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Abstract: This numerical study was devoted to examining the occurrence of non-unique solutions
in boundary layer flow due to deformable surfaces (cylinder and flat plate) with the imposition
of prescribed surface heat flux. The hybrid Al2O3-Cu/water nanofluid was formulated using the
single phase model with respective correlations of hybrid nanofluids. The governing model was
simplified by adopting a similarity transformation. The transformed differential equations were then
numerically computed using the efficient bvp4c solver with the ranges of the control parameters
0.5% ≤ φ1, φ2 ≤ 1.5% (Al2O3 and Cu volumetric concentration), 0 ≤ K ≤ 0.2 (curvature parameter),
2.6 < S ≤ 3.2 (suction parameter) and −2.5 < λ ≤ 0.5 (stretching/shrinking parameter). Dual steady
solutions are presentable for both a cylinder (K > 0) and a flat plate (K = 0) with the inclusion
of only the suction (transpiration) parameter. The real and stable solutions were mathematically
validated through the stability analysis. The Al2O3-Cu/water nanofluid with φ1 = 0.5% (alumina)
and φ2 = 1.5% (copper) has the highest skin friction coefficient and heat transfer rate, followed by the
hybrid nanofluids with volumetric concentrations (φ1 = 1%, φ2 = 1%) and (φ1 = 1.5%, φ2 = 0.5%),
respectively. Surprisingly, the flat plate surface abates the separation of boundary layer while it
enhances the heat transfer process.

Keywords: hybrid nanofluid; permeable cylinder; stretching/shrinking; heat flux; dual solutions

1. Introduction

Over recent decades, the investigation in the field of fluid flow has gained interest due to
the wide range of industrial applications. The explorations so far have covered Newtonian and
non-Newtonian fluids with multiple effects and single or multi-phases [1–5]. The applications of the
study of fluid flow can be found in mechanical and chemical engineering, biological systems and
astