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Abstract: Neisseria meningitidis is a commensal pathogen that causes infectious cerebrospinal disease
in people of all ages. The multivariate role of six disease-causing polysaccharide serotypes is found
to play a crucial role in developing vaccines (or general treatment strategies) to treat this emerging
pathogen. Iron is a crucial transition metal for N. meningitidis. Proteomic analysis data could be
valuable for vaccine design. Here, we conduct a comparative study using computational bioinformatic
tools to identify the most effective iron-regulated outer membrane proteins (OMPs) as immunogenic
targets for a potential vaccine against N. meningitidis. The basic properties of N. meningitidis OMPs
are explored for flexibility, solubility, hydrophilicity, beta-turns, and overall antigenic probability.
Results of our study suggest that iron-regulated OMPs are flexible and soluble in water with high
densities of conformational B-cell epitopes. As such, they can be recommended as a novel candidate
for a vaccine against N. meningitidis both in vitro and in vivo.
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1. Introduction

Neisseria meningitidis is a diplococcal Gram-negative bacterial species that serves as the predominant
causative infectious agent for a range of diseases classified as an invasive meningococcal disease [1].
Meningitis is defined as the infection of the meninges membranes encompassing the brain and spinal
cord. N. meningitidis is an obligate human pathogen [2] and its infections may remain asymptomatic [3].
Meningitis progression is rapid and has complicated symptoms that make clinical diagnosis difficult
and cause it to be a world-wide challenge to treat and prevent.

N. meningitidis is host-specific and adapted to sidestep the human immune system during
pathogenesis as well as having commensal residence in the nasopharynx [2]. The human immune
system is complex and can eliminate the meningococcus infection through an array of different
strategies, including antimicrobial peptides and proteins, which play an important role in the innate
immune system [4]. To combat the host antibacterial defense system, N. meningitidis modifies lipid
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A-groups of the toxins lipooligosaccharides through phosphoethanolamine [5]. The compounds
present in the outer membrane increase meningococcal resistance against the human microbial peptide
LL-37 [6]. As reported previously, a number of factors (e.g., biofilm formation ability, adherence to the
cell, and the ability to invade host cells) are important for the virulence of this bacterium [7], while iron
acquisition is another virulence factor and determinant of host cell death [8].

According to Centers for Disease Control and Prevention (CDC), there are two types of
meningococcal vaccines available in the United States: meningococcal conjugate vaccine and serogroup
B meningococcal vaccine. The former is recommended for 11 to 12 years old person while requiring to
administer a booster dose after three to four years. On the other hand, the latter is for 10 years or older
(https://www.cdc.gov/vaccines/vpd/mening/index.html). However, outer membrane protein vaccines
have been observed to have high efficacy against group B in individuals over 4 years of age [9]. On the
other hand, N. meningitidis is found to have low genomic stability. In light of all these factors, a stable,
multi-purpose vaccine against N. meningitides is in urgent need for development.

Acquisition of iron is an important factor for the virulence of pathogens such as N. meningitidis [10].
If restricted, pathogenic bacteria require major transcriptional changes to amplify and transcript iron
metabolic- and motility-related genes. Proteomic analysis may facilitate vaccine design through a better
understanding of energy and metabolic processes as well as iron storage [11]. Proteomics bioinformatic
tools are valuable for epitope prediction and vaccine design based on 3D proteomic structuring [12–14].
In the present study, we combine in silico analyses of the N. meningitidis genome structure with
bioinformatic tools to identify potentially immunogenic antigens from N. meningitidis proteins. We verify
the iron-regulated proteins from N. meningitidis and investigate the potential of iron-regulated proteins
as candidates for the development of an N. meningitidis vaccine. Furthermore, our systematic selection
and evaluation of antigens provide a new approach that will help lower the expense of cloning.

2. Methods and Materials

2.1. Selection of Iron-Regulated Proteins of N. meningitidis

For the in silico analysis of immunogenicity, outer membranes, iron-regulated proteins of
N. meningitidis (CBA09441, CBA07476, CAM07737, and CBA03648), were selected through an NCBI
search (http://www.ncbi.nlm.nih.gov/protein). All the protein sequences were retrieved from the NCBI
server and saved in the FASTA format for subsequent analyses.

