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45 ABSTRACT

46 Gut microbial dysbiosis have been in the etiology of a number of diseases, yet 

47 the presence of fungal communities and their possible association with host health are 

48 little understood. This study attempts to identify gut microbial fungal associations 

49 with the progression of atherogenic dyslipidemia in a population of older adults by 

50 investigating the interplay between dietary intake, gut mycobiome composition, 
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51 plasma and fecal metabolome and anthropometric/body-composition measurements of 

52 100 Danes aged 65 to 81 (69.57  3.64) years. The gut mycobiome composition were 

53 determined by high-throughput sequencing of internal transcribed spacer (ITS2) gene 

54 amplicons, while the plasma and fecal metabolome was determined by GC-TOF-MS. 

55 The gut microbiome of the subjects investigated is home to three main eukaryotic 

56 phyla, namely Ascomycota, Basidiomycota and Zygomycota, with genera 

57 Penicillium, Candida, and Aspergillus being particularly common. 

58 Hypertriglyceridemia was associated with fewer observed fungal species, and Bray-

59 Curtis dissimilarity matrix-based analysis showed significant (P<0.05) clustering 

60 according to fasting levels of circulating plasma triglycerides (Tg) and very low-

61 density lipoprotein (VLDL) cholesterol fasting levels, respectively. Interestingly, 

62 neither hypertriglyceridemia nor elevated VLDL levels were reflected in the 

63 prokaryotic component of the gut microbiome as determined by 16S rRNA gene 

64 amplicon sequencing. Higher levels of Tg and VLDL cholesterol significantly 

65 associates with increased relative abundance of genus Penicillium, possibly mediated 

66 by a higher dietary fat intake (ANOVA, P<0.05), and Aspergillus and Guehomyces 

67 were positively associated with SCFAs groups. Collectively, these findings suggest 

68 that in older adults’ gut mycobiome dysbiosis is associated with hypertriglyceridemia, 

69 a known risk factor for development of cardiovascular disease. 

70
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76 INTRODUCTION

77 Some of the major challenges in healthy ageing is the deterioration of body 

78 and functional capabilities, frailty, and metabolic health. Gut microbiota (GM) 

79 dysbiosis has previously been found to be associated with age-related frailty and 

80 declines in the physiology of the gastrointestinal tract due to ageing in elderly people 

81 as well as being a risk factor for metabolic disorders [1]–[6]. Thus, maintaining a 

82 diverse core gut microbiome has been proposed as a possible signature of healthy 

83 ageing [7]–[9].

84 To date, research on the GM of elderly has focused on the bacterial 

85 component largely ignoring fungi, archaea and viruses [3], [10]. However, recent 

86 studies show that fungi have significant effects in the gut milieu despite their small 

87 proportion in number as compared to bacteria [11], and gut mycobiome dysbiosis has 

88 been associated with irritable bowel disease (IBD) [12], obesity [13], and carotid 

89 atherosclerosis vascular disease [14]. The fungal component of the gut microbiome of 

90 healthy individuals has been reported to be dominated by the yeast genera 

91 Saccharomyces, Malassezia,  and Candida [15]. 

92 Age is known as the dominant cardiovascular disease (CVD) risk factor due to 

93 dyslipidaemia in both men and women older than 65 years, as compared to younger 

94 individuals [16]. Further, elevated triglycerides (Tg) and very low density level 

95 (VLDL) cholesterol levels have been associated with subclinical atherosclerosis and 

96 dubbed as independent risk factors for CVD [17]. Several large studies suggest that 

97 hypertriglyceridemia is related to increased levels of remnant lipoproteins in 

98 promoting atherogenesis [18], [19]. The possible mechanisms for this association 

99 include excessive free fatty acid release, production of proinflammatory cytokines, 

100 coagulation factors, and impaired fibrinolysis [20].  Similarly, Tg are also synthesized 
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101 from free fatty acids and glycerol in hepatocytes and then, together with apoB, they 

102 form VLDL particles [21].

