

A FAST LEARNING NETWORK WITH

IMPROVED PARTICLE SWARM

OPTIMIZATION FOR INTRUSION

DETECTION SYSTEM

MOHAMMED HASAN ALI

DOCTOR OF PHILOSOPHY

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : MOHAMMED HASAN ALI

Date of Birth : 26/03/1989

Title : A FAST LEARNING NETWORK WITH IMPROVE

PARTICLE SWARM OPTIMIZATION FOR INTRUSION

DETECTION SYSTEM

Academic Session : _________________

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

New IC/Passport Number

Date:

 (Supervisor’s Signature)

Name of Supervisor

Date:

A9805821 ببDr.Mohamad Fadli Zolkipli

SEM2 2018/2019

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is

adequate in terms of scope and quality for the award of the degree of Doctor of

Philosophy

 (Supervisor’s Signature)

Full Name : MOHD ZULI

Position :I

Date : April 2019

Dr. MOHAMAD FADLI ZOLKIPLI

ASSOCIATE PROFESSOR

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti

Malaysia Pahang or any other institutions.

 (Student’s Signature)

Full Name : MOHAMMED HASAN ALI

ID Number : PCC15004

Date : April 2019

A FAST LEARNING NETWORK WITH IMPROVED

PARTICLE SWARM OPTIMIZATION FOR INTRUSION DETECTION SYSTEM

MOHAMMED HASAN ALI

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Doctor of Philosophy

Faculty of Computer Systems and Software Engineering

UNIVERSITI MALAYSIA PAHANG

APRIL 2019

DEDICATION

Dedicated to my parents.

For their endless love, support and encouragement.

ii

ACKNOWLEDGEMENTS

I am deeply grateful to my parents: my mother Batool Yas and my father Hasan Ali for

your prayers and unlimited support. I certainly would not be where I am today without

their nurture, guidance, love and care throughout my life. There are not enough words

in the world to express my appreciation. Whatever I do, I will not be able to return the

love, bestowal and support.

I am greatly indebted and appreciate very much to my brothers and sister for their

encouragements, supports and sacrifices all the time. To my relatives and dearest

beloved, a grateful thank you for your support and encouragement.

Finally, I would like to acknowledge and thank Universiti Malaysia Pahang for

allowing me to conduct my research and providing the required assistance

iii

ABSTRACT

In current days the intrusion detection systems (IDS) have several shortcomings such as

high rates of false positive alerts, low detection rates of rare but dangerous attacks, and

the need for a constant human intervention and tuning. Daily, there are reports of

incidents such as major ex-filtration of data for the purposes of stealing identities, credit

card numbers, and intellectual properties, as well as to take control of network

resources. Machine learning approaches have been widely used to increase the

effectiveness of intrusion detection platforms. While some machine learning techniques

are effective at detecting certain types of attacks, there are no known methods that can

be applied universally and achieve consistent results for multiple attack types. This

situation makes the detection of cyber-based attacks on computer networks a relevant

and challenging area of research. The Fast Learning Network (FLN) is one of the new

machine learning algorithms that are easy to implement, computationally efficient, and

with excellent learning performance characteristics. However, the internal power

parameters (weight and basis) of FLN are initialized at random, causing the algorithm

to be unstable. In this work, a new cooperative multi-swarm scheme called multi-swarm

optimization (MRPSO) which is inspired by the human social behavior was proposed

for the interaction of several PSO groups while searching for the best parameters values

of PSO. The focus of this research is on the development of a model that can optimize

the initial parameters of FLN based on MRPSO to obtain an optimal set of initial

parameters for FLN, thus, creating an optimal FLN classifier named as MRPSO-FLN

which can improve the efficacy of network intrusion on data sets that contain instances

of multiple classes of attacks. These methods were tested on NSL-KDD intrusion-

detection datasets and the results indicate that the proposed approaches used in the

system performed well in large dataset processing. In these experiments, it was

demonstrated that the FLN optimization method achieved 0.9964 which is a higher

accuracy than most of the existing paradigms for classifying network intrusion

detection data.

iv

ABSTRAK

Pada masa ini, sistem pengesanan pencerobohan (IDS) mempunyai beberapa kelemahan

seperti kadar tanda palsu positif yang tinggi, kadar pengesanan yang rendah serangan

jarang tetapi berbahaya, dan keperluan untuk intervensi dan penalaan manusia yang

berterusan. Harian, terdapat laporan kejadian seperti penapisan utama data untuk tujuan

mencuri identiti, nombor kad kredit, dan sifat intelektual, serta untuk mengawal sumber

rangkaian. Pendekatan pembelajaran mesin telah digunakan secara meluas untuk

meningkatkan keberkesanan platform pengesanan pencerobohan. Walaupun beberapa

teknik pembelajaran mesin berkesan dalam mengesan jenis serangan tertentu, tidak ada

kaedah yang diketahui yang boleh digunakan secara universal dan mencapai hasil yang

konsisten untuk pelbagai jenis serangan. Keadaan ini menjadikan pengesanan serangan

berasaskan siber pada rangkaian komputer yang relevan dan mencabar bidang

penyelidikan. Rangkaian Pembelajaran Cepat (FLN) adalah salah satu daripada

algoritma pembelajaran mesin baru yang mudah dilaksanakan, berkomputeran dengan

baik, dan dengan ciri prestasi pembelajaran yang cemerlang. Walau bagaimanapun,

parameter kuasa dalaman (berat dan asas) FLN diisytiharkan secara rawak,

menyebabkan algoritma tidak stabil. Dalam usaha ini, satu skim berbilang kooperatif

baru yang dikenali sebagai pengoptimuman multi-swarm (MRPSO) yang diilhamkan

oleh tingkah laku sosial manusia dicadangkan untuk interaksi beberapa kumpulan PSO

sambil mencari nilai parameter terbaik PSO. Tumpuan penyelidikan ini adalah

mengenai pembangunan model yang dapat mengoptimumkan parameter awal FLN

berdasarkan MRPSO untuk mendapatkan set parameter awal optimum untuk FLN,

dengan itu, mewujudkan pengelas FLN optimum yang dinamakan MRPSO-FLN yang

boleh meningkatkan keberkesanan intrusi rangkaian pada set data yang mengandungi

contoh pelbagai kelas serangan. Kaedah-kaedah ini telah diuji pada dataset pengesan

pencerobohan NSL-KDD dan hasilnya menunjukkan bahawa pendekatan yang

dicadangkan yang digunakan dalam sistem dilakukan dengan baik dalam pemprosesan

dataset yang besar. Dalam eksperimen ini, ia menunjukkan bahawa kaedah

pengoptimuman FLN mencapai 0.9964 yang merupakan ketepatan yang lebih tinggi

daripada kebanyakan paradigma sedia ada untuk mengelaskan data pengesanan

pencerobohan rangkaian.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRACT iii

ABSTRAK iv

TABLE OF CONTENT v

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xii

1.1 Overview 1

1.2 Background 1

1.3 Problem Statement 5

1.4 Research Questions 6

1.5 Goal and Objectives 6

1.6 Scope 7

1.7 Thesis Organization 7

2.1 Overview 9

2.2 Security System 10

2.2.1 Security Tools 11

2.3 Intrusion Detection System 12

vi

2.3.1 Classifications of Intrusion Detection System 14

 2.3.1.1 Host Based Intrusion Detection (HIDS) 14

 2.3.1.2 Network Based Intrusion Detection System (NIDS) 15

2.3.2 Intrusion Detection System Techniques 15

 2.3.2.1 Signature Based On IDS 15

 2.3.2.2 Anomaly Based On IDS 16

2.3.3 Intrusion Detection System Challenges 17

2.3.4 NSL-KDD dataset 19

2.4 Machine Learning Based Intrusion Detection System 23

2.4.1 Single Algorithm Based Intrusion Detection System 24

2.4.2 Hybrid Algorithms Based Intrusion Detection System 25

2.5 Overview of Artificial Neural Network Applications 27

2.6 Overview of Fast Learning Network 28

2.6.1 Basic Fast Learning Network 31

2.7 Overview of Particle Swarm Optimization 34

2.7.1 Standard Particle Swarm Optimization (PSO) 35

2.7.2 Multi-Swarm PSO Algorithm 38

2.7.3 Artificial Neural Networks Based On Particle Swarm Optimization 41

2.8 Related Work 43

3.1 Overview 48

3.2 Research Phases 48

3.2.1 Planning Phase 49

3.2.2 Design and Implementation 50

3.2.3 Evaluation Measures 50

vii

3.2.4 Dataset Preprocessing 52

3.2.5 Data Partitioning 51

3.3 Preface of Design Methodology 54

3.4 Propose Fast Learning Network 55

3.5 The Model of FLN Training Based PSO 58

3.5.1 The Definition of the Solution Space 58

3.5.2 FLN Based PSO 56

3.5.3 FLN based Multi-Swarm Optimization(MRPSO-FLN) 57

3.6 Summary 58

4.1 Overview 67

4.2 Preface for Results Structure 67

4.3 Results of FLN Models 68

4.3.1 Results of Compare ELM Vs FLN 68

4.3.2 Results of PSO-FLN Proposed 70

4.3.3 Result of MRPSO-FLN Proposed 74

4.4 The Comparative of Proposed Models 77

4.5 Validate of The Proposed Methods 80

4.5.1 Validate of PSO-FLN 81

4.5.2 Validate of FLN 86

4.6 Discussion 88

5.1 Overview 93

5.2 Objectives Revisited 93

5.3 Brief Summary of Research 94

viii

5.4 Recommendation for Future Research and Limitation 96

5.5 Conclusion 98

REFERENCES 99

APPENDIX A Experiments Results of ELM Vs FLN with several Runs 119

APPENDIX B Experiments Results of PSO-FLN with several Runs 125

ix

LIST OF TABLES

Table 2.1 Comparison Between Anomaly And Signature Detection 17

Table 3.1 Configuration of FLN 56

Table 4.1 The Comparison result between ELM and FLN 69

Table 4.2 PSO-FLN Results 71

Table 4.3 PSO-FLN Vs MRPSO-FLN Results 75

Table 4.5 Comparative Of Proposed Models 78

Table 4.6 The Wilcoxon Signed Rank Test 79

Table 4.7 PSO-FLN* Vs PSO-FLN(p=10) Results 81

Table 4.8 PSO-FLN* Vs PSO-FLN(p=50) Results 84

Table 4.9 Parameters Setting 86

Table 4.10 Comparison Results of Improved FLN 87

x

LIST OF FIGURES

Figure 1.1 Cybersecurity spending in United States, percent of GDP and USD

billions, 2009-2017, Source: TIA’s 2010-2017 ICT Market review

and forecast, available at:test.tiaonline.org/resources/market-forecast 3

Figure 2.1 Literature Review Framework 10

Figure 2.2 Basic Firewall Installation (Modi et al., 2013) 12

Figure 2.3 Intrusion Detection System Infrastructures(Patel, et al., 2013) 13

Figure 2.4 IDS Challenges 18

Figure 2.5 Domains of Hybrid Intelligent Systems (Woźniak et al., 2014) 25

Figure 2.6 The Structure of The Individual Swarm (Sinan Q. Salih , 2018) 39

Figure 2.7 Meeting Room Approach (Sinan Q. Salih , 2018) 40

Figure 2.8 MPSO Pseudo-Code 40

Figure 2.9 Architecture of PSO-ELM Classifier 42

Figure 3.1 Different Phases of the Research 49

Figure 3.2 Cross Validation Data Partition Process 53

Figure 3.3 The Main Structure of Methodology 54

Figure 3.4 The Flowchart of The Learning Model of The FLN 57

Figure 3.5 Solution Representation (PSO-FLN) 59

Figure 3.6 PSO-FLN Block Diagram 61

Figure 3.7 Meeting Room Approach 62

Figure 3.8 Solution Representation of Proposed Model (MRPSO-FLN) 63

Figure 4.1 Comparison of ELM vs FLN Accuracy Based Number of

Neurons 70

Figure 4.2 Comparison Between PSO-FLNs vs FLN Based Accuracy 74

Figure 4.3 Comparison of Accuracy Between PSO-FLN Vs MRPSO-FLN 76

Figure 4.4 Comparison of FAR Between PSO-FLN Vs MRPSO-FLN 76

Figure 4.5 Comparison of DR Between PSO-FLN Vs MRPSO-FLN 77

Figure 4.6 Comparison of Accuracy Between PSO-FLN (P=10) Vs PSO-

FLN* 82

Figure 4.7 Comparison of DR Between PSO-FLN) P=10) Vs PSO-FLN* 82

Figure 4.8 Comparison of FAR Between PSO-FLN) P=10) Vs PSO-FLN* 83

Figure 4.9 Comparison of Accuracy Between PSO-FLN (P=50) Vs PSO-

FLN* 84

Figure 4.10 Comparison of DR Between PSO-FLN) P=50) Vs PSO-FLN* 85

Figure 4.11 Comparison of FAR Between PSO-FLN) P=50) Vs PSO-FLN* 85

Figure 4.12 Accuracy Comparison of IFLN 87

file:///C:/Users/DELL/Desktop/Dr.Nizam%20Thesis.docx%23_Toc3596370
file:///C:/Users/DELL/Desktop/Dr.Nizam%20Thesis.docx%23_Toc3596371
file:///C:/Users/DELL/Desktop/Dr.Nizam%20Thesis.docx%23_Toc3596374

xi

Figure 4.13 False Alarms Comparison of IFLN 88

Figure 4.14 Detection Rate Comparison of IFLN 88

Figure 4.15 Structure Differences 89

Figure 4.16 Comparison Result Between FLN and PSO-FLN with 100

iterations 90

Figure 4.17 Comparison Result Between FLN and PSO-FLN with 250

iterations 91

Figure 4.18 Comparison Result Between FLN and PSO-FLN with 500

iterations 91

xii

LIST OF ABBREVIATIONS

IDS Intrusion Detection System

ELM

SVM

MLP

PSO

PSO-FLN

m

Extreme Learning Machine

Support Vector Machine

Multilayer Perceptron

Particle Swarm Optimization

Particle Swarm Optimization-Fast Learning Network

Number of Neurons

Itr

GA

DR

FAR

PSOPC

KNN

Number of Iterations

Genetic Algorithm

Detection Rate

False Alarm Rate

Particle Swarm Optimizer with Passive Congregation

K Nearest Neighbours

BP

SFNN

MFNN

DPFNN

SLFN

ANN

SRC

FNN

NIDS

ML

AI

BPNN

KDD

Back Propagation

Single Layer Feedforward Neural Network

Multilayer Feedforward Neural Network

Double Parallel Forward Neural Network

Single Hidden Layer Feedforward Neural Network

Artificial Neural Network

Sparse Representation Classification

Feedforward Neural Networks

Network Intrusion Detection System

Machine Learning

Artificial Intelligence

Back Propagation Neural Network

Knowledge Discovery in Database

1

INTRODUCTION

1.1 Overview

This chapter presents theoretical model and motivations for the proposed

research. It discusses the problem statement, states the objectives and describes briefly

the scope for the proposed research. The chapter is divided into seven sections. Section

1.2 introduces a brief background of the proposed work with problem statement

background. Section 1.3 summarizes the problem statement which includes IDS

problems and proposed machine learning problem. Section 1.4 represents the research

questions which this work tries to answer. Section 1.5 highlights the main research

goal and objectives of this work. Section 1.6 provides a scope of the proposed model.

Section 1.7 highlights the thesis organization.

1.2 Background

People have over the years depended on technology and computer networks for

their daily activities, such as messaging, shopping, and marketing. These networks are

constantly exposed to several online threats and for this reason, their integrity and

availability ought to be protected against violation and intrusion. The experienced

intruders, terrorist organizations, and rival corporations have the motive and capability

to carry out developed attacks against computer systems (Choo, 2011), and this makes

systems security an important issue for many researchers. Network intrusion or attack

is a situation where an unauthorized user (attacker) tries to exploit the vulnerability of

a system to gain access to network resources and cause a disruption in the normal

operation of the network. If the attacker gains access to the network resources, it can

2

have an illegitimate access to the network data, can modify or corrupt the system, and

can hijack the network or alter its behaviour.

In 2015, the U.S. Director of NSA, Adm. Michael Rogers, in the House

Intelligence Committee warned of an impending major security attack in the U.S. in

the next decade. In his words, “It’s only a matter of the ‘when,’ not ‘if,’ that we are

going to see something dramatic.” Several state-backed hackers have continuously

launched attacks on industrial-control systems that manage vital infrastructures such as

nuclear power, power grid, transportation systems, and air-traffic control.

 The NSA director also opined that based on his own assessment, the U.S. may

fall into these attacks (Fossaceca, 2015). Furthermore, security is one of the biggest

obstacles that hamper the widespread adoption of technology (Freire & Inácio, 2014).

There are various studies in the literature discussing the security issues (Latif et al.,

2014; Modi & A, 2013; Rong et al., 2012). Figure 1.1 shows that the direct spending

on cybersecurity solutions like firewalls and IDSs is rising steadily based on the Gross

Domestic Product (GDP) percentage of the U.S. from 2009 to 2017. Several tools and

techniques have been proposed for the safety of the technology environment. The

intrusion detection system (IDS) is one of the powerful software or hardware that is

used to monitor computer network for the detection of normal or abnormal behaviours

(Vasilomanolakis, 2015). An IDS monitors a network for signs of invasion which

could manifest in abnormal system behaviours or violation of network security

policies.

Therefore, the goal of the IDS is to detect any form of compromise in the

integrity, confidentiality, and availability of a network. Since Denning introduced the

concept of detecting intrusion detection (Denning, 1987), many efforts have been

channeled on the ability for network monitoring tools to automatically detect network

intrusion. An IDS is a system that automatically monitors network or system activities,

analyzes them for any sign of intrusion, and often prevents unauthorized network

access (Scarfone et al., 2007). The IDS observe the activities of a network and

determine the nature of the observed activities (whether malicious or normal) based on

the integrity, confidentiality and resource availability of the system (Toosi, 2007).

There are several limitations of the conventional IDS (Al-Yaseen et al., 2017; Shah &

3

Issac, 2018), such as high rates false alarms, lack of continuous adaptation to changing

malicious behaviours, and highly uneven data distribution.

Figure 1.1 Cybersecurity spending in United States, percent of GDP and USD billions,

2009-2017, Source: TIA’s 2010-2017 ICT Market review and forecast, available at:

test.tiaonline.org/resources/market-forecast

The traditional IDS still suffer from several limitations as they have failed to

fully protect network systems from the increasingly proliferating attacks. Most

systems are built based on the traditional techniques and they suffer from false

negative detections and high false alarm rates. However, several studies have reported

the application of several machine learning techniques to IDS for improving their

detection rates (Shah & Issac, 2018; Tsai et al., 2009).

The problem addressed by this research is that current-day network IDS suffer

from several issues, including high rates of false alarms, as well as missed detections

of real attacks (Baiad et al., 2016; Y. Huang et al., 2016; Shah & Issac, 2018), and

therefore, requires a significant level of adjustment and tuning by human operators.

This has resulted in systems that are not reliable or effective in real-world network

operational environments. The current IDSs, although have been improving over time,

are still not able to effectively and efficiently deal with the current threat landscape. As

explained in the preceding sections, network intrusion-detection system that suffers

from an excessive number of false alarms can lead network operators to ignore alerts.

4

There are numerous recent examples where serious attacks have been missed and

classified as a normal activity, such as what happened in Ukraine which resulted in

power outages, affecting approximately 225,000 customers for several hours (Liang et

al., 2017). However, network operators prefer IDS that do not require human tuning,

intervention, or that requires a great deal of domain knowledge to operate (Hofmeyr,

2005).

As new attacks are invented regularly, it is not sufficient to rely on classical

signature-based IDS. This has motivated studies that focus on the anomaly-based

machine learning for IDS (Fossaceca et al., 2015). The performance of IDS is

improved by the incorporation of machine learning (ML), ML algorithms can

theoretically achieve optimum performance, i.e. it can regulate the rate of false alarms

and improve the detection accuracy (Snoek et al., 2012). Many ML algorithms have

been proposed as IDS (Shah & Issac, 2018), and their preference (as in Extreme

Learning Machine (ELM)-based IDS) is due to their proven superiority over the

classical Support Vector Machine (SVM)-based IDS in different perspectives, such as

over-fitting avoidance and computational cost (Guang-Bin et al., 2004; Fossaceca,

2015; Singh et al., 2015; Zamani & Movahedi, 2013), nevertheless, these IDS-based

methods and algorithms still face several limitations in terms of the accuracy of

detection due to the random selection of their parameters.

To enhance the performance of ML algorithms, certain characteristics have

been used to hybridize them with optimization algorithms. First, each function

evaluation may require a different amount of time (it takes less time to train a neural

network with 10 hidden compared to a network with 1000 hidden units) (Snoek et al.,

2012). Second, the impact of random selection on the main parameters(weights and

biases) ought to be reduced (Zeng et al., 2017). Moreover, in terms of performance

and improved detection accuracy, the IDS-based hybrid models (machine learning and

optimization algorithms) have shown better results compared to single algorithms

(Aslahi-Shahri et al., 2016; Goodarzi et al., 2014). In this work, the standard Particle

Swarm Optimization (PSO) and Multi Swarm-based Particle Swarm Optimization

(MRPSO) were used to select the main parameters and to reduce the impact of

randomization on the IDS-based Fast Learning Network algorithm (FLN) as a core

algorithm for the IDS proposed models.

5

1.3 Problem Statement

The handling of cyber threats and detection of intrusions are challenging areas

in the field of information assurance. Network intruders deploy several mechanisms to

evade detection techniques (Wang et al., 2018). To detect network attacks, the IDS

may be equipped with ML algorithms to achieve better accuracy performance. The

accuracy of IDSs has been enhanced using several supervised and unsupervised ML

approaches (Lei Zhang & Zhang, 2017).There are several works in the literature on the

enhancement of the IDSs accuracy based on machine learning models, such as Support

Vector Machines (SVM) (Aburomman & Ibne Reaz, 2017), Artificial Neural

Networks (ANNs)(Hodo et al., 2016), Backpropagation (BP) (Tran et al., 2017), Naïve

Baysian Classifier (NBC) (Mukherjee & Sharma, 2012), K-nearest neighbour (KNN)

(Lin et al., 2015), and Extreme Learning Machine (ELM) (Fossaceca et al., 2015;

Singh et al., 2015).

The FLN algorithm is an enhanced version of ANNs which has been recently

developed by Li et al. (2014) and applied to several regression and classification

problems (Li et al., 2017). FLN is a double-parallel forward neural network (DPFNN)

(Wang et al., 2011), made up of a parallel multilayer and SLFN networks. The output

of the DPFNN nodes can receive the re-codified external information through the

hidden nodes, and can also directly receive the external information through the input

nodes. However, some limitations still persist, such as the randomly selection of the

hidden biases and assigned input weights which may not represent the optimum

performance parameters. The optimization algorithms (i.e. metaheuristics) have been

utilized for enhancing the machine learning models in terms of maximizing their

accuracy and minimizing their error rate for intrusion detection system. Metaheuristics

have been implemented as training algorithms for various versions of ANNs, such as

FFNN (Mirjalili et al., 2012), BP (Huang et al., 2015), and ELM (Zeng et al., 2017).

The training algorithms are algorithms that can search the optimal values for

weights and biases. As mentioned earlier, the FLN has a drawback of the initial weight

values and biases (Niu et al., 2017). They are initialized randomly and this may affect

their prediction rate. Therefore, finding the optimal values of these two types of

parameters (weights and biases) is an optimization problem that needs to be resolved.

To overcome these issues, a multi-swarm approach called Meeting Room Approach is

6

proposed for tuning the PSO parameters called (MRPSO). The proposed algorithm is

used as a training algorithm for enhancing the detection rate and accuracy of FLN-

based network IDS named (MRPSO-FLN). In summary, the development of a

machine learning-based IDS is highly promising. This work aims at filling this

research gap.

1.4 Research Questions

This section provides the questions that have been framed to set the direction

of this research.

RQ 1. What are the best PSO (𝑐1,𝑐2, 𝑤) parameters values to be considered for testing?

RQ 2. How effective is the basic FLN algorithm and, how to choice best weights and

biases of FLN-based IDS?

RQ 3. How can the proposed models (FLN, PSO-FLN, MRPSO-FLN) accuracy be

evaluated?

Given these prospects, this study presents the design and implementation of an

enhanced meta-heuristic (PSO) with FLN based on IDS.

1.5 Goal and Objectives

The main goal of this study is to enhance the accuracy rate of network IDS

using FLN. In addition, this work aims to build an optimized FLN model which

contains a training algorithm based on metaheuristics. Reaching this model is achieved

through the following objectives:

i- To propose a self-parameters tuning technique for the Particle Swarm

Optimization (PSO) algorithm using a multi-swarm approach.

ii- To design a new training algorithm for Fast Network Learning (FLN) based

on the proposed PSO algorithm for IDSs.

iii- To evaluate and test the prediction accuracy of proposed models (FLN,

PSO-FLN, MRPSO-FLN) based on IDS dataset NSL-KDD.

7

1.6 Scope

This study developed an IDS and addressed the problem of IDS from the

classification perspective. The focus is to develop a novel machine learning system

which can serve as a highly-qualified machine learning system for intrusion systems to

provide better accuracy. The system will consider learning on NSL- KDD datasets.

The datasets that are selected were collected from networks with different cases of

attacks and captures a wide range of network and protocol features. The system was

tested on off-line mode based on the considered dataset. An online evaluation of the

system was not included in the scope of this study. The evaluation was based on the

main accuracy of models, while sub-attacks were not considered. The focus is on

increasing the accuracy of the classifier in terms of distinguishing between attacks and

non-attacks. The system can be generalized to any classification application.

1.7 Thesis Organization

This thesis is organized into 5 chapters. Chapter 1 presented an overview of

security background and IDS based on ML algorithms. Then, an overview of machine

learning was introduced in line with the proposed ID-based fast learning network.

Finally, the problem statements, research scope, study aims, and objectives were

highlighted.

In chapter 2, the classification and techniques of the IDS were reviewed,

followed by an overview of the ML algorithms based on IDS and their classification.

This chapter also provided an overview of the mathematical notation for Fast learning

network and Particle swarm optimization. Furthermore, the existing work was

analyzed to serve as a justification for the need to develop FLN.

Chapter 3 detailed the design and implementation of the basic FLN, FLN-

based optimization algorithms and a new multi-swarm approach (Meeting Room

Approach) based PSO for parameters tuning. This chapter discussed the issues relating

to the reduction of the impact of randomly selected parameters on FLN.

In chapter 4, a detailed account of FLN evaluation was presented. Here, the

performance of the FLNs was evaluated based on several evaluation measurements

(Precision, Recall, F_measure, G_mean, detection rate, false alarm rate and accuracy).

8

The evaluation was executed using NSL-KDD datasets. Additionally, the performance

of FLN was compared to other strategies.

Finally, chapter 5 presented a conclusion of the study, listing the achievements

and study contributions. The conclusions were drawn from the outcome and

significance of this study. Furthermore, directions for future works were also provided

in this chapter.

9

LITERATURE REVIEW

2.1 Overview

In this chapter, a literature review of past research is presented covering the

major areas relevant to the research problem. The chapter is divided into eight

sections. Section 2.2 introduces briefly of the infection vectors of networks and

devices and some of the popular tools of security tools. Section 2.3 gives an

introduction about the IDS, the types of IDS as signature and anomaly, as well as

provides a review of techniques and algorithms adopting machine learning approach.

Moreover, this part highlights the data set contents, and its limitations. Section 2.4

highlights the machine learning algorithm based intrusion detection and classified

them such as single and hybrid models. Section 2.5 provides an overview of neural

network applications, and the new versions of algorithms that are developed based on

artificial neural networks along with its limitations. Moreover, the section also

explains the enhanced techniques based on artificial neural network. Section 2.6 gives

an overview of Fast Learning Network algorithm, this part also contains explained the

basic extreme learning machine and its limitations. Section.2.7 discusses the particle

swarm optimization, which includes the standard PSO and multi swarm approach for

PSO along with artificial neural network based on hybrid with PSO. Section 2.8

represents the related work with similar the main idea on the development of IDSs

based on machine learning. Finally, section 2.9 provides the summary of the-chapter.

10

Figure 2.1 Literature Review Framework

2.2 Security System

Over the years, the Internet and computer systems have been exposed to

numerous security challenges due to the increased rate of their usage. Unauthorized

access to computers or information systems could result in serious security breaches

and violation of security policies, availability, integrity and confidentiality (Von Solms

& Van Niekerk, 2013). Computer networks have also been subjected to various

traditional attacks like routing information protocol attack, DNS poisoning, address

resolution protocol spoofing, IP spoofing, flooding, distributed denial of service

(DDoS), and denial of service (DoS) (Brooks 2009). On the other hand, there are many

systems and models which are used as tools and systems in the network environment.

The front access points of systems are protected by Firewall and treated as the

first line of defense. These Firewalls are deployed to either deny or allow ports,

protocols or IP addresses (Borisaniya, Patel, et al., 2013a). The Firewalls are a good

option for the prevention of external attacks but does not protect from internal attacks (

Borisaniya, Patel, et al., 2013a). An efficient IDS must be integrated into the networks

to handle these attacks.

OPtimize Fast
Learning

Network Based
Intrusion
Detection
System

2.2 Security
System

2.3 Intrusion
Detection
System

2.4 Intrusion
Detection
System Based
Machine
Learning

2.5Overview of
Artificial
Neural Network
Applications 2.6 Overview of

Fast Learning
Network

2.7 Overview of
Particel Swarm
Optimization

2.8 Related
Work

11

2.2.1 Security Tools

Technological advancements in the present world have made connectivity

easier than ever. A large amount of information (personal, military, government, and

commercial) are hosted on networking infrastructures worldwide. The security of

network infrastructures is attracting great research interest due to the huge number of

intellectual properties which can be easily acquired through the internet. The society

has become over-reliant on technology as people depend on computer systems for

their daily information and entertainment (Bhavya Daya, 2013). There is a need to

protect the availability and integrity of these systems against several threats.

experienced hackers, terrorists, foreign governments, and rival corporations can lunch

sophisticated attacks against computer system (Choo, 2011). Hence, information

security has become significantly important and ought to be protected against threats

for the safety and economic well-being of the society.

The security of information systems has attracted several research attention due

to the rapid development and wide use of electronic data processing techniques

executed through wired and wireless networks, web application, and the Internet.

Furthermore, the activities of numerous terrorist groups also justify the need for

securing information systems. The current approaches for securing information

systems are through firewalls, encryption, authentication, IDS, and prevention

systems, and other hardware and software solutions (Liao et al., 2013). Most of these

systems facing several limitations (Patel et al., 2013), such as Firewalls are used to

protect the front access point of systems (first line of defense). They are used to either

allow or deny protocols, IP addresses or ports (Naru et al. 2010). Firewalls have

become paramount to the security of network infrastructures. In the network systems,

firewalls are used to protect networks from external attacks by filtering and managing

the Internet traffic. Figure 2.2 depicts the basic approach to the installation of firewalls

(installed at the servers’ entry point), showing how they form the first line of network

defense.

12

Figure 2.2 Basic firewall installation Modi et al,(2013)

Firewalls do not offer a complete analysis of all the data packets in a network

traffic. They only check the packets at the network boundaries (Modi et al., 2013b).

The traditional firewalls cannot detect internal attacks, and the detection of few DoS or

DDoS attacks using traditional firewalls is complicated. Intelligent intrusion detection

system is a dynamic defensive system that is capable of adapting to dynamically

changing traffic pattern and is present throughout the network rather than only at its

boundaries, thus helping to catch all types of attacks(Sivatha et al., 2012). Moreover,

IDS performs the following functions (Kaur et al., 2014):

 Monitors and analyzes the activity of the system users.

 Audits the vulnerabilities and configuration of the system.

 Checks the critical system and data file integrity.

 Statistically analyzes the pattern of activities of the network based on the

known attack signatures.

 Analyses of abnormal system activities.

2.3 Intrusion Detection System

Attacks from external sources are referred to as outsider attacks, while insider

attacks comprise all unauthorized attempts by the internal users to gain access to

unauthorized privileges. Intrusion detection involves the monitoring of computer

13

networks for unauthorized access, illegal activities, or file modification (Modi et al.,

2013; Whitman & Mattord, 2012). Figure 2.3 depicts the use of IDS to monitor a

network infrastructure. The monitored network was simultaneously connected to a

network administrator who sends alarms when detected. Network attacks are mostly

launched in specified groups known as incidents, and even though many incidents are

dangerous in nature, most are not harmful. For instance, the address of a website may

be wrongly typed and accidentally attempts to establish an unauthorized connection to

a different system. Intrusion detection (ID) refers to the identification of an ongoing

intrusion on a system. Some of the issues experienced in the ID studies border on data

collection/reduction, behavior classification, reporting, and response (Frank, 1994).

Most ID systems focus on behavior classification and data reduction. Data reduction

involves the analysis of a set of data to identify the important components and reduce

the processing time, communication overhead, and storage requirements. Behavior

classification involves the process of identifying attacks and intruders

Figure 2.3 Intrusion Detection System Infrastructures

Source: Patel, et al., (2013)

Another important factor that affects the effectiveness of IDS is the quality of the

deployed feature construction and selection algorithms. The goal of improving the

overall effectiveness of IDS can be achieved through a guided reduction in the number

of relevant features without compromising the classification accuracy of the system

(Franke et al. 2012). Several techniques, such as AI and ML algorithms have been

14

used to achieve these aims. They work as a hybrid technique that combines two or

more techniques. They are advantageous as each of the combined techniques

compliment the benefits of each order (Modi et al., 2013).

The IDS monitor user activities and track network traffic to determine the

nature of ongoing activities in the network. In the presence of malicious activities, the

IDS generate an alarm. Several techniques, such as anomalies or signatures of attack

are used by the detection system for the detection of attacks, and these techniques

determine the effectiveness of an IDS (Gohil, 2015). IDS can be grouped into 2 based

on their placement in the network; one group is the host-based IDS (HIDS) and the

other is the network-based IDS (NIDS), as shown in Figure 2.3 (Kwon et al., 2017).

IDS can further be classified based on how the execute intrusion detection; they can be

classified into misuse or signature-based and anomaly detection systems. In the next

sections, an overview each group is provided.

2.3.1 Classifications of Intrusion Detection System

2.3.1.1 Host Based Intrusion Detection (HIDS)

The host-based IDS (HIDS) is a group of intrusion detection system which

focuses on monitoring and analyzing information sourced from a specific host system

(Modi et al., 2013). The HIDS detects intrusion on its host machine by analyzing

information collected from the system, such as network events, the file system used,

system calls, etc. The HIDS depends on the characteristics of a system to observe any

modification in the kernel and host file system. Figure 2.4 shows some host machines

with installed HIDS. The figure portrays how each host or server with IDS is being

monitored. Each HIDS monitors and detects unauthorized invasion of its host

machine.

There are two components of IDS service – analysis and alert system. Data is

captured by the event auditor from various sources such as system logs, and based on

the sourced data, the IDS can detect any form of intrusion using either behavior or

knowledge-based techniques. The IDS detect known to attack using the knowledge-

based technique but use the behavior-based technique to detect unknown attacks. To

detect unknown invasion, ANN can be used with this approach (Shah & Trivedi,

15

2012). In the presence of an active intrusion, the IDS sends alert to all the other nodes

using the alert system (Modi et al., 2013). This is an efficient approach for the

detection of known attacks via the knowledge-based technique, as well as unknown

attacks by applying feedforward ANN.

2.3.1.2 Network Based Intrusion Detection System (NIDS)

A network-based IDS (NIDS) is a form of IDS which monitors network

activities to detect malicious activities such as port scans, DoS attacks, or even

attempted network intrusion (Modi, 2013). The system collects information from the

network and compared it with known attack signatures. The NIDS has a stronger

detection mechanism as it compares the current traffic behavior with an already

established attack signature. The NIDS mostly detects intrusion by monitoring the IP

and transport layer headers of the data packet. The NIDS uses both anomaly and

signature-based techniques for intrusion detection. The NIDS are rarely visible inside

their host. In an encrypted network traffic, there is no need to decrypt the traffic prior

to analysis (Modi et al. 2013). Figure 2.4 shows the positioning of NIDS and their

demands in a typical network. The figure also shows how NIDS focus on monitoring a

group of servers which makes the difference from the HIDS. The NIDS is positioned

between the network hosts and the installed firewall (Kumar, 2015). They are superior

to the HIDS because HIDS can only protect one system while NIDS can protect all the

systems connected to the network.

