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 An induction motor (IM) has been the workhorse of the industry for decades. 

It is due to its robustness, simple construction, requiring less maintenance 

and cheap. One of the most widely adopted IM drive control schemes for 

industrial applications is the open-loop constant V/Hz. In this paper, the 

important elements of an open-loop constant V/Hz drives are presented. 

These include the fundamental concept of a constant V/Hz scheme, the 

voltage source inverter (VSI) and its modulation schemes. Techniques that 

are commonly used to solve problems of low-speed operation and rotor speed 

regulation are briefly described. Simulations using MATLAB/Simulink 

package are used to help in illustrating these fundamental concepts. Finally, 

simple laboratory-scale experiments are conducted to implement the constant 

V/Hz control scheme on a ¼ hp induction motor. The constant V/Hz control 

is implemented using the DS1104 controller board with the C codes 

automatically generated from the Simulink model. A closer look at the 

current waveform when fref=25 Hz and 12 Hz and its respective Fourier 

analysis are presented. The results show that the high-frequency harmonic 

contents around the switching frequency can be observed for both cases, and 

the voltage waveform presents more spike noises in constrast to  

current waveform. 
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1. INTRODUCTION 

Inverter based induction motor (IM) drives system has been widely used in the industry replacing 

the conventional direct-on-line (DOL), the star-delta (Y-) and others starter methods [1–4] as well as their 

gear integration (gearbox transmission system) [5–7] for variable speed drive (VSD). Figure 1 shows a 

simple illustration of the conventional versus power electronics inverter IM drives. This technology has 

rapidly grown since the era of power electronics was born in the mid 20th century until nowadays [8,9]. Many 

engineers in the manufacturing sectors are forced to familiarize and have to decide whether or not to merge 

the technology into their readily established conventional systems. The main advantage of this technology is 

energy efficiency which translated to the life long operational cost [10]. Apart from that, this technology 

comes with implementation cost and engineers need to make sure it is highly reliable, robust, and 

manageable under their circumstances.  

https://creativecommons.org/licenses/by-sa/4.0/
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(a) 

 

 
(b) 

 

Figure 1. Basic block diagram of 3-phase IM driveline (a) with starter and gearbox (b) with inverter 

 

 

Similar to other electronic devices, power electronics inverter can cause significant downside to the 

overall system particularly when operated in a harsh and unpredictable environment in a factory due to heat, 

humidity, vibration, EMI, and others [11]. Often times, manufacturing engineers do not necessarily have 

sufficient knowledge of IM drives that would finally tradeoff downtime cost [12]. Getting the knowledge 

through proper courses can be time-consuming while self-synthesizing the knowledge through numerous 

journals reading with different standards and terminology could be overwhelming [13].  

In this paper, the fundamental elements of the inverter-based IM drives method, namely the constant 

V/Hz, is presented. The problems associated with the low-speed operation speed regulation are discussed and 

possible solutions are suggested. This paper is organized in the following manner. In Section 2, important 

concepts of constant V/Hz control and major components that are typically used in IM industrial drives are 

presented and explained. This section will also present the problems associated with a constant V/Hz control 

scheme at low-speed operation. Section 3 presents the simulation and experimental methodology while 

Section 4 discusses the simulation and experimental results. Finally, Section 5 presents the conclusion. 

 

 

2. INDUCTION MOTOR DRIVES 

IM is one of the highly robust, high torque-to-inertia ratio and high efficient type of motor [14, 15]. 

On top of that, IM is also known for its simple construction, easy to maintain and relatively cheaper in price. 

It has been applied in numerous applications in household appliances and in various industrial sectors. In 

general, there are two types of control methods for IM drives: scalar control and vector control. For high-

performance applications, vector control techniques such as field-oriented control (FOC) [16] and direct 

torque control (DTC) [17] are normally employed. Those applications that requiring high-performance torque 

control such as industrial CNC machines, elevators, and recently in electric vehicles [18]. For low to medium 

performance applications, such as fan, blower, pump and compressor, scalar control techniques are  

normally preferred [19]. 