2.2. Antigenicity and Solubility Prediction

We used the Immune Epitope Database (IEDB, http://tools.immuneepitope.org) to predict the
average scores for flexibility, hydrophilicity, and beta turns of proteins [15]. We used VaxiJen
(alignment-independent prediction of protective antigens) (http://www.ddg-pharmfac.net/vaxijen/

VaxiJen/VaxiJen.html) [16] and ANTIGENpro (http://scratch.proteomics.ics.uci.edu/) to analyze the
antigenic probability. The threshold parameter for VaxiJen was estimated at 0.4 (40%). In ANTIGENpro,
the protein antigenicity was predicted based on five machine learning approaches followed by
a Support Vector Machine (SVM) classifier. The solubilities of the selected antigenic proteins were
predicted with SOLpro (http://scratch.proteomics.ics.uci.edu) using a two-stage support vector machine
architecture [17].

2.3. Prediction of Linear and Conformational B-Cell Epitopes

The ABCpred webserver (http://www.imtech.res.in/raghava/abcpred) was used to provide a linear
B-cell epitope prediction using a recurrent neural network algorithm trained with BciPep and SwissProt
databases (https://www.ebi.ac.uk/) that contained 700 experimentally detected B-cell epitopes. The best
results were acquired with the aid of a window length of 16 residues [18] with a threshold for
predictions of 0.80 (i.e., without an epitope overlapping filter). BCpreds (http://ailab.cs.iastate.
edu/bcpreds/predict.html) was employed to predict overlapping epitopes with 80% specificity for
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flexible length, linear B-cell epitopes [19]. BepiPred (http://www.cbs.dtu.dk/services/BepiPred) was
utilized to additionally predict B-cell epitopes from antigen sequences (threshold parameter as 0.8
(80%)), while ElliPro (http://tools.immuneepitope.org/tools/ElliPro/iedb) predicted both linear and
conformational B-cell epitopes. Compared to six other structure-based methods that can be used for
epitope prediction, ElliPro was reported to perform the best [20].

We also explored DiscoTope (http://www.cbs.dtu.dk/services/DiscoTope/) as a novel tool to predict
conformational B-cell epitopes from three-dimensional structural data of the protein with the aid of
spatial information, amino acid statistics, and surface accessibility. The predictions were used for the
compilation of discontinuous epitopes as ascertained by X-ray crystallography of antibody/antigen
protein complexes [21]. In addition, we predicted conformational epitopes based on the Ellipro server.
To predict conformational B cell epitope in ElliPro, its prediction parameter was selected in the range
of 0.5 to 8. Peptides that were predicted to be epitopes were selected by their high epitope density.

2.4. Template Identification and Comparative Model Building

Comparative protein modeling is an alternative for experimental models based on the
SWISS-MODEL template library. The best performing model was selected for further analysis
and protein comparative modeling of the target sequences was done using the SWISS-MODEL server
(https://swissmodel.expasy.org/), after which the PyMOL software was employed to visualize the
results of the 3D protein models [22–24]. Ray tracing was also performed to generate a better view of
the 3D models of these proteins.

2.5. Evaluation of Comparative Model

The protein models generated through the SWISS-MODEL server were extracted into the PDBsum
server for the purpose of Ramachandran plot analysis. The in silico stereochemical quality and accuracy
were analyzed by PROCHECK [25]. After that, the protein model selected based on its discrete
optimized protein energy (DOPE) score was analyzed by GROMOS96 of Swiss-PdbViewer 4.1.0
software to minimize the energy [26]. Note that Steepest Descent algorithm was employed to assess
the lowest energy conformation for the predicted protein molecules. Parameters for steps and cut off

were selected as 20 and 10 angstrom, respectively. Further, the energy-minimized models were put into
the SAVES server as a means to verify the 3D results (http://nihserver.mbi.ucla.edu/SAVES) for ERRAT.
ERRAT was used to verify the protein structures on the basis of an empirical, atom-based approach [27].
In this work, the ProSA server was utilized to evaluate the protein models. Finally, Verify_3D was
utilized to assess the protein model and three-dimensional profiling [28].

