carriers made from borosilicate glass and polyethylene to develop biofilm of 

Pseudomonas sp. strain S9 supplied with ribulose-1,5-bisphosphate carboxylase (RuBPCase) as a 

protein. They noticed that when the carriers are coated with the protein, more cells tended to attach, and 

the biofilm growth rose [56]. In 2016, Xinying Zhang et al. studied zeolite, sponge, and cermsite as 

biofilm carriers for domestic wastewater treatment. Proteobacteria, Bacteroidetes, Nitrospirae, 

Cyanobacteria and Actinobacteria had grown on the carrier surfaces. The sponge type carrier had the 

greatest amount of biomass due to the large surface area [57]. The findings of Xinying Zhang et al. agree 
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with Szilvia et al. (2013) that the zeolite type carrier doesn’t show an outstanding performance towards 

biofilm growth or pollutants removal. Other researchers have been interested to examine zeolite because 

of its high ionic selectivity for NH4
+ [58][59]. 

Nguyen et al. (2010) investigated different sizes of polyurethane sponges as biofilm carriers. The 

medium size had delivered the best pollutant removal efficiency (90% TP, 95% COD, 65% TN) and 

biomass growth under aerobic conditions [60]. In 2018, Chunyan Li et al. modified polyethylene carriers 

to have positive charged surfaces. It was used to promote bacterial adherence and biofilm growth inside 

a moving bed biofilm reactor. The process removed 392.6 mg/L of organic cyanide ions for 24 hours 

[61]. In 2012, Guozheng Li used a low temperature sintering method, the O method, to adhere TiO2 on 

carriers surface made from sponge macroporous (BioCAP® purchased from Samsung Engineering Co., 

Ltd. Seoul, Korea) to grow biofilms at its interior while adhering photocatalyst on its exterior [62]. 

Furthermore, other researchers reported that high loading rate is responsible about the biofilm thickness 

at the carriers surfaces [1][63]. However, the ratio of high surface area to volume carriers can result in 

clogging which delivers poor solids settlement and low ammonia removal. 

To the best of our knowledge, selection of a proper biofilm carrier is important factor because it 

determines the optimum biofilm thickness, biomass growth and efficiency of biodegradation. Moreover, 

Analysis of the microbiology community is a crucial factor because it helps to implement control 

strategies. Ødegaard et al. (2000) disagreed with that and reported that different designs of biofilm 

carrier have no effect on the MBBR performance towards COD removal, while having high surface area 

can manage high loading rates [37]. In 2016, Bradley Young et al. found limited studies on the effect of 

carrier type on MBBR performance [64]. We agree with Bradley Young et al. (2016) that the available 

knowledge about carrier type and design is critical and insufficient to develop and optimize MBBR 

system [64]. Bradley Young et al. (2016) concluded that the performance can't be predicted solely by 

finding biofilm mass and thickness. The scope of this study is to overcome biofilm carriers’ 

disadvantages by finding advanced biofilm carrier. Innovative design can cooperate with wastewater 

microbes to process complete cycle of nitrification and denitrification. Hence, it can deliver organic and 

inorganic decomposition into simpler chemical shape and protects the healthy environment from H2S, 

N2O, and high strength effluents. 

3. Methodology 

In order to find an effective biofilm carrier design, the study had started by reviewing multiple kinds of 

carriers observing their material, design, specifications, and usage. Some of the carriers are presented in 

Figure 3 and their details are tabulated in Table 1. Auto Desk Auto Cad software was used to structure 

the new biofilm carrier. Important aspects have been considered during the designing step, such as 

thickness, texture, clogging, influent concentration, size, material, and biofilm retaining. 

 

Figure 3. Multiple kinds of biofilm carriers. 
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Table 1. Kaldnes biofilm carriers’ specifications.  

Media Material Rooms 

number 

Service 

life 

Biofilm 

formation 

duration 

Diameter 

vs height 

Weight 

per M3 

Valid 

Temp. 

K1 Polyethylene 4 10 

Years 

5-15 days 12*9mm 120kg - 

K2 Polyethylene 4 10 

Years 

5-15 days 11*7mm 140kg - 

K3 Polyethylene 5 10 

Years 

5-15 days 11*7mm 150kg - 

K4 Polyethylene 6 10 

Years 

5-15 days 14.5*10mm 120kg - 

K5 Polyethylene 19 10 

Years 

5-15 days 20*12mm 95kg - 

K6 Polyethylene 19 >15 3-15 days 35*15mm - 5-60°C 

K7 Polyethylene 19 - - 35*18mm - - 

K8 Polyethylene 8 >15 3-15 days 5*10mm - 5-60°C 

K9 Polyethylene 40 >15 3-15 days 15*15mm - 5-60°C 

K10 Polyethylene 64 >15 3-15 days 25*4mm - 5-60°C 

4. Results and discussion 

After two years of investigation about using an effective designed carrier for biological attachment to 

mediate wastewater, and gathering sufficient knowledge by reviewing numerous scientific papers, two 

carriers had been designed (see Figure 4). Designs are proposed after reviewing biofilm carriers like 

Kaldnes. It was noticed that all the reviewed biofilm carriers have weak design to protect the biofilm 

from being removed by turbulence. Hence, the outside surfaces of the new two carriers had been 

differently designed to accomplish an effective biofilm attachment protected from outside circumstances 

(e.g., wastewater flow, oxygen bubbles). Moreover, texture of the carrier surfaces can toughen or 

weaken the colonization attachment. Although, clogging made by high biofilm growth can cause 

inefficient treatment due low active surface area. Accordingly, two hollow cubes were designed with 

using Auto Desk Auto Cad software for high strength (e.g., palm oil mill effluent), and low strength 

wastewater (e.g., municipal), named as Ultra media and Micro media, respectively. Polyethylene or 

polypropylene are proposed as the main carrier material because it has 10-15 years of long lifetime and 

its considered lower cost in comparison to metals. Figure 4 shows the proposed designs for both high 

and low contaminated effluents, and the specifications are tabulated in Table 2.  
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Figure 4. Structure of Ultra and Micro media. 