The most popular scalar control techniques, known as constant V/Hz (or constant V/F), is the 

simplest means to achieve linear control of IM’s torque and speed [20, 21]. This control mechanism ensures 

the operation of the IM at its rated flux, thus prevents the rotor core magnetization reaching its saturation and 

run in its hysteresis loop. This is accomplished by maintaining the ratio between the air-gap voltage and the 

frequency constant at all speeds. The open-loop version of this control scheme is the most widely used 

control technique in industrial drives due to its simplicity, cost effectiveness and reliability. The 

implementation of a constant V/Hz scheme does not require a high-performance processor, and with the 

open-loop operation, a high precision speed sensor is not needed. The performance of the open-loop constant 

V/Hz drives, however, deteriorates at low-speed region because the terminal voltage no longer approximates 

the back-EMF due to the significant voltage drop across the stator impedance, hence maintaining constant 

V/Hz will not exactly result a constant air-gap flux.  

A typical open-loop constant V/Hz IM drive system is shown in Figure 2. In this configuration, the 

input power is obtained from the 3-phase power supply, which is rectified by the 3-phase diode rectifier to 

produce a DC voltage. To obtain a stiff DC voltage, a large electrolytic capacitor is normally connected to the 

output of the rectifier. It consists of a 3-phase voltage source inverter (VSI) with input DC voltage acquired 

from a 3-phase diode rectifier circuit. The switching signals for the 3-phase VSI is generated by the pulse 

width modulator based on the frequency and voltage magnitude inputs. The constant V/Hz block produces 

the magnitude of the voltage reference (Vref), based on the frequency reference (fref). If a diode rectifier is 

used as the front-end converter, braking power cannot be fed back to the utility, instead, it will be dumped to 
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the DC link capacitor, C. Therefore, a crowbar circuit is typically added to the DC link circuit to avoid the 

capacitor voltage from exceeding its maximum allowable value during dynamic braking. This is done by 

discharging the access charge via the resistor. The following sections discuss the fundamental concept and 

main elements of the control scheme. 

 

 

 
 

Figure 2. Open-loop constant V/Hz drive 

 

 

2.1. Constant V/Hz controller 

The torque of the IM can be written in terms of the rotor current and air-gap flux as 

 

𝑇𝑒 = 𝐾𝐼′𝑟𝜙𝑎𝑔𝑠𝑖𝑛𝛿 (1) 

 

where K is a constant, and 𝛿 is the angle between 𝐼𝑟
′  and 𝐼𝑚. Figure 3(a) shows the per-phase equivalent 

circuit of an IM and its corresponding phasor diagram. For small slip operation, 𝛿 is close to 90o (i.e. 𝜃 ≈ 0) 

and hence (1) can be written as 

 

𝑇𝑒 = 𝐾𝐼′𝑟𝜙𝑎𝑔 (2) 

 

When the rotor is running at small slip, 𝑅′𝑟 ≫ 2𝜋𝑓𝑠𝑙𝐿′𝑙𝑟, hence combining (1) and (2), we can write 

 

𝑇𝑒 = 𝐾′𝜙𝑎𝑔
2 𝑓𝑠𝑙 (3) 

 

Therefore, to maximize the torque capability, the air-gap flux has to be maximized, and the maximum 

possible value without saturation would be the rated value. The magnetizing current of an IM is responsible 

for producing the air-gap flux. From the per-phase equivalent circuit of the IM shown in Figure 3, the 

magnetizing current Im is the current that flows through the magnetizing inductance Lm. Thus, from the per-

phase steady-state equivalent circuit point of view, in order to maintain the rated air-gap flux at any 

frequency, it is necessary to ensure that Im is at its rated value at all frequencies. As can be seen from the 

equivalent circuit, the magnetizing current Im can be written as shown in (4). 