103 Here, we report the gut fungal composition, dietary intake, fecal and plasma 

104 metabolome, and anthropometric/body-composition measurements among 100 

105 older adult Danes aged 65-81 years and relate this to hypertriglyceridemia (Tg > 

106 1.70 mmol/l ). We observed that the fecal mycobiome distribution is strongly 

107 associated with variations in Tg and VLDL cholesterol plasma levels. 

108

109 MATERIALS AND METHODS

110 Study Design and Participants Recruitment

111 Participants for this study consisted of 100 older adult Danes from the 

112 Counteracting Age-related Loss of skeletal Muscle mass (CALM) cohort. The details 

113 about the inclusion criteria has been described elsewhere [22]. All experiments were 

114 performed in accordance with the Declaration of Helsinki II and approved by The 

115 Danish Regional Committees of the Capital Region (number H-4-2013-070) and with 

116 informed consent from all participants, registered at ClinicalTrials.gov 

117 (NCT02034760), and data protected under Danish Data Protection Agency 2012-58-

118 0004 – BBH-2015-001 I-Suite.

119 Sample Collection and Processing

120 Fecal samples were collected at admission into the cohort. Every sample was 

121 placed in an insulated bag with freezer elements until delivery at Bispebjerg Hospital, 

122 Copenhagen, Denmark, within 24 hours. The container was stored at -60°C until 

123 analysis. In brief, the fecal samples were thawed at 4°C, re-suspended in autoclaved 

124 Milli-Q water (1:2 feces/water) prior homogenization for 1 min at high speed (Lab 

125 Seward, BA7021). The homogenized fecal samples were aliquoted in 2 mL vials for 
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126 usage in this study [22]. For gut microbiome characterization, 200 mg of the fecal 

127 pellet was recovered for DNA extraction using the standard protocol from the 

128 PowerSoil® DNA Isolation Kit (MOBIO Laboratories, Carlsbad, CA, USA) 

129 supplemented with a bead beating step (FastPrep) to enhance cell lysis. Quality and 

130 concentration of isolated DNA was measured using NanoDrop 1000 

131 Spectrophotometer (Thermo-Fisher, DE, USA), and was stored at − 20 °C until later 

132 use. 

133 The internal transcribed spacer 2 (ITS2) Amplification and Sequencing

134 The gut mycobiome composition was determined using Illumina MiSeq based 

135 sequencing of ITS2 gene region amplicons with adapters compatible for the Nextera 

136 Index Kit® (Illumina, CA, USA). For ITS2, the primers used were ITS3_F: 5’- TCG 

137 TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG GCA TCG ATG AAG 

138 AAC GCA GC -3’ and ITS4_R: 5’- GTC TCG TGG GCT CGG AGA TGT GTA 

139 TAA GAG ACA GTC CTC CGC TTA TTG ATA TGC -3’ [23]. The 1st PCR 

140 reaction was performed on a SureCycler 8800 (Agilent Technologies, Santa Clara, 

141 USA) using the following temperature profile: denaturation at 95°C for 5 min; 33 

142 cycles of 95°C for 20 s, 56°C for 30 s and 68°C for 45 s; followed by final elongation 

143 at 68°C for 5 min, while barcoding (2nd PCR) was performed at 98°C for 1 min; 12 

144 cycles of 98°C for 10 s, 55°C for 20 s and 72°C for 20 s; elongation at 72°C for 5 

145 min. Amplicon concentrations was determined using Qubit® dsDNA BR Assay Kit 

146 (Life Technologies, CA, USA) using a Varioskan Flash Multimode Reader (Thermo 

147 Fischer Scientific, MA, USA) at 485/530 nm. Samples were pooled in equimolar 

148 concentrations and sequenced on a MiSeq platform (Illumina, CA, USA) using the 

149 V3, 2x250bp MID pair-ended kit chemistry. 
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150 Blood Clinical Parameters, Stool Metabolome and 16S rRNA Gene Amplicon 

151 High Throughput Sequencing Data

152 Phenotypic and blood clinical parameters, stool and plasma metabolome, 3-

153 days weighted dietary records, and 16S rRNA gene amplicon sequencing have been 

154 reported previously [24] but here, we integrated these data with gut mycobiome 

155 compositional data.

