PARKING MONITORING SYSTEM WITH SECURITY SYSTEM FEATURES

MOHAMMAD FAIZAL BIN MOHAMAD EHSAN

This thesis is submitted as partial fulfillment of the requirements for the award of the Bachelor Degree of Electrical Engineering (Electronics)

Faculty of Electrical & Electronics Engineering
University Malaysia Pahang

MAY, 2008
“All the trademark and copyrights use herein are property of their respective owner. References of information from other sources are quoted accordingly; otherwise the information presented in this report is solely work of the author.”

Signature : __

Author : MOHAMMAD FAIZAL BIN MOHAMAD EHSAN

Date : __
Specially dedicated to

My beloved family and those people who have guided and inspired me throughout my journey of education
ACKNOWLEDGEMENT

In the name of Allah S.W.T, the Most Gracious, the Ever Merciful. Praise is to Allah, Lord of the Universe and Peace and Prayers be upon His final Prophet and Messenger Muhammad s.a.w.

In preparing this thesis, I was in contact with many people, researchers, academicians and practitioners. They have contributed towards my understanding and thoughts.

In particular, I wish to express my sincere appreciation to my supervisor, Pn. Ezrinda Binti Mohd Zaihidee for encouragement, guidance, critics, friendship, advice, information and motivation. Without their continued support and interest, this thesis would not have been the same as presented here.

I am also indebted to Universiti Malaysia Pahang (UMP) for funding my degree study. Librarians at UMP also deserve special thanks for their assistance in supplying the relevant literatures and guiding me in using e-journal.

My sincere appreciation also extends to all my colleagues, ex-schoolmate and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space.

Finally, special thanks extended to my beloved family who had given me moral support and prayed for my success.

Thank you.

Mohammad Faizal Bin Mohamad Ehsan
ABSTRACT

To easily find an unoccupied parking space in larger car park is a problem for many drivers. During the last four-decade, there are many parking models are develop. But, the models still cannot solve the parking problem. Another problem in parking systems is about security systems. The problem is about how to make sure that the car is safe and this kind of problem involves the security systems. Thus, we have to design a system that can help driver to find parking space easily and at the same time the car that has been park is safe. This project is especially design for private parking space and this system is not suitable for open parking space. The parking space will be monitor by magnetic sensors and the security systems is applied when the user enter the password. So, the user must have a password before they can enter the parking space. Some examples of application for this system are at exclusive club, country club and any private places.
ABSTRAK

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENT vii
LIST OF TABLES xi
LIST OF FIGURES xii
LIST OF ABBREVIATIONS xiv
LIST OF APPENDICES xv

1 INTRODUCTION 1

1.1 Background 1
1.2 Objectives 5
 1.2.1 To explore the function of Magnetic Field sensor 5
 1.2.2 To develop a model of Parking Monitoring System with Security System Features 5
1.3 Project Scope 6
 1.3.1 Use appropriate Magnetic field sensor 6
 1.3.2 Develop a model of Parking Monitoring system by using Magnetic field sensor with Security system features 6
1.5 Thesis Overview 7
2 LITERATURE REVIEW

2.0 Introduction 8

2.1 SENSOR MODULE 9

2.1.1 Sensors Overview 9

2.1.2 Magnetic field sensor 11

2.1.3 Magnetic field sensor application 12

2.2 ELECTRONIC MODULES 12

2.2.1 Microcontroller 12

2.2.1.1 Motorola MC68HC11 Microcontroller 15

2.2.1.2 Motorola 68HC11 Architecture 16

2.2.2 Keypad 21

2.2.3 Stepper Motor 22

2.2.3.1 Unipolar stepper motor 23

2.2.4 LCD Display 24

2.2.4.1 JHD162A LCD Display 24

2.2.5 Infrared Sensor 25

2.2.6 HONEYWELL HMC1021Z Magnetic field sensor 26

2.3 SOFTWARE MODULE 27

2.3.1 WP11 27

2.3.2 THRSim11 28

2.3.3 Proteus VSM 30

3 HARDWARE DESIGN 33

3.1 MICROCONTROLLER BOARD DESIGN 33

3.1.1 Single-Chip Operating Mode 34

3.1.2 Power Circuit 34

3.1.3 Reset Circuit 34

3.1.4 Clock Circuit 35
3.1.5 Line Driver: RS-232
3.2 HONEYWELL 1021Z MAGNETIC FIELD SENSOR
3.3 LCD DISPLAY
3.4 KEYPAD
3.5 STEPPER MOTOR
3.6 INFRARED SENSOR