3. Results

3.1. Antigenicity and Solubility Prediction

We started our investigation with five proteins (Supplementary Table S1). Among them, as four
proteins (CBA09441, CBA07476, CAM07737, and CBA03648) showed high antigenicity scores (Table 1),
they were selected for further analysis. According to the IEDB server, the hydrophilicity scores ranged
from 2.167 to 2.18. In the case of flexibility, CBA09441, CAM07737, and CBA03648 scored 1.007 and
CBA07476 scored 1.006. For the beta turns, CBA09441, CBA07476, and CAM07737 scored 1.025 and
CBA03648 scored 1.029. In contrast, the antigenicity prediction scores from the VaxiJen server ranged
from 0.6939 to 0.7186 and the ANTIGENpro server scores ranged from 0.90866 to 0.9154 (Table 1).
These results indicate that those proteins possess the structural flexibility and immunogenic properties.
In this study, CBA07476, CAM07737, CBA03648, and CBA09441 were soluble in SOLpro analysis,
whereas CBA09441 was soluble in SOLpro with the highest SOLpro probability of 0.823523 (Table 2).
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Table 1. Antigenic and immunogenic properties of proteins.

Accession No. IEDB VaxiJen ANTIGENPro

Hydrophilicity Flexibility Beta Turn

CBA09441 2.176 1.007 1.025 0.7022 0.909208
CBA07476 2.167 1.006 1.025 0.7186 0.90866
CAM07737 2.18 1.007 1.025 0.7092 0.910421
CBA03648 2.177 1.007 1.029 0.6939 0.9154

Table 2. Solubility of proteins.

Accession No. SOLpro

CBA09441 SOLUBLE with probability 0.823523
CBA07476 SOLUBLE with probability 0.756444
CAM07737 SOLUBLE with probability 0.713970
CBA03648 SOLUBLE with probability 0.805877

3.2. Linear and Conformational B-Cell Epitopes Prediction

According to ABCpred, the linear B-cell epitope densities for all the proteins ranged from 0.49 to 0.55.
CAM07737 predicted by the BepiPred server showed high linear B-cell epitope densities. In the case of
the BCpred server, CAM07737 and CBA07476 showed high epitope densities. Additionally, the ElliPro
server also predicted CBA07476 with high epitope densities relative to other proteins (Table 3).

Table 3. Linear B-cell epitope densities of proteins.

Accession No.
Length ABCpred BepiPred BCpred Ellipro

EN ED EN ED EN ED EN ED

CBA09441 713 352 0.49 149 0.20 140 0.19 216 0.30
CBA07476 721 368 0.51 143 0.19 160 0.22 226 0.31
CAM07737 714 368 0.52 157 0.21 160 0.22 206 0.28
CBA03648 723 400 0.55 148 0.20 140 0.19 219 0.30

EN = Epitope starting residue number, ED = Epitope density.

The DiscoTope server analysis resulted in a list of proteins (e.g., CBA09441, CBA07476, CAM07737,
and CBA03648) with conformational epitope density scores of 0.49, 0.49, 0.43, and 0.50, respectively,
which was different from the Ellipro server scores of 0.48, 0.47, 0.50, and 0.48, respectively. It was
demonstrated based on the DiscoTope server that CBA03648 should have a high conformational
epitope density. With the Ellipro server, CAM07737 also exhibited high densities of conformational
B-cell epitopes (e.g., relative to other proteins), as shown in Table 4.

Table 4. Conformational B-cell epitope densities of proteins predicted with DiscoTope, and ElliPro.

Accession No.
DiscoTope Ellipro

Length
EN ED EN ED

CBA09441 351 0.49 343 0.48 713
CBA07476 354 0.49 342 0.47 721
CAM07737 313 0.43 357 0.50 714
CBA03648 360 0.50 349 0.48 723

EN = Epitope residue number, ED = Epitope density.
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3.3. Templates Analyses, Comparative Protein Model Building, and Visualization

Figure 1 presents the predicted protein models. CAM07737, CBA03648, and CBA09441 possess Fe+3

molecules as ligand in their structure. The initial energy values of the proteins were as follows: CBA09441
(−33,787.887 Kcal/mol), CBA07476 (−34,049.195 Kcal/mol), CAM07737 (−30,584.434 Kcal/mol),
and CBA03648 (−31,806.014 Kcal/mol). After energy minimization the energy values were
−43,611.754 Kcal/mol, −43,311.914 Kcal/mol, −41,019.699 Kcal/mol, and −41,996.238 Kcal/mol,
respectively (Table 5).
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Figure 1. Predicted 3D protein models. (A) CAM07737. (B) CBA03648. (C) CBA07476. (D) CBA09441
(FrpB). The ball structure (magenta color) represents the Fe+3 ligand molecule.