156 Bioinformatics and Statistical Analysis

157 For the ITS2 amplicons, the raw dataset containing forward reads with 

158 corresponding quality scores were trimmed using USEARCH (v6.1) [25]. High 

159 quality sequences were subsequently de-replicated, filtered from chimeric reads and 

160 de novo Operational Taxonomic Units (OTU), with 97% similarity were constructed 

161 using the UPARSE pipeline [26]. UNITE was used as reference database for ITS2 

162 amplicons [27]. The Unassigned taxa were then manually re-checked for the best hit 

163 as referred to the NCBI nucleotide collection (nr/nt) database using BLAST [28]. 

164 Furthermore, the OTUs belonging to plants and Agaricomycetes [29] were manually 

165 filtered out as they were identified as common in diet.

166 Samples were rarefied to 1427 reads per sample, unless otherwise noted, based 

167 on rarefaction analysis to optimize the number of sequences per sample without 

168 losing too many samples from the dataset (25 samples had less than 1427 reads after 

169 removing plant DNA and were thus discarded). Downstream analyses of alpha- and 

170 beta-diversity were carried out using QIIME (v1.9 and v1.8) [30]. 

171 The relative distribution of the mycobiome genera registered in 100 samples 

172 was calculated, unified and summarized in genus level OTU tables. Alpha diversity 

173 measures were expressed as observed species, PD whole tree, and chao1 (sequence 

174 similarity 97% OTUs) computed for rarefied OTU tables using the alpha rarefaction 
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175 workflow. Differences in alpha diversity were determined using a t-test-based 

176 approach employing the non-parametric (Monte Carlo) method (999 permutations) 

177 implemented in the compare alpha diversity workflow. Bray-Curtis dissimilarity 

178 matrix were calculated and visualized via Principal Coordinate Analysis (PCoA) as 

179 previously described  and ADONIS was used to evaluate group differences [31], [32]. 

180 Additionally, analysis and visualization of microbiome communities was conducted 

181 in R version 3.4.3. Plots were made using ggplot2 package version 2.2.1. Significant 

182 differences in the level of Tg between the groups were assessed using Welch’s test. 

183 Correlation between the variables was computed by Spearman Rank correlation.

184 Differentially abundant taxa were determined by LEfSe analysis [33].  Only 

185 functional categories with log LDA scores of >2.0, and alpha values of < 0.05 for the 

186 factorial Kruskal-Wallis test among classes and pairwise Wilcoxon test between 

187 subclasses were considered as differential signatures discriminating between groups. 

188 A redundancy analysis (RDA) model was used to estimate the amount of variation 

189 among the most abundant mycobiome communities uniquely explained by dietary 

190 patterns after controlling for Tg status (Normal or Hypertriglyceridemia). The 

191 matrices were Hellinger-transformed using the “decostand” function followed by the 

192 “rda” function of the “vegan” package in R [34]. Significance levels determined by 

193 ANOVA and the R2 values were generated by the “RsquareAdj” function in R [35], 

194 [36]. Correlation of anthropometric/body-composition data, fecal and plasma 

195 metabolome, and gut mycobiome associations were investigated by sparse Partial 

196 Least Squares (sPLS) performed using the R package mixOmics [37]. The Bonferroni 

197 or Benjamini-Hochberg approaches were used to adjust for multiple testing, where 

198 appropriate. For all statistical tests, unless stated otherwise, a p-value of p < 0.05 was 

199 considered as statistically significant.
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200 Data availability

201 The raw sequence data of this study were uploaded to EBI’s ENA under 

202 accession codes PRJEB34758 and PRJEB34758. 