4 SOFTWARE DEVELOPMENT
4.1 MAGNETIC FIELD SENSOR AND INFRARED SENSOR
4.2 STEPPER MOTOR
4.3 KEYPAD
4.4 LCD

5 RESULT AND DISCUSSION
5.1 RESULTS ON ENTIRE SYSTEM
5.2 ACTUAL HARDWARE DESIGN

6 CONCLUSION AND FUTURE DEVELOPMENT
6.1 CONCLUSION
6.2 FUTURE DEVELOPMENT
6.2.1 Costing and Commercialization

REFERENCES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>Version of Motorola MC68HC11</td>
<td>16</td>
</tr>
<tr>
<td>3.0</td>
<td>Function of each connection of LCD</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Step movement for stepper motor</td>
<td>44</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Product Flow for the whole project</td>
<td>4</td>
</tr>
<tr>
<td>2.0</td>
<td>Overall System of Parking Monitoring System with Security System Features.</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Microprocessor versus microcontroller</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Block diagram of a Typical Microcontroller in Single Chip Mode</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>68HC11 Architecture</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>48-Pin DIP Pin Assignments</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Keypad 4×4</td>
<td>22</td>
</tr>
<tr>
<td>2.6</td>
<td>Unipolar stepper motor</td>
<td>24</td>
</tr>
<tr>
<td>2.7</td>
<td>2 lines (8 character) JHD162A LCD display</td>
<td>25</td>
</tr>
<tr>
<td>2.8</td>
<td>How IR operation</td>
<td>26</td>
</tr>
<tr>
<td>2.9</td>
<td>Actual hardware of HONEYWELL 1021Z</td>
<td>27</td>
</tr>
<tr>
<td>2.10</td>
<td>Simple circuit combining with zener diode</td>
<td>27</td>
</tr>
<tr>
<td>2.11</td>
<td>Interface of WP11</td>
<td>28</td>
</tr>
<tr>
<td>2.12</td>
<td>Interface of THRSim11</td>
<td>30</td>
</tr>
<tr>
<td>2.13</td>
<td>Interface of Proteus 7</td>
<td>31</td>
</tr>
<tr>
<td>3.0</td>
<td>Actual Hardware</td>
<td>32</td>
</tr>
<tr>
<td>3.1</td>
<td>Full circuit design</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>A simplified block diagram of MC68HC11-based system</td>
<td>33</td>
</tr>
<tr>
<td>3.3</td>
<td>Single-chip operating mode connection</td>
<td>34</td>
</tr>
<tr>
<td>3.4</td>
<td>Reset circuit</td>
<td>35</td>
</tr>
<tr>
<td>3.5</td>
<td>Clock circuit</td>
<td>35</td>
</tr>
<tr>
<td>3.6</td>
<td>Pin and description for DB-9</td>
<td>36</td>
</tr>
<tr>
<td>3.7</td>
<td>DB-9 female connector</td>
<td>37</td>
</tr>
<tr>
<td>3.8</td>
<td>The actual hardware HMC1021Z</td>
<td>38</td>
</tr>
<tr>
<td>3.9</td>
<td>Circuit diagram for LCD display</td>
<td>40</td>
</tr>
<tr>
<td>3.10</td>
<td>Keypad circuit diagram</td>
<td>41</td>
</tr>
</tbody>
</table>
3.11 ULN2003A Motor Driver Connection 43
3.12 5-wire Unipolar Stepper Motor Connection 44
3.13 Light reflecting off a white and black surface 45
3.14 Circuit diagram for Infrared 46
3.15 Actual hardware for Infrared 46
4.0 Systems flowchart the whole systems 47
4.1 Program example of Infrared sensors 50
4.2 Flow Chart for Stepper Motor 51
4.3 Sample programming for Stepper Motor 52
4.4 Flow chart for Keypad 53
4.5 Sample programming for Keypad 54
4.6 Flow chart for LCD Display 56
4.7 Sample programming for LCD Display 57
5.0 Flow chart of the whole systems 59
5.1 Actual Hardware 60
5.2 Actual Hardware with sensors embedded 60
5.3 LCD display “WELCOME” 62
5.4 LCD display “INSERT PASSWORD” 62
5.5 LCD display “ACCESS GRANTED” 62
5.6 LCD display “ACCESS DENIED” 62
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Component</th>
<th>The description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analog to Digital converter</td>
</tr>
<tr>
<td>CPU</td>
<td>Central processing unit</td>
</tr>
<tr>
<td>CCTV</td>
<td>Close-Circuit Television</td>
</tr>
<tr>
<td>CTS</td>
<td>Clear To Send</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital to Analog converter</td>
</tr>
<tr>
<td>EPC</td>
<td>Electronic product code</td>
</tr>
<tr>
<td>ISR</td>
<td>Interrupt Service Routine</td>
</tr>
<tr>
<td>MCU</td>
<td>Microcontroller Unit</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio Frequency Identification</td>
</tr>
<tr>
<td>RTS</td>
<td>Ready to Send</td>
</tr>
<tr>
<td>OSC</td>
<td>Oscillation</td>
</tr>
<tr>
<td>MAC</td>
<td>Medium access control</td>
</tr>
<tr>
<td>RAM</td>
<td>Random access memory</td>
</tr>
<tr>
<td>ROM</td>
<td>Read only memory</td>
</tr>
<tr>
<td>WWW</td>
<td>World wide web</td>
</tr>
<tr>
<td>IR</td>
<td>Infra Red</td>
</tr>
</tbody>
</table>
LIST OF APPENDIXES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Program of “Parking monitoring Systems with Security systems Features” Project</td>
<td>67</td>
</tr>
<tr>
<td>B</td>
<td>Full Schematic Circuit of the Project</td>
<td>73</td>
</tr>
<tr>
<td>C</td>
<td>ULN2003A Datasheet</td>
<td>85</td>
</tr>
<tr>
<td>D</td>
<td>74C923 Datasheet</td>
<td>90</td>
</tr>
<tr>
<td>E</td>
<td>AD623 Datasheet</td>
<td>93</td>
</tr>
<tr>
<td>F</td>
<td>Max-233 Datasheet</td>
<td>98</td>
</tr>
<tr>
<td>G</td>
<td>LCD JHD162A Datasheet</td>
<td>103</td>
</tr>
<tr>
<td>H</td>
<td>Costing</td>
<td>107</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

