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ABSTRACT 

In current days the intrusion detection systems (IDS) have several shortcomings such as 

high rates of false positive alerts, low detection rates of rare but dangerous attacks, and 

the need for a constant human intervention and tuning. Daily, there are reports of 

incidents such as major ex-filtration of data for the purposes of stealing identities, credit 

card numbers, and intellectual properties, as well as to take control of network 

resources. Machine learning approaches have been widely used to increase the 

effectiveness of intrusion detection platforms. While some machine learning techniques 

are effective at detecting certain types of attacks, there are no known methods that can 

be applied universally and achieve consistent results for multiple attack types. This 

situation makes the detection of cyber-based attacks on computer networks a relevant 

and challenging area of research. The Fast Learning Network (FLN) is one of the new 

machine learning algorithms that are easy to implement, computationally efficient, and 

with excellent learning performance characteristics. However, the internal power 

parameters (weight and basis) of FLN are initialized at random, causing the algorithm 

to be unstable. In this work, a new cooperative multi-swarm scheme called multi-swarm 

optimization (MRPSO) which is inspired by the human social behavior was proposed 

for the interaction of several PSO groups while searching for the best parameters values 

of PSO. The focus of this research is on the development of a model that can optimize 

the initial parameters of FLN based on MRPSO to obtain an optimal set of initial 

parameters for FLN, thus, creating an optimal FLN classifier named as MRPSO-FLN 

which can improve the efficacy of network intrusion on data sets that contain instances 

of multiple classes of attacks. These methods were tested on NSL-KDD intrusion-

detection datasets and the results indicate that the proposed approaches used in the 

system performed well in large dataset processing. In these experiments, it was 

demonstrated that the FLN optimization method achieved 0.9964 which is a higher 

accuracy than most of the existing paradigms for classifying network intrusion 

detection data. 
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ABSTRAK 

Pada masa ini, sistem pengesanan pencerobohan (IDS) mempunyai beberapa kelemahan 

seperti kadar tanda palsu positif yang tinggi, kadar pengesanan yang rendah serangan 

jarang tetapi berbahaya, dan keperluan untuk intervensi dan penalaan manusia yang 

berterusan. Harian, terdapat laporan kejadian seperti penapisan utama data untuk tujuan 

mencuri identiti, nombor kad kredit, dan sifat intelektual, serta untuk mengawal sumber 

rangkaian. Pendekatan pembelajaran mesin telah digunakan secara meluas untuk 

meningkatkan keberkesanan platform pengesanan pencerobohan. Walaupun beberapa 

teknik pembelajaran mesin berkesan dalam mengesan jenis serangan tertentu, tidak ada 

kaedah yang diketahui yang boleh digunakan secara universal dan mencapai hasil yang 

konsisten untuk pelbagai jenis serangan. Keadaan ini menjadikan pengesanan serangan 

berasaskan siber pada rangkaian komputer yang relevan dan mencabar bidang 

penyelidikan. Rangkaian Pembelajaran Cepat (FLN) adalah salah satu daripada 

algoritma pembelajaran mesin baru yang mudah dilaksanakan, berkomputeran dengan 

baik, dan dengan ciri prestasi pembelajaran yang cemerlang. Walau bagaimanapun, 

parameter kuasa dalaman (berat dan asas) FLN diisytiharkan secara rawak, 

menyebabkan algoritma tidak stabil. Dalam usaha ini, satu skim berbilang kooperatif 

baru yang dikenali sebagai pengoptimuman multi-swarm (MRPSO) yang diilhamkan 

oleh tingkah laku sosial manusia dicadangkan untuk interaksi beberapa kumpulan PSO 

sambil mencari nilai parameter terbaik PSO. Tumpuan penyelidikan ini adalah 

mengenai pembangunan model yang dapat mengoptimumkan parameter awal FLN 

berdasarkan MRPSO untuk mendapatkan set parameter awal optimum untuk FLN, 

dengan itu, mewujudkan pengelas FLN optimum yang dinamakan MRPSO-FLN yang 

boleh meningkatkan keberkesanan intrusi rangkaian pada set data yang mengandungi 

contoh pelbagai kelas serangan. Kaedah-kaedah ini telah diuji pada dataset pengesan 

pencerobohan NSL-KDD dan hasilnya menunjukkan bahawa pendekatan yang 

dicadangkan yang digunakan dalam sistem dilakukan dengan baik dalam pemprosesan 

dataset yang besar. Dalam eksperimen ini, ia menunjukkan bahawa kaedah 

pengoptimuman FLN mencapai 0.9964 yang merupakan ketepatan yang lebih tinggi 

daripada kebanyakan paradigma sedia ada untuk mengelaskan data pengesanan 

pencerobohan rangkaian. 
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INTRODUCTION 

1.1 Overview  

This chapter presents theoretical model and motivations for the proposed 

research. It discusses the problem statement, states the objectives and describes briefly 

the scope for the proposed research. The chapter is divided into seven sections. Section 

1.2 introduces a brief background of the proposed work with problem statement 

background. Section 1.3 summarizes the problem statement which includes IDS 

problems and proposed machine learning problem. Section 1.4 represents the research 

questions which this work tries to answer. Section 1.5 highlights the main research 

goal and objectives of this work. Section 1.6 provides a scope of the proposed model. 

Section 1.7 highlights the thesis organization. 

1.2 Background  

People have over the years depended on technology and computer networks for 

their daily activities, such as messaging, shopping, and marketing. These networks are 

constantly exposed to several online threats and for this reason, their integrity and 

availability ought to be protected against violation and intrusion. The experienced 

intruders, terrorist organizations, and rival corporations have the motive and capability 

to carry out developed attacks against computer systems (Choo, 2011), and this makes 

systems security an important issue for many researchers. Network intrusion or attack 

is a situation where an unauthorized user (attacker) tries to exploit the vulnerability of 

a system to gain access to network resources and cause a disruption in the normal 

operation of the network. If the attacker gains access to the network resources, it can 
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have an illegitimate access to the network data, can modify or corrupt the system, and 

can hijack the network or alter its behaviour.  

In 2015, the U.S. Director of NSA, Adm. Michael Rogers, in the House 

Intelligence Committee warned of an impending major security attack in the U.S. in 

the next decade. In his words, “It’s only a matter of the ‘when,’ not ‘if,’ that we are 

going to see something dramatic.” Several state-backed hackers have continuously 

launched attacks on industrial-control systems that manage vital infrastructures such as 

nuclear power, power grid, transportation systems, and air-traffic control. 

 The NSA director also opined that based on his own assessment, the U.S. may 

fall into these attacks (Fossaceca, 2015). Furthermore, security is one of the biggest 

obstacles that hamper the widespread adoption of technology (Freire & Inácio, 2014). 

There are various studies in the literature discussing the security issues (Latif et al., 

2014; Modi & A, 2013; Rong et al., 2012). Figure 1.1 shows that the direct spending 

on cybersecurity solutions like firewalls and IDSs is rising steadily based on the Gross 

Domestic Product (GDP) percentage of the U.S. from 2009 to 2017. Several tools and 

techniques have been proposed for the safety of the technology environment. The 

intrusion detection system (IDS) is one of the powerful software or hardware that is 

used to monitor computer network for the detection of normal or abnormal behaviours 

(Vasilomanolakis, 2015). An IDS monitors a network for signs of invasion which 

could manifest in abnormal system behaviours or violation of network security 

policies.  

Therefore, the goal of the IDS is to detect any form of compromise in the 

integrity, confidentiality, and availability of a network. Since Denning introduced the 

concept of detecting intrusion detection (Denning, 1987), many efforts have been 

channeled on the ability for network monitoring tools to automatically detect network 

intrusion. An IDS is a system that automatically monitors network or system activities, 

analyzes them for any sign of intrusion, and often prevents unauthorized network 

access (Scarfone et al., 2007). The IDS observe the activities of a network and 

determine the nature of the observed activities (whether malicious or normal) based on 

the integrity, confidentiality and resource availability of the system (Toosi, 2007). 

There are several limitations of the conventional IDS (Al-Yaseen et al., 2017;  Shah & 
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Issac, 2018), such as high rates false alarms, lack of continuous adaptation to changing 

malicious behaviours, and highly uneven data distribution.    

 

 

Figure 1.1 Cybersecurity spending in United States, percent of GDP and USD billions, 

2009-2017, Source: TIA’s 2010-2017 ICT Market review and forecast, available at: 

test.tiaonline.org/resources/market-forecast 

The traditional IDS still suffer from several limitations as they have failed to 

fully protect network systems from the increasingly proliferating attacks. Most 

systems are built based on the traditional techniques and they suffer from false 

negative detections and high false alarm rates. However, several studies have reported 

the application of several machine learning techniques to IDS for improving their 

detection rates (Shah & Issac, 2018; Tsai et al., 2009). 

The problem addressed by this research is that current-day network IDS suffer 

from several issues, including high rates of false alarms, as well as missed detections 

of real attacks (Baiad et al., 2016; Y. Huang et al., 2016; Shah & Issac, 2018), and 

therefore, requires a significant level of adjustment and tuning by human operators. 

This has resulted in systems that are not reliable or effective in real-world network 

operational environments. The current IDSs, although have been improving over time, 

are still not able to effectively and efficiently deal with the current threat landscape. As 

explained in the preceding sections, network intrusion-detection system that suffers 

from an excessive number of false alarms can lead network operators to ignore alerts. 
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There are numerous recent examples where serious attacks have been missed and 

classified as a normal activity, such as what happened in Ukraine which resulted in 

power outages, affecting approximately 225,000 customers for several hours (Liang et 

al., 2017). However, network operators prefer IDS that do not require human tuning, 

intervention, or that requires a great deal of domain knowledge to operate (Hofmeyr, 

2005). 

As new attacks are invented regularly, it is not sufficient to rely on classical 

signature-based IDS. This has motivated studies that focus on the anomaly-based 

machine learning for IDS (Fossaceca et al., 2015). The performance of IDS is 

improved by the incorporation of machine learning (ML), ML algorithms can 

theoretically achieve optimum performance, i.e. it can regulate the rate of false alarms 

and improve the detection accuracy (Snoek et al., 2012). Many ML algorithms have 

been proposed as IDS (Shah & Issac, 2018), and their preference (as in Extreme 

Learning Machine (ELM)-based IDS) is due to their proven superiority over the 

classical Support Vector Machine (SVM)-based IDS in different perspectives, such as 

over-fitting avoidance and computational cost (Guang-Bin et al., 2004; Fossaceca, 

2015; Singh et al., 2015; Zamani & Movahedi, 2013), nevertheless, these IDS-based 

methods and algorithms still face several limitations in terms of the accuracy of 

detection due to the random selection of their parameters.  

To enhance the performance of ML algorithms, certain characteristics have 

been used to hybridize them with optimization algorithms. First, each function 

evaluation may require a different amount of time (it takes less time to train a neural 

network with 10 hidden compared to a network with 1000 hidden units) (Snoek et al., 

2012). Second, the impact of random selection on the main parameters(weights and 

biases)  ought to be reduced (Zeng et al., 2017). Moreover, in terms of performance 

and improved detection accuracy, the IDS-based hybrid models (machine learning and 

optimization algorithms) have shown better results compared to single algorithms 

(Aslahi-Shahri et al., 2016; Goodarzi et al., 2014). In this work, the standard Particle 

Swarm Optimization (PSO) and Multi Swarm-based Particle Swarm Optimization 

(MRPSO) were used to select the main parameters and to reduce the impact of 

randomization on the IDS-based Fast Learning Network algorithm (FLN) as a core 

algorithm for the IDS proposed models. 
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1.3 Problem Statement  

The handling of cyber threats and detection of intrusions are challenging areas 

in the field of information assurance. Network intruders deploy several mechanisms to 

evade detection techniques (Wang et al., 2018). To detect network attacks, the IDS 

may be equipped with ML algorithms to achieve better accuracy performance. The 

accuracy of IDSs has been enhanced using several supervised and unsupervised ML 

approaches (Lei Zhang & Zhang, 2017).There are several works in the literature on the 

enhancement of the IDSs accuracy based on machine learning models, such as Support 

Vector Machines (SVM) (Aburomman & Ibne Reaz, 2017), Artificial Neural 

Networks (ANNs)(Hodo et al., 2016), Backpropagation (BP) (Tran et al., 2017), Naïve 

Baysian Classifier (NBC) (Mukherjee & Sharma, 2012), K-nearest neighbour (KNN) 

(Lin et al., 2015), and Extreme Learning Machine (ELM) (Fossaceca et al., 2015; 

Singh et al., 2015). 

The FLN algorithm is an enhanced version of ANNs which has been recently 

developed by Li et al. (2014) and applied to several regression and classification 

problems (Li et al., 2017). FLN is a double-parallel forward neural network (DPFNN) 

(Wang et al., 2011), made up of a parallel multilayer and SLFN networks. The output 

of the DPFNN nodes can receive the re-codified external information through the 

hidden nodes, and can also directly receive the external information through the input 

nodes. However, some limitations still persist, such as the randomly selection of the 

hidden biases and assigned input weights which may not represent the optimum 

performance parameters. The optimization algorithms (i.e. metaheuristics) have been 

utilized for enhancing the machine learning models in terms of maximizing their 

accuracy and minimizing their error rate for intrusion detection system. Metaheuristics 

have been implemented as training algorithms for various versions of ANNs, such as 

FFNN (Mirjalili et al., 2012), BP (Huang et al., 2015), and ELM (Zeng et al., 2017).  

The training algorithms are algorithms that can search the optimal values for 

weights and biases. As mentioned earlier, the FLN has a drawback of the initial weight 

values and biases (Niu et al., 2017). They are initialized randomly and this may affect 

their prediction rate. Therefore, finding the optimal values of these two types of 

parameters (weights and biases) is an optimization problem that needs to be resolved. 

To overcome these issues, a multi-swarm approach called Meeting Room Approach is 
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proposed for tuning the PSO parameters called (MRPSO). The proposed algorithm is 

used as a training algorithm for enhancing the detection rate and accuracy of FLN-

based network IDS named (MRPSO-FLN). In summary, the development of a 

machine learning-based IDS is highly promising. This work aims at filling this 

research gap.    

1.4 Research Questions  

This section provides the questions that have been framed to set the direction 

of this research. 

RQ 1. What are the best PSO (𝑐1,𝑐2, 𝑤) parameters values to be considered for testing? 

RQ 2. How effective is the basic FLN algorithm and, how to choice best weights and 

biases of FLN-based IDS? 

RQ 3. How can the proposed models (FLN, PSO-FLN, MRPSO-FLN) accuracy be 

evaluated?    

Given these prospects, this study presents the design and implementation of an 

enhanced meta-heuristic (PSO) with FLN based on IDS. 

1.5 Goal and Objectives  

The main goal of this study is to enhance the accuracy rate of network IDS 

using FLN. In addition, this work aims to build an optimized FLN model which 

contains a training algorithm based on metaheuristics. Reaching this model is achieved 

through the following objectives:  

i- To propose a self-parameters tuning technique for the Particle Swarm 

Optimization (PSO) algorithm using a multi-swarm approach.   

ii- To design a new training algorithm for Fast Network Learning (FLN) based 

on the proposed PSO algorithm for IDSs.  

iii- To evaluate and test the prediction accuracy of proposed models (FLN, 

PSO-FLN, MRPSO-FLN) based on IDS dataset NSL-KDD.  
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1.6 Scope  

This study developed an IDS and addressed the problem of IDS from the 

classification perspective. The focus is to develop a novel machine learning system 

which can serve as a highly-qualified machine learning system for intrusion systems to 

provide better accuracy. The system will consider learning on NSL- KDD datasets. 

The datasets that are selected were collected from networks with different cases of 

attacks and captures a wide range of network and protocol features. The system was 

tested on off-line mode based on the considered dataset. An online evaluation of the 

system was not included in the scope of this study. The evaluation was based on the 

main accuracy of models, while sub-attacks were not considered. The focus is on 

increasing the accuracy of the classifier in terms of distinguishing between attacks and 

non-attacks. The system can be generalized to any classification application.  

1.7 Thesis Organization 

This thesis is organized into 5 chapters. Chapter 1 presented an overview of 

security background and IDS based on ML algorithms. Then, an overview of machine 

learning was introduced in line with the proposed ID-based fast learning network. 

Finally, the problem statements, research scope, study aims, and objectives were 

highlighted.  

In chapter 2, the classification and techniques of the IDS were reviewed, 

followed by an overview of the ML algorithms based on IDS and their classification. 

This chapter also provided an overview of the mathematical notation for Fast learning 

network and Particle swarm optimization. Furthermore, the existing work was 

analyzed to serve as a justification for the need to develop FLN. 

Chapter 3 detailed the design and implementation of the basic FLN, FLN-

based optimization algorithms and a new multi-swarm approach (Meeting Room 

Approach) based PSO for parameters tuning. This chapter discussed the issues relating 

to the reduction of the impact of randomly selected parameters on FLN.  

In chapter 4, a detailed account of FLN evaluation was presented. Here, the 

performance of the FLNs was evaluated based on several evaluation measurements 

(Precision, Recall, F_measure, G_mean, detection rate, false alarm rate and accuracy). 
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The evaluation was executed using NSL-KDD datasets. Additionally, the performance 

of FLN was compared to other strategies.  

Finally, chapter 5 presented a conclusion of the study, listing the achievements 

and study contributions. The conclusions were drawn from the outcome and 

significance of this study. Furthermore, directions for future works were also provided 

in this chapter.             
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LITERATURE REVIEW 

2.1 Overview 

In this chapter, a literature review of past research is presented covering the 

major areas relevant to the research problem. The chapter is divided into eight 

sections. Section 2.2 introduces briefly of the infection vectors of networks and 

devices and some of the popular tools of security tools. Section 2.3 gives an 

introduction about the IDS, the types of IDS as signature and anomaly, as well as 

provides a review of techniques and algorithms adopting machine learning approach. 

Moreover, this part highlights the data set contents, and its limitations. Section 2.4 

highlights the machine learning algorithm based intrusion detection and classified 

them such as single and hybrid models. Section 2.5 provides an overview of neural 

network applications, and the new versions of algorithms that are developed based on 

artificial neural networks along with its limitations. Moreover, the section also 

explains the enhanced techniques based on artificial neural network. Section 2.6 gives 

an overview of Fast Learning Network algorithm, this part also contains explained the 

basic extreme learning machine and its limitations. Section.2.7 discusses the particle 

swarm optimization, which includes the standard PSO and multi swarm approach for 

PSO along with artificial neural network based on hybrid with PSO. Section 2.8 

represents the related work with similar the main idea on the development of IDSs 

based on machine learning. Finally, section 2.9 provides the summary of the-chapter. 
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Figure 2.1 Literature Review Framework 

                                                                                                                                                                             

2.2 Security System 

Over the years, the Internet and computer systems have been exposed to 

numerous security challenges due to the increased rate of their usage. Unauthorized 

access to computers or information systems could result in serious security breaches 

and violation of security policies, availability, integrity and confidentiality (Von Solms 

& Van Niekerk, 2013). Computer networks have also been subjected to various 

traditional attacks like routing information protocol attack, DNS poisoning, address 

resolution protocol spoofing, IP spoofing, flooding, distributed denial of service 

(DDoS), and denial of service (DoS) (Brooks 2009). On the other hand, there are many 

systems and models which are used as tools and systems in the network environment. 

The front access points of systems are protected by Firewall and treated as the 

first line of defense. These Firewalls are deployed to either deny or allow ports, 

protocols or IP addresses (Borisaniya, Patel, et al., 2013a). The Firewalls are a good 

option for the prevention of external attacks but does not protect from internal attacks ( 

Borisaniya, Patel, et al., 2013a). An efficient IDS must be integrated into the networks 

to handle these attacks. 
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2.2.1 Security Tools  

Technological advancements in the present world have made connectivity 

easier than ever. A large amount of information (personal, military, government, and 

commercial) are hosted on networking infrastructures worldwide. The security of 

network infrastructures is attracting great research interest due to the huge number of 

intellectual properties which can be easily acquired through the internet. The society 

has become over-reliant on technology as people depend on computer systems for 

their daily information and entertainment (Bhavya Daya, 2013). There is a need to 

protect the availability and integrity of these systems against several threats. 

experienced hackers, terrorists, foreign governments, and rival corporations can lunch 

sophisticated attacks against computer system (Choo, 2011). Hence, information 

security has become significantly important and ought to be protected against threats 

for the safety and economic well-being of the society.  

The security of information systems has attracted several research attention due 

to the rapid development and wide use of electronic data processing techniques 

executed through wired and wireless networks, web application, and the Internet. 

Furthermore, the activities of numerous terrorist groups also justify the need for 

securing information systems. The current approaches for securing information 

systems are through firewalls, encryption, authentication, IDS, and prevention 

systems, and other hardware and software solutions ( Liao et al., 2013). Most of these 

systems facing several limitations (Patel et al., 2013), such as  Firewalls are used to 

protect the front access point of systems (first line of defense). They are used to either 

allow or deny protocols, IP addresses or ports (Naru et al. 2010). Firewalls have 

become paramount to the security of network infrastructures. In the network systems, 

firewalls are used to protect networks from external attacks by filtering and managing 

the Internet traffic. Figure 2.2 depicts the basic approach to the installation of firewalls 

(installed at the servers’ entry point), showing how they form the first line of network 

defense. 
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Figure 2.2 Basic firewall installation Modi et al,(2013) 

Firewalls do not offer a complete analysis of all the data packets in a network 

traffic. They only check the packets at the network boundaries (Modi et al., 2013b). 

The traditional firewalls cannot detect internal attacks, and the detection of few DoS or 

DDoS attacks using traditional firewalls is complicated. Intelligent intrusion detection 

system is a dynamic defensive system that is capable of adapting to dynamically 

changing traffic pattern and is present throughout the network rather than only at its 

boundaries, thus helping to catch all types of attacks(Sivatha et al., 2012). Moreover, 

IDS performs the following functions (Kaur et al., 2014): 

        Monitors and analyzes the activity of the system users.  

 Audits the vulnerabilities and configuration of the system.  

 Checks the critical system and data file integrity.  

 Statistically analyzes the pattern of activities of the network based on the 

known      attack signatures.  

 Analyses of abnormal system activities.  

2.3 Intrusion Detection System  

Attacks from external sources are referred to as outsider attacks, while insider 

attacks comprise all unauthorized attempts by the internal users to gain access to 

unauthorized privileges. Intrusion detection involves the monitoring of computer 
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networks for unauthorized access, illegal activities, or file modification (Modi et al., 

2013; Whitman & Mattord, 2012). Figure 2.3 depicts the use of IDS to monitor a 

network infrastructure. The monitored network was simultaneously connected to a 

network administrator who sends alarms when detected. Network attacks are mostly 

launched in specified groups known as incidents, and even though many incidents are 

dangerous in nature, most are not harmful. For instance, the address of a website may 

be wrongly typed and accidentally attempts to establish an unauthorized connection to 

a different system. Intrusion detection (ID) refers to the identification of an ongoing 

intrusion on a system. Some of the issues experienced in the ID studies border on data 

collection/reduction, behavior classification, reporting, and response (Frank, 1994). 

Most ID systems focus on behavior classification and data reduction. Data reduction 

involves the analysis of a set of data to identify the important components and reduce 

the processing time, communication overhead, and storage requirements. Behavior 

classification involves the process of identifying attacks and intruders 

 

Figure 2.3 Intrusion Detection System Infrastructures  

Source: Patel, et al., (2013) 

Another important factor that affects the effectiveness of IDS is the quality of the 

deployed feature construction and selection algorithms. The goal of improving the 

overall effectiveness of IDS can be achieved through a guided reduction in the number 

of relevant features without compromising the classification accuracy of the system 

(Franke et al. 2012). Several techniques, such as AI and ML algorithms have been 
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used to achieve these aims. They work as a hybrid technique that combines two or 

more techniques. They are advantageous as each of the combined techniques 

compliment the benefits of each order (Modi et al., 2013).  

The IDS monitor user activities and track network traffic to determine the 

nature of ongoing activities in the network. In the presence of malicious activities, the 

IDS generate an alarm. Several techniques, such as anomalies or signatures of attack 

are used by the detection system for the detection of attacks, and these techniques 

determine the effectiveness of an IDS (Gohil, 2015). IDS can be grouped into 2 based 

on their placement in the network; one group is the host-based IDS (HIDS) and the 

other is the network-based IDS (NIDS), as shown in Figure 2.3 (Kwon et al., 2017). 

IDS can further be classified based on how the execute intrusion detection; they can be 

classified into misuse or signature-based and anomaly detection systems. In the next 

sections, an overview each group is provided.   

2.3.1 Classifications of Intrusion Detection System  

2.3.1.1 Host Based Intrusion Detection (HIDS) 

The host-based IDS (HIDS) is a group of intrusion detection system which 

focuses on monitoring and analyzing information sourced from a specific host system 

(Modi et al., 2013). The HIDS detects intrusion on its host machine by analyzing 

information collected from the system, such as network events, the file system used, 

system calls, etc. The HIDS depends on the characteristics of a system to observe any 

modification in the kernel and host file system. Figure 2.4 shows some host machines 

with installed HIDS. The figure portrays how each host or server with IDS is being 

monitored. Each HIDS monitors and detects unauthorized invasion of its host 

machine.   

There are two components of IDS service – analysis and alert system. Data is 

captured by the event auditor from various sources such as system logs, and based on 

the sourced data, the IDS can detect any form of intrusion using either behavior or 

knowledge-based techniques. The IDS detect known to attack using the knowledge-

based technique but use the behavior-based technique to detect unknown attacks. To 

detect unknown invasion, ANN can be used with this approach (Shah & Trivedi, 
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2012). In the presence of an active intrusion, the IDS sends alert to all the other nodes 

using the alert system (Modi et al., 2013). This is an efficient approach for the 

detection of known attacks via the knowledge-based technique, as well as unknown 

attacks by applying feedforward ANN. 

2.3.1.2 Network Based Intrusion Detection System (NIDS) 

A network-based IDS (NIDS) is a form of IDS which monitors network 

activities to detect malicious activities such as port scans, DoS attacks, or even 

attempted network intrusion (Modi, 2013). The system collects information from the 

network and compared it with known attack signatures. The NIDS has a stronger 

detection mechanism as it compares the current traffic behavior with an already 

established attack signature. The NIDS mostly detects intrusion by monitoring the IP 

and transport layer headers of the data packet. The NIDS uses both anomaly and 

signature-based techniques for intrusion detection. The NIDS are rarely visible inside 

their host. In an encrypted network traffic, there is no need to decrypt the traffic prior 

to analysis (Modi et al. 2013). Figure 2.4 shows the positioning of NIDS and their 

demands in a typical network. The figure also shows how NIDS focus on monitoring a 

group of servers which makes the difference from the HIDS. The NIDS is positioned 

between the network hosts and the installed firewall (Kumar, 2015). They are superior 

to the HIDS because HIDS can only protect one system while NIDS can protect all the 

systems connected to the network. 

2.3.2  Intrusion Detection System Techniques 

2.3.2.1 Signature Based On IDS 

The signature-based IDs detects new attacks by defining a set of signatures or 

previous knowledge base for deciding the pattern of a given intrusion (Hubballi & 

Suryanarayanan, 2014). Consequently, the signature-based IDS can reach a high level 

of accuracy and low false positive alarm rates when identifying subtle intrusions 

(Brown et al., 2002). If these systems are poorly configured, the can be affected by a 

slight variation in the nature of known attacks. They are efficient for detecting known 

attacks but may fail to detect variants of a known attack (Hubballi & Suryanarayanan, 

2014; Kevric et al., 2017). One reason for using signature-based IDS is the ease of 
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updating and maintaining their preconfigured rules. These signatures contain several 

traffic identification elements (Modi, Patel et al. 2013), but cannot be used in the 

traditional networks for the detection of unknown attacks. This limitation impacts the 

systems’ performance because any variation in the attack signatures results in 

performance compromise.  

2.3.2.2  Anomaly Based On IDS  

The anomaly-based IDS are developed for uncovering the patterns of normal 

behaviours. The system establishes a benchmark of normal usage behaviours and 

considers any deviation from the set benchmark as an intrusion (Thatte et al., 2011). 