 

𝐼𝑚 =
𝐸𝑔

2𝜋𝑓𝐿𝑚
➔𝐼𝑚,𝑟𝑎𝑡𝑒𝑑 =

𝐸𝑔,𝑟𝑎𝑡𝑒𝑑

2𝜋𝑓𝑟𝑎𝑡𝑒𝑑𝐿𝑚
 (4) 

 

According to (4), the magnitude of the magnetizing current can be maintained constant at its rated 

by maintaining the ratio of the back emf, Eg, to the frequency, f (Eg/f), equals to the ratio at the rated values, 

i.e. Eg,rated/frated, at all frequencies. If the frequency is reduced, Eg has to be reduced proportionally to maintain 

constant Im,rated. At high speed, Eg is large and the voltage drop across the stator leakage inductance Lls and 

stator resistance Rs is relatively small; under this condition, Eg/f is maintained constant by maintaining Vs/f 

constant. In other words, we can assume  
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𝐸𝑔

𝑓
≃

𝑉𝑠

𝑓
=

𝑉𝑠,𝑟𝑎𝑡𝑒𝑑

𝑓𝑟𝑎𝑡𝑒𝑑
 (5) 

 

For a given frequency, f, the magnitude of the stator voltage, therefore, can be determined from (5). 

At low frequency, the approximation in (5) cannot be justified since the magnitudes of Eg and Vs are small 

hence the voltage drop across stator impedance becomes significant. To overcome this, a boost voltage is 

added to compensate for the voltage drop at low frequencies. As the frequency increases, the boost voltage 

gradually reduced. There are several possible ways of boosting the voltage, the ones that are shown in  

Figure 4 are based on the non-linear boost as shown in Figure 4(a) and linear boost as shown in Figure 4(b). 

In either case, the amount of voltage boost is a function of frequency. For instance, using a linear boost, we 

can derive the expression of the boost voltage by taking the differences between the voltage-frequency 

relationships with and without the boost. From Figure 3(b), 

 

Without boost: 𝑉1(𝑓) =  
𝑉𝑟𝑎𝑡𝑒𝑑

𝑓𝑟𝑎𝑡𝑒𝑑
𝑓 

 

With boost: 𝑉2(𝑓) =  
𝑉𝑟𝑎𝑡𝑒𝑑−𝑉𝐵

𝑓𝑟𝑎𝑡𝑒𝑑
𝑓 + 𝑉𝐵 

 

Therefore, the amount of voltage boost needed is  

 

𝑉𝑏𝑜𝑜𝑠𝑡(𝑓) =  𝑉2(𝑓) − 𝑉1(𝑓) = 𝑉𝐵 −
𝑉𝐵

𝑓𝑟𝑎𝑡𝑒𝑑
𝑓 (6) 

 

To fed the desired 3-phase V and f to the IM, a 3-phase voltage source inverter (VSI) is used and this is 

discussed next.  

 

 

 
 

(a) (b) 

 

Figure 3. IM per-phase T-form steady state equivalent circuit model and phasor diagram [22] 

 

 

 

 
(a)  (b) 

 

Figure 4. Boost voltage for constant V/Hz control (a) Non-linear boost; (b) Linear boost 

 

 

 



      ISSN: 2088-8694 

Int J Pow Elec & Dri Syst, Vol. 11, No. 4, December 2020 : 1670 – 1685 

1674 

2.2. Three-phase inverter 

A three-phase voltage source inverter (VSI) is one of the types of power electronics converter that is 

used to convert a DC input to an AC output. As shown in Figure 5, a VSI contains 6 power semiconductor 

devices (with anti-parallel diodes), 2 for each leg. In power converter applications, power semiconductor 

devices (for example power IGBTs or power MOSFETs) are operated as power switches. They are operated 

in either cut-off region (turn-off state) or saturation region (turn-on state), this is also known as the switch-

mode operation. The status of the upper and lower power switches of a leg in a VSI must always be opposite 

to avoid shoot-through or short circuit. In other words, if an upper switch is turned on, a lower switch has to 

be turned off. For practical implementation, a so-called blanking time has to be included before the other 

switch is turned on. This is because a power switch will not immediately be turned off when a turn-off signal 

is applied at its gate. The duration of the blanking time depends on the type of power switches and can be 

determined from the data sheets of the switches [23, 24]. There are various techniques that can be used to 

control the switches to produce sinusoidal output voltage, however, the most widely adopted technique would 

be the pulse width modulation (PWM) technique [13]. Using PWM, the output voltage magnitude and 

frequency can be controlled simultaneously. One of the most popular PWM methods that is commonly 

targeted in industrial drives is known as the space vector PWM (SV-PWM) [25, 26] . 