To easily find an unoccupied parking space in larger car parks is a problem for drivers. It is because the car on the road increases every year especially in town. On the other hand, it is more difficult to find the parking space during peak time and holidays because this is the time people want to release their stress and to spend time with family. There are not many existing solutions attempting to address the problem. Thus, it is useful to have some technical solutions that can provide information on parking space occupancy [1]-[2]. The efficient parking monitoring system must be design to overcome the problem.

During the last four-decade, numerous parking search models have been developed [6]. But, the models still cannot solve the parking problem. In many decision-making situations in transportation (modal split, choice of air carrier, choice of airport, etc.) the competitive alternatives and their characteristics are reasonably well known in advance to the decision maker (passenger, driver). On the other hand, the drivers usually discover different parking alternatives one by one in a temporal sequence. Clearly, this temporal sequence has a very strong influence on the driver’s final decision about the parking place [7].
Vehicle detection technology has evolved quite a bit in the last couple decades. From the air hoses to inductive loops embedded in roadways, most legacy detection methods were concentrated on getting vehicle presence information to a decision making set of control systems [1-5]. Today we want so much more information, and such information is about speed or direction of traffic, the quantity of the vehicle per time on a stretch of pavement and so on as an example.

When the driver has park their car at car parking space, there are another problem will occur. The problem is about how to make sure the car is safe and these kinds of problem involve the security systems. All drivers want to have a comfortable parking place with security when park their car. Thus, we have to design a system that can help driver to find parking space easily and at the same time the car that has been park is also safe.

The title of this project is “Parking monitoring system with Security system Features”. This project is design to overcome the problem in car parking space at private place such as Condominium, Country clubs (a club with sporting and social facilities), exclusive club and so on. It is because this place is privacy and need more security compare to the public parking space.