Intrusions considered to be an anomaly can vary, but normally, any incident that 

occurs with a frequency of more than or less than 2SD from the statistical norm is a 

suspect (Bringas and Penya, 2009). The anomaly-based IDS do not operate based on a 

database of previously known signatures; therefore, they can detect unknown 

intrusions and insider abuses (Maggi et al. 2009). Several studied have proposed the 

classification of anomaly-based IDS into static and dynamic anomaly detection. The 

static classification presumes that the behaviour of monitored targets cannot change 

(Wu and Banzhaf 2010), while the dynamic anomaly detection presumes that they 

extract patterns from behavioural habits of the end users or use the history of 

networks.  The anomaly-based IDS can be generally categorized into three categories 

based on the processing involved (Hoang, Hu et al. 2009):  

1. Statistical anomaly detection methods: These systems operate on two 

profiles: a normal profile which is built during the training phase, and the 

current profile built during the detection phase. The system monitors network 

activities like CPU usage and the number of TCP connections in terms of 

statistical distribution. These two profiles are compared during an active 

connection to facilitate the identification of anomalies when there is a 

statistically significant difference between the profiles. This method suffers 

from the difficulty of determining what constitutes a meaningful activity.  

2. Data-mining-based methods: These methods automate the finding of 

meaningful activities/features. They comprised of classification-based ID, 

associate rule discovery, and clustering/outlier detection. In general, they 
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require a lot of computational effort and often produces high rates of false 

alarm.  

3. Machine learning-based methods: These are also known as call-based 

sequence analysis. They are one of the commonly used ID techniques. The 

ANN is a notable example of this group. Based on the analysis of the recent 

trend in anomaly detection studies, several ML methods have been proposed 

and reported to have a high detection rate and at the same time, keeping a low 

rate of false alarm (Kevric et al., 2017). 

The anomaly detection techniques can be deployed for the detection of new 

attacks at different levels in network structure. Also several system events do occur 

which makes it difficult to control or monitor them which make researchers prefer 

using the anomaly detection systems (Modi et al. 2013). Several instances have shown 

the use of anomaly detection techniques for the detection of intrusions at different 

datasets (Garfinkel and Rosenblum 2003; Dastjerdi et al. 2009; Vieira and Schuler 

2010). Because of these advantages of anomaly IDS, this work will apply the new 

model based on the anomaly detection. Table 2.1 shows a brief comparison of the 

anomaly and signature-based detection techniques based on our literature review. 

Table 2-1 comparison between Anomaly and signature detection 

Aspects Anomaly Detection Signature 

Characteristics Uses the deviation from normal usage 

patterns to identify intrusions. 

Uses the patterns of known attacks 

(signatures) to identify intrusions. 

Drawbacks -Has to study sequential interrelation 

between transactions 

- False positives. 

- Known attacks have to be hand-

coded 

- Unable to detect new attacks 

- Need signatures update 

 

2.3.3 Intrusion Detection System Challenges  

Studies have been ongoing on new systems for an automatic detection of 

abnormal system usages. Moreover, Denning reported the development of an intrusion 

detecting model, which he suggested as a framework for a general-purpose IDS 

(Denning, 1987). Since then, experts have developed and applied several algorithms 

for automating the process of network intrusion detection. They have also continually 

pursued more accurate, faster and scalable methods for this purpose. With the arrival 

of the “IoT” era, it is expected that the number of connected devices would exceed 26 

billion by the year 2020 (Gartner,2013). With this trend, the type and number of 
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cybersecurity issues are also expected to increase. Figure 2.4 shows some of the 

common challenges of IDS.  

 

Figure 2.4  IDS challenges 

 

Some researchers have recently advocated for more categories of IDS. Liao et 

al. (2013) for instance, claimed that IDS should be further categorized into 5 sub-

categories which may belong to any of the aforementioned classes. The suggested sub-

classes are pattern-based, rule-based, statistics-based, state-based, and heuristic-based 

IDS. Meanwhile, such a classification could result in confusion due to the number of 

similarities between the strength of the individual techniques, as well as the lack of 

clear criteria that distinguishes one technique from the other. The signature or rule-

based IDS generally have rates of false positive rates but suffer from an inability to 

capture new types of attacks (Fossaceca et al., 2015). Systems that are built to detect 

anomalies should have a high rate of false positive alarm detection. The ID systems 

that are based on stateful protocol analysis present varying detection performances 

based on the level of their profile definition (Ghorbani et al., 2010). A major challenge 

of this approach is keeping an up-to-date profile as new protocols evolve over time. 

As earlier discussed, this study is focused on the development of an anomaly-

based IDS with a good accuracy and a minimal false positive detection. Many studies 

have been performed on false alarm reduction in IDS. Pietraszek estimated that about 

99% of ID alerts do not involve cyber-security issues due to the observed slight 
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differences between normal and malicious activities (Moradi & Zulkernine, 2004). 

The other challenged pointed by Pietraszek include the development of accurate 

signatures that can capture attack behavior but not triggered during legal operations 

since some activities may be allowed under certain conditions but considered as 

suspicious at others. The “Adaptive Learner for Alert Classification” (ALAC) 

approach proposed by Pietraszek uses ML techniques, coupled with a human-based 

observatory training to adaptively learn the implicit classification rules. Due to the 

involvement of human factor during the training, the ALAC system can be 

incrementally upgraded as the condition changes.As mentioned in the previous 

chapter, the main challenges of the current anomaly IDS are that the complication of 

developing a system with these characteristics is higher than in the case of misuse 

detection (Elhag et al., 2015). Furthermore, a higher percentage of false alarms is 

raised (Elhag et al., 2015; Shah & Issac, 2018), coupled with a low detection rate 

(Raghav, 2013; Singh et al., 2015). There is also an issue of the unbalanced dataset 

which impacts the evaluation of the models (Fossaceca et al., 2015; Tavallaee et al., 

2009). This work proposes a new hybrid model comprised of a new machine learning 

(FLN) and PSO algorithms for the reduction of the false alarm and increasing of the 

accuracy of IDS using NSL-KDD dataset.   

2.3.4 Intrusion Detection System Dataset 

In IDS research, the KDD Cup 1999 is the commonest data set used. This data 

contains about 4,900,000 connection records and each record consists of 41 features 

(“KDD Cup 1999 Dataset,” 2010). This data has been statistically analysed and 

presented (Tavallaee et al., 2009). In the KDD data set, there are four major categories 

of attacks as mentioned in previous chapter; they are: 

 Denial of Service (DoS):  

DoS is a form of attack in which the intruder has access to the computing 

accessories and make the system too clustered or busy to consider genuine requests, 

thereby, denying access to the legitimate users. 

 Surveillance and Other Probing:  

Probing is a situation where an attacker can scan the network and identify 

system vulnerabilities to exploit based on the gained information. 
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 Unauthorized Access from a Remote Machine (R2L): 

A remote to user (R2L) attack is a situation where a packet is sent by an 

attacker to a network machine, then, exploit the weakness of that machine to gain an 

unlawful access to the network as a regular user. 

 Unauthorized Access to Local Super User (U2R):  

User to root is a situation where an attacker can access a network as a regular 

user and then, exploit the network susceptibility to getting root access. Many ML 

and pattern classification algorithms have been used to solve intrusion detection 

problems based on the KDD dataset, but have all failed to detect most of the remote-

to-local and user-to-root attacks. The limitations of the KDD99 data set has been 

identified (Sabhnani & Serpen, 2004) and suggested not to be used in training 

pattern recognition or ML algorithms for misuse detection of these two attack 

categories. NSL-KDD data set, it has been reported that the KDD99 dataset has 

many problems; for example, it contains several redundant features, and the 

difficulty level of the different records and the percentage of records in the original 

KDD dataset are not inversely proportional. These deficits result in a poor evaluation 

of different proposed ID techniques. The NSL-KDD dataset was proposed to 

overcome some of these inherent problems of the KDD Cup 1999 data set. The 

proposed new dataset consists of selected records of the complete KDD dataset 

(Tavallaee et al., 2009). Table 2.2 showed the NSL-KDD data variables, while Table 

2.3 showed the distribution of attack records per attack category (Kang & Kim, 

2016). The following are some of the advantages of the NSL-KDD over the original 

KDD dataset (Tavallaee et al., 2009):  

1. Redundant records are excluded in the training set. Thus, there is no bias towards 

more frequent records.  

2. In the original KDD data set, the number of records selected from each group level 

and the percentage of records is inversely related. 

3. If there is a sound number of records in the training and testing portions, 

experiments on the whole set can be economically tested without the necessity for 

a random sample at a reduced scale. 
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Table 2.2  The features of the NSL-KDD data set 

F Name Type Min Max 

1.  Duration Numeric 0 54,451 

2.  protocol_type Symbolic 0 2 

3.  Service Symbolic 0 64 

4.  Flag Symbolic 0 10 

5.  src_bytes Numeric 0 89,581,520 

6.  dst_bytes Numeric 0 7,028,652 

7.  Land Boolean 0 1 

8.  wrong_fragment Numeric 0 3 

9.  Urgent Numeric 0 3 

10.  Hot Numeric 0 101 

11.  num_failed_logins Numeric 0 4 

12.  logged_in Boolean 0 1 

13.  num_compromised Numeric 0 7479 

14.  root_shell Numeric 0 1 

15.  su_attempted Numeric 0 2 

16.  num_root Numeric 0 7468 

17.  num_file_creations Numeric 0 100 

18.  num_shells Numeric 0 2 

19.  num_access_files Numeric 0 9 

20.  num_outbound_cmds Numeric 0 0 

21.  is_host_login Boolean 0 1 

22.  is_guest_login Boolean 0 1 

23.  Count Numeric 0 511 

24.  srv_count Numeric 0 511 

25.  serror_rate Numeric 0 1.0 

26.  srv_serror_rate Numeric 0 1.0 

27.  rerror_rate Numeric 0 1.0 

28.  srv_rerror_rate Numeric 0 1.0 

29.  same_srv_rate Numeric 0 1.0 

30.  diff_srv_rate Numeric 0 1.0 

31.  srv_diff_host_rate Numeric 0 1.0 

32.  dst_host_count Numeric 0 255 

33.  dst_host_srv_count Numeric 0 255 

34.  dst_host_same_srv_rate Numeric 0 1.0 

35.  dst_host_diff_srv_rate Numeric 0 1.0 

36.  dst_host_same_src_port_rate Numeric 0 1.0 

37.  dst_host_srv_diff_host_rate Numeric 0 1.0 

38.  dst_host_serror_rate Numeric 0 1.0 

39.  dst_host_srv_serror_rate Numeric 0 1.0 

40.  dst_host_rerror_rate Numeric 0 1.0 

41.  dst_host_srv_rerror_rate Numeric 0 1.0 
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Table 2.3 Distribution of Attack Records per NSL-KDD Attack Category 

Attack Category Attack Name No. of Records 

 Back 956 

 Land 18 

 Neptune 41214 

 Pod 201 

 Smurf 2646 

 Teardrop 892 

DoS  45927 

 Satan 3633 

 Ipsweep 3599 

 Nmap 1493 

 Portsweep 2931 

Probe  995 

 Guess_Password 53 

 Ftp_write 8 

Table 3.4Continued   

 Imap 11 

 Phf 4 

 Multihop 7 

 Warezmaster 20 

 Warezclinet 890 

 Spy 2 

R2L  995 

 Buffer_overflow 30 

 Loadmodule 9 

 Rootkit 10 

 Perl 3 

Normal  67343 

U2R  52 

Total  125973 

 

Tavallaee et al. (2009) employed 21 learned machines to label the records of 

the entire KDD training and testing sets. This labeling provided 21 predicted labels for 

each record. From the results, they observed that about 98% of the training records and 

86% of the testing records were correctly classified with all the learners. Hence, the 

machines achieve about 86% to 98% classification rate. Note that a minimum 

classification rate of 86% can cause difficulties in the comparison task since they all 

vary within 86 to 100%. A significant problem with the KDD99 data set is the large 

rate of redundancy. An analysis of the KDD99 training and testing sets showed that 

78% and 75% of the dataset are duplicated in both sets. This redundancy can cause 

learning algorithms to be biased towards the more frequent data records and prevent 

them from learning occasional records such as U2R attacks which are basically more 

dangerous to the networks. Additionally, this method can lead to biased evaluation 

results. 
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Similarly, Sabhnani and Serpen (2004) presented similar problems in a 

different way. They reported that pattern recognition and ML algorithms trained with 

the KDD99 training subset and tested on the KDD99 testing data may fail to detect 

most of the U2R and R2L attacks. Tavallaee et al. (2009) offered a way out of these 

issues by providing a new set of training and testing sets comprised of selected records 

of the complete KDD data set. These new data set are free of the aforementioned 

problems and are referred to as NSL-KDD. It is freely and publicly available for use. 

The NSL-KDD was streamlined by removing most of the redundant records and 

adjusting their distribution based on difficulty (Fossaceca et al. 2015). The next 

subsection provide an explanation of machine learning algorithms and methods based 

on intrusion detection system. 

2.4 Machine Learning Based Intrusion Detection System 

 The conventional techniques such as encryption, firewalls, and access control 

have failed in the provision of complete protection to networks and systems from the 

increasingly complicated forms of attacks and malware (Kaur et al., 2014). 

Consequently, the IDS have been developed as an indispensable aspect of security 

systems which is used for the detection of attacks even before they occur (Mishra et 

al., 2016). There are certain issues to consider when building IDS, issues like data 

collection, intrusion recognition, data pre-processing, reporting, and response. Among 

these issues, the most important is intrusion recognition. Audit data are examined and 

compared with detection models to describe their nature (normal or benign). This is to 

ensure the identification of both successful and unsuccessful intrusion attempts.      

Furthermore, ML has not demonstrated good detection accuracy and fast 

processing times when challenged with these requirements (Zamani & Movahedi, 

2013). Fortunately, (Fossaceca et al., 2015)owing to the ability of the computational 

intelligence techniques to adapt and exhibit fault tolerance, as well as their high 

calculative speed and resilience against noisy information, they compensate for the 

limitations of these two approaches. Also, in section 2.3.2.2 discussed several 

categorized of algorithms based on IDS and the benefits of ML in compared with other 

categories.   



24 

Although the amount of work that adoption machine learning based on 

intrusion detection is increasing because of the advantages that mentioned in anomaly 

based IDS section. Moreover, most of the systems that are based on these techniques 

are prone to high rates of false positive and false-negative alarm( Perera Miriya 

Thanthrige, Jagath Samarabandu, 2016). They also lack the ability to continuously 

adapt to emerging attack behaviors (Udaya et al., 2016). Previously, several ML 

techniques have been used to solve ID problems with the hope that they will improve 

the rate and adaptability of detection. It can be summarized that the computational 

intelligence systems also have similar features such as computational adaptation, high 

computational speed, fault tolerance, and fewer chances of error due to redundant 

information. In this work, the IDS-based intelligence systems are classified as singles 

and hybrids, as discussed in the next subsections.  

2.4.1 Single Algorithm Based Intrusion Detection System 

Soft computing techniques (SCT) have found application in IDS due to their 

ability to handle uncertain and partially true data (Moradi and Zulkernine, 2004). 

Several SCTs exist, such as artificial intelligence (ANN), Association rule mining, 

Fuzzy logic, support vector machine (SVM), genetic algorithm (GA), etc. which can 

be deployed for the improvement of the detection accuracy of the signature or 

anomaly-based IDS. The ANNs are used for ID for data generalization and 

classification (as normal or intrusive) (Han and Kamber, 2006; Ibrahim, 2010).  

Zhang et al. (2010) proposed an IDS based on BP and NN. The proposed 

system was built with only one hidden layer and consequently, the system was shown 

to have a good efficiency. Furthermore, they evaluated the system on the complete 

KDD ‘99 data set. They also stated that when the number of neurons in the hidden 

layer is extremely few, the system may have poor network non-linear mapping and 

fault tolerance, but and if too many, there will be a substantial increase in the learning 

time.  Chen et al. (2005) presented better results (for false positive rates) using SVM 

compared to ANN. This is because ANN requires a large number of training sets for 

an effective classification while SVM needs just setting fewer parameters. Meanwhile, 

the SVM is only ideal for binary data. Nevertheless, the detection accuracy of SVM 

can be enhanced by combining it with other techniques (Li and Lu, 2010).  
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Finally, combining approaches to improve the robustness of IDS is not a new 

idea. In fact, prior research has demonstrated that an ensemble of Neural Networks, 

SVMs, and Multiple Adaptive Regressive Splines (MARS) performs better than each 

algorithm individually but is difficult to scale to large datasets (Mukkamala, Sung, & 

Abraham, 2005). For example, in (Koc et al., 2012) demonstrated the effectiveness of 

using a Hidden Naïve Bayes approach to Network Intrusion Detection and in his Ph.D. 

dissertation Koc noted that certain algorithms perform better at detecting specific types 

of attacks than others (Koc, 2013). Koc suggests that utilization of a combined 

framework consisting of multiple algorithms that would apply the best performing 

algorithms for classification of each attack category would be an area worthy of future 

study. Furthermore, (Fossaceca et al., 2015) this gives a motivation for several works 

that mention the intrusion detection based on the hybrid system is more accurate and 

improve the performance than the system based on single algorithm or method as we 

will explain in the next section.    

2.4.2 Hybrid Algorithms Based Intrusion Detection System  

Hybrid techniques comprise of a combination of any two or more of the 

aforementioned techniques (Zamani & Movahedi, 2013). The hybrid intelligent 

systems serve as alternative methods for the unorthodox handling of the increasingly 

complex detection problems which borders on data ambiguity, high-dimensionality, 

and uncertainty. They allow the use of both a pre- and raw data knowledge to generate 

innovative solutions(Woźniak et al., 2014). Figure 2.5 is a rough depiction of the 

domains of the hybrid intelligent systems 

 

Figure 2.5 Domains of hybrid intelligent systems (Woźniak et al., 2014) 
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            Figure 2.5 showed the domains of the hybrid intelligent systems, and some of 

these domains deal with data ambiguity and uncertainty using probabilistic or fuzzy 

representations and feature extraction, while others are concerned with optimization 

problems encountered in different areas of intelligent system design and problem-

solving using either a stochastic process or nature-inspired approach. Finally, 

classifiers that implement intelligent decision processes are also subject to various 

forms of hybridization combinations. (Fossaceca et al., 2015) Based on the 

enumerated benefits of the hybrids systems, several works have proposed their use as 

IDS.    

Hassan (2013) proposed an IDS design based on GA and fuzzy logic using the 

KDD CUP ‘99 as a benchmark dataset. The work proposed genetic fuzzy rules for the 

detection of malicious activities and specific intrusions. In addition, the method was 

deficient in two aspects, first, it generates false alarms and this is a serious IDS 

problem; second, it is difficult to generate rules that cover all the attributes of a high 

dimensional data set. Moreover, Kavitha et al. (2013) also proposed an anomaly IDS 

based on fuzzy rules. The rules are used to create a detection model in the training 

phase and used to update the same model during the testing phase. The used Particle 

Swarm Optimization (PSO) to improve the accuracy of detection by finding the 

optimum membership functions of fuzzy, they achieved 85% rate of the total accuracy. 

In addition, the authors in (Khan, Javed Akhtar, 2016) proposed a popular 

support vector machine based algorithm called Kernelized support vector machine and 

an Extreme Learning Machine (ELM) -based algorithm called Kernelized-ELM to 

work as IDS. They mentioned some limitations of the Artificial Neural Network 

(ANN) and basic SVM, such as slow learning speed and poor scalability when 

compared to ELM. A combination of more than one algorithm may be used to 

eliminate the disadvantages of one another.(G.B. Huang et al., 2012) investigated the 

use of ELM to classify and detect intrusions. Also mentioned the limitations of SVM 

and ANN, such as poor performances in multi-class classification, long training times, 

and requiring parameter training. The results show that basic ELM outperformed SVM 

in training and testing speed. Based on several previous works, it has been shown that 

complexity is one of the limitations of hybrid models compared to single models, but 
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on the other hand, most of the works reported improved accuracy with hybrid models 

compared to single model algorithms. 

2.5 The Artificial Neural Network Versions  

A computational network is a style of computation where data flows through a 

graph and computations happen in the nodes of the graph. The computational networks 

aim to take feature data and transform same through a network of simple computations 

to produce one or more outputs. The output is usually decisions based on the input 

features (Yu et al., 2015). ANNs are computational models used in ML. They are 

based on a large collection of connected simple units called artificial neurons which 

have a similar resemblance with the axons in the human brain. The randomization in 

the neural network (NN) has resulted in three broad families of NN models classified 

as follows (Scardapane & Wang, 2017):   

1. Feedforword Network with Random. 

2. Recurrent NN with Random Weights. 

3. Randomized Kernel Approximations.  

These methods are fundamentally distinct but share two basic ideas that 

contribute to their efficiency. First, these methods use randomization to define a 

feature map that transforms the input into a higher dimensional space easy learning. 

Second, the resulting optimization problem is cast as a standard linear least-squares 

which, by far, is the simplest scalable and most studied learning procedure to date.  

Various methods have been proposed for improving the efficiency of 

Feedforward neural network (FNN) training. Such methods include subset selection 

methods (Li, Peng, & Irwin, 2005; Chen, Cowan, & Grant, 1991), second-order 

optimization methods (Wilamowski & Yu, 2010; Hagan & Menhaj, 1994), and global 

optimization methods (Yao, 1993; Branke, 1995). Although these methods can lead to 

faster training speed compared to the BP algorithm, a global optimization solution may 

still not be achieved with most of these methods. The BP is a first-order gradient 

method for optimization studies but it is prone to slow convergence and trapping in a 

local minimum. 
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Generally, the learning speed of FFNs is slower than normal, and this has been 

a major setback in their applications over the years. The two reasons for this could be 

traced to i) the extensive use of the slow gradient-based learning algorithms for 

training NN, and ii) the iterative tuning of all network parameters using such learning 

algorithms (Huang et al., 2006). Guang-bin et al. (2004) proposed Extreme Learning 

Machine (ELM) for the training of Single hidden layer feedforward neural network 

(SLFNs). In the ELM, there is a random initiation of the hidden nodes before being 

fixed with no iterative tuning. Only the connection weights between the hidden and 

output layers are the free parameters that need to be learned. Thus, the ELM is 

developed as a linear parameter model for solving linear system problems. The ELM, 

when compared to the conventional NN learning methods, is remarkably more 

efficient and tends to reach a global optimum. Theoretical studies have demonstrated 

the ability of ELM to maintain the universal approximation capability of SLFNs even 

with randomly generated hidden nodes.  

(Huang et al., 2006) compared ELM to some common algorithms such as BP 

and SVM and showed ELM to learn faster than SVM. The analysis also showed ELM 

to have a better generalization performance compared to BP in most cases. Zhou et al. 

(2012) investigated the performance of ELM and found it to be independent of the 

number of hidden neurons if it is reasonably large. Cao et al. (2015) proposed ELM for 

speeding up the testing process in hybrid Sparse Representation Classification (SRC). 

The hybrid classifier which is a combination of ELM and SRC showed excellent 

results in both recognition time and classification rate. The authors justified the use of 

ELM rather than SVM on the fact that ELM has a faster speed of data processing and 

generalization performance. Most researches in recent times have depended on the 

ELM (Kiaee et al., 2015; Wang et al., 2014), and most studies on the comparison of 

SVM and ELMs have concluded that ELM performed significantly better than SVM in 

terms of learning/classification and computational speed. Furthermore, next section 

includes explain of FLN algorithm equations and applications which it is improved 

most of the limitations that mentioned above.  

2.6 Fast Learning Network Algorithm  

ANNs have found application in different fields because they can directly 

approximate complex nonlinear mappings from input patterns (May et al., 2010). The 
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ANNs have no need for a user-specified problem-solving algorithm, but they can learn 

from existing examples just like the human brain. Additionally, they have an in-built 

generalization ability, meaning that they could identify and synchronously respond to 

similar patterns but not like ones that are used to train ANNs. Meanwhile, the free 

ANN parameters would be defined by learning from the given training samples based 

on the gradient descent algorithms which minimizes the learning process (Kiranyaz et 

al., 2009). Based on these shortcomings, the training of ANNs can take longer time 

and could have suboptimal solutions. 

To address these problems, Huang proposed a new ANN called ELM (Guang-

bin Huang et al., 2004) as a novel SLFN where the input weights and bias of the 

hidden nodes are randomly generated without tuning, and the output weights are 

analytically determined. The ELM is fast learning algorithm with good a 

generalization potential and has successfully been deployed in various fields like in 

function approximation (Approximation & Problems, 2009; Han & Huang, 2006) and 

pattern classification. The ELM is fully automated and differed from other 

conventional learning algorithms such as BP which may face difficulties during the 

manual tuning of its control parameters. However, one problem with ELM is that its 

classification capability may not be optimal for the learning parameters of the hidden 

nodes which are randomly assigned but remained unchanged during the training phase 

(Cao et al., 2012). Therefore, there could be a misclassification of some samples using 

ELM, especially those near the classification boundary. ELM is also found to require 

more hidden neurons in many cased compared to other tuning-based algorithms 

(Huang et al., 2005; Huynh & Won, 2008). However, an increase in the number of 

hidden layer neurons will cause an exponential increase in the number of weight and 

random initialization thresholds, though these values cannot be said to be the best 

parameters that will give optimum performance. 

Additionally, the ELM has other deficiencies, such as having more hidden 

neurons compared to the other tuning-based learning algorithms in several applications 

(Li, Niu, Duan, et al., 2014). This could make a trained ELM to require a longer time 

to respond to unknown testing data. Several variants of the ELM have been proposed 

to address these challenges, such as the incremental ELM (Guang Bin Huang et al., 

2006), symmetric ELM (Liu et al., 2013); error-minimized ELM (Feng et al., 2009), 
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pruning ELM (Rong et al., 2008), two-stage ELM (Lan et al., 2010), voting-based 

ELM (Cao et al., 2012), ordinal ELM (Deng et al., 2010), evolutionary ELM (Huang 

et al., 2005), and fully complex ELM (M. Bin Li et al., 2005) 

In 2013, the FLN, an artificial neural network-based model was proposed by 

(Li et al.,  2013). The FLN is a double parallel FNN (DPFNN) made up of a parallel 

connected multilayer feedforward neural network and SLFN (Wang et al., 2011). The 

output nodes of the DPFNNs not only receive the recodifies external information 

through the hidden nodes, it also directly receives the external information through the 

input nodes.  

Several studies have demonstrated a better convergence speed and 

generalization capability of the DPFNN compared to other multilayer FNN (Chen & 

Chau, 2016). Despite their wide application in several applications, they have certain 

drawbacks, such as trapping in local minimum and over-fitting. Similarly, many 

approaches that usually focus on the method for input selection hinder the further 

minimization of redundancy and improvement of network generalization performance 

when the DPFNN is composed of MFNN and SFNN with good nonlinear mapping 

capability and high learning speed. The learning capacity can be improved through a 

parallel connection between MFNN and SFNN via the indirect and direct information 

(Rui Huang, 2007). Furthermore, other studies have shown improvement in the speed, 

accuracy, convergence speed and generalization capability of DPFNN compared to the 

other common FNNs. The biggest difference with ELM is that the input layer and the 

output layer are added directly on the basis of the SLFN (G. Li et al., 2017); therefore, 

the FLN can be considered as a model of nonlinear relation between the hidden layer 

to the output layer, and the linear relation of the input layer to the output layer. Table 

2.4 shows the main differences between ELM and FLN. 

Table 2.4 represent  FLN vs ELM 

FLN ELM 

Double parallel forward neural network. The 

output nodes not only obtain the recodification of 

the external information through the hidden layer 

nodes, but also obtain the external information 

itself directly through the input layer nodes 

Single hidden layer feedforward neural network. 

The output nodes only obtain the recodification 

of the external information through the hidden 

layer nodes 
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2.6.1 Basic Fast Learning Network 

The FLN is made up of a parallel connection of a single layer feedforward 

neural network and a three-layer feedforward neural network: input layer, hidden layer 

and output layer(G. Li, Niu, Duan, et al., 2014). The structure of FLN is depicted in 

Figure 2.7. 

 

Figure 2.6 The structure of FLN 

Suppose there are N arbitrary distinct samples {(𝑥𝑖 , 𝑦𝑖), i =1, 2, …, N}, in 

which 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛]𝑇  ∈  𝑅𝑛 is the n-dimensional eigenvector of the ith sample, 

and 𝑦𝑖  = [𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝐼]𝑇  ∈  𝑅𝐼 is the corresponding I-dimension output vector, the 

number of hidden layer nodes is m and there are different methods to determining 

correct number of neurons in hidden layer such as the number of hidden neurons 

should be between the size of input layer and the size of the output layer (Jeff Heaton, 

2008) , 𝛾(. )  is the active function of hidden nodes, Then FLN is mathematically 

modeled as:  

The equations of deriving the output of the FLN based on the provided matrices and 

vectors and they are presented in the following equations.  