2.3.2 Intrusion Detection System Techniques

2.3.2.1 Signature Based On IDS

The signature-based IDs detects new attacks by defining a set of signatures or

previous knowledge base for deciding the pattern of a given intrusion (Hubballi &

Suryanarayanan, 2014). Consequently, the signature-based IDS can reach a high level

of accuracy and low false positive alarm rates when identifying subtle intrusions

(Brown et al., 2002). If these systems are poorly configured, the can be affected by a

slight variation in the nature of known attacks. They are efficient for detecting known

attacks but may fail to detect variants of a known attack (Hubballi & Suryanarayanan,

2014; Kevric et al., 2017). One reason for using signature-based IDS is the ease of

16

updating and maintaining their preconfigured rules. These signatures contain several

traffic identification elements (Modi, Patel et al. 2013), but cannot be used in the

traditional networks for the detection of unknown attacks. This limitation impacts the

systems’ performance because any variation in the attack signatures results in

performance compromise.

2.3.2.2 Anomaly Based On IDS

The anomaly-based IDS are developed for uncovering the patterns of normal

behaviours. The system establishes a benchmark of normal usage behaviours and

considers any deviation from the set benchmark as an intrusion (Thatte et al., 2011).

Intrusions considered to be an anomaly can vary, but normally, any incident that

occurs with a frequency of more than or less than 2SD from the statistical norm is a

suspect (Bringas and Penya, 2009). The anomaly-based IDS do not operate based on a

database of previously known signatures; therefore, they can detect unknown

intrusions and insider abuses (Maggi et al. 2009). Several studied have proposed the

classification of anomaly-based IDS into static and dynamic anomaly detection. The

static classification presumes that the behaviour of monitored targets cannot change

(Wu and Banzhaf 2010), while the dynamic anomaly detection presumes that they

extract patterns from behavioural habits of the end users or use the history of

networks. The anomaly-based IDS can be generally categorized into three categories

based on the processing involved (Hoang, Hu et al. 2009):

1. Statistical anomaly detection methods: These systems operate on two

profiles: a normal profile which is built during the training phase, and the

current profile built during the detection phase. The system monitors network

activities like CPU usage and the number of TCP connections in terms of

statistical distribution. These two profiles are compared during an active

connection to facilitate the identification of anomalies when there is a

statistically significant difference between the profiles. This method suffers

from the difficulty of determining what constitutes a meaningful activity.

2. Data-mining-based methods: These methods automate the finding of

meaningful activities/features. They comprised of classification-based ID,

associate rule discovery, and clustering/outlier detection. In general, they

17

require a lot of computational effort and often produces high rates of false

alarm.

3. Machine learning-based methods: These are also known as call-based

sequence analysis. They are one of the commonly used ID techniques. The

ANN is a notable example of this group. Based on the analysis of the recent

trend in anomaly detection studies, several ML methods have been proposed

and reported to have a high detection rate and at the same time, keeping a low

rate of false alarm (Kevric et al., 2017).

The anomaly detection techniques can be deployed for the detection of new

attacks at different levels in network structure. Also several system events do occur

which makes it difficult to control or monitor them which make researchers prefer

using the anomaly detection systems (Modi et al. 2013). Several instances have shown

the use of anomaly detection techniques for the detection of intrusions at different

datasets (Garfinkel and Rosenblum 2003; Dastjerdi et al. 2009; Vieira and Schuler

2010). Because of these advantages of anomaly IDS, this work will apply the new

model based on the anomaly detection. Table 2.1 shows a brief comparison of the

anomaly and signature-based detection techniques based on our literature review.

Table 2-1 comparison between Anomaly and signature detection

Aspects Anomaly Detection Signature

Characteristics Uses the deviation from normal usage

patterns to identify intrusions.

Uses the patterns of known attacks

(signatures) to identify intrusions.

Drawbacks -Has to study sequential interrelation

between transactions

- False positives.

- Known attacks have to be hand-

coded

- Unable to detect new attacks

- Need signatures update

2.3.3 Intrusion Detection System Challenges

Studies have been ongoing on new systems for an automatic detection of

abnormal system usages. Moreover, Denning reported the development of an intrusion

detecting model, which he suggested as a framework for a general-purpose IDS

(Denning, 1987). Since then, experts have developed and applied several algorithms

for automating the process of network intrusion detection. They have also continually

pursued more accurate, faster and scalable methods for this purpose. With the arrival

of the “IoT” era, it is expected that the number of connected devices would exceed 26

billion by the year 2020 (Gartner,2013). With this trend, the type and number of

18

cybersecurity issues are also expected to increase. Figure 2.4 shows some of the

common challenges of IDS.

Figure 2.4 IDS challenges

Some researchers have recently advocated for more categories of IDS. Liao et

al. (2013) for instance, claimed that IDS should be further categorized into 5 sub-

categories which may belong to any of the aforementioned classes. The suggested sub-

classes are pattern-based, rule-based, statistics-based, state-based, and heuristic-based

IDS. Meanwhile, such a classification could result in confusion due to the number of

similarities between the strength of the individual techniques, as well as the lack of

clear criteria that distinguishes one technique from the other. The signature or rule-

based IDS generally have rates of false positive rates but suffer from an inability to

capture new types of attacks (Fossaceca et al., 2015). Systems that are built to detect

anomalies should have a high rate of false positive alarm detection. The ID systems

that are based on stateful protocol analysis present varying detection performances

based on the level of their profile definition (Ghorbani et al., 2010). A major challenge

of this approach is keeping an up-to-date profile as new protocols evolve over time.

As earlier discussed, this study is focused on the development of an anomaly-

based IDS with a good accuracy and a minimal false positive detection. Many studies

have been performed on false alarm reduction in IDS. Pietraszek estimated that about

99% of ID alerts do not involve cyber-security issues due to the observed slight

Challenges
IDS

False
Alarm Rate

Unbanced
Dataset

Response
Time

Low
Detection

Rate

19

differences between normal and malicious activities (Moradi & Zulkernine, 2004).

The other challenged pointed by Pietraszek include the development of accurate

signatures that can capture attack behavior but not triggered during legal operations

since some activities may be allowed under certain conditions but considered as

suspicious at others. The “Adaptive Learner for Alert Classification” (ALAC)

approach proposed by Pietraszek uses ML techniques, coupled with a human-based

observatory training to adaptively learn the implicit classification rules. Due to the

involvement of human factor during the training, the ALAC system can be

incrementally upgraded as the condition changes.As mentioned in the previous

chapter, the main challenges of the current anomaly IDS are that the complication of

developing a system with these characteristics is higher than in the case of misuse

detection (Elhag et al., 2015). Furthermore, a higher percentage of false alarms is

raised (Elhag et al., 2015; Shah & Issac, 2018), coupled with a low detection rate

(Raghav, 2013; Singh et al., 2015). There is also an issue of the unbalanced dataset

which impacts the evaluation of the models (Fossaceca et al., 2015; Tavallaee et al.,

2009). This work proposes a new hybrid model comprised of a new machine learning

(FLN) and PSO algorithms for the reduction of the false alarm and increasing of the

accuracy of IDS using NSL-KDD dataset.

2.3.4 Intrusion Detection System Dataset

In IDS research, the KDD Cup 1999 is the commonest data set used. This data

contains about 4,900,000 connection records and each record consists of 41 features

(“KDD Cup 1999 Dataset,” 2010). This data has been statistically analysed and

presented (Tavallaee et al., 2009). In the KDD data set, there are four major categories

of attacks as mentioned in previous chapter; they are:

 Denial of Service (DoS):

DoS is a form of attack in which the intruder has access to the computing

accessories and make the system too clustered or busy to consider genuine requests,

thereby, denying access to the legitimate users.

 Surveillance and Other Probing:

Probing is a situation where an attacker can scan the network and identify

system vulnerabilities to exploit based on the gained information.

20

 Unauthorized Access from a Remote Machine (R2L):

A remote to user (R2L) attack is a situation where a packet is sent by an

attacker to a network machine, then, exploit the weakness of that machine to gain an

unlawful access to the network as a regular user.

 Unauthorized Access to Local Super User (U2R):

User to root is a situation where an attacker can access a network as a regular

user and then, exploit the network susceptibility to getting root access. Many ML

and pattern classification algorithms have been used to solve intrusion detection

problems based on the KDD dataset, but have all failed to detect most of the remote-

to-local and user-to-root attacks. The limitations of the KDD99 data set has been

identified (Sabhnani & Serpen, 2004) and suggested not to be used in training

pattern recognition or ML algorithms for misuse detection of these two attack

categories. NSL-KDD data set, it has been reported that the KDD99 dataset has

many problems; for example, it contains several redundant features, and the

difficulty level of the different records and the percentage of records in the original

KDD dataset are not inversely proportional. These deficits result in a poor evaluation

of different proposed ID techniques. The NSL-KDD dataset was proposed to

overcome some of these inherent problems of the KDD Cup 1999 data set. The

proposed new dataset consists of selected records of the complete KDD dataset

(Tavallaee et al., 2009). Table 2.2 showed the NSL-KDD data variables, while Table

2.3 showed the distribution of attack records per attack category (Kang & Kim,

2016). The following are some of the advantages of the NSL-KDD over the original

KDD dataset (Tavallaee et al., 2009):

1. Redundant records are excluded in the training set. Thus, there is no bias towards

more frequent records.

2. In the original KDD data set, the number of records selected from each group level

and the percentage of records is inversely related.

3. If there is a sound number of records in the training and testing portions,

experiments on the whole set can be economically tested without the necessity for

a random sample at a reduced scale.

21

Table 2.2 The features of the NSL-KDD data set

F Name Type Min Max

1. Duration Numeric 0 54,451

2. protocol_type Symbolic 0 2

3. Service Symbolic 0 64

4. Flag Symbolic 0 10

5. src_bytes Numeric 0 89,581,520

6. dst_bytes Numeric 0 7,028,652

7. Land Boolean 0 1

8. wrong_fragment Numeric 0 3

9. Urgent Numeric 0 3

10. Hot Numeric 0 101

11. num_failed_logins Numeric 0 4

12. logged_in Boolean 0 1

13. num_compromised Numeric 0 7479

14. root_shell Numeric 0 1

15. su_attempted Numeric 0 2

16. num_root Numeric 0 7468

17. num_file_creations Numeric 0 100

18. num_shells Numeric 0 2

19. num_access_files Numeric 0 9

20. num_outbound_cmds Numeric 0 0

21. is_host_login Boolean 0 1

22. is_guest_login Boolean 0 1

23. Count Numeric 0 511

24. srv_count Numeric 0 511

25. serror_rate Numeric 0 1.0

26. srv_serror_rate Numeric 0 1.0

27. rerror_rate Numeric 0 1.0

28. srv_rerror_rate Numeric 0 1.0

29. same_srv_rate Numeric 0 1.0

30. diff_srv_rate Numeric 0 1.0

31. srv_diff_host_rate Numeric 0 1.0

32. dst_host_count Numeric 0 255

33. dst_host_srv_count Numeric 0 255

34. dst_host_same_srv_rate Numeric 0 1.0

35. dst_host_diff_srv_rate Numeric 0 1.0

36. dst_host_same_src_port_rate Numeric 0 1.0

37. dst_host_srv_diff_host_rate Numeric 0 1.0

38. dst_host_serror_rate Numeric 0 1.0

39. dst_host_srv_serror_rate Numeric 0 1.0

40. dst_host_rerror_rate Numeric 0 1.0

41. dst_host_srv_rerror_rate Numeric 0 1.0

22

Table 2.3 Distribution of Attack Records per NSL-KDD Attack Category

Attack Category Attack Name No. of Records

 Back 956

 Land 18

 Neptune 41214

 Pod 201

 Smurf 2646

 Teardrop 892

DoS 45927

 Satan 3633

 Ipsweep 3599

 Nmap 1493

 Portsweep 2931

Probe 995

 Guess_Password 53

 Ftp_write 8

Table 3.4Continued

 Imap 11

 Phf 4

 Multihop 7

 Warezmaster 20

 Warezclinet 890

 Spy 2

R2L 995

 Buffer_overflow 30

 Loadmodule 9

 Rootkit 10

 Perl 3

Normal 67343

U2R 52

Total 125973

Tavallaee et al. (2009) employed 21 learned machines to label the records of

the entire KDD training and testing sets. This labeling provided 21 predicted labels for

each record. From the results, they observed that about 98% of the training records and

86% of the testing records were correctly classified with all the learners. Hence, the

machines achieve about 86% to 98% classification rate. Note that a minimum

classification rate of 86% can cause difficulties in the comparison task since they all

vary within 86 to 100%. A significant problem with the KDD99 data set is the large

rate of redundancy. An analysis of the KDD99 training and testing sets showed that

78% and 75% of the dataset are duplicated in both sets. This redundancy can cause

learning algorithms to be biased towards the more frequent data records and prevent

them from learning occasional records such as U2R attacks which are basically more

dangerous to the networks. Additionally, this method can lead to biased evaluation

results.

23

Similarly, Sabhnani and Serpen (2004) presented similar problems in a

different way. They reported that pattern recognition and ML algorithms trained with

the KDD99 training subset and tested on the KDD99 testing data may fail to detect

most of the U2R and R2L attacks. Tavallaee et al. (2009) offered a way out of these

issues by providing a new set of training and testing sets comprised of selected records

of the complete KDD data set. These new data set are free of the aforementioned

problems and are referred to as NSL-KDD. It is freely and publicly available for use.

The NSL-KDD was streamlined by removing most of the redundant records and

adjusting their distribution based on difficulty (Fossaceca et al. 2015). The next

subsection provide an explanation of machine learning algorithms and methods based

on intrusion detection system.

2.4 Machine Learning Based Intrusion Detection System

 The conventional techniques such as encryption, firewalls, and access control

have failed in the provision of complete protection to networks and systems from the

increasingly complicated forms of attacks and malware (Kaur et al., 2014).

Consequently, the IDS have been developed as an indispensable aspect of security

systems which is used for the detection of attacks even before they occur (Mishra et

al., 2016). There are certain issues to consider when building IDS, issues like data

collection, intrusion recognition, data pre-processing, reporting, and response. Among

these issues, the most important is intrusion recognition. Audit data are examined and

compared with detection models to describe their nature (normal or benign). This is to

ensure the identification of both successful and unsuccessful intrusion attempts.

Furthermore, ML has not demonstrated good detection accuracy and fast

processing times when challenged with these requirements (Zamani & Movahedi,

2013). Fortunately, (Fossaceca et al., 2015)owing to the ability of the computational

intelligence techniques to adapt and exhibit fault tolerance, as well as their high

calculative speed and resilience against noisy information, they compensate for the

limitations of these two approaches. Also, in section 2.3.2.2 discussed several

categorized of algorithms based on IDS and the benefits of ML in compared with other

categories.

24

Although the amount of work that adoption machine learning based on

intrusion detection is increasing because of the advantages that mentioned in anomaly

based IDS section. Moreover, most of the systems that are based on these techniques

are prone to high rates of false positive and false-negative alarm(Perera Miriya

Thanthrige, Jagath Samarabandu, 2016). They also lack the ability to continuously

adapt to emerging attack behaviors (Udaya et al., 2016). Previously, several ML

techniques have been used to solve ID problems with the hope that they will improve

the rate and adaptability of detection. It can be summarized that the computational

intelligence systems also have similar features such as computational adaptation, high

computational speed, fault tolerance, and fewer chances of error due to redundant

information. In this work, the IDS-based intelligence systems are classified as singles

and hybrids, as discussed in the next subsections.

2.4.1 Single Algorithm Based Intrusion Detection System

Soft computing techniques (SCT) have found application in IDS due to their

ability to handle uncertain and partially true data (Moradi and Zulkernine, 2004).

Several SCTs exist, such as artificial intelligence (ANN), Association rule mining,

Fuzzy logic, support vector machine (SVM), genetic algorithm (GA), etc. which can

be deployed for the improvement of the detection accuracy of the signature or

anomaly-based IDS. The ANNs are used for ID for data generalization and

classification (as normal or intrusive) (Han and Kamber, 2006; Ibrahim, 2010).

Zhang et al. (2010) proposed an IDS based on BP and NN. The proposed

system was built with only one hidden layer and consequently, the system was shown

to have a good efficiency. Furthermore, they evaluated the system on the complete

KDD ‘99 data set. They also stated that when the number of neurons in the hidden

layer is extremely few, the system may have poor network non-linear mapping and

fault tolerance, but and if too many, there will be a substantial increase in the learning

time. Chen et al. (2005) presented better results (for false positive rates) using SVM

compared to ANN. This is because ANN requires a large number of training sets for

an effective classification while SVM needs just setting fewer parameters. Meanwhile,

the SVM is only ideal for binary data. Nevertheless, the detection accuracy of SVM

can be enhanced by combining it with other techniques (Li and Lu, 2010).

25

Finally, combining approaches to improve the robustness of IDS is not a new

idea. In fact, prior research has demonstrated that an ensemble of Neural Networks,

SVMs, and Multiple Adaptive Regressive Splines (MARS) performs better than each

algorithm individually but is difficult to scale to large datasets (Mukkamala, Sung, &

Abraham, 2005). For example, in (Koc et al., 2012) demonstrated the effectiveness of

using a Hidden Naïve Bayes approach to Network Intrusion Detection and in his Ph.D.

dissertation Koc noted that certain algorithms perform better at detecting specific types

of attacks than others (Koc, 2013). Koc suggests that utilization of a combined

framework consisting of multiple algorithms that would apply the best performing

algorithms for classification of each attack category would be an area worthy of future

study. Furthermore, (Fossaceca et al., 2015) this gives a motivation for several works

that mention the intrusion detection based on the hybrid system is more accurate and

improve the performance than the system based on single algorithm or method as we

will explain in the next section.

2.4.2 Hybrid Algorithms Based Intrusion Detection System

Hybrid techniques comprise of a combination of any two or more of the

aforementioned techniques (Zamani & Movahedi, 2013). The hybrid intelligent

systems serve as alternative methods for the unorthodox handling of the increasingly

complex detection problems which borders on data ambiguity, high-dimensionality,

and uncertainty. They allow the use of both a pre- and raw data knowledge to generate

innovative solutions(Woźniak et al., 2014). Figure 2.5 is a rough depiction of the

domains of the hybrid intelligent systems

Figure 2.5 Domains of hybrid intelligent systems (Woźniak et al., 2014)

26

 Figure 2.5 showed the domains of the hybrid intelligent systems, and some of

these domains deal with data ambiguity and uncertainty using probabilistic or fuzzy

representations and feature extraction, while others are concerned with optimization

problems encountered in different areas of intelligent system design and problem-

solving using either a stochastic process or nature-inspired approach. Finally,

classifiers that implement intelligent decision processes are also subject to various

forms of hybridization combinations. (Fossaceca et al., 2015) Based on the

enumerated benefits of the hybrids systems, several works have proposed their use as

IDS.

Hassan (2013) proposed an IDS design based on GA and fuzzy logic using the

KDD CUP ‘99 as a benchmark dataset. The work proposed genetic fuzzy rules for the

detection of malicious activities and specific intrusions. In addition, the method was

deficient in two aspects, first, it generates false alarms and this is a serious IDS

problem; second, it is difficult to generate rules that cover all the attributes of a high

dimensional data set. Moreover, Kavitha et al. (2013) also proposed an anomaly IDS

based on fuzzy rules. The rules are used to create a detection model in the training

phase and used to update the same model during the testing phase. The used Particle

Swarm Optimization (PSO) to improve the accuracy of detection by finding the

optimum membership functions of fuzzy, they achieved 85% rate of the total accuracy.

In addition, the authors in (Khan, Javed Akhtar, 2016) proposed a popular

support vector machine based algorithm called Kernelized support vector machine and

an Extreme Learning Machine (ELM) -based algorithm called Kernelized-ELM to

work as IDS. They mentioned some limitations of the Artificial Neural Network

(ANN) and basic SVM, such as slow learning speed and poor scalability when

compared to ELM. A combination of more than one algorithm may be used to

eliminate the disadvantages of one another.(G.B. Huang et al., 2012) investigated the

use of ELM to classify and detect intrusions. Also mentioned the limitations of SVM

and ANN, such as poor performances in multi-class classification, long training times,

and requiring parameter training. The results show that basic ELM outperformed SVM

in training and testing speed. Based on several previous works, it has been shown that

complexity is one of the limitations of hybrid models compared to single models, but

27

on the other hand, most of the works reported improved accuracy with hybrid models

compared to single model algorithms.

2.5 The Artificial Neural Network Versions

A computational network is a style of computation where data flows through a

graph and computations happen in the nodes of the graph. The computational networks

aim to take feature data and transform same through a network of simple computations

to produce one or more outputs. The output is usually decisions based on the input

features (Yu et al., 2015). ANNs are computational models used in ML. They are

based on a large collection of connected simple units called artificial neurons which

have a similar resemblance with the axons in the human brain. The randomization in

the neural network (NN) has resulted in three broad families of NN models classified

as follows (Scardapane & Wang, 2017):

1. Feedforword Network with Random.

2. Recurrent NN with Random Weights.

3. Randomized Kernel Approximations.

These methods are fundamentally distinct but share two basic ideas that

contribute to their efficiency. First, these methods use randomization to define a

feature map that transforms the input into a higher dimensional space easy learning.

Second, the resulting optimization problem is cast as a standard linear least-squares

which, by far, is the simplest scalable and most studied learning procedure to date.

Various methods have been proposed for improving the efficiency of

Feedforward neural network (FNN) training. Such methods include subset selection

methods (Li, Peng, & Irwin, 2005; Chen, Cowan, & Grant, 1991), second-order

optimization methods (Wilamowski & Yu, 2010; Hagan & Menhaj, 1994), and global

optimization methods (Yao, 1993; Branke, 1995). Although these methods can lead to

faster training speed compared to the BP algorithm, a global optimization solution may

still not be achieved with most of these methods. The BP is a first-order gradient

method for optimization studies but it is prone to slow convergence and trapping in a

local minimum.

28

Generally, the learning speed of FFNs is slower than normal, and this has been

a major setback in their applications over the years. The two reasons for this could be

traced to i) the extensive use of the slow gradient-based learning algorithms for

training NN, and ii) the iterative tuning of all network parameters using such learning

algorithms (Huang et al., 2006). Guang-bin et al. (2004) proposed Extreme Learning

Machine (ELM) for the training of Single hidden layer feedforward neural network

(SLFNs). In the ELM, there is a random initiation of the hidden nodes before being

fixed with no iterative tuning. Only the connection weights between the hidden and

output layers are the free parameters that need to be learned. Thus, the ELM is

developed as a linear parameter model for solving linear system problems. The ELM,

when compared to the conventional NN learning methods, is remarkably more

efficient and tends to reach a global optimum. Theoretical studies have demonstrated

the ability of ELM to maintain the universal approximation capability of SLFNs even

with randomly generated hidden nodes.

(Huang et al., 2006) compared ELM to some common algorithms such as BP

and SVM and showed ELM to learn faster than SVM. The analysis also showed ELM

to have a better generalization performance compared to BP in most cases. Zhou et al.

(2012) investigated the performance of ELM and found it to be independent of the

number of hidden neurons if it is reasonably large. Cao et al. (2015) proposed ELM for

speeding up the testing process in hybrid Sparse Representation Classification (SRC).

The hybrid classifier which is a combination of ELM and SRC showed excellent

results in both recognition time and classification rate. The authors justified the use of

ELM rather than SVM on the fact that ELM has a faster speed of data processing and

generalization performance. Most researches in recent times have depended on the

ELM (Kiaee et al., 2015; Wang et al., 2014), and most studies on the comparison of

SVM and ELMs have concluded that ELM performed significantly better than SVM in

terms of learning/classification and computational speed. Furthermore, next section

includes explain of FLN algorithm equations and applications which it is improved

most of the limitations that mentioned above.

2.6 Fast Learning Network Algorithm

ANNs have found application in different fields because they can directly

approximate complex nonlinear mappings from input patterns (May et al., 2010). The

29

ANNs have no need for a user-specified problem-solving algorithm, but they can learn

from existing examples just like the human brain. Additionally, they have an in-built

generalization ability, meaning that they could identify and synchronously respond to

similar patterns but not like ones that are used to train ANNs. Meanwhile, the free

ANN parameters would be defined by learning from the given training samples based

on the gradient descent algorithms which minimizes the learning process (Kiranyaz et

al., 2009). Based on these shortcomings, the training of ANNs can take longer time

and could have suboptimal solutions.

To address these problems, Huang proposed a new ANN called ELM (Guang-

bin Huang et al., 2004) as a novel SLFN where the input weights and bias of the

hidden nodes are randomly generated without tuning, and the output weights are

analytically determined. The ELM is fast learning algorithm with good a

generalization potential and has successfully been deployed in various fields like in

function approximation (Approximation & Problems, 2009; Han & Huang, 2006) and

pattern classification. The ELM is fully automated and differed from other

conventional learning algorithms such as BP which may face difficulties during the

manual tuning of its control parameters. However, one problem with ELM is that its

classification capability may not be optimal for the learning parameters of the hidden

nodes which are randomly assigned but remained unchanged during the training phase

(Cao et al., 2012). Therefore, there could be a misclassification of some samples using

ELM, especially those near the classification boundary. ELM is also found to require

more hidden neurons in many cased compared to other tuning-based algorithms

(Huang et al., 2005; Huynh & Won, 2008). However, an increase in the number of

hidden layer neurons will cause an exponential increase in the number of weight and

random initialization thresholds, though these values cannot be said to be the best

parameters that will give optimum performance.

Additionally, the ELM has other deficiencies, such as having more hidden

neurons compared to the other tuning-based learning algorithms in several applications

(Li, Niu, Duan, et al., 2014). This could make a trained ELM to require a longer time

to respond to unknown testing data. Several variants of the ELM have been proposed

to address these challenges, such as the incremental ELM (Guang Bin Huang et al.,

2006), symmetric ELM (Liu et al., 2013); error-minimized ELM (Feng et al., 2009),

30

pruning ELM (Rong et al., 2008), two-stage ELM (Lan et al., 2010), voting-based

ELM (Cao et al., 2012), ordinal ELM (Deng et al., 2010), evolutionary ELM (Huang

et al., 2005), and fully complex ELM (M. Bin Li et al., 2005)

In 2013, the FLN, an artificial neural network-based model was proposed by

(Li et al., 2013). The FLN is a double parallel FNN (DPFNN) made up of a parallel

connected multilayer feedforward neural network and SLFN (Wang et al., 2011). The

output nodes of the DPFNNs not only receive the recodifies external information

through the hidden nodes, it also directly receives the external information through the

input nodes.

Several studies have demonstrated a better convergence speed and

generalization capability of the DPFNN compared to other multilayer FNN (Chen &

Chau, 2016). Despite their wide application in several applications, they have certain

drawbacks, such as trapping in local minimum and over-fitting. Similarly, many

approaches that usually focus on the method for input selection hinder the further

minimization of redundancy and improvement of network generalization performance

when the DPFNN is composed of MFNN and SFNN with good nonlinear mapping

capability and high learning speed. The learning capacity can be improved through a

parallel connection between MFNN and SFNN via the indirect and direct information

(Rui Huang, 2007). Furthermore, other studies have shown improvement in the speed,

accuracy, convergence speed and generalization capability of DPFNN compared to the

other common FNNs. The biggest difference with ELM is that the input layer and the

output layer are added directly on the basis of the SLFN (G. Li et al., 2017); therefore,

the FLN can be considered as a model of nonlinear relation between the hidden layer

to the output layer, and the linear relation of the input layer to the output layer. Table

2.4 shows the main differences between ELM and FLN.

Table 2.4 represent FLN vs ELM

FLN ELM

Double parallel forward neural network. The

output nodes not only obtain the recodification of

the external information through the hidden layer

nodes, but also obtain the external information

itself directly through the input layer nodes

Single hidden layer feedforward neural network.

The output nodes only obtain the recodification

of the external information through the hidden

layer nodes

31

2.6.1 Basic Fast Learning Network

The FLN is made up of a parallel connection of a single layer feedforward

neural network and a three-layer feedforward neural network: input layer, hidden layer

and output layer(G. Li, Niu, Duan, et al., 2014). The structure of FLN is depicted in

Figure 2.7.

Figure 2.6 The structure of FLN

Suppose there are N arbitrary distinct samples {(𝑥𝑖 , 𝑦𝑖), i =1, 2, …, N}, in

which 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛]𝑇 ∈ 𝑅𝑛 is the n-dimensional eigenvector of the ith sample,

and 𝑦𝑖 = [𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝐼]𝑇 ∈ 𝑅𝐼 is the corresponding I-dimension output vector, the

number of hidden layer nodes is m and there are different methods to determining

correct number of neurons in hidden layer such as the number of hidden neurons

should be between the size of input layer and the size of the output layer (Jeff Heaton,

2008) , 𝛾(.) is the active function of hidden nodes, Then FLN is mathematically

modeled as:

The equations of deriving the output of the FLN based on the provided matrices and

vectors and they are presented in the following equations.

𝑦𝑗= 𝑓 (𝑤𝑜𝑖𝑥𝑗+∑ 𝑤𝑘
𝑜ℎ𝑚

𝑘=1 g (𝑤𝑘
𝑖𝑛𝑥𝑗+𝑏𝑘)) …… 2.5

Where j=1,2,….,N, 𝑤𝑜𝑖 = [𝑤1
𝑜𝑖, 𝑤2

𝑜𝑖 , … . . , 𝑤𝐼
𝑜𝑖] is the weight vector connecting the jth

output node and input nodes, 𝑤𝑘
𝑖𝑛 = [𝑤𝑘1

𝑖𝑛 , 𝑤𝑘2
𝑖𝑛 , … . . , 𝑤𝑘𝑚

𝑖𝑛] is the weight vector

connection the kth hidden node and input nodes, 𝑤𝑘
𝑜ℎ = [𝑤1𝑘

𝑜ℎ, 𝑤2𝑘
𝑜ℎ, … . , 𝑤𝐼𝑘

𝑜ℎ] is the

32

weight vector connection the kth hidden node and output nodes, 𝑏𝑘 is the kth hidden

nodes biases. A more compact representation is given as follows.

Y= 𝑤𝑜𝑖x+𝑤𝑜ℎG = [𝑤𝑜𝑖𝑤𝑜ℎ] [
𝑋
𝐺

] = 𝑊 [
𝑋
𝐺

]… ………… ... 2.6

Where

G (𝑊1
𝑖𝑛, ⋯ , 𝑊𝑚

𝑖𝑛, 𝑏1, ⋯ , 𝑏𝑚, ⋯ , 𝑋𝑁)……………… 2.7

=[
𝑔(𝑊1

𝑖𝑛𝑋1 + 𝑏1) ⋯ 𝑔(𝑊1
𝑖𝑛𝑋𝑁 + 𝑏1)

⋮ ⋱ ⋮
𝑔(𝑊𝑚

𝑖𝑛𝑋1 + 𝑏𝑚) ⋯ 𝑔(𝑊𝑚
𝑖𝑛𝑋𝑁 + 𝑏𝑚

]

𝑚×𝑁

W=[𝑊𝑜𝑖𝑊𝑜ℎ]𝐼×(𝑛+ 𝑚) 2.8

The matrix W=[𝑊𝑜𝑖𝑊𝑜ℎ] is the output weights, and G is the hidden layer

output matrix of FLN. A Moore Penrose generalized inverse is used to resolve the

model (Liang et al., 2006). The minimum norm least-squares solution of the linear

system could be written as:

�̂� = (𝑌) [
𝑋
𝐺

]
+

2.10

{
𝑤𝑜𝑖 = �̂�(1: 𝐼, 1: 𝑛)

𝑤𝑜ℎ = �̂�(1: 𝐼, 𝑛 + 1: 𝑛 + 𝑚)
 2.11

An algorithm to explain the learning of the FLN is presented in the flowchart

depicted in Figure 3.4. The algorithm starts with a random initialization of the weights

between the input and hidden layer. Next, the G matrix is found depending on both the

input-hidden matrix. This matrix represents the output matrix of the hidden layer.

Next, both the input-output matrix 𝑤𝑜𝑖 and 𝑤𝑜ℎ are found using Moore-Penrose

equations. As a result, a complete FLN model is established.

The biases of the input weights and hidden layers in the FLN are still randomly

generated as in ELM, but the weight values of the connection output-input layer

connection and the weight values of the output and input nodes are determined

analytically using least squares methods. Therefore, the FLN does not only deal with

liner high precision problems but also infinitely approximates nonlinear systems (Li et

al., 2017). Additionally, the FLN can overcome the drawbacks of the conventional

neural network that does not need iterative calculation. (Li, Niu, & Duan, 2013)

33

compared FLN with ELM, SVM, and BP, and the results showed FLN with a smaller

number of hidden units to achieve a good stability and generalization performance

when applied in several applications.

Moreover, there are several works that proposed FLN in different fields, in G.

Li et al., 2017) work proposed artificial neural network called Parallel Layer

Perceptron Fast Learning Network(PLP-FLN). The authors used Parallel Layer

Perceptron (PLP) to map nonlinear input-output relationships. By comparing the PLP-

FLN model with FLN, ELM and KELM, through 7 classification problems and 12

regression applications the results showed that the PLP-FLN had demonstrated better

approximations, generalization ability and classification performance.

In (P. Niu, Chen, et al., 2017) work, authors proposed model based on adopted

an ameliorated krill herd algorithm (A-KH) to adjust the parameters of the FLN in

order to obtain a high-precision prediction model. The proposed model used s to build

a regression model based the turbine heat rate of a 600MW supercritical steam. The

model is compared with several numeric functions to find the best function value

based on 8 functions. The total data that used to evaluate the model include 96 pairs

for training set, and 24 pairs for testing set, and that mean not enough for evaluate

complex propose a model. FLN has been used as a benchmark to compare to the

performance of some proposed models (Niu et al. (2016); Li et al. (2017). The FLN is

one of the new algorithms based on ANN that was used to build NOx emissions model

Ma et al. (2018). Moreover, most of the researchers stated that FLN can overcome the

problems of traditional neural network (Li et al., 2017). (Fossaceca et al., 2015) A

brief review of other ML methods compared to FLN is provided as follows:

1. Bayes Network Classifier: This classifier depends on probability feature

distribution for the estimation of the conditional capabilities of certain observations

belonging to certain classes. Even though this method is well suited for large datasets,

the classes are presumed to be independent and it is difficult to estimate the actual

network traffic probabilities.

2. K Nearest Neighbours (KNN): In this classifier, the majority vote of nearest

neighbours is considered during the classification of each observation via a similarity

measure. Although this is an easy technique to implement, the KNN requires a

34

significantly large storage space, performs poorly on datasets with high

dimensionality.

3. Decision Tree: The decision tree divides data into specific classes using a recursive

approach to learning; however, this algorithm is very complex and unstable.

4. Neural Networks: The NN rely on the modelling of the human brain operation. Its

single or multilayer perceptron’s are trained with gradient descent algorithms like BP

for the optimization of the neuron weights and to minimize the error between the

predicted and actual training samples. However, NNs are built with a large

computational burden, and they are susceptible to over-fitting and long processing

times.

5. Support Vector Machines (SVMs): The SVM uses statistical optimization

methods to construct a set of “hyperplanes” in high dimensional space for the

classification of network traffic into categories. In the SVM, there is a need to

carefully select the kernel type and a proper adjustment of its parameters. The SVMs

are highly accurate and can model complex decision boundaries with fewer chances of

data over-fitting. However, the SVM is highly complex and requires a large memory

space. The selection of the Kernel is usually difficult and the algorithm runs slowly

when applied on larger datasets.