Generally, the system will consist of several electronic components such as magnetic field sensors, a microcontroller, servo motor, the gate itself, and sensor. Nowadays, there are so many sensors in the market. From the report of “sensor market 2008”, there are about ten most popular sensors develop today. The sensors are Temperature sensors, Pressure sensors, Flow sensors, Binary position sensors (proximity switches, light barriers), Position sensor, Chemical sensors for measurement in liquids, Level sensors, Speed sensors, Chemical sensors for measurement in gasses, Flue gas and Fire detectors sensors.

Magnetic field sensors will use in this project and it is a main part of the parking monitoring system. Another element consist in this system is about security system. The magnetic field sensor is choose because this sensor has more reliability and can be apply at many fields. Even this sensor is still new, it become more popular form a day to another because of it application. For the example, it can be
applied at Automatic Door/gate opening, Railroad Crossing Control (for trains), Parking Meters, Drive through retail (Banking, Fast-Food, etc.) and so on.

Magnetic field sensor will be attached with microcontroller as brain of this system. The sensor is design to detect the car at the car park and sent the data to the microcontroller. All the flow of the system will be completely control by microcontroller. An excellent programming is needed to be programmed into microcontroller in order to identify and monitor the car parking space before someone is given to enter the car park.

For the security system features in this project, it will design only for basic security. It is means that, the user only have to put or key in their password and the gate will open. If the password is wrong, then the gate will remain close.

This final project is divided into 3 main sections:-

(1) Electronic design consists of Microcontroller design integrated with Magnetic Field sensors.

(2) Develop Software to detect the vehicle at car park and at the gate. Besides that develop basic program of security system.

(3) Mechanical design consists of gate model and motor to control the open and closed gate.
Figure 1.0: Product Flow for the whole project
1.2 OBJECTIVES

1.2.1 To explore the function of Magnetic Field Sensor

This sensor is still new in the market and it doesn’t include in syllabus. A deep understanding about Magnetic Sensor is needed before this sensor technology can be applied into any system.

1.2.2 To develop a model of Parking Monitoring System with Security System Features

The main objective is to develop Parking Monitoring System using Magnetic Field sensors. In this project, the sensor will be attached to a microcontroller. Everything regarding of this system such as flow of system and etc is controlled totally by microcontroller. A model of parking system will be build integrated with microcontroller and Magnetic Field Sensor.
1.3 PROJECT SCOPE

The main goal of this project is develop a parking monitoring system using Magnetic Field sensor technology. There is 2 scope will be cover in this project. Firstly is to use appropriate Magnetic Sensor for this application. Secondly is to design a model of parking monitoring system using microcontroller combined with sensor and keypad include to the system.

1.3.1 Use appropriate Magnetic field sensor

There is lots of sensor in the market. Not only brand, but also the applications of the sensor itself need to be considered. This sensor will then interface with microcontroller and the result will display at the LCD Display. The LCD then shows the result of parking space available.

1.3.2 Develop a model of Parking Monitoring system by using Magnetic field sensor with Security system features

Because this system will be applied at entrance of building or area, a model of car park with monitoring system and entrance gate will be build. In general, when a person key in the password, the magnetic field sensor will send the data to microcontroller then the data will be processes either access will be given or not to the owner of the password. If yes, the gate will automatically open and at the same time the LCD will display an unoccupied parking space. If the parking lot is full, the gate will not open. Besides that, if the password is wrong, the gate will remain closed.
1.4 THESIS OVERVIEW

This “Parking monitoring system with security system features” final thesis is a combination of 6 chapters that contains and elaborates specific topics such as the Introduction, Literature Review, Hardware Design, Software Development, Result, Discussion, Conclusion and Further Development that can be applied in this project.

Chapter 1 basically is an introduction of the project. In this chapter, the discussion is all about the background and objectives of the project. The overall overview of the entire project also will be discussed in this chapter.

Chapter 2 will be discussed about the literature review for the development of the Parking monitoring system with security system features. Everything related to the project will be describe generally in this chapter.

Chapter 3 will be focused on hardware design of the Parking Monitoring System. This chapter included six subtopics. The entire hardware used in this project will be discussed briefly including wired connection for each part.

Chapter 4 will be discussed about the software development of the microcontroller. In this section, all basic programming will be explained through flow chart with a sample programming.