𝑦𝑗= 𝑓 (𝑤𝑜𝑖𝑥𝑗+∑ 𝑤𝑘
𝑜ℎ𝑚

𝑘=1 g (𝑤𝑘
𝑖𝑛𝑥𝑗+𝑏𝑘)) ……                                       2.5 

Where j=1,2,….,N, 𝑤𝑜𝑖 = [𝑤1
𝑜𝑖, 𝑤2

𝑜𝑖 , … . . , 𝑤𝐼
𝑜𝑖] is the weight vector connecting the jth 

output node and input nodes, 𝑤𝑘
𝑖𝑛 = [𝑤𝑘1 

𝑖𝑛 , 𝑤𝑘2
𝑖𝑛 , … . . , 𝑤𝑘𝑚

𝑖𝑛 ]  is the weight vector 

connection the kth hidden node and input nodes, 𝑤𝑘
𝑜ℎ = [𝑤1𝑘

𝑜ℎ, 𝑤2𝑘
𝑜ℎ, … . , 𝑤𝐼𝑘

𝑜ℎ] is the 
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weight vector connection the kth hidden node and output nodes, 𝑏𝑘 is the kth hidden 

nodes biases. A more compact representation is given as follows.  

 

Y= 𝑤𝑜𝑖x+𝑤𝑜ℎG = [𝑤𝑜𝑖𝑤𝑜ℎ] [
𝑋
𝐺

] = 𝑊 [
𝑋
𝐺

]… …………                           ...                          2.6 

Where  

G (𝑊1
𝑖𝑛, ⋯ , 𝑊𝑚

𝑖𝑛, 𝑏1, ⋯ , 𝑏𝑚, ⋯ , 𝑋𝑁)………………                                                                 2.7 

=[
𝑔(𝑊1

𝑖𝑛𝑋1 + 𝑏1) ⋯ 𝑔(𝑊1
𝑖𝑛𝑋𝑁 + 𝑏1)

⋮ ⋱ ⋮
𝑔(𝑊𝑚

𝑖𝑛𝑋1 + 𝑏𝑚) ⋯ 𝑔(𝑊𝑚
𝑖𝑛𝑋𝑁 + 𝑏𝑚

]

𝑚×𝑁

 

W=[𝑊𝑜𝑖𝑊𝑜ℎ]𝐼×(𝑛+ 𝑚)                                                                                                                                                       2.8 

The matrix W=[𝑊𝑜𝑖𝑊𝑜ℎ] is the output weights, and G is the hidden layer 

output matrix of FLN. A Moore Penrose generalized inverse is used to resolve the 

model (Liang et al., 2006). The minimum norm least-squares solution of the linear 

system could be written as: 

�̂� = (𝑌) [
𝑋
𝐺

]
+

                                              
2.10 

 

{
𝑤𝑜𝑖 = �̂�(1: 𝐼, 1: 𝑛)

𝑤𝑜ℎ = �̂�(1: 𝐼, 𝑛 + 1: 𝑛 + 𝑚)
                                                                                            2.11 

An algorithm to explain the learning of the FLN is presented in the flowchart 

depicted in Figure 3.4. The algorithm starts with a random initialization of the weights 

between the input and hidden layer. Next, the G matrix is found depending on both the 

input-hidden matrix. This matrix represents the output matrix of the hidden layer. 

Next, both the input-output matrix 𝑤𝑜𝑖 and 𝑤𝑜ℎ  are found using Moore-Penrose 

equations. As a result, a complete FLN model is established.  

The biases of the input weights and hidden layers in the FLN are still randomly 

generated as in ELM, but the weight values of the connection output-input layer 

connection and the weight values of the output and input nodes are determined 

analytically using least squares methods. Therefore, the FLN does not only deal with 

liner high precision problems but also infinitely approximates nonlinear systems (Li et 

al., 2017). Additionally, the FLN can overcome the drawbacks of the conventional 

neural network that does not need iterative calculation. (Li, Niu, & Duan, 2013) 
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compared FLN with ELM, SVM, and BP, and the results showed FLN with a smaller 

number of hidden units to achieve a good stability and generalization performance 

when applied in several applications.  

Moreover, there are several works that proposed FLN in different fields, in G. 

Li et al., 2017) work proposed artificial neural network called Parallel Layer 

Perceptron Fast Learning Network(PLP-FLN). The authors used Parallel Layer 

Perceptron (PLP) to map nonlinear input-output relationships. By comparing the PLP-

FLN model with FLN, ELM and KELM, through 7 classification problems and 12 

regression applications the results showed that the PLP-FLN had demonstrated better 

approximations, generalization ability and classification performance.  

In (P. Niu, Chen, et al., 2017) work, authors proposed model based on adopted 

an ameliorated krill herd algorithm (A-KH) to adjust the parameters of the FLN in 

order to obtain a high-precision prediction model. The proposed model used s to build 

a regression model based the turbine heat rate of a 600MW supercritical steam. The 

model is compared with several numeric functions to find the best function value 

based on 8 functions. The total data that used to evaluate the model include 96 pairs 

for training set, and 24 pairs for testing set, and that mean not enough for evaluate 

complex propose a model. FLN has been used as a benchmark to compare to the 

performance of some proposed models (Niu et al. (2016); Li et al. (2017). The FLN is 

one of the new algorithms based on ANN that was used to build NOx emissions model 

Ma et al. (2018). Moreover, most of the researchers stated that FLN can overcome the 

problems of traditional neural network (Li et al., 2017). (Fossaceca et al., 2015) A 

brief review of other ML methods compared to FLN is provided as follows: 

1. Bayes Network Classifier: This classifier depends on probability feature 

distribution for the estimation of the conditional capabilities of certain observations 

belonging to certain classes. Even though this method is well suited for large datasets, 

the classes are presumed to be independent and it is difficult to estimate the actual 

network traffic probabilities. 

2. K Nearest Neighbours (KNN): In this classifier, the majority vote of nearest 

neighbours is considered during the classification of each observation via a similarity 

measure. Although this is an easy technique to implement, the KNN requires a 
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significantly large storage space, performs poorly on datasets with high 

dimensionality. 

3. Decision Tree: The decision tree divides data into specific classes using a recursive 

approach to learning; however, this algorithm is very complex and unstable. 

4. Neural Networks: The NN rely on the modelling of the human brain operation. Its 

single or multilayer perceptron’s are trained with gradient descent algorithms like BP 

for the optimization of the neuron weights and to minimize the error between the 

predicted and actual training samples. However, NNs are built with a large 

computational burden, and they are susceptible to over-fitting and long processing 

times. 

5. Support Vector Machines (SVMs): The SVM uses statistical optimization 

methods to construct a set of “hyperplanes” in high dimensional space for the 

classification of network traffic into categories. In the SVM, there is a need to 

carefully select the kernel type and a proper adjustment of its parameters. The SVMs 

are highly accurate and can model complex decision boundaries with fewer chances of 

data over-fitting. However, the SVM is highly complex and requires a large memory 

space. The selection of the Kernel is usually difficult and the algorithm runs slowly 

when applied on larger datasets. 

 

6. Extreme Learning Machine: The ELM was proposed to address most of the issues 

of the common learning methods, such as the number of epochs, learning rate, 

stopping criterion, and local minima. However, the Elm still has certain drawbacks, 

such as the need for more hidden neurons in many applications compared to the 

conventional algorithms. This makes trained ELMs to require a longer time to respond 

to unknown testing data. 

Finally, even FLN algorithm improved most of the above tradition machine 

learning algorithms. It is still facing several limitations such as random select of the 

main parameter's values. Moreover, proposed PSO hybrid with FLN to improve the 

limitation as in the next will include an overview of PSO algorithm and its 

improvements. 
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2.7 Particle Swarm Optimization Algorithm 

Over the past 2 decades, nature-inspired metaheuristics have attracted much 

attention due to their efficiency in establishing accurate solutions to complex industrial 

and engineering problems, especially the NP-complete problems. Most nature inspired 

metaheuristics are classified as stochastic techniques. These stochastic algorithms 

randomly pick a set of solutions and improve them based on the algorithmic 

mechanism. The solutions are constantly improved until a set stopping criterion is met. 

Stochastic techniques are classified as random searches but guided to the next iteration 

by heuristics. In the last few years, many stochastic algorithms have been proposed 

due to their great success in finding best solutions to science and engineering problem 

(Diao & Shen, 2015; Slowik & Kwasnicka, 2018). 

The PSO is one of the most popular algorithms first introduced by (R. Eberhart 

& Kennedy, 1995). The PSO solves optimization problems by emulating the flocking 

behavior of birds; where each bird is regarded as a solution. The advantage of the PSO 

when compared to the evolution-based frameworks like the GA lies in its ease of 

implementation and in requiring just a few parameters to be adjusted (Satapathy et al., 

2014; Shi et al., 2005). The PSO has successfully been applied in several instances 

such as function optimization, fuzzy systems, artificial neural network training, and 

feature selection (Chen et al., 2015; Huang & Dun, 2008). It can also be applied to 

other areas where GA can be employed. The following subsection discussed the 

original PSO and its variants.  

2.7.1  Standard Particle Swarm Optimization (PSO) 

The standard version of PSO is a well-known optimization algorithm. The 

swarm is initialized with a random population of solutions. The PSO searches for the 

best positions by updating its component generations. The generated particles in the 

PSO (which are the solutions) fly in a D-dimensional search space at a velocity 

dynamically adjusted based on both their own respective experiences and the 

experience of their neighbours. The ith particle in the PSO is denoted in the D-

dimensional space as 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … . , 𝑥𝑖𝐷) where 𝑥𝑖𝑑 ∈  [𝐿𝐵𝑑, 𝑈𝐵𝑑], d ∈  [1, 𝐷], 

𝐿𝐵𝑑, 𝑈𝐵𝑑  respectively represents the minimum and maximum limits of the 𝑑th 

dimension. The velocity of particle i is given as 𝑣𝑖 = (𝑣𝑖1, 𝑣𝑖2, 𝑣𝑖3, … … , 𝑣𝑖𝐷), which is 
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maintained at a maximum user-specified velocity 𝑉𝑚𝑎𝑥. The particles, at each time step 

t, are manipulated based on the following relation: 

𝑣𝑖 (𝑡 + 1) = 𝑣𝑖 (𝑡)+ 𝑟1𝑐1(𝑃𝑖− 𝑥𝑖 (𝑡)) + 𝑟2𝑐2 (𝑃𝑔 − 𝑥𝑖 (𝑡))                                            2.12 

𝑥𝑖 (𝑡 + 1) = 𝑥𝑖 (𝑡)+ 𝑣𝑖 (𝑡)                                                                                           2.13 

where 𝑟1  and 𝑟2  represents the random values in the range of 0 and 1. 𝑐1  and 𝑐2 

represents the acceleration constants that governs the extent a particle can move within 

a given iteration. The previous best position of the ith particle is represented by 𝑃𝑖. 

Based on the several definitions of 𝑃𝑔 , there are 2 variants of the PSO. A global 

version of PSO is achieved when 𝑃𝑔 represents the position of the best particle among 

the other particles in the same population (also referred to as the as𝑔𝑏𝑒𝑠𝑡). But if 𝑃𝑔 is 

derived from a few number of adjacent particles of a population (called 𝑙𝑏𝑒𝑠𝑡), a local 

version of PSO is achieved. An inertia term w was later introduced by Shi & Eberhart 

(1998) via a modification of Equation 2.13 into: 

𝑣𝑖 (𝑡 +1) = 𝑤 × 𝑣𝑖 (𝑡) + 𝑟1𝑐1 (𝑃𝑖− 𝑥𝑖  (𝑡)) + 𝑟2𝑐2  (𝑃𝑔  − 𝑥𝑖  (𝑡))                                2.14 

They suggested that a proper balance between global and local explorations can be 

achieved through a proper selection of 𝑤, thus, requiring averagely less iterations to 

establish an optimal solution. The 𝑤, as originally developed, is set using the 

following equation: 

𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑖𝑡𝑟𝑚𝑎𝑥
× 𝑖𝑡𝑟                                                                      2.15 

where 𝑤𝑚𝑎𝑥 represents the initial weight, 𝑤𝑚𝑖𝑛 represents the final weights, 𝑖𝑡𝑟𝑚𝑎𝑥 is 

the highest number of allowable iterations, and 𝑖𝑡𝑟 represents the present number of 

iterations. This version of PSO is henceforth referred as a linearly decrease inertia 

weight method (LPSO). In addition, in LPSO, a random inertia weight factor for 

dynamic systems tracking has also been suggested (Eberhart & Yuhui, 2001). This 

inertia weight factor in this development is set to randomly change based on the 

following relation: 

𝑤 = 0.5 −
𝑟𝑎𝑛𝑑()

2
                                                                                                       2.16 
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where rand () represents a uniformly distributed random number in the range of 0 and 

1. The acceleration coefficients were suggested to be maintained at 1.49. This method 

is henceforth referred to as random weight method (RPSO) in the remaining part of 

this work.  

However, PSO is susceptible to premature convergence, trapping to local 

optimum, and low convergence speed for multimodal optimization problems (Lu et al., 

2017). Several studies have previously focused on the improvement of PSO and have 

resulted in the emergence of several PSO variants, such as PSO with passive 

congregation (PSOPC), (He et al., 2004), and the extended PSO (EPSO) algorithms 

(Jun-jie, 2005). The EPSO introduced a third target point in the formula for the 

position and velocity of PSO. Moreover, Lu et al. (2017) proposed APSO as an 

enhancement of the normal PSO by hybridizing the algorithm with the mutation 

mechanism of GA and standard PSO. The basic concept of the APSO is that the 

position of the ith particle in the kth generation does not only depend on 𝑥𝑏𝑒𝑠𝑡, 𝑙𝑜𝑐𝑎𝑙 

and 𝑥𝑏𝑒𝑠𝑡, 𝑔𝑙𝑜𝑏𝑎𝑙 but also on the additional parameter known as an active target 

point. This proposal improved the velocity update formula of the standard PSO and 

make it mutative.  

Several time-varying strategies have been suggested for the regulation of PSO 

parameters. These modifications are fundamentally based on the tuning of the learning 

weights of the particles for their exemplars (Xia et al., 2018). For instance, the 

ubiquitous parameters update rules introduced by Ratnaweera et al. (2004) and Shi & 

Eberhart (1998) have three PSO parameters that are adjusted based on the iteration 

numbers with the aim of meeting different search criteria of different evolutionary 

stages. 

Being that a larger w encourages exploration while a smaller one benefits exploitation, 

it seems right to deploy a time-varying w to strike a balance between them. The 

ubiquitous w update rule introduced by Shi & Eberhart (1998) linearly decreases from 

0.9 to 0.4 during optimization process and is still applicable in most variants of PSO. 

Furthermore, Ratnaweera et al. (2004) proposed HPSO-TVAC which is motivated by 

the iteration based w. Considering the nonlinear and complicated nature of PSO search 

process, many nonlinear strategies have been introduced for tuning its parameters (R. 

C. Eberhart, 2001; Pornsing et al., 2016). Although a reliable performance can be 
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achieved by altering these parameters, their common feature, i.e., iteration-based 

strategy, does not have a serious significance on their individual evolutionary 

information. Thus, to maximize the utilization of the historical evolutionary 

information and provide a better parameters tuning method, several adaptive strategies 

have been suggested in recent years (Tanweer et al., 2015; Zhan et al., 2009; Limin 

Zhang et al., 2015).  Tanweer et al. (2015) for instance proposed the APSO, in which 

w, c1, and c2 are dependent on the evolutionary state estimation (ESE). This ESE 

relies on the population distribution and the fitness of the particles rather than on the 

number of iterations. With the adaptive strategies, different particles could perform 

different roles on exploration and exploitation during the search process. 

 

The other variants of PSO proposed in the literature are multi-swarm methods. Niu et 

al. (2007) proposed an algorithm that is based on a Master-Slave model. In this 

algorithm, a population is made up of one master swarm and several slave swarms. 

The particle diversity is maintained by the slave swarms through an independent 

execution of a single PSO, while the master swarm evolves based on its individual 

knowledge and that of the slave swarms (Sinan, 2018). This multi-swarm is explained 

in the next section. 

 

2.7.2 Multi-Swarm PSO Algorithm 

The core idea of the multi-swarm is the interaction between several groups 

while searching for a solution (Okulewicz & Mandziuk, 2015). Many multi-swarm-

based schemes have been proposed, each being inspired by a natural behavior. (Sinan 

Q. Salih1, 2, 2018)proposed a new cooperative multi-swarm scheme inspired by 

human social behavior (the interaction between a group of people known as ‘Clan’ and 

their leaders). The proposed scheme consists of several swarms called clans; each clan 

consists of several solutions represented by the group members. The best member of 

each clan is the clan leader and has control over the members of its clan in terms of the 

time to move and where they are moving to. Figure 2.6 shows the structure of the 

individual swarms. 
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Figure 2.6 The structure of the individual swarm(Sinan Q. Salih1,2 , 2018) 

 

In each generation, the leaders often meet in one room to select an overall best 

leader who will update the position of the other leaders based on his new-found 

position. This behavior of knowledge sharing helps to balance the exploration stage 

with the searching process of the PSO, which represents the exploitation stage. The 

new multi-swarm approach is called a ‘Meeting Room Approach’ (MRA). Figure 2.7 

shows the MRA model, where each member in the clan represents a particle in the 

swarm, and its position and velocity updated based on the steps of PSO algorithm. 

Once the new generation of each clan has been set, a new clan leader (the best leader) 

is elected and sent to the meeting room. The best among the leaders will be selected as 

the overall best leader (global best) in the meeting room. The newly-selected overall 

best leader shares his positional information with the other leaders using the following 

relation: 

 

𝑤𝐿𝑛 = (
𝑤𝐿𝑔−𝑤𝐿𝑛

𝐼𝑡𝑟
) × 𝑟𝑎𝑛𝑑()                                                                                                              2.17    

                                                                                                           
 

𝑣𝑖
𝐿𝑛(𝑡 + 1) = 𝑤𝐿𝑛 × 𝑣𝑖

𝐿𝑛(𝑡) + 𝑟𝑐 (𝑝𝑔
𝐿 − 𝑝𝑔

𝐿(𝑡))                                                                                          2.18 

 

𝑥𝑖
𝐿𝑛(𝑡 + 1) = 𝑥𝑖

𝐿𝑛(𝑡) + 𝑣𝑖
𝐿𝑛(𝑡)                                                                                                                         2.19 

 

where 𝐿𝑛 represents the normal leaders, 𝐿𝑔 represents the overall best leader,  𝑥𝑖
𝐿 

represents the position of the normal leaders, 𝑣𝑖
𝐿𝑛 represents the velocity of the normal 

leaders, 𝑤𝐿𝑔 and 𝑤𝐿𝑛 represent the inertia weight of the overall best leader and the 

normal leaders, respectively.Figure 2.7 shown meeting room approach (Sinan Q. 

Salih1,2 , 2018). 
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Figure 2.7 Meeting Room Approach(Sinan Q. Salih1,2 , 2018) 

 

After each generation, a new leader is selected for each swarm because the 

positions of the members are changed or updated during the meeting. The new 

equation of the inertia in the meeting room controls the exploration of the search 

algorithm. The pseudo-code for the MPSO algorithm is listed in Figure 2.8. 

 

Figure 2.8 MPSO Pseudo-code 

 

The performance of the proposed (Sinan Q. Salih1,2 , AbdulRahman A. 

Alsewari1, Bellal Al-Khateeb2, 2018)MPSO was evaluated by benchmarking with two 

established algorithms, the original PSO (Yuhui Shi & Eberhart, 1999) and the 
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Master-Slave PSO (MCPSO)(Niu et al., 2007) based on some of the nonlinear 

benchmark functions (Sphere Unimodal, Griewank Unimodal, Ackley Multimodal). 

The results It may be concluded that MPSO required less computational complexity, 

and yet, had a better performance in terms of finding the best solution. Moreover, 

several works proposed different PSO versions to be hybrid with ANN versions to 

improve and reduce the randomness impact as shows in the next section. 

2.7.3 Artificial Neural Networks Based On Particle Swarm Optimization 

The ANNs with 3 layers (hidden, input and output layers) are used to forecast 

the inputs-outputs relationship in complex and nonlinear engineering systems (Ghaedi 

et al., 2015). The efficiency of the ANN model depends on certain variables such as 

the number of output and hidden layers, the nature of transfer function, and the 

number of nodes in each layer (Raja, 2014). The errors associated with ANNs can be 

minimized by selecting appropriate adjustable parameters. 

The uniqueness, convergence, robustness, existence, and stability of stochastic 

numerical solvers using ANN models that are integrated both local and global search 

methodologies have been proven to solve a range of problems based on linear and 

nonlinear differential equations (Raja et al., 2016). ANNs integrated with PSO 

algorithm have been used in several case studies (Ahila et al., 2015) and PSO has been 

confirmed to have the following advantages over other similar optimization 

techniques:  

(i) There are control parameters in the PSO for balancing global and local 

exploration of the solution space. 

(ii) In the PSO, information on previous good solutions is retained and shared by 

all particles. 

(iii) PSO is simple to implement, thereby reduces the computational time and 

eliminates the need to select the best operator for a given process. 

(iv)  PSO has a better convergence, accuracy, and speed compared to other nature-

inspired optimization algorithms in certain situations. 
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In addition to the above features of PSO, it is computationally inexpensive 

because its requirements for memory and CPU speed are low. PSO is also less 

sensitive to the nature of the objective function, does not need the calculation of 

derivatives from other particles, and has few parameters to tune (Marinakis and 

Marinaki, 2010). Moreover, PSO does not require the information of the objective 

function under testing; it requires only the value, which is used within primitive 

mathematical operators, hence, leading to low computation (Padhy, 2009). Hence, 

PSO was proposed for the optimization of ELM parameters to achieve a higher 

classification accuracy and to estimate the best values for the hidden nodes of the 

ELM for power disturbances classification as shown in Figure 2.9. The performance of 

the proposed PSO-ELM was compared to those of BP, probabilistic neural network, 

and SVM.  

  

 

Figure 2.9 Architecture of PSO-ELM classifier 

 

To evaluate the overall performance of the 4 networks, the classifiers were 

trained with few numbers of training samples and with a large number of the training 

set. First, 200 datasets were used to train the classifiers, followed by the second phase 

of testing the classifiers with 500 datasets. The SVM showed a better performance 

when trained with 200 training datasets compared to BPN, ELM, and PNN. Moreover, 

as shown in previous sections, the results of this work also proved that the 

classification accuracy of ELM was better than that of SVM when trained with larger 

training samples. 

PSO algorithm for 

optimal N and L 
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Raja (2014) suggested that these solutions can be determined by the integration 

of the strength of local and global search (PSO) for the optimization of the unknown 

weights of ANNs. The improvement in the achieved results using these methodologies 

both in terms of convergence and accuracy, as well as the achieved reduction in 

computational time and the impact of different designs of the ANN models using 

appropriate activation functions, are evident. Hence, it is necessary to conduct 

exploration and exploitation in different ANNs with the appropriate transfer function 

in the hidden layer in order to develop reliable and effective system models. The 

learning of the adjustable ANN parameters in this study was done with PSO, active set 

(AS) and PSO-AS algorithms .The results of the hybrid PSO-AS algorithm were more 

accurate compared to those of PSO and AS. 

In addition, Lu et al. (2017) mentioned that the internal power parameters of 

kernel-based ELM (KELM) are initialized at random, causing the algorithm to be 

unstable. Therefore, they proposed the active operator’s particle swarm optimization 

(APSO) to obtain an optimal set KELM. They evaluated the accuracy of APSO-

KELM compared to the existing SVM, KNN based on several datasets (Breast, Brain, 

Colon). Moreover, the authors presented an APSO algorithm that improved on the 

premature convergence problem and searches performance of the standard PSO.  

The APSO is a hybrid combination of the GA’s mutation mechanism with the 

standard PSO. The hybrid APSO-KELM was shown to be relatively stable compared 

to the component ELM and KELM and achieved a higher accuracy compared to SVM 

and KNN. The APSO-KELM also had a longer running time. Owing to the 

introduction of active operators and kernel function into PSO and ELM respectively, 

the computational complexity of APSO-KELM was increased and this is a major 

drawback of the hybrid APSO-KELM. Moreover, based on all the works that proposed 

PSO hybrid with neural network versions gave motivation to used PSO to hybrid with 

FLN to reduce randomness impact. In the next, section will explain in general the 

related work of intrusion detection based on hybrid.  

2.8 Related Work 

There are several proposed of machine learning frameworks that are based on 

IDS. Xiang et al. (2014) proposed that the current IDS research can be classified into 

two major domains- anomaly detection and information reduction methods. These 
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methods mainly focus on the learning methods for alert decision support in anomaly-

based ID. The FLN has been earlier demonstrated to perform better than ELM and 

SVM in terms of training speed, user-friendliness, and accuracy. It has been shown 

that ML-based ID can use FLN to extend their applicability to significantly larger 

datasets compared to most of the currently used datasets in most studies. This can be 

achieved without necessarily increasing the training time due to the near linear scaling 

ability of the proposed FLN. 

Shah & Trivedi (2012) proposed a survey on the ANNs based on IDS and 

classified the works into simple ANN and hybrid ANN. In the simple approach, they 

discussed the use of BPNN, SVM, SA, and SOM for anomaly detection. The hybrid 

approach focused on the use of more than one technique.  Jaiganesh (2013) conducted 

a review of the potential techniques that are based on IDS. The study covered NN, 

SVMs, and suggested that ELMs are useful for IDS owing to their ease of 

implementation, fast learning speed, high generalization ability, and working with 

non-linear kernels and activation functions. Although other studies have suggested the 

usefulness of ELMs in overcoming most of the discussed challenges (Patel et al., 

2012), details of previous studies on ELMs with IDS were not provided. Furthermore, 

there was no discussion on how to apply ELM on ID problems. They also suggested 

the chances of overcoming the challenges of the individual algorithms by combining 

different learning approaches. 

Pervez & Farid (2014) proposed an SVM-based filtering algorithm for the 

selection of multiple ID classification tasks on the NSL-KDD ID dataset. The 

proposed algorithm achieved 91% classification accuracy when using only 3 input 

features and 99% using 36 input features, while all the 41 input features of the NSL-

KDD set achieved 99% classification accuracy. Meanwhile, the test set performed 

badly with 0.77. With this level of poor generalization efficiency, this method cannot 

effectively detect unknown network attacks. 

(Fu et al., 2014; Huang et al., 2013) achieved good results with Kernel-based 

ELM. The kernel selection is a critical step for achieving a good learning performance 

but the kernel-based ELM usually computes a kernel over the entire input samples and 

requires much memory (Fossaceca et al., 2015). The computation of large datasets of a 

full kernel is sometimes not feasible as a result of memory problems, and in the 
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smaller datasets that executes full kernel computation, there is a need to have a way of 

combining multiple classifiers or kernels to achieve good results.  

In (Fossaceca et al., 2015) explored the feasibility of combining the learning 

decisions of multi-classifiers for the formulation of a single decision with more 

accuracy compared to the individual classifiers. This combination of classifiers is 

motivated by the fact that previous studies have demonstrated a varied classification 

ability of most classifiers in the detect of specific classes in a multiclass learning 

problem. The introduction of a novel Multiple Adaptive Reduced Kernel ELM 

(MARK-ELM)-based IDS made MARK-ELM suitable for the processing of multi-

class network intrusion detection systems. Several approaches have shown good 

detection performance for several attack classes but poor performances for others due 

to their dependence on KDD ‘99. The proposed approach achieved a high rate of false 

positives and a good detection performance which are huge challenges facing network 

operators.  

(Singh et al., 2015) pinpointed large data volumes, low detection rate, and high false 

alarms as the common challenges of IDS. They used an online based sequential 

ELM to design an IDS-based anomaly for network traffic analysis. For the 

performance evaluation of the proposed technique, the standard Kyoto university 

benchmark dataset was used to test the proposed IDS. The feature that was used in this 

work was extracted from the KDD data set. The algorithm was not validated on large 

data sets such as KDD, hence, further validation should be performed. 

A heuristic is a way of learning, discovery or problem solving which employs a 

practical approach that is not guaranteed to be optimal. (Aslahi-Shahri et al., 2015) 

presented a GA and SVM-based anomaly detection technique. They used GA and 

SVM for improving the classification performance SVM. The proposed technique was 

evaluated on the KDDCUP ’99 set. As mentioned in the limitations of SVM, it 

provides a binary classification as normal data or attack. Additionally, the system was 

only evaluated on the KDD ‘99 data set. 

Furthermore, Table 2.5 shows some of the related works based on IDS. 

(Vishwakarma, 2017) proposed an Ant Colony Optimization (ACO)-based KNN 

intrusion detection method. The algorithm was pre-trained with KDD Cup ‘99 dataset 
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using ACO, while the performance of the KNN-ACO, BP and SVM were compared 

based on common performance parameters such as accuracy and false alarm rate. The 

reported overall accuracy of the proposed algorithm was 94.17%, and its overall FAR 

was 5.82%. Unfortunately, this algorithm was trained with only 26,167 samples which 

are relatively a small data volume. 

