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ABSTRAK 

Fenomena sistem dua fasa (bendalir dan pepejal) boleh didapati dalam banyak aplikasi, 

contohnya, pencemaran udara atau air, aliran darah dalam arteri, pengaliran di dalam 

tiub roket, pemendapan dan tilam bercecair. Penyelidikan berkaitan system dua fasa ini 

telah menarik perhatian penyelidik kerana potensinya yang penting dalam penyiasatan 

dinamik bendalir dengan zarah pepejal terampai. Daripada hanya memberi tumpuan 

kepada aliran bendalir (satu fasa), model dua fasa ini mengkaji taburan bagi kedua-dua 

bendalir dan zarah pepejal. Ini menunjukkan bahawa masalah bagi model aliran 

bendalir satu fasa diubahsuai kepada model dua fasa dengan menambah unsur interaksi 

antara bendalir dan zarah pepejal. Dicatatkan bahawa, zarah pepejal diandaikan 

berbentuk abu, jelaga dan debu. Dalam tesis ini, model yang telah diubahsuai disiasat 

secara teori dengan mempertimbangkan bendalir Newtonan dan bendalir bukan 

Newtonan yang berdebu, di mana penerbitan bagi model yang dicadangkan telah 

dirumuskan berdasarkan model aliran dua fasa. Khususnya, aliran dan pemindahan haba 

bagi kedua-dua bendalir Newtonan dan bendalir bukan Newtonan (Casson, Williamson 

dan Jeffrey) dengan kehadiran zarah-zarah debu dipertimbangkan. Selain itu, tesis ini 

memberi perhatian kepada pengaruh medan magnet sejajar dan olakan campuran yang 

berkaitan dengan syarat sempadan terma pemanasan Newtonan (NH) yang mana 

merentasi lembaran regangan menegak. Dalam keadaan ini, aliran bendalir Newtonan 

tanpa zarah debu juga diberi perhatian dalam mengkaji sifat aliran bendalir sebelum 

meneruskan dengan kajian bagi kedua-dua bendalir dan zarah habuk. Persamaan 

menakluk bagi model yang dicadangkan iaitu dalam bentuk persamaan pembezaan 

separa dijelmakan kepada persamaan pembezaan biasa dengan menggunakan 

penjelmaan keserupaan yang sesuai. Pengiraan berangka untuk persamaan yang 

diperolehi kemudian diselesaikan dengan menggunakan kaedah kotak-Keller yang 

diatur cara dalam perisian MATLAB. Keputusan dipaparkan untuk taburan halaju dan 

suhu bersama-sama dengan pekali geseran kulit dan nombor Nusselt. Beberapa 

parameter fizikal seperti parameter interaksi bendalir-zarah, sudut sejajar, medan 

magnet, olakan campuran, parameter konjugat untuk NH, nombor Prandtl serta 

parameter perwakilan untuk setiap model bendalir dikaji dengan mendalam. Didapati 

bahawa, kelakuan halaju dan suhu bagi semua jenis bendalir dipengaruhi oleh kehadiran 

zarah debu di mana ia mempunyai kecenderungan untuk mengurangkan taburan halaju 

dan suhu bagi bendalir. Selain itu, parameter sudut sejajar diperaku sebagai parameter 

kawalan, yang dapat mengawal keamatan medan. Sementara itu, parameter yang 

mewakili model bendalir yang diberi perhatian dalam thesis ini, merangkumi Casson, 

Williamson dan nisbah santaian kepada masa rencatan meningkatkan taburan suhu 

bendalir dan habuk, manakala trend sebaliknya berlaku untuk taburan halaju. Keputusan 

perbandingan untuk semua model yang dicadangkan menunjukkan bahawa medan 

aliran untuk bendalir Newtonan berdebu mempunyai taburan tertinggi berbanding 

bendalir bukan Newtonan berdebu. Walaubagaimanapun, bendalir Casson berdebu 

mempunyai ciri pemindahan haba yang lebih tinggi berbanding bendalir Williamson 

berdebu dan bendalir Jeffrey berdebu. 
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ABSTRACT 

The phenomena of two-phase system (fluid and solid) can be found in many 

applications, for instance, the air or water pollution, blood flow in arteries, flows in 

rocket tubes, sedimentation and fluidized bed. The research on this two-phase system 

has been given considerable attention by many researchers due to its significant 

potential in investigating the fluid dynamics with the suspension of the solid particles. 

Instead of only focused on the fluid flow (one phase), this two-phase model examines 

the distributions of both fluid and solid particles. This implies that the single phase 

model of fluid flow problem is modified into the two-phase model by the additional of 

the element of interaction between the fluid and solid particles. Note that, the solid 

particle is assumed to be in the form of ash, soot and dust. In this thesis, the modified 

model is investigated theoretically by considering the dusty Newtonian fluid and dusty 

non-Newtonian fluid, in which the derivation for the particular proposed model have 

been formulated based on two-phase flow model. Specifically, the flow and heat 

transfer of both Newtonian and non-Newtonian (Casson, Williamson and Jeffrey) fluids 

are considered in the presence of dust particles. Besides, this thesis concerns on the 

influences of aligned magnetic field and mixed convection associated with the thermal 

boundary conditions of Newtonian heating (NH) where it passed along a vertical 

stretching sheet. Under these conditions, the single phase flow of Newtonian fluid 

without the dust particles is also given attention in order to study the characteristic of 

fluid flow independently before proceeding further with investigation for both fluid and 

dust particles. The governing equations of all proposed models in the form of partial 

differential equations are transformed into the ordinary differential equations by 

employing the suitable similarity transformation. The numerical computations for the 

obtained equations are then computed using the Keller-box method which is 

programmed in MATLAB software. The results are presented for the velocity and 

temperature distribution together with the skin friction coefficient and Nusselt number. 

Several physical parameters such as fluid-particle interaction, aligned angle, magnetic 

field, mixed convection, conjugate parameter for NH, Prandtl number, as well as the 

representative parameters for each fluid model are investigated in details. It is found 

that, the velocity and temperature behavior of all types of fluid are affected by the 

presence of dust particles, in which it has the tendency to decrease velocity and 

temperature distribution of fluid. Moreover, the aligned angle parameter is 

acknowledged as the controlling parameter, which can control the intensity of magnetic 

field. Meanwhile, the representative parameters for the fluid models concentrated in this 

thesis, which encompass of Casson, Williamson and ratio of relaxation to retardation 

times improved the temperature distribution of fluid as well as dust phase, whereas the 

reverse trend occurs for velocity distributions. Comparative results of all proposed 

models show that dusty Newtonian fluid has the highest distribution in the flow field in 

comparison to dusty non-Newtonian fluid. However, dusty Casson fluid has the higher 

heat transfer characteristic compared to dusty Williamson fluid and dusty Jeffrey fluid. 
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