Table 5. Model evaluation scores and energy of the model of before and after energy minimization.

Accession No. ProSA
(Z-Score)

Verify_3D
Score (%)

ERRAT
Value

Energy of the Model
before Energy
Minimization

(Kcal/mol)

Energy of the
Model after Energy

Minimization
(Kcal/mol)

CBA09441 −4.92 80.42 91.6667 −33,787.887 −43,611.754
CBA07476 −4.89 81.7 86.5067 −34,049.195 −43,311.914
CAM07737 −4.55 80.3 91.0334 −30,584.434 −41,019.699
CBA03648 −5.19 80.41 92.0777 −31,806.014 −41,996.238

3.4. Evaluation of Predicted Protein Models

CBA09441, CAM07737, and CBA03648 had good G-score values (Table 6, Figure 2). The G-factor
is used as a measure of a given stereochemical property in terms of normality. For a low G-factor,
the property should have a low-probability conformation. The analysis of protein models revealed
that CBA09441, CBA07476, CAM07737, and CBA03648 had good Verify_3D scores of 80.42, 81.7, 80.3,
and 80.41%, respectively (Table 5).
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Table 6. Ramachandran plot statistics and overall G-factors of N. meningitidis proteins.

Accession No.
Ramachandran Plot Statistics

Overall G-FactorMost Favored
Regions

Additional
Allowed Regions

Generously
Allowed Regions

CBA09441 502 63 1 −0.35
CBA07476 531 55 4 −0.21
CAM07737 502 63 1 −0.35
CBA03648 502 63 1 −0.35
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According to the ERRAT value, all protein models showed scores ranging from 86.5 to 92 (Table 5).
ERRAT value can be used to statistically assess non-bonded interactions between different atom
types. The accuracy of the predicted protein model was confirmed by a negative Z-score value
(Figure 3). The Z-score can be used to judge the overall model quality based on the evaluation of the
deviation of the total energy in the structure in relation to an energy distribution derived from random
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conformations [29]. The Z-scores of the four experimentally predicted protein models (i.e., CBA09441,
CBA07476, CAM07737, and CBA03648) were −4.92, −4.89, −4.55, and −5.19, respectively.
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4. Discussion

As a human pathogen, N. meningitidis is known to cause devastating effect on humans [30].
The expression of several genes in response to iron (e.g., specific virulence factors) was reported to be
regulated by the pathogenic Neisseria. As all bacteria demands iron for their growth, immunogenicity
analysis for vaccine and drug design often sets iron-regulated N. meningitidis protein as the target [31].
To develop new vaccines (or new therapies) for undetectable bacterial agents in the pathogenesis, it is
often crucial to find new cell-surface and/or secreted proteins [32]. Outer membrane proteins may have
a strong immunogenic property with easy accessibility to antibodies [33,34]. In the host, the infection
and survival of the N. meningitidis is siderophore-dependent [35]. Neisseria species hijack siderophore
produced by other bacteria [36]. FrpB is an integral outer membrane protein from N. meningitides.
It was demonstrated that this protein should possess antigeic properties as a potential candidate for
a vaccine against meningococcal meningitis [37–39]. This protein has been extensively characterized
previously [37,40]. FrpB promotes the uptake of iron across the outer membrane to work as siderophore
receptor [37,38]. Thus, because of their outer membrane localization, iron-regulated proteins are
easily exposed to the host immune system, which responds to the immunogenicity and protection
probability by provoking higher antibody production [41,42]. In other bacterial species, the use
of specific antibodies against iron-regulated outer membrane proteins (IROMPs) is for bactericidal
purposes to inhibit the uptake of iron. [43].

Nuclear magnetic resonance (NMR) and X-ray crystallography methods have been utilized to
determine the 3D structure of proteins [44,45]. However, these methods are time-consuming and
highly expensive. We used comparative homology modeling instead of experimental NMR and
X-ray crystallography. Comparative homology modeling is considered as a highly favorable option
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because of its capability for function prediction as well as its application in different research fields
(e.g., 3D structure prediction, mutagenesis analysis, and disulfide bridge analysis) [46,47]. We predicted
3D structures for all four IROMPs and validated them. The continuous decrease of force field energy
was realized through energy minimization after the refinement of the protein model. Our data also
suggested that, in terms of the Z-score, the G factor value and ERRAT value of all four IROMPs were
good, but among them, CBA03648 had the highest score.