Table 2.5 Relate Works based on IDS 

Authors 
Model 

Type 
Single Hybrid Algorithm Data set ACC Limitations 

(Saxena 

MTech 

Scholar & 

Richaariya, 

2014) 

Anomaly _ 
 

PSO-SVM 
10% 

KDD99 
0.993 

-the model essay leads to a higher false 
alarm rate. 

-The model evaluate based KDD99 

with all limitations 

(Pervez & 

Farid, 2014) 
Signature 

 
_ SVM 

NSL-

KDD 
0.99 

-High rate of false alarm 
-The performance is worse during the 

test set 

- It cannot effectively detect unknown 
network intrusions. 

 

(Alomari and 

Othman, 

2012) 

Anomaly _ 
 

Bees 
algorithm 

(BA)+ 
SVM 

KDD 

cup 99 
--- 

-ELM lower computational 

requirements than SVMs, 
-ELMs have shorter training time 

requirements than SVMs, 
-ELMs work directly on multi-class 

classification problems 

(Shivhare and 

Chaturvedi, 

2014) 

 

Anomaly _ 
 

BP + 

DBSCAN 
algorithm+ 

KDD 

cup99 
0.9856 

-The computational cost using ELM is 

very small in comparison to back 
propagation, 

-Another problem of the conventional 

back propagation clearing algorithms 
is slow coverage rate 

(Senthilnayaki 

et al., 2013) 
Anomaly _ 

 

GA+ 

Decision 

Tree 

algorithm 

KDD 

cup99 
---- 

it is difficult to precisely model all 

behaviours since anomaly based 

detection can detect only known 

attacks. 

(Deshmukh et 

al., 2015) 

 

Anomaly _ 
 

Naïve 
Bayes 

,Decision 
Tree 

NSL-

KDD 
0.99 

Bayes needs large data sets to work, 

because the classes are assumed to be 

independent, and also it is difficult to 
estimate the actual probabilities of the 

network traffic. 

(Fossaceca et 

al., 2015) 

 

Anomaly 
 

_ 
Multiple 
Kernel-

ELM 

KDD 

cup99 
0.993 

- the author during testing mode didn't 
depend on the data set testing mode to 

evaluate the results 

- This work evaluated based on 
KDD99, and we mentioned already the 

problems with this data set. 

(Cheng, 2012) Anomaly 
 

_ ELM 
KDD 
cup99 

0.994 

-This work used normal ELM with the 
random select problem. 

-This work evaluated based on 

KDD99, and we mentioned already the 
problems with this data set 

 

Table 2.5 contents shown a summary of some of the related work based on the 

proposed in this work. The highest accuracy is 0.994 among all works in the table. On 

another hand, in chapter 4 the experimental results of the proposed model got higher 

than all of these related works. Moreover, most of these works used the old version of 
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dataset (KDD99) to evaluate proposed models, and in previous parts of this chapter 

mentioned some of the limitations that may impact the accuracy credibility. 

2.9 Summary  

This chapter represents literature review with several sections, begin with 

general explained for security issues and tools. Next section explained the intrusion 

detection system types and techniques specially based machine learning and the 

dataset. Moreover, next sections include analysis of machine learning algorithms such 

artificial neural networks versions with limitations that lead to proposed fast learning 

network as core algorithm in this work. In addition, one of FLN limitation is random 

selection of main parameters value which represents an optimization problem. 

furthermore, for this reason improved particle swarm optimization proposed to hybrid 

with FLN based on intrusion detection system. 
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METHODOLOGY 

3.1 Overview   

This chapter introduces the developed methodology for this study. It is 

combined of all steps for developed methodology, dataset preparation and the 

evaluation measures. Section 3.2 highlights the research phases carried out to reach the 

target, also explained the main structure of methodology design. Section 3.3 provides 

dataset pre-processing part and all the detailed steps that have been done for this 

regard. Next, section 3.4 provides the preface of design methodology. Section 3.5 

provides the detailed of proposed FLN. Section 3.6 presents the detailed of optimize 

fast learning network system based on particle swarm optimization and its 

applications. Finally, summary for the whole chapter is provided in section 3.7. 

3.2 Research Phases 

By merge approach the layers one after another the research carried out in few 

fundamental phases, which are presented in Figures 3.1. Starting from the planning 

phase the research proceeded to analysis; design and implementation phase and then to 

the last phase evaluation.  

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj-7PDLy4XbAhWMtY8KHSN5ALAQFggtMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FParticle_swarm_optimization&usg=AOvVaw3GmeqHykFZUf4J-hDfSbr1
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Figure 3.1 Different Phases of the Research 

 

3.2.1 Planning Phase  

Planning Phase is the starting phase of the research which consisted of many 

collection and carrying out the literature review where the main problems are 

identified first and then precisely identified the research gap. The total articles divided 

for many groups: one groups of articles discuss the problems in general which is 

“intrusion detection system based on machine learning “. In another hand, there are 

many applications based on machine learning algorithms used based IDSs like 

optimize the main parameters of algorithms, kernel function extension, etc.  

At the completion of review stage, it is observed that the previously proposed 

models of intrusion detection systems are unnecessarily complex to configure. Further, 

traditional intrusion detection based on machine learning models focuses on 

computational intensive to reduce the impact of selecting the parameters randomly as 

its strategy of work in most of the machine learning algorithms, using different 

techniques and algorithms at different levels. The focus of this research is to reduce 

the false alarm rate of intrusion detection system, in order to achieve maximum, detect 

accuracy. FLN algorithm is one of new machine learning algorithm that needs to 

Planning

• Collection and carrying out Literature Review

• Identify Problems and Define Gap

• Determine Aims and Objectives

Design and 
Modelling

• Dataset pre-processing 

• Proposed FLN Based IDS

• Proposed standerd PSO with FLN based IDS

• Proposed multi swarm-PSO with FLN based IDS

Evaluation

• Test the developed models 

• Analysis of the results

• Conclusion
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adjustment for main parameters(G. Li, Niu, Wang, et al., 2014; P. Niu et al., 2017), 

this work proposed PSO algorithms for solve this problem.  

3.2.2  Design and Modelling 

        This phase of the research based the problem statement in chapter one, as based 

on the observation of problem the system is planned to design and then implemented 

the system through the matlab simulation in order to test the efficiency of proposed 

system. Firstly, this work tried to reduce the impact of random select of the main 

parameters of FLN, which its impact the accuracy of the intrusion-detection model.  

Secondly, based on the improvement of the PSO, because standard PSO has 

some shortcomings such as premature convergence and getting stop in local minima. 

To overcome these shortcomings, many variants of PSO have been proposed (Gülcü & 

Kodaz, 2015). This work propose a new cooperative multi-swarm scheme inspired by 

the human social behavior. The proposed scheme consists of several swarms called 

clans; each clan consists of several solutions represented by the group members. The 

multi-swarm used as tuning for the main parameters in PSO,(Xia et al., 2018) these 

parameters adjustments offer relatively reliable performances. Both (PSO, MRPSO) 

optimization algorithms are also used to adjust the input weights and hidden layer 

biases of FLN so as to obtain a high-accuracy model of intrusion detection system. 

3.2.3 Evaluation Measures  

This section reviews the measures, metrics and validation procedures utilized 

for evaluating the experimental data. Based on the literature research in Chapter 2, 

most studies report overall accuracy as the main measure of performance for intrusion 

detection systems. Moreover, some other reviews mentioned other measures, metrics, 

and validation for evaluating the experimental data. Some studies show more detailed 

information on the rates of false positive detections and missed detections. These are 

all useful in evaluating system performance. 

The following section formalizes the analysis using standard metrics to 

objectively evaluate and compare results derived from using different classification 

methods. Several metrics were utilized to characterize the performance of the system 

based on the NSL-KDD dataset. A thorough treatment of learning performance 
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measures can be found in (Singh et al., 2015; Sokolova & Lapalme, 2009), while 

imbalanced dataset issues are addressed in (Phoungphol et al., 2012). The main 

metrics employed in this research are: 

 Accuracy: is the common metric used for assessing the overall effectiveness 

of a classifier (Sokolova, M. & Lapalme, G., 2009). 

Accuracy =  
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑓𝑛+𝑓𝑝+𝑡𝑛
                                                                                            3.1 

(𝑡𝑝= true positive, 𝑡𝑛= true negative, 𝑓𝑝 = false positive, 𝑓𝑛 = false negative)  

 True Positive: In the context of Intrusion Detection, a “True Positive” is a 

correct detection of an attack. 

 True Negative: In the context of Intrusion Detection, a “True Negative” 

election is the correct identification of “Normal Traffic” 

 False Positive: Is an indication of an attack on traffic that should have been 

classified as “normal”. 

  False Negative:  In the context of Intrusion Detection, a “False Negative” 

represents a “missed detection”, that is a real attack was misidentified as “Normal” 

traffic. 

 Standard Deviation:  A quantity expressing by how much the members of a 

group differ from the mean value for the group, which its calculate as following: 

SD = √
∑|𝑥−𝜇|2

𝑁
                                                                                                              3.2 

where ∑ means "sum of", x is a value in the data set, μ is the mean of the data set, 

and N is the number of data points in the population. 

 Precision:  Refers to the proportion of predicted positive examples that are 

actually True Positives (Powers, D.M., 2011). Precision can be interpreted as the 

“Positive Predictive Value” of the classifier(Sun et al., 2007). Precision is calculated 

as follows (Sokolova, M. & Lapalme, G., 2009): 

Precision =  
∑ 𝑡𝑝𝑖

𝐶
𝑖=1

∑ (𝑡𝑝𝑖+𝑓𝑝𝑖)𝐶
𝑖=1

                                                                                                 3.3 

 where C is the number of classes  

 Recall: Refers to the proportion of True Positive examples that are detected 
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(predicted) to be positive (Powers, D.M., 2011). It can be interpreted as the “True 

Positive Rate” for the classifier (Sun, Y., et. al., 2007). Recall is calculated as follows 

(Sokolova, M. & Lapalme, G., 2009): 

Recall 
∑ 𝑡𝑝𝑖

𝐶
𝑖=1

∑ (𝑡𝑝𝑖+𝑓𝑛𝑖)𝐶
𝑖=1

                                                                                                        3.4 

where C is the number of classes 

 F-measure: Relationship between positively labeled data (e.g. attack) and 

actual prediction by a classifier based on a per-class average (Sokolova, M. & 

Lapalme, G., 2009): 

F-Measu=
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                        3.5 

 Detection Rate It is computed as the ratio between the number of correctly 

detected attacks and the total number of attacks(Sivatha et al., 2012).  

Detection4Rate(DR)=
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                         3.6 

 False Alarm Rate: It is defined as the ratio between the number of normal 

instances detected as attack and the total number of normal instances(Sivatha et al., 

2012).  

False4AlarmRate(FAR)=
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                                                                    3.7 

In order to validate the results, (Rodríguez et al., 2010; Singh et al., 2015) k–

fold cross validation technique is used for performance evaluation. In this technique, 

dataset is randomly divided into k different parts. For each iteration, one part is 

selected as testing and all other (k-1) parts are treated as training dataset. All the 

connection records are eventually used for training and testing. For all experiments, 

value of k is taken as 5 because of low bias, low variance, low overfitting and good 

error estimate (Rodríguez, Pérez, & Lozano, 2010). 

3.3 Dataset Preprocessing and Partitioning 

The whole dataset is pre-processed in this stage. It consists of two steps, scaling 

and normalization. In the scaling step, the dataset is converted from string 

representation into numerical representation. For example, the class label in the dataset 

contains two different categories ‘Normal’ and ‘Attack’, after implementing this step 

this label is changed into ‘1’ and ‘0’. Where ‘1’ means normal case, while ‘0’ means 

attack. The second step is normalization. (Jahan et al., 2011) The normalization cleans the 
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noises from the dataset, and decreases the differences in the ranges between the features. In 

this work, we have used Max-Max normalization method, as follows: 

𝐹𝑖 =
(𝐹𝑖−𝑀𝑖𝑛𝑖)

(𝑀𝑎𝑥𝑖−𝑀𝑖𝑛𝑖)
                                                                             3.8 

Where 𝐹𝑖  represents the current feature needs to be normalized, 𝑀𝑖𝑛𝑖  and 

𝑀𝑎𝑥𝑖  represent the minimum and the maximum value for that feature respectively. 

The objective function represents the accuracy of the neural network when it is evaluated on 

the validation set. The validation set is part of the training set. In order to make the validation 

fairer, 𝐾-fold validation can be used. The value 𝐾 is determined according to the size of the 

dataset. Through the cross-validation processes the data is tested to ensure the compatibility of 

the testing and training subsets and to reduce data discrepancies and its effects on the FLN 

design. Thus, in cross-validation the first 20% of the data in each run is used as a testing set 

while the 80% is used for training. After that, a second 20% is used for testing while the 

remaining 80% is used for training. This process is continuously repeated, taking all 

possibilities to ensure reliability of the predictive results. Figure 3.2 shows the data 

partitioning process. 

 

Figure 3.2 Cross validation data partition process 

 The NSL-KDD data set was used to evaluate the performance of proposed 

models. The NSL_KDD data set consists of several types of features such as symbolic, 

numeric and Boolean with varying resolution and ranges. For this study we used all 41 

attributes of the data. As of NSL-KDD dataset consist of 148517 number of 

connection records in both training and testing set with same number of attributes. 



54 

3.4  Preface of Design Methodology  

This section provides the mathematical methodology for achieving the 

objectives of the thesis. It is combined of three sub-sections; each one is dedicated for 

one objective from the objectives of the study. A block diagram of the general 

developed methodology is depicted in Figure 3.3. It is combined of all sub-blocks of 

the developed systems with their evaluation part. Also, it shows the mapping of those 

sub-blocks to the objectives of the thesis. A detailed description of each part is 

depicted in the following sub- parts in following of the chapter.  

 

Figure 3.3 The main structure of Methodology 

This chapter presents the methodology that developed for implementing the 

objectives in the thesis. Besides, the evaluation methods and measures are provided. 

As it has been presented in previous section 3.2.3, this research presents developed of 

machine learning for detection and identification of intrusions in networks. The main 

methods are based on fast learning network. More focus is made on optimization 

method based variants due to the efficiency of fast learning network in performing 

separation between samples from different classes in compared with ELM. Moreover, 

this work proposes to adjust the parameters of the FLN and based on PSO and multi 

swarm-PSO. The evaluation of the developed models is based on benchmark IDS 

dataset (NSL-KDD). 

The chapter starts with general description about the preparation of the IDS 

dataset. Next, the methodology of implementing the first objective, which is 

developing a fast learning network based on IDS. Moreover, the second part which 
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provide the PSO optimization algorithm to adjust the input weights and hidden layer 

biases of FLN to overcome the impact the random selection of FLN parameters. Third 

part which president the enhancement of standard PSO by using multi swarm for 

tuning the parameters of PSO called (MRPSO), and also used to adjust the FLN 

parameters and evaluate MRPSO-FLN by compare with PSO-FLN based on NSL-

KDD dataset. Finally, an evaluation process is performed for the developed model. 

The evaluation starts with generating the standard measures of evaluating a machine 

learning model in general and an IDS system in particular.  

3.5 Proposed Fast Learning Network 

After processing the dataset, this step is to determine the network structure. 

Typically, in this step, the number of inputs, hidden layers and outputs are selected, as 

well as the number of neurons selected for each layer based on the intended 

application. Also, in this study, the model structure consists of a single layer for input, 

output and hidden as showed in table 2.2. In addition, the input layer contains of 41 

neurons based on the features of dataset. And the output layer contains five neurons 

based on the attacks classes to representing the network output. Furthermore, the study 

investigated a different number of hidden neurons to verify its effect on the proposed 

learning algorithms and FLN performance. On the other hand, the choice of activation 

function plays a role in the convergence of learning algorithms and FLN performance. 

Finally, the study chose the sigmoid function as an activation function. The 

configuration of FLN indicates to the needed information to create both the topology 

of the network and the mathematical structure (activation function formulas) as in 

table 3.1.  
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Table 3-1 configuration of FLN  

Input Hidden 

Layer 

Output  Data 

Indices 

𝒙𝒊=[𝒙𝒊𝟏,𝒙𝒊𝟐,⋯,𝒙𝒊𝒏]𝑻𝑹𝒏 1,…., m 

neurons  
          𝑦𝑖=[𝑦𝑖1,𝑦𝑖2, ⋯ , 𝑦𝑖𝑙]𝑇  ∈ 𝑅𝑙  1,2, … 𝑁 

 The learning for FLN could the summarized as Follows: 

Step1: Randomly generate the input weights matrix 𝒘𝒊𝒏 and bias matrix b based on 

following equations. 

𝑤𝑖𝑛 =(𝑈𝑤𝑖𝑛 − 𝐿𝑤𝑖𝑛) × 𝑅𝑎𝑛𝑑 + 𝐿𝑤𝑖𝑛                                                                          3.9 

b= ( 𝑈𝑏 − 𝐿𝑏) × 𝑅𝑎𝑛𝑑 + 𝐿𝑏                                                                                        

3.10 

Where 𝑤𝑖𝑛  is the weight connecting the hidden node and input nodes, 𝑈𝑤𝑖𝑛  

represents the upper bound; 𝐿𝑤𝑖𝑛  represent the lower bound, and 𝑅𝑎𝑛𝑑  represents 

random value between [-1.5,1.5 ] based on most of related works. b is the biases of 

hidden layer nodes; 𝑈𝑏 represents the upper bound; 𝐿𝑏 represent the lower bound. 

Step2: Calculate the hidden output matrix G using Eq.2.7 

   G (𝑊1
𝑖𝑛, ⋯ , 𝑊𝑚

𝑖𝑛, 𝑏1, ⋯ , 𝑏𝑚, ⋯ , 𝑋𝑁)………………                                                    

=[
𝑔(𝑊1

𝑖𝑛𝑋1 + 𝑏1) ⋯ 𝑔(𝑊1
𝑖𝑛𝑋𝑁 + 𝑏1)

⋮ ⋱ ⋮

𝑔(𝑊𝑚
𝑖𝑛𝑋1 + 𝑏𝑚) ⋯ 𝑔(𝑊𝑚

𝑖𝑛𝑋𝑁 + 𝑏𝑚)

]

𝑚×𝑁

 

Where each position of above matrix, represent the collect of the  𝑤𝑖𝑛 input weight 

and (b)basic of the hidden layer with (𝑥𝑖) samples that presented from the dataset. G is 

called the hidden layer output matrix of FLN. 

Step3: Calculate the combination matrix W using Eq.2.10 

According to the Moore-Penronse generalized inverse, the minimum norm leas-

squares solution of linear system could be written as: 

�̂� = (𝑌) [
𝑋
𝐺

]
+
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Figure 3.4 the flowchart of the learning model of the FLN 

Step4:  Determine FLN’s model parameters based on Eq.2.12 

{
𝑤𝑜𝑖 = �̂�(1: 𝐼, 1: 𝑛)

𝑤𝑜ℎ = �̂�(1: 𝐼, 𝑛 + 1: 𝑛 + 𝑚)
  

As seen from the above learning process, as the FLN is a parallel connection of 

a single layer feedforward neural network and a multilayer feedforward network, the 

output layer nodes not only get the recodification of the external information through 

the hidden layer nodes, but also get the external information itself directly through the 

input layer nodes. As the following figure 3.4, which represent the flow chart of FLN 

algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, many literatures have shown that a single layer feedforward neural 

network in solving the linear problem with higher efficiency, a multilayer feedforward 

network can very well realize the complex non-linear mapping from the inputs to the 

outputs. Then, the FLN has the advantages of the two neural networks, but the ELM 

Start 

Randomly Generate 𝑾𝒊𝒏and  𝒃𝒊𝒏 

Calculate the hidden output matrix G 

Calculate the combination matrix W 

Determine FLN’s model parameters 

End 
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does not. So, the FLN with a same or a smaller number of hidden units can achieve 

much better generalization performance and stability than ELM. In addition, in FLN, 

the input weights and hidden layer biases are randomly assigned, and the other weights 

could be analytically determined by least squares methods. 

3.6  The Model of FLN Training Based PSO 

It may be right to question the rationale for introducing another algorithm to 

train FLN since there are several algorithms which have been used already as 

mentioned in chapter 2. Moreover, the PSO algorithm for training FLN is proposed in 

an effort to complement evaluate for the existing algorithm. 

3.6.1  The Definition of the Solution Space 

The solution space represents the weights between the input and hidden layers, 

and the biases of the hidden layer neurons. In the classical fast learning network, such 

solutions are initialized in a random manner which might cause deviations from the 

optimal solutions. In the optimized FLN, two matrices are selected as the solution 

space. As following the structure of FLN weights in table 3.2. 

Table 3.2 configuration of FLN  

WHI  WOH WOI 

Input Features(n)*Hidden Neurons Basis Hidden Neurons*output Input Features(n)*output 

41*m M m*5 41*5 

 

where, 𝑚 denotes the number of hidden neurons,  𝑛 denotes the number of 

inputs,  𝑊 denotes the input-hidden matrix . The solution space will be as combination 

of the two matrices.  

Start with inputs of the model before explain the steps of proposed, pre-

processing for NSL-KDD dataset. The inputs for PSO algorithm include, PSO 

particles, (𝑐1, 𝑐2) which represents acceleration factors known as cognitive and social 

parameters and w is the inertia weight parameter. As for FLN should be represents 

number of hidden neurons as this work the structure of FLN represent with different 

number of hidden neurons (10-25-35-50) to analysis the effects of different FLN 

structure in each model. FLN based PSO 
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Figure 3.5 Solution Representation (PSO-FLN) 

3.6.2  FLN Based PSO 

As mention in the previous chapters in FLN section, that it is consists of three 

layers (input, hidden and output). These layers are contacting by using weights, and 

biases. In standard FLN, both weights and biases are generated randomly, which may 

effect on the performance of the classification process. Therefore, generating   the best 

values for them is an issue. In this section, the particle swarm optimization (PSO) is 

used for finding better values, for both weights and biases. The proposed algorithm 

called PSO-FLN, which consists of five stages figure 3.6 show the block diagram of 

PSO-FLN. The learning for PSO-FLN could the summarized as Follows: 

Step1: Input 

This stages are divided into three parts, PSO parameters, FLN parameters, and 

dataset. In the first, the main parameters of PSO algorithm are defined, they are 

cognitive parameter (𝑐1) , social parameter (𝑐2) ,inertia weight (𝑤) and number of 

swarm size (S.S). In the second part, the number of neurons in the hidden layer (m) is 

defined. The third part the dataset, it represents the dataset used in this thesis, which is 

NSL-KDD dataset.  

Step2: Initialization 

Each particle in PSO represent a solution, which consists of two parts, weights 

and biases the total number of variable is equal to: 

No.Vers=× 2                                                                                                3.12  

 Where m is represents the number of neurons in the hidden layer. When the 

number (2) represents the main parameters of basic(FLN) (𝑊𝑚
𝑖𝑛, 𝑏𝑚) equal to neurons. 

The solution representation is given in figure 3.5 as following: 

𝑊1
𝑖𝑛, 𝑊2

𝑖𝑛, … … … , 𝑊𝑚
𝑖𝑛 𝑏1, 𝑏2, … … , 𝑏𝑚 

 

 

 

m m 

m× 2 
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Each variable (position) in particle is initialized by using as following: 

Firstpart:𝑋𝑖
𝑤 = (𝑈𝑤 − 𝐿𝑤) × 𝑅𝑎𝑛𝑑 + 𝐿𝑤                                                                  3.13 

Secondpart:𝑋𝑖
𝑏 = (𝑈𝑏 − 𝐿𝑏) × 𝑅𝑎𝑛𝑑 + 𝐿𝑏                                                                3.14 

Where 𝑋𝑖
𝑤  represents input weight , 𝑋𝑖

𝑏 input basis.  𝑈𝑤 , 𝑈𝑏 in the equations 

represents the upper boundaries, 𝐿𝑏  , 𝐿𝑤 represents the lower boundaries. Rand 

represents a uniformly distributed random number in the range of 0 and 1.  

Step3:  Fitness Function 

In this stage all particles are evaluate by using the fitness equation: 

𝑓(𝑥) = 1 − 𝐴                                                                                                                 

3.15 

Where  𝑓(𝑥) represent the error rate of the classification process, thus, finding lower 

error rate is the main aim of PSO-FLN. Therefore, this is a minimizing problem. And 

(A) represent the correctly classification (accuracy) sample by using FLN which is 

given in 3.16. 

𝐴 =
𝑇ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑁
                                                                               3.16 

Step4: Position Update  

In this step, each particle update its position The new particle positions can be 

calculated using Equation (2.14) and (2.15). After updating the position on the 

following relations: 

𝑣𝑖 (𝑡 +1) = 𝑤 × 𝑣𝑖 (𝑡) + 𝑟1𝑐1 (𝑃𝑖− 𝑥𝑖  (𝑡)) + 𝑟2𝑐2  (𝑃𝑔  − 𝑥𝑖  (𝑡))                                 

𝑥𝑖𝑤 (𝑡+1) = 𝑥𝑖𝑤  (𝑡)+ 𝑣𝑖(𝑡)             

                                                                                                                        
After updating the positions of the particle, calculate the fitness value based on a new 

position and compare the current best with the global best (step t). 

Step5: Check Boundaries 
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The positions of each particle should be checked for any exceeded in the upper 

or lower boundaries. Therefore, they should stay inside the search space of boundaries 

𝑥𝑖 = {
𝑈𝑏   , 𝑥𝑖 > 𝑈𝑏

𝐿𝑏    , 𝑥𝑖 < 𝐿𝑏
                                                                                              3.18 

Where 𝑈𝑏 is represent the upper boundaries; 𝐿𝑏 is represent the lower boundaries 

Step6: Termination Condition 

For each iteration, the global best solution (gbest) is determined. If number of 

iterations is reach to maximum number of iterations, then stop the searching process 

and return gbest. 

 

Figure 3.6 PSO-FLN block diagram 

3.6.3 FLN based Multi-Swarm Optimization(MRPSO-FLN) 

Despite the success of the previously proposed (PSO) algorithm to training 

FLN, it’s still prone to several inadequacies such as, the most ubiquitous update rules 
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of PSO parameters introduced in, three parameters involved in PSO are adjusted based 

on different ways aiming to meet different search requirements of different 

evolutionary stages, the fundament thought of these modification is tuning particles 

learning weights for their exemplars (Xia et al., 2018). These inadequacies can be 

solved or enhanced using a new algorithm for the training FLN called multi-swarm 

optimization (MRPSO). The new proposed MRPSO-FLN shown as following 

 

Figure 3.7 Meeting Room Approach 

In Figure 3.7, represents the new approach (Meeting Room) approach based 

standard PSO. As mentioned in previous chapter, the original approach idea focused 

on update the positions as the group’s leaders based on the new positions of the best 

leader in order to control the balance between exploration and exploitation in the 

standard PSO.    

In this work, in each generation the leaders often meet to select an overall best 

leader who will update the parameter's values of the other leaders based on his new-

found parameter's values, and the comparisons between the leaders depend on fitness 

function (Accuracy).  Moreover, most of the process steps of this model based on 

previous (PSO-FLN) with some different, will be summaries as following. 

Meeting 
Room

𝑃𝑆𝑂𝐹𝐿𝑁1

𝑃𝑆𝑂𝐹𝐿𝑁2

𝑃𝑆𝑂𝐹𝐿𝑁3𝑃𝑆𝑂𝐹𝐿𝑁4

𝑃𝑆𝑂𝐹𝐿𝑁𝑁⬚⬚
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Figure 3.8 solution representation (MRPSO-FLN) 

Step 1: Initialization  

This step divided into two parts, first part, which contains the initialization for 

the weight, and basis represents FLN parameters same like a previous step. In 

addition, this step includes initialization for PSO control parameters as following.    

𝑐1 = (𝑈𝑐1 − 𝐿𝑐1) × 𝑅𝑎𝑛𝑑 + 𝐿𝑐1                                                                                3.19 

𝑐2 = (𝑈𝑐2 − 𝐿𝑐2) × 𝑅𝑎𝑛𝑑 + 𝐿𝑐3                                                                                3.20 

𝑤 = (𝑈𝑤 − 𝐿𝑤) × 𝑅𝑎𝑛𝑑 + 𝐿𝑤                                                                                     

3.21  

𝑐1 and 𝑐2   represents the acceleration coefficients that governs the extent a 

particle can move within a given iteration. w represents an inertia weight U in the first 

equations the upper boundaries, L represents the lower boundaries. Rand represents a 

uniformly distributed random number in the range of 0 and 1. The solution 

representation is given in figure 3.8 as following:  

 

 

 

𝑊1
𝑖𝑛, 𝑊2

𝑖𝑛, … … … , 𝑊𝑚
𝑖𝑛 𝑏1, 𝑏2, … … , 𝑏𝑚 

 

 

 

Step 2: Fitness  

This step is his same equation 3.15 and strategy as in PSO-FLN process.   