203

204 RESULTS

205 Clinical Characteristics 

206 In this study, a total of 100 home-dwelling rather sedentary elderly Danes 

207 above the age of 65 years without any known diseases were enrolled in the CALM 

208 study [22]. Blood parameters and anthropometric measurements were determined. 

209 Generally, all the participants had no systemic disease, did not receive any treatment 

210 with drugs that affected glucose and lipid metabolisms, nor did they take antibiotics. 

211 In this study we stratified the participants according to a newly proposed cut-off of 

212 fasting Tg levels; Tg > 1.70 mmol/l among the elderly [21], [38] defining a group of 

213 hypertriglyceridemia (HG, N=25) and normotriglyceridemia (NG, N=75). The HG 

214 group displayed the typical features of this phenotype in comparison with NG group, 

215 such as higher BMI (p = 0.003), higher blood pressure; diastolic (p = 0.05), higher 

216 lipid profiles; total cholesterol (p = 0.001), HDL (p = <0.001), and LDL (p = 0.02), 

217 and glucose metabolism; fasting OGTT (p = 0.009), Hemoglobin A1c (p = 0.021), 

218 Proinsulin C-peptide (p = <0.001) when compared by Welch t-test (Table 1). 

219 Nevertheless, age and fasting glucose did not present significant differences between 

220 the HG and NG groups.

221 Fungal Diversity and Composition in HG and NG

222 For the entire cohort, the average number of observed fungal species was 12 

223 (min = 1, max = 86), but with large deviations between individuals (standard 

224 deviation = 14) (Supplementary Figure 1). The gut mycobiome of the investigated 
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225 older adults consist of a total of 4 phyla, 15 classes, 91 families and 128 different 

226 fungal genera. The elderly gut is home to three main phyla, namely Ascomycota, 

227 Basidiomycota and Zygomycota. The most prevalent genera among the elderly 

228 Danes were Penicillium, followed by Candida, and Aspergillus (Supplementary 

229 Table 1), as previously described in preliminary studies using similar cohort [39]–

230 [41].

231 Associations with Serum Lipid Profiles for HG Phenotype

232 In order to determine whether the mycobiome was associated with host 

233 hypertriglyceridemia phenotypes, we utilized clinical metadata collected from CALM 

234 study participants focusing on biomarkers related to serum lipids and glucose 

235 metabolism. Alpha and beta diversity analyses showed clustering of samples 

236 according to Tg and VLDL cholesterol covariates. For both Tg and VLDL covariates, 

237 species richness and phylogenetic diversity (assessed using three different indexes, 

238 namely observed species, PD whole tree, and chao1) were significantly decreased 

239 in HG as compared with NG group samples (Figure 1(i to iii), and Figure 2(i to iii); 

240 p < 0.05). 

241 Based on Tg levels, Bray-Curtis dissimilarity analysis confirmed that gut 

242 mycobiome composition was significantly associated with NG and HG status (Figure 

243 1 (iv), p = 0.001, R = 0.06). Likewise, a significant association was observed between 

244 mycobiome and VLDL cholesterol status, based on Bray-Curtis dissimilarity analysis 

245 (p = 0.002, R = 0.06) as shown in Figure 2 (iv). 

246 Importantly, analysis of previously published 16S rRNA gene amplicon data 

247 [24], showed that the prokaryote community does not cluster in relation to blood 

248 triglyceride, nor VLDL cholesterol levels (Figure 1 (v) and 2 (v), p = > 0.05).

249
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250 Genus Penicillium associated with the HG

251 Interestingly, the genus Penicillium was prevalent in every individual 

252 classified with HG (Figure 3 (i)). To further investigate the relationship between the 

253 fungal taxa and Tg levels, Pearson’s correlation tests were conducted to evaluate top 

254 most abundant taxa. Genus Penicillium showed strong correlation with increased levels 

255 of Tg (R=0.311, p = 0.006) while other abundant genera, namely Candida, Aspergillus, 

256 and Unclassified Saccharomycetales did not show any significant correlation with Tg 

257 levels (Figure 3 (ii)).