 

 

 
 

Figure 5. A 3-phase voltage source inverter 

 

 

2.3. SV-PWM 

Space vector PWM (SV-PWM) [27] is a modulation technique that is widely adopted for AC-motor 

drives compared to other techniques, such as sinusoidal PWM (SPWM) [28], because of its excellent 

compatibility with digital implementation. In other words, using a microprocessor or microcontroller, SV-

PWM gives less computational burden and easier to implement. Furthermore, with SV-PWM, a better DC 

voltage utilization can be achieved [29, 30]. In contrast to SPWM, which treats the 3-phase quantities 

separately, in SV-PWM, the 3-phase quantities are treated using a single equation, known as space  

vector equations.  

In a three 3-phase VSI with three legs, as shown in Figure 4, there are 23=8 possible switch 

configurations, hence eight possible voltage vectors that can be generated or obtained. The possible switch 

configurations for the three legs and the respective voltage vectors are depicted in Figure 6. The voltage 

vectors are labeled as v1 to v7; 6 of them are active vectors (v1-v6) and 2 of them (v0 and v7) are zero voltage 

vectors. Status ‘1’ indicates that the upper switch of a leg is ‘ON’, and the lower switch is ‘OFF’ and vice 

versa. For instance, [1 0 1] means that the upper switches of legs A and C, and the lower switch of leg B are 

turned on. SV-PWM utilizes these available voltage vectors to synthesize the reference voltage within a 

sampling period. The space vector of the output for a 3-phase VSI is given by 
 

𝒗 =
2

3
𝑉𝑑𝑐(𝑆𝑎 + 𝑎𝑆𝑏 + 𝑎2𝑆𝑐) (7) 

 

where Vdc is the DC link voltage, Sa, Sb, and Sc are the switching functions for legs respectively, which equals 

‘1’ if the upper switches are ‘ON’ and ‘0’ if the lower switches are ‘OFF’.  

The reference signals to the SV-PWM can be in the form of the d-q components or of amplitude and 

angle of the voltage vector. In order to translate the 3-phase voltages to d-q or amplitude angle form, 

coordinate transformation is used. These transformation is well known as Clarke () [31] and Park (dq) 

transformations [32]. The reference voltage is synthesized, within a sampling period, by selecting the two 

adjacent voltage vectors and zero voltage vectors thus maintaining the switching frequency constant. For 
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example, if the reference voltage vector, vref, is located in sector 1, voltage vectors v1, v2, v0 and v7 would be 

selected and applied within a sampling period. This is illustrated in Figure 7.  

It can be shown that, the values of T1 and T2 within a sampling period T are as: 

 

𝑇1 =
3

2
∙ 𝑇 ∙ 𝑣𝑟𝑒𝑓 (𝑐𝑜𝑠𝛼 −

1

√3
𝑠𝑖𝑛𝛼) (8a) 

𝑇2 = √3 ∙ 𝑇 ∙ 𝑣𝑟𝑒𝑓𝑠𝑖𝑛𝛼 (8b) 

 

 

Figure 6. Available voltage space vector for a 3-phase, 2-level, VSI 

 

 

 
 

 

Figure 7. Switching pattern of the 3-phase VSI in Sector 1 

 

 

In 8(a) and 8(b), vref is the magnitude of the reference vector and  is the angle between the 

reference voltage and the adjacent vector (to the right of the reference voltage). The interval for zero voltage 

vector is given by:  
 

𝑇𝑜 + 𝑇7 = 𝑇 − (𝑇1 + 𝑇2) (9) 
 

The ratio between T0 and T7 essentially controls the amount of triplen harmonic [33] components in the 

fundamental phase voltage. 