  

 

𝐶1 W 𝐶2 

m m 

m× 2 

Boundaries=1 to 2 Boundary=0.4 to 0.9 
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Step3: Parameters update 

This section represents an update of parameters values based meeting room 

approach as shown in figure 3.7. Where each member in the clan represents a particle 

in the swarm and in each generation, each clan will produce leader based fitness 

function comparison in each iteration and send to meeting room, the leaders after meet 

to select overall best leaders who also will update parameter's value of other leaders 

based on a new-found parameters value. The best among the leaders will be selected as 

the overall best leader (global best) in the meeting room. The newly-selected overall 

best leader shares his parameter's information with the other leaders using the 

following relation:  

𝐶1
𝐿𝑛 = (

𝐶1
𝐿𝑏−𝐶1

𝐿𝑛

2
) + 𝐶1

𝐿𝑛                                                                                              3.22 

𝐶2
𝐿𝑛 = (

𝐶2
𝐿𝑏−𝐶2

𝐿𝑛

2
) + 𝐶2

𝐿𝑛                                                                                               

3.23 

𝑤𝐿𝑛 = (
𝑊𝐿𝑏−𝑊𝐿𝑛

2
) + 𝑊𝐿𝑛                                                                                           

3.24 

Where 𝐶1
𝐿𝑛, 𝐶2

𝐿𝑛, 𝑤𝐿𝑛 represents the parameters of normal leader in the meeting room, 

𝐶1
𝐿𝑏 , 𝐶2

𝐿𝑏 , 𝑤𝐿𝑏 is represents the best leader into the meeting room. The results from 

these equations, gives the best parameters values which impact on the acceleration 

velocity of PSO to reach the solution with fewer numbers of iterations. Moreover, in 

following example shown meeting room approach based above equations:   

Accuracy 𝑷𝟏 =0.71 𝑷𝟐 =0.81 𝑷𝟑 =0.75 𝑷𝟒 =0.77 

Particles 

Parameters 

𝐶1=1.0201 𝐶1=1.5321 𝐶1=1.9021 𝐶1=1.6645 

𝐶2=1.3118 𝐶2=1.5181 𝐶2=1.8811 𝐶2=1.7122 

𝑊1=0.681 𝑊1=0.712 𝑊1=0.886 𝑊1=0.781 

Based on accuracy values of each particle, can observe P2 represents the best leader 

with best accuracy among other leaders, in following recalling for equations 3.22, 3.23 

and 3.24, for comparison between the best leader and normal leaders.    
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𝑃1.𝑐1 = (
1.5321−1.0201

2
) +1.0201=1.2761 

𝑃3.𝑐1 = (
1.5321−1.9021

2
) +1.9021=1.7171 

𝑃4.𝑐1 = (
1.5321−1.6645

2
)+1.6645=1.5983 

𝑃1.𝑐2 = (
1.5181−1.3118

2
) +1.3118=1.4149 

𝑃3.𝑐2 = (
1.5181−1.8811

2
)+1.8811=1.6969 

𝑃4.𝑐2  = (
1.5181−1.7122

2
)+1.7122=1.6151 

𝑃1.𝑤1 = (
0.712 −0.681

2
)+0.681= 0.696 

𝑃1.𝑤3  =(
0.712−0.886

2
)+0.886=0.799 

𝑃1.𝑤4  =(
0.712−0.781

2
)+0.781=0.7465 

After finished the calculation of these equations, each clan start works again 

with the new values. Moreover, these calculations are repeating based on the iteration's 

number. The results of equations are shown the new parameters values of normal 

particles nearer to parameter's values of a best particle. The other steps are steady 

which it same process in PSO-FLN model 

3.7 Summary  

For intrusion detection, there is no explicit approach of guiding the IDS system 

to recognize the lunched attack from the nature of the network traffic because there is 

huge number of features with non-clear relationship between their values and the 

corresponding attack that they have resulted from. Therefore, developing a machine 

learning based IDS system is useful for replacing classical IDS. However, the huge 

size of the dataset and the non-direct discrimination aspect of it has created a big 

motivation to develop machine learning based IDS with high performance standards.  

Therefore, this chapter has followed an insight procedure to replace previous 

models with more capable type of machine learning models using three concepts: 
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firstly, replacing the topological structure of the neural network with more connected 

type of structure called fast learning neural network. Secondly, optimizing the 

parameters of the adopted fast learning network to assure improved performance based 

standard particle swarm optimization, which contribute in the IDS performance as a 

whole. Thirdly, developing new. a new cooperative multi-swarm scheme (Meeting 

Room Approach’ (MRA) with standard PSO proposed to optimizing fast learning 

parameters based intrusion detection system. More concentration on our adopted 

dataset NSL-KDD has been made. Finally, all needed evaluation measures for 

validating and comparing the system with other systems were introduced with their 

detailed mathematical equations. In the next chapter, the results of the developed 

system are presented with thorough discussion and analysis.  
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RESULTS 

4.1 Overview   

This chapter presents the results of the methodology that has been presented in 

the previous chapter. Section 4.2 provides the introduction, which its content the main 

structure of this chapter. Next, section 4.3 provides the results of the basic FLN with a 

comparison with ELM and shows optimized FLN results. The different evaluation 

measures that have been presented in the previous chapter are presented with the 

confusion matrices. Next, section 4.4 provides the comparative of proposed models. 

Section 4.5 validates the results for the proposed models are provided. Finally, a 

thorough discussion and summary for the whole chapter is provided in section 4.6.  

4.2 Preparation for Results Structure 

This chapter presents the evaluation results and analysis for each model 

proposed in this work based on the methods that has been declared in previous chapter. 

In this chapter, the evaluations of the results are represented into three parts. Firstly, 

this part represents the proposed of basic FLN algorithm based on the intrusion-

detection system, which it's compared with basic ELM. The models represented with a 

different number of neurons in the hidden layer to measure the effect the diffraction of 

the number of the neurons on the model's accuracy. 

Secondly, represented the effect of reduce the impact of the selection randomly 

of the main parameters of basic FLN, which may affect to the performance of the 

model. Propose the Particle swarm optimization algorithm to provide the parameters 

for FLN and trained it. The new mode called PSO-FLN, which evaluate with different 

numbers of iterations, different number of neurons in hidden layer, and the different 
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number of particle swarms, to measures the effects of these differentials based on the 

model performance. The basic PSO parameters were used as selected in (Sivatha et al., 

2012) as mentioned in section 4.3.2. 

Thirdly, the results of improved particle swarm optimization that provide by meeting 

room approach to tuning the standard algorithm parameters. The new model called 

Multi Swarm Optimization (MRPSO) which includes the integrate between the 

meeting room approach and standard particle swarm optimization. The new model 

called MRPSO-FLN, also evaluate with different numbers of iterations, different 

number of neurons in hidden layer, and the different number of particle swarms, to 

measures the effects of these differentiations based on the model performance. 

Moreover, for the proposed models, sigmoid represents as activation function for all 

proposed models.  The number of neurons in hidden layer are represented into a 

different number such as 10-25-35-50 to measure the effect of the number of neurons 

on the accuracy of models. Moreover, for the optimization models are utilized 

different number of the iterations 100,250,500, and different number of particle 

swarms size to analysis and investigate the effect of these differentials on the accuracy 

of models. 

4.3 Results of FLN Models  

4.3.1  Results of ELM Vs FLN Comparison  

In order to validate the efficiency of FLN based classification NSL-KDD data 

set, results of accuracy as the best and mean of all runs, detection rate (DR), false 

alarm rate (FAR), recall, precision, F-measure (F.M), Maximum accuracy 

(MAX.Acc), Average accuracy (AVR. Acc) and G-mean (G.M) are compared with 

ELM. Moreover, in Figure 4.1 which provides different structure based on number of 

neurons, it can be concluded that FLN has outperformed ELM from the perspective of 

all measures. In following Table 4.1 shown the comparison results are between FLN 

and ELM based standard evaluations. 
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Table 4-1 The Comparison result between ELM and FLN 

No.Neurons Model MAX.Acc AVR.Acc DR FAR Precision Recall F.M G.M 

 ELM 0.9255 0.8956 0.9047 0.1545 0.8956 0.8955 0.8955 0.8061 

FLN 0.9641 0.9591 0.9586 0.0485 0.9588 0.9591 0.9587 0.9216 

 ELM 0.9521 0.9471 0.9418 0.0695 0.9469 0.9472 0.9471 0.8977 

FLN 0.9738 0.9669 0.9624 0.0441 0.9668 0.9666 0.9665 0.9367 

 ELM 0.9631 0.9548 0.9501 0.0591 0.9632 0.9628 0.9629 0.9124 

FLN 0.9785 0.9735 0.9696 0.0301 0.9781 0.9779 0.9783 0.9479 

 ELM 0.9709 0.9652 0.9593 0.0478 0.9706 0.9701 0.9709 0.9321 

FLN 0.9821 0.9803 0.9808 0.0247 0.9818 0.9822 0.9821 0.9606 

 

The table 4.1, shown the maximum (Best) and average accuracy (Mean), are 

computed for each algorithms (ELM, FLN), the experiments results taken as average 

for fifteen runs. The results of FLN based on a double parallel forward neural network, 

with this parallel connection of a multilayer feedforward neural network and a single 

layer feedforward neural network, and the DPFNN’s output nodes not only receive the 

recodification of the external information through the hidden nodes, but also receive 

the external information itself directly through the input nodes.  

This extra information will increase the learning rate of the model, which lead 

to make the FLN represented with less number of hidden neurons in hidden layer 

higher accuracy than the ELM as showed in Figure 4.1. Moreover, ELM shown higher 

false alarm rate in compare with FLN because of less number of weights in ELM in 

compare with FLN. In the following figures shown the comparisons between ELM and 

FLN with consideration for each part of number of neurons (10, 25, 35 and 50). 

Moreover, the average accuracy that FLN achieved better that ELM in all proposed 

different structures in this work with maximum accuracy 0.9821 achieved by FLN 

with 50 neurons in hidden layer.  In both algorithms showed the impact of neurons in 

hidden layer based accuracy. Moreover, the FLN with only 10 neurons in the hidden 

layer got higher accuracy than ELM with 10,25 and 35 neurons in the hidden layer, 

which means achieved high accuracy with less complexity.   

10 

 
255 

50 

35 
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Figure 4.1 comparison of ELM vs FLN accuracy based number of neurons 

In Figure 4.1, showed how the accuracy increase not in the same rate for both 

algorithms.  The increase rate of accuracy is less in ELM algorithm because its start 

with low accuracy in compare with FLN in 10 hidden neurons which means based on 

the 2.6.1 section that represents the impact of double parallel forward neural network in 

FLN instead of single hidden layer in ELM algorithm. And even with 50 neurons the 

ELM accuracy didn't get equivalent FLN accuracy, which mean still need more hidden 

neurons to reach the same level with FLN accuracy.     

4.3.2 Results of PSO-FLN  

This section provides results of optimization models, as mentioned in previous 

chapter, the optimization's methods proposed to overcome the random selection of 

parameter's limitation in the basic FLN. The optimization PSO algorithm proposed to 

train basic FLN with a different number of iterations (100,250 and 500). Moreover, the 

results also analysis the effect of different particle swarm sizes 10, 25, 35 and 50 same 

as the different parts of the number of neurons in the hidden layer of FLN 10, 25, 35, 

and 50, to investigated the influence based on performance of the models. Table 4.2 

shows the performance of PSO according to the training set with different number of 

neurons in the hidden layer and number of particles size and 500 maximum iterations; 

where P represent swarm size, M number of neurons and N.Itr is number of iterations. 

All the results in the following table represents as average for runs fifteen times.     
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Table 4.2 PSO-FLN Results 

P M N.Itr Best Worst Mean Std. DR FAR 
Precisi

on 
Recall F.M G.M 

 

 

 

 

 

 

  

10 

 

10 

 100 0.9892 0.9857 0.9871 0.0013 0.9709 0.0321 0.9716 0.9781 0.9751 0.9729 

 250 0.9929 0.9879 0.988 0.0011 0.9746 0.0306 0.9736 0.9871 0.9769 0.9751 

500 0.9931 0.9871 0.9903 0.0008 0.9749 0.0291 0.9748 0.9817 0.9784 0.9768 

 

25 

100 0.9928 0.9879 0.9901 0.0015 0.973 0.0314 0.9731 0.9871 0.9801 0.9787 

250 0.9931 0.9894 0.991 0.0012 0.9776 0.0272 0.9784 0.9843 0.9821 0.9804 

500 0.9938 0.9899 0.9913 0.0009 0.9803 0.0259 0.9804 0.9867 0.9823 0.9811 

 

35 

100 0.9929 0.9897 0.9913 0.0009 0.9762 0.0411 0.9762 0.9886 0.9824 0.9812 

250 0.9952 0.9908 0.9925 0.0011 0.9807 0.0221 0.9808 0.9888 0.9847 0.9836 

500 0.9944 0.9906 0.9929 0.0010 0.9829 0.0249 0.9822 0.9889 0.9852 0.9846 

 

50 

100 0.9945 0.9919 0.9932 0.0008 0.9831 0.0195 0.9831 0.9895 0.9865 0.9855 

250 0.9951 0.9939 0.9933 0.0007 0.9863 0.0156 0.9863 0.9894 0.9878 0.9871 

500 0.9955 0.9933 0.9936 0.0007 0.9877 0.0142 0.9876 0.9901 0.9892 0.9884 

 

 

 

 

 

 

  

25 

 

10 

100 0.9895 0.9858 0.9876 0.0010 0.9711 0.058 0.9718 0.9799 0.9749 0.9731 

250 0.9905 0.9859 0.9888 0.0011 0.9741 0.03 0.9739 0.9791 0.9769 0.9749 

500 0.9924 0.9879 0.9905 0.0014 0.9795 0.0238 0.9793 0.9818 0.9807 0.9792 

 

25 

100 0.9922 0.9887 0.9907 0.0010 0.9753 0.0291 0.9748 0.9864 0.9806 0.9792 

250 0.9942 0.9891 0.9915 0.0013 0.9799 0.0232 0.9797 0.9858 0.9828 0.9815 

500 0.9941 0.9905 0.9927 0.0010 0.9824 0.0203 0.9823 0.9881 0.9851 0.9841 

 

35 

100 0.9933 0.9892 0.9919 0.0011 0.9801 0.0232 0.9799 0.9877 0.9837 0.9825 

250 0.9944 0.9921 0.9926 0.0007 0.9825 0.0202 0.9823 0.9892 0.9858 0.9851 

500 0.9961 0.9915 0.9932 0.0013 0.9836 0.0186 0.9837 0.9885 0.9861 0.9851 

 

50 

100 0.9945 0.9924 0.9936 0.0006 0.9858 0.0168 0.9823 0.9887 0.9871 0.9862 

250 0.9944 0.9879 0.9939 0.0011 0.9831 0.0195 0.9827 0.9879 0.9856 0.9846 

500 0.996 0.9909 0.9942 0.0012 0.9904 0.0176 0.9905 0.9907 0.9905 0.9899 

 

 

 

 

 

 

  

35 

 

10 

100 0.9892 0.9858 0.9878 0.0010 0.9715 0.0329 0.9713 0.9781 0.9747 0.9731 

250 0.9903 0.9868 0.9892 0.0010 0.9756 0.0286 0.9743 0.9804 0.9773 0.9755 

500 0.9905 0.9877 0.9912 0.0007 0.9755 0.0264 0.9753 0.9814 0.9783 0.9767 

 

25 

100 0.9918 0.9881 0.9911 0.0013 0.9728 0.0316 0.9741 0.9861 0.9793 0.9778 

250 0.9939 0.9899 0.9919 0.0009 0.9787 0.0246 0.9786 0.9868 0.9833 0.9814 

500 0.9936 0.9926 0.9927 0.0007 0.9831 0.0197 0.9828 0.9872 0.9851 0.984 

 

35 

100 0.9937 0.9907 0.9921 0.0008 0.9794 0.024 0.9792 0.9882 0.9834 0.9824 

250 0.9941 0.9911 0.993 0.0009 0.9819 0.0206 0.9822 0.9881 0.9849 0.9839 

500 0.9954 0.9926 0.9948 0.0008 0.9873 0.0146 0.9872 0.9899 0.9885 0.9877 

 

50 

100 0.9948 0.9917 0.9939 0.0009 0.9844 0.0181 0.9842 0.9895 0.9868 0.986 

250 0.9961 0.9931 0.9945 0.0007 0.9877 0.0141 0.9876 0.9902 0.9889 0.9881 

500 0.9958 0.9935 0.995 0.0006 0.9894 0.0121 0.9893 0.9904 0.9899 0.9892 

  

 

 

 

 

 

  

50 

 

10 

100 0.9905 0.9856 0.9884 0.0014 0.9706 0.0341 0.9705 0.9803 0.9753 0.9735 

250 0.9912 0.9875 0.9896 0.0010 0.9777 0.0257 0.9776 0.9791 0.9785 0.9769 

500 0.9928 0.9882 0.9915 0.0011 0.9781 0.0251 0.9776 0.9812 0.9794 0.9779 

 

25 

100 0.9922 0.9895 0.99 0.0008 0.9753 0.0287 0.9751 0.9868 0.9809 0.9795 

250 0.9931 0.9901 0.9913 0.0009 0.9792 0.0240 0.9791 0.9885 0.9833 0.9817 

500 0.9951 0.9919 0.9931 0.0009 0.9853 0.0169 0.9852 0.9886 0.9861 0.9852 

 

35 

100 0.9933 0.9906 0.9923 0.0008 0.9807 0.0224 0.9805 0.9876 0.9842 0.9829 

250 0.9946 0.9916 0.9935 0.0008 0.9834 0.0191 0.9833 0.9883 0.9857 0.9847 

500 0.9957 0.9933 0.9948 0.0007 0.9884 0.0132 0.9883 0.9897 0.989 0.9883 

 

50 
100 0.9949 0.9927 0.9941 0.0006 0.9849 0.0173 0.9848 0.9896 0.9872 0.9863 

250 0.9957 0.9933 0.9949 0.0006 0.9893 0.0124 0.9891 0.9896 0.9892 0.9884 

500 0.9964 0.9951 0.9959 0.0004 0.9933 0.0076 0.9932 0.9907 0.9921 0.9915 



72 

Furthermore, Table 4.2 include several standard evaluations such as, number of 

iterations for each model, (Best) and (worst) accuracy of the fifteen runs for each 

models, (Mean) represents the average of accuracy. (Std) mean the standard deviation 

of the accuracy for each model. (DR) represents the detection rate and (FAR) is false 

alarm rate.   

Moreover, the table shown the impact of number of neurons is more heavy 

than the number of particles and iteration numbers in accuracy of each models. In 

addition, the table shown PSO-FLN achieved better performance in compared to basic 

FLN because of the reduced the randomness of select main parameters impact in basic 

FLN. The following is the figures shown the comparison of accuracy between PSO-

FLN with a difference's number of particles and basic-FLN. 

 
Figure(4.2)A. PSO-FLN Vs FLN with m=10 and Itr=100 

 

 
Figure(4.2)B. PSO-FLN Vs FLN with m=25 and Itr=100 

 

 
Figure(4.2)C. PSO-FLN Vs FLN with m=35 and Itr=100 

 

 

 
Figure(4.2)D. PSO-FLN Vs FLN with m=50 and Itr=100 
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Figure(4.2)E. PSO-FLN Vs FLN with m=10 and Itr=250 

 

 
Figure(4.2)F. PSO-FLN Vs FLN with m=25 and Itr=250 

 

 
Figure(4.2)K. PSO-FLN Vs FLN with m=35 and Itr=250 

 

 

 
  Figure(4.2)O. PSO-FLN Vs FLN with m=50 and Itr=250 

 

 
Figure (4..2)S.  PSO-FLN Vs FLN with m=10 and Itr=500            

 

 

 

 
Figure (4.2)R. PSO-FLN Vs FLN with m=25 and Itr=500            
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O. Figure (4.2) P.PSO-FLN Vs FLN with m=35 and Itr=500 

 

 

 
O. Figure (4.2) O.PSO-FLN Vs FLN with m=50 and Itr=500 

 

Figure 4.2 Comparison between PSO-FLNs vs FLN Based accuracy 

In Figure 4.2 represents PSO-FLN with different number of neurons (m) and 

different number of iterations (Itr) with different situations and (p) represents the 

number of particles. Moreover, all the cases A, B, C, D, E, F, K, O, S, R, P and O 

showed PSO-FLN achieved better results with all different structures in compare to 

the results of basic FLN. As a result of reduce the random selection of parameters in 

the basic FLN, PSO-FLN achieved better performance as shown in Table 4.2 and 

Figure 4.2. The accuracy with 50 neurons and 500 iterations achieved higher accuracy 

among all models of PSO-FLN  

4.3.3  Result of MRPSO-FLN  

This section provides the results of the new approach based PSO algorithm, 

(multi swarm optimization) as mentioned in previous chapter, the basic idea of this 

approach on update the position and velocity. On another hand, the parameters fixative 

during the update. This work proposed the idea of “Meeting Room Approach” to 

update the PSO parameters between several swarms based on the fitness.  

Furthermore, MRPSO-FLN model divided into five clans with 10 members 

(particles) in each clan and 100 iterations,  and its parameters (𝑐1, 𝑐2,w) are updated 

based on steps of PSO algorithm. Once the new generation of each clan has been set, a 

new clan leader (the best leader) is elected and sent to the meeting room. The best 

among the leaders will be selected as the overall best leader (global best) in the 

meeting room based accuracy. 
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Table 4.3 PSO-FLN Vs MRPSO-FLN Results 

Alg. M Best Worst Mean Std. DR FAR Precision Recall F.M G.M 
P

S
O

-F
L

N
 

10 0.9928 0.9882 0.9915 0.0011 0.9777 0.0257 0.9776 0.9812 0.9794 0.9779 

25 0.995 0.9919 0.9931 0.0009 0.9853 0.0169 0.9852 0.9886 0.9861 0.9852 

35 0.9955 0.9933 0.9948 0.0007 0.9884 0.0132 0.9883 0.9897 0.989 0.9883 

50 
0.996 0.9951 0.9957 0.0004 0.9933 0.0076 0.9932 0.9907 0.9921 0.9915 

M
R

P
S

O
-F

L
N

 

10 0.9931 0.9888 0.9921 0.0010 0.9786 0.0244 0.978 0.9815 0.9797 0.9789 

25 0.9951 0.9921 0.9935 0.0012 0.9862 0.0161 0.9858 0.9891 0.987 0.9855 

35 0.9957 0.9934 0.995 0.0009 0.9888 0.0128 0.989 0.9899 0.9896 0.9888 

50 0.9955 0.9948 0.9953 0.0007 0.9927 0.0080 0.9928 0.9899 0.9910 0.9906 

 

In Table 4.3 the proposed model MRPSO-FLN compared with the best 

situation of 4.2 table, which contain PSO-FLN results, the results with 50 particles and 

500 iterations in previous table achieved the better results in compared with other 

proposed models. On another hand, MRPSO-FLN is represented with the 50 particles 

divided into five clans (10 particles for clan) each of these clan’s hybrid with a 

different number of neurons (10, 25, 35, and 50) in the hidden layer of the FLN with 

100 iterations. The results for both models almost in the same accuracy range but with 

different structure such as the number of particles and iterations. Moreover, for 10, 25 

and 35 neurons the PSO-FLN need for 500 iterations and 50 particles to achieve 

0.9928, 0.995 and 0.9955 accuracy on other hand 0.9931, 0.9951 and 0.9957 accuracy 

for MRPSO with only 100 iterations and 10 particles, but with 50 neurons, PSO-FLN 

achieved 0.996 accuracy which slightly higher than 0.9955 for MRPSO-FLN. 

Moreover, in following a table 4.4 shown PSO parameter values which provides best 

accuracy based on different number of neurons. 

Table 4.4  Parametervalues based on MRPSO-FLN 

    M Best 𝒄𝟏 𝒄𝟐 W 

M
R

P
S

O
-F

L
N

 

10 0.9931 1.4199 1.4195 0.7499 

25 0.995 1.4213 1.4209 0.7508 

35 0.9955 1.431 1.398 0.7498 

50 0.9955 1.4253 1.419 0.7422 
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Figure 4.3 Comparison of average accuracy between PSO-FLN Vs MRPSO-FLN 

 

Figure 4.4 Comparison of average FAR between PSO-FLN Vs MRPSO-FLN 
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Figure 4.5 Comparison of average DR between PSO-FLN Vs MRPSO-FLN 

Figure 4.3 showed the accuracy for both PSO-FLN and MR PSO-FLN, only 

with 50 neutrons MR PSO-FLN achieved worse than PSO-FLN which because the 

impact of structure differentiations. The results between the PSO-FLN and MRPSO-

FLN are convergent, but as mentioned before the PSO-FLN adjusts with 500 iterations 

and 50 swarm particles, on another hand MRPSO-FLN only with 100 iterations and 10 

swarm particles. Which mean less in the complexity and time than PSO-FLN without 

high losing at the performance rate. 

4.4 The Comparative of Proposed Models 

To illustrate the effectiveness of our proposed IDS models, this section represents a 

compare proposed models performance with 15 recently developed anomaly detection 

techniques. Table 4.5 demonstrates the result achieved by proposed models compared 

with other models tested on NSL-KDD dataset in term of detection rate and false 

alarm rate. It is very clear that our proposed models (PSO-FLN, MRPSO-FLN) gets 

the best results with 0.9933 detection rate, 0.0076 false alarm rate for PSO-FLN model 

as mentioned in table 4.2, and 0.9927 detection rate, 0.0080 false alarm rate for 

MRPSO-FLN model, in following Table 4.5 
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Table 4-4 comparative of proposed models 

∗ 𝑟𝑜: MINIMUM PULSE RATE 

∗ 𝐴0: MAXIMUM LOUDNESS 

*D: RBF KERNEL PARAMETERS 
*S. S: SWARM SIZES 

*AR: ANNEALING RATE 

*𝑥1, 𝑥2 : ARBITRARY VARIABLES 

*M: NEURONS IN HIDDEN LAYER 

*C, Γ: SVM PARAMETER 

*𝛼:POLYNOMIAL PARAMETER 
*L: LOWER BOUNDARIES 

*L1, L2: REGULARIZATION 

* 𝛽: CONTROL PARAMETER 

*K: K-NEAREST SET 

*A. S: AUTO ENCODER SIZE 

*N. N: NUMBER OF NODES 
*U: UPPER BOUNDARIES 

*B: CONFUSED PARAMETER 

*SN: FOOD SOURCES 

 

Table 4.5 structure contains five columns, start with first column that represents 

references. The second column represents the main methods that proposed as IDS. 

Moreover, third column represents the parameters setting (P.S) of the main methods. 

The fourth column in table represents detection rate (DR), and final column represents 

false alarm rate (FAR). All the proposed models in the above table share NSL-KDD 

data set with multi classification based on anomaly IDS. The results shown that there 

is a significant impact of FLN structure models based on IDS performance. 

