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CHAPTER 3

Plant extracts: Nanoparticle sources
Gaanty Pragas Maniam, Natanamurugaraj Govindan, Mohd Hasbi Ab. Rahim,
Mashitah M. Yusoff
Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Kuantan, Pahang, Malaysia

3.1 Introduction

Nanoparticles (NPs) (usually in dimensions of 1–100 nm) have been proven, through

numerous research findings, to have excellent properties in term of physiochemical, anti-

fungal, chemical, catalytic, thermal conduction, mechanical, electrical, optical, and many

more [1,2]. NPs have vital roles in agro-production and protecting crops from diseases,

both directly and indirectly, and they go even further to influence the soil microbial

population. At the nanoscale, the elementary understanding of chemical and physical

properties is very distinctive. As such, research outputs at different scales will have dif-

ferent interpretations that in turn radiate different properties, even for the same element.

Owing to the superior qualities of NPs, research on them is intense, as many researchers

are intensively working in the area. Nanoparticle utilization is glaring in many areas,

including healthcare and cosmetics, food and feed, drug delivery systems, the space indus-

try, electronics, optoelectronics, biomedical science, and many more [3,4].

Plant-basedNPs are in the limelight due to their environmentally friendly nature, abil-

ity to be scaledup, operationundermild conditions, andpossible to extract undernontoxic

chemicals. Using harmful chemical precursors, external stabilizing and capping agents will

definitely cause adverse consequences to humans and nature in general. This green syn-

thesis route (plant-based NPs) that evades the use of synthetic reductants and stabilizing

agents can readily serve for the medical and pharmaceutical applications such as the diag-

nosis and treating of acute and chronic diseases. The major issues associated with these

plant-basedNPs are that the choice of NP cannot be custom-made as well as the presence

of NPs in minute quantities. The limited quantity of NPs produced in the bio-route as

compared to other routes is one of the bigger challenges that needs to be tackled.

Plant-based nanoparticle synthesis methods can be broadly categorized into three routes:

physical, chemical, and biological. However, there are many more methods such as ther-

mal reduction, the polyol method, vacuum vapor deposition, solvothermal, microwave

irradiation and heating, microemulsion, and sonochemical reduction (Table 3.1).

The chemical route is seen as an easy and cost-effective one that operates at lower

temperatures, but the issue of utilizing toxic reducing agents needs to be addressed.

41
Phytonanotechnology © 2020 Elsevier Inc.
https://doi.org/10.1016/B978-0-12-822348-2.00003-6 All rights reserved.



[124] Y. Tang, R. He, J. Zhao, G. Nie, L. Xu, B. Xing, Oxidative stress-induced toxicity of CuO nano-
particles and related toxicogenomic responses in Arabidopsis thaliana, Environ. Pollut. 212 (2016)
605–614.

[125] Y.Ma, L. Kuang, X. He,W. Bai, Y. Ding, Z. Zhang, et al., Effects of rare earth oxide nanoparticles on
root elongation of plants, Chemosphere 78 (3) (2010) 273–279.

[126] A.O. Govorov, I. Carmeli, Hybrid structures composed of photosynthetic system and metal nanopar-
ticles: plasmon enhancement effect, Nano Lett. 7 (3) (2007) 620–625.

[127] S. Berkner, K. Schwirn, D. Voelker, Nanopharmaceuticals: tiny challenges for the environmental risk
assessment of pharmaceuticals, Environ. Toxicol. Chem. 35 (4) (2016) 780–787.

[128] F.H. Khan, Chemical hazards of nanoparticles to human and environment (a review), Orient. J.
Chem. 29 (4) (2014) 1399–1408.

[129] E. Andronescu, J.M. Brown, F.N. Oktar, S. Agathopoulos, J. Chou, A. Obata, Nanomaterials for
medical applications: benefits and risks, J. Nanomater. (2016).
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