6. Extreme Learning Machine: The ELM was proposed to address most of the issues

of the common learning methods, such as the number of epochs, learning rate,

stopping criterion, and local minima. However, the Elm still has certain drawbacks,

such as the need for more hidden neurons in many applications compared to the

conventional algorithms. This makes trained ELMs to require a longer time to respond

to unknown testing data.

Finally, even FLN algorithm improved most of the above tradition machine

learning algorithms. It is still facing several limitations such as random select of the

main parameter's values. Moreover, proposed PSO hybrid with FLN to improve the

limitation as in the next will include an overview of PSO algorithm and its

improvements.

35

2.7 Particle Swarm Optimization Algorithm

Over the past 2 decades, nature-inspired metaheuristics have attracted much

attention due to their efficiency in establishing accurate solutions to complex industrial

and engineering problems, especially the NP-complete problems. Most nature inspired

metaheuristics are classified as stochastic techniques. These stochastic algorithms

randomly pick a set of solutions and improve them based on the algorithmic

mechanism. The solutions are constantly improved until a set stopping criterion is met.

Stochastic techniques are classified as random searches but guided to the next iteration

by heuristics. In the last few years, many stochastic algorithms have been proposed

due to their great success in finding best solutions to science and engineering problem

(Diao & Shen, 2015; Slowik & Kwasnicka, 2018).

The PSO is one of the most popular algorithms first introduced by (R. Eberhart

& Kennedy, 1995). The PSO solves optimization problems by emulating the flocking

behavior of birds; where each bird is regarded as a solution. The advantage of the PSO

when compared to the evolution-based frameworks like the GA lies in its ease of

implementation and in requiring just a few parameters to be adjusted (Satapathy et al.,

2014; Shi et al., 2005). The PSO has successfully been applied in several instances

such as function optimization, fuzzy systems, artificial neural network training, and

feature selection (Chen et al., 2015; Huang & Dun, 2008). It can also be applied to

other areas where GA can be employed. The following subsection discussed the

original PSO and its variants.

2.7.1 Standard Particle Swarm Optimization (PSO)

The standard version of PSO is a well-known optimization algorithm. The

swarm is initialized with a random population of solutions. The PSO searches for the

best positions by updating its component generations. The generated particles in the

PSO (which are the solutions) fly in a D-dimensional search space at a velocity

dynamically adjusted based on both their own respective experiences and the

experience of their neighbours. The ith particle in the PSO is denoted in the D-

dimensional space as 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … . , 𝑥𝑖𝐷) where 𝑥𝑖𝑑 ∈ [𝐿𝐵𝑑, 𝑈𝐵𝑑], d ∈ [1, 𝐷],

𝐿𝐵𝑑, 𝑈𝐵𝑑 respectively represents the minimum and maximum limits of the 𝑑th

dimension. The velocity of particle i is given as 𝑣𝑖 = (𝑣𝑖1, 𝑣𝑖2, 𝑣𝑖3, … … , 𝑣𝑖𝐷), which is

36

maintained at a maximum user-specified velocity 𝑉𝑚𝑎𝑥. The particles, at each time step

t, are manipulated based on the following relation:

𝑣𝑖 (𝑡 + 1) = 𝑣𝑖 (𝑡)+ 𝑟1𝑐1(𝑃𝑖− 𝑥𝑖 (𝑡)) + 𝑟2𝑐2 (𝑃𝑔 − 𝑥𝑖 (𝑡)) 2.12

𝑥𝑖 (𝑡 + 1) = 𝑥𝑖 (𝑡)+ 𝑣𝑖 (𝑡) 2.13

where 𝑟1 and 𝑟2 represents the random values in the range of 0 and 1. 𝑐1 and 𝑐2

represents the acceleration constants that governs the extent a particle can move within

a given iteration. The previous best position of the ith particle is represented by 𝑃𝑖.

Based on the several definitions of 𝑃𝑔 , there are 2 variants of the PSO. A global

version of PSO is achieved when 𝑃𝑔 represents the position of the best particle among

the other particles in the same population (also referred to as the as𝑔𝑏𝑒𝑠𝑡). But if 𝑃𝑔 is

derived from a few number of adjacent particles of a population (called 𝑙𝑏𝑒𝑠𝑡), a local

version of PSO is achieved. An inertia term w was later introduced by Shi & Eberhart

(1998) via a modification of Equation 2.13 into:

𝑣𝑖 (𝑡 +1) = 𝑤 × 𝑣𝑖 (𝑡) + 𝑟1𝑐1 (𝑃𝑖− 𝑥𝑖 (𝑡)) + 𝑟2𝑐2 (𝑃𝑔 − 𝑥𝑖 (𝑡)) 2.14

They suggested that a proper balance between global and local explorations can be

achieved through a proper selection of 𝑤, thus, requiring averagely less iterations to

establish an optimal solution. The 𝑤, as originally developed, is set using the

following equation:

𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑖𝑡𝑟𝑚𝑎𝑥
× 𝑖𝑡𝑟 2.15

where 𝑤𝑚𝑎𝑥 represents the initial weight, 𝑤𝑚𝑖𝑛 represents the final weights, 𝑖𝑡𝑟𝑚𝑎𝑥 is

the highest number of allowable iterations, and 𝑖𝑡𝑟 represents the present number of

iterations. This version of PSO is henceforth referred as a linearly decrease inertia

weight method (LPSO). In addition, in LPSO, a random inertia weight factor for

dynamic systems tracking has also been suggested (Eberhart & Yuhui, 2001). This

inertia weight factor in this development is set to randomly change based on the

following relation:

𝑤 = 0.5 −
𝑟𝑎𝑛𝑑()

2
 2.16

37

where rand () represents a uniformly distributed random number in the range of 0 and

1. The acceleration coefficients were suggested to be maintained at 1.49. This method

is henceforth referred to as random weight method (RPSO) in the remaining part of

this work.

However, PSO is susceptible to premature convergence, trapping to local

optimum, and low convergence speed for multimodal optimization problems (Lu et al.,

2017). Several studies have previously focused on the improvement of PSO and have

resulted in the emergence of several PSO variants, such as PSO with passive

congregation (PSOPC), (He et al., 2004), and the extended PSO (EPSO) algorithms

(Jun-jie, 2005). The EPSO introduced a third target point in the formula for the

position and velocity of PSO. Moreover, Lu et al. (2017) proposed APSO as an

enhancement of the normal PSO by hybridizing the algorithm with the mutation

mechanism of GA and standard PSO. The basic concept of the APSO is that the

position of the ith particle in the kth generation does not only depend on 𝑥𝑏𝑒𝑠𝑡, 𝑙𝑜𝑐𝑎𝑙

and 𝑥𝑏𝑒𝑠𝑡, 𝑔𝑙𝑜𝑏𝑎𝑙 but also on the additional parameter known as an active target

point. This proposal improved the velocity update formula of the standard PSO and

make it mutative.

Several time-varying strategies have been suggested for the regulation of PSO

parameters. These modifications are fundamentally based on the tuning of the learning

weights of the particles for their exemplars (Xia et al., 2018). For instance, the

ubiquitous parameters update rules introduced by Ratnaweera et al. (2004) and Shi &

Eberhart (1998) have three PSO parameters that are adjusted based on the iteration

numbers with the aim of meeting different search criteria of different evolutionary

stages.

Being that a larger w encourages exploration while a smaller one benefits exploitation,

it seems right to deploy a time-varying w to strike a balance between them. The

ubiquitous w update rule introduced by Shi & Eberhart (1998) linearly decreases from

0.9 to 0.4 during optimization process and is still applicable in most variants of PSO.

Furthermore, Ratnaweera et al. (2004) proposed HPSO-TVAC which is motivated by

the iteration based w. Considering the nonlinear and complicated nature of PSO search

process, many nonlinear strategies have been introduced for tuning its parameters (R.

C. Eberhart, 2001; Pornsing et al., 2016). Although a reliable performance can be

38

achieved by altering these parameters, their common feature, i.e., iteration-based

strategy, does not have a serious significance on their individual evolutionary

information. Thus, to maximize the utilization of the historical evolutionary

information and provide a better parameters tuning method, several adaptive strategies

have been suggested in recent years (Tanweer et al., 2015; Zhan et al., 2009; Limin

Zhang et al., 2015). Tanweer et al. (2015) for instance proposed the APSO, in which

w, c1, and c2 are dependent on the evolutionary state estimation (ESE). This ESE

relies on the population distribution and the fitness of the particles rather than on the

number of iterations. With the adaptive strategies, different particles could perform

different roles on exploration and exploitation during the search process.

The other variants of PSO proposed in the literature are multi-swarm methods. Niu et

al. (2007) proposed an algorithm that is based on a Master-Slave model. In this

algorithm, a population is made up of one master swarm and several slave swarms.

The particle diversity is maintained by the slave swarms through an independent

execution of a single PSO, while the master swarm evolves based on its individual

knowledge and that of the slave swarms (Sinan, 2018). This multi-swarm is explained

in the next section.

2.7.2 Multi-Swarm PSO Algorithm

The core idea of the multi-swarm is the interaction between several groups

while searching for a solution (Okulewicz & Mandziuk, 2015). Many multi-swarm-

based schemes have been proposed, each being inspired by a natural behavior. (Sinan

Q. Salih1, 2, 2018)proposed a new cooperative multi-swarm scheme inspired by

human social behavior (the interaction between a group of people known as ‘Clan’ and

their leaders). The proposed scheme consists of several swarms called clans; each clan

consists of several solutions represented by the group members. The best member of

each clan is the clan leader and has control over the members of its clan in terms of the

time to move and where they are moving to. Figure 2.6 shows the structure of the

individual swarms.

39

Figure 2.6 The structure of the individual swarm(Sinan Q. Salih1,2 , 2018)

In each generation, the leaders often meet in one room to select an overall best

leader who will update the position of the other leaders based on his new-found

position. This behavior of knowledge sharing helps to balance the exploration stage

with the searching process of the PSO, which represents the exploitation stage. The

new multi-swarm approach is called a ‘Meeting Room Approach’ (MRA). Figure 2.7

shows the MRA model, where each member in the clan represents a particle in the

swarm, and its position and velocity updated based on the steps of PSO algorithm.

Once the new generation of each clan has been set, a new clan leader (the best leader)

is elected and sent to the meeting room. The best among the leaders will be selected as

the overall best leader (global best) in the meeting room. The newly-selected overall

best leader shares his positional information with the other leaders using the following

relation:

𝑤𝐿𝑛 = (
𝑤𝐿𝑔−𝑤𝐿𝑛

𝐼𝑡𝑟
) × 𝑟𝑎𝑛𝑑() 2.17

𝑣𝑖
𝐿𝑛(𝑡 + 1) = 𝑤𝐿𝑛 × 𝑣𝑖

𝐿𝑛(𝑡) + 𝑟𝑐 (𝑝𝑔
𝐿 − 𝑝𝑔

𝐿(𝑡)) 2.18

𝑥𝑖
𝐿𝑛(𝑡 + 1) = 𝑥𝑖

𝐿𝑛(𝑡) + 𝑣𝑖
𝐿𝑛(𝑡) 2.19

where 𝐿𝑛 represents the normal leaders, 𝐿𝑔 represents the overall best leader, 𝑥𝑖
𝐿

represents the position of the normal leaders, 𝑣𝑖
𝐿𝑛 represents the velocity of the normal

leaders, 𝑤𝐿𝑔 and 𝑤𝐿𝑛 represent the inertia weight of the overall best leader and the

normal leaders, respectively.Figure 2.7 shown meeting room approach (Sinan Q.

Salih1,2 , 2018).

40

Figure 2.7 Meeting Room Approach(Sinan Q. Salih1,2 , 2018)

After each generation, a new leader is selected for each swarm because the

positions of the members are changed or updated during the meeting. The new

equation of the inertia in the meeting room controls the exploration of the search

algorithm. The pseudo-code for the MPSO algorithm is listed in Figure 2.8.

Figure 2.8 MPSO Pseudo-code

The performance of the proposed (Sinan Q. Salih1,2 , AbdulRahman A.

Alsewari1, Bellal Al-Khateeb2, 2018)MPSO was evaluated by benchmarking with two

established algorithms, the original PSO (Yuhui Shi & Eberhart, 1999) and the

 2.17

2.18

2.19

2.

2.12

2.13

2.

41

Master-Slave PSO (MCPSO)(Niu et al., 2007) based on some of the nonlinear

benchmark functions (Sphere Unimodal, Griewank Unimodal, Ackley Multimodal).

The results It may be concluded that MPSO required less computational complexity,

and yet, had a better performance in terms of finding the best solution. Moreover,

several works proposed different PSO versions to be hybrid with ANN versions to

improve and reduce the randomness impact as shows in the next section.

2.7.3 Artificial Neural Networks Based On Particle Swarm Optimization

The ANNs with 3 layers (hidden, input and output layers) are used to forecast

the inputs-outputs relationship in complex and nonlinear engineering systems (Ghaedi

et al., 2015). The efficiency of the ANN model depends on certain variables such as

the number of output and hidden layers, the nature of transfer function, and the

number of nodes in each layer (Raja, 2014). The errors associated with ANNs can be

minimized by selecting appropriate adjustable parameters.

The uniqueness, convergence, robustness, existence, and stability of stochastic

numerical solvers using ANN models that are integrated both local and global search

methodologies have been proven to solve a range of problems based on linear and

nonlinear differential equations (Raja et al., 2016). ANNs integrated with PSO

algorithm have been used in several case studies (Ahila et al., 2015) and PSO has been

confirmed to have the following advantages over other similar optimization

techniques:

(i) There are control parameters in the PSO for balancing global and local

exploration of the solution space.

(ii) In the PSO, information on previous good solutions is retained and shared by

all particles.

(iii) PSO is simple to implement, thereby reduces the computational time and

eliminates the need to select the best operator for a given process.

(iv) PSO has a better convergence, accuracy, and speed compared to other nature-

inspired optimization algorithms in certain situations.

42

In addition to the above features of PSO, it is computationally inexpensive

because its requirements for memory and CPU speed are low. PSO is also less

sensitive to the nature of the objective function, does not need the calculation of

derivatives from other particles, and has few parameters to tune (Marinakis and

Marinaki, 2010). Moreover, PSO does not require the information of the objective

function under testing; it requires only the value, which is used within primitive

mathematical operators, hence, leading to low computation (Padhy, 2009). Hence,

PSO was proposed for the optimization of ELM parameters to achieve a higher

classification accuracy and to estimate the best values for the hidden nodes of the

ELM for power disturbances classification as shown in Figure 2.9. The performance of

the proposed PSO-ELM was compared to those of BP, probabilistic neural network,

and SVM.

Figure 2.9 Architecture of PSO-ELM classifier

To evaluate the overall performance of the 4 networks, the classifiers were

trained with few numbers of training samples and with a large number of the training

set. First, 200 datasets were used to train the classifiers, followed by the second phase

of testing the classifiers with 500 datasets. The SVM showed a better performance

when trained with 200 training datasets compared to BPN, ELM, and PNN. Moreover,

as shown in previous sections, the results of this work also proved that the

classification accuracy of ELM was better than that of SVM when trained with larger

training samples.

PSO algorithm for

optimal N and L

43

Raja (2014) suggested that these solutions can be determined by the integration

of the strength of local and global search (PSO) for the optimization of the unknown

weights of ANNs. The improvement in the achieved results using these methodologies

both in terms of convergence and accuracy, as well as the achieved reduction in

computational time and the impact of different designs of the ANN models using

appropriate activation functions, are evident. Hence, it is necessary to conduct

exploration and exploitation in different ANNs with the appropriate transfer function

in the hidden layer in order to develop reliable and effective system models. The

learning of the adjustable ANN parameters in this study was done with PSO, active set

(AS) and PSO-AS algorithms .The results of the hybrid PSO-AS algorithm were more

accurate compared to those of PSO and AS.

In addition, Lu et al. (2017) mentioned that the internal power parameters of

kernel-based ELM (KELM) are initialized at random, causing the algorithm to be

unstable. Therefore, they proposed the active operator’s particle swarm optimization

(APSO) to obtain an optimal set KELM. They evaluated the accuracy of APSO-

KELM compared to the existing SVM, KNN based on several datasets (Breast, Brain,

Colon). Moreover, the authors presented an APSO algorithm that improved on the

premature convergence problem and searches performance of the standard PSO.

The APSO is a hybrid combination of the GA’s mutation mechanism with the

standard PSO. The hybrid APSO-KELM was shown to be relatively stable compared

to the component ELM and KELM and achieved a higher accuracy compared to SVM

and KNN. The APSO-KELM also had a longer running time. Owing to the

introduction of active operators and kernel function into PSO and ELM respectively,

the computational complexity of APSO-KELM was increased and this is a major

drawback of the hybrid APSO-KELM. Moreover, based on all the works that proposed

PSO hybrid with neural network versions gave motivation to used PSO to hybrid with

FLN to reduce randomness impact. In the next, section will explain in general the

related work of intrusion detection based on hybrid.

2.8 Related Work

There are several proposed of machine learning frameworks that are based on

IDS. Xiang et al. (2014) proposed that the current IDS research can be classified into

two major domains- anomaly detection and information reduction methods. These

44

methods mainly focus on the learning methods for alert decision support in anomaly-

based ID. The FLN has been earlier demonstrated to perform better than ELM and

SVM in terms of training speed, user-friendliness, and accuracy. It has been shown

that ML-based ID can use FLN to extend their applicability to significantly larger

datasets compared to most of the currently used datasets in most studies. This can be

achieved without necessarily increasing the training time due to the near linear scaling

ability of the proposed FLN.

Shah & Trivedi (2012) proposed a survey on the ANNs based on IDS and

classified the works into simple ANN and hybrid ANN. In the simple approach, they

discussed the use of BPNN, SVM, SA, and SOM for anomaly detection. The hybrid

approach focused on the use of more than one technique. Jaiganesh (2013) conducted

a review of the potential techniques that are based on IDS. The study covered NN,

SVMs, and suggested that ELMs are useful for IDS owing to their ease of

implementation, fast learning speed, high generalization ability, and working with

non-linear kernels and activation functions. Although other studies have suggested the

usefulness of ELMs in overcoming most of the discussed challenges (Patel et al.,

2012), details of previous studies on ELMs with IDS were not provided. Furthermore,

there was no discussion on how to apply ELM on ID problems. They also suggested

the chances of overcoming the challenges of the individual algorithms by combining

different learning approaches.

Pervez & Farid (2014) proposed an SVM-based filtering algorithm for the

selection of multiple ID classification tasks on the NSL-KDD ID dataset. The

proposed algorithm achieved 91% classification accuracy when using only 3 input

features and 99% using 36 input features, while all the 41 input features of the NSL-

KDD set achieved 99% classification accuracy. Meanwhile, the test set performed

badly with 0.77. With this level of poor generalization efficiency, this method cannot

effectively detect unknown network attacks.

(Fu et al., 2014; Huang et al., 2013) achieved good results with Kernel-based

ELM. The kernel selection is a critical step for achieving a good learning performance

but the kernel-based ELM usually computes a kernel over the entire input samples and

requires much memory (Fossaceca et al., 2015). The computation of large datasets of a

full kernel is sometimes not feasible as a result of memory problems, and in the

45

smaller datasets that executes full kernel computation, there is a need to have a way of

combining multiple classifiers or kernels to achieve good results.

In (Fossaceca et al., 2015) explored the feasibility of combining the learning

decisions of multi-classifiers for the formulation of a single decision with more

accuracy compared to the individual classifiers. This combination of classifiers is

motivated by the fact that previous studies have demonstrated a varied classification

ability of most classifiers in the detect of specific classes in a multiclass learning

problem. The introduction of a novel Multiple Adaptive Reduced Kernel ELM

(MARK-ELM)-based IDS made MARK-ELM suitable for the processing of multi-

class network intrusion detection systems. Several approaches have shown good

detection performance for several attack classes but poor performances for others due

to their dependence on KDD ‘99. The proposed approach achieved a high rate of false

positives and a good detection performance which are huge challenges facing network

operators.

(Singh et al., 2015) pinpointed large data volumes, low detection rate, and high false

alarms as the common challenges of IDS. They used an online based sequential

ELM to design an IDS-based anomaly for network traffic analysis. For the

performance evaluation of the proposed technique, the standard Kyoto university

benchmark dataset was used to test the proposed IDS. The feature that was used in this

work was extracted from the KDD data set. The algorithm was not validated on large

data sets such as KDD, hence, further validation should be performed.

A heuristic is a way of learning, discovery or problem solving which employs a

practical approach that is not guaranteed to be optimal. (Aslahi-Shahri et al., 2015)

presented a GA and SVM-based anomaly detection technique. They used GA and

SVM for improving the classification performance SVM. The proposed technique was

evaluated on the KDDCUP ’99 set. As mentioned in the limitations of SVM, it

provides a binary classification as normal data or attack. Additionally, the system was

only evaluated on the KDD ‘99 data set.

Furthermore, Table 2.5 shows some of the related works based on IDS.

(Vishwakarma, 2017) proposed an Ant Colony Optimization (ACO)-based KNN

intrusion detection method. The algorithm was pre-trained with KDD Cup ‘99 dataset

46

using ACO, while the performance of the KNN-ACO, BP and SVM were compared

based on common performance parameters such as accuracy and false alarm rate. The

reported overall accuracy of the proposed algorithm was 94.17%, and its overall FAR

was 5.82%. Unfortunately, this algorithm was trained with only 26,167 samples which

are relatively a small data volume.

Table 2.5 Relate Works based on IDS

Authors
Model

Type
Single Hybrid Algorithm Data set ACC Limitations

(Saxena

MTech

Scholar &

Richaariya,

2014)

Anomaly _

PSO-SVM
10%

KDD99
0.993

-the model essay leads to a higher false
alarm rate.

-The model evaluate based KDD99

with all limitations

(Pervez &

Farid, 2014)
Signature

_ SVM

NSL-

KDD
0.99

-High rate of false alarm
-The performance is worse during the

test set

- It cannot effectively detect unknown
network intrusions.

(Alomari and

Othman,

2012)

Anomaly _

Bees
algorithm

(BA)+
SVM

KDD

cup 99

-ELM lower computational

requirements than SVMs,
-ELMs have shorter training time

requirements than SVMs,
-ELMs work directly on multi-class

classification problems

(Shivhare and

Chaturvedi,

2014)

Anomaly _

BP +

DBSCAN
algorithm+

KDD

cup99
0.9856

-The computational cost using ELM is

very small in comparison to back
propagation,

-Another problem of the conventional

back propagation clearing algorithms
is slow coverage rate

(Senthilnayaki

et al., 2013)
Anomaly _

GA+

Decision

Tree

algorithm

KDD

cup99

it is difficult to precisely model all

behaviours since anomaly based

detection can detect only known

attacks.

(Deshmukh et

al., 2015)

Anomaly _

Naïve
Bayes

,Decision
Tree

NSL-

KDD
0.99

Bayes needs large data sets to work,

because the classes are assumed to be

independent, and also it is difficult to
estimate the actual probabilities of the

network traffic.

(Fossaceca et

al., 2015)

Anomaly

_
Multiple
Kernel-

ELM

KDD

cup99
0.993

- the author during testing mode didn't
depend on the data set testing mode to

evaluate the results

- This work evaluated based on
KDD99, and we mentioned already the

problems with this data set.

(Cheng, 2012) Anomaly

_ ELM
KDD
cup99

0.994

-This work used normal ELM with the
random select problem.

-This work evaluated based on

KDD99, and we mentioned already the
problems with this data set

Table 2.5 contents shown a summary of some of the related work based on the

proposed in this work. The highest accuracy is 0.994 among all works in the table. On

another hand, in chapter 4 the experimental results of the proposed model got higher

than all of these related works. Moreover, most of these works used the old version of

47

dataset (KDD99) to evaluate proposed models, and in previous parts of this chapter

mentioned some of the limitations that may impact the accuracy credibility.

2.9 Summary

This chapter represents literature review with several sections, begin with

general explained for security issues and tools. Next section explained the intrusion

detection system types and techniques specially based machine learning and the

dataset. Moreover, next sections include analysis of machine learning algorithms such

artificial neural networks versions with limitations that lead to proposed fast learning

network as core algorithm in this work. In addition, one of FLN limitation is random

selection of main parameters value which represents an optimization problem.

furthermore, for this reason improved particle swarm optimization proposed to hybrid

with FLN based on intrusion detection system.

48

METHODOLOGY

3.1 Overview

This chapter introduces the developed methodology for this study. It is

combined of all steps for developed methodology, dataset preparation and the

evaluation measures. Section 3.2 highlights the research phases carried out to reach the

target, also explained the main structure of methodology design. Section 3.3 provides

dataset pre-processing part and all the detailed steps that have been done for this

regard. Next, section 3.4 provides the preface of design methodology. Section 3.5

provides the detailed of proposed FLN. Section 3.6 presents the detailed of optimize

fast learning network system based on particle swarm optimization and its

applications. Finally, summary for the whole chapter is provided in section 3.7.

3.2 Research Phases

By merge approach the layers one after another the research carried out in few

fundamental phases, which are presented in Figures 3.1. Starting from the planning

phase the research proceeded to analysis; design and implementation phase and then to

the last phase evaluation.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj-7PDLy4XbAhWMtY8KHSN5ALAQFggtMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FParticle_swarm_optimization&usg=AOvVaw3GmeqHykFZUf4J-hDfSbr1

49

Figure 3.1 Different Phases of the Research

3.2.1 Planning Phase

Planning Phase is the starting phase of the research which consisted of many

collection and carrying out the literature review where the main problems are

identified first and then precisely identified the research gap. The total articles divided

for many groups: one groups of articles discuss the problems in general which is

“intrusion detection system based on machine learning “. In another hand, there are

many applications based on machine learning algorithms used based IDSs like

optimize the main parameters of algorithms, kernel function extension, etc.

At the completion of review stage, it is observed that the previously proposed

models of intrusion detection systems are unnecessarily complex to configure. Further,

traditional intrusion detection based on machine learning models focuses on

computational intensive to reduce the impact of selecting the parameters randomly as

its strategy of work in most of the machine learning algorithms, using different

techniques and algorithms at different levels. The focus of this research is to reduce

the false alarm rate of intrusion detection system, in order to achieve maximum, detect

accuracy. FLN algorithm is one of new machine learning algorithm that needs to

Planning

• Collection and carrying out Literature Review

• Identify Problems and Define Gap

• Determine Aims and Objectives

Design and
Modelling

• Dataset pre-processing

• Proposed FLN Based IDS

• Proposed standerd PSO with FLN based IDS

• Proposed multi swarm-PSO with FLN based IDS

Evaluation

• Test the developed models

• Analysis of the results

• Conclusion

50

adjustment for main parameters(G. Li, Niu, Wang, et al., 2014; P. Niu et al., 2017),

this work proposed PSO algorithms for solve this problem.

3.2.2 Design and Modelling

 This phase of the research based the problem statement in chapter one, as based

on the observation of problem the system is planned to design and then implemented

the system through the matlab simulation in order to test the efficiency of proposed

system. Firstly, this work tried to reduce the impact of random select of the main

parameters of FLN, which its impact the accuracy of the intrusion-detection model.

Secondly, based on the improvement of the PSO, because standard PSO has

some shortcomings such as premature convergence and getting stop in local minima.

To overcome these shortcomings, many variants of PSO have been proposed (Gülcü &

Kodaz, 2015). This work propose a new cooperative multi-swarm scheme inspired by

the human social behavior. The proposed scheme consists of several swarms called

clans; each clan consists of several solutions represented by the group members. The

multi-swarm used as tuning for the main parameters in PSO,(Xia et al., 2018) these

parameters adjustments offer relatively reliable performances. Both (PSO, MRPSO)

optimization algorithms are also used to adjust the input weights and hidden layer

biases of FLN so as to obtain a high-accuracy model of intrusion detection system.

3.2.3 Evaluation Measures

This section reviews the measures, metrics and validation procedures utilized

for evaluating the experimental data. Based on the literature research in Chapter 2,

most studies report overall accuracy as the main measure of performance for intrusion

detection systems. Moreover, some other reviews mentioned other measures, metrics,

and validation for evaluating the experimental data. Some studies show more detailed

information on the rates of false positive detections and missed detections. These are

all useful in evaluating system performance.

The following section formalizes the analysis using standard metrics to

objectively evaluate and compare results derived from using different classification

methods. Several metrics were utilized to characterize the performance of the system

based on the NSL-KDD dataset. A thorough treatment of learning performance

51

measures can be found in (Singh et al., 2015; Sokolova & Lapalme, 2009), while

imbalanced dataset issues are addressed in (Phoungphol et al., 2012). The main

metrics employed in this research are:

 Accuracy: is the common metric used for assessing the overall effectiveness

of a classifier (Sokolova, M. & Lapalme, G., 2009).

Accuracy =
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑓𝑛+𝑓𝑝+𝑡𝑛
 3.1

(𝑡𝑝= true positive, 𝑡𝑛= true negative, 𝑓𝑝 = false positive, 𝑓𝑛 = false negative)

 True Positive: In the context of Intrusion Detection, a “True Positive” is a

correct detection of an attack.

 True Negative: In the context of Intrusion Detection, a “True Negative”

election is the correct identification of “Normal Traffic”

 False Positive: Is an indication of an attack on traffic that should have been

classified as “normal”.

 False Negative: In the context of Intrusion Detection, a “False Negative”

represents a “missed detection”, that is a real attack was misidentified as “Normal”

traffic.

 Standard Deviation: A quantity expressing by how much the members of a

group differ from the mean value for the group, which its calculate as following:

SD = √
∑|𝑥−𝜇|2

𝑁
 3.2

where ∑ means "sum of", x is a value in the data set, μ is the mean of the data set,

and N is the number of data points in the population.

 Precision: Refers to the proportion of predicted positive examples that are

actually True Positives (Powers, D.M., 2011). Precision can be interpreted as the

“Positive Predictive Value” of the classifier(Sun et al., 2007). Precision is calculated

as follows (Sokolova, M. & Lapalme, G., 2009):

Precision =
∑ 𝑡𝑝𝑖

𝐶
𝑖=1

∑ (𝑡𝑝𝑖+𝑓𝑝𝑖)𝐶
𝑖=1

 3.3

 where C is the number of classes

 Recall: Refers to the proportion of True Positive examples that are detected

52

(predicted) to be positive (Powers, D.M., 2011). It can be interpreted as the “True

Positive Rate” for the classifier (Sun, Y., et. al., 2007). Recall is calculated as follows

(Sokolova, M. & Lapalme, G., 2009):

Recall
∑ 𝑡𝑝𝑖

𝐶
𝑖=1

∑ (𝑡𝑝𝑖+𝑓𝑛𝑖)𝐶
𝑖=1

 3.4

where C is the number of classes

 F-measure: Relationship between positively labeled data (e.g. attack) and

actual prediction by a classifier based on a per-class average (Sokolova, M. &

Lapalme, G., 2009):

F-Measu=
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 3.5

 Detection Rate It is computed as the ratio between the number of correctly

detected attacks and the total number of attacks(Sivatha et al., 2012).

Detection4Rate(DR)=
𝑇𝑃

𝑇𝑃+𝐹𝑃
 3.6

 False Alarm Rate: It is defined as the ratio between the number of normal

instances detected as attack and the total number of normal instances(Sivatha et al.,

2012).

False4AlarmRate(FAR)=
𝐹𝑃

𝐹𝑃+𝑇𝑁
 3.7

In order to validate the results, (Rodríguez et al., 2010; Singh et al., 2015) k–

fold cross validation technique is used for performance evaluation. In this technique,

dataset is randomly divided into k different parts. For each iteration, one part is

selected as testing and all other (k-1) parts are treated as training dataset. All the

connection records are eventually used for training and testing. For all experiments,

value of k is taken as 5 because of low bias, low variance, low overfitting and good

error estimate (Rodríguez, Pérez, & Lozano, 2010).

3.3 Dataset Preprocessing and Partitioning

The whole dataset is pre-processed in this stage. It consists of two steps, scaling

and normalization. In the scaling step, the dataset is converted from string

representation into numerical representation. For example, the class label in the dataset

contains two different categories ‘Normal’ and ‘Attack’, after implementing this step

this label is changed into ‘1’ and ‘0’. Where ‘1’ means normal case, while ‘0’ means

attack. The second step is normalization. (Jahan et al., 2011) The normalization cleans the

53

noises from the dataset, and decreases the differences in the ranges between the features. In

this work, we have used Max-Max normalization method, as follows:

𝐹𝑖 =
(𝐹𝑖−𝑀𝑖𝑛𝑖)

(𝑀𝑎𝑥𝑖−𝑀𝑖𝑛𝑖)
 3.8

Where 𝐹𝑖 represents the current feature needs to be normalized, 𝑀𝑖𝑛𝑖 and

𝑀𝑎𝑥𝑖 represent the minimum and the maximum value for that feature respectively.

The objective function represents the accuracy of the neural network when it is evaluated on

the validation set. The validation set is part of the training set. In order to make the validation

fairer, 𝐾-fold validation can be used. The value 𝐾 is determined according to the size of the

dataset. Through the cross-validation processes the data is tested to ensure the compatibility of

the testing and training subsets and to reduce data discrepancies and its effects on the FLN

design. Thus, in cross-validation the first 20% of the data in each run is used as a testing set

while the 80% is used for training. After that, a second 20% is used for testing while the

remaining 80% is used for training. This process is continuously repeated, taking all

possibilities to ensure reliability of the predictive results. Figure 3.2 shows the data

partitioning process.

Figure 3.2 Cross validation data partition process

 The NSL-KDD data set was used to evaluate the performance of proposed

models. The NSL_KDD data set consists of several types of features such as symbolic,

numeric and Boolean with varying resolution and ranges. For this study we used all 41

attributes of the data. As of NSL-KDD dataset consist of 148517 number of

connection records in both training and testing set with same number of attributes.

54

3.4 Preface of Design Methodology

This section provides the mathematical methodology for achieving the

objectives of the thesis. It is combined of three sub-sections; each one is dedicated for

one objective from the objectives of the study. A block diagram of the general

developed methodology is depicted in Figure 3.3. It is combined of all sub-blocks of

the developed systems with their evaluation part. Also, it shows the mapping of those

sub-blocks to the objectives of the thesis. A detailed description of each part is

depicted in the following sub- parts in following of the chapter.

Figure 3.3 The main structure of Methodology

This chapter presents the methodology that developed for implementing the

objectives in the thesis. Besides, the evaluation methods and measures are provided.

As it has been presented in previous section 3.2.3, this research presents developed of

machine learning for detection and identification of intrusions in networks. The main

methods are based on fast learning network. More focus is made on optimization

method based variants due to the efficiency of fast learning network in performing

separation between samples from different classes in compared with ELM. Moreover,

this work proposes to adjust the parameters of the FLN and based on PSO and multi

swarm-PSO. The evaluation of the developed models is based on benchmark IDS

dataset (NSL-KDD).

The chapter starts with general description about the preparation of the IDS

dataset. Next, the methodology of implementing the first objective, which is

developing a fast learning network based on IDS. Moreover, the second part which

55

provide the PSO optimization algorithm to adjust the input weights and hidden layer

biases of FLN to overcome the impact the random selection of FLN parameters. Third

part which president the enhancement of standard PSO by using multi swarm for

tuning the parameters of PSO called (MRPSO), and also used to adjust the FLN

parameters and evaluate MRPSO-FLN by compare with PSO-FLN based on NSL-

KDD dataset. Finally, an evaluation process is performed for the developed model.

The evaluation starts with generating the standard measures of evaluating a machine

learning model in general and an IDS system in particular.

3.5 Proposed Fast Learning Network

After processing the dataset, this step is to determine the network structure.

Typically, in this step, the number of inputs, hidden layers and outputs are selected, as

well as the number of neurons selected for each layer based on the intended

application. Also, in this study, the model structure consists of a single layer for input,

output and hidden as showed in table 2.2. In addition, the input layer contains of 41

neurons based on the features of dataset. And the output layer contains five neurons

based on the attacks classes to representing the network output. Furthermore, the study

investigated a different number of hidden neurons to verify its effect on the proposed

learning algorithms and FLN performance. On the other hand, the choice of activation

function plays a role in the convergence of learning algorithms and FLN performance.