Micro and Ultra media have number of tiny columns on their surfaces to reduce the impact of air 

bubbles and flow turbulence on the biofilm attachment. Therefore, carrier columns contribute in 

protecting the microbial colonies from removal and provide stable circumstances. Consequently, 

stabilization of biofilm attachment and growth removes higher ranges of COD concentration and 

requiring less maintenance and lower costs. Micro media has less columns than Ultra media to avoid 

excess biofilm formation since these media will be occupied for 10 to 15 years of wastewater 

bioremediation. Figure 5 demonstrates biofilm protection by carrier columns. 
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Table 2. Specifications of ultra and micro media. 

Properties \ 

kind 

Micro Biofilm Carrier (MBC) Ultra Biofilm Carrier (UBC) Units 

Material  Polyethylene Polypropylene Polyethylene Polypropylene  

Object surface 

area 

168.3 168.3 583.6136 583.6136 mm2 

Column 

volume 

0.7854 0.7854 1.5708 1.5708 mm3 

Object volume  2020.624 2020.624 14006.7264 14006.7264 mm3 

Density  0.9225 0.946 0.9225 0.946 gm/cm3 

Width  12 12 24 24 mm 

Column NO. 

per line  

6  6 12 12 columns 

Weight  1.863 1.91 12.9 13.228 gm 

wastewater High 

strength 

High strength low strength low strength - 

Filling ratio [1] 50-70% 50-70% 50-70% 50-70% - 

 

Figure 5. Biofilm protection mechanism. 

Carriers having flat surfaces make biofilms easy to be removed because EPS is uncapable from 

handling all kinds of outside stresses. Hence, biofilm colonies still can get destabilized and interrupted 

by liquid turbulent flow. So, biofilm carriers having crimped surfaces can increase stabilization and 

attachment of the biofilm as an effective factor with media columns to reach an optimized design for 

biofilm growth. Figure 6 presents possible texture for the carrier surface. 
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Figure 6. Carrier texture. 

In comparison to the commercial biofilm carriers like Kaldnes, and Anox, Micro and Ultra media 

provide higher surface area for bacteria attachment and growth. Thus, wastewater bacteria increase their 

development by raising their colonies number and size, which significantly improves nitrification 

process, biodegradation, and mineralization. The manufacture of Mutag-biochip (biofilm carrier) had 

published an article discussing about choosing a suitable biofilm carrier. First of all, choosing a biofilm 

carrier is difficult because disadvantages are not well recognized [65]. Second, the properties of influent 

and effluent, contamination range, and operating temperature should be well known. Third, carrier 

design come with efficiencies (e.g., COD and Biochemical Oxygen Demand BOD removal) studied at 

different conditions that guide researchers and buyers to select a proper biofilm carrier. Despite that, 

studies and carrier manufactures have focused on developing biofilms in the interior of the carriers, 

while our study focused on all the surfaces (see Figure 7). 

 

 
Figure 7. Shown biofilm growth at the inside layer of a commercial carrier [65]. 

 

Ultra and Micro media are expected to perform higher performance than the commercial biofilm 

carriers in process stability, continuous microbial evolution, no clogging, lower HRT, less biomass 

accumulation, larger biofilm growth, and possibly complete nitrification and denitrification. At the end, 

biodegraded, mineralized, and unharmful wastewater can be discharged to the waterways or recycled 

back into the industry. 

5. Conclusion 

Wastewater industries suffer from wastewater biotreatments because it’s unstable process. Despite that, 

they are still using it because it’s cheap compared to chemical and physical methods. Biofilm carriers 



Energy Security and Chemical Engineering Congress

IOP Conf. Series: Materials Science and Engineering 736 (2020) 072006

IOP Publishing

doi:10.1088/1757-899X/736/7/072006

10

are essential parts of the MBBR to provide high surface area and stabilize the treatment performance. 

Its efficacy is showed by lasting for more than 10 years and delivering acceptable quality of treatment. 

Micro and Ultra Media are promising new biofilm carriers could achieve higher COD, BOD, TSS, mixed 

liquor suspended solids (MLSS), and ammonia removal than usual carrier. Their remarkable design is 

expected to deliver treatment stability, safe circumstances, and tougher biofilm attachment. Thus, slow 

growing colonies have sufficient time and safe environment to build their complex colonies, and 

implement nitrification, and dentification processes. 

 

6. Future trends and recommendations 

Its predicated that biological treatments can lead wastewater mediation in the near future. It can produce 

valuable products like biomass and biogas. In addition, zero waste system is achievable and applicable 

on wastewater biotreatments. Thus, it can secure the healthy life from contamination, microbes’ 

evolution (superbugs), climate destabilization (global warming), gas emission (N2O, methane, CO2, 

H2S), and soil clogging (oxygen depletion). Although, biological treatments are still requiring research 

and development. Some tips are listed to advance wastewater treatment using biofilm carriers. 

 Apply oxygen feed to accomplish nitrification (Oxygen feed should be calculated based on DO, and 

COD level). 

 Slow oxygen feed (reaching saturation phase within 1-3 days). 

 Use biofilm media that have curly surfaces. 

 Employ closed system to stabilize the treatment climate (Temperature 35-40 °C). 

 Utilize moving bed to increase bacterial contact with water contaminants. 
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