Ref Algorithms Used P.S DR FAR 

(Hajimirza& 

Navimipour, 

2018) 

Proposed a combination of a MLP and Artificial bee 

Colony (ABC) and k-means clustering 

---  

0.9841 

 

0.012 

(Gauthama 

Raman et al., 

2017) 

 

Proposed HG-GASVM based IDS which using  hypergraph 

- genetic algorithm for parameter setting in support SVM 

C 2−5 − 25 ,γ= 2−4 −
24,Crossover rate=80% 

Mutation rate=2% 
Iterations =500 

 

 

0.9714 
 

 

0.83 

 

(Hosseini 

Bamakan et 

al., 2016) 

 
Proposed time varying chaos particle swarm 

optimization(TVCPSO) to parameters setting SVM 

C 2−5 − 25 ,γ= 2−4 −
24,𝛼=−10−5−10−1 
Iterations=200,S.S =8 

0.970 0.87 

(Singh et al., 

2015) 
Proposed IDS based on traffic profiling and online 

sequential extreme learning machine (OS-ELM) 

M=50--1000 

Threshold=0.5-2.0 

 

0.9767 

 

0.017 
(Eduardo et 

al., 2013) 
Proposed IDS based on hybrid SVM classifier and Non- 

linear projection technique 
𝛼=5 
d=3 

 

0.9341 

 

0.14 
(Ahmad & 

Senga, 2017) 
Proposed IDS based on SVM and BAT algorithm ----- 0.9431 0.5 

(Enache & 

Sgarciu, 

2014) 

Proposed IDS based on hybrid PSO and SVM γ=0.1𝛼= 0.9,C1=2.3 

C2=1.8,W=0.9to0.5, 𝐴0 =1

0,𝑟𝑜=0.9,FR=0.8 to 1.0 

0.9341 0.049 

Proposed IDS based on hybrid Bat and SVM 0.956 0.04 

(AL-

Hawawreh 

et al., 2018) 

 
Proposed IDS by using a deep auto- encoder and deep 

ANN 

Epochs=100,L1=L2=1𝑒−6

,M=10-3-10 

AR=2𝑒−6,Ramp=1𝑒7 

 
0.99 

 
0.01 

 

(Ambusaidi 

et al., 2016) 

Proposed IDS based on hybrid Least Square  Support Vector 
Machine based IDS (LSSVM-IDS) 

𝛽  =1-0, Step size =0.1 
K=6 

 
0.9596 

 
0.38 

(Dinh & 

Ngoc, 2017) 
Proposed IDS based on hybrid a stacked auto encoder and 

random forest named (SAE-RF) 

M=100 

B=0-2 
0.8542 0.036 

(Ludwig, 

2017) 
 

Proposed IDS based on neural network ensemble 

A. S=10—20 

N. N=15-20 

Layers=2 
M=20-25 

 

0.925 

 

0.147 

(Hajisalem 

& Babaie, 

2018) 

Proposed IDS used a hybrid classification based on 

Artificial Bee Colony (ABC) and Artificial Fish Swarm 
(AFS) 

SN=30, Food Number=15 

Limit=5000, Runtime=10 
U=500, L=-500,D=1500 

0.990 0.01 

(Ambusaidi 

et al., 2016) 
Proposed IDS based on a Filter-Support Vector Machine 

(FSVM) 
𝛽  =0.3,1, Iterations=10 

K=6 
0.9229 0.02 

(Ji et al., 

2016) Proposed IDS based on a  Multi-Level DWT 
K=3, Normalization=0 -1 

γ =0.99 
 

0.9123 
 

0.023 
(Moustafa et 

al., 2017) Proposed IDS based on a  Geometric Analysis (GAA) 
(𝜋, 𝜐, 𝜔) = (0.55,30,10) 
(𝜋, 𝜐, 𝜔)= (0.45, 10,30) 

 

0.981 

 

0.002 
 

 

Proposed 

Models 

Proposed IDS based on Basic-FLN M=50 0.9808 0.024 

Proposed IDS based on PSO-FLN 
M=50, Iteration =500 

S.S=50 

 

0.9933 

 

0.007 

Proposed IDs based on MRPSO-FLN 
M=50, Iteration=100 

S.S=10 

 

0.9927 

 

0.0080 
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Furthermore, the improvement of selected FLN main parameters based PSO 

algorithms are also shown in the table. Moreover, this section represents the statistical 

analysis for the proposed models based on accuracy comparison. The statistical test 

typically used for preferable comparison, for this proposed by using the results 

obtained for 15 runs for each models (Francisco J. Samaniego, 2014).  In this work a 

Wilcoxon signed rank test is performed with a statistical significance value ∝=0.05. 

The null hypothesis 𝐻0 for this test “ There is no different between the median of the 

solutions produced by algorithm A and the median of solutions produced  by 

algorithm B for the same benchmark problem”. To determine whether algorithm A 

reached a statistically better solution than (B), or if not, whether the alternative 

hypothesis is valid, the size of the ranks provided by the Wilcoxon signed rank test 

(T+, T-) are examined.  Table 4.6 showed the statistical pairwise results. Firstly, the 

basic FLN compared to ELM algorithm. Secondly, PSO-FLN compared to FLN.  

 

Table 4.5 The Wilcoxon Signed Rank Test 

MODELS + - Z.V P.V RESULT 

ELM Vs FLN (m=10) 15 0 -3.397 0.000979 𝐻𝑜 Reject 

ELM Vs FLN (m=25) 15 0 -3.296 0.000982 𝐻𝑜 Reject 

ELM Vs FLN (m=35) 15 0 -3.408 0.000655 𝐻𝑜 Reject 

ELM Vs FLN (m=50) 15 0 -3.397 0.000973 𝐻𝑜 Reject 

FLN (m=10) Vs PSO-FLN(m=10, Number of particles=10) 

Number of Iterations=100 15 0 -3.297 0.000652 𝐻𝑜 Reject 

Number of Iterations=250 15 0 -3.409 0.000655 𝐻𝑜 Reject 

Number of Iterations=500 15 0 -3.410 0.000650 𝐻𝑜 Reject 

FLN (m=10) Vs PSO-FLN(m=10, Number of particles=25) 

Number of Iterations=100 15 0 -3.408 0.000653 𝐻𝑜 Reject 

Number of Iterations=250 15 0 -3.405 0.000655 𝐻𝑜 Reject 

Number of Iterations=500 15 0 -3.297 0.000979 𝐻𝑜 Reject 

FLN (m=10) Vs PSO-FLN(m=10, Number of particles=35) 

Number of Iterations=100 15 0 -3.297 0.000979 𝐻𝑜 Reject 

Number of Iterations=250 15 0 -3.408 0.000653 𝐻𝑜 Reject 

Number of Iterations=500 15 0 -3.413 0.000642 𝐻𝑜 Reject 

FLN (m=10) Vs PSO-FLN(m=10, Number of particles=50) 

Number of Iterations=100 15 0 -3.409 0.000652 𝐻𝑜 Reject 

Number of Iterations=250 15 0 -3.517 0.000437 𝐻𝑜 Reject 

Number of Iterations=500 15 0 -3.517 0.000436 𝐻𝑜 Reject 

FLN (m=25) Vs PSO-FLN(m=25, Number of particles=10) 

Number of Iterations=100 15 0 -3.409 0.000652 𝐻𝑜 Reject 

Number of Iterations=250 15 0 -3.408 0.000655 𝐻𝑜 Reject 

Number of Iterations=500 15 0 -3.409 0.000653 𝐻𝑜 Reject 

FLN (m=25) Vs PSO-FLN(m=25, Number of particles=25) 

Number of Iterations=100 15 0 -3.408 0.000652 𝐻𝑜 Reject 

Number of Iterations=250 15 0 -3.409 0.000653 𝐻𝑜 Reject 

Number of Iterations=500 15 0 -3.408 0.000655 𝐻𝑜 Reject 

FLN (m=25) Vs PSO-FLN(m=25, Number of particles=35) 

Number of Iterations=100 15 0 -3.408 0.000653 𝐻𝑜 Reject 

Number of Iterations=250 15 0 -3.409 0.000653 𝐻𝑜 Reject 

Number of Iterations=500 15 0 -3.408 0.000651 𝐻𝑜 Reject 

FLN (m=25) Vs PSO-FLN(m=25, Number of particles=50) 

Number of Iterations=100 15 0 -3.409 0.000655 𝐻𝑜 Reject 

Number of Iterations=250 15 0 -3.411 0.000648 𝐻𝑜 Reject 

Number of Iterations=500 15 0 -3.409 0.000652 𝐻𝑜 Reject 
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         In this table, + indicates the positive ranks, while – indicated the negative ranks. 

In the z-distribution column, and when the p-value of less than 0.05, which means 

there is a significant difference between the two algorithms in that test. The table can 

be summarized as follows. In FLN vs ELM part, the test indicates that there are more 

significant negative ranks(N=15) without significant positive ranks based on all 

proposed different algorithm's structure (number of neurons). This means that the 

median of FLN is more than a median of ELM. In other words, 𝐻0 is rejected and the 

FLN has better performance and has outperformed ELM. Moreover, in PSO-FLN, the 

test indicates that the all results are significant negative also without significant 

positive ranks. This means 𝐻0 is rejected and the PSO-FLN has better performance 

and has outperformed FLN. 

 

4.5 Validate of The Proposed Methods   

This section provides a more detail to validate the proposed models, in general 

this part divided into two parts. The first part, provides a validate proposes to PSO-

Table 4.5 continue   
FLN (m=35) Vs PSO-FLN(m=35, Number of particles=10) 

Number of Iterations=100 15 0 -3.408 0.000655 𝐻𝑜 Reject 

Number of Iterations=250 15 0 -3.408 0.000653 𝐻𝑜 Reject 

Number of Iterations=500 15 0 -3.409 0.000651 𝐻𝑜 Reject 

FLN (m=35) Vs PSO-FLN(m=35, Number of particles=25) 

Number of Iterations=100 15 0 -3.411 0.000653 𝐻𝑜 Reject 

Number of Iterations=250 15 0 -3.408 0.000655 𝐻𝑜 Reject 

Number of Iterations=500 15 0 -3.409 0.000653 𝐻𝑜 Reject 

FLN (m=35) Vs PSO-FLN(m=35, Number of particles=35) 

Number of Iterations=100 15 0 -3.408 0.000651 𝐻𝑜 Reject 

Number of Iterations=250 15 0 -3.409 0.000655 𝐻𝑜 Reject 

Number of Iterations=500 15 0 -3.410 0.000650 𝐻𝑜 Reject 

FLN (m=35) Vs PSO-FLN(m=35, Number of particles=50) 

Number of Iterations=100 15 0 -3.408 0.000655 𝐻𝑜 Reject 

Number of Iterations=250 15 0 -3.409 0.000653 𝐻𝑜 Reject 

Number of Iterations=500 15 0 -3.408 0.000655 𝐻𝑜 Reject 

FLN (m=50) Vs PSO-FLN(m=50, Number of particles=10) 

Number of Iterations=100 15 0 -3.409 0.000653 𝐻𝑜 Reject 

Number of Iterations=250 15 0 -3.408 0.000655 𝐻𝑜 Reject 

Number of Iterations=500 15 0 -3.409 0.000652 𝐻𝑜 Reject 

FLN (m=50) Vs PSO-FLN(m=50, Number of particles=25) 

Number of Iterations=100 15 0 -3.408 0.000652 𝐻𝑜 Reject 

Number of Iterations=250 15 0 -3.409 0.000653 𝐻𝑜 Reject 

Number of Iterations=500 15 0 -3.408 0.000655 𝐻𝑜 Reject 

FLN (m=50) Vs PSO-FLN(m=50, Number of particles=35) 

Number of Iterations=100 15 0 -3.409 0.000655 𝐻𝑜 Reject 

Number of Iterations=250 15 0 -3.408 0.000653 𝐻𝑜 Reject 

Number of Iterations=500 15 0 -3.412 0.000645 𝐻𝑜 Reject 

FLN (m=50) Vs PSO-FLN(m=50, Number of particles=50) 

Number of Iterations=100 15 0 -3.411 0.000647 𝐻𝑜 Reject 

Number of Iterations=250 15 0 -3.409 0.000652 𝐻𝑜 Reject 

Number of Iterations=500 15 0 -3.408 0.000651 𝐻𝑜 Reject 
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FLN. The second part, propose a validate of basic FLN. In general, these validation 

works based on the information form the MRPSO-FLN model.    

4.5.1  Validate of PSO-FLN 

In previous section, the experiments of PSO-FLN adjusted the parameters 

based on (Xia et al., 2018) work, which explained a newest and poplar of multi swarm 

based on PSO based on purposeful detecting. on another hand, in the end of MRPSO-

FLN experiments, the model provides the best 𝑐1, 𝑐2 and w based on room meeting 

approach. The propose of this section is to provides the parameters value that got from 

MRPSO-FLN as the best accuracy provided with parameters value 

𝑐1=1.431, 𝑐2=1.395,w=0.749 for 35 neurons,  and applied in the PSO-FLN Instead of 

the standard value of parameters that had been used in previous PSO-FLN model.   

Table 4.6 PSO-FLN* Vs PSO-FLN(p=10) Results 

Alg. M Best Worst Mean Std. DR FAR Precision Recall F.M G.M 

  
 P

S
O

-F
L

N
 10 0.9892 0.9857 0.9871 0.0013 0.9709 0.3214 0.9716 0.9781 0.9751 0.9729 

25 0.9928 0.9879 0.9901 0.0015 0.973 0.0314 0.9731 0.9871 0.9801 0.9787 

35 0.9929 0.9897 0.9913 0.0009 0.9762 0.0411 0.9762 0.9886 0.9824 0.9812 

50 0.9945 0.9919 0.9932 0.0008 0.9831 0.0195 0.9831 0.9895 0.9865 0.9855 

  
P

S
O

-F
L

N
*

 

10 0.9931 0.9888 0.992 0.001 0.9786 0.0247 0.978 0.9815 0.9797 0.9789 

25 0.995 0.9922 0.9935 0.0012 0.9862 0.017 0.9858 0.9891 0.987 0.9855 

35 0.9955 0.9934 0.995 0.0009 0.9888 0.0131 0.989 0.9899 0.9896 0.9888 

50 0.9958 0.9948 0.9953 0.0007 0.9927 0.0084 0.9928 0.9899 0.991 0.9906 

The table 4.7 showed the number of iterations for both of models 100 and 10 swarm 

particles, which mean same structures. The performance of PSO-FLN* which 

represents the PSO-FLN with parameters value that provided by MRPSO-FLN, 

achieved better performance than the PSO-FLN with the standard parameter's values.   
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Figure 4.6 Comparison of  Accuracy between PSO-FLN (P=10) Vs PSO-FLN* 

 

Figure 4.7 Comparison of average DR between PSO-FLN) P=10) Vs PSO-FLN* 
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Figure 4.8 Comparison of average FAR between PSO-FLN) P=10) Vs PSO-FLN* 

All the above figures in general showed that PSO-FLN* is based the new 

values of 𝑐1, 𝑐2 and  w achieved better performance in compare with FLN-PSO based 

the standard parameters values. Figure 4.6 represents the comparison between PSO-

FLN and PSO-FLN* based on average accuracy. the PSO-FLN* with only 10 neurons 

the average of PSO-FLN* accuracy was better than the average accuracy of standard 

PSO-FLN even with 25 and 35 neurons in the hidden layer. As a conclusion, the PSO-

FLN* with parameters value that provided from MRPSO-FLN methods with fewer 

numbers of neurons in the hidden layer achieved better accuracy and detection rate as 

in Figure 4.7 with less complexity. Moreover, Figure 4.8 represents the comparison 

between PSO-FLN and PSO-FLN* is based on false alarm rate. In general, the 

performance PSO-FLN* is better and achieved less rate in all structure of hidden 

layer. Moreover, the decrease of FAR was regularly with the increase of the number of 

neurons in PSO-FLN*, when the decrease of FAR was not regularly in PSO-FLN as 

shown in figure during 35 neurons in hidden layer. Moreover, this section analysis the 

PSO-FLN* comparison results with best results based on Table 4.2, PSO-FLN model 

with 50 particles better than other in general. As following, Table 4.8 shows the 

comparison between the standard PSO-FLN and PSO-FLN* with different structures 

as 50 particles and 500 iterations for PSO-LN and10 particles and 100 iterations for 

PSO-FLN*. 
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Table 4.7 PSO-FLN* Vs PSO-FLN(p=50) Results 

Alg. M Best Worst Mean Std. DR FAR Precision Recall F.M G.M 
 P

S
O

-F
L

N
 10 0.9928 0.9882 0.9915 0.0011 0.9777 0.0257 0.9776 0.9812 0.9794 0.9779 

25 0.9951 0.9919 0.9931 0.0009 0.9853 0.0169 0.9852 0.9886 0.9861 0.9852 

35 0.9957 0.9933 0.9948 0.0007 0.9884 0.0132 0.9883 0.9897 0.989 0.9883 

50 0.9959 0.9951 0.9959 0.0004 0.9933 0.0076 0.9932 0.9907 0.9921 0.9915 

P
S

O
-F

L
N

*
 10 0.9931 0.9888 0.9921 0.001 0.9786 0.0247 0.978 0.9815 0.9797 0.9789 

25 0.995 0.9921 0.9935 0.0012 0.9862 0.017 0.9858 0.9891 0.987 0.9855 

35 0.9955 0.9934 0.995 0.0009 0.9888 0.0131 0.989 0.9899 0.9896 0.9888 

50 0.9958 0.9948 0.9953 0.0007 0.9927 0.0084 0.9928 0.9899 0.991 0.9906 

 

In table 4.8, the main differences between the models that have been compared 

are the numbers of particles and iterations. Moreover, the results of the models were 

slightly different as explains in following figures. 

 

Figure 4.9 Comparison of Accuracy between PSO-FLN (P=50) Vs PSO-FLN* 
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Figure 4.10 Comparison of average DR between PSO-FLN) P=50) Vs PSO-FLN* 

 

Figure 4.11 Comparison of average FAR between PSO-FLN) P=50) Vs PSO-FLN* 
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4.5.2 Validate of FLN 

This section provides a valid set to basic FLN, as mentioned in previous 

sections that FLN selected main parameters randomly. Moreover, this section 

proposed to provide FLN parameters based takes from PSO-FLN* instead of create 

randomly. In the end of PSO-FLN* processed which its work based on best PSO 

parameters as mentioned in above section, can get the best values of FLN parameters. 

These parameters represent in FLN as 𝑤𝑖 and 𝑏𝑖.Moreover, with specification's PC for 

experiments implementations include. Operating system is 64 bit windows 10 Pro, 

with processor core i7 and 16.0 GB memory. In another hand, the official NSL-KDD 

provided by websites has a total number of 24 attack types, and based, attack 

categories can be classified into 5 categories in order to compression with new model 

free parameters FLN.  Table 4.9 as following presents the parameters setting for all the 

benchmark algorithm used in this study. 

Table 4.8 Parameters setting 

Algorithm Parameter Value 

Decision Tree((Hoeffiding) Grace Period 200 

Batch Size 100 

Hoeffding theeshold 0.05 

Naïve Bayes Batch Size 100 

Num Decimal Places 2 

MLP(back propagation) Batch Size 100 

Learning Rate 0.3 

Training Time 500 

Num Decimal Places 2 

momentum 0.2 

Num of Neurons 10 

SVM Batch Size 100 

C 0.1 

Num Folds -1 

Tolerance Parameter 0.001 

ELM Num of Neurons 10 

Basic FLN Num of Neurons 10 

 

Table 4.9 represents the parameter's values setting of the benchmark 

algorithms. In addition to the new FLN free parameters model, this section provides. 

It's also provides a compare of the new model with several standard models include 

(basic FLN, ELM, SVM, Naïve Bayes, Multilayer Perceptron (MLP) and Hoeffding 

tree (Decision tree)) based on NSL-KDD. Weka version 3.8.2 is used in this work to 
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Implementation of benchmark models based on NSL-KDD dataset. Moreover, the 

setting of free parameters Improved FLN (IFLN), which proposed in this section also 

adjust with 10 neurons in the hidden layer. As following Table 4.10 shown 

comparison results.   

Table 4.9 comparison results of Improved FLN 

Model Accuracy DR FAR Precision Recall F.M Time(s) 

Hoeffiding 0.9636 0.964 0.052 0.970 0.964 0.966 7.64 

NaïveBayes 0.8357 0.836 0.044 0.914 0.836 0.971 1.48 

MLP 0.9811 0.9812 0.021 0.9822 0.9834 0.9821 4227 

SVM 0.9831 0.9822 0.017 0.9833 0.983 0.9831 245.9 

ELM 0.9255 0.9047 0.1545 0.8956 0.8955 0.9855 0.448 

Basic FLN 0.9641 0.9586 0.0485 0.9588 0.9591 0.9587 0.485 

IFLN 0.9908 0.9825 0.014 0.9707 0.9822 0.9755 0.422 

 

In Table 4.7, the results shown the IFLN model has better accuracy in compare 

with other models. Furthermore, the false alarm rate for IFLN is less than most of the 

models in the table. In following figures 4.12, 4.13 and 4.14 are shown 

 

Figure 4.12 Accuracy comparison of IFLN 
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Figure 4.13 False Alarms comparison of IFLN  

 

 

Figure 4.14 Detection Rate comparison of IFLN 
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Furthermore, all models proposed in this work evaluated based NSL-KDD dataset, 

which contains 148517 records with 42 attributes.  

Firstly, proposed FLN based on network intrusion detection and model results 

compared with ELM as evaluated as shown in table 4.1. Additionally, the table shows 

the different neurons number in the hidden layer for both algorithms to investigate the 

influence of the neuron's increase on the performance, which represents a different 

algorithm structure. The FLN results showed more stability and better accuracy than 

ELM algorithm. 

As a result of the differences in algorithm's structure, the FLN structure 

contains is a double parallel forward neural network which makes output nodes not 

only receive information from the hidden nodes, but also get the external information 

directly from the input nodes. On other hands, the ELM structure contains single 

Hidden Layer Feedforward Neural Network, which make the output nodes receive the 

information from hidden nodes.    

Figure 4.15 structure differences 

Furthermore, Table 4.1 showed that ELM needs 50 neurons to reach accuracy 

0.9709, when the FLN algorithm with 25 neurons achieved higher accuracy because of 

the knowledge rate is higher in FLN as mentioned in structure differences. And 

therefore, FLN also achieved better detection rate and less false alarm rate with less 

complexity of hidden neurons.  Secondly, with all the improved of FLN that 

mentioned above, select randomly of the main FLN parameters considered as one of 

the algorithm limitations, which may not provide optimal parameters value and that 

represent a negative impact on the model accuracy. In general, random selection of 
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machine learning issues solved based proposed several optimization algorithms as 

mentioned in chapter 2. This work proposed PSO algorithm to be hybrid with basic 

FLN as training for FLN and reduces the impact of parameters random selected.    

In table 4.2 represented results of a new model PSO-FLN, this section had been 

investigated the model accuracy based three parameters (number of particles (10-2-35-

50), number of iterations (100-250-500), and number of neurons (10-25-35-50)). 

Accordingly, the influences of these changes based model accuracies were different. 

On another hand, the increase of a neuron's number was the most impact, results of 

compare the basic FLN and PSO-FLN models based same number of neurons shown 

in figures 4.6. Moreover, changes influence on detection rate and false alarm rate also, 

Where PSO-FLN with 50 neutrons and particles achieved better performance based 

these measurement's detection rate (DR), false alarm rate (FAR) with all iteration's 

numbers. In the following, figures are shown comparison results of basic FLN and 

PSO-FLN based DR and FAR measurements evaluated.   

 

Figure 4.16 comparison result between FLN and PSO-FLN with 100 iterations 
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Figure 4.17comparison result between FLN and PSO-FLN with 250 iterations 

 

Figure 4.18 comparison result between FLN and PSO-FLN with 500 iterations 

The figures above showed that the PSO-FLN performance improved the basic 

FLN performance by provided best parameter's values as shown in PSO-FLN block 

diagram figure 3.6. In the end, PSO-FLN improved showed how it is worth reducing 

the impact of select parameters randomly.    

Thirdly, there are many works proposed to improved standard PSO algorithm 

as showed in previous chapters. The meeting room approach proposed in this work for 

parameters tuning by share parameter's information between several PSO-FLN 

models )clans). As showed in table 4.2, which it showed PSO-FLN best results with 

50 particles and neurons with 500 iterations. However, proposed MRPSO-FLN with 5 

clans each one represented PSO-FLN with 10 neurons and particles and 100 iterations. 
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Where in table 4.3 showed the comparison results between the best set of PSO-FLN 

(50 neurons and particles with 500 iterations) and MRPSO-FLN (10 neurons and 

particles with 100 iterations) and figures 4.7,4.8 and 4.9 shown how the new proposed 

MRSPO-FLN with less complexity achieved better performance.    

Finally, the validation part is represented in the end of this chapter, which its 

divided into two parts, Compensation of PSO-FLN parameter's value (c1, c2, w) that 

provided from MRPSO-FLN instead of default values. The new model (PSO-FLN*) 

compared with PSO-FLN based (10 particles, 100 iterations) and (50 particles, 500 

iterations) with adjust parameter values as default values as showed in table 4.4 and 

4.5. 

First table shows the results of comparison between PSO-FLN and PSO-FLN* 

with the same adjustment's situation. As a result of best parameter values provided for 

PSO-FLN* the performance such as accuracy 4.10, detection rate 4.11 and false alarm 

rate 4.12 improved in compared with PSO-FLN based default parameter's values. The 

new model PSO-FLN* achieved with only 10 neurons accuracy 0.9931 when PSO-

FLN 0.9932 with 50 neurons, which mean the new proposed achieve comparable 

accuracy with less complexity. In addition, the second able shown the result 

comparison of PSO-FLN* with fewer numbers of particles and iterations achieved 

slightly better average accuracy as figure 4.13, and detection rate as shown in figure 

4.14 and less false alarm rate as shown in figure 4.15.    

Last part of validate, provide FLN parameters value taken from PSO-FLN* 

model instead of created randomly. The evaluated of a new model improved FLN 

(FLN) by compared with several standard models as shown in table 4.6. Subsequently, 

table 4.7 showed the results of comparison. IFLN model only with 10 neurons, showed 

improved as accuracy in figure 4.16, false alarm in figure 4.17 and detection rate in 

figure 4.18.   
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CONCLUSION AND FUTURE WORK 

5.1 Overview 

This chapter summarizes the thesis study and the achieved contributions. In 

addition, the chapter also defines the challenges and the future directions of research in 

order to enable fully machine learning based IDS. Section 5.2 highlights the objectives 

revisited.  Section 5.3 presents brief summary of the research. Section 5.4 shows the 

recommendation for future research and limitation. Finally, section 5.5 gives the 

conclusion.   

5.2 Objectives Revisited  

This research was aimed at enhancing the accuracy of network intrusion 

detection system by using more recent artificial neural version called Fast Learning 

Network with improved particle swarm optimization based on a new multi-swarm 

scheme called Multi-Swarm Optimization (MRPSO). The objectives of this research 

are as follows: 

i- To propose a self-parameters tuning technique for the Particle Swarm 

Optimization (PSO) algorithm using a multi-swarm approach 

(MRPSO). 

To address the first objective, a new multi-swarm scheme inspired by the 

human social behaviour called MRPSO was developed and used to find the best values 

of the PSO control parameters as these parameters have an impact on the performance 

of the PSO algorithm. The proposed strategy was designed to interact with several 

PSO groups while searching for the optimal values of the control parameters. A new 
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cooperative of multi-swarm divided each group as clan and leaders based on the 

fitness value provided by the FLN. In each generation, the leaders often meet to select 

an overall best leader who will update the parameter values of the other leaders based 

on his new-found value 

ii- To design a new training algorithm for FLN based on the proposed 

MRPSO algorithm for network intrusion detection system IDS.  

As earlier stated, FLN is straightforward in implementation, computationally 

efficient, and have excellent learning performance characteristics. However, the 

randomness of the selected values of the main parameters (weight, basis) may not 

provide the optimal values which impact the accuracy of intrusion detection. This 

work proposed the MRPSO algorithm for training the FLN to reduce the impact of 

randomizes selection through the provision of the best values for these parameters. 

The fitness function was used as a rule to compare the generations of MRPSO and this 

fitness represents the level of accuracy of the FLN in providing false alarm rates 

(higher accuracy implies less false alarm rates). In the end, the mixed model provided 

better intrusion detection results compared to several other standard algorithms based 

on the NSL-KDD data set.   

iii- To evaluate and test the prediction accuracy of proposed models (FLN, 

PSO-FLN, MRPSO-FLN) based on NSL-KDD dataset.  

Based on the related works, this work proposed several standard metrics which 

can be utilized to evaluate and compare results derived from the different classification 

methods. The models were run for fifteen times and the average values for these runs 

were taken. 

5.3 Brief Summary of Research 

This study was motivated by the shortcoming of the prior approaches to 

network intrusion detection problems, such as high false alarm rates and poor 

detection performances. Three new machine learning models were introduced to 

network intrusion detection. The FLN, PSO-FLN, and MRPSO-FLN models are 

suitable for processing large multicast network intrusion detection datasets such as the 
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NSL-KDD dataset. The performance of the final model was compared to several 

standard algorithms such as Basic FLN, ELM, SVM, Multilayer Perceptron, Naive 

Bayes, and Decision Trees. Previous approaches to network intrusion detection 

yielded systems that have good detection performance for some classes of attacks but 

poor performance for others. Prior research on multiple algorithm approaches often 

lack a systematic method for combining the decisions of multiple learners or requires 

complex parameter settings, pre-processing or profiteering of data and human 

intervention.  

In several literature instances, the approaches showed good detection 

performances but with a high rate of false positives which is a huge challenge for 

network operators. Other methods have performed well in detecting normal traffic and 

attack traffic but did not mention the attack classes that could potentially be involved 

in installing malware or destructive executable code. Similarly, several well-

performing machine learning approaches are not readily scalable to handle larger 

datasets or multiclass problems such as those encountered in network intrusion 

detection.  