Finally, the study chose the sigmoid function as an activation function. The

configuration of FLN indicates to the needed information to create both the topology

of the network and the mathematical structure (activation function formulas) as in

table 3.1.

56

Table 3-1 configuration of FLN

Input Hidden

Layer

Output Data

Indices

𝒙𝒊=[𝒙𝒊𝟏,𝒙𝒊𝟐,⋯,𝒙𝒊𝒏]𝑻𝑹𝒏 1,…., m

neurons
 𝑦𝑖=[𝑦𝑖1,𝑦𝑖2, ⋯ , 𝑦𝑖𝑙]𝑇 ∈ 𝑅𝑙 1,2, … 𝑁

 The learning for FLN could the summarized as Follows:

Step1: Randomly generate the input weights matrix 𝒘𝒊𝒏 and bias matrix b based on

following equations.

𝑤𝑖𝑛 =(𝑈𝑤𝑖𝑛 − 𝐿𝑤𝑖𝑛) × 𝑅𝑎𝑛𝑑 + 𝐿𝑤𝑖𝑛 3.9

b= (𝑈𝑏 − 𝐿𝑏) × 𝑅𝑎𝑛𝑑 + 𝐿𝑏

3.10

Where 𝑤𝑖𝑛 is the weight connecting the hidden node and input nodes, 𝑈𝑤𝑖𝑛

represents the upper bound; 𝐿𝑤𝑖𝑛 represent the lower bound, and 𝑅𝑎𝑛𝑑 represents

random value between [-1.5,1.5] based on most of related works. b is the biases of

hidden layer nodes; 𝑈𝑏 represents the upper bound; 𝐿𝑏 represent the lower bound.

Step2: Calculate the hidden output matrix G using Eq.2.7

 G (𝑊1
𝑖𝑛, ⋯ , 𝑊𝑚

𝑖𝑛, 𝑏1, ⋯ , 𝑏𝑚, ⋯ , 𝑋𝑁)………………

=[
𝑔(𝑊1

𝑖𝑛𝑋1 + 𝑏1) ⋯ 𝑔(𝑊1
𝑖𝑛𝑋𝑁 + 𝑏1)

⋮ ⋱ ⋮

𝑔(𝑊𝑚
𝑖𝑛𝑋1 + 𝑏𝑚) ⋯ 𝑔(𝑊𝑚

𝑖𝑛𝑋𝑁 + 𝑏𝑚)

]

𝑚×𝑁

Where each position of above matrix, represent the collect of the 𝑤𝑖𝑛 input weight

and (b)basic of the hidden layer with (𝑥𝑖) samples that presented from the dataset. G is

called the hidden layer output matrix of FLN.

Step3: Calculate the combination matrix W using Eq.2.10

According to the Moore-Penronse generalized inverse, the minimum norm leas-

squares solution of linear system could be written as:

�̂� = (𝑌) [
𝑋
𝐺

]
+

57

Figure 3.4 the flowchart of the learning model of the FLN

Step4: Determine FLN’s model parameters based on Eq.2.12

{
𝑤𝑜𝑖 = �̂�(1: 𝐼, 1: 𝑛)

𝑤𝑜ℎ = �̂�(1: 𝐼, 𝑛 + 1: 𝑛 + 𝑚)

As seen from the above learning process, as the FLN is a parallel connection of

a single layer feedforward neural network and a multilayer feedforward network, the

output layer nodes not only get the recodification of the external information through

the hidden layer nodes, but also get the external information itself directly through the

input layer nodes. As the following figure 3.4, which represent the flow chart of FLN

algorithm.

In addition, many literatures have shown that a single layer feedforward neural

network in solving the linear problem with higher efficiency, a multilayer feedforward

network can very well realize the complex non-linear mapping from the inputs to the

outputs. Then, the FLN has the advantages of the two neural networks, but the ELM

Start

Randomly Generate 𝑾𝒊𝒏and 𝒃𝒊𝒏

Calculate the hidden output matrix G

Calculate the combination matrix W

Determine FLN’s model parameters

End

58

does not. So, the FLN with a same or a smaller number of hidden units can achieve

much better generalization performance and stability than ELM. In addition, in FLN,

the input weights and hidden layer biases are randomly assigned, and the other weights

could be analytically determined by least squares methods.

3.6 The Model of FLN Training Based PSO

It may be right to question the rationale for introducing another algorithm to

train FLN since there are several algorithms which have been used already as

mentioned in chapter 2. Moreover, the PSO algorithm for training FLN is proposed in

an effort to complement evaluate for the existing algorithm.

3.6.1 The Definition of the Solution Space

The solution space represents the weights between the input and hidden layers,

and the biases of the hidden layer neurons. In the classical fast learning network, such

solutions are initialized in a random manner which might cause deviations from the

optimal solutions. In the optimized FLN, two matrices are selected as the solution

space. As following the structure of FLN weights in table 3.2.

Table 3.2 configuration of FLN

WHI WOH WOI

Input Features(n)*Hidden Neurons Basis Hidden Neurons*output Input Features(n)*output

41*m M m*5 41*5

where, 𝑚 denotes the number of hidden neurons, 𝑛 denotes the number of

inputs, 𝑊 denotes the input-hidden matrix . The solution space will be as combination

of the two matrices.

Start with inputs of the model before explain the steps of proposed, pre-

processing for NSL-KDD dataset. The inputs for PSO algorithm include, PSO

particles, (𝑐1, 𝑐2) which represents acceleration factors known as cognitive and social

parameters and w is the inertia weight parameter. As for FLN should be represents

number of hidden neurons as this work the structure of FLN represent with different

number of hidden neurons (10-25-35-50) to analysis the effects of different FLN

structure in each model. FLN based PSO

59

Figure 3.5 Solution Representation (PSO-FLN)

3.6.2 FLN Based PSO

As mention in the previous chapters in FLN section, that it is consists of three

layers (input, hidden and output). These layers are contacting by using weights, and

biases. In standard FLN, both weights and biases are generated randomly, which may

effect on the performance of the classification process. Therefore, generating the best

values for them is an issue. In this section, the particle swarm optimization (PSO) is

used for finding better values, for both weights and biases. The proposed algorithm

called PSO-FLN, which consists of five stages figure 3.6 show the block diagram of

PSO-FLN. The learning for PSO-FLN could the summarized as Follows:

Step1: Input

This stages are divided into three parts, PSO parameters, FLN parameters, and

dataset. In the first, the main parameters of PSO algorithm are defined, they are

cognitive parameter (𝑐1) , social parameter (𝑐2) ,inertia weight (𝑤) and number of

swarm size (S.S). In the second part, the number of neurons in the hidden layer (m) is

defined. The third part the dataset, it represents the dataset used in this thesis, which is

NSL-KDD dataset.

Step2: Initialization

Each particle in PSO represent a solution, which consists of two parts, weights

and biases the total number of variable is equal to:

No.Vers=× 2 3.12

 Where m is represents the number of neurons in the hidden layer. When the

number (2) represents the main parameters of basic(FLN) (𝑊𝑚
𝑖𝑛, 𝑏𝑚) equal to neurons.

The solution representation is given in figure 3.5 as following:

𝑊1
𝑖𝑛, 𝑊2

𝑖𝑛, … … … , 𝑊𝑚
𝑖𝑛 𝑏1, 𝑏2, … … , 𝑏𝑚

m m

m× 2

60

Each variable (position) in particle is initialized by using as following:

Firstpart:𝑋𝑖
𝑤 = (𝑈𝑤 − 𝐿𝑤) × 𝑅𝑎𝑛𝑑 + 𝐿𝑤 3.13

Secondpart:𝑋𝑖
𝑏 = (𝑈𝑏 − 𝐿𝑏) × 𝑅𝑎𝑛𝑑 + 𝐿𝑏 3.14

Where 𝑋𝑖
𝑤 represents input weight , 𝑋𝑖

𝑏 input basis. 𝑈𝑤 , 𝑈𝑏 in the equations

represents the upper boundaries, 𝐿𝑏 , 𝐿𝑤 represents the lower boundaries. Rand

represents a uniformly distributed random number in the range of 0 and 1.

Step3: Fitness Function

In this stage all particles are evaluate by using the fitness equation:

𝑓(𝑥) = 1 − 𝐴

3.15

Where 𝑓(𝑥) represent the error rate of the classification process, thus, finding lower

error rate is the main aim of PSO-FLN. Therefore, this is a minimizing problem. And

(A) represent the correctly classification (accuracy) sample by using FLN which is

given in 3.16.

𝐴 =
𝑇ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑁
 3.16

Step4: Position Update

In this step, each particle update its position The new particle positions can be

calculated using Equation (2.14) and (2.15). After updating the position on the

following relations:

𝑣𝑖 (𝑡 +1) = 𝑤 × 𝑣𝑖 (𝑡) + 𝑟1𝑐1 (𝑃𝑖− 𝑥𝑖 (𝑡)) + 𝑟2𝑐2 (𝑃𝑔 − 𝑥𝑖 (𝑡))

𝑥𝑖𝑤 (𝑡+1) = 𝑥𝑖𝑤 (𝑡)+ 𝑣𝑖(𝑡)

After updating the positions of the particle, calculate the fitness value based on a new

position and compare the current best with the global best (step t).

Step5: Check Boundaries

61

The positions of each particle should be checked for any exceeded in the upper

or lower boundaries. Therefore, they should stay inside the search space of boundaries

𝑥𝑖 = {
𝑈𝑏 , 𝑥𝑖 > 𝑈𝑏

𝐿𝑏 , 𝑥𝑖 < 𝐿𝑏
 3.18

Where 𝑈𝑏 is represent the upper boundaries; 𝐿𝑏 is represent the lower boundaries

Step6: Termination Condition

For each iteration, the global best solution (gbest) is determined. If number of

iterations is reach to maximum number of iterations, then stop the searching process

and return gbest.

Figure 3.6 PSO-FLN block diagram

3.6.3 FLN based Multi-Swarm Optimization(MRPSO-FLN)

Despite the success of the previously proposed (PSO) algorithm to training

FLN, it’s still prone to several inadequacies such as, the most ubiquitous update rules

62

of PSO parameters introduced in, three parameters involved in PSO are adjusted based

on different ways aiming to meet different search requirements of different

evolutionary stages, the fundament thought of these modification is tuning particles

learning weights for their exemplars (Xia et al., 2018). These inadequacies can be

solved or enhanced using a new algorithm for the training FLN called multi-swarm

optimization (MRPSO). The new proposed MRPSO-FLN shown as following

Figure 3.7 Meeting Room Approach

In Figure 3.7, represents the new approach (Meeting Room) approach based

standard PSO. As mentioned in previous chapter, the original approach idea focused

on update the positions as the group’s leaders based on the new positions of the best

leader in order to control the balance between exploration and exploitation in the

standard PSO.

In this work, in each generation the leaders often meet to select an overall best

leader who will update the parameter's values of the other leaders based on his new-

found parameter's values, and the comparisons between the leaders depend on fitness

function (Accuracy). Moreover, most of the process steps of this model based on

previous (PSO-FLN) with some different, will be summaries as following.

Meeting
Room

𝑃𝑆𝑂𝐹𝐿𝑁1

𝑃𝑆𝑂𝐹𝐿𝑁2

𝑃𝑆𝑂𝐹𝐿𝑁3𝑃𝑆𝑂𝐹𝐿𝑁4

𝑃𝑆𝑂𝐹𝐿𝑁𝑁⬚⬚

63

Figure 3.8 solution representation (MRPSO-FLN)

Step 1: Initialization

This step divided into two parts, first part, which contains the initialization for

the weight, and basis represents FLN parameters same like a previous step. In

addition, this step includes initialization for PSO control parameters as following.

𝑐1 = (𝑈𝑐1 − 𝐿𝑐1) × 𝑅𝑎𝑛𝑑 + 𝐿𝑐1 3.19

𝑐2 = (𝑈𝑐2 − 𝐿𝑐2) × 𝑅𝑎𝑛𝑑 + 𝐿𝑐3 3.20

𝑤 = (𝑈𝑤 − 𝐿𝑤) × 𝑅𝑎𝑛𝑑 + 𝐿𝑤

3.21

𝑐1 and 𝑐2 represents the acceleration coefficients that governs the extent a

particle can move within a given iteration. w represents an inertia weight U in the first

equations the upper boundaries, L represents the lower boundaries. Rand represents a

uniformly distributed random number in the range of 0 and 1. The solution

representation is given in figure 3.8 as following:

𝑊1
𝑖𝑛, 𝑊2

𝑖𝑛, … … … , 𝑊𝑚
𝑖𝑛 𝑏1, 𝑏2, … … , 𝑏𝑚

Step 2: Fitness

This step is his same equation 3.15 and strategy as in PSO-FLN process.

𝐶1 W 𝐶2

m m

m× 2

Boundaries=1 to 2 Boundary=0.4 to 0.9

64

Step3: Parameters update

This section represents an update of parameters values based meeting room

approach as shown in figure 3.7. Where each member in the clan represents a particle

in the swarm and in each generation, each clan will produce leader based fitness

function comparison in each iteration and send to meeting room, the leaders after meet

to select overall best leaders who also will update parameter's value of other leaders

based on a new-found parameters value. The best among the leaders will be selected as

the overall best leader (global best) in the meeting room. The newly-selected overall

best leader shares his parameter's information with the other leaders using the

following relation:

𝐶1
𝐿𝑛 = (

𝐶1
𝐿𝑏−𝐶1

𝐿𝑛

2
) + 𝐶1

𝐿𝑛 3.22

𝐶2
𝐿𝑛 = (

𝐶2
𝐿𝑏−𝐶2

𝐿𝑛

2
) + 𝐶2

𝐿𝑛

3.23

𝑤𝐿𝑛 = (
𝑊𝐿𝑏−𝑊𝐿𝑛

2
) + 𝑊𝐿𝑛

3.24

Where 𝐶1
𝐿𝑛, 𝐶2

𝐿𝑛, 𝑤𝐿𝑛 represents the parameters of normal leader in the meeting room,

𝐶1
𝐿𝑏 , 𝐶2

𝐿𝑏 , 𝑤𝐿𝑏 is represents the best leader into the meeting room. The results from

these equations, gives the best parameters values which impact on the acceleration

velocity of PSO to reach the solution with fewer numbers of iterations. Moreover, in

following example shown meeting room approach based above equations:

Accuracy 𝑷𝟏 =0.71 𝑷𝟐 =0.81 𝑷𝟑 =0.75 𝑷𝟒 =0.77

Particles

Parameters

𝐶1=1.0201 𝐶1=1.5321 𝐶1=1.9021 𝐶1=1.6645

𝐶2=1.3118 𝐶2=1.5181 𝐶2=1.8811 𝐶2=1.7122

𝑊1=0.681 𝑊1=0.712 𝑊1=0.886 𝑊1=0.781

Based on accuracy values of each particle, can observe P2 represents the best leader

with best accuracy among other leaders, in following recalling for equations 3.22, 3.23

and 3.24, for comparison between the best leader and normal leaders.

65

𝑃1.𝑐1 = (
1.5321−1.0201

2
) +1.0201=1.2761

𝑃3.𝑐1 = (
1.5321−1.9021

2
) +1.9021=1.7171

𝑃4.𝑐1 = (
1.5321−1.6645

2
)+1.6645=1.5983

𝑃1.𝑐2 = (
1.5181−1.3118

2
) +1.3118=1.4149

𝑃3.𝑐2 = (
1.5181−1.8811

2
)+1.8811=1.6969

𝑃4.𝑐2 = (
1.5181−1.7122

2
)+1.7122=1.6151

𝑃1.𝑤1 = (
0.712 −0.681

2
)+0.681= 0.696

𝑃1.𝑤3 =(
0.712−0.886

2
)+0.886=0.799

𝑃1.𝑤4 =(
0.712−0.781

2
)+0.781=0.7465

After finished the calculation of these equations, each clan start works again

with the new values. Moreover, these calculations are repeating based on the iteration's

number. The results of equations are shown the new parameters values of normal

particles nearer to parameter's values of a best particle. The other steps are steady

which it same process in PSO-FLN model

3.7 Summary

For intrusion detection, there is no explicit approach of guiding the IDS system

to recognize the lunched attack from the nature of the network traffic because there is

huge number of features with non-clear relationship between their values and the

corresponding attack that they have resulted from. Therefore, developing a machine

learning based IDS system is useful for replacing classical IDS. However, the huge

size of the dataset and the non-direct discrimination aspect of it has created a big

motivation to develop machine learning based IDS with high performance standards.

Therefore, this chapter has followed an insight procedure to replace previous

models with more capable type of machine learning models using three concepts:

66

firstly, replacing the topological structure of the neural network with more connected

type of structure called fast learning neural network. Secondly, optimizing the

parameters of the adopted fast learning network to assure improved performance based

standard particle swarm optimization, which contribute in the IDS performance as a

whole. Thirdly, developing new. a new cooperative multi-swarm scheme (Meeting

Room Approach’ (MRA) with standard PSO proposed to optimizing fast learning

parameters based intrusion detection system. More concentration on our adopted

dataset NSL-KDD has been made. Finally, all needed evaluation measures for

validating and comparing the system with other systems were introduced with their

detailed mathematical equations. In the next chapter, the results of the developed

system are presented with thorough discussion and analysis.

67

RESULTS

4.1 Overview

This chapter presents the results of the methodology that has been presented in

the previous chapter. Section 4.2 provides the introduction, which its content the main

structure of this chapter. Next, section 4.3 provides the results of the basic FLN with a

comparison with ELM and shows optimized FLN results. The different evaluation

measures that have been presented in the previous chapter are presented with the

confusion matrices. Next, section 4.4 provides the comparative of proposed models.

Section 4.5 validates the results for the proposed models are provided. Finally, a

thorough discussion and summary for the whole chapter is provided in section 4.6.

4.2 Preparation for Results Structure

This chapter presents the evaluation results and analysis for each model

proposed in this work based on the methods that has been declared in previous chapter.

In this chapter, the evaluations of the results are represented into three parts. Firstly,

this part represents the proposed of basic FLN algorithm based on the intrusion-

detection system, which it's compared with basic ELM. The models represented with a

different number of neurons in the hidden layer to measure the effect the diffraction of

the number of the neurons on the model's accuracy.

Secondly, represented the effect of reduce the impact of the selection randomly

of the main parameters of basic FLN, which may affect to the performance of the

model. Propose the Particle swarm optimization algorithm to provide the parameters

for FLN and trained it. The new mode called PSO-FLN, which evaluate with different

numbers of iterations, different number of neurons in hidden layer, and the different

68

number of particle swarms, to measures the effects of these differentials based on the

model performance. The basic PSO parameters were used as selected in (Sivatha et al.,

2012) as mentioned in section 4.3.2.

Thirdly, the results of improved particle swarm optimization that provide by meeting

room approach to tuning the standard algorithm parameters. The new model called

Multi Swarm Optimization (MRPSO) which includes the integrate between the

meeting room approach and standard particle swarm optimization. The new model

called MRPSO-FLN, also evaluate with different numbers of iterations, different

number of neurons in hidden layer, and the different number of particle swarms, to

measures the effects of these differentiations based on the model performance.

Moreover, for the proposed models, sigmoid represents as activation function for all

proposed models. The number of neurons in hidden layer are represented into a

different number such as 10-25-35-50 to measure the effect of the number of neurons

on the accuracy of models. Moreover, for the optimization models are utilized

different number of the iterations 100,250,500, and different number of particle

swarms size to analysis and investigate the effect of these differentials on the accuracy

of models.

4.3 Results of FLN Models

4.3.1 Results of ELM Vs FLN Comparison

In order to validate the efficiency of FLN based classification NSL-KDD data

set, results of accuracy as the best and mean of all runs, detection rate (DR), false

alarm rate (FAR), recall, precision, F-measure (F.M), Maximum accuracy

(MAX.Acc), Average accuracy (AVR. Acc) and G-mean (G.M) are compared with

ELM. Moreover, in Figure 4.1 which provides different structure based on number of

neurons, it can be concluded that FLN has outperformed ELM from the perspective of

all measures. In following Table 4.1 shown the comparison results are between FLN

and ELM based standard evaluations.

69

Table 4-1 The Comparison result between ELM and FLN

No.Neurons Model MAX.Acc AVR.Acc DR FAR Precision Recall F.M G.M

 ELM 0.9255 0.8956 0.9047 0.1545 0.8956 0.8955 0.8955 0.8061

FLN 0.9641 0.9591 0.9586 0.0485 0.9588 0.9591 0.9587 0.9216

 ELM 0.9521 0.9471 0.9418 0.0695 0.9469 0.9472 0.9471 0.8977

FLN 0.9738 0.9669 0.9624 0.0441 0.9668 0.9666 0.9665 0.9367

 ELM 0.9631 0.9548 0.9501 0.0591 0.9632 0.9628 0.9629 0.9124

FLN 0.9785 0.9735 0.9696 0.0301 0.9781 0.9779 0.9783 0.9479

 ELM 0.9709 0.9652 0.9593 0.0478 0.9706 0.9701 0.9709 0.9321

FLN 0.9821 0.9803 0.9808 0.0247 0.9818 0.9822 0.9821 0.9606

The table 4.1, shown the maximum (Best) and average accuracy (Mean), are

computed for each algorithms (ELM, FLN), the experiments results taken as average

for fifteen runs. The results of FLN based on a double parallel forward neural network,

with this parallel connection of a multilayer feedforward neural network and a single

layer feedforward neural network, and the DPFNN’s output nodes not only receive the

recodification of the external information through the hidden nodes, but also receive

the external information itself directly through the input nodes.

This extra information will increase the learning rate of the model, which lead

to make the FLN represented with less number of hidden neurons in hidden layer

higher accuracy than the ELM as showed in Figure 4.1. Moreover, ELM shown higher

false alarm rate in compare with FLN because of less number of weights in ELM in

compare with FLN. In the following figures shown the comparisons between ELM and

FLN with consideration for each part of number of neurons (10, 25, 35 and 50).

Moreover, the average accuracy that FLN achieved better that ELM in all proposed

different structures in this work with maximum accuracy 0.9821 achieved by FLN

with 50 neurons in hidden layer. In both algorithms showed the impact of neurons in

hidden layer based accuracy. Moreover, the FLN with only 10 neurons in the hidden

layer got higher accuracy than ELM with 10,25 and 35 neurons in the hidden layer,

which means achieved high accuracy with less complexity.

10

255

50

35

70

Figure 4.1 comparison of ELM vs FLN accuracy based number of neurons

In Figure 4.1, showed how the accuracy increase not in the same rate for both

algorithms. The increase rate of accuracy is less in ELM algorithm because its start

with low accuracy in compare with FLN in 10 hidden neurons which means based on

the 2.6.1 section that represents the impact of double parallel forward neural network in

FLN instead of single hidden layer in ELM algorithm. And even with 50 neurons the

ELM accuracy didn't get equivalent FLN accuracy, which mean still need more hidden

neurons to reach the same level with FLN accuracy.

4.3.2 Results of PSO-FLN

This section provides results of optimization models, as mentioned in previous

chapter, the optimization's methods proposed to overcome the random selection of

parameter's limitation in the basic FLN. The optimization PSO algorithm proposed to

train basic FLN with a different number of iterations (100,250 and 500). Moreover, the

results also analysis the effect of different particle swarm sizes 10, 25, 35 and 50 same

as the different parts of the number of neurons in the hidden layer of FLN 10, 25, 35,

and 50, to investigated the influence based on performance of the models. Table 4.2

shows the performance of PSO according to the training set with different number of

neurons in the hidden layer and number of particles size and 500 maximum iterations;

where P represent swarm size, M number of neurons and N.Itr is number of iterations.

All the results in the following table represents as average for runs fifteen times.

0.9255

0.9521
0.9631

0.9709
0.9641

0.9738 0.9785 0.9821

0.88

0.9

0.92

0.94

0.96

0.98

1

10 25 35 50

A
cc

u
ra

cy

Number of Neuron

ELM.Acc FLN.Acc

71

Table 4.2 PSO-FLN Results

P M N.Itr Best Worst Mean Std. DR FAR
Precisi

on
Recall F.M G.M

10

10

 100 0.9892 0.9857 0.9871 0.0013 0.9709 0.0321 0.9716 0.9781 0.9751 0.9729

 250 0.9929 0.9879 0.988 0.0011 0.9746 0.0306 0.9736 0.9871 0.9769 0.9751

500 0.9931 0.9871 0.9903 0.0008 0.9749 0.0291 0.9748 0.9817 0.9784 0.9768

25

100 0.9928 0.9879 0.9901 0.0015 0.973 0.0314 0.9731 0.9871 0.9801 0.9787

250 0.9931 0.9894 0.991 0.0012 0.9776 0.0272 0.9784 0.9843 0.9821 0.9804

500 0.9938 0.9899 0.9913 0.0009 0.9803 0.0259 0.9804 0.9867 0.9823 0.9811

35

100 0.9929 0.9897 0.9913 0.0009 0.9762 0.0411 0.9762 0.9886 0.9824 0.9812

250 0.9952 0.9908 0.9925 0.0011 0.9807 0.0221 0.9808 0.9888 0.9847 0.9836

500 0.9944 0.9906 0.9929 0.0010 0.9829 0.0249 0.9822 0.9889 0.9852 0.9846

50

100 0.9945 0.9919 0.9932 0.0008 0.9831 0.0195 0.9831 0.9895 0.9865 0.9855

250 0.9951 0.9939 0.9933 0.0007 0.9863 0.0156 0.9863 0.9894 0.9878 0.9871

500 0.9955 0.9933 0.9936 0.0007 0.9877 0.0142 0.9876 0.9901 0.9892 0.9884

25

10

100 0.9895 0.9858 0.9876 0.0010 0.9711 0.058 0.9718 0.9799 0.9749 0.9731

250 0.9905 0.9859 0.9888 0.0011 0.9741 0.03 0.9739 0.9791 0.9769 0.9749

500 0.9924 0.9879 0.9905 0.0014 0.9795 0.0238 0.9793 0.9818 0.9807 0.9792

25

100 0.9922 0.9887 0.9907 0.0010 0.9753 0.0291 0.9748 0.9864 0.9806 0.9792

250 0.9942 0.9891 0.9915 0.0013 0.9799 0.0232 0.9797 0.9858 0.9828 0.9815

500 0.9941 0.9905 0.9927 0.0010 0.9824 0.0203 0.9823 0.9881 0.9851 0.9841

35

100 0.9933 0.9892 0.9919 0.0011 0.9801 0.0232 0.9799 0.9877 0.9837 0.9825

250 0.9944 0.9921 0.9926 0.0007 0.9825 0.0202 0.9823 0.9892 0.9858 0.9851

500 0.9961 0.9915 0.9932 0.0013 0.9836 0.0186 0.9837 0.9885 0.9861 0.9851

50

100 0.9945 0.9924 0.9936 0.0006 0.9858 0.0168 0.9823 0.9887 0.9871 0.9862

250 0.9944 0.9879 0.9939 0.0011 0.9831 0.0195 0.9827 0.9879 0.9856 0.9846

500 0.996 0.9909 0.9942 0.0012 0.9904 0.0176 0.9905 0.9907 0.9905 0.9899

35

10

100 0.9892 0.9858 0.9878 0.0010 0.9715 0.0329 0.9713 0.9781 0.9747 0.9731

250 0.9903 0.9868 0.9892 0.0010 0.9756 0.0286 0.9743 0.9804 0.9773 0.9755

500 0.9905 0.9877 0.9912 0.0007 0.9755 0.0264 0.9753 0.9814 0.9783 0.9767

25

100 0.9918 0.9881 0.9911 0.0013 0.9728 0.0316 0.9741 0.9861 0.9793 0.9778

250 0.9939 0.9899 0.9919 0.0009 0.9787 0.0246 0.9786 0.9868 0.9833 0.9814

500 0.9936 0.9926 0.9927 0.0007 0.9831 0.0197 0.9828 0.9872 0.9851 0.984

35

100 0.9937 0.9907 0.9921 0.0008 0.9794 0.024 0.9792 0.9882 0.9834 0.9824

250 0.9941 0.9911 0.993 0.0009 0.9819 0.0206 0.9822 0.9881 0.9849 0.9839

500 0.9954 0.9926 0.9948 0.0008 0.9873 0.0146 0.9872 0.9899 0.9885 0.9877

50

100 0.9948 0.9917 0.9939 0.0009 0.9844 0.0181 0.9842 0.9895 0.9868 0.986

250 0.9961 0.9931 0.9945 0.0007 0.9877 0.0141 0.9876 0.9902 0.9889 0.9881

500 0.9958 0.9935 0.995 0.0006 0.9894 0.0121 0.9893 0.9904 0.9899 0.9892

50

10

100 0.9905 0.9856 0.9884 0.0014 0.9706 0.0341 0.9705 0.9803 0.9753 0.9735

250 0.9912 0.9875 0.9896 0.0010 0.9777 0.0257 0.9776 0.9791 0.9785 0.9769

500 0.9928 0.9882 0.9915 0.0011 0.9781 0.0251 0.9776 0.9812 0.9794 0.9779

25

100 0.9922 0.9895 0.99 0.0008 0.9753 0.0287 0.9751 0.9868 0.9809 0.9795

250 0.9931 0.9901 0.9913 0.0009 0.9792 0.0240 0.9791 0.9885 0.9833 0.9817

500 0.9951 0.9919 0.9931 0.0009 0.9853 0.0169 0.9852 0.9886 0.9861 0.9852

35

100 0.9933 0.9906 0.9923 0.0008 0.9807 0.0224 0.9805 0.9876 0.9842 0.9829

250 0.9946 0.9916 0.9935 0.0008 0.9834 0.0191 0.9833 0.9883 0.9857 0.9847

500 0.9957 0.9933 0.9948 0.0007 0.9884 0.0132 0.9883 0.9897 0.989 0.9883

50
100 0.9949 0.9927 0.9941 0.0006 0.9849 0.0173 0.9848 0.9896 0.9872 0.9863

250 0.9957 0.9933 0.9949 0.0006 0.9893 0.0124 0.9891 0.9896 0.9892 0.9884

500 0.9964 0.9951 0.9959 0.0004 0.9933 0.0076 0.9932 0.9907 0.9921 0.9915

72

Furthermore, Table 4.2 include several standard evaluations such as, number of

iterations for each model, (Best) and (worst) accuracy of the fifteen runs for each

models, (Mean) represents the average of accuracy. (Std) mean the standard deviation

of the accuracy for each model. (DR) represents the detection rate and (FAR) is false

alarm rate.

Moreover, the table shown the impact of number of neurons is more heavy

than the number of particles and iteration numbers in accuracy of each models. In

addition, the table shown PSO-FLN achieved better performance in compared to basic

FLN because of the reduced the randomness of select main parameters impact in basic

FLN. The following is the figures shown the comparison of accuracy between PSO-

FLN with a difference's number of particles and basic-FLN.

Figure(4.2)A. PSO-FLN Vs FLN with m=10 and Itr=100

Figure(4.2)B. PSO-FLN Vs FLN with m=25 and Itr=100

Figure(4.2)C. PSO-FLN Vs FLN with m=35 and Itr=100

Figure(4.2)D. PSO-FLN Vs FLN with m=50 and Itr=100

0.9591

0.9871 0.9876 0.9878 0.9884

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

FLN P10 P25 P35 P50

0.9669

0.9901 0.9907 0.9911 0.9913

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

FLN P10 P25 P35 P50

0.9735

0.9913 0.9919 0.9921 0.9923

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

FLN P10 P25 P35 P50

0.9803

0.9932 0.9936 0.9939 0.9941

0.97

0.975

0.98

0.985

0.99

0.995

1

FLN P10 P25 P35 P50

73

Figure(4.2)E. PSO-FLN Vs FLN with m=10 and Itr=250

Figure(4.2)F. PSO-FLN Vs FLN with m=25 and Itr=250

Figure(4.2)K. PSO-FLN Vs FLN with m=35 and Itr=250

 Figure(4.2)O. PSO-FLN Vs FLN with m=50 and Itr=250

Figure (4..2)S. PSO-FLN Vs FLN with m=10 and Itr=500

Figure (4.2)R. PSO-FLN Vs FLN with m=25 and Itr=500

0.9591

0.988 0.9888 0.9892 0.9896

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

FLN P10 P25 P35 P50

0.9669

0.991 0.9915 0.9919 0.9923

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

FLN P10 P25 P35 P50

0.9735

0.9925 0.9926 0.993 0.9935

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

FLN P10 P25 P35 P50

0.9803

0.9933 0.9939 0.9945 0.9949

0.97

0.975

0.98

0.985

0.99

0.995

1

FLN P10 P25 P35 P50

0.9591

0.9903 0.9905 0.9912 0.9915

0.94

0.95

0.96

0.97

0.98

0.99

1

FLN P10 P25 P35 P50

0.9669

0.9913 0.9927
0.994 0.9946

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

FLN P10 P25 P35 P50

74

O. Figure (4.2) P.PSO-FLN Vs FLN with m=35 and Itr=500

O. Figure (4.2) O.PSO-FLN Vs FLN with m=50 and Itr=500

Figure 4.2 Comparison between PSO-FLNs vs FLN Based accuracy

In Figure 4.2 represents PSO-FLN with different number of neurons (m) and

different number of iterations (Itr) with different situations and (p) represents the

number of particles. Moreover, all the cases A, B, C, D, E, F, K, O, S, R, P and O

showed PSO-FLN achieved better results with all different structures in compare to

the results of basic FLN. As a result of reduce the random selection of parameters in

the basic FLN, PSO-FLN achieved better performance as shown in Table 4.2 and

Figure 4.2. The accuracy with 50 neurons and 500 iterations achieved higher accuracy

among all models of PSO-FLN

4.3.3 Result of MRPSO-FLN

This section provides the results of the new approach based PSO algorithm,

(multi swarm optimization) as mentioned in previous chapter, the basic idea of this

approach on update the position and velocity. On another hand, the parameters fixative

during the update. This work proposed the idea of “Meeting Room Approach” to

update the PSO parameters between several swarms based on the fitness.

Furthermore, MRPSO-FLN model divided into five clans with 10 members

(particles) in each clan and 100 iterations, and its parameters (𝑐1, 𝑐2,w) are updated

based on steps of PSO algorithm. Once the new generation of each clan has been set, a

new clan leader (the best leader) is elected and sent to the meeting room. The best

among the leaders will be selected as the overall best leader (global best) in the

meeting room based accuracy.

0.9735

0.9929 0.9932 0.9942 0.995

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

FLN P10 P25 P35 P50

0.9803

0.9936 0.9942 0.9948
0.9959

0.97

0.975

0.98

0.985

0.99

0.995

1

FLN P10 P25 P35 P50

75

Table 4.3 PSO-FLN Vs MRPSO-FLN Results

Alg. M Best Worst Mean Std. DR FAR Precision Recall F.M G.M
P

S
O

-F
L

N

10 0.9928 0.9882 0.9915 0.0011 0.9777 0.0257 0.9776 0.9812 0.9794 0.9779

25 0.995 0.9919 0.9931 0.0009 0.9853 0.0169 0.9852 0.9886 0.9861 0.9852

35 0.9955 0.9933 0.9948 0.0007 0.9884 0.0132 0.9883 0.9897 0.989 0.9883

50
0.996 0.9951 0.9957 0.0004 0.9933 0.0076 0.9932 0.9907 0.9921 0.9915

M
R

P
S

O
-F

L
N

10 0.9931 0.9888 0.9921 0.0010 0.9786 0.0244 0.978 0.9815 0.9797 0.9789

25 0.9951 0.9921 0.9935 0.0012 0.9862 0.0161 0.9858 0.9891 0.987 0.9855

35 0.9957 0.9934 0.995 0.0009 0.9888 0.0128 0.989 0.9899 0.9896 0.9888

50 0.9955 0.9948 0.9953 0.0007 0.9927 0.0080 0.9928 0.9899 0.9910 0.9906

In Table 4.3 the proposed model MRPSO-FLN compared with the best

situation of 4.2 table, which contain PSO-FLN results, the results with 50 particles and

500 iterations in previous table achieved the better results in compared with other

proposed models. On another hand, MRPSO-FLN is represented with the 50 particles

divided into five clans (10 particles for clan) each of these clan’s hybrid with a

different number of neurons (10, 25, 35, and 50) in the hidden layer of the FLN with

100 iterations. The results for both models almost in the same accuracy range but with

different structure such as the number of particles and iterations. Moreover, for 10, 25

and 35 neurons the PSO-FLN need for 500 iterations and 50 particles to achieve

0.9928, 0.995 and 0.9955 accuracy on other hand 0.9931, 0.9951 and 0.9957 accuracy

for MRPSO with only 100 iterations and 10 particles, but with 50 neurons, PSO-FLN

achieved 0.996 accuracy which slightly higher than 0.9955 for MRPSO-FLN.