258 The most relevant taxa responsible for the differences between NG and HG 

259 were identified by LEfSe analysis. Healthy individuals had a significantly higher 

260 relative abundance of autochthonous mycobiome taxa, when compared with 

261 hypertriglyceridemia elderly from HG. The genus Aspergillus, as well as members of 

262 family Saccharomycetales, Saccharomycodaceae, Mucoraceae, Saccharomycetaceae 

263 and order Capnodiales were significantly more abundant in NG individuals, whereas 

264 genus Penicillium and the order Eurotiales were strongly associated with HG as 

265 shown in Figure 3 (iii). 

266 Effect of Diet on the Mycobiome among NG and HG

267 Notably, RDA analysis showed significant clustering of NG and HG groups 

268 and dietary patterns, which again was reflected in the gut mycobiome. Among the HG 

269 population, the dietary elements related to saturated fatty acids (p = 0.004) and fats 

270 (p< 0.05) were associated with higher relative abundance of Penicillium and 

271 Rhodotorula species (Figure 4). Dietary elements related to vegetable oils, fibres, and 

272 legumes were shown to be modestly associated with lower Tg levels, no significant 

273 associations appeared with mycobiome profiles like Aspergillus, Candida, Mucor, 
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274 unclassified Saccharomycetales, unclassified Capnodiales and others (ANOVA with 

275 Bonferroni correction, p > 0.05).

276 SCFAs and Untargeted Serum and Fecal Metabolites Correlate with Gut 

277 Mycobiome of the Elderly

278 sPLS analyses were performed to determine possible correlations between the 

279 dominant fungal genera and untargeted plasma and fecal metabolites. Aspergillus and 

280 Guehomyces were positively correlated with levels of the stool metabolites butyrate, 

281 butanoic acid, and valeric acid. Cyberlindnera and an unclassified Pleosporales 

282 member were positively correlated with plasma metabolites such as ribitol and 1-

283 piperidineacetonitrile (Figure 5). 

284

285 DISCUSSION

286 Previous studies have characterized human gut fungal communities from 

287 diverse age groups [13], [15], [42], but information describing the gut mycobiome of 

288 older adults is sparse. Several studies suggest that prokaryote communities are 

289 hallmarks for atherosclerosis pathogenesis [43]–[46]. Here, we present data showing 

290 an association between gut mycobiome dysbiosis and hypertriglyceridemia in a 

291 homogeneous and well-characterized healthy cohort of older Danish adults.

292 Collectively, we found that the richness of the gut mycobiome among the 

293 studied population was low within individuals. Likewise, a previous study also 

294 showed lower alpha diversity of eukaryote community as compared to the gut 

295 bacterial community [15], which is furthermore decreasing throughout the course of 

296 life due to ageing [42]. In the present study, Penicillium was predominant in many of 

297 the subjects. In contrast, previous studies have indicated that Candida, 
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298 Saccharomyces and Cladosporium are common gut commensal fungi, where the 

299 Candida genus predominantly forms the core mycobiome in the gut [15], [47], [48]. 

300 The causes of hypertriglyceridemia can be a result of interactions between 

301 genetic precursors [49], non-genetic factors such as unhealthy diet and lifestyle [50], 

302 diseases related to metabolic syndromes [51], and usage of some types of medicine 

303 [52]. A total of 25 of the included participants had Tg levels above the recommended 

304 level of 1.7 mmol/L [53]–[56]. We observed that the participants with high Tg levels 

305 were strongly associated with low in gut mycobiome community richness and 

306 diversity. Similarly, a similar pattern of good versus unhealthy VLDL cholesterol 

307 levels strongly linked to the mycobiome composition was observed. Hence, the 

308 increased trends in circulating cholesterol of Tg and VLDL in relation to specific gut 

309 mycobiome clusters could be used as potential indicators for describing the 

310 hypertriglyceridemia phenotype. 