 

2.4. Improved open-loop constant V/Hz scheme 

Unlike synchronous motor which rotates at a synchronous speed even with load variations, in IM, 

the rotor speed differs from the synchronous speed by the slip speed. To make matters worse, the slip speed 

varies with load. To overcome this in an open-loop constant V/Hz drive, the slip speed is estimated and 

subsequently added to the reference speed so that the rotor speed will be more or less equal to reference 

speed. The slip speed can be estimated by estimating the air-gap power, 𝑃𝑎𝑔, which is obtained by subtracting 

the input power to the VSI with the losses in the VSI and stator copper and core losses. Once the air-gap 

power, is obtained, the torque can be estimated as, 
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𝑇𝑒 =
𝑃𝑎𝑔

𝜔𝑠
 (10) 

 

Knowing the torque Te, and since the airgap flux is kept constant at the rated value, the slip 

frequency can be estimated from (3). The block diagram of the open-loop constant V/Hz with slip 

compensation scheme is shown in Figure 8. To implement this scheme, we need to measure the DC link 

voltage, Vdc, and the input DC current to the VSI, Idc. In order to limit the rate of change of the reference 

frequency, a rate limiter is added. This will ensure that the rotor can catch up with the rotating magnetic field 

so that the slip frequency can be kept small. The figure also shows the injection of boost voltage, Vboost, to the 

amplitude of the reference voltage, to compensate for the stator impedance drop at low-speed operations. As 

shown by (6), the amount of boost voltage needed is a function of the frequency.  

 

 
Figure 8. Open-loop constant V/Hz with slip compensation and voltage boost 

 

 

3. RESEARCH METHOD 

3.1. Simulation  
To study the behavior and characteristics of a constant V/Hz control IM drive, simulations using 

MATLAB/Simulink (R2016b) were conducted. The Simulink block diagram of the drive system is as shown 

in Figure 9(a). The switching frequency is set to 2 kHz and the parameters of a 4-pole, 50 Hz, 190V with 

power rating of 186 W IM are given in Table 1. The same IM is also used in the experiment, which will be 

discussed in the subsequent section. Instead of using a diode rectifier to obtain the DC voltage to fed to the 3-

phase VSI, a DC voltage source is used. In order to produce the rated line voltage of 190 V (rms), which is 

equivalent to a phase voltage amplitude of 
190

√3
√2 = 155 𝑉, a DC voltage of 269 V at the input to the VSI is 

required (without over-modulation). This is because using SV-PWM, the maximum amplitude of the phase 

voltage that can be obtained without over-modulation is 
𝑉𝑑𝑐

√3
 . However, in the experiment, a DC voltage of 

155 V is used (due to the available voltage source and safety reasons). Therefore, in the simulation, the same 

DC voltage of 155 V will be used. This means that the maximum frequency to maintain constant V/Hz ratio 

will be less than the rated frequency of 50 Hz. i.e. 𝑓𝑚𝑎𝑥 = 50
155

269
= 29 Hz. 

The motor is run based on the frequency profile (Hz) (constructed using Signal builder block as 

shown in Figure 9(b)). In order to limit the slip to within small value, a rate limiter is inserted after the stator 

frequency reference. Without the rate limiter, a step-change in a frequency will result in a significant 

oscillation in the speed and torque before the steady-state speed and torque is reached. 
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Table 1. Induction motor ratings and parameters 
Parameters rate 

Power, Voltage 186 W, 190 V 

Frequency, poles 50 Hz, 4 

RS 10.35  

Rr 6.17  

Ls 0.2752 H 

Lr 0.2752 H 

Lm 0.2583 H 

I 0.0014 kg - m2 

B 0.002 Nm/rad/s 

 

 

 
(a) 

 
(b) 

 

Figure 9. Simulation of constant V/Hz control of IM (a) Power system-simulink  

(b) Frequency reference profile  

 

 