Moreover, in following a table 4.4 shown PSO parameter values which provides best

accuracy based on different number of neurons.

Table 4.4 Parametervalues based on MRPSO-FLN

 M Best 𝒄𝟏 𝒄𝟐 W

M
R

P
S

O
-F

L
N

10 0.9931 1.4199 1.4195 0.7499

25 0.995 1.4213 1.4209 0.7508

35 0.9955 1.431 1.398 0.7498

50 0.9955 1.4253 1.419 0.7422

76

Figure 4.3 Comparison of average accuracy between PSO-FLN Vs MRPSO-FLN

Figure 4.4 Comparison of average FAR between PSO-FLN Vs MRPSO-FLN

0.9915

0.9931

0.9948

0.9957

0.9921

0.9935

0.995

0.9953

0.991

0.9915

0.992

0.9925

0.993

0.9935

0.994

0.9945

0.995

0.9955

0.996

0 10 20 30 40 50 60

A
v
er

ag
e

o
f

A
cc

u
ra

cy

Number of Neurons

PSO-FLN MSO-FLN

0.0257

0.0169

0.0132

0.0076

0.0244

0.0161

0.0128

0.008

0

0.005

0.01

0.015

0.02

0.025

0.03

0 10 20 30 40 50 60

F
A

R

Neuron

PSO-FLN MSO-FLN

77

Figure 4.5 Comparison of average DR between PSO-FLN Vs MRPSO-FLN

Figure 4.3 showed the accuracy for both PSO-FLN and MR PSO-FLN, only

with 50 neutrons MR PSO-FLN achieved worse than PSO-FLN which because the

impact of structure differentiations. The results between the PSO-FLN and MRPSO-

FLN are convergent, but as mentioned before the PSO-FLN adjusts with 500 iterations

and 50 swarm particles, on another hand MRPSO-FLN only with 100 iterations and 10

swarm particles. Which mean less in the complexity and time than PSO-FLN without

high losing at the performance rate.

4.4 The Comparative of Proposed Models

To illustrate the effectiveness of our proposed IDS models, this section represents a

compare proposed models performance with 15 recently developed anomaly detection

techniques. Table 4.5 demonstrates the result achieved by proposed models compared

with other models tested on NSL-KDD dataset in term of detection rate and false

alarm rate. It is very clear that our proposed models (PSO-FLN, MRPSO-FLN) gets

the best results with 0.9933 detection rate, 0.0076 false alarm rate for PSO-FLN model

as mentioned in table 4.2, and 0.9927 detection rate, 0.0080 false alarm rate for

MRPSO-FLN model, in following Table 4.5

0.9777

0.9853

0.9884

0.9933

0.9786

0.9862

0.9888
0.9927

0.976

0.978

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0 10 20 30 40 50 60

D
R

Neurons

PSO-FLN MSO-FLN

78

Table 4-4 comparative of proposed models

∗ 𝑟𝑜: MINIMUM PULSE RATE

∗ 𝐴0: MAXIMUM LOUDNESS

*D: RBF KERNEL PARAMETERS
*S. S: SWARM SIZES

*AR: ANNEALING RATE

*𝑥1, 𝑥2 : ARBITRARY VARIABLES

*M: NEURONS IN HIDDEN LAYER

*C, Γ: SVM PARAMETER

*𝛼:POLYNOMIAL PARAMETER
*L: LOWER BOUNDARIES

*L1, L2: REGULARIZATION

* 𝛽: CONTROL PARAMETER

*K: K-NEAREST SET

*A. S: AUTO ENCODER SIZE

*N. N: NUMBER OF NODES
*U: UPPER BOUNDARIES

*B: CONFUSED PARAMETER

*SN: FOOD SOURCES

Table 4.5 structure contains five columns, start with first column that represents

references. The second column represents the main methods that proposed as IDS.

Moreover, third column represents the parameters setting (P.S) of the main methods.

The fourth column in table represents detection rate (DR), and final column represents

false alarm rate (FAR). All the proposed models in the above table share NSL-KDD

data set with multi classification based on anomaly IDS. The results shown that there

is a significant impact of FLN structure models based on IDS performance.

Ref Algorithms Used P.S DR FAR

(Hajimirza&

Navimipour,

2018)

Proposed a combination of a MLP and Artificial bee

Colony (ABC) and k-means clustering

0.9841

0.012

(Gauthama

Raman et al.,

2017)

Proposed HG-GASVM based IDS which using hypergraph

- genetic algorithm for parameter setting in support SVM

C 2−5 − 25 ,γ= 2−4 −
24,Crossover rate=80%

Mutation rate=2%
Iterations =500

0.9714

0.83

(Hosseini

Bamakan et

al., 2016)

Proposed time varying chaos particle swarm

optimization(TVCPSO) to parameters setting SVM

C 2−5 − 25 ,γ= 2−4 −
24,𝛼=−10−5−10−1
Iterations=200,S.S =8

0.970 0.87

(Singh et al.,

2015)
Proposed IDS based on traffic profiling and online

sequential extreme learning machine (OS-ELM)

M=50--1000

Threshold=0.5-2.0

0.9767

0.017
(Eduardo et

al., 2013)
Proposed IDS based on hybrid SVM classifier and Non-

linear projection technique
𝛼=5
d=3

0.9341

0.14
(Ahmad &

Senga, 2017)
Proposed IDS based on SVM and BAT algorithm ----- 0.9431 0.5

(Enache &

Sgarciu,

2014)

Proposed IDS based on hybrid PSO and SVM γ=0.1𝛼= 0.9,C1=2.3

C2=1.8,W=0.9to0.5, 𝐴0 =1

0,𝑟𝑜=0.9,FR=0.8 to 1.0

0.9341 0.049

Proposed IDS based on hybrid Bat and SVM 0.956 0.04

(AL-

Hawawreh

et al., 2018)

Proposed IDS by using a deep auto- encoder and deep

ANN

Epochs=100,L1=L2=1𝑒−6

,M=10-3-10

AR=2𝑒−6,Ramp=1𝑒7

0.99

0.01

(Ambusaidi

et al., 2016)

Proposed IDS based on hybrid Least Square Support Vector
Machine based IDS (LSSVM-IDS)

𝛽 =1-0, Step size =0.1
K=6

0.9596

0.38

(Dinh &

Ngoc, 2017)
Proposed IDS based on hybrid a stacked auto encoder and

random forest named (SAE-RF)

M=100

B=0-2
0.8542 0.036

(Ludwig,

2017)

Proposed IDS based on neural network ensemble

A. S=10—20

N. N=15-20

Layers=2
M=20-25

0.925

0.147

(Hajisalem

& Babaie,

2018)

Proposed IDS used a hybrid classification based on

Artificial Bee Colony (ABC) and Artificial Fish Swarm
(AFS)

SN=30, Food Number=15

Limit=5000, Runtime=10
U=500, L=-500,D=1500

0.990 0.01

(Ambusaidi

et al., 2016)
Proposed IDS based on a Filter-Support Vector Machine

(FSVM)
𝛽 =0.3,1, Iterations=10

K=6
0.9229 0.02

(Ji et al.,

2016) Proposed IDS based on a Multi-Level DWT
K=3, Normalization=0 -1

γ =0.99

0.9123

0.023
(Moustafa et

al., 2017) Proposed IDS based on a Geometric Analysis (GAA)
(𝜋, 𝜐, 𝜔) = (0.55,30,10)
(𝜋, 𝜐, 𝜔)= (0.45, 10,30)

0.981

0.002

Proposed

Models

Proposed IDS based on Basic-FLN M=50 0.9808 0.024

Proposed IDS based on PSO-FLN
M=50, Iteration =500

S.S=50

0.9933

0.007

Proposed IDs based on MRPSO-FLN
M=50, Iteration=100

S.S=10

0.9927

0.0080

79

Furthermore, the improvement of selected FLN main parameters based PSO

algorithms are also shown in the table. Moreover, this section represents the statistical

analysis for the proposed models based on accuracy comparison. The statistical test

typically used for preferable comparison, for this proposed by using the results

obtained for 15 runs for each models (Francisco J. Samaniego, 2014). In this work a

Wilcoxon signed rank test is performed with a statistical significance value ∝=0.05.

The null hypothesis 𝐻0 for this test “ There is no different between the median of the

solutions produced by algorithm A and the median of solutions produced by

algorithm B for the same benchmark problem”. To determine whether algorithm A

reached a statistically better solution than (B), or if not, whether the alternative

hypothesis is valid, the size of the ranks provided by the Wilcoxon signed rank test

(T+, T-) are examined. Table 4.6 showed the statistical pairwise results. Firstly, the

basic FLN compared to ELM algorithm. Secondly, PSO-FLN compared to FLN.

Table 4.5 The Wilcoxon Signed Rank Test

MODELS + - Z.V P.V RESULT

ELM Vs FLN (m=10) 15 0 -3.397 0.000979 𝐻𝑜 Reject

ELM Vs FLN (m=25) 15 0 -3.296 0.000982 𝐻𝑜 Reject

ELM Vs FLN (m=35) 15 0 -3.408 0.000655 𝐻𝑜 Reject

ELM Vs FLN (m=50) 15 0 -3.397 0.000973 𝐻𝑜 Reject

FLN (m=10) Vs PSO-FLN(m=10, Number of particles=10)

Number of Iterations=100 15 0 -3.297 0.000652 𝐻𝑜 Reject

Number of Iterations=250 15 0 -3.409 0.000655 𝐻𝑜 Reject

Number of Iterations=500 15 0 -3.410 0.000650 𝐻𝑜 Reject

FLN (m=10) Vs PSO-FLN(m=10, Number of particles=25)

Number of Iterations=100 15 0 -3.408 0.000653 𝐻𝑜 Reject

Number of Iterations=250 15 0 -3.405 0.000655 𝐻𝑜 Reject

Number of Iterations=500 15 0 -3.297 0.000979 𝐻𝑜 Reject

FLN (m=10) Vs PSO-FLN(m=10, Number of particles=35)

Number of Iterations=100 15 0 -3.297 0.000979 𝐻𝑜 Reject

Number of Iterations=250 15 0 -3.408 0.000653 𝐻𝑜 Reject

Number of Iterations=500 15 0 -3.413 0.000642 𝐻𝑜 Reject

FLN (m=10) Vs PSO-FLN(m=10, Number of particles=50)

Number of Iterations=100 15 0 -3.409 0.000652 𝐻𝑜 Reject

Number of Iterations=250 15 0 -3.517 0.000437 𝐻𝑜 Reject

Number of Iterations=500 15 0 -3.517 0.000436 𝐻𝑜 Reject

FLN (m=25) Vs PSO-FLN(m=25, Number of particles=10)

Number of Iterations=100 15 0 -3.409 0.000652 𝐻𝑜 Reject

Number of Iterations=250 15 0 -3.408 0.000655 𝐻𝑜 Reject

Number of Iterations=500 15 0 -3.409 0.000653 𝐻𝑜 Reject

FLN (m=25) Vs PSO-FLN(m=25, Number of particles=25)

Number of Iterations=100 15 0 -3.408 0.000652 𝐻𝑜 Reject

Number of Iterations=250 15 0 -3.409 0.000653 𝐻𝑜 Reject

Number of Iterations=500 15 0 -3.408 0.000655 𝐻𝑜 Reject

FLN (m=25) Vs PSO-FLN(m=25, Number of particles=35)

Number of Iterations=100 15 0 -3.408 0.000653 𝐻𝑜 Reject

Number of Iterations=250 15 0 -3.409 0.000653 𝐻𝑜 Reject

Number of Iterations=500 15 0 -3.408 0.000651 𝐻𝑜 Reject

FLN (m=25) Vs PSO-FLN(m=25, Number of particles=50)

Number of Iterations=100 15 0 -3.409 0.000655 𝐻𝑜 Reject

Number of Iterations=250 15 0 -3.411 0.000648 𝐻𝑜 Reject

Number of Iterations=500 15 0 -3.409 0.000652 𝐻𝑜 Reject

80

 In this table, + indicates the positive ranks, while – indicated the negative ranks.

In the z-distribution column, and when the p-value of less than 0.05, which means

there is a significant difference between the two algorithms in that test. The table can

be summarized as follows. In FLN vs ELM part, the test indicates that there are more

significant negative ranks(N=15) without significant positive ranks based on all

proposed different algorithm's structure (number of neurons). This means that the

median of FLN is more than a median of ELM. In other words, 𝐻0 is rejected and the

FLN has better performance and has outperformed ELM. Moreover, in PSO-FLN, the

test indicates that the all results are significant negative also without significant

positive ranks. This means 𝐻0 is rejected and the PSO-FLN has better performance

and has outperformed FLN.

4.5 Validate of The Proposed Methods

This section provides a more detail to validate the proposed models, in general

this part divided into two parts. The first part, provides a validate proposes to PSO-

Table 4.5 continue
FLN (m=35) Vs PSO-FLN(m=35, Number of particles=10)

Number of Iterations=100 15 0 -3.408 0.000655 𝐻𝑜 Reject

Number of Iterations=250 15 0 -3.408 0.000653 𝐻𝑜 Reject

Number of Iterations=500 15 0 -3.409 0.000651 𝐻𝑜 Reject

FLN (m=35) Vs PSO-FLN(m=35, Number of particles=25)

Number of Iterations=100 15 0 -3.411 0.000653 𝐻𝑜 Reject

Number of Iterations=250 15 0 -3.408 0.000655 𝐻𝑜 Reject

Number of Iterations=500 15 0 -3.409 0.000653 𝐻𝑜 Reject

FLN (m=35) Vs PSO-FLN(m=35, Number of particles=35)

Number of Iterations=100 15 0 -3.408 0.000651 𝐻𝑜 Reject

Number of Iterations=250 15 0 -3.409 0.000655 𝐻𝑜 Reject

Number of Iterations=500 15 0 -3.410 0.000650 𝐻𝑜 Reject

FLN (m=35) Vs PSO-FLN(m=35, Number of particles=50)

Number of Iterations=100 15 0 -3.408 0.000655 𝐻𝑜 Reject

Number of Iterations=250 15 0 -3.409 0.000653 𝐻𝑜 Reject

Number of Iterations=500 15 0 -3.408 0.000655 𝐻𝑜 Reject

FLN (m=50) Vs PSO-FLN(m=50, Number of particles=10)

Number of Iterations=100 15 0 -3.409 0.000653 𝐻𝑜 Reject

Number of Iterations=250 15 0 -3.408 0.000655 𝐻𝑜 Reject

Number of Iterations=500 15 0 -3.409 0.000652 𝐻𝑜 Reject

FLN (m=50) Vs PSO-FLN(m=50, Number of particles=25)

Number of Iterations=100 15 0 -3.408 0.000652 𝐻𝑜 Reject

Number of Iterations=250 15 0 -3.409 0.000653 𝐻𝑜 Reject

Number of Iterations=500 15 0 -3.408 0.000655 𝐻𝑜 Reject

FLN (m=50) Vs PSO-FLN(m=50, Number of particles=35)

Number of Iterations=100 15 0 -3.409 0.000655 𝐻𝑜 Reject

Number of Iterations=250 15 0 -3.408 0.000653 𝐻𝑜 Reject

Number of Iterations=500 15 0 -3.412 0.000645 𝐻𝑜 Reject

FLN (m=50) Vs PSO-FLN(m=50, Number of particles=50)

Number of Iterations=100 15 0 -3.411 0.000647 𝐻𝑜 Reject

Number of Iterations=250 15 0 -3.409 0.000652 𝐻𝑜 Reject

Number of Iterations=500 15 0 -3.408 0.000651 𝐻𝑜 Reject

81

FLN. The second part, propose a validate of basic FLN. In general, these validation

works based on the information form the MRPSO-FLN model.

4.5.1 Validate of PSO-FLN

In previous section, the experiments of PSO-FLN adjusted the parameters

based on (Xia et al., 2018) work, which explained a newest and poplar of multi swarm

based on PSO based on purposeful detecting. on another hand, in the end of MRPSO-

FLN experiments, the model provides the best 𝑐1, 𝑐2 and w based on room meeting

approach. The propose of this section is to provides the parameters value that got from

MRPSO-FLN as the best accuracy provided with parameters value

𝑐1=1.431, 𝑐2=1.395,w=0.749 for 35 neurons, and applied in the PSO-FLN Instead of

the standard value of parameters that had been used in previous PSO-FLN model.

Table 4.6 PSO-FLN* Vs PSO-FLN(p=10) Results

Alg. M Best Worst Mean Std. DR FAR Precision Recall F.M G.M

 P

S
O

-F
L

N
 10 0.9892 0.9857 0.9871 0.0013 0.9709 0.3214 0.9716 0.9781 0.9751 0.9729

25 0.9928 0.9879 0.9901 0.0015 0.973 0.0314 0.9731 0.9871 0.9801 0.9787

35 0.9929 0.9897 0.9913 0.0009 0.9762 0.0411 0.9762 0.9886 0.9824 0.9812

50 0.9945 0.9919 0.9932 0.0008 0.9831 0.0195 0.9831 0.9895 0.9865 0.9855

P

S
O

-F
L

N
*

10 0.9931 0.9888 0.992 0.001 0.9786 0.0247 0.978 0.9815 0.9797 0.9789

25 0.995 0.9922 0.9935 0.0012 0.9862 0.017 0.9858 0.9891 0.987 0.9855

35 0.9955 0.9934 0.995 0.0009 0.9888 0.0131 0.989 0.9899 0.9896 0.9888

50 0.9958 0.9948 0.9953 0.0007 0.9927 0.0084 0.9928 0.9899 0.991 0.9906

The table 4.7 showed the number of iterations for both of models 100 and 10 swarm

particles, which mean same structures. The performance of PSO-FLN* which

represents the PSO-FLN with parameters value that provided by MRPSO-FLN,

achieved better performance than the PSO-FLN with the standard parameter's values.

82

Figure 4.6 Comparison of Accuracy between PSO-FLN (P=10) Vs PSO-FLN*

Figure 4.7 Comparison of average DR between PSO-FLN) P=10) Vs PSO-FLN*

0.9871

0.9901

0.9913

0.9932

0.9931

0.9935

0.995
0.9953

0.986

0.987

0.988

0.989

0.99

0.991

0.992

0.993

0.994

0.995

0.996

0 10 20 30 40 50 60

A
cc

u
ra

cy

Number of Neurons

PSO-FLN PSO-FLN*

0.9709

0.973

0.9762

0.9831

0.9786

0.9862

0.9888

0.9927

0.965

0.97

0.975

0.98

0.985

0.99

0.995

0 10 20 30 40 50 60

PSO-FLN PSO-FLN*

83

Figure 4.8 Comparison of average FAR between PSO-FLN) P=10) Vs PSO-FLN*

All the above figures in general showed that PSO-FLN* is based the new

values of 𝑐1, 𝑐2 and w achieved better performance in compare with FLN-PSO based

the standard parameters values. Figure 4.6 represents the comparison between PSO-

FLN and PSO-FLN* based on average accuracy. the PSO-FLN* with only 10 neurons

the average of PSO-FLN* accuracy was better than the average accuracy of standard

PSO-FLN even with 25 and 35 neurons in the hidden layer. As a conclusion, the PSO-

FLN* with parameters value that provided from MRPSO-FLN methods with fewer

numbers of neurons in the hidden layer achieved better accuracy and detection rate as

in Figure 4.7 with less complexity. Moreover, Figure 4.8 represents the comparison

between PSO-FLN and PSO-FLN* is based on false alarm rate. In general, the

performance PSO-FLN* is better and achieved less rate in all structure of hidden

layer. Moreover, the decrease of FAR was regularly with the increase of the number of

neurons in PSO-FLN*, when the decrease of FAR was not regularly in PSO-FLN as

shown in figure during 35 neurons in hidden layer. Moreover, this section analysis the

PSO-FLN* comparison results with best results based on Table 4.2, PSO-FLN model

with 50 particles better than other in general. As following, Table 4.8 shows the

comparison between the standard PSO-FLN and PSO-FLN* with different structures

as 50 particles and 500 iterations for PSO-LN and10 particles and 100 iterations for

PSO-FLN*.

0.0321 0.0314

0.0411

0.0195

0.0247

0.017

0.0131

0.0084

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 10 20 30 40 50 60

PSO-FLN PSO-FLN*

84

Table 4.7 PSO-FLN* Vs PSO-FLN(p=50) Results

Alg. M Best Worst Mean Std. DR FAR Precision Recall F.M G.M
 P

S
O

-F
L

N
 10 0.9928 0.9882 0.9915 0.0011 0.9777 0.0257 0.9776 0.9812 0.9794 0.9779

25 0.9951 0.9919 0.9931 0.0009 0.9853 0.0169 0.9852 0.9886 0.9861 0.9852

35 0.9957 0.9933 0.9948 0.0007 0.9884 0.0132 0.9883 0.9897 0.989 0.9883

50 0.9959 0.9951 0.9959 0.0004 0.9933 0.0076 0.9932 0.9907 0.9921 0.9915

P
S

O
-F

L
N

*
 10 0.9931 0.9888 0.9921 0.001 0.9786 0.0247 0.978 0.9815 0.9797 0.9789

25 0.995 0.9921 0.9935 0.0012 0.9862 0.017 0.9858 0.9891 0.987 0.9855

35 0.9955 0.9934 0.995 0.0009 0.9888 0.0131 0.989 0.9899 0.9896 0.9888

50 0.9958 0.9948 0.9953 0.0007 0.9927 0.0084 0.9928 0.9899 0.991 0.9906

In table 4.8, the main differences between the models that have been compared

are the numbers of particles and iterations. Moreover, the results of the models were

slightly different as explains in following figures.

Figure 4.9 Comparison of Accuracy between PSO-FLN (P=50) Vs PSO-FLN*

0.9915

0.9931

0.9948

0.9959

0.9921

0.9935

0.995
0.9953

0.991

0.9915

0.992

0.9925

0.993

0.9935

0.994

0.9945

0.995

0.9955

0.996

0.9965

0 10 20 30 40 50 60

PSO-FLN PSO-FLN*

85

Figure 4.10 Comparison of average DR between PSO-FLN) P=50) Vs PSO-FLN*

Figure 4.11 Comparison of average FAR between PSO-FLN) P=50) Vs PSO-FLN*

 Furthermore, Figures 4.9 and 4.10 represented the comparison based on the

differences of average accuracy and detection rate. The proposed of PSO-FLN* model

achieved slightly higher accuracy than the PSO-FLN during (10, 25, 35) neurons in the

hidden layer, and the standard PSO-FLN achieved higher accuracy with 50 neurons in

the hidden layer. Faintly, false alarm rate's comparison showed in the Figure 4.11.

0.9777

0.9853

0.9884

0.9933

0.9786

0.9862

0.9888

0.9927

0.976

0.978

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0 10 20 30 40 50 60

PSO-FLN PSO-FLN*

0.0247

0.017

0.0131

0.0084

0.0257

0.0169

0.0132

0.0076

0

0.005

0.01

0.015

0.02

0.025

0.03

0 10 20 30 40 50 60

PSO-FLN* PSO-FLN

86

4.5.2 Validate of FLN

This section provides a valid set to basic FLN, as mentioned in previous

sections that FLN selected main parameters randomly. Moreover, this section

proposed to provide FLN parameters based takes from PSO-FLN* instead of create

randomly. In the end of PSO-FLN* processed which its work based on best PSO

parameters as mentioned in above section, can get the best values of FLN parameters.

These parameters represent in FLN as 𝑤𝑖 and 𝑏𝑖.Moreover, with specification's PC for

experiments implementations include. Operating system is 64 bit windows 10 Pro,

with processor core i7 and 16.0 GB memory. In another hand, the official NSL-KDD

provided by websites has a total number of 24 attack types, and based, attack

categories can be classified into 5 categories in order to compression with new model

free parameters FLN. Table 4.9 as following presents the parameters setting for all the

benchmark algorithm used in this study.

Table 4.8 Parameters setting

Algorithm Parameter Value

Decision Tree((Hoeffiding) Grace Period 200

Batch Size 100

Hoeffding theeshold 0.05

Naïve Bayes Batch Size 100

Num Decimal Places 2

MLP(back propagation) Batch Size 100

Learning Rate 0.3

Training Time 500

Num Decimal Places 2

momentum 0.2

Num of Neurons 10

SVM Batch Size 100

C 0.1

Num Folds -1

Tolerance Parameter 0.001

ELM Num of Neurons 10

Basic FLN Num of Neurons 10

Table 4.9 represents the parameter's values setting of the benchmark

algorithms. In addition to the new FLN free parameters model, this section provides.

It's also provides a compare of the new model with several standard models include

(basic FLN, ELM, SVM, Naïve Bayes, Multilayer Perceptron (MLP) and Hoeffding

tree (Decision tree)) based on NSL-KDD. Weka version 3.8.2 is used in this work to

87

Implementation of benchmark models based on NSL-KDD dataset. Moreover, the

setting of free parameters Improved FLN (IFLN), which proposed in this section also

adjust with 10 neurons in the hidden layer. As following Table 4.10 shown

comparison results.

Table 4.9 comparison results of Improved FLN

Model Accuracy DR FAR Precision Recall F.M Time(s)

Hoeffiding 0.9636 0.964 0.052 0.970 0.964 0.966 7.64

NaïveBayes 0.8357 0.836 0.044 0.914 0.836 0.971 1.48

MLP 0.9811 0.9812 0.021 0.9822 0.9834 0.9821 4227

SVM 0.9831 0.9822 0.017 0.9833 0.983 0.9831 245.9

ELM 0.9255 0.9047 0.1545 0.8956 0.8955 0.9855 0.448

Basic FLN 0.9641 0.9586 0.0485 0.9588 0.9591 0.9587 0.485

IFLN 0.9908 0.9825 0.014 0.9707 0.9822 0.9755 0.422

In Table 4.7, the results shown the IFLN model has better accuracy in compare

with other models. Furthermore, the false alarm rate for IFLN is less than most of the

models in the table. In following figures 4.12, 4.13 and 4.14 are shown

Figure 4.12 Accuracy comparison of IFLN

0.9636

0.8357

0.9811 0.9831

0.9255

0.9641

0.9908

ACCURACY

Hoeffiding NaïveBayes MLP SVM ELM Basic FLN IFLN

88

Figure 4.13 False Alarms comparison of IFLN

Figure 4.14 Detection Rate comparison of IFLN

4.6 DISCUSSION

Most studies on network intrusion detection only supply the overall detection

accuracy rate, and few supply the false alarm rate, detection rate. Moreover, this

chapter in general contains 4 sections based on the proposed of previous chapter.

0.052
0.044

0.021 0.017

0.1545

0.0485

0.014

FAR

Hoeffiding NaïveBayes MLP SVM ELM Basic FLN IFLN

0.964

0.836

0.9812 0.9822

0.9047

0.9586

0.9825

DR

Hoeffiding NaïveBayes MLP SVM ELM Basic FLN IFLN

89

Furthermore, all models proposed in this work evaluated based NSL-KDD dataset,

which contains 148517 records with 42 attributes.

Firstly, proposed FLN based on network intrusion detection and model results

compared with ELM as evaluated as shown in table 4.1. Additionally, the table shows

the different neurons number in the hidden layer for both algorithms to investigate the

influence of the neuron's increase on the performance, which represents a different

algorithm structure. The FLN results showed more stability and better accuracy than

ELM algorithm.

As a result of the differences in algorithm's structure, the FLN structure

contains is a double parallel forward neural network which makes output nodes not

only receive information from the hidden nodes, but also get the external information

directly from the input nodes. On other hands, the ELM structure contains single

Hidden Layer Feedforward Neural Network, which make the output nodes receive the

information from hidden nodes.

Figure 4.15 structure differences

Furthermore, Table 4.1 showed that ELM needs 50 neurons to reach accuracy

0.9709, when the FLN algorithm with 25 neurons achieved higher accuracy because of

the knowledge rate is higher in FLN as mentioned in structure differences. And

therefore, FLN also achieved better detection rate and less false alarm rate with less

complexity of hidden neurons. Secondly, with all the improved of FLN that

mentioned above, select randomly of the main FLN parameters considered as one of

the algorithm limitations, which may not provide optimal parameters value and that

represent a negative impact on the model accuracy. In general, random selection of

90

machine learning issues solved based proposed several optimization algorithms as

mentioned in chapter 2. This work proposed PSO algorithm to be hybrid with basic

FLN as training for FLN and reduces the impact of parameters random selected.

In table 4.2 represented results of a new model PSO-FLN, this section had been

investigated the model accuracy based three parameters (number of particles (10-2-35-

50), number of iterations (100-250-500), and number of neurons (10-25-35-50)).

Accordingly, the influences of these changes based model accuracies were different.

On another hand, the increase of a neuron's number was the most impact, results of

compare the basic FLN and PSO-FLN models based same number of neurons shown

in figures 4.6. Moreover, changes influence on detection rate and false alarm rate also,

Where PSO-FLN with 50 neutrons and particles achieved better performance based

these measurement's detection rate (DR), false alarm rate (FAR) with all iteration's

numbers. In the following, figures are shown comparison results of basic FLN and

PSO-FLN based DR and FAR measurements evaluated.

Figure 4.16 comparison result between FLN and PSO-FLN with 100 iterations

0
.9

5
8

6

0
.9

6
2

4

0
.9

6
9

6

0
.9

8
0

8

0
.9

7
0

6

0
.9

7
5

3

0
.9

8
0

7

0
.9

8
4

9

0
.0

4
8

5

0
.0

4
4

1

0
.0

3
0

1

0
.0

2
4

7

0
.0

3
4

1

0
.0

2
8

7

0
.0

2
2

4

0
.0

1
7

3

1 0 2 5 3 5 5 0

FLN(DR) PSO-FLN(DR) FLN(FAR) PSO-FLN(FAR)

91

Figure 4.17comparison result between FLN and PSO-FLN with 250 iterations

Figure 4.18 comparison result between FLN and PSO-FLN with 500 iterations

The figures above showed that the PSO-FLN performance improved the basic

FLN performance by provided best parameter's values as shown in PSO-FLN block

diagram figure 3.6. In the end, PSO-FLN improved showed how it is worth reducing

the impact of select parameters randomly.

Thirdly, there are many works proposed to improved standard PSO algorithm

as showed in previous chapters. The meeting room approach proposed in this work for

parameters tuning by share parameter's information between several PSO-FLN

models)clans). As showed in table 4.2, which it showed PSO-FLN best results with

50 particles and neurons with 500 iterations. However, proposed MRPSO-FLN with 5

clans each one represented PSO-FLN with 10 neurons and particles and 100 iterations.

0
.9

5
8

6

0
.9

6
2

4

0
.9

6
9

6

0
.9

8
0

8

0
.9

7
7

7

0
.9

7
9

2

0
.9

8
3

4

0
.9

8
9

3

0
.0

4
8

5

0
.0

4
4

1

0
.0

3
0

1

0
.0

2
4

7

0
.0

2
5

7

0
.0

2
4

0
.0

1
9

1

0
.0

1
2

4

1 0 2 5 3 5 5 0

FLN(DR) PSO-FLN(DR) FLN(FAR) PSO-FLN(FAR)

0
.9

5
8

6

0
.9

6
2

4

0
.9

6
9

6

0
.9

8
0

8

0
.9

7
8

1

0
.9

8
5

3

0
.9

8
8

4

0
.9

9
3

0
.0

4
8

5

0
.0

4
4

1

0
.0

3
0

1

0
.0

2
4

7

0
.0

2
5

1

0
.0

1
6

9

0
.0

1
3

2

0
.0

0
7

6

1 0 2 5 3 5 5 0

FLN(DR) PSO-FLN(DR) FLN(FAR) PSO-FLN(FAR)

92

Where in table 4.3 showed the comparison results between the best set of PSO-FLN

(50 neurons and particles with 500 iterations) and MRPSO-FLN (10 neurons and

particles with 100 iterations) and figures 4.7,4.8 and 4.9 shown how the new proposed

MRSPO-FLN with less complexity achieved better performance.

Finally, the validation part is represented in the end of this chapter, which its

divided into two parts, Compensation of PSO-FLN parameter's value (c1, c2, w) that

provided from MRPSO-FLN instead of default values. The new model (PSO-FLN*)

compared with PSO-FLN based (10 particles, 100 iterations) and (50 particles, 500

iterations) with adjust parameter values as default values as showed in table 4.4 and

4.5.

First table shows the results of comparison between PSO-FLN and PSO-FLN*

with the same adjustment's situation. As a result of best parameter values provided for

PSO-FLN* the performance such as accuracy 4.10, detection rate 4.11 and false alarm

rate 4.12 improved in compared with PSO-FLN based default parameter's values. The

new model PSO-FLN* achieved with only 10 neurons accuracy 0.9931 when PSO-

FLN 0.9932 with 50 neurons, which mean the new proposed achieve comparable

accuracy with less complexity. In addition, the second able shown the result

comparison of PSO-FLN* with fewer numbers of particles and iterations achieved

slightly better average accuracy as figure 4.13, and detection rate as shown in figure

4.14 and less false alarm rate as shown in figure 4.15.

Last part of validate, provide FLN parameters value taken from PSO-FLN*

model instead of created randomly. The evaluated of a new model improved FLN

(FLN) by compared with several standard models as shown in table 4.6. Subsequently,

table 4.7 showed the results of comparison. IFLN model only with 10 neurons, showed

improved as accuracy in figure 4.16, false alarm in figure 4.17 and detection rate in

figure 4.18.

93

CONCLUSION AND FUTURE WORK

5.1 Overview

This chapter summarizes the thesis study and the achieved contributions. In

addition, the chapter also defines the challenges and the future directions of research in

order to enable fully machine learning based IDS. Section 5.2 highlights the objectives

revisited. Section 5.3 presents brief summary of the research. Section 5.4 shows the

recommendation for future research and limitation. Finally, section 5.5 gives the

conclusion.

5.2 Objectives Revisited

This research was aimed at enhancing the accuracy of network intrusion

detection system by using more recent artificial neural version called Fast Learning

Network with improved particle swarm optimization based on a new multi-swarm

scheme called Multi-Swarm Optimization (MRPSO). The objectives of this research

are as follows:

i- To propose a self-parameters tuning technique for the Particle Swarm

Optimization (PSO) algorithm using a multi-swarm approach

(MRPSO).

To address the first objective, a new multi-swarm scheme inspired by the

human social behaviour called MRPSO was developed and used to find the best values

of the PSO control parameters as these parameters have an impact on the performance

of the PSO algorithm. The proposed strategy was designed to interact with several

PSO groups while searching for the optimal values of the control parameters. A new

94

cooperative of multi-swarm divided each group as clan and leaders based on the

fitness value provided by the FLN. In each generation, the leaders often meet to select

an overall best leader who will update the parameter values of the other leaders based

on his new-found value

ii- To design a new training algorithm for FLN based on the proposed

MRPSO algorithm for network intrusion detection system IDS.

As earlier stated, FLN is straightforward in implementation, computationally

efficient, and have excellent learning performance characteristics. However, the

randomness of the selected values of the main parameters (weight, basis) may not

provide the optimal values which impact the accuracy of intrusion detection. This

work proposed the MRPSO algorithm for training the FLN to reduce the impact of

randomizes selection through the provision of the best values for these parameters.

The fitness function was used as a rule to compare the generations of MRPSO and this

fitness represents the level of accuracy of the FLN in providing false alarm rates

(higher accuracy implies less false alarm rates). In the end, the mixed model provided

better intrusion detection results compared to several other standard algorithms based

on the NSL-KDD data set.

iii- To evaluate and test the prediction accuracy of proposed models (FLN,

PSO-FLN, MRPSO-FLN) based on NSL-KDD dataset.