311 LEfSe analysis showed that an upsurge in Penicillium genus could be 

312 associated with hypertriglyceridemia. However, the utility of Penicillium as a 

313 biomarker in predicting the progression of atherosclerosis among older adults is 

314 unclear, and therefore, this association warrants further investigation. Another 

315 interesting observation was the positive association between the relative abundance of 

316 the genus Mucor and the subjects with normal Tg levels. This is in line with previous 

317 studies showing that Mucor is abundant in the gut of non-obese subjects [13], and 

318 confer protection from the risk of CVD [14]. In the present study, subjects stratified 

319 into NG and HG groups also differed in BMI levels (NG = 25.4±3.5; TG = 26.9±3.4 

320 kg·m-2; p = 0.003), but no clustering between the gut mycobiome and BMI was 

321 observed. 
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322 Interestingly, strong correlations between dietary data and gut mycobiome 

323 members and hypertriglyceridemia indicate a role of factors in the disease. 

324 Particularly, in the case of Penicillium, positive correlations with a diet rich in 

325 saturated fatty acids and other lipids are common indicators for higher Tg and VLDL 

326 cholesterol in circulating serum of hosts, which have been reported to be associated 

327 with signatures in coronary atherosclerotic plaques [57], aneurysms of the carotid 

328 artery [58], and negatively correlated with HDL-cholesterol [13]. Hence, we speculate 

329 that these dietary intakes such as fermented dairy products such as cheese[59] might 

330 contribute to increased Tg and VLDL cholesterol levels among the older adult 

331 subjects enrolled in this study. 

332 Finally, we investigated the relationship of the stool and plasma metabolomes 

333 and the gut mycobiome by performing regression-based modelling on 329 metabolites 

334 and 107 OTUs that were assigned to at least the genus level. We observed that 

335 Aspergillus together with Guehomyces was positively associated with faecal SCFA 

336 and specifically valeric, butyric and butanoic acids. Inversely, ribitol – the sugar 

337 alcohol from fruit fermentation by reduction of ribose [60], was positively correlated 

338 with Cyberlindnera and unclassified Pleosporales. Previously, Aspergillus was found 

339 to negatively correlate with SCFAs in subjects on a carbohydrate-rich diet [61]. 

340 However, a recent study showed that Aspergillus species are capable of producing 

341 SCFAs metabolites from fibre rich diet substances [62]. No significant correlations 

342 between Penicillium abundance and any of the metabolites were identified. 

343 Most fungal species detected in gut mycobiome studies are considered 

344 transient components of the community, and putatively of environmental origin, 

345 where the composition in particular is influenced by food-borne fungi and life-style 

346 [63], [64], together with other factors such as age, gender and geographical setting 
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347 [7], [42], [65]. However, due to the dearth of information related to gut mycobiome 

348 studies, little is known about its relationship with fecal metabolome and other factors 

349 such as environmental effects, diet and life style [66] that may lead to 

350 hypertriglyceridemia. 

351

352 CONCLUSION

353 To the best of our knowledge, this is the first study to demonstrate that 

354 hypertriglyceridemia among elderly is associated with gut mycobiome dysbiosis 

355 characterized by overall reduction of the microbial richness and diversity as well as 

356 dysbiosis pattern of the gut mycobiome structure compared to those senior citizens 

357 with normal levels of circulating plasma triglycerides. These findings also highlight 

358 that the everyday diet shapes the gut mycobiome and host metabolome components 

359 among the older citizens. However, it remains unknown whether the microbial 

360 markers and patterns identified here are also adaptable to changes in life styles and 

361 applicable to other cultures in the world. 
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572 Figure 1: Gut mycobiome composition in association with Tg; Hypertriglyceridemia 

573 (HG) is defined when Tg > 1.77 mmol/l. Normotriglyceridemia (NG) when Tg < 

574 1.77 mmol/l. 