The models introduced here addressed many of these issues as this study has 

demonstrated that both the PSO-FLN and FLN approaches performed well on the 

NSL-KDD dataset based on standard performance metrics compared to several 

standard algorithms and models. The MRPSO based on FLN with sigmoid function 

achieved the best overall performance among the various classifiers tested, with good 

detection performance, low misclassification rates, and very low false alarm rates.  

The choices made for metrics and the way the model presents with different 

numbers of neurons in the hidden layer and number of swarm particles were 

considered to investigate the influence of different structures based on the accuracy of 

the models. Finally, the discovery that the multi-swarm based “meeting room” 

approach with FLN algorithm performed very well with the analyzed network traffic 

based on the NSL-KDD dataset should encourage more studies to include these 

parameters in the future studies and explore the influence of other activation functions 

on the performance of the models. As mentioned in the previous chapters, this research 

is the first to successfully adapt basic FLN algorithm and its hybrid variants (PSO- 

FLN and MRPSO-FLN algorithm) to the problem of network intrusion detection 
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5.4 Recommendation for Future Research and Limitation 

There are many avenues for future research that could be explored, including a 

modern method for parameters selection, new classification combination methods, the 

addition of learning and experimentation with data pre-processing, feature selection, 

incremental and adversarial learning. Additionally, further research on the on-line 

processing techniques, hybrid approaches using partial batching with online 

techniques and unsupervised learning could be useful to produce practical intrusion-

detection systems that could be utilized in a real-world network operating 

environment. Future research should also include testing the PSO-FLN and MRPSO-

FLN methods with other intrusion-detection data sets. It could also be necessary to 

explore the use of newer approaches in combination with the PSO algorithm to 

improve upon the premature convergence problem and search performance of PSO 

when performing multimodal functions as discussed in chapter 2.  

This research focused on reducing the rate of false positive detection while 

striving to get reasonable detection due to the needs of today’s information technology 

professionals and the current environment of invasive cyber-attacks. As the network 

providers gain knowledge and develop more advanced approaches, attackers are 

adapting their tactics and changing their behaviours to thwart defences. Studies on the 

ways to combat these threats are important, while the development of systems that can 

adapt to the dynamism of the attackers through contextual and semantic learning, 

experimentation with data pre-processing, and intelligent feature selection holds 

promise. Future modifications on the PSO-FLN and MRPSO-FLN approaches could 

include temporal, sequential and context-based features with unsupervised learning to 

allow the models to readily detect anomalies. Moreover, this study encountered some 

limitation that can be considered in the future developments. The limitations of the 

study were as follows:  

i- It has not been evaluated from the perspective of time execution. 

Considering the execution time of attack detection is useful for providing 

an estimation for the feasibility of operating such models in real-time.  
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ii- There was no incorporation of simulation models for cloud environments. 

Such incorporation is important for enabling extra features such as early 

attack detection and prevention.  

iii- More attention can be paid to the unbalanced data aspect to improve the 

low accuracy of certain classes.  

 

5.5 Conclusion  

In this study, a systems engineering approach was followed for applying 

machine learning techniques to the problem of network intrusion detection. The 

relevant previous studies were reviewed and methods were explored to combine the 

classification decisions of a diverse set of “learners” in a manner that would produce 

consistently good results. Three new approaches to machine learning were introduced 

and tested against benchmark datasets, including the famous NSL-KDD intrusion 

detection dataset. 

Three models were deployed in this work; firstly, the basic FLN was used to 

work as an intrusion detection system. The results of the FLN were compared to that 

of ELM algorithm to evaluate the proposed model. The results showed FLN to have a 

higher accuracy compared to ELM because of the FLN structure which comprised of a 

parallel connection of a multilayer feedforward neural network and a single-layer 

feedforward neural network. The DPFNN output nodes not only receive the 

recodification of the external information through the hidden nodes but also receives 

the external information itself directly through the input nodes. Secondly, to reduce the 

impact of randomized parameters select in machine learning algorithms, there are 

several optimizations algorithms and techniques that have been proposed and the FLN 

is one of the current approaches in the field of machine learning. FLN is also faced 

with the same limitation of random parameter selection. This work proposed the 

particle swarm optimization algorithm for training the FLN. The results of this model 

were compared to that of the basic FLN based on several standard evaluation criteria. 

Moreover, the performance of the new model (PSO-FLN) was better in terms of 

accuracy compared to that of the basic FLN. Thirdly, based on the literature evidence, 

most of the related works proposed PSO with default parameters values; on the other 

hand, there are several related works that proposed different methods for the 
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modification and improvement of the standard PSO in order to increase its ability to 

control the balance between exploration and exploitation or to enhance the search 

process of PSO.  

Moreover, the standard PSO contains three control parameters and the 

selection of the values of these parameters depend on the standard or training and 

error. The values of these parameters have a great effect on the purposeful detecting 

capacity of the algorithm. This work proposed a new cooperative multi-swarm scheme 

called multi-swarm optimization (MRPSO) which was inspired by the human social 

behavior (the interaction between a group of people known as ‘Clan’ and their 

leaders). The proposed scheme consists of several swarms called clans and each clan 

consists of several solutions represented by the group members. The best member of 

each clan is the clan leader and has control over the members of its clan in terms of 

tuning the parameters. The selection of a leader from the clans is based on the fitness 

function which reflects the accuracy of FLN in comparing between different clans 

during the iterations. The clan with the best accuracy is selected as the leader. 

Furthermore, a new system called MRPSO-FLN was developed at the end of this 

process. The model was compared to the standard PSO-FLN with different numbers of 

neurons and iterations, and the output of the proposed algorithm showed a better 

accuracy or convergent results but with less number of neurons and number of 

iterations based on the NSL-KDD data set. 

The last section of the study covered the validation of the proposed algorithm 

based on the values of the parameters achieved by the MRPSO-FLN instead of the 

default values of the parameters. Moreover, a new PSO-FLN with the best values of 

weight and bias was developed. This algorithm can be incorporated into basic FLN for 

parameter selection instead of a random parameter selection. Finally, the new 

algorithm was compared to several standards algorithms such as basic FLN, ELM, 

SVM, Naïve Bayes, Multilayer Perceptron, and Hoeffding tree (Decision tree) based 

on several standard evaluation measurements using the NSL-KDD data set.   
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APPENDIX A 

 EXPERIMENTS RESULTS OF ELM VS FLN WITH SEVERAL RUNS 

10 number of neurons 25 number of neurons 

ELM FLN ELM FLN 
 Run 1 

Accuracy is: 0.90242 

Precision: 0.90242 
 

Recall: 0.90242 

 
FM:: 0.90242 

 
G-Mean:: 0.81746 

 
Detection Rate: 0.90128 

False Alarm Rate: 0.11995 
 

Run 1 

Accuracy is: 0.95781 

Precision: 0.95781 

 
Recall: 0.95781 

 
FM:: 0.95781 

 
G-Mean:: 0.91807 

 
Detection Rate: 0.96 

False Alarm Rate: 0.046812 
 

Run=1 

Testing Accuracy is: 0.94873 

Precision: 0.94873 

 
Recall: 0.94873 

 
FM:: 0.94873 

 
G-Mean:: 0.90104 

 
Detection Rate: 0.93925 

False Alarm Rate: 0.073042 
 

Run = 1 

Testing Accuracy is: 0.96731 

Precision: 0.96731 

 
Recall: 0.96731 

 
FM:: 0.96731 

 
G-Mean:: 0.93605 

 
Detection Rate: 0.96223 

False Alarm Rate: 0.044355 
 

Run =2 

 Accuracy is: 0.91574 

Precision: 0.91574 
 

Recall: 0.91574 
 

FM:: 0.91574 
 

G-Mean:: 0.84102 
 

Detection Rate: 0.91703 

False Alarm Rate: 0.1001 
 

Run =2 

Accuracy is: 0.95819 

Precision: 0.95819 
 

Recall: 0.95819 
 

FM:: 0.95819 
 

G-Mean:: 0.91878 
 

Detection Rate: 0.95729 

False Alarm Rate: 0.050223 
 

Run=2 

Accuracy is: 0.95245 

Precision: 0.95245 
 

Recall: 0.95245 
 

FM:: 0.95245 
 

G-Mean:: 0.90797 
 

Detection Rate: 0.95068 

False Alarm Rate: 0.057997 
 

Run=2 

Accuracy is: 0.96805 

Precision: 0.96805 
 

Recall: 0.96805 
 

FM:: 0.96805 
 

G-Mean:: 0.93747 
 

Detection Rate: 0.96608 

False Alarm Rate: 0.039647 
 

Run =3 

Accuracy is: 0.91347 

Precision: 0.91347 
 

Recall: 0.91347 
 

FM:: 0.91347 
 

G-Mean:: 0.83693 

 
Detection Rate: 0.90824 

False Alarm Rate: 0.11214 
 

Run = 3 

Accuracy is: 0.95775 

Precision: 0.95775 
 

Recall: 0.95775 
 

FM:: 0.95775 
 

G-Mean:: 0.91791 

 
Detection Rate: 0.95496 

False Alarm Rate: 0.052987 
 

Run=3 

Accuracy is: 0.94641 

Precision: 0.94641 
 

Recall: 0.94641 
 

FM:: 0.94641 
 

G-Mean:: 0.89669 

 
Detection Rate: 0.94023 

False Alarm Rate: 0.071029 
 

Run=3 

Accuracy is: 0.97161 

Precision: 0.97161 
 

Recall: 0.97161 
 

FM:: 0.97161 
 

G-Mean:: 0.94431 

 
Detection Rate: 0.96586 

False Alarm Rate: 0.040158 
 

Run =4 

Accuracy is: 0.90194 

Precision: 0.90194 

 
Recall: 0.90194 

 
FM:: 0.90194 

 
G-Mean:: 0.81675 

 
Detection Rate: 0.93882 

False Alarm Rate: 0.072564 
 

Run = 4 

Accuracy is: 0.96056 

Precision: 0.96056 

 
Recall: 0.96056 

 
FM:: 0.96056 

 
G-Mean:: 0.92321 

 
Detection Rate: 0.95366 

False Alarm Rate: 0.054795 
 

Run=4 

Accuracy is: 0.94965 

Precision: 0.94965 

 
Recall: 0.94965 

 
FM:: 0.94965 

 
G-Mean:: 0.9028 

 
Detection Rate: 0.94659 

False Alarm Rate: 0.063455 

  

 

Run=4 

Accuracy is: 0.96662 

Precision: 0.96662 

 
Recall: 0.96662 

 
FM:: 0.96662 

 
G-Mean:: 0.93474 

 
Detection Rate: 0.95947 

False Alarm Rate: 0.047835 
 

Run=5 

Accuracy is: 0.90447 

Precision: 0.90447 
 

Recall: 0.90447 
 

FM:: 0.90447 
 

G-Mean:: 0.82118 
 

Detection Rate: 0.93965 

False Alarm Rate: 0.070995 
 

Run=5 

Accuracy is: 0.95834 

Precision: 0.95834 
 

Recall: 0.95834 
 

FM:: 0.95834 
 

G-Mean:: 0.91908 
 

Detection Rate: 0.96783 

False Alarm Rate: 0.037156 
 

Run=5 

Accuracy is: 0.94732 

Precision: 0.94732 
 

Recall: 0.94732 
 

FM:: 0.94732 
 

G-Mean:: 0.89846 
 

Detection Rate: 0.93887 

False Alarm Rate: 0.073792 
 

Run=5 

Accuracy is: 0.96875 

Precision: 0.96875 
 

Recall: 0.96875 
 

FM:: 0.96875 
 

G-Mean:: 0.93881 
 

Detection Rate: 0.96114 

False Alarm Rate: 0.04589 
 

 

Run=6 

 

Run = 6 

Run=6 

Accuracy is: 0.93268 

Run=6 

Accuracy is: 0.97018 
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Accuracy is: 0.86759 

Precision: 0.86759 

 
Recall: 0.86759 

 
FM:: 0.86759 

 
G-Mean:: 0.75762 

 
Detection Rate: 0.88139 

False Alarm Rate: 0.13882 
 

Accuracy is: 0.96096 

Precision: 0.96096 

 
Recall: 0.96096 

 
FM:: 0.96096 

 
G-Mean:: 0.92402 

 
Detection Rate: 0.95678 

False Alarm Rate: 0.051179 
 

Precision: 0.93268 

 
Recall: 0.93268 

 
FM:: 0.93268 

 
G-Mean:: 0.87155 

 
Detection Rate: 0.93821 

False Alarm Rate: 0.073246 
 

Precision: 0.97018 

 
Recall: 0.97018 

 
FM:: 0.97018 

 
G-Mean:: 0.94158 

 
Detection Rate: 0.96926 

False Alarm Rate: 0.035791 
 

Run=7 

Accuracy is: 0.91002 

Precision: 0.91002 
 

Recall: 0.91002 
 

FM:: 0.91002 
 

G-Mean:: 0.83073 
 

Detection Rate: 0.89937 

False Alarm Rate: 0.12442 
 

Run=7 

Accuracy is: 0.96402 

Precision: 0.96402 
 

Recall: 0.96402 
 

FM:: 0.96402 
 

G-Mean:: 0.9298 
 

Detection Rate: 0.95682 

False Alarm Rate: 0.051179 
 

Run=7 

Accuracy is: 0.94179 

Precision: 0.94179 
 

Recall: 0.94179 
 

FM:: 0.94179 
 

G-Mean:: 0.88817 
 

Detection Rate: 0.93464 

False Alarm Rate: 0.078432 
 

Run=7 

Accuracy is: 0.96621 

Precision: 0.96621 
 

Recall: 0.96621 
 

FM:: 0.96621 
 

G-Mean:: 0.93395 
 

Detection Rate: 0.96149 

False Alarm Rate: 0.04531 
 

Run=8 

Accuracy is: 0.90002 

Precision: 0.90002 
 

Recall: 0.90002 
 

FM:: 0.90002 
 

G-Mean:: 0.81332 
 

Detection Rate: 0.91192 

False Alarm Rate: 0.10433 
 

Run=8 

Accuracy is: 0.9593 

Precision: 0.9593 
 

Recall: 0.9593 
 

FM:: 0.9593 
 

G-Mean:: 0.92085 
 

Detection Rate: 0.95413 

False Alarm Rate: 0.054215 
 

Run=8 

Accuracy is: 0.94867 

Precision: 0.94867 
 

Recall: 0.94867 
 

FM:: 0.94867 
 

G-Mean:: 0.90091 
 

Detection Rate: 0.93458 

False Alarm Rate: 0.079251 
 

Run=8 

Accuracy is: 0.96478 

Precision: 0.96478 
 

Recall: 0.96478 
 

FM:: 0.96478 
 

G-Mean:: 0.93124 
 

Detection Rate: 0.95894 

False Alarm Rate: 0.048381 
 

Run=9 

Accuracy is: 0.88869 

Precision: 0.88869 

 
Recall: 0.88869 

 
FM:: 0.88869 

 
G-Mean:: 0.79388 

 
Detection Rate: 0.8812 

False Alarm Rate: 0.15151 
 

Run=9 

Accuracy is: 0.9574 

Precision: 0.9574 

 
Recall: 0.9574 

 
FM:: 0.9574 

 
G-Mean:: 0.91725 

 
Detection Rate: 0.9617 

False Alarm Rate: 0.044526 
 

Run=9 

Accuracy is: 0.95016 

Precision: 0.95016 

 
Recall: 0.95016 

 
FM:: 0.95016 

 
G-Mean:: 0.90379 

 
Detection Rate: 0.95089 

False Alarm Rate: 0.058338 
 

Run=9 

 Accuracy is: 0.96513 

Precision: 0.96513 

 
Recall: 0.96513 

 
FM:: 0.96513 

 
G-Mean:: 0.93192 

 
Detection Rate: 0.96197 

False Alarm Rate: 0.044594 
 

Run=10 

Accuracy is: 0.8659 

Precision: 0.8659 

 
Recall: 0.8659 

 
FM:: 0.8659 

 
G-Mean:: 0.75521 

 
Detection Rate: 0.90295 

False Alarm Rate: 0.11221 
 

Run=10 

 Accuracy is: 0.96242 

Precision: 0.96242 

 
Recall: 0.96242 

 
FM:: 0.96242 

 
G-Mean:: 0.92677 

 
Detection Rate: 0.96343 

False Alarm Rate: 0.04282 
 

Run=10 

Accuracy is: 0.94321 

Precision: 0.94321 

 
Recall: 0.94321 

 
FM:: 0.94321 

 
G-Mean:: 0.89081 

 
Detection Rate: 0.94165 

False Alarm Rate: 0.069289 
 

Run=10 

Accuracy is: 0.96242 

Precision: 0.96242 

 
Recall: 0.96242 

 
FM:: 0.96242 

 
G-Mean:: 0.92677 

 
Detection Rate: 0.96343 

False Alarm Rate: 0.04282 
 

Run=11 

Accuracy is: 0.87941 

Precision: 0.87941 

 
Recall: 0.87941 

 
FM:: 0.87941 

 
G-Mean:: 0.77771 

 
Detection Rate: 0.88015 

False Alarm Rate: 0.14663 
 

Run=11 

Accuracy is: 0.95821 

Precision: 0.95821 

 
Recall: 0.95821 

 
FM:: 0.95821 

 
G-Mean:: 0.91879 

 
Detection Rate: 0.95723 

False Alarm Rate: 0.050189 
 

Run=11 

Accuracy is: 0.95041 

Testing Accuracy is: 0.95126 

Precision: 0.95126 
 

Recall: 0.95126 
 

FM:: 0.95126 
 

G-Mean:: 0.90574 
 

Detection Rate: 0.94259 

False Alarm Rate: 0.068538 
 

Run=11 

Accuracy is: 0.9697 

Precision: 0.9697 

 
Recall: 0.9697 

 
FM:: 0.9697 

 
G-Mean:: 0.94063 

 
Detection Rate: 0.95729 

False Alarm Rate: 0.050804 
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Run=12 

Accuracy is: 0.92552 

Precision: 0.92552 
 

Recall: 0.92552 
 

FM:: 0.92552 
 

G-Mean:: 0.85828 
 

Detection Rate: 0.90447 

False Alarm Rate: 0.11797 
 

Run=12 

Accuracy is: 0.96373 

Precision: 0.96373 
 

Recall: 0.96373 
 

FM:: 0.96373 
 

G-Mean:: 0.92925 
 

Detection Rate: 0.95602 

False Alarm Rate: 0.052202 
 

Run=12 

Accuracy is: 0.94486 

Precision: 0.94486 
 

Recall: 0.94486 
 

FM:: 0.94486 
 

G-Mean:: 0.89374 
 

Detection Rate: 0.92808 

False Alarm Rate: 0.087439 
 

Run=12 

Accuracy is: 0.96453 

Precision: 0.96453 
 

Recall: 0.96453 
 

FM:: 0.96453 
 

G-Mean:: 0.93079 
 

Detection Rate: 0.95997 

False Alarm Rate: 0.047323 
 

Run=13 

Accuracy is: 0.87492 

Precision: 0.87492 

 
Recall: 0.87492 

 
FM:: 0.87492 

 
G-Mean:: 0.76982 

 
Detection Rate: 0.84333 

False Alarm Rate: 0.20592 
 

Run=13 

Accuracy is: 0.95738 

Precision: 0.95738 

 
Recall: 0.95738 

 
FM:: 0.95738 

 
G-Mean:: 0.91724 

 
Detection Rate: 0.95785 

False Alarm Rate: 0.049336 
 

Run=13 

Accuracy is: 0.94896 

Precision: 0.94896 

 
Recall: 0.94896 

 
FM:: 0.94896 

 
G-Mean:: 0.90146 

 
Detection Rate: 0.94117 

False Alarm Rate: 0.070585 
 

Run=13 

Accuracy is: 0.97382 

Precision: 0.97382 

 
Recall: 0.97382 

 
FM:: 0.97382 

 
G-Mean:: 0.94857 

 
Detection Rate: 0.97024 

False Alarm Rate: 0.03487 
 

Run=14 

Accuracy is: 0.88991 

Precision: 0.88991 

 
Recall: 0.88991 

 
FM:: 0.88991 

 
G-Mean:: 0.79585 

 
Detection Rate: 0.87028 

False Alarm Rate: 0.16857 
 

Run=14 

Accuracy is: 0.95789 

Precision: 0.95789 

 
Recall: 0.95789 

 
FM:: 0.95789 

 
G-Mean:: 0.91822 

 
Detection Rate: 0.95773 

False Alarm Rate: 0.049678 
 

Run=14 

Accuracy is: 0.88991 

Precision: 0.88991 

 
Recall: 0.88991 

 
FM:: 0.88991 

 
G-Mean:: 0.79585 

 
Detection Rate: 0.87028 

False Alarm Rate: 0.16857 
 

Run=14 

Run=15Accuracy is: 0.95789 

Precision: 0.95789 

 
Recall: 0.95789 

 
FM:: 0.95789 

 
G-Mean:: 0.91822 

 
Detection Rate: 0.95773 

False Alarm Rate: 0.049678 
 

Run=15 

 Accuracy is: 0.89842 

Precision: 0.89842 

 
Recall: 0.89842 

 
FM:: 0.89842 

 
G-Mean:: 0.81042 

 
Detection Rate: 0.92371 

False Alarm Rate: 0.08853 
 

Run=15 

Accuracy is: 0.96356 

Precision: 0.96356 

 
Recall: 0.96356 

 
FM:: 0.96356 

 
G-Mean:: 0.9289 

 
Detection Rate: 0.95865 

False Alarm Rate: 0.048654 
 

Run=15 

Accuracy is: 0.95789 

Precision: 0.95789 

 
Recall: 0.95789 

 
FM:: 0.95789 

 
G-Mean:: 0.91822 

 
Detection Rate: 0.95773 

False Alarm Rate: 0.049678 
 

Run=15 

Testing Accuracy is: 0.96356 

Precision: 0.96356 

 
Recall: 0.96356 

 
FM:: 0.96356 

 
G-Mean:: 0.9289 

 
Detection Rate: 0.95865 

False Alarm Rate: 0.048654 
 

 

35 number of neurons 50 number of neurons 

ELM FLN ELM FLN 
 Run 1 

Accuracy is: 0.90242 

Precision: 0.90242 

 
Recall: 0.90242 

 
FM:: 0.90242 

 
G-Mean:: 0.81746 

 
Detection Rate: 0.90128 

False Alarm Rate: 0.11995 
 

Run 1 

Accuracy is: 0.95781 

Precision: 0.95781 

 
Recall: 0.95781 

 
FM:: 0.95781 

 
G-Mean:: 0.91807 

 
Detection Rate: 0.96 

False Alarm Rate: 0.046812 
 

Run=1 

Testing Accuracy is: 0.94873 

Precision: 0.94873 

 
Recall: 0.94873 

 
FM:: 0.94873 

 
G-Mean:: 0.90104 

 
Detection Rate: 0.93925 

False Alarm Rate: 0.073042 
 

Run = 1 

Testing Accuracy is: 0.96731 

Precision: 0.96731 

 
Recall: 0.96731 

 
FM:: 0.96731 

 
G-Mean:: 0.93605 

 
Detection Rate: 0.96223 

False Alarm Rate: 0.044355 
 

Run =2 

 Accuracy is: 0.91574 

Precision: 0.91574 

 
Recall: 0.91574 

 

Run =2 

Accuracy is: 0.95819 

Precision: 0.95819 

 
Recall: 0.95819 

 

Run=2 

Accuracy is: 0.95245 

Precision: 0.95245 

 
Recall: 0.95245 

 

Run=2 

Accuracy is: 0.96805 

Precision: 0.96805 

 
Recall: 0.96805 
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FM:: 0.91574 

 
G-Mean:: 0.84102 

 
Detection Rate: 0.91703 

False Alarm Rate: 0.1001 
 

FM:: 0.95819 

 
G-Mean:: 0.91878 

 
Detection Rate: 0.95729 

False Alarm Rate: 0.050223 
 

FM:: 0.95245 

 
G-Mean:: 0.90797 

 
Detection Rate: 0.95068 

False Alarm Rate: 0.057997 
 

FM:: 0.96805 

 
G-Mean:: 0.93747 

 
Detection Rate: 0.96608 

False Alarm Rate: 0.039647 
 

Run =3 

Accuracy is: 0.91347 

Precision: 0.91347 
 

Recall: 0.91347 
 

FM:: 0.91347 
 

G-Mean:: 0.83693 
 

Detection Rate: 0.90824 

False Alarm Rate: 0.11214 
 

Run = 3 

Accuracy is: 0.95775 

Precision: 0.95775 
 

Recall: 0.95775 
 

FM:: 0.95775 
 

G-Mean:: 0.91791 
 

Detection Rate: 0.95496 

False Alarm Rate: 0.052987 
 

Run=3 

Accuracy is: 0.94641 

Precision: 0.94641 
 

Recall: 0.94641 
 

FM:: 0.94641 
 

G-Mean:: 0.89669 
 

Detection Rate: 0.94023 

False Alarm Rate: 0.071029 
 

Run=3 

Accuracy is: 0.97161 

Precision: 0.97161 
 

Recall: 0.97161 
 

FM:: 0.97161 
 

G-Mean:: 0.94431 
 

Detection Rate: 0.96586 

False Alarm Rate: 0.040158 
 

Run =4 

Accuracy is: 0.90194 

Precision: 0.90194 

 
Recall: 0.90194 

 
FM:: 0.90194 

 
G-Mean:: 0.81675 

 
Detection Rate: 0.93882 

False Alarm Rate: 0.072564 
 

Run = 4 

Accuracy is: 0.96056 

Precision: 0.96056 

 
Recall: 0.96056 

 
FM:: 0.96056 

 
G-Mean:: 0.92321 

 
Detection Rate: 0.95366 

False Alarm Rate: 0.054795 
 

Run=4 

Accuracy is: 0.94965 

Precision: 0.94965 

 
Recall: 0.94965 

 
FM:: 0.94965 

 
G-Mean:: 0.9028 

 
Detection Rate: 0.94659 

False Alarm Rate: 0.063455 
  

 

Run=4 

Accuracy is: 0.96662 

Precision: 0.96662 

 
Recall: 0.96662 

 
FM:: 0.96662 

 
G-Mean:: 0.93474 

 
Detection Rate: 0.95947 

False Alarm Rate: 0.047835 
 

Run=5 

Accuracy is: 0.90447 

Precision: 0.90447 
 

Recall: 0.90447 
 

FM:: 0.90447 
 

G-Mean:: 0.82118 
 

Detection Rate: 0.93965 

False Alarm Rate: 0.070995 
 

Run=5 

Accuracy is: 0.95834 

Precision: 0.95834 
 

Recall: 0.95834 
 

FM:: 0.95834 
 

G-Mean:: 0.91908 
 

Detection Rate: 0.96783 

False Alarm Rate: 0.037156 
 

Run=5 

Accuracy is: 0.94732 

Precision: 0.94732 
 

Recall: 0.94732 
 

FM:: 0.94732 
 

G-Mean:: 0.89846 
 

Detection Rate: 0.93887 

False Alarm Rate: 0.073792 
 

Run=5 

Accuracy is: 0.96875 

Precision: 0.96875 
 

Recall: 0.96875 
 

FM:: 0.96875 
 

G-Mean:: 0.93881 
 

Detection Rate: 0.96114 

False Alarm Rate: 0.04589 
 

 
Run=6 

Accuracy is: 0.86759 

Precision: 0.86759 

 
Recall: 0.86759 

 
FM:: 0.86759 

 
G-Mean:: 0.75762 

 
Detection Rate: 0.88139 

False Alarm Rate: 0.13882 
 

 
Run = 6 

Accuracy is: 0.96096 

Precision: 0.96096 

 
Recall: 0.96096 

 
FM:: 0.96096 

 
G-Mean:: 0.92402 

 
Detection Rate: 0.95678 

False Alarm Rate: 0.051179 
 

Run=6 

Accuracy is: 0.93268 

Precision: 0.93268 
 

Recall: 0.93268 
 

FM:: 0.93268 
 

G-Mean:: 0.87155 
 

Detection Rate: 0.93821 

False Alarm Rate: 0.073246 
 

Run=6 

Accuracy is: 0.97018 

Precision: 0.97018 
 

Recall: 0.97018 
 

FM:: 0.97018 
 

G-Mean:: 0.94158 
 

Detection Rate: 0.96926 

False Alarm Rate: 0.035791 
 

Run=7 

Accuracy is: 0.91002 

Precision: 0.91002 

 
Recall: 0.91002 

 
FM:: 0.91002 

 
G-Mean:: 0.83073 

 
Detection Rate: 0.89937 

False Alarm Rate: 0.12442 
 

Run=7 

Accuracy is: 0.96402 

Precision: 0.96402 

 
Recall: 0.96402 

 
FM:: 0.96402 

 
G-Mean:: 0.9298 

 
Detection Rate: 0.95682 

False Alarm Rate: 0.051179 
 

Run=7 

Accuracy is: 0.94179 

Precision: 0.94179 

 
Recall: 0.94179 

 
FM:: 0.94179 

 
G-Mean:: 0.88817 

 
Detection Rate: 0.93464 

False Alarm Rate: 0.078432 
 

Run=7 

Accuracy is: 0.96621 

Precision: 0.96621 

 
Recall: 0.96621 

 
FM:: 0.96621 

 
G-Mean:: 0.93395 

 
Detection Rate: 0.96149 

False Alarm Rate: 0.04531 
 

Run=8 

Accuracy is: 0.90002 

Precision: 0.90002 

 