Based on the related works, this work proposed several standard metrics which

can be utilized to evaluate and compare results derived from the different classification

methods. The models were run for fifteen times and the average values for these runs

were taken.

5.3 Brief Summary of Research

This study was motivated by the shortcoming of the prior approaches to

network intrusion detection problems, such as high false alarm rates and poor

detection performances. Three new machine learning models were introduced to

network intrusion detection. The FLN, PSO-FLN, and MRPSO-FLN models are

suitable for processing large multicast network intrusion detection datasets such as the

95

NSL-KDD dataset. The performance of the final model was compared to several

standard algorithms such as Basic FLN, ELM, SVM, Multilayer Perceptron, Naive

Bayes, and Decision Trees. Previous approaches to network intrusion detection

yielded systems that have good detection performance for some classes of attacks but

poor performance for others. Prior research on multiple algorithm approaches often

lack a systematic method for combining the decisions of multiple learners or requires

complex parameter settings, pre-processing or profiteering of data and human

intervention.

In several literature instances, the approaches showed good detection

performances but with a high rate of false positives which is a huge challenge for

network operators. Other methods have performed well in detecting normal traffic and

attack traffic but did not mention the attack classes that could potentially be involved

in installing malware or destructive executable code. Similarly, several well-

performing machine learning approaches are not readily scalable to handle larger

datasets or multiclass problems such as those encountered in network intrusion

detection.

The models introduced here addressed many of these issues as this study has

demonstrated that both the PSO-FLN and FLN approaches performed well on the

NSL-KDD dataset based on standard performance metrics compared to several

standard algorithms and models. The MRPSO based on FLN with sigmoid function

achieved the best overall performance among the various classifiers tested, with good

detection performance, low misclassification rates, and very low false alarm rates.

The choices made for metrics and the way the model presents with different

numbers of neurons in the hidden layer and number of swarm particles were

considered to investigate the influence of different structures based on the accuracy of

the models. Finally, the discovery that the multi-swarm based “meeting room”

approach with FLN algorithm performed very well with the analyzed network traffic

based on the NSL-KDD dataset should encourage more studies to include these

parameters in the future studies and explore the influence of other activation functions

on the performance of the models. As mentioned in the previous chapters, this research

is the first to successfully adapt basic FLN algorithm and its hybrid variants (PSO-

FLN and MRPSO-FLN algorithm) to the problem of network intrusion detection

96

5.4 Recommendation for Future Research and Limitation

There are many avenues for future research that could be explored, including a

modern method for parameters selection, new classification combination methods, the

addition of learning and experimentation with data pre-processing, feature selection,

incremental and adversarial learning. Additionally, further research on the on-line

processing techniques, hybrid approaches using partial batching with online

techniques and unsupervised learning could be useful to produce practical intrusion-

detection systems that could be utilized in a real-world network operating

environment. Future research should also include testing the PSO-FLN and MRPSO-

FLN methods with other intrusion-detection data sets. It could also be necessary to

explore the use of newer approaches in combination with the PSO algorithm to

improve upon the premature convergence problem and search performance of PSO

when performing multimodal functions as discussed in chapter 2.

This research focused on reducing the rate of false positive detection while

striving to get reasonable detection due to the needs of today’s information technology

professionals and the current environment of invasive cyber-attacks. As the network

providers gain knowledge and develop more advanced approaches, attackers are

adapting their tactics and changing their behaviours to thwart defences. Studies on the

ways to combat these threats are important, while the development of systems that can

adapt to the dynamism of the attackers through contextual and semantic learning,

experimentation with data pre-processing, and intelligent feature selection holds

promise. Future modifications on the PSO-FLN and MRPSO-FLN approaches could

include temporal, sequential and context-based features with unsupervised learning to

allow the models to readily detect anomalies. Moreover, this study encountered some

limitation that can be considered in the future developments. The limitations of the

study were as follows:

i- It has not been evaluated from the perspective of time execution.

Considering the execution time of attack detection is useful for providing

an estimation for the feasibility of operating such models in real-time.

97

ii- There was no incorporation of simulation models for cloud environments.

Such incorporation is important for enabling extra features such as early

attack detection and prevention.

iii- More attention can be paid to the unbalanced data aspect to improve the

low accuracy of certain classes.

5.5 Conclusion

In this study, a systems engineering approach was followed for applying

machine learning techniques to the problem of network intrusion detection. The

relevant previous studies were reviewed and methods were explored to combine the

classification decisions of a diverse set of “learners” in a manner that would produce

consistently good results. Three new approaches to machine learning were introduced

and tested against benchmark datasets, including the famous NSL-KDD intrusion

detection dataset.

Three models were deployed in this work; firstly, the basic FLN was used to

work as an intrusion detection system. The results of the FLN were compared to that

of ELM algorithm to evaluate the proposed model. The results showed FLN to have a

higher accuracy compared to ELM because of the FLN structure which comprised of a

parallel connection of a multilayer feedforward neural network and a single-layer

feedforward neural network. The DPFNN output nodes not only receive the

recodification of the external information through the hidden nodes but also receives

the external information itself directly through the input nodes. Secondly, to reduce the

impact of randomized parameters select in machine learning algorithms, there are

several optimizations algorithms and techniques that have been proposed and the FLN

is one of the current approaches in the field of machine learning. FLN is also faced

with the same limitation of random parameter selection. This work proposed the

particle swarm optimization algorithm for training the FLN. The results of this model

were compared to that of the basic FLN based on several standard evaluation criteria.

Moreover, the performance of the new model (PSO-FLN) was better in terms of

accuracy compared to that of the basic FLN. Thirdly, based on the literature evidence,

most of the related works proposed PSO with default parameters values; on the other

hand, there are several related works that proposed different methods for the

98

modification and improvement of the standard PSO in order to increase its ability to

control the balance between exploration and exploitation or to enhance the search

process of PSO.

Moreover, the standard PSO contains three control parameters and the

selection of the values of these parameters depend on the standard or training and

error. The values of these parameters have a great effect on the purposeful detecting

capacity of the algorithm. This work proposed a new cooperative multi-swarm scheme

called multi-swarm optimization (MRPSO) which was inspired by the human social

behavior (the interaction between a group of people known as ‘Clan’ and their

leaders). The proposed scheme consists of several swarms called clans and each clan

consists of several solutions represented by the group members. The best member of

each clan is the clan leader and has control over the members of its clan in terms of

tuning the parameters. The selection of a leader from the clans is based on the fitness

function which reflects the accuracy of FLN in comparing between different clans

during the iterations. The clan with the best accuracy is selected as the leader.

Furthermore, a new system called MRPSO-FLN was developed at the end of this

process. The model was compared to the standard PSO-FLN with different numbers of

neurons and iterations, and the output of the proposed algorithm showed a better

accuracy or convergent results but with less number of neurons and number of

iterations based on the NSL-KDD data set.

The last section of the study covered the validation of the proposed algorithm

based on the values of the parameters achieved by the MRPSO-FLN instead of the

default values of the parameters. Moreover, a new PSO-FLN with the best values of

weight and bias was developed. This algorithm can be incorporated into basic FLN for

parameter selection instead of a random parameter selection. Finally, the new

algorithm was compared to several standards algorithms such as basic FLN, ELM,

SVM, Naïve Bayes, Multilayer Perceptron, and Hoeffding tree (Decision tree) based

on several standard evaluation measurements using the NSL-KDD data set.

99

REFERENCES

Aburomman, A. A., & Ibne Reaz, M. Bin. (2017). A novel weighted support vector

machines multiclass classifier based on differential evolution for intrusion

detection systems. Information Sciences. https://doi.org/10.1016/j.ins.2017.06.007

Ahila, R., Sadasivam, V., & Manimala, K. (2015). An integrated PSO for parameter

determination and feature selection of ELM and its application in classification of

power4system4disturbances.4Applied4Soft4Computing4Journal.4https://doi.org/1

0.1016/j.asoc.2015.03.036

Ahmad, A., & Senga, B. P. S. (2017). Instruction detection system based on support

vector machine using bat algorithm. International Journal of Computer

Applications. https://doi.org/10.5120/ijca2017912843

AL-Hawawreh, M., Moustafa, N., & Sitnikova, E. (2018). Identification of malicious

activities in industrial internet of things based on deep learning models. Journal of

Information Security and Applications.https://doi.org/10.1016/j.jisa.2018.05.002

Al-Yaseen, W. L., Othman, Z. A., & Nazri, M. Z. A. (2017). Multi-level hybrid support

vector machine and extreme learning machine based on modified K-means for

intrusion4detection4system.4Expert4Systems4with4Applications.4https://doi.org/1

0.1016/j.eswa.2016.09.041

Ali, M., Khan, S. U., & Vasilakos (2015). Security in cloud computing :

Opportunities4and4challenges.4Information4Sciences.4https://doi.org/10.1016/j.in

s.2015.01.025

Ambusaidi, M., He, X., Nanda, P., & Tan, Z. (2016). Building an intrusion detection

system using a filter-based feature selection algorithm. IEEE Transactions on

Computers. https://doi.org/10.1109/TC.2016.2519914

Aslahi-Shahri, B. M., Rahmani, R., Chizari, M., Maralani, A., Eslami, M., Golkar, M.

J., & Ebrahimi, A. (2016). A hybrid method consisting of GA and SVM for

intrusion

detection4system.4Neural4Computing4and4Applications.4https://doi.org/10.1007/

s00521-015-1964-2

Baiad, R., Alhussein, O., Otrok, H., & Muhaidat, S. (2016). Novel cross layer detection

schemes to detect blackhole attack against QoS-OLSR protocol in VANET.

Vehicular Communications. https://doi.org/10.1016/j.vehcom.2016.09.001

Cao, J., Lin, Z., Huang, G. Bin, & Liu, N. (2012). Voting based extreme learning

machine. Information1Sciences. https://doi.org/10.1016/j.ins.2011.09.015

Cao, J., Zhao, Y., Lai, X., Ong, M. E. H., Yin, C., Koh, Z. X., & Liu, N. (2015).

Landmark recognition with sparse representation classification and extreme

learning machine. Journal of The Franklin Institute.

https://doi.org/10.1016/j.jfranklin.2015.07.002

Chen, D., Chen, J., Jiang, H., Zou, F., & Liu, T. (2015). An improved PSO algorithm

100

based on particle exploration for function optimization and the modeling of chaotic

systems. Soft Computing. https://doi.org/10.1007/s00500-014-1469-4

Chen, X. Y., & Chau, K. W. (2016). A hybrid double feedforward neural network for

suspended4sediment4load4estimation.4Water4Resources4Management.4https://do

i.org/10.1007/s11269-016-1281-2

Choo, K. R. (2011). The cyber threat landscape: challenges and future research

directions. Computers & Security. https://doi.org/10.1016/j.cose.2011.08.004

Deng, W. Y., Zheng, Q. H., Lian, S., Chen, L., & Wang, X. (2010). Ordinal extreme

learning machine. Neurocomputing. https://doi.org/10.1016/j.neucom.2010.08.022

Denning, D. E. (1987). An intrusion-detection model. IEEE Transactions on Software

Engineering. https:// doi: 10.1109/tse.1987.232894

Diao, R., & Shen, Q. (2015). Nature inspired feature selection meta-heuristics. Artificial

Intelligence Review. https://doi.org/10.1007/s10462-015-9428-8

Eberhart, R. C., & Yuhui Shi. (2001). Tracking and optimizing dynamic systems with

particle swarms. In the 2001 Congress on Evolutionary Computation.

https://doi.org/10.1109/CEC.2001.934376

Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In

the 6th International Symposium on Micro Machine and Human Science.

https://doi.org/10.1109/MHS.1995.494215

Elhag, S., Fernández, A., Bawakid, A., Alshomrani, S., & Herrera, F. (2015). On the

combination of genetic fuzzy systems and pairwise learning for improving

detection rates on Intrusion Detection Systems. Expert Systems with Applications.

https://doi.org/10.1016/j.eswa.2014.08.002

Enache, A.-C., & Sgarciu, V. (2014). Anomaly intrusions detection based on support

vector machines with bat algorithm. In 18th International Conference on System

Theory, Control and Computing. https://doi.org/10.1109/ICSTCC.2014.6982526

Feng, G., Huang, G., Lin, Q., & Gay, R. (2009). Error minimized extreme learning

machine with growth of hidden nodes and incremental learning. IEEE

Transactions on Neural Networks. https://10.1109/TNN.2009.2024147

Fossaceca, J. M., Mazzuchi, T. A., & Sarkani, S. (2015). MARK-ELM: Application of

a novel multiple kernel learning framework for improving the robustness of

network

intrusiondetection.4Expert4Systems4with4Applications.https://doi.org/10.1016/j.es

wa.2014.12.040

Gauthama Raman, M. R., Somu, N., Kirthivasan, K., Liscano, R., & Shankar Sriram, V.

S. (2017). An efficient intrusion detection system based on hypergraph - Genetic

algorithm for parameter optimization and feature selection in support vector

machine. Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2017.07.005

Ghaedi, M., Shojaeipour, E., Ghaedi, A. M., & Sahraei, R. (2015). Isotherm and

101

kinetics study of malachite green adsorption onto copper nanowires loaded on

activated carbon: Artificial neural network modeling and genetic algorithm

optimization. Spectrochimica Acta: Molecular and Biomolecular Spectroscopy.

https://doi.org/10.1016/j.saa.2015.01.086

Goodarzi, B. G., Jazayeri, H., & Fateri, S. (2014). Intrusion detection system in

computer network using hybrid algorithms (SVM and ABC). Journal of

Advances in Computer Research. https://doi.org/10.1109/TC.2016.2519914

Gülcü, Ş., & Kodaz, H. (2015). A novel parallel multi-swarm algorithm based on

comprehensive learning particle swarm optimization. Engineering Applications of

Artificial Intelligence. https://doi.org/10.1016/j.engappai.2015.06.013

Hajimirzaei, B., & Navimipour, N. J. (2018). Intrusion detection for cloud computing

using neural networks and artificial bee colony optimization algorithm. ICT

Express. https://doi.org/https://doi.org/10.1016/j.icte.2018.01.014

Hajisalem, V., & Babaie, S. (2018). A hybrid intrusion detection system based on ABC-

AFS algorithm for misuse and anomaly detection. Computer Networks.

https://doi.org/10.1016/j.comnet.2018.02.028

Han, F., & Huang, D. (2006). Improved extreme learning machine for function

approximation4by4encoding4a4priori4information.4Neurocomputing.4https://doi.

org/10.1016/j.neucom.2006.02.013

He, S., Wu, Q. H., Wen, J. Y., Saunders, J. R., & Paton, R. C. (2004). A particle swarm

optimizer4with4passive4congregation.4BioSystems4.https://doi.org/10.1016/j.bios

ystems.2004.08.003

Hodo, E., Bellekens, X., Hamilton, A., Dubouilh, P.-L., Iorkyase, E., Tachtatzis, C., &

Atkinson, R. (2016). Threat analysis of IoT networks using artificial neural

network intrusion detection system. In International Symposium on Networks,

Computers and Communications. https://doi.org/10.1109/ISNCC.2016.7746067

Hosseini Bamakan, S. M., Wang, H., Yingjie, T., & Shi, Y. (2016). An effective

intrusion detection framework based on MCLP/SVM optimized by time-varying

chaos

particle4swarm4optimization.4Neurocomputing4.https://doi.org/10.1016/j.neucom.

2016.03.031

Huang, C. L., & Dun, J. F. (2008). A distributed PSO-SVM hybrid system with feature

selection and parameter optimization. Applied Soft Computing.

https://doi.org/10.1016/j.asoc.2007.10.007

Huang, G.-B., Zhou, H., Ding, X., & Zhang, R. (2012). Extreme learning machine for

regression and multiclass classification. IEEE Transactions on Systems.

https://doi.org/10.1109/TSMCB.2011.2168604

Huang, G.-B., Zhu, Q.-Y., Qin, A. K., Suganthan, P. N., & Huang, G.-B. (2005).

Evolutionary4extreme4learning4machine.4Pattern4Recognition.https://doi.org/htt

p://dx.doi.org/10.1016/j.patcog.2005.03.028

102

Huang, G.-B., Zhu, Q., Siew, C., Ã, G. H., Zhu, Q., (2006). Extreme learning machine:

Theory4and4applications.4Neurocomputing4.https://doi.org/10.1016/j.neucom.200

.12.126

Huang, G., Zhu, Q., & Siew, C. (2004). Extreme learning machine: a new learning

scheme of feedforward neural networks. In International Joint Conference on

Neural Networks. https://doi.org/10.1109/IJCNN.2004.1380068

Huang, H. X., Li, J. C., & Xiao, C. L. (2015). A proposed iteration optimization

approach integrating backpropagation neural network with genetic algorithm.

Expert Systems with Applications. https://doi.org/10.1016/j.eswa.204.07.039

Huang, Y., Tang, J., Cheng, Y., Li, H., Campbell, K. A., & Han, Z. (2016). Real-time

detection of false data injection in smart grid networks: An adaptive CUSUM

method4and4analysis.IEEE4Systems4Journal.https://doi.org/10.1109/JSYST.2014

.2323266

Huang, G. Bin, Chen, L., & Siew, C. K. (2006). Universal approximation using

incremental constructive feedforward networks with random hidden nodes. IEEE

Transactions on Neural Networks. https://doi.org/10.1109/TNN.2006.875977

Hubballi, N., & Suryanarayanan, V. (2014). False alarm minimization techniques in

signature-based intrusion detection systems: A survey. Computer

Communications. https://doi.org/10.1016/j.comcom.2014.04.012

Huynh, H. T., & Won, Y. (2008). Small number of hidden units for ELM with two-

stage

linear4model.4Transactions4on4Information4and4Systems.4https://doi.org/10.109

3/ietisy/e91-d.4.1042

Jahan, A., Mustapha, F., Ismail, Y., Sapuan, S. M., & Bahraminasab, M. (2011). A

comprehensive VIKOR method for material selection A comprehensive VIKOR

method4for4material4selection.4Materials4and4Design.4https://doi.org/10.1016/j.

matdes.2010.10.015

Ji, S. Y., Jeong, B. K., Choi, S., & Jeong, D. H. (2016). A multi-level intrusion

detection method for abnormal network behaviors. Journal of Network and

Computer Applications. https://doi.org/10.1016/j.jnca.2015.12.004

Jun-jie, X. U. (2005). An extended particle swarm optimizer. In 19th IEEE

International

Parallel1and1Distributed1Processing1Symposium.https://doi.org/10.1109/IPDPS.

2005.101

Kang, S.-H., & Kim, K. J. (2016). A feature selection approach to find optimal feature

subsets for the network intrusion detection system. Cluster Computing.
https://doi.org/10.1007/s10586-015-0527-8

Kaur, T., Malhotra, V., & Singh, D. (2014). Comparison of network security tools-

Firewall, Intrusion Detection System and Honeypot. International Journal of

Enhanced Research in Science Technology & Engineering,.

https://doi.org/10.1109/JSYST.2014.2323266

https://doi.org/10.1007/s10586-015-0527-8

103

Kavitha, K. M. C. A.& Phil, M. (2013). Particle swarm optimization for adaptive

anomaly-based intrusion detection system using fuzzy controller. International

Journal of Network Security. https://doi.org/10.1109/TSMCB.2011.2168604

Kevric, J., Jukic, S., & Subasi, A. (2017). An effective combining classifier approach

using tree algorithms for network intrusion detection. Neural Computing and

Applications. https://doi.org/10.1007/s00521-016-2418-1

Khan, Javed Akhtar, and N. J. (2016). A survey on intrusion detection systems and

classification techniques. International Journal of Scientific Research in Science,

Engineering1and1Technology.https://doi.org/http://dx.doi.org/10.1016/j.patcog.20

05.03.028

Kiaee, F., Sheikhzadeh, H., & Eftekhari Mahabadi, S. (2015). Sparse Bayesian mixed-

effects extreme learning machine, an approach for unobserved clustered

heterogeneity. Neurocomputing. https://doi.org/10.1016/j.neucom.2015.10.073

Kiranyaz, S., Ince, T., Yildirim, A., & Gabbouj, M. (2009). Evolutionary artificial

neural networks by multi-dimensional particle swarm optimization. Neural

Networks. https://doi.org/10.1016/j.neunet.2009.05.013

Koc, L., Mazzuchi, T. A., & Sarkani, S. (2012). A network intrusion detection system

based on a hidden naïve bayes multiclass

classifier.4Expert1Systems1With1Applications.4https://doi.org/10.1016/j.eswa.201

2.07.009

Kumar, U. (2015). A survey on intrusion detection systems for cloud computing

environment. International Journal of Computer Applications.

https://doi.org/10.5120/19150-0573

Kwon, D., Kim, H., Kim, J., Suh, S. C., Kim, I., & Kim, K. J. (2017). A survey of deep

learning-based network anomaly detection. Cluster Computing.

https://doi.org/10.1007/s10586-017-1117-8

Lan, Y., Soh, Y. C., & Huang, G. Bin. (2010). Two-stage extreme learning machine for

regression. Neurocomputing. https://doi.org/10.1016/j.neucom.2010.07.012

Latif, R., Abbas, H., Assar, S., & Ali, Q. (2014). Cloud computing risk assessment : a

systematic literature review. Future Information Technology.

https://doi.org/10.1007/978-3-642-40861-8

Li, G., Niu, P., Duan, X., & Zhang, X. (2014). Fast learning network: A novel artificial

neural network with a fast learning speed. Neural Computing and Applications.

https://doi.org/10.1007/s00521-013-1398-7

Li, G., Niu, P., Wang, H., & Liu, Y. (2014). Least square fast learning network for

modeling the combustion efficiency of a 300wm coal-fired boiler. Neural

Networks. https://doi.org/10.1016/j.neunet.2013.12.006

Li, G., Qi, X., Chen, B., Ma, Y., Niu, P., & Chen, Z. (2017). Fast learning network with

parallel1layer1perceptrons.4Neural1Processing1Letters.https://doi.org/10.1007/s1

1063-017-9667-6

104

Li, X., Niu, P., Li, G., & Liu, J. (2017). An adaptive extreme learning machine for

modeling nox emission of a 300 mw circulating fluidized bed boiler. Neural

Processing Letters. https://doi.org/10.1007/s11063-017-9611-9

Li, M. Bin, Huang, G. Bin, Saratchandran, P., & Sundararajan, N. (2005). Fully

complex

extreme4learning4machine.4Neurocomputing.https://doi.org/10.1016/j.neucom.20

05.03.002

Liang, G., Weller, S. R., Zhao, J., Luo, F., & Dong, Z. Y. (2017). The 2015 ukraine

blackout: implications for false data injection attacks. IEEE Transactions on

Power Systems. https://doi.org/10.1109/TPWRS.2016.2631891

Liang, N.-Y., Huang, G.-B., Saratchandran, P., & Sundararajan, N. (2006). A fast and

accurate online sequential learning algorithm for feedforward networks. IEEE

Transactions on Neural Networks. https://doi.org/10.1109/TNN.2006.880583

Liao, H. J., Richard Lin, C. H., Lin, Y. C., & Tung, K. Y. (2013). Intrusion detection

system: A comprehensive review. Journal of Network and Computer Applications.

https://doi.org/10.1016/j.jnca.2012.09.004

Lin, W. C., Ke, S. W., & Tsai, C. F. (2015). CANN: An intrusion detection system

based on combining cluster centers and nearest neighbors. Knowledge-Based

Systems. https://doi.org/10.1016/j.knosys.2015.01.009

Liu, X., Li, P., & Gao, C. (2013). Symmetric extreme learning machine. Neural

Computing and Applications. https://doi.org/10.1007/s00521-012-0859-8

Lu, H., Du, B., Liu, J., Xia, H., & Yeap, W. K. (2017). A kernel extreme learning

machine algorithm based on improved particle swam optimization. Memetic

Computing. https://doi.org/10.1007/s12293-016-0182-5

Ludwig, S. A. (2017). Intrusion detection of multiple attack classes using a deep neural

net ensemble. In IEEE International Conference on Emerging Technologies and

Factory Automation. https://doi.org/10.1109/SSCI.2017.8280825

Ma, Y., Niu, P., Yan, S., & Li, G. (2018). A modified online sequential extreme

learning machine for building circulation fluidized bed boiler’s NOx emission

model. Applied Mathematics and Computation.

https://doi.org/10.1016/j.amc.2018.03.010

May, R. J., Maier, H. R., & Dandy, G. C. (2010). Data splitting for artificial neural

networks using SOM-based stratified sampling. Neural Networks

.https://doi.org/10.1016/j.neunet.2009.11.009

Mirjalili, S., Zaiton, S., Hashim, M., & Sardroudi, H. M. (2012). Training feedforward

neural networks using hybrid particle swarm optimization and gravitational search

algorithm.4Applied1Mathematics1and1Computation.4https://doi.org/10.1016/j.am

c.2012.04.069

Mishra, P., Pilli, E. S., Varadharajan, V., & Tupakula, U. (2016). Intrusion detection

techniques in cloud environment: A Survey. Journal of Network and Computer

105

Applications. https://doi.org/10.1016/j.jnca.2016.10.015

Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., & Rajarajan, M. (2013a). A

survey of intrusion detection techniques in Cloud. Journal of Network and

Computer Applications. https://doi.org/10.1016/j.jnca.2012.05.003

Moradi, M., & Zulkernine, M. (2004). A neural network based system for intrusion

detection and classification of attacks. In IEEE International Conference on

Advances in Intelligent Systems-Theory and Applications.

https://doi.org/10.1016/j.amc.2012.04.069

Moustafa, N., Slay, J., & Creech, G. (2017). Novel geometric area analysis technique

for anomaly detection using trapezoidal area estimation on large-scale networks.

IEEE Transactions on Big Data. https://doi.org/10.1109/TBDATA.2017.2715166

Mukherjee, S., & Sharma, N. (2012). Intrusion detection using naive bayes classifier

with

featurereduction.4Procedia3Technology.4https://doi.org/10.1016/j.protcy.2012.05.

017

Niu, B., Zhu, Y., He, X., & Wu, H. (2007). MCPSO: A multi-swarm cooperative

particle

swarmoptimizer.4Applied4Mathematics4and4Computation.4https://doi.org/10.101

6/j.amc.2006.07.026

Niu, P., Chen, K., Ma, Y., Li, X., Liu, A., & Li, G. (2017). Model turbine heat rate by

fast learning network with tuning based on ameliorated krill herd algorithm.

Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2016.11.011

Niu, P., Ma, Y., Li, M., Yan, S., & Li, G. (2016). A kind of parameters self-adjusting

extreme4learning4machine.4Neural4Processing4Letters.4https://doi.org/10.1007/s

11063-016-9496-z

Patel, A., Taghavi, M., Bakhtiyari, K., & Celestino Júnior, J. (2013). An intrusion

detection and prevention system in cloud computing: A systematic review. Journal

of Network and Computer Applications. https://doi.org/10.1016/j.jnca.2012.08.007

Pervez, M. S., & Farid, D. M. (2014). Feature selection and intrusion classification in

NSL-KDD cup 99 dataset employing SVMs. In 8th International Conference on

Software, Knoledgw, Information Management and Applications(SKIMA 2018).

https://doi.org/10.1109/SKIMA.2014.7083539

Phoungphol, P., Zhang, Y., & Zhao, Y. (2012). Robust multiclass classification for

learning from imbalanced biomedical data. Tsinghua Science and Technology.

https://doi.org/10.1109/TST.2012.6374363

Pornsing, C., Sodhi, M. S., & Lamond, B. F. (2016). Novel self-adaptive particle swarm

optimization methods. Soft Computing. https://doi.org/10.1007/s00500-015-1716-3

Raghav, I. (2013). Intrusion detection and prevention in cloud environment : A

Systematic Review. International Journal of Computer Applications.

https://doi.org/10.1109/TPAMI.2009.485

106

Raja, M. A. Z. (2014). Stochastic numerical treatment for solving Troesch’s problem.

Information Sciences. https://doi.org/10.1016/j.ins.2014.04.036

Raja, M. A. Z., Shah, F. H., Tariq, M., Ahmad, I., & Ahmad, S. ul I. (2016). Design of

artificial neural network models optimized with sequential quadratic programming

to study the dynamics of nonlinear Troesch’s problem arising in plasma physics.

Neural Computing and Applications. https://doi.org/10.1007/s00521-016-2530-2

Ratnaweera, A., Halgamuge, S. K., & Watson, H. C. (2004). Self-organizing

hierarchical particle swarm optimizer with time-varying acceleration coefficients.

IEEE

Transactions4on4Evolutionary4Computation.4https://doi.org/10.1109/TEVC.2004

.826071

Rodríguez, J. D., Pérez, A., & Lozano, J. A. (2010). Sensitivity analysis of k-fold cross

validation in prediction error estimation. IEEE Transactions on Pattern Analysis

and4Machine4Intelligence. https://doi.org/10.1109/TPAMI.2009.187

Rong, C., Nguyen, S. T., & Gilje, M. (2012). A survey on security challenges in cloud

computing.4Computer4and4Electrical4Engineering.4https://doi.org/10.1016/j.co

mpeleceng.2012.04.015

Rong, H. J., Ong, Y. S., Tan, A. H., & Zhu, Z. (2008). A fast pruned-extreme learning

machine4for4classification4problem.4Neurocomputing.4https://doi.org/10.1016/j.

neucom.2008.01.005

Huang, R., & He, M. (2007). Feature selection using double parallel feedforward neural

networks and particle swarm optimization. In 2007 IEEE Congress on

Evolutionary Computation. https://doi.org/10.1016/j.ipl.2004.11.003

Sabhnani, M., & Serpen, G. (2004). Why machine learning algorithms fail in misuse

detection on KDD intrusion detection data set. Intelligent Data Analysis.

https://doi.org/10.1007/978-3-540-88623-5_41

Saxena MTech Scholar, H., & Richaariya, V. (2014). Intrusion detection in KDD99

dataset using SVM-PSO and feature reduction with information Gain.

International Journal of Computer Applications.

https://doi.org/11.1016/j.neucom.2007.01.018

Scardapane, S., & Wang, D. (2017). Randomness in neural networks: an overview.

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery.

https://doi.org/10.1002/widm.1200

Scarfone, K., Mell, P., & Mell, P. (2012). Guide to intrusion detection and prevention

systems (IDPS) recommendations of the national institute of standards and

technology.4National4Institute4of4Standards4and4Technology.4https://doi.org/20

12arXiv1206.2944

Shah, S. A. R., & Issac, B. (2018). Performance comparison of intrusion detection

systems and application of machine learning to Snort system. Future Generation

Computer Systems. https://doi.org/10.1016/j.future.2017.10.016

107

Shi, X. H., Liang, Y. C., Lee, H. P., Lu, C., & Wang, L. M. (2005). An improved GA

and a novel PSO-GA-based hybrid algorithm. Information Processing Letters.

https://doi.org/10.1016/j.ipl.2004.11.003

Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In IEEE

International4Conference4on4Evolutionary4Computation.4https://doi.org/10.1109

/ICEC.1998.699146

Shi, Y., & Eberhart, R. (1999). Empirical study of particle swarm optimization. The

Evolutionary Computation. https://doi.org/10.1109/CEC.1999.785511

Sinan Q. Salih1,2 , AbdulRahman A. Alsewari1, Bellal Al-Khateeb2, M. F. Z. (2018).

Novel multi-swarm approach for balancing exploration and exploitation in particle

swarm optimization.4In International Conference of Reliable Information

and4Communication4Technology .https://doi.org/10.1109/NAFOSTED.2017.8108

Singh, R., Kumar, H., & Singla, R. K. (2015). An intrusion detection system using

network traffic profiling and online sequential extreme learning machine. Expert

Systems with Applications. https://doi.org/10.1016/j.eswa.2015.07.015

Sivatha, S. S., Geetha, S., & Kannan, A. (2012). Decision tree based light weight

intrusion detection using a wrapper approach. Expert Systems With Applications.

https://doi.org/10.1016/j.eswa.2011.06.013

Slowik, A., & Kwasnicka, H. (2018). Nature inspired methods and their industry

applications-swarm intelligence algorithms. IEEE Transactions on Industrial

Informatics. https://doi.org/10.1109/TII.2017.2786782

Snoek, J., Larochelle, H., & Adams, R. (2012). Practical bayesian optimization of

machine learning algorithms.4Advances in Neural Information Processing

Systems. https://doi.org/2012arXiv1206.2944S

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures

for

classification4tasks.4Information4Processing4and4Management.4https://doi.org/1

0.1016/j.ipm.2009.03.002

Sun, Y., Kamel, M. S., Wong, A. K. C., & Wang, Y. (2007). Cost-sensitive boosting for

classification4of4imbalanced4data.4Pattern4Recognition.4https://doi.org/10.1016/

j.patcog.2007.04.009

Tanweer, M. R., Suresh, S., & Sundararajan, N. (2015). Self regulating particle swarm

optimization4algorithm.4Information4Sciences.4https://doi.org/10.1016/j.ins.2014.

09.053

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of

the KDD CUP 99 data set.4In IEEE Symposium on Computational Intelligence for

Security and Defense Applications.https://doi.org/10.1109/CISDA.2009.5356528

Tran, C., Vo, T. N., & Thinh, T. N. (2017). HA-IDS: A heterogeneous anomaly-based

intrusion detection system. In 4th Nafosted Conference on Information and

Computer Science. https://doi.org/10.1109/NAFOSTED.2017.8108056

108

Tsai, C., Hsu, Y., Lin, C., & Lin, W. (2009). Intrusion detection by machine learning :

A review. Expert Systems With Applications.

https://doi.org/10.1016/j.eswa.2009.05.029

Udaya Sampath K. Perera Miriya Thanthrige, Jagath Samarabandu, X. W. (2016).

Machine learning techniques for intrusion detection. In IEEE Canadian

Conference4on4Electrical4and4Computer4Engineering.https://doi.org/10.1145/29

80258.2980378

Vasilomanolakis, E., Karuppayah, S., Mühlhäuser, M., & Fischer, M. (2015).

Taxonomy and survey of collaborative intrusion detection. ACM Computing

Surveys. https://doi.org/10.1016/j.asoc.2018.02.042

Von Solms, R., & Van Niekerk, J. (2013). From information security to cyber security.

Computers and Security. https://doi.org/10.1016/j.cose.2013.04.004

Wang, C. R., Xu, R. F., Lee, S. J., & Lee, C. H. (2018). Network intrusion detection

using equality constrained-optimization-based extreme learning machines.

Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2018.02.015

Wang, N., Er, M. J., & Han, M. (2014). Parsimonious extreme learning machine using

recursive orthogonal least squares. IEEE Transactions on Neural Networks and

Learning Systems. https://doi.org/10.1109/TNNLS.2013.2296048

Whitman, M. E., & Mattord, H. J. (2012). Principles of information security. Course

Technology. https://doi.org/10.1016/B978-0-12-381972-7.00002-6

Xia, X., Gui, L., & Zhan, Z. H. (2018). A multi-swarm particle swarm optimization

algorithm based on dynamical topology and purposeful detecting. Applied Soft

Computing. https://doi.org/10.1016/j.asoc.2018.02.042

Xiang, J., Westerlund, M., Sovilj, D., & Pulkkis, G. (2014). Using extreme learning

machine for intrusion detection in a big data environment. In the 2014 Workshop

on Artificial4Intelligentand4Security.https://doi.org/10.1145/2666652.2666664

Zeng, N., Zhang, H., Liu, W., Liang, J., & Alsaadi, F. E. (2017). A switching delayed

PSO optimized extreme learning machine for short-term load forecasting.

Neurocomputing. https://doi.org/10.1016/j.neucom.2017.01.090

Zhan, Z.-H., Zhang, J., Li, Y., & Chung, H. S.-H. (2009). Adaptive particle swarm

optimization. IEEE Transactions on Systems and Cybernetics Society.

https://doi.org/10.1109/TSMCB.2009.2015956

Zhang, L., Tang, Y., Hua, C., & Guan, X. (2015). A new particle swarm optimization

algorithm with adaptive inertia weight based on Bayesian techniques. Applied Soft

Computing. https://doi.org/10.1016/j.asoc.2014.11.018

Zhang, L., & Zhang, D. (2017). Evolutionary Cost-Sensitive Extreme Learning

Machine.