Chapter 5 discusses all the results obtained and discussion of the project. The main flow chart for this project will be explained briefly under this topic.

Chapter 6 discusses the conclusion and further development of the project. This chapter also discusses about total costing involved and potential of this project for commercialization.
CHAPTER 2

LITERATURE REVIEW

2.0 INTRODUCTION

Parking Monitoring System with Security System Features is design especially for private places. The main part of this project is sensor. It is about how to manipulate Magnetic field sensors as an indicator to detect the car in the parking monitoring system. This system consists of three modules which are Sensors module, Electronic module and Software module. All the modules will be combining together and build this system full functioning. Each module carries own functioning and special features which will be discussed in detail in this chapter. Figure 2.0 show overall of the system.

Figure 2.0: Overall System of Parking Monitoring System with Security System Features.
2.1 SENSOR MODULE

2.1.1 Sensors Overview

Today’s cities are increasingly congested by cars. In average, a considerable part of a drive is spent by searching for an unoccupied parking space. The impact on environment, living quality and national economy is considerable since fuel is consumed, exhaust gas is produced and time is spent unnecessarily [1]-[5].

Finding an unoccupied parking space in the maze of a downtown area often works on a trial-and-error basis. Time needed and distance to drive could be significantly reduced if drivers were directed to an unoccupied parking space. First system indicating the remaining capacities of car parks are operational and there are visions of on board navigation systems guiding the driver to the next unoccupied parking space [1], [3].

All those systems require reliable information about occupancy situation in car parks. Currently there are two common approaches to detect whether there are unoccupied parking spaces: inductive loops and ultrasonic sensors [2], [3], [6].

Parking is the act of stopping a vehicle and leaving it unoccupied for more than a brief time. It is against the law virtually everywhere to park a vehicle in the middle of a highway or road; parking on one or both sides of a road, however, is commonly permitted. Parking facilities are constructed in combination with most buildings, to facilitate the coming and going of the buildings' users.

There is no specific solution to the parking space problem. Every problem should have the different method to solve. The more popular systems in place today are the pre-trip parking, lot-specific parking, aisle-specific parking, and reservation parking. Pre-trip parking consists of using maps of a certain area before arrival to learn where available parking is located. Lot-specific parking information system uses sensors which relay information to a main board/map that shows which parts of the parking lot are open. The aisle-specific parking is very much like the lot-specific parking except that it is used for parking garages. Lastly is the parking reservation
system, which allows customers to pre-rent a parking spot before they arrive to save
time (“APMS- What Are They”) [8].

Furthermore, nowadays, an efficient parking system is important for business
man. In addition most “Business is continually striving to upgrade their service and
increase their return on investment. It is therefore not surprising that the quality or
parking lots is increasing in importance”. In order for a business such as a mall to
maximize revenue and profits, it is vital that the parking lot be efficient for shoppers
because a business with “inefficient parking facilities could lose hundreds of
thousands of proud in retail business every year” [8].

Today, inductive loops prevail in detecting moving traffic. An alternating
magnetic field is applied, which is affected by the conductivity of metallic objects.
The change of the Impedance of the loop is evaluated and used for the detection of a
vehicle. Since this technique requires a moving vehicle, the occupancy status of a
parking space cannot be observed directly. Instead, the number of cars in a car park,
or in a section of it, is determined by monitoring the entrance and exit lanes. The
durability, the considerable installation effort and the energy consumption are
further major drawbacks in the employment of inductive loops [1], [6].

A sensor is a type of transducer. Direct-indicating sensors, for example, a
mercury thermometer, are human-readable. Other sensors must be paired with an
indicator or display, for instance a thermocouple. Most sensors are electrical or
electronic, although other types exist. Sensor will be use to monitor the parking
space whether it is free or full. There are many types of sensor nowadays. For the
example magnetic field sensor, thermal sensor, electromagnetic sensor, optical
sensor and so on.

Ultrasonic sensors are capable of determining whether a specific parking
space is occupied or not. Since they need a direct line-of-sight to the parked car or to
the empty parking pace and are hard to protect against dust, accidental damage or
vandalism, the only feasible position for those sensors is the ceiling directly above
the area to be monitored. Thus, ultrasonic sensors can only be used in multi-story car