Run=8 

Accuracy is: 0.9593 

Precision: 0.9593 

 

Run=8 

Accuracy is: 0.94867 

Precision: 0.94867 

 

Run=8 

Accuracy is: 0.96478 

Precision: 0.96478 
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Recall: 0.90002 

 
FM:: 0.90002 

 
G-Mean:: 0.81332 

 
Detection Rate: 0.91192 

False Alarm Rate: 0.10433 
 

Recall: 0.9593 

 
FM:: 0.9593 

 
G-Mean:: 0.92085 

 
Detection Rate: 0.95413 

False Alarm Rate: 0.054215 
 

Recall: 0.94867 

 
FM:: 0.94867 

 
G-Mean:: 0.90091 

 
Detection Rate: 0.93458 

False Alarm Rate: 0.079251 
 

Recall: 0.96478 

 
FM:: 0.96478 

 
G-Mean:: 0.93124 

 
Detection Rate: 0.95894 

False Alarm Rate: 0.048381 
 

Run=9 

Accuracy is: 0.88869 

Precision: 0.88869 
 

Recall: 0.88869 
 

FM:: 0.88869 
 

G-Mean:: 0.79388 
 

Detection Rate: 0.8812 

False Alarm Rate: 0.15151 
 

Run=9 

Accuracy is: 0.9574 

Precision: 0.9574 
 

Recall: 0.9574 
 

FM:: 0.9574 
 

G-Mean:: 0.91725 
 

Detection Rate: 0.9617 

False Alarm Rate: 0.044526 
 

Run=9 

Accuracy is: 0.95016 

Precision: 0.95016 
 

Recall: 0.95016 
 

FM:: 0.95016 
 

G-Mean:: 0.90379 
 

Detection Rate: 0.95089 

False Alarm Rate: 0.058338 
 

Run=9 

 Accuracy is: 0.96513 

Precision: 0.96513 
 

Recall: 0.96513 
 

FM:: 0.96513 
 

G-Mean:: 0.93192 
 

Detection Rate: 0.96197 

False Alarm Rate: 0.044594 
 

Run=10 

Accuracy is: 0.8659 

Precision: 0.8659 
 

Recall: 0.8659 
 

FM:: 0.8659 
 

G-Mean:: 0.75521 
 

Detection Rate: 0.90295 

False Alarm Rate: 0.11221 
 

Run=10 

 Accuracy is: 0.96242 

Precision: 0.96242 
 

Recall: 0.96242 
 

FM:: 0.96242 
 

G-Mean:: 0.92677 
 

Detection Rate: 0.96343 

False Alarm Rate: 0.04282 
 

Run=10 

Accuracy is: 0.94321 

Precision: 0.94321 
 

Recall: 0.94321 
 

FM:: 0.94321 
 

G-Mean:: 0.89081 
 

Detection Rate: 0.94165 

False Alarm Rate: 0.069289 
 

Run=10 

Accuracy is: 0.96242 

Precision: 0.96242 
 

Recall: 0.96242 
 

FM:: 0.96242 
 

G-Mean:: 0.92677 
 

Detection Rate: 0.96343 

False Alarm Rate: 0.04282 
 

Run=11 

Accuracy is: 0.87941 

Precision: 0.87941 

 
Recall: 0.87941 

 
FM:: 0.87941 

 
G-Mean:: 0.77771 

 
Detection Rate: 0.88015 

False Alarm Rate: 0.14663 
 

Run=11 

Accuracy is: 0.95821 

Precision: 0.95821 

 
Recall: 0.95821 

 
FM:: 0.95821 

 
G-Mean:: 0.91879 

 
Detection Rate: 0.95723 

False Alarm Rate: 0.050189 
 

Run=11 

Accuracy is: 0.95041 

Testing Accuracy is: 0.95126 

Precision: 0.95126 

 
Recall: 0.95126 

 
FM:: 0.95126 

 
G-Mean:: 0.90574 

 
Detection Rate: 0.94259 

False Alarm Rate: 0.068538 
 

Run=11 

Accuracy is: 0.9697 

Precision: 0.9697 

 
Recall: 0.9697 

 
FM:: 0.9697 

 
G-Mean:: 0.94063 

 
Detection Rate: 0.95729 

False Alarm Rate: 0.050804 
 

Run=12 

Accuracy is: 0.92552 

Precision: 0.92552 

 
Recall: 0.92552 

 
FM:: 0.92552 

 
G-Mean:: 0.85828 

 
Detection Rate: 0.90447 

False Alarm Rate: 0.11797 
 

Run=12 

Accuracy is: 0.96373 

Precision: 0.96373 

 
Recall: 0.96373 

 
FM:: 0.96373 

 
G-Mean:: 0.92925 

 
Detection Rate: 0.95602 

False Alarm Rate: 0.052202 
 

Run=12 

Accuracy is: 0.94486 

Precision: 0.94486 

 
Recall: 0.94486 

 
FM:: 0.94486 

 
G-Mean:: 0.89374 

 
Detection Rate: 0.92808 

False Alarm Rate: 0.087439 
 

Run=12 

Accuracy is: 0.96453 

Precision: 0.96453 

 
Recall: 0.96453 

 
FM:: 0.96453 

 
G-Mean:: 0.93079 

 
Detection Rate: 0.95997 

False Alarm Rate: 0.047323 
 

Run=13 

Accuracy is: 0.87492 

Precision: 0.87492 
 

Recall: 0.87492 
 

FM:: 0.87492 
 

G-Mean:: 0.76982 
 

Detection Rate: 0.84333 

False Alarm Rate: 0.20592 
 

Run=13 

Accuracy is: 0.95738 

Precision: 0.95738 
 

Recall: 0.95738 
 

FM:: 0.95738 
 

G-Mean:: 0.91724 
 

Detection Rate: 0.95785 

False Alarm Rate: 0.049336 
 

Run=13 

Accuracy is: 0.94896 

Precision: 0.94896 
 

Recall: 0.94896 
 

FM:: 0.94896 
 

G-Mean:: 0.90146 
 

Detection Rate: 0.94117 

False Alarm Rate: 0.070585 
 

Run=13 

Accuracy is: 0.97382 

Precision: 0.97382 
 

Recall: 0.97382 
 

FM:: 0.97382 
 

G-Mean:: 0.94857 
 

Detection Rate: 0.97024 

False Alarm Rate: 0.03487 
 

Run=14 

Accuracy is: 0.88991 

Run=14 

Accuracy is: 0.95789 

Run=14 

Accuracy is: 0.88991 

Run=14 

Run=15Accuracy is: 0.95789 
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Precision: 0.88991 

 
Recall: 0.88991 

 
FM:: 0.88991 

 
G-Mean:: 0.79585 

 
Detection Rate: 0.87028 

False Alarm Rate: 0.16857 
 

Precision: 0.95789 

 
Recall: 0.95789 

 
FM:: 0.95789 

 
G-Mean:: 0.91822 

 
Detection Rate: 0.95773 

False Alarm Rate: 0.049678 
 

Precision: 0.88991 

 
Recall: 0.88991 

 
FM:: 0.88991 

 
G-Mean:: 0.79585 

 
Detection Rate: 0.87028 

False Alarm Rate: 0.16857 
 

Precision: 0.95789 

 
Recall: 0.95789 

 
FM:: 0.95789 

 
G-Mean:: 0.91822 

 
Detection Rate: 0.95773 

False Alarm Rate: 0.049678 
 

Run=15 

 Accuracy is: 0.89842 

Precision: 0.89842 
 

Recall: 0.89842 
 

FM:: 0.89842 
 

G-Mean:: 0.81042 
 

Detection Rate: 0.92371 

False Alarm Rate: 0.08853 
 

Run=15 

Accuracy is: 0.96356 

Precision: 0.96356 
 

Recall: 0.96356 
 

FM:: 0.96356 
 

G-Mean:: 0.9289 
 

Detection Rate: 0.95865 

False Alarm Rate: 0.048654 
 

Run=15 

Accuracy is: 0.95789 

Precision: 0.95789 
 

Recall: 0.95789 
 

FM:: 0.95789 
 

G-Mean:: 0.91822 
 

Detection Rate: 0.95773 

False Alarm Rate: 0.049678 
 

Run=15 

Testing Accuracy is: 0.96356 

Precision: 0.96356 
 

Recall: 0.96356 
 

FM:: 0.96356 
 

G-Mean:: 0.9289 
 

Detection Rate: 0.95865 

False Alarm Rate: 0.048654 
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APPENDIX B 

EXPERIMENTS RESULTS OF PSO-FLN WITH SEVERAL RUNS 

P=10-

Itr=100- 

Neurons=10 

         
Precision Recall F_Measure G_Mean PSO.acc Min.acc Max.acc average.acc DR FAR 

0.9679 0.9786 0.9732 0.9712 0.9869 0.9857 0.9892 0.98712 0.9679 0.03725 

0.9701 0.9739 0.9721 0.9701 0.9857 

   

0.9701 0.03442 

0.9623 0.9798 0.9711 0.9687 0.9859 

   

0.9623 0.02204 

0.9663 0.9799 0.9731 0.9711 0.9867 

   

0.9663 0.03916 

0.9751 0.9743 0.9729 0.9729 0.9866 

   

0.9751 0.02865 

0.9678 0.9884 0.9781 0.9762 0.9889 

   

0.9678 0.03773 

0.9854 0.9714 0.9734 0.9716 0.9859 

   

0.9754 0.0281 

0.9767 0.9762 0.9765 0.9748 0.9881 

   

0.9767 0.0267 

0.9726 0.9744 0.9735 0.9717 0.9865 

   

0.9726 0.0314 

0.9711 0.9809 0.9761 0.9742 0.9881 

   

0.9711 0.0335 

0.9703 0.9748 0.9794 0.9731 0.9869 

   

0.9703 0.03442 

0.9786 0.9777 0.9782 0.9776 0.9892 

   

0.9786 0.02452 

0.9702 0.9783 0.9783 0.9722 0.9867 

   

0.9702 0.0347 

0.9679 0.9837 0.9757 0.9739 0.9868 

   

0.9679 0.0373 

0.9721 0.9803 0.9762 0.9744 0.9879 

   

0.9721 0.0323 

0.971627 0.978173 0.975187 0.972913 

    

0.97096 0.032146 
 

 

 P=10- 
Itr=250- 
Neurons=10 

       
Precision Recall F_Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR 

0.9658 0.9874 0.9765 0.9746 0.9888 0.9879 0.9929 0.989407 0.9658 0.0401 

0.9728 0.9896 0.9811 0.9797 0.9901 
   

0.9728 0.0317 

0.9771 0.9882 0.9826 0.9813 0.9912 
   

0.9912 0.0265 

0.9816 0.9902 0.9857 0.9847 0.9929 
   

0.9816 0.0213 

0.9728 0.9867 0.9797 0.9781 0.9903 
   

0.9728 0.0315 

0.9687 0.9842 0.9764 0.9745 0.9887 
   

0.9687 0.0365 

0.9808 0.9885 0.9846 0.9835 0.9916 
   

0.9808 0.0221 

0.9689 0.9903 0.9795 0.9778 0.9901 
   

0.9689 0.0364 

0.9628 0.9869 0.9747 0.9726 0.9879 
   

0.9628 0.0438 

0.9754 0.99 0.9827 0.9813 0.9912 
   

0.9754 0.0286 

0.9768 0.9837 0.9802 0.9788 0.9907 
   

0.9768 0.0268 

0.9835 0.9898 0.9866 0.9856 0.9929 
   

0.9835 0.019 

0.9772 0.9824 0.9798 0.9783 0.9902 
   

0.9772 0.0263 

0.9749 0.9823 0.9786 0.977 0.9897 
   

0.9749 0.0289 

0.9663 0.9877 0.9769 0.975 0.9885 
   

0.9663 0.0395 
 

 

  
 
 
 
 
 

P=10-
Itr500- 

Neurons=10 
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Precision Recall F_Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR 

0.9713 0.9788 0.9751 0.9732 0.9881 0.9871 0.9931 0.99032 0.9713 0.03312 

0.9769 0.9755 0.9762 0.9746 0.9879 
   

0.9769 0.02644 

0.9785 0.9827 0.9806 0.9792 0.9897 
   

0.9785 0.02473 

0.9722 0.9855 0.9788 0.9772 0.9896 
   

0.9722 0.03227 

0.9798 0.9792 0.9795 0.9781 0.9902 
   

0.9798 0.02313 

0.9766 0.9797 0.9782 0.9766 0.9893 
   

0.9766 0.0269 

0.9711 0.9834 0.9766 0.9748 0.9873 
   

0.9711 0.03493 

0.9754 0.99 0.9827 0.9813 0.9912 
   

0.9754 0.0286 

0.9731 0.9777 0.9754 0.9736 0.9931 
   

0.9731 0.03101 

0.9798 0.9792 0.9795 0.9781 0.9902 
   

0.9798 0.02313 

0.9766 0.9797 0.9782 0.9766 0.9893 
   

0.9766 0.0269 

0.9711 0.9834 0.9766 0.9748 0.9873 
   

0.9711 0.03493 

0.9643 0.9838 0.9739 0.9718 0.9871 
   

0.9643 0.0418 

0.9731 0.9777 0.9754 0.9736 0.9879 
   

0.9731 0.03101 

0.9835 0.9898 0.9866 0.9856 0.9929 
   

0.9835 0.019 

0.97488 0.98174 0.97822 0.976607 
    

0.974887 0.029193 
 

P=10-
Itr100- 

Neurons=25 

10- 
100 
-25 

      
Precision Recall Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR 

0.9658 0.9874 0.9765 0.9746 0.9888 0.9879 0.9929 0.990194 0.9658 0.0401 

0.9728 0.9896 0.9811 0.9797 0.9901 
   

0.9728 0.0317 

0.9771 0.9882 0.9826 0.9813 0.9912 
   

0.9771 0.0265 

0.9816 0.9901 0.9857 0.9847 0.9929 
   

0.9816 0.0213 

0.9728 0.9867 0.9797 0.9781 0.9903 
   

0.9728 0.0315 

0.9687 0.9842 0.9764 0.9745 0.9887 
   

0.9687 0.0365 

0.9808 0.9885 0.9846 0.9835 0.9916 
   

0.9808 0.0221 

0.9689 0.9903 0.9795 0.9778 0.9905 
   

0.9689 0.0364 

0.9628 0.9869 0.9747 0.9726 0.9879 
   

0.9628 0.0438 

0.9628 0.9869 0.9747 0.9726 0.9879 
   

0.9628 0.0438 

0.9754 0.9901 0.9827 0.9813 0.9912 
   

0.9754 0.0286 

0.9768 0.9837 0.9802 0.9788 0.9907 
   

0.9768 0.0268 

0.9835 0.9898 0.9866 0.9856 0.9929 
   

0.9835 0.019 

0.9772 0.9824 0.9798 0.9783 0.9902 
   

0.9772 0.0263 

0.9749 0.9823 0.9786 0.9771 0.9897 
   

0.9749 0.0289 

0.9663 0.9877 0.9769 0.975 0.9885 
   

0.9663 0.0395 
 

P=10-
Itr250 

Neurons=25 
         

Precision Recall F_Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR 

0.9774 0.9845 0.9809 0.9796 0.9907 0.9894 0.9938 0.991 0.9774 0.02613 

0.9925 0.9844 0.9884 0.9844 0.9938 
   

    0.9925 0.0084 

0.9742 0.9841 0.9777 0.9761 0.9894 
   

0.9742 0.0298 

0.9741 0.9861 0.9801 0.9785 0.9904 
   

0.9741 0.0301 

0.9774 0.9893 0.9833 0.9821 0.9916 
   

0.9774 0.0262 

0.9746 0.9832 0.9789 0.9773 0.9896 
   

0.9746 0.0294 

0.9984 0.9891 0.9867 0.9857 0.9926 
   

0.9844 0.0179 
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0.9791 0.9901 0.9845 0.9833 0.9925 
   

0.9791 0.0242 

0.9752 0.9839 0.9795 0.9781 0.9903 
   

0.9752 0.0286 

0.9758 0.9851 0.9808 0.9791 0.9906 
   

0.9758 0.0281 

0.9751 0.9893 0.9822 0.9808 0.9911 
   

0.9755 0.0289 

0.9749 0.9894 0.9821 0.9807 0.9909 
   

0.9749 0.0292 

0.9754 0.9866 0.9811 0.9795 0.9907 
   

0.9754 0.0285 

0.9772 0.9811 0.9791 0.9772 0.9895 
   

0.9772 0.0262 

0.9711 0.9912 0.9812 0.9795 0.9907 
   

0.9711 0.0338 

0.9835 0.9898 0.9866 0.9856 0.9929 
   

0.9835 0.019 
 

P=10-
Itr500 

Neurons=25 
       

Precision Recall F_Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR 

            
0.9714 0.9891 0.9801 0.9786 0.9906 0.9899 0.9931 0.9921 0.9716 0.0333 

0.99838 0.9826 0.9832 0.0.9821 0.9917 
   

0.9839 0.0185 

0.9748 0.9891 0.9819 0.9805 0.9909 
   

0.9749 0.093 

0.9778 0.9821 0.9799 0.9785 0.9899 
   

0.9778 0.0255 

0.9821 0.9832 0.9855 0.9846 0.9931 
   

0.9879 0.0138 

0.9829 0.9779 0.9805 0.9791 0.9908 
   

0.9828 0.0194 

0.9783 0.9845 0.9814 0.9807 0.9911 
   

0.9785 0.025 

0.9765 0.9901 0.9832 0.982 0.9917 
   

0.9766 0.0273 

0.9781 0.9839 0.9811 0.9769 0.9906 
   

0.9783 0.0253 

0.9822 0.9851 0.9836 0.9824 0.9919 
   

0.9823 0.0204 

0.9821 0.9878 0.9849 0.9838 0.9921 
   

0.9822 0.0207 

0.9778 0.9849 0.9813 0.9799 0.9909 
   

0.9777 0.0257 

0.9817 0.9832 0.9855 0.9846 0.9931 
   

0.9879 0.0138 

0.9829 0.9779 0.9805 0.9791 0.9908 
   

0.9828 0.0194 
 

P=10- 
Itr100 
Neurons=35 

Precision Recall F_Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR 

0.9777 0.9896 0.9836 0.9824 0.9918 0.9897 0.9929 0.99136 0.9777 0.0258 

0.9754 0.9891 0.9822 0.9809 0.9913 
   

0.9754 0.2862 

0.9804 0.9895 0.9849 0.9838 0.9921 
   

0.9804 0.0226 

0.9749 0.9903 0.9826 0.9812 0.9916 
   

0.9749 0.0292 

0.9834 0.9844 0.9838 0.9827 0.9921 
   

0.9834 0.019 

0.9777 0.9927 0.9851 0.9841 0.9923 
   

0.9777 0.0259 

0.9824 0.9881 0.9853 0.9842 0.9929 
   

0.9824 0.0202 

0.9774 0.9881 0.9827 0.9814 0.9912 
   

0.9774 0.0261 

0.9738 0.9858 0.9798 0.9782 0.9901 
   

0.9738 0.0301 

0.9732 0.9879 0.9805 0.9791 0.9905 
   

0.9732 0.0312 

0.9814 0.9825 0.9819 0.9807 0.9915 
   

0.9814 0.0213 

0.9704 0.9915 0.9809 0.9793 0.9907 
   

0.9704 0.0346 

0.9787 0.9899 0.9843 0.9831 0.9923 
   

0.9787 0.0247 

0.9687 0.9895 0.9791 0.9773 0.9897 
   

0.9687 0.0366 

0.9687 0.9908 0.9796 0.9781 0.9903 
   

0.9687 0.0366 
 

P=10- 
Itr250 
Neurons=35 
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Precision Recall F_Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR 

0.9819 0.9878 0.9849 0.9838 0.9922 0.9908 0.995 0.9925 0.9819 0.0208 

0.9821 0.9923 0.9872 0.9863 0.9932 
   

0.9819 0.0209 

0.9774 0.9918 0.9845 0.9833 0.9927 
   

0.9774 0.0263 

0.9842 0.9864 0.9843 0.9843 0.9925 
   

0.9842 0.0181 

0.9752 0.9869 0.9811 0.9796 0.9908 
   

0.9752 0.0287 

0.9786 0.9904 0.9845 0.9833 0.9925 
   

0.9786 0.0248 

0.9831 0.9841 0.9836 0.9824 0.9921 
   

0.9831 0.0193 

0.9798 0.9874 0.9836 0.9824 0.9921 
   

0.9798 0.0233 

0.9802 0.9899 0.9851 0.9839 0.9925 
   

0.9801 0.0231 

0.9839 0.9918 0.9877 0.9868 0.9939 
   

0.9836 0.0189 

0.9746 0.9919 0.9832 0.9818 0.9918 
   

0.9746 0.0296 

0.9906 0.9901 0.9904 0.9897 0.9952 
   

0.9906 0.0107 

0.9854 0.9898 0.9876 0.9867 0.9939 
   

0.9854 0.0167 

0.9777 0.9856 0.9816 0.9803 0.9911 
   

0.9777 0.0257 

0.9775 0.9864 0.9821 0.9807 0.9914 
   

0.9776 0.0258 
 

P=10- 
Itr500 
Neurons=35 

Precision Recall F_Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR 

0.9819 0.9878 0.9849 0.9838 0.9924 0.9903 0.9944 0.9928 0.9821 0.0208 

0.9864 0.9866 0.9865 0.9934 0.9934 
   

0.9864 0.0156 

0.9787 0.9866 0.9826 0.9813 0.9916 
   

0.9877 0.0246 

0.9874 0.9895 0.9884 0.9876 0.9944 
   

0.9875 0.0144 

0.9743 0.9851 0.9797 0.9781 0.9903 
   

0.9745 0.0971 

0.9812 0.9897 0.9855 0.9844 0.9929 
   

0.9813 0.0216 

0.9836 0.9878 0.9857 0.9847 0.9932 
   

0.9836 0.0189 

0.9851 0.9908 0.9879 0.9871 0.9939 
   

0.9851 0.0171 

0.9801 0.9873 0.9837 0.9825 0.9923 
   

0.9801 0.0229 

0.9831 0.9841 0.9836 0.9824 0.9921 
   

0.9831 0.0193 

0.9798 0.9874 0.9836 0.9824 0.9921 
   

0.9798 0.0233 

0.9802 0.9899 0.9851 0.9839 0.9925 
   

0.9801 0.0231 

0.9839 0.9918 0.9877 0.9868 0.9939 
   

0.9836 0.0189 

0.9836 0.9878 0.9857 0.9847 0.9932 
   

0.9836 0.0189 

0.9851 0.9908 0.9879 0.9871 0.9939 
   

0.9851 0.0171 
 
 

P=10- 
Itr100 
Neurons=50 

Precision Recall F_Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR 

0.9819 0.9912 0.9865 0.9855 0.9931 0.9919 0.9945 0.993267 0.9819 0.0209 

0.9837 0.9905 0.9871 0.9861 0.9935 
   

0.9837 0.0187 

0.9774 0.9895 0.9843 0.9822 0.9919 
   

0.9774 0.0262 

0.9869 0.9879 0.9874 0.9865 0.9937 
   

0.9869 0.015 

0.9849 0.9917 0.9883 0.9875 0.9941 
   

0.9849 0.0173 

0.9826 0.9911 0.9868 0.9858 0.9932 
   

0.9826 0.021 

0.9892 0.9907 0.9901 0.9893 0.9945 
   

0.9892 0.0123 

0.9824 0.9915 0.9869 0.9861 0.9937 
   

0.9824 0.0203 
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0.9792 0.9909 0.9851 0.9839 0.9925 
   

0.9792 0.024 

0.9835 0.9918 0.9877 0.9868 0.9941 
   

0.9835 0.019 

0.9864 0.9865 0.9865 0.9856 0.9932 
   

0.9864 0.0155 

0.9773 0.9916 0.9844 0.9832 0.9922 
   

0.9773 0.0263 

0.9853 0.9908 0.9881 0.9872 0.9943 
   

0.9853 0.0168 

0.9825 0.9861 0.9844 0.9833 0.9925 
   

0.9825 0.02 

0.9832 0.9867 0.9849 0.9839 0.9925 
   

0.9832 0.0193 

0.98309 0.9899 0.98656 0.9855 
    

0.983093 0.019507 
 

 
P=10- 
Itr250 
Neurons=50 

Precision Recall F_Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR 

0.9848 0.9902 0.9875 0.9866 0.9936 0.993981 0.9951 0.993981 0.9848 0.0175 

0.9851 0.9898 0.9875 0.9866 0.9935 
   

0.9851 0.0171 

0.9867 0.9891 0.9878 0.9871 0.9941 
   

0.9867 0.0153 

0.9914 0.9892 0.9903 0.9897 0.9951 
   

0.9914 0.0098 

0.9899 0.9889 0.9894 0.9887 0.9948 
   

0.9899 0.0115 

0.9883 0.9901 0.9892 0.9884 0.9946 
   

0.9883 0.0134 

0.9848 0.9914 0.9881 0.9872 0.9941 
   

0.9848 0.0175 

0.9906 0.9891 0.9898 0.9891 0.9949 
   

0.9906 0.0107 

0.9867 0.9891 0.9879 0.9871 0.9941 
   

0.9867 0.0152 

0.9801 0.9902 0.9851 0.9841 0.9927 
   

0.9801 0.0231 

0.9868 0.9874 0.9871 0.9862 0.9936 
   

0.9868 0.0151 

0.9889 0.9901 0.9895 0.9887 0.9948 
   

0.9889 0.0126 

0.9861 0.9886 0.9873 0.9865 0.9939 
   

0.9861 0.016 

0.9801 0.9902 0.9851 0.9841 0.9927 
   

0.9801 0.0231 

0.9868 0.9874 0.9871 0.9862 0.9936 
   

0.9868 0.0151 

0.9848 0.9902 0.9875 0.9866 0.9936 
   

0.9848 0.0175 

0.98639 0.989438 0.987888 0.987056 
    

0.986369 0.015656 
 
 

P=10- 
Itr500 
Neurons=50 

Precision Recall F_Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR 

0.9932 0.9886 0.9911 0.9904 0.9952 0.9933 0.9955 0.994631 0.9933 0.0077 

0.9852 0.9891 0.9875 0.9875 0.9939 
   

0.9855 0.017 

0.9912 0.9908 0.9911 0.9903 0.9954 
   

0.9914 0.01 

0.9845 0.9899 0.9873 0.9863 0.9933 
   

0.9846 0.0178 

0.9883 0.9915 0.9898 0.9891 0.9951 
   

0.9885 0.0135 

0.9865 0.9902 0.9884 0.9875 0.9941 
   

0.9866 0.0155 

0.9843 0.9906 0.9875 0.9866 0.9942 
   

0.9845 0.0181 

0.9882 0.9927 0.9904 0.9897 0.9952 
   

0.9886 0.0136 

0.9881 0.9913 0.9897 0.9889 0.9949 
   

0.9882 0.0137 

0.9878 0.9916 0.9897 0.9891 0.9953 
   

0.9879 0.0141 

0.9906 0.9912 0.9909 0.9903 0.9953 
   

0.9909 0.0104 

0.9903 0.9913 0.9908 0.9901 0.9955 
   

0.9905 0.0111 
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0.9845 0.9899 0.9873 0.9863 0.9933 
   

0.9846 0.0178 

0.9883 0.9915 0.9898 0.9891 0.9951 
   

0.9885 0.0135 

0.9865 0.9902 0.9884 0.9875 0.9941 
   

0.9866 0.0155 

0.9843 0.9906 0.9875 0.9866 0.9942 
   

0.9845 0.0181 

0.98761 0.990688 0.9892 0.988456 
    

0.987794 0.014213 
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