IEEE4Transactions4on4Neural4Networks4and4Learning4Systems.4https://doi.org

/10.1109/TNNLS.2016.2607757

109

Aburomman, A. A., & Ibne Reaz, M. Bin. (2017). A novel weighted support vector

machines multiclass classifier based on differential evolution for intrusion

detection systems. Information Sciences. https://doi.org/10.1016/j.ins.2017.06.007

Ahila, R., Sadasivam, V., & Manimala, K. (2015). An integrated PSO for parameter

determination and feature selection of ELM and its application in classification of

power4system4disturbances.4Applied4Soft4Computing4Journal.4https://doi.org/1

0.1016/j.asoc.2015.03.036

Ahmad, A., & Senga, B. P. S. (2017). Instruction detection system based on support

vector machine using bat algorithm. International Journal of Computer

Applications. https://doi.org/10.5120/ijca2017912843

AL-Hawawreh, M., Moustafa, N., & Sitnikova, E. (2018). Identification of malicious

activities in industrial internet of things based on deep learning models. Journal of

Information Security and Applications. https://doi.org/10.1016/j.jisa.2018.05.002

Al-Yaseen, W. L., Othman, Z. A., & Nazri, M. Z. A. (2017). Multi-level hybrid support

vector machine and extreme learning machine based on modified K-means for

intrusion4detection4system.4Expert4Systems4with4Applications.4https://doi.org/1

0.1016/j.eswa.2016.09.041

Ali, M., Khan, S. U., & Vasilakos, A. V. (2015). Security in cloud computing:

opportunities4and4challenges.4Information4Sciences.4https://doi.org/10.1016/j.ins

.2015.01.025

Ambusaidi, M., He, X., Nanda, P., & Tan, Z. (2016). Building an intrusion detection

system using a filter-based feature selection algorithm. IEEE Transactions on

Computers. https://doi.org/10.1109/TC.2016.2519914

Approximation, F., & Problems, C. (2009). Online sequential fuzzy extreme learning

machine for function approximation and classification problem. IEEE

Transactions on Systems. https://10.1109/TSMCB.2008.2010506

Aslahi-Shahri, B. M., Rahmani, R., Chizari, M., Maralani, A., Eslami, M., Golkar, M.

J., & Ebrahimi, A. (2016). A hybrid method consisting of GA and SVM for

intrusion

detection4system.4Neural4Computing4and4Applications.https://doi.org/10.1007/s

00521-015-1964-2

Baiad, R., Alhussein, O., Otrok, H., & Muhaidat, S. (2016). Novel cross layer detection

schemes to detect blackhole attack against QoS-OLSR protocol in VANET.

Vehicular Communications. https://doi.org/10.1016/j.vehcom.

Cao, J., Lin, Z., Huang, G. Bin, & Liu, N. (2012). Voting based extreme learning

machine. Information Sciences. https://doi.org/10.1016/j.ins.

Cao, J., Zhao, Y., Lai, X., Ong, M. E. H., Yin, C., Koh, Z. X., & Liu, N. (2015).

Landmark recognition with sparse representation classification and extreme

https://doi.org/10.1109/TSMCB.2008.2010506

110

learning machine. Journal of the Franklin Institute.

https://doi.org/10.1016/j.jfranklin.

Chen, D., Chen, J., Jiang, H., Zou, F., & Liu, T. (2015). An improved PSO algorithm

based on particle exploration for function optimization and the modelling of

chaotic systems. Soft Computing. https://doi.org/10.1007/s00500-014-1469-4

Chen, X. Y., & Chau, K. W. (2016). A hybrid double feedforward neural network for

suspended sediment load estimation. Water Resources Management.

https://doi.org/10.1007/s11269-016-1281-2

Choo, K. R. (2011). The cyber threat landscape: challenges and future research

directions. Computers & Security. https://doi.org/10.1016/j.cose.2011.08.004

Deng, W. Y., Zheng, Q. H., Lian, S., Chen, L., & Wang, X. (2010). Ordinal extreme

learning machine. Neurocomputing. https://doi.org/10.1016/j.neucom.2010.08.022

Diao, R., & Shen, Q. (2015). Nature inspired feature selection meta-heuristics. Artificial

Intelligence Review. https://doi.org/10.1007/s10462-015-9428-8

Eberhart, R. C. (2001). Fuzzy adaptive particle swarm optimization. In Conference on

Evolutionary Computation. https://doi.org/10.1109/CEC.2001.934377

Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In

the 6th International Symposium on Micro Machine and Human Science.

https://doi.org/10.1109/MHS.1995.494215

Elhag, S., Fernández, A., Bawakid, A., Alshomrani, S., & Herrera, F. (2015). On the

combination of genetic fuzzy systems and pairwise learning for improving

detection rates on intrusion detection systems. Expert Systems with Applications.

https://doi.org/10.1016/j.eswa.2014.08.002

Enache, Sgarciu, V. (2014). Anomaly intrusions detection based on support vector

machines with bat algorithm. In 18th International Conference on System Theory.

https://doi.org/10.1109/ICSTCC.2014.6982526

Fossaceca, J. M., Mazzuchi, T. A., & Sarkani, S. (2015). MARK-ELM: Application of

a novel multiple kernel learning framework for improving the robustness of

network

intrusion4detection.4Expert4Systems4with4Applications.4https://doi.org/10.1016/j.

eswa.2014.12.040

Gauthama Raman, M. R., Somu, N., Kirthivasan, K., Liscano, R., & Shankar Sriram, V.

S. (2017). An efficient intrusion detection system based on hypergraph - Genetic

algorithm for parameter optimization and feature selection in support vector

machine. Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2017.07.005

Ghaedi, M., Shojaeipour, E., Ghaedi, A. M., & Sahraei, R. (2015). Isotherm and

kinetics study of malachite green adsorption onto copper nanowires loaded on

https://doi.org/10.1016/j.neucom.2010.08.022

111

activated carbon: Artificial neural network modelling and genetic algorithm

optimization.

Molecular4and4Biomolecular4Spectroscopy.https://doi.org/10.1016/j.saa.2015.01.

086

Gülcü, Ş., & Kodaz, H. (2015). A novel parallel multi-swarm algorithm based on

comprehensive learning particle swarm optimization. Engineering Applications of

Artificial Intelligence. https://doi.org/10.1016/j.engappai.2015.06.013

Hajimirzaei, B., & Navimipour, N. J. (2018). Intrusion detection for cloud computing

using neural networks and artificial bee colony optimization algorithm. ICT

Express. https://doi.org/https://doi.org/10.1016/j.icte.2018.01.014

Hajisalem, V., & Babaie, S. (2018). A hybrid intrusion detection system based on ABC-

AFS algorithm for misuse and anomaly detection. Computer Networks.

https://doi.org/10.1016/j.comnet.2018.02.028

Hodo, E., Bellekens, X., Hamilton, A., Dubouilh, P.-L., Iorkyase, E., Tachtatzis, C., &

Atkinson, R. (2016). Threat analysis of IoT networks using artificial neural

network intrusion detection system. In International Symposium on Networks,

Computers and Communications. https://doi.org/10.1109/ISNCC.2016.7746067

Hosseini Bamakan, S. M., Wang, H., Yingjie, T., & Shi, Y. (2016). An effective

intrusion detection framework based on MCLP/SVM optimized by time-varying

chaos

particle4swarm4optimization.4Neurocomputing.4https://doi.org/10.1016/j.neucom.

2016.03.031

Huang, C. L., & Dun, J. F. (2008). A distributed PSO-SVM hybrid system with feature

selection and parameter optimization. Applied Soft Computing,

https://doi.org/10.1016/j.asoc.2007.10.007

Huang, G.-B., Zhou, H., Ding, X., & Zhang, R. (2012). Extreme learning machine for

regression and multiclass classification. IEEE Transactions on Systems.

https://doi.org/10.1109/TSMCB.2011.2168604

Huang, G.-B., Zhu, Q.-Y., Qin, A. K., Suganthan, P. N., & Huang, G.-B. (2005).

Evolutionary4extreme4learning4machine.4Pattern4Recognition.4https://doi.org/ht

tp://dx.doi.org/10.1016/j.patcog.2005.03.028

Huang, G.-B., Zhu, Q., Siew, C., Ã, G. H., Zhu, Q., Siew. (2006). Extreme learning

machine:Theory4and4applications.4Neurocomputing.4https://doi.org/10.1016/j.ne

ucom.2005.12.126

Huang, G., Zhu, Q., & Siew, C. (2004). Extreme learning machine: a new learning

scheme of feedforward neural networks. In International Conference on Neural

Networks. https://doi.org/10.1109/IJCNN.2004.1380068

112

Huang, H. X., Li, J. C., & Xiao, C. L. (2015). A proposed iteration optimization

approach integrating backpropagation neural network with genetic algorithm.

Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2014.07.039

Huang, Y., Tang, J., Cheng, Y., Li, H., Campbell, K. A., & Han, Z. (2016). Real-time

detection of false data injection in smart grid networks: An adaptive CUSUM

method4and4analysis.4IEEE4Systems4Journal.4https://doi.org/10.1109/JSYST.20

14.2323266

Huang, G. Bin, Chen, L., & Siew, C. K. (2006). Universal approximation using

incremental constructive feedforward networks with random hidden nodes. IEEE

Transactions on Neural Networks. https://doi.org/10.1109/TNN.2006.875977

Hubballi, N., & Suryanarayanan, V. (2014). False alarm minimization techniques in

signature-based intrusion detection systems: A survey. Computer

Communications. https://doi.org/10.1016/j.comcom.2014.04.012

Jahan, A., Mustapha, F., Ismail, Y., Sapuan, S. M., & Bahraminasab, M. (2011). A

comprehensive VIKOR method for material selection. Materials and Design.

https://doi.org/10.1016/j.matdes.2010.10.015

Ji, S. Y., Jeong, B. K., Choi, S., & Jeong, D. H. (2016). A multi-level intrusion

detection method for abnormal network behaviours. Journal of Network and

Computer Applications. https://doi.org/10.1016/j.jnca.2015.12.004

Jun-jie, X. U. (2005). An extended particle swarm optimizer. In 19th IEEE

International

Parallel4and4Distributed4Processing4Symposium.4https://doi.org/10.1109/IPDPS

.2005.101

Kang, S.-H., & Kim, K. J. (2016). A feature selection approach to find optimal feature

subsets for the network intrusion detection system. Cluster Computing.

https://doi.org/10.1007/s10586-015-0527-8

Kavitha., & Phil, M. (2013). Particle swarm optimization for adaptive anomaly-based

intrusion detection system using fuzzy controller. International Journal of Network

Security. http://dx.doi.org/10.1016/j.patcog.2005.03.028

Kevric, J., Jukic, S., & Subasi, A. (2017). An effective combining classifier approach

using tree algorithms for network intrusion detection. Neural Computing and

Applications. https://doi.org/10.1007/s00521-016-2418-1

Kiaee, F., Sheikhzadeh, H., & Eftekhari Mahabadi, S. (2015). Sparse Bayesian mixed-

effects extreme learning machine, an approach for unobserved clustered

heterogeneity. Neurocomputing. https://doi.org/10.1016/j.neucom.2015.10.073

Kiranyaz, S., Ince, T., Yildirim, A., & Gabbouj, M. (2009). Evolutionary artificial

neural networks by multi-dimensional particle swarm optimization. Neural

https://doi.org/10.1016/j.comcom.2014.04.012

113

Networks. https://doi.org/10.1016/j.neunet.2009.05.013

Koc, L., Mazzuchi, & Sarkani, S. (2012). A network intrusion detection system based

on

a4Hidden4Naïve4Bayes4multiclass4classifier.4Expert4Systems4With4Application

s.https://doi.org/10.1016/j.eswa.2012.07.009

Kumar, U. (2015). A survey on intrusion detection systems for cloud computing

environment.4International4Journal4of4Computer4Applications.4https://doi.org/1

0.5120/19150-0573

Kwon, D., Kim, H., Kim, J., Suh, S. C., Kim, I., & Kim, K. J. (2017). A survey of deep

learning-based network anomaly detection. Cluster Computing.

https://doi.org/10.1007/s10586-017-1117-8

Lan, Y., Soh, Y. C., & Huang, G. Bin. (2010). Two-stage extreme learning machine for

regression. Neurocomputing. https://doi.org/10.1016/j.neucom.2010.07.012

Li, G., Niu, P., & Duan, X. (2013). Fast learning network: a novel artificial neural

network with a fast learning speed. Neural Computing and Applications.

https://doi.org/10.1007/s00521-013-1398-7

Li, G., Niu, P., Wang, H., & Liu, Y. (2014). Least square fast learning network for

modelling the combustion efficiency of a 300WM coal-fired boiler. Neural

Networks. https://doi.org/10.1016/j.neunet.2013.12.006

Li, G., Qi, X., Chen, B., Ma, Y., Niu, P., & Chen, Z. (2017). Fast learning network with

parallel4layer4perceptrons.4Neural4Processing4Letters.4https://doi.org/10.1007/s

11063-017-9667-6

Li, X., Niu, P., Li, G., & Liu, J. (2017). An adaptive extreme learning machine for

modeling nox emission of a 300 mw circulating fluidized bed boiler. Neural

Processing Letters. https://doi.org/10.1007/s11063-017-9611-9

Li, M. Bin, Huang, G. Bin, Saratchandran, P., & Sundararajan, N. (2005). Fully

complex

extreme4learning4machine.4Neurocomputing.4https://doi.org/10.1016/j.neucom.2

005.03.002

Liang, G., Weller, S. R., Zhao, J., Luo, F., & Dong, Z. Y. (2017). The 2015 Ukraine

blackout: implications for false data injection attacks. IEEE Transactions on

Power Systems. https://doi.org/10.1109/TPWRS.2016.2631891

Liang, N.-Y., Huang, G.-B., Saratchandran, P., & Sundararajan, N. (2006). A fast and

accurate online sequential learning algorithm for feedforward networks. IEEE

Transactions on Neural Networks. https://doi.org/10.1109/TNN.2006.880583

Liao, H. J., Richard Lin, C. H., Lin, Y. C., & Tung, K. Y. (2013). Intrusion detection

system: A comprehensive review. Journal of Network and Computer Applications.

https://doi.org/10.1016/j.neucom.2010.07.012

114

https://doi.org/10.1016/j.jnca.2012.09.004

Lin, W. C., Ke, S. W., & Tsai, C. F. (2015). CANN: An intrusion detection system

based on combining cluster centers and nearest neighbors. Knowledge-Based

Systems. https://doi.org/10.1016/j.knosys.2015.01.009

Liu, X., Li, P., & Gao, C. (2013). Symmetric extreme learning machine. Neural

Computing and Applications. https://doi.org/10.1007/s00521-012-0859-8

Lu, H., Du, B., Liu, J., Xia, H., & Yeap, W. K. (2017). A kernel extreme learning

machine algorithm based on improved particle swam optimization. Memetic

Computing. https://doi.org/10.1007/s12293-016-0182-5

Ludwig, S. A. (2017). Intrusion detection of multiple attack classes using a deep neural

net ensemble. In IEEE International Conference on Emerging Technologies and

Factory Automation. https://doi.org/10.1109/SSCI.2017.8280825

Ma, Y., Niu, P., Yan, S., & Li, G. (2018). A modified online sequential extreme

learning machine for building circulation fluidized bed boiler’s NOx emission

model. Applied Mathematics and Computation.

https://doi.org/10.1016/j.amc.2018.03.010

May, R. J., Maier, H. R., & Dandy, G. C. (2010). Data splitting for artificial neural

networks using SOM-based stratified sampling. Neural Networks

https://doi.org/10.1016/j.neunet.2009.11.009

Mirjalili, S., Zaiton, S., Hashim, M., & Sardroudi, H. M. (2012). Training feedforward

neural networks using hybrid particle swarm optimization and gravitational search

algorithm.4Applied4Mathematics4and4Computation.4https://doi.org/10.1016/j.am

c.2012.04.069

Mishra, P., Pilli, E. S., Varadharajan, V., & Tupakula, U. (2016). Intrusion detection

techniques in cloud environment: A Survey. Journal of Network and Computer

Applications. https://doi.org/10.1016/j.jnca.2016.10.015

Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., & Rajarajan, M. (2013). A

survey of intrusion detection techniques in cloud. Journal of Network and

Computer Applications. https://doi.org/10.1016/j.jnca.2012.05.003

Moradi, M., & Zulkernine, M. (2004). A neural network based system for intrusion

detection and classification of attacks. In IEEE International Conference on

Advances in Intelligent Systems-Theory and Applications.

https://doi.org/10.1016/j.neucom.2010.07.012

Moustafa, N., Slay, J., & Creech, G. (2017). Novel geometric area analysis technique

for anomaly detection using trapezoidal area estimation on large-scale

networks.4IEEE4Transactionson4Big4Data.https://doi.org/10.1109/TBDATA.201

7.2715166

https://doi.org/10.1016/j.neucom.2010.07.012

115

Mukherjee, S., & Sharma, N. (2012). Intrusion detection using naive bayes classifier

with4feature4reduction.4Procedia4Technology.4https://doi.org/10.1016/j.protcy.2

012.05.017

Niu, B., Zhu, Y., He, X., & Wu, H. (2007). MCPSO: A multi-swarm cooperative

particle

swarm4optimizer.4Applied4Mathematics4and4Computation.4https://doi.org/10.10

16/j.amc.2006.07.026

Niu, P., Chen, K., Ma, Y., Li, X., Liu, A., & Li, G. (2017). Model turbine heat rate by

fast learning network with tuning based on ameliorated krill herd algorithm.

Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2016.11.011

Niu, P., Ma, Y., Li, M., Yan, S., & Li, G. (2016). A kind of parameters self-adjusting

extreme4learning4machine.4Neural4Processing4Letters.4https://doi.org/10.1007/s

11063-016-9496-z

Okulewicz, M., & Mandziuk, J. (2015). Two-phase multi-swarm PSO and the dynamic

vehicle routing problem. In IEEE Symposium Series on Computational

Intelligence. https://doi.org/10.1109/CIHLI.2014.7013391

Patel, A., Taghavi, M., Bakhtiyari, K., & Celestino Júnior, J. (2013). An intrusion

detection and prevention system in cloud computing: A systematic review. Journal

of Network and Computer Applications. https://doi.org/10.1016/j.jnca.2012.08.007

Pervez, M. S., & Farid, D. M. (2014). Feature selection and intrusion classification in

NSL-KDD cup 99 dataset employing SVMs. In 8th International Conference on

Software, Knowledge, Information Management and Applications.

https://doi.org/10.1109/SKIMA.2014.7083539

Phoungphol, P., Zhang, Y., & Zhao, Y. (2012). Robust multiclass classification for

learning from imbalanced biomedical data. Tsinghua Science and Technology.

https://doi.org/10.1109/TST.2012.6374363

Pornsing, C., Sodhi, M. S., & Lamond, B. F. (2016). Novel self-adaptive particle swarm

optimization methods. Soft Computing. https://doi.org/10.1007/s00500-015-1716-3

Raja, M. A. Z. (2014). Stochastic numerical treatment for solving Troesch’s problem.

Information Sciences. https://doi.org/10.1016/j.ins.2014.04.036

Raja, M. A. Z., Shah, F. H., Tariq, M., Ahmad, I., & Ahmad, S. ul I. (2016). Design of

artificial neural network models optimized with sequential quadratic programming

to study the dynamics of nonlinear Troesch’s problem arising in plasma physics.

Neural Computing and Applications. https://doi.org/10.1007/s00521-016-2530-2

Ratnaweera, A., Halgamuge,, & Watson,(2004). Self-organizing hierarchical particle

swarm optimizer with time-varying acceleration coefficients. IEEE Transactions

on Evolutionary Computation. https://doi.org/10.1109/TEVC.2004.826071

116

Rodríguez, J. D., Pérez, A., & Lozano, J. A. (2010). Sensitivity analysis of k-fold cross

validation in prediction error estimation. IEEE Transactions on Pattern Analysis

and Machine Intelligence. https://doi.org/10.1109/TPAMI.2009.187

Rong, C., Nguyen, S. T., & Gilje, M. (2012). Beyond lightning: A survey on security

challenges in cloud computing. Computer and Electrical Engineering.

https://doi.org/10.1016/j.compeleceng.2012.04.015

Rong, H. J., Ong, Y. S., Tan, A. H., & Zhu, Z. (2008). A fast pruned-extreme learning

machine4for4classification4problem.4Neurocomputing.4https://doi.org/10.1016/j.

neucom.2008.01.005

Sabhnani, M., & Serpen, G. (2004). Why machine learning algorithms fail in misuse

detection on KDD intrusion detection data set. Intelligent Data Analysis.

https://doi.org/10.1007/978-3-540-88623-5_41

Saxena, H., & Richaariya, V. (2014). Intrusion detection in KDD99 dataset using SVM-

PSO and feature reduction with information gain. International Journal of

Computer Applications. https://doi.org/10.1109/CIHLI.012

Scardapane, S., & Wang, D. (2017). Randomness in neural networks: an overview.

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery.

https://doi.org/10.1002/widm.1200

Shah, S. A. R., & Issac, B. (2018). Performance comparison of intrusion detection

systems and application of machine learning to Snort system. Future Generation

Computer Systems. https://doi.org/10.1016/j.future.2017.10.016

Shi, X. H., Liang, Y. C., Lee, H. P., Lu, C., & Wang, L. M. (2005). An improved GA

and a novel PSO-GA-based hybrid algorithm. Information Processing Letters.

https://doi.org/10.1016/j.ipl.2004.11.003

Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In IEEE

International4Conference4on4Evolutionary4Computation.https://doi.org/10.1109/

ICEC.1998.699146

Shi, Y., & Eberhart, R. (1999). Empirical study of particle swarm optimization.

Evolutionary Computation. https://doi.org/10.1109/CEC.1999.785511

Singh, R., Kumar, H., & Singla, R. K. (2015). An intrusion detection system using

network traffic profiling and online sequential extreme learning machine. Expert

Systems with Applications. https://doi.org/10.1016/j.eswa.2015.07.015

Sivatha, S. S., Geetha, S., & Kannan, A. (2012). Decision tree based light weight

intrusion detection using a wrapper approach. Expert Systems with Applications.

https://doi.org/10.1016/j.eswa.2011.06.013

Slowik, A., & Kwasnicka, H. (2018). Nature inspired methods and their industry

applications-swarm intelligence algorithms. IEEE Transactions on Industrial

117

Informatics. https://doi.org/10.1109/TII.2017.2786782

Snoek, J., Larochelle, H., & Adams, R. (2012). Practical Bayesian optimization of

machine4learning4algorithms. Advances4in4Neural4Information.4https://doi.org/2

012arXiv1206.2944S

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures

for

classification4tasks.4Information4Processing4and4Management.4https://doi.org/1

0.1016/j.ipm.2009.03.002

Su., Kamel,, Wong,., & Wang,. (2007). Cost-sensitive boosting for classification of

imbalance data. Pattern Recognition, https://doi.org/10.1016/j.patcog.2007.04.009

Tanweer, M. R., Suresh, S., & Sundararajan, N. (2015). Self-regulating particle swarm

optimization4algorithm.4Information4Sciences.4https://doi.org/10.1016/j.ins.2014.

09.053

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of

the KDD CUP 99 data set. In IEEE Symposium on Computational Intelligence for

Security and Defense Applications. https://doi.org/10.1109/CISDA.2009.5356528

Tran, C., Vo, T. N., & Thinh, T. N. (2017). A heterogeneous anomaly-based intrusion

detection system. In 4th Conference on Information and Computer Science.

https://doi.org/10.1109/NAFOSTED.2017.8108056

Tsai, C., Hsu, Y., Lin, C., & Lin, W. (2009).Intrusion detection by machine learning: A

review. Expert Systems with Application.

https://doi.org/10.1016/j.eswa.2009.05.029

Udaya Sampath K. Perera Miriya Thanthrige, Jagath Samarabandu (2016). Machine

learning techniques for intrusion detection. In IEEE Canadian Conference on

Electrical4and4Computer4Engineering(CCECE).4https://doi.org/10.1145/298025

8.2980378

Von Solms, R., & Van Niekerk, J. (2013). From information security to cyber security.

Computers and Security. https://doi.org/10.1016/j.cose.04.004

Wang, C. R., Xu, R. F., Lee, S. J., & Lee, C. H. (2018). Network intrusion detection

using equality constrained-optimization-based extreme learning machines.

Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.02.015

Wang, J., Wu, W., Li, Z., & Li, L. (2011). Convergence of gradient method for double

parallel feedforward neural network. International Journal of Numerical Analysis

and Modeling. https://doi.org/10.1109/TPWRS.2016.2631891

Wang, N., Er, M. J., & Han, M. (2014). Parsimonious extreme learning machine using

recursive orthogonal least squares. IEEE Transactions on Neural Networks and

Learning Systems. https://doi.org/10.1109/TNNLS.2013.2296048

118

Wills, C. (2010). A survey of intrusion detection and prevention systems. Information

Management & Computer Security. https://doi.org/10.1108/09685221011079199

Xia, X., Gui, L., & Zhan, Z. H. (2018). A multi-swarm particle swarm optimization

algorithm based on dynamical topology and purposeful detecting. Applied Soft

Computing. https://doi.org/10.1016/j.asoc.2018.02.042

Xiang, J., Westerlund, M., Sovilj, D., & Pulkkis, G. (2014). Using extreme learning

machine for intrusion detection in a big data environment. In 2014 Workshop on

Artificial4Intelligent4and4Security4Workshop.https://doi.org/10.1145/2666652.26

66664

Zeng, N., Zhang, H., Liu, W., Liang, J., & Alsaadi, F. E. (2017). A switching delayed

PSO optimized extreme learning machine for short-term load forecasting.

Neurocomputing. https://doi.org/10.1016/j.neucom.2017.01.090

Zhan, Z.-H., Zhang, J., Li, Y., & Chung, H. S.-H. (2009). Adaptive particle swarm

optimization.4IEEE4Transactions4on4Systems.4https://doi.org/10.1109/TSMCB.2

009.2015956

Zhang, L., Tang, Y., Hua, C., & Guan, X. (2015). A new particle swarm optimization

algorithm with adaptive inertia weight based on Bayesian techniques. Applied Soft

Computing. https://doi.org/10.1016/j.asoc.2014.11.018

Zhang, L., & Zhang, D. (2017). Evolutionary cost-sensitive extreme learning machine.

IEEE Transactions on Neural Networks and Learning Systems.