In the current study, IROMPs from N. meningitidis were chosen to estimate their immunogenicity
for the generation of a vaccine. The immunogenicity of an antigen is reported to be affected by several
properties, such as mobility of backbone atoms, accessibility, flexibility, hydrophilicity, and topology [48].
All data obtained from Vaxijen, ANTIGENpro, and IEDB were comparable to each other considering the
lowest scores for antigenicity. Protein solubility is another important factor used for immunogenicity
prediction. Insoluble proteins are not appropriate for an immunogenicity effect. We used SOLpro to
predict the solubility of protein. SOLpro provides the corresponding solubility probability (above 0.5)
(http://scratch.proteomics.ics.uci.edu/explanation.html#SOLpro). Our data suggest that all of the
predicted protein models should be water-soluble (Table 2).

An essential task in the design of a vaccine is to choose proteins with antibody-binding epitopes
(B-cell epitopes) through which the immune response can be induced efficiently [49,50]. All of our
predicted protein models showed a high B-cell epitope density that could be grouped into two classes:
linear or conformational epitopes. The former are short peptides while the latter are composed of
amino acids that are within the structure of a folded 3D protein [51]. In our study, we predicted linear
and conformational B-cell epitopes with the aid of several bioinformatics tools that contributed to the
elevated accuracy of the prediction. All these bioinformatics tools were highly useful in predicting that
CBA03648 should possess large amounts of linear and conformational B-cell epitopes relative to other
proteins. It is noted that antigenicity and immunogenicity of the protein can increase significantly
with increases in epitope density in a single protein molecule [52]. As such, it can be concluded that
CBA03648 is a better vaccine candidate than the other three proteins.

In this research, we conducted a comparative assessment on the immunogenic and antigenic
differences between protein molecules that exhibit either high or low degrees of epitope
density. Accordingly, all the predicted protein models were seen to have a high epitope density.
However, among the four IROMPs, as mentioned earlier, CBA03648 had better epitope density
(ABCpred score 0.55 and Ellipro score 0.30). High epitope density in a protein molecule
leads to a significant enhancement of immunogenicity and antigenicity [52,53]. Both protective
immunity and epitope density are useful for revealing vital pieces of information for vaccine
development. Further, the recombinant proteins of higher epitope densities were identified to
contribute greatly to the enhancement of survival rates for mice [54]. The results of the in silico study
suggested that all four proteins should contribute significantly to siderophore-mediated iron uptake.
Hence, they can exert a greater immunogenicity effect on humans. A similar kind of in silico study
is conducted by Bazmara et al., in 2017. They did the investigation on iron-regulated proteins in
Acinetobacter baumannii [55]. They find that CarO is an efficient immunogenic protein in A. baumannii.
A similar in silico study was conducted by Adhikari and Rahman 2017, with similar outcomes [56].

The protein model selected in our work (CBA09441, CAM07737, and CBA03648) recorded an
ERRAT score of above 91% to indicate a low resolution of our model [57]. Although our model has
low resolutions, similar results were also reported previously [57–59]. The protein model in this work
showcased a good negative Z-score value similar to others [56]. On the other hand, Verify_3D score of
a predicted model should be more than 80% [60]. All of our predicted models showed Verify_3D score
above 80% to prove good quality. In the case of the Ramachandran plot, above 90% of amino acid
residues should be in the most favored region for a modeled structure [57]. Our data are also found to
fulfill this criterion when tested using those predicted protein models. Thus, the overall scores of all
the predicted protein models are quite reliable and satisfactory.

http://scratch.proteomics.ics.uci.edu/explanation.html#SOLpro
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5. Conclusions

Together with bioinformatic tools, we validated our protein models with respect to stereochemical
quality, protein model accuracy, its resolution, and our predicted model quality. Our in silico modeling
showed that iron-regulated proteins from N. meningitidis had the potential to cause an immune response
in humans. These proteins are expected to maintain high densities of conformational B-cell epitopes,
high solubility, and high antigenicity. Thus, our results help to better conduct in vitro and in vivo
research in the field of vaccine design.
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