575 i), ii) and iii) Alpha diversity measures. Differences in alpha diversity in gut 

576 mycobiome between two groups according to triglycerides levels are shown by the 

577 indices Observed species, PD whole tree and Chao1 *p<0.05. 

578 iv) Gut Mycobiome composition is linked to Tg-levels. Principal Coordinates 

579 Analysis (PCoA) plot based on Bray–Curtis dissimilarity matrix. Adonis analysis 

580 showed significant separation between the groups (Bray-Curtis, R =0.06, adonis; p = 

581 0.001). 

582 v) Gut prokaryotic composition is not associated with Tg-levels. PCoA plot based on 

583 Bray–Curtis dissimilarity matrix. Adonis-analysis showed no significant separation 

584 between the groups. 

585

586

587

588

589

590

591

592

593

594

595

596

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 17, 2020. ; https://doi.org/10.1101/2020.04.16.044693doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.044693
http://creativecommons.org/licenses/by/4.0/


597 Figure 2: Gut mycobiome composition in association with VLDL. 

598 Hypertriglyceridaemia (HG) is defined when VLDL > 0.77 mmol/l.

599 i), ii) and iii) Alpha diversity measures. Differences in alpha diversity in gut 

600 mycobiome between two groups according to VLDL levels are shown by the indices 

601 Observed species, PD whole tree and Chao1 *p <0.05. 

602 iv) Gut mycobiome composition is linked to VLDL-levels. Principal Coordinates 

603 Analysis (PCoA) plot based on Bray– Curtis dissimilarity matrix. Adonis analysis 

604 showed significant separation between the groups (Bray-Curtis, R =0.06, adonis; p = 

605 0.002). 

606 v) Gut prokaryotic composition is not associated with VLDL-levels. PCoA plot based 

607 on Bray–Curtis dissimilarity matrix. Adonis-analysis showed no significant separation 

608 between the groups.
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622 Figure 3: Dysbiosis patterns of the gut mycobiome. 

623 i) Gut mycobiome composition (relative abundance) of elderly Danes based as 

624 determined by ITS2 high throughput amplicon sequencing. 

625 ii) Correlation between the top most abundant taxa with Tg levels. The Spearman 

626 Rank probability (P) and correlation (R) are shown in the graphs. 

627 iii) LEfSe was conducted to explore potential mycobiome differences between NG 

628 and HG groups. LDA Score was constructed, and the bar represents a log10 

629 transformed LDA score. The red color represents taxa that corresponding to HG, and 

630 the green color represents NG. All taxa presented are significant, p < 0.05 confirmed 

631 by alpha value for the factorial Kruskal-Wallis test among classes, and the 

632 discriminative threshold was set > 2.0. 
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647 Figure 4: RDA biplot at OTU level with Hellinger-transformed data. Red dots 

648 represent individuals with high Tg levels (Hypertriglyceridemia, HG) and green dots, 

649 individuals with normal Tg levels. Cut-off for plotted factors was ANOVA with 

650 Bonferroni correction, p < 0.05.
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672 Figure 5: Sparse partial least squared correlations (sPLS) for mycobiome and 

673 untargeted fecal metabolomes. sPLS in regression mode (predict Y from X) to model 

674 a causal relationship between the most relevant of fungal genera and metabolites from 

675 serum and stool. Heatmap displaying the relative accumulation patterns using color-

676 coding (green for negative correlation, and red for positive correlation) of 14 

677 untargeted metabolites against 16 fungal communities. 
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692 TABLE

693 Table 1. Clinical and anthropometrical features of the study groups. Data are given as 

694 mean ± standard deviation (SD). The Welch’s t-test outcomes are presented and 

695 significant  P-values indicated by * are included, p <0.05.
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