3.2. Hardware implementation  

In order to evaluate the voltage and current of the IM driven by constant V/Hz, a real hardware 

experiment has been conducted. The block diagram of the experimental setup is shown in Figure 10 and the 

actual hardware setup is shown in Figure 11. The experiment utilized of a 3-phase VSI with gate drivers, a 

DC power supply, a ¼ hp 3-phase induction motor and a dSPACE DS1104 controller board. The constant 

V/Hz control is implemented using the DS1104 controller board with the C codes automatically generated 

from the Simulink model. The 3-phase VSI is constructed using three (3) units of 2-levels IGBTs with their 

dedicated freewheeling. 

 

 
 

Figure 10. Experimental setup 
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For monitoring purposes, two (2) current sensors are used to measure the phase currents. The ratings 

and parameters of the motor are similar to the one used in the simulation, which are as listed in Table 1. As 

mentioned earlier in the previous section, due to the limitation on the availability of the DC power supply and 

safety reasons, a DC voltage of up to only 155 V is used (which is similar to the simulation setting). Using 

SV-PWM, the maximum rms line-line voltage that can be achieved is  

 

𝑉𝐿−𝐿,𝑚𝑎𝑥 =
155

√3

√3

√2
= 109.6 Vrms 

 

For constant V/Hz implementation, maximum frequency is therefore, 
 

𝑓𝑚𝑎𝑥 =
50

190
109.6 ≈ 29 Hz 

 

 

 
(i) IM under test (ii) IGBTs bridge (iii) DS1104 Controller (iv) User interface (v) DC power supply 

 

Figure 11. Experimental setup  

 

 

4. RESULTS AND DISCUSSION 

4.1. Simulation  

The simulation results of the stator line voltage, stator phase current, motor torque and rotor speed 

without and with a rate limiter are shown in Figure 12(a) and 12(b) respectively. In the simulation, the rate 

limiter is set to 100 Hz/s. A significant surge in the stator current (amplitude of beyond 2 A), as well as a 

large oscillation in the torque response can be observed in the waveforms of Figure 12(a). Torque osccillation 

influence power efficiency and speed performance. In industrial application where tens to thousands 

horsepower IMs are utilized, this torque response can cause severe power disruption and damage to the drive 

system. With the limiter, frequency is gradually increased thus ensuring small slip operation. The amplitude 

of the current gradually increases and large oscillation in torque is removed.  

In order to observe the transient-state behavior of the torque and speed when the frequency is 

increased from 0 Hz to 18 Hz and to 25 Hz, and reduced to 12 Hz, the torque-speed dynamic simulation 

results are superimposed onto the steady-state torque-speed characteristic of the motor at these three 

frequencies; these are shown in Figure 13(a) without the rate limiter, and Figure 13(b) with the rate limiter. 

As can be seen that with the insertion of the rate limiter, a significant reduction in the torque-speed 

oscillation is obtained.  

Using MATLAB/Simulink it is also possible to perform FFT in order to view the frequency 

spectrum of the waveform and analyze the harmonics contents. Figure 13(a) and (b) shows the frequency 

spectrum of the line-line voltage and phase current of the IM, respectively, at the fundamental frequency of 

25 Hz. The figure clearly displays the harmonics contents of the waveforms at the multiples of the switching 

frequency, which is at 2000 Hz. From the plot, the total harmonic distortions in Figure 14, the current and 

voltage homonic content obtained as THDI=5.39% and THDV=52.41% respectively. In comparison with the 

work presented in [13], with similar PWM technique (SVPWM) applied to 1hp IM (different motor 

parameters), the THDI=20.14% and THDV=64.78%. Although both implemented similar modulation 

technique, both presented variation in power quality. Other than due to motor parameter variations, the 
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results are also depending on the sampling time, waveform alighnment (SVPWM generation technique), type 

of switches and the inverter bridge topology, dc-link and others.  