https://doi.org/10.1109/TNNLS.2016.2607757

119

APPENDIX A

 EXPERIMENTS RESULTS OF ELM VS FLN WITH SEVERAL RUNS

10 number of neurons 25 number of neurons

ELM FLN ELM FLN
 Run 1

Accuracy is: 0.90242

Precision: 0.90242

Recall: 0.90242

FM:: 0.90242

G-Mean:: 0.81746

Detection Rate: 0.90128

False Alarm Rate: 0.11995

Run 1

Accuracy is: 0.95781

Precision: 0.95781

Recall: 0.95781

FM:: 0.95781

G-Mean:: 0.91807

Detection Rate: 0.96

False Alarm Rate: 0.046812

Run=1

Testing Accuracy is: 0.94873

Precision: 0.94873

Recall: 0.94873

FM:: 0.94873

G-Mean:: 0.90104

Detection Rate: 0.93925

False Alarm Rate: 0.073042

Run = 1

Testing Accuracy is: 0.96731

Precision: 0.96731

Recall: 0.96731

FM:: 0.96731

G-Mean:: 0.93605

Detection Rate: 0.96223

False Alarm Rate: 0.044355

Run =2

 Accuracy is: 0.91574

Precision: 0.91574

Recall: 0.91574

FM:: 0.91574

G-Mean:: 0.84102

Detection Rate: 0.91703

False Alarm Rate: 0.1001

Run =2

Accuracy is: 0.95819

Precision: 0.95819

Recall: 0.95819

FM:: 0.95819

G-Mean:: 0.91878

Detection Rate: 0.95729

False Alarm Rate: 0.050223

Run=2

Accuracy is: 0.95245

Precision: 0.95245

Recall: 0.95245

FM:: 0.95245

G-Mean:: 0.90797

Detection Rate: 0.95068

False Alarm Rate: 0.057997

Run=2

Accuracy is: 0.96805

Precision: 0.96805

Recall: 0.96805

FM:: 0.96805

G-Mean:: 0.93747

Detection Rate: 0.96608

False Alarm Rate: 0.039647

Run =3

Accuracy is: 0.91347

Precision: 0.91347

Recall: 0.91347

FM:: 0.91347

G-Mean:: 0.83693

Detection Rate: 0.90824

False Alarm Rate: 0.11214

Run = 3

Accuracy is: 0.95775

Precision: 0.95775

Recall: 0.95775

FM:: 0.95775

G-Mean:: 0.91791

Detection Rate: 0.95496

False Alarm Rate: 0.052987

Run=3

Accuracy is: 0.94641

Precision: 0.94641

Recall: 0.94641

FM:: 0.94641

G-Mean:: 0.89669

Detection Rate: 0.94023

False Alarm Rate: 0.071029

Run=3

Accuracy is: 0.97161

Precision: 0.97161

Recall: 0.97161

FM:: 0.97161

G-Mean:: 0.94431

Detection Rate: 0.96586

False Alarm Rate: 0.040158

Run =4

Accuracy is: 0.90194

Precision: 0.90194

Recall: 0.90194

FM:: 0.90194

G-Mean:: 0.81675

Detection Rate: 0.93882

False Alarm Rate: 0.072564

Run = 4

Accuracy is: 0.96056

Precision: 0.96056

Recall: 0.96056

FM:: 0.96056

G-Mean:: 0.92321

Detection Rate: 0.95366

False Alarm Rate: 0.054795

Run=4

Accuracy is: 0.94965

Precision: 0.94965

Recall: 0.94965

FM:: 0.94965

G-Mean:: 0.9028

Detection Rate: 0.94659

False Alarm Rate: 0.063455

Run=4

Accuracy is: 0.96662

Precision: 0.96662

Recall: 0.96662

FM:: 0.96662

G-Mean:: 0.93474

Detection Rate: 0.95947

False Alarm Rate: 0.047835

Run=5

Accuracy is: 0.90447

Precision: 0.90447

Recall: 0.90447

FM:: 0.90447

G-Mean:: 0.82118

Detection Rate: 0.93965

False Alarm Rate: 0.070995

Run=5

Accuracy is: 0.95834

Precision: 0.95834

Recall: 0.95834

FM:: 0.95834

G-Mean:: 0.91908

Detection Rate: 0.96783

False Alarm Rate: 0.037156

Run=5

Accuracy is: 0.94732

Precision: 0.94732

Recall: 0.94732

FM:: 0.94732

G-Mean:: 0.89846

Detection Rate: 0.93887

False Alarm Rate: 0.073792

Run=5

Accuracy is: 0.96875

Precision: 0.96875

Recall: 0.96875

FM:: 0.96875

G-Mean:: 0.93881

Detection Rate: 0.96114

False Alarm Rate: 0.04589

Run=6

Run = 6

Run=6

Accuracy is: 0.93268

Run=6

Accuracy is: 0.97018

120

Accuracy is: 0.86759

Precision: 0.86759

Recall: 0.86759

FM:: 0.86759

G-Mean:: 0.75762

Detection Rate: 0.88139

False Alarm Rate: 0.13882

Accuracy is: 0.96096

Precision: 0.96096

Recall: 0.96096

FM:: 0.96096

G-Mean:: 0.92402

Detection Rate: 0.95678

False Alarm Rate: 0.051179

Precision: 0.93268

Recall: 0.93268

FM:: 0.93268

G-Mean:: 0.87155

Detection Rate: 0.93821

False Alarm Rate: 0.073246

Precision: 0.97018

Recall: 0.97018

FM:: 0.97018

G-Mean:: 0.94158

Detection Rate: 0.96926

False Alarm Rate: 0.035791

Run=7

Accuracy is: 0.91002

Precision: 0.91002

Recall: 0.91002

FM:: 0.91002

G-Mean:: 0.83073

Detection Rate: 0.89937

False Alarm Rate: 0.12442

Run=7

Accuracy is: 0.96402

Precision: 0.96402

Recall: 0.96402

FM:: 0.96402

G-Mean:: 0.9298

Detection Rate: 0.95682

False Alarm Rate: 0.051179

Run=7

Accuracy is: 0.94179

Precision: 0.94179

Recall: 0.94179

FM:: 0.94179

G-Mean:: 0.88817

Detection Rate: 0.93464

False Alarm Rate: 0.078432

Run=7

Accuracy is: 0.96621

Precision: 0.96621

Recall: 0.96621

FM:: 0.96621

G-Mean:: 0.93395

Detection Rate: 0.96149

False Alarm Rate: 0.04531

Run=8

Accuracy is: 0.90002

Precision: 0.90002

Recall: 0.90002

FM:: 0.90002

G-Mean:: 0.81332

Detection Rate: 0.91192

False Alarm Rate: 0.10433

Run=8

Accuracy is: 0.9593

Precision: 0.9593

Recall: 0.9593

FM:: 0.9593

G-Mean:: 0.92085

Detection Rate: 0.95413

False Alarm Rate: 0.054215

Run=8

Accuracy is: 0.94867

Precision: 0.94867

Recall: 0.94867

FM:: 0.94867

G-Mean:: 0.90091

Detection Rate: 0.93458

False Alarm Rate: 0.079251

Run=8

Accuracy is: 0.96478

Precision: 0.96478

Recall: 0.96478

FM:: 0.96478

G-Mean:: 0.93124

Detection Rate: 0.95894

False Alarm Rate: 0.048381

Run=9

Accuracy is: 0.88869

Precision: 0.88869

Recall: 0.88869

FM:: 0.88869

G-Mean:: 0.79388

Detection Rate: 0.8812

False Alarm Rate: 0.15151

Run=9

Accuracy is: 0.9574

Precision: 0.9574

Recall: 0.9574

FM:: 0.9574

G-Mean:: 0.91725

Detection Rate: 0.9617

False Alarm Rate: 0.044526

Run=9

Accuracy is: 0.95016

Precision: 0.95016

Recall: 0.95016

FM:: 0.95016

G-Mean:: 0.90379

Detection Rate: 0.95089

False Alarm Rate: 0.058338

Run=9

 Accuracy is: 0.96513

Precision: 0.96513

Recall: 0.96513

FM:: 0.96513

G-Mean:: 0.93192

Detection Rate: 0.96197

False Alarm Rate: 0.044594

Run=10

Accuracy is: 0.8659

Precision: 0.8659

Recall: 0.8659

FM:: 0.8659

G-Mean:: 0.75521

Detection Rate: 0.90295

False Alarm Rate: 0.11221

Run=10

 Accuracy is: 0.96242

Precision: 0.96242

Recall: 0.96242

FM:: 0.96242

G-Mean:: 0.92677

Detection Rate: 0.96343

False Alarm Rate: 0.04282

Run=10

Accuracy is: 0.94321

Precision: 0.94321

Recall: 0.94321

FM:: 0.94321

G-Mean:: 0.89081

Detection Rate: 0.94165

False Alarm Rate: 0.069289

Run=10

Accuracy is: 0.96242

Precision: 0.96242

Recall: 0.96242

FM:: 0.96242

G-Mean:: 0.92677

Detection Rate: 0.96343

False Alarm Rate: 0.04282

Run=11

Accuracy is: 0.87941

Precision: 0.87941

Recall: 0.87941

FM:: 0.87941

G-Mean:: 0.77771

Detection Rate: 0.88015

False Alarm Rate: 0.14663

Run=11

Accuracy is: 0.95821

Precision: 0.95821

Recall: 0.95821

FM:: 0.95821

G-Mean:: 0.91879

Detection Rate: 0.95723

False Alarm Rate: 0.050189

Run=11

Accuracy is: 0.95041

Testing Accuracy is: 0.95126

Precision: 0.95126

Recall: 0.95126

FM:: 0.95126

G-Mean:: 0.90574

Detection Rate: 0.94259

False Alarm Rate: 0.068538

Run=11

Accuracy is: 0.9697

Precision: 0.9697

Recall: 0.9697

FM:: 0.9697

G-Mean:: 0.94063

Detection Rate: 0.95729

False Alarm Rate: 0.050804

121

Run=12

Accuracy is: 0.92552

Precision: 0.92552

Recall: 0.92552

FM:: 0.92552

G-Mean:: 0.85828

Detection Rate: 0.90447

False Alarm Rate: 0.11797

Run=12

Accuracy is: 0.96373

Precision: 0.96373

Recall: 0.96373

FM:: 0.96373

G-Mean:: 0.92925

Detection Rate: 0.95602

False Alarm Rate: 0.052202

Run=12

Accuracy is: 0.94486

Precision: 0.94486

Recall: 0.94486

FM:: 0.94486

G-Mean:: 0.89374

Detection Rate: 0.92808

False Alarm Rate: 0.087439

Run=12

Accuracy is: 0.96453

Precision: 0.96453

Recall: 0.96453

FM:: 0.96453

G-Mean:: 0.93079

Detection Rate: 0.95997

False Alarm Rate: 0.047323

Run=13

Accuracy is: 0.87492

Precision: 0.87492

Recall: 0.87492

FM:: 0.87492

G-Mean:: 0.76982

Detection Rate: 0.84333

False Alarm Rate: 0.20592

Run=13

Accuracy is: 0.95738

Precision: 0.95738

Recall: 0.95738

FM:: 0.95738

G-Mean:: 0.91724

Detection Rate: 0.95785

False Alarm Rate: 0.049336

Run=13

Accuracy is: 0.94896

Precision: 0.94896

Recall: 0.94896

FM:: 0.94896

G-Mean:: 0.90146

Detection Rate: 0.94117

False Alarm Rate: 0.070585

Run=13

Accuracy is: 0.97382

Precision: 0.97382

Recall: 0.97382

FM:: 0.97382

G-Mean:: 0.94857

Detection Rate: 0.97024

False Alarm Rate: 0.03487

Run=14

Accuracy is: 0.88991

Precision: 0.88991

Recall: 0.88991

FM:: 0.88991

G-Mean:: 0.79585

Detection Rate: 0.87028

False Alarm Rate: 0.16857

Run=14

Accuracy is: 0.95789

Precision: 0.95789

Recall: 0.95789

FM:: 0.95789

G-Mean:: 0.91822

Detection Rate: 0.95773

False Alarm Rate: 0.049678

Run=14

Accuracy is: 0.88991

Precision: 0.88991

Recall: 0.88991

FM:: 0.88991

G-Mean:: 0.79585

Detection Rate: 0.87028

False Alarm Rate: 0.16857

Run=14

Run=15Accuracy is: 0.95789

Precision: 0.95789

Recall: 0.95789

FM:: 0.95789

G-Mean:: 0.91822

Detection Rate: 0.95773

False Alarm Rate: 0.049678

Run=15

 Accuracy is: 0.89842

Precision: 0.89842

Recall: 0.89842

FM:: 0.89842

G-Mean:: 0.81042

Detection Rate: 0.92371

False Alarm Rate: 0.08853

Run=15

Accuracy is: 0.96356

Precision: 0.96356

Recall: 0.96356

FM:: 0.96356

G-Mean:: 0.9289

Detection Rate: 0.95865

False Alarm Rate: 0.048654

Run=15

Accuracy is: 0.95789

Precision: 0.95789

Recall: 0.95789

FM:: 0.95789

G-Mean:: 0.91822

Detection Rate: 0.95773

False Alarm Rate: 0.049678

Run=15

Testing Accuracy is: 0.96356

Precision: 0.96356

Recall: 0.96356

FM:: 0.96356

G-Mean:: 0.9289

Detection Rate: 0.95865

False Alarm Rate: 0.048654

35 number of neurons 50 number of neurons

ELM FLN ELM FLN
 Run 1

Accuracy is: 0.90242

Precision: 0.90242

Recall: 0.90242

FM:: 0.90242

G-Mean:: 0.81746

Detection Rate: 0.90128

False Alarm Rate: 0.11995

Run 1

Accuracy is: 0.95781

Precision: 0.95781

Recall: 0.95781

FM:: 0.95781

G-Mean:: 0.91807

Detection Rate: 0.96

False Alarm Rate: 0.046812

Run=1

Testing Accuracy is: 0.94873

Precision: 0.94873

Recall: 0.94873

FM:: 0.94873

G-Mean:: 0.90104

Detection Rate: 0.93925

False Alarm Rate: 0.073042

Run = 1

Testing Accuracy is: 0.96731

Precision: 0.96731

Recall: 0.96731

FM:: 0.96731

G-Mean:: 0.93605

Detection Rate: 0.96223

False Alarm Rate: 0.044355

Run =2

 Accuracy is: 0.91574

Precision: 0.91574

Recall: 0.91574

Run =2

Accuracy is: 0.95819

Precision: 0.95819

Recall: 0.95819

Run=2

Accuracy is: 0.95245

Precision: 0.95245

Recall: 0.95245

Run=2

Accuracy is: 0.96805

Precision: 0.96805

Recall: 0.96805

122

FM:: 0.91574

G-Mean:: 0.84102

Detection Rate: 0.91703

False Alarm Rate: 0.1001

FM:: 0.95819

G-Mean:: 0.91878

Detection Rate: 0.95729

False Alarm Rate: 0.050223

FM:: 0.95245

G-Mean:: 0.90797

Detection Rate: 0.95068

False Alarm Rate: 0.057997

FM:: 0.96805

G-Mean:: 0.93747

Detection Rate: 0.96608

False Alarm Rate: 0.039647

Run =3

Accuracy is: 0.91347

Precision: 0.91347

Recall: 0.91347

FM:: 0.91347

G-Mean:: 0.83693

Detection Rate: 0.90824

False Alarm Rate: 0.11214

Run = 3

Accuracy is: 0.95775

Precision: 0.95775

Recall: 0.95775

FM:: 0.95775

G-Mean:: 0.91791

Detection Rate: 0.95496

False Alarm Rate: 0.052987

Run=3

Accuracy is: 0.94641

Precision: 0.94641

Recall: 0.94641

FM:: 0.94641

G-Mean:: 0.89669

Detection Rate: 0.94023

False Alarm Rate: 0.071029

Run=3

Accuracy is: 0.97161

Precision: 0.97161

Recall: 0.97161

FM:: 0.97161

G-Mean:: 0.94431

Detection Rate: 0.96586

False Alarm Rate: 0.040158

Run =4

Accuracy is: 0.90194

Precision: 0.90194

Recall: 0.90194

FM:: 0.90194

G-Mean:: 0.81675

Detection Rate: 0.93882

False Alarm Rate: 0.072564

Run = 4

Accuracy is: 0.96056

Precision: 0.96056

Recall: 0.96056

FM:: 0.96056

G-Mean:: 0.92321

Detection Rate: 0.95366

False Alarm Rate: 0.054795

Run=4

Accuracy is: 0.94965

Precision: 0.94965

Recall: 0.94965

FM:: 0.94965

G-Mean:: 0.9028

Detection Rate: 0.94659

False Alarm Rate: 0.063455

Run=4

Accuracy is: 0.96662

Precision: 0.96662

Recall: 0.96662

FM:: 0.96662

G-Mean:: 0.93474

Detection Rate: 0.95947

False Alarm Rate: 0.047835

Run=5

Accuracy is: 0.90447

Precision: 0.90447

Recall: 0.90447

FM:: 0.90447

G-Mean:: 0.82118

Detection Rate: 0.93965

False Alarm Rate: 0.070995

Run=5

Accuracy is: 0.95834

Precision: 0.95834

Recall: 0.95834

FM:: 0.95834

G-Mean:: 0.91908

Detection Rate: 0.96783

False Alarm Rate: 0.037156

Run=5

Accuracy is: 0.94732

Precision: 0.94732

Recall: 0.94732

FM:: 0.94732

G-Mean:: 0.89846

Detection Rate: 0.93887

False Alarm Rate: 0.073792

Run=5

Accuracy is: 0.96875

Precision: 0.96875

Recall: 0.96875

FM:: 0.96875

G-Mean:: 0.93881

Detection Rate: 0.96114

False Alarm Rate: 0.04589

Run=6

Accuracy is: 0.86759

Precision: 0.86759

Recall: 0.86759

FM:: 0.86759

G-Mean:: 0.75762

Detection Rate: 0.88139

False Alarm Rate: 0.13882

Run = 6

Accuracy is: 0.96096

Precision: 0.96096

Recall: 0.96096

FM:: 0.96096

G-Mean:: 0.92402

Detection Rate: 0.95678

False Alarm Rate: 0.051179

Run=6

Accuracy is: 0.93268

Precision: 0.93268

Recall: 0.93268

FM:: 0.93268

G-Mean:: 0.87155

Detection Rate: 0.93821

False Alarm Rate: 0.073246

Run=6

Accuracy is: 0.97018

Precision: 0.97018

Recall: 0.97018

FM:: 0.97018

G-Mean:: 0.94158

Detection Rate: 0.96926

False Alarm Rate: 0.035791

Run=7

Accuracy is: 0.91002

Precision: 0.91002

Recall: 0.91002

FM:: 0.91002

G-Mean:: 0.83073

Detection Rate: 0.89937

False Alarm Rate: 0.12442

Run=7

Accuracy is: 0.96402

Precision: 0.96402

Recall: 0.96402

FM:: 0.96402

G-Mean:: 0.9298

Detection Rate: 0.95682

False Alarm Rate: 0.051179

Run=7

Accuracy is: 0.94179

Precision: 0.94179

Recall: 0.94179

FM:: 0.94179

G-Mean:: 0.88817

Detection Rate: 0.93464

False Alarm Rate: 0.078432

Run=7

Accuracy is: 0.96621

Precision: 0.96621

Recall: 0.96621

FM:: 0.96621

G-Mean:: 0.93395

Detection Rate: 0.96149

False Alarm Rate: 0.04531

Run=8

Accuracy is: 0.90002

Precision: 0.90002

Run=8

Accuracy is: 0.9593

Precision: 0.9593

Run=8

Accuracy is: 0.94867

Precision: 0.94867

Run=8

Accuracy is: 0.96478

Precision: 0.96478

123

Recall: 0.90002

FM:: 0.90002

G-Mean:: 0.81332

Detection Rate: 0.91192

False Alarm Rate: 0.10433

Recall: 0.9593

FM:: 0.9593

G-Mean:: 0.92085

Detection Rate: 0.95413

False Alarm Rate: 0.054215

Recall: 0.94867

FM:: 0.94867

G-Mean:: 0.90091

Detection Rate: 0.93458

False Alarm Rate: 0.079251

Recall: 0.96478

FM:: 0.96478

G-Mean:: 0.93124

Detection Rate: 0.95894

False Alarm Rate: 0.048381

Run=9

Accuracy is: 0.88869

Precision: 0.88869

Recall: 0.88869

FM:: 0.88869

G-Mean:: 0.79388

Detection Rate: 0.8812

False Alarm Rate: 0.15151

Run=9

Accuracy is: 0.9574

Precision: 0.9574

Recall: 0.9574

FM:: 0.9574

G-Mean:: 0.91725

Detection Rate: 0.9617

False Alarm Rate: 0.044526

Run=9

Accuracy is: 0.95016

Precision: 0.95016

Recall: 0.95016

FM:: 0.95016

G-Mean:: 0.90379

Detection Rate: 0.95089

False Alarm Rate: 0.058338

Run=9

 Accuracy is: 0.96513

Precision: 0.96513

Recall: 0.96513

FM:: 0.96513

G-Mean:: 0.93192

Detection Rate: 0.96197

False Alarm Rate: 0.044594

Run=10

Accuracy is: 0.8659

Precision: 0.8659

Recall: 0.8659

FM:: 0.8659

G-Mean:: 0.75521

Detection Rate: 0.90295

False Alarm Rate: 0.11221

Run=10

 Accuracy is: 0.96242

Precision: 0.96242

Recall: 0.96242

FM:: 0.96242

G-Mean:: 0.92677

Detection Rate: 0.96343

False Alarm Rate: 0.04282

Run=10

Accuracy is: 0.94321

Precision: 0.94321

Recall: 0.94321

FM:: 0.94321

G-Mean:: 0.89081

Detection Rate: 0.94165

False Alarm Rate: 0.069289

Run=10

Accuracy is: 0.96242

Precision: 0.96242

Recall: 0.96242

FM:: 0.96242

G-Mean:: 0.92677

Detection Rate: 0.96343

False Alarm Rate: 0.04282

Run=11

Accuracy is: 0.87941

Precision: 0.87941

Recall: 0.87941

FM:: 0.87941

G-Mean:: 0.77771

Detection Rate: 0.88015

False Alarm Rate: 0.14663

Run=11

Accuracy is: 0.95821

Precision: 0.95821

Recall: 0.95821

FM:: 0.95821

G-Mean:: 0.91879

Detection Rate: 0.95723

False Alarm Rate: 0.050189

Run=11

Accuracy is: 0.95041

Testing Accuracy is: 0.95126

Precision: 0.95126

Recall: 0.95126

FM:: 0.95126

G-Mean:: 0.90574

Detection Rate: 0.94259

False Alarm Rate: 0.068538

Run=11

Accuracy is: 0.9697

Precision: 0.9697

Recall: 0.9697

FM:: 0.9697

G-Mean:: 0.94063

Detection Rate: 0.95729

False Alarm Rate: 0.050804

Run=12

Accuracy is: 0.92552

Precision: 0.92552

Recall: 0.92552

FM:: 0.92552

G-Mean:: 0.85828

Detection Rate: 0.90447

False Alarm Rate: 0.11797

Run=12

Accuracy is: 0.96373

Precision: 0.96373

Recall: 0.96373

FM:: 0.96373

G-Mean:: 0.92925

Detection Rate: 0.95602

False Alarm Rate: 0.052202

Run=12

Accuracy is: 0.94486

Precision: 0.94486

Recall: 0.94486

FM:: 0.94486

G-Mean:: 0.89374

Detection Rate: 0.92808

False Alarm Rate: 0.087439

Run=12

Accuracy is: 0.96453

Precision: 0.96453

Recall: 0.96453

FM:: 0.96453

G-Mean:: 0.93079

Detection Rate: 0.95997

False Alarm Rate: 0.047323

Run=13

Accuracy is: 0.87492

Precision: 0.87492

Recall: 0.87492

FM:: 0.87492

G-Mean:: 0.76982

Detection Rate: 0.84333

False Alarm Rate: 0.20592

Run=13

Accuracy is: 0.95738

Precision: 0.95738

Recall: 0.95738

FM:: 0.95738

G-Mean:: 0.91724

Detection Rate: 0.95785

False Alarm Rate: 0.049336

Run=13

Accuracy is: 0.94896

Precision: 0.94896

Recall: 0.94896

FM:: 0.94896

G-Mean:: 0.90146

Detection Rate: 0.94117

False Alarm Rate: 0.070585

Run=13

Accuracy is: 0.97382

Precision: 0.97382

Recall: 0.97382

FM:: 0.97382

G-Mean:: 0.94857

Detection Rate: 0.97024

False Alarm Rate: 0.03487

Run=14

Accuracy is: 0.88991

Run=14

Accuracy is: 0.95789

Run=14

Accuracy is: 0.88991

Run=14

Run=15Accuracy is: 0.95789

124

Precision: 0.88991

Recall: 0.88991

FM:: 0.88991

G-Mean:: 0.79585

Detection Rate: 0.87028

False Alarm Rate: 0.16857

Precision: 0.95789

Recall: 0.95789

FM:: 0.95789

G-Mean:: 0.91822

Detection Rate: 0.95773

False Alarm Rate: 0.049678

Precision: 0.88991

Recall: 0.88991

FM:: 0.88991

G-Mean:: 0.79585

Detection Rate: 0.87028

False Alarm Rate: 0.16857

Precision: 0.95789

Recall: 0.95789

FM:: 0.95789

G-Mean:: 0.91822

Detection Rate: 0.95773

False Alarm Rate: 0.049678

Run=15

 Accuracy is: 0.89842

Precision: 0.89842

Recall: 0.89842

FM:: 0.89842

G-Mean:: 0.81042

Detection Rate: 0.92371

False Alarm Rate: 0.08853

Run=15

Accuracy is: 0.96356

Precision: 0.96356

Recall: 0.96356

FM:: 0.96356

G-Mean:: 0.9289

Detection Rate: 0.95865

False Alarm Rate: 0.048654

Run=15

Accuracy is: 0.95789

Precision: 0.95789

Recall: 0.95789

FM:: 0.95789

G-Mean:: 0.91822

Detection Rate: 0.95773

False Alarm Rate: 0.049678

Run=15

Testing Accuracy is: 0.96356

Precision: 0.96356

Recall: 0.96356

FM:: 0.96356

G-Mean:: 0.9289

Detection Rate: 0.95865

False Alarm Rate: 0.048654

125

APPENDIX B

EXPERIMENTS RESULTS OF PSO-FLN WITH SEVERAL RUNS

P=10-

Itr=100-

Neurons=10

Precision Recall F_Measure G_Mean PSO.acc Min.acc Max.acc average.acc DR FAR

0.9679 0.9786 0.9732 0.9712 0.9869 0.9857 0.9892 0.98712 0.9679 0.03725

0.9701 0.9739 0.9721 0.9701 0.9857

0.9701 0.03442

0.9623 0.9798 0.9711 0.9687 0.9859

0.9623 0.02204

0.9663 0.9799 0.9731 0.9711 0.9867

0.9663 0.03916

0.9751 0.9743 0.9729 0.9729 0.9866

0.9751 0.02865

0.9678 0.9884 0.9781 0.9762 0.9889

0.9678 0.03773

0.9854 0.9714 0.9734 0.9716 0.9859

0.9754 0.0281

0.9767 0.9762 0.9765 0.9748 0.9881

0.9767 0.0267

0.9726 0.9744 0.9735 0.9717 0.9865

0.9726 0.0314

0.9711 0.9809 0.9761 0.9742 0.9881

0.9711 0.0335

0.9703 0.9748 0.9794 0.9731 0.9869

0.9703 0.03442

0.9786 0.9777 0.9782 0.9776 0.9892

0.9786 0.02452

0.9702 0.9783 0.9783 0.9722 0.9867

0.9702 0.0347

0.9679 0.9837 0.9757 0.9739 0.9868

0.9679 0.0373

0.9721 0.9803 0.9762 0.9744 0.9879

0.9721 0.0323

0.971627 0.978173 0.975187 0.972913

0.97096 0.032146

 P=10-
Itr=250-
Neurons=10

Precision Recall F_Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR

0.9658 0.9874 0.9765 0.9746 0.9888 0.9879 0.9929 0.989407 0.9658 0.0401

0.9728 0.9896 0.9811 0.9797 0.9901

0.9728 0.0317

0.9771 0.9882 0.9826 0.9813 0.9912

0.9912 0.0265

0.9816 0.9902 0.9857 0.9847 0.9929

0.9816 0.0213

0.9728 0.9867 0.9797 0.9781 0.9903

0.9728 0.0315

0.9687 0.9842 0.9764 0.9745 0.9887

0.9687 0.0365

0.9808 0.9885 0.9846 0.9835 0.9916

0.9808 0.0221

0.9689 0.9903 0.9795 0.9778 0.9901

0.9689 0.0364

0.9628 0.9869 0.9747 0.9726 0.9879

0.9628 0.0438

0.9754 0.99 0.9827 0.9813 0.9912

0.9754 0.0286

0.9768 0.9837 0.9802 0.9788 0.9907

0.9768 0.0268

0.9835 0.9898 0.9866 0.9856 0.9929

0.9835 0.019

0.9772 0.9824 0.9798 0.9783 0.9902

0.9772 0.0263

0.9749 0.9823 0.9786 0.977 0.9897

0.9749 0.0289

0.9663 0.9877 0.9769 0.975 0.9885

0.9663 0.0395

P=10-
Itr500-

Neurons=10

126

Precision Recall F_Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR

0.9713 0.9788 0.9751 0.9732 0.9881 0.9871 0.9931 0.99032 0.9713 0.03312

0.9769 0.9755 0.9762 0.9746 0.9879

0.9769 0.02644

0.9785 0.9827 0.9806 0.9792 0.9897

0.9785 0.02473

0.9722 0.9855 0.9788 0.9772 0.9896

0.9722 0.03227

0.9798 0.9792 0.9795 0.9781 0.9902

0.9798 0.02313

0.9766 0.9797 0.9782 0.9766 0.9893

0.9766 0.0269

0.9711 0.9834 0.9766 0.9748 0.9873

0.9711 0.03493

0.9754 0.99 0.9827 0.9813 0.9912

0.9754 0.0286

0.9731 0.9777 0.9754 0.9736 0.9931

0.9731 0.03101

0.9798 0.9792 0.9795 0.9781 0.9902

0.9798 0.02313

0.9766 0.9797 0.9782 0.9766 0.9893

0.9766 0.0269

0.9711 0.9834 0.9766 0.9748 0.9873

0.9711 0.03493

0.9643 0.9838 0.9739 0.9718 0.9871

0.9643 0.0418

0.9731 0.9777 0.9754 0.9736 0.9879

0.9731 0.03101

0.9835 0.9898 0.9866 0.9856 0.9929

0.9835 0.019

0.97488 0.98174 0.97822 0.976607

0.974887 0.029193

P=10-
Itr100-

Neurons=25

10-
100
-25

Precision Recall Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR

0.9658 0.9874 0.9765 0.9746 0.9888 0.9879 0.9929 0.990194 0.9658 0.0401

0.9728 0.9896 0.9811 0.9797 0.9901

0.9728 0.0317

0.9771 0.9882 0.9826 0.9813 0.9912

0.9771 0.0265

0.9816 0.9901 0.9857 0.9847 0.9929

0.9816 0.0213

0.9728 0.9867 0.9797 0.9781 0.9903

0.9728 0.0315

0.9687 0.9842 0.9764 0.9745 0.9887

0.9687 0.0365

0.9808 0.9885 0.9846 0.9835 0.9916

0.9808 0.0221

0.9689 0.9903 0.9795 0.9778 0.9905

0.9689 0.0364

0.9628 0.9869 0.9747 0.9726 0.9879

0.9628 0.0438

0.9628 0.9869 0.9747 0.9726 0.9879

0.9628 0.0438

0.9754 0.9901 0.9827 0.9813 0.9912

0.9754 0.0286

0.9768 0.9837 0.9802 0.9788 0.9907

0.9768 0.0268

0.9835 0.9898 0.9866 0.9856 0.9929

0.9835 0.019

0.9772 0.9824 0.9798 0.9783 0.9902

0.9772 0.0263

0.9749 0.9823 0.9786 0.9771 0.9897

0.9749 0.0289

0.9663 0.9877 0.9769 0.975 0.9885

0.9663 0.0395

P=10-
Itr250

Neurons=25

Precision Recall F_Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR

0.9774 0.9845 0.9809 0.9796 0.9907 0.9894 0.9938 0.991 0.9774 0.02613

0.9925 0.9844 0.9884 0.9844 0.9938

 0.9925 0.0084

0.9742 0.9841 0.9777 0.9761 0.9894

0.9742 0.0298

0.9741 0.9861 0.9801 0.9785 0.9904

0.9741 0.0301

0.9774 0.9893 0.9833 0.9821 0.9916

0.9774 0.0262

0.9746 0.9832 0.9789 0.9773 0.9896

0.9746 0.0294

0.9984 0.9891 0.9867 0.9857 0.9926

0.9844 0.0179

127

0.9791 0.9901 0.9845 0.9833 0.9925

0.9791 0.0242

0.9752 0.9839 0.9795 0.9781 0.9903

0.9752 0.0286

0.9758 0.9851 0.9808 0.9791 0.9906

0.9758 0.0281

0.9751 0.9893 0.9822 0.9808 0.9911

0.9755 0.0289

0.9749 0.9894 0.9821 0.9807 0.9909

0.9749 0.0292

0.9754 0.9866 0.9811 0.9795 0.9907

0.9754 0.0285

0.9772 0.9811 0.9791 0.9772 0.9895

0.9772 0.0262

0.9711 0.9912 0.9812 0.9795 0.9907

0.9711 0.0338

0.9835 0.9898 0.9866 0.9856 0.9929

0.9835 0.019

P=10-
Itr500

Neurons=25

Precision Recall F_Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR

0.9714 0.9891 0.9801 0.9786 0.9906 0.9899 0.9931 0.9921 0.9716 0.0333

0.99838 0.9826 0.9832 0.0.9821 0.9917

0.9839 0.0185

0.9748 0.9891 0.9819 0.9805 0.9909

0.9749 0.093

0.9778 0.9821 0.9799 0.9785 0.9899

0.9778 0.0255

0.9821 0.9832 0.9855 0.9846 0.9931

0.9879 0.0138

0.9829 0.9779 0.9805 0.9791 0.9908

0.9828 0.0194

0.9783 0.9845 0.9814 0.9807 0.9911

0.9785 0.025

0.9765 0.9901 0.9832 0.982 0.9917

0.9766 0.0273

0.9781 0.9839 0.9811 0.9769 0.9906

0.9783 0.0253

0.9822 0.9851 0.9836 0.9824 0.9919

0.9823 0.0204

0.9821 0.9878 0.9849 0.9838 0.9921

0.9822 0.0207

0.9778 0.9849 0.9813 0.9799 0.9909

0.9777 0.0257

0.9817 0.9832 0.9855 0.9846 0.9931

0.9879 0.0138

0.9829 0.9779 0.9805 0.9791 0.9908

0.9828 0.0194

P=10-
Itr100
Neurons=35

Precision Recall F_Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR

0.9777 0.9896 0.9836 0.9824 0.9918 0.9897 0.9929 0.99136 0.9777 0.0258

0.9754 0.9891 0.9822 0.9809 0.9913

0.9754 0.2862

0.9804 0.9895 0.9849 0.9838 0.9921

0.9804 0.0226

0.9749 0.9903 0.9826 0.9812 0.9916

0.9749 0.0292

0.9834 0.9844 0.9838 0.9827 0.9921

0.9834 0.019

0.9777 0.9927 0.9851 0.9841 0.9923

0.9777 0.0259

0.9824 0.9881 0.9853 0.9842 0.9929

0.9824 0.0202

0.9774 0.9881 0.9827 0.9814 0.9912

0.9774 0.0261

0.9738 0.9858 0.9798 0.9782 0.9901

0.9738 0.0301

0.9732 0.9879 0.9805 0.9791 0.9905

0.9732 0.0312

0.9814 0.9825 0.9819 0.9807 0.9915

0.9814 0.0213

0.9704 0.9915 0.9809 0.9793 0.9907

0.9704 0.0346

0.9787 0.9899 0.9843 0.9831 0.9923

0.9787 0.0247

0.9687 0.9895 0.9791 0.9773 0.9897

0.9687 0.0366

0.9687 0.9908 0.9796 0.9781 0.9903

0.9687 0.0366

P=10-
Itr250
Neurons=35

128

Precision Recall F_Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR

0.9819 0.9878 0.9849 0.9838 0.9922 0.9908 0.995 0.9925 0.9819 0.0208

0.9821 0.9923 0.9872 0.9863 0.9932

0.9819 0.0209

0.9774 0.9918 0.9845 0.9833 0.9927

0.9774 0.0263

0.9842 0.9864 0.9843 0.9843 0.9925

0.9842 0.0181

0.9752 0.9869 0.9811 0.9796 0.9908

0.9752 0.0287

0.9786 0.9904 0.9845 0.9833 0.9925

0.9786 0.0248

0.9831 0.9841 0.9836 0.9824 0.9921

0.9831 0.0193

0.9798 0.9874 0.9836 0.9824 0.9921

0.9798 0.0233

0.9802 0.9899 0.9851 0.9839 0.9925

0.9801 0.0231

0.9839 0.9918 0.9877 0.9868 0.9939

0.9836 0.0189

0.9746 0.9919 0.9832 0.9818 0.9918

0.9746 0.0296

0.9906 0.9901 0.9904 0.9897 0.9952

0.9906 0.0107

0.9854 0.9898 0.9876 0.9867 0.9939

0.9854 0.0167

0.9777 0.9856 0.9816 0.9803 0.9911

0.9777 0.0257

0.9775 0.9864 0.9821 0.9807 0.9914

0.9776 0.0258

P=10-
Itr500
Neurons=35

Precision Recall F_Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR

0.9819 0.9878 0.9849 0.9838 0.9924 0.9903 0.9944 0.9928 0.9821 0.0208

0.9864 0.9866 0.9865 0.9934 0.9934

0.9864 0.0156

0.9787 0.9866 0.9826 0.9813 0.9916

0.9877 0.0246

0.9874 0.9895 0.9884 0.9876 0.9944

0.9875 0.0144

0.9743 0.9851 0.9797 0.9781 0.9903

0.9745 0.0971

0.9812 0.9897 0.9855 0.9844 0.9929

0.9813 0.0216

0.9836 0.9878 0.9857 0.9847 0.9932

0.9836 0.0189

0.9851 0.9908 0.9879 0.9871 0.9939

0.9851 0.0171

0.9801 0.9873 0.9837 0.9825 0.9923

0.9801 0.0229

0.9831 0.9841 0.9836 0.9824 0.9921

0.9831 0.0193

0.9798 0.9874 0.9836 0.9824 0.9921

0.9798 0.0233

0.9802 0.9899 0.9851 0.9839 0.9925

0.9801 0.0231

0.9839 0.9918 0.9877 0.9868 0.9939

0.9836 0.0189

0.9836 0.9878 0.9857 0.9847 0.9932

0.9836 0.0189

0.9851 0.9908 0.9879 0.9871 0.9939

0.9851 0.0171

P=10-
Itr100
Neurons=50

Precision Recall F_Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR

0.9819 0.9912 0.9865 0.9855 0.9931 0.9919 0.9945 0.993267 0.9819 0.0209

0.9837 0.9905 0.9871 0.9861 0.9935

0.9837 0.0187

0.9774 0.9895 0.9843 0.9822 0.9919

0.9774 0.0262

0.9869 0.9879 0.9874 0.9865 0.9937

0.9869 0.015

0.9849 0.9917 0.9883 0.9875 0.9941

0.9849 0.0173

0.9826 0.9911 0.9868 0.9858 0.9932

0.9826 0.021

0.9892 0.9907 0.9901 0.9893 0.9945

0.9892 0.0123

0.9824 0.9915 0.9869 0.9861 0.9937

0.9824 0.0203

129

0.9792 0.9909 0.9851 0.9839 0.9925

0.9792 0.024

0.9835 0.9918 0.9877 0.9868 0.9941

0.9835 0.019

0.9864 0.9865 0.9865 0.9856 0.9932

0.9864 0.0155

0.9773 0.9916 0.9844 0.9832 0.9922

0.9773 0.0263

0.9853 0.9908 0.9881 0.9872 0.9943

0.9853 0.0168

0.9825 0.9861 0.9844 0.9833 0.9925

0.9825 0.02

0.9832 0.9867 0.9849 0.9839 0.9925

0.9832 0.0193

0.98309 0.9899 0.98656 0.9855

0.983093 0.019507

P=10-
Itr250
Neurons=50

Precision Recall F_Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR

0.9848 0.9902 0.9875 0.9866 0.9936 0.993981 0.9951 0.993981 0.9848 0.0175

0.9851 0.9898 0.9875 0.9866 0.9935

0.9851 0.0171

0.9867 0.9891 0.9878 0.9871 0.9941

0.9867 0.0153

0.9914 0.9892 0.9903 0.9897 0.9951

0.9914 0.0098

0.9899 0.9889 0.9894 0.9887 0.9948

0.9899 0.0115

0.9883 0.9901 0.9892 0.9884 0.9946

0.9883 0.0134

0.9848 0.9914 0.9881 0.9872 0.9941

0.9848 0.0175

0.9906 0.9891 0.9898 0.9891 0.9949

0.9906 0.0107

0.9867 0.9891 0.9879 0.9871 0.9941

0.9867 0.0152

0.9801 0.9902 0.9851 0.9841 0.9927

0.9801 0.0231

0.9868 0.9874 0.9871 0.9862 0.9936

0.9868 0.0151

0.9889 0.9901 0.9895 0.9887 0.9948

0.9889 0.0126

0.9861 0.9886 0.9873 0.9865 0.9939

0.9861 0.016

0.9801 0.9902 0.9851 0.9841 0.9927

0.9801 0.0231

0.9868 0.9874 0.9871 0.9862 0.9936

0.9868 0.0151

0.9848 0.9902 0.9875 0.9866 0.9936

0.9848 0.0175

0.98639 0.989438 0.987888 0.987056

0.986369 0.015656

P=10-
Itr500
Neurons=50

Precision Recall F_Measure G_Mean pso.acc Min.acc Max.acc average.acc DR FAR

0.9932 0.9886 0.9911 0.9904 0.9952 0.9933 0.9955 0.994631 0.9933 0.0077

0.9852 0.9891 0.9875 0.9875 0.9939

0.9855 0.017

0.9912 0.9908 0.9911 0.9903 0.9954

0.9914 0.01

0.9845 0.9899 0.9873 0.9863 0.9933

0.9846 0.0178

0.9883 0.9915 0.9898 0.9891 0.9951

0.9885 0.0135

0.9865 0.9902 0.9884 0.9875 0.9941

0.9866 0.0155

0.9843 0.9906 0.9875 0.9866 0.9942

0.9845 0.0181

0.9882 0.9927 0.9904 0.9897 0.9952

0.9886 0.0136

0.9881 0.9913 0.9897 0.9889 0.9949

0.9882 0.0137

0.9878 0.9916 0.9897 0.9891 0.9953

0.9879 0.0141

0.9906 0.9912 0.9909 0.9903 0.9953

0.9909 0.0104

0.9903 0.9913 0.9908 0.9901 0.9955

0.9905 0.0111

130

0.9845 0.9899 0.9873 0.9863 0.9933

0.9846 0.0178

0.9883 0.9915 0.9898 0.9891 0.9951

0.9885 0.0135

0.9865 0.9902 0.9884 0.9875 0.9941

0.9866 0.0155

0.9843 0.9906 0.9875 0.9866 0.9942

0.9845 0.0181

0.98761 0.990688 0.9892 0.988456

0.987794 0.014213

131

List of Publication

1. Ali, Mohammed Hasan, et al. "A new intrusion detection system based on Fast

Learning Network and Particle swarm optimization." IEEE Access 6 (2018):

20255-20261.ISI

2. Mohammed Hasan, Ali, and Zolkipli Mohamad Fadli. "Propose Intrusion-Detection

System Based on Fast Learning Network in Cloud Computing." (2017): 1-1. The

5th International Conference on Software Engineering & Computer System (ICSECS'

17),

3. Mohammed Hasan Ali, Mohamad Fadli Zolkipli, et al, 2017. Intrusion Detection

System Based on Machine Learning in Cloud Computing. Journal of Engineering

and Applied Sciences, 12: 4241-4245

4. Mohammed Hasan Ali, and Mohamad Fadli Zolkipli. "Review On Hybrid Extreme

Learning Machine and Genetic Algorithm To Work As Intrusion Detection

System.”. ARPN Journal, VOL. 11, NO. 1, JANUARY 2016

5. Hussam Alddin S. Ahmed, Mohammed Hasan Ali, et al “A Review of Challenges

and Security Risks of Cloud Computing”. Journal of Telecommunication, Electronic

and Computer Engineering (JTEC) 9.1-2 (2017): 87-91.

6. Mohammed Hasan Ali, Mohamad Fadli Zolkipli, et al, 2017. “Enhance of Extreme

Learning Machine-Genetic Algorithm Hybrid Based on Intrusion Detection

System”. Journal of Engineering and Applied Sciences, 12: 4180-4185.

7. Mohammed Hasan Ali, Mohamad Fadli Zolkipli,” Model of Improved a Kernel

Fast Learning Network based on Intrusion Detection System” has been accepted

for presentation at the ICO’2018 conference and for publication in the conference

proceedings published by SPRINGER,2018