 

 

 
(a) 

 

 
(b) 

 

Figure 12. Simulation results of line voltage, phase current, torque, and rotor speed where the red line refers 

to reference speed (a) without rate limiter (b) with rate limiter 
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(a)  (b) 

 

Figure 13. Transient 𝑇-𝜔 behavior during the frequency variations: red line is the steady-state characteristic 

while the black line is the transient characteristics (a) without rate limiter (b) with rate limiter. 

 

 

 

 

(a) 
 

 

 

 

(b) 
 

Figure 14. total harmonic distortions, (a) Line-line input voltage to the IM and Frequency spectrum obtained 

using FFT analysis tool in MATLAB at 25 Hz; (b) Input phase current of the IM and frequency spectrum 

obtained using FFT analysis tool in MATLAB at 25 Hz  
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4.2. Real hardware implementation  

In the experiment, a frequency reference similar to the simulation is applied: step up from 0 to 18 

Hz, from 18 Hz to 25 Hz and finally it is step down to 12 Hz. The waveforms for the phase current (phase A) 

and rotor speed without the rate limiter are shown in Figure 15 (a). Similar to the simulation results, without 

the rate limiter surges in the phase current can be observed for every step change in the frequency reference. 

On the other hand, the results with a rate limiter set to 12 is shown in Figure 15 (b). With the rate limiter, the 

frequency gradually increases (or decreases) thus avoiding large slip hence large surge in currents. A closer 

look at the phase currents during the step change in the frequency reference from 0 to 18 Hz is depicted in 

Figure 16(a) (without limiter) and Figure 16 (b) (with the limiter).  

 

 
(a) 

 

 
(b) 

 

Figure 15. Stator phase current and rotor speed, (a) without rate limiter, (b) with rate limiter 
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 (a)  (b) 

 

Figure 16. Closer look of the stator current and speed for a step frequency from 0 Hz to 18 Hz,  

(a) without rate limiter, (b) with rate limiter 

 

 

 
(a) 

 

 
(b) 

 

Figure 17. Closer look at the stator current and its frequency spectrum, (a) 25 Hz; (b) 12 Hz 
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A closer look at the current waveform when fref=25 Hz and 12 Hz and its respective Fourier analysis 

are shown in Figure 16 (a) and (b) respectively. The high-frequency harmonic contents around the switching 

frequency of 2000 Hz can be observed for both cases. The voltage waveform presents more spike noises in 

constrast to current waveform, this is due to the natural characteristic of IM (RL load) that tend to filter high 

frequency noices of current. In comparison with the experimental work in [13], an analog S-PWM inverter is 

used to drive other IM with similar hp (¼ hp). The author claimed that the IM run at rated speed. However, 

the stator voltage and current waveforms are not presented in report due to the limitation of measurement 

instrument. It is imported to know that the integrity of waveforms is highly depend to the type and quality of 

measurement instruments. Since, both VSI and IM are conducting EMI, it is important to intergrate proper 

EMI management method to the measurement instrument. The easiest way to capture the realtime voltage 

and current waveform is by using a high-speed oscilloscope with their dedicated differential probe for 

voltage and current probe those tools that specifically designed with EMI filtering and management.  

 

 

5. CONCLUSION 

An open-loop constant V/Hz IM drive is one of the most popular drives for industrial applications. 

The main component in this system is the inverter unit. Apart from other modulation techniques, SV-PWM is 

the most commonly applied for VSI. Constant V/Hz allows speed and torque regulation of the IM, therefore, 

besides improving power efficiency, the dependency towards mechanical gear can also be reduced or 

eliminated. With proper electrical sensors installation and EMI management, feedback control can be 

adopted. Opening ways for dynamic adaptation and automation. However, there are several issues that arise 

related to its robustness when operating in extreme environments that need to be addressed before replacing 

the mechanical control mechanism. The fundamental concepts, main control elements, and commonly known 

problems of a constant V/Hz IM drive has been discussed. MATLAB/Simulink simulation and DS1104 

controller board based-laboratory-scale implementation results and discussion has been presented. It is 

expected that through this, interested practicing engineers could attain a sufficient understanding to assist 

decision-making and develop confidence to communicate ideas in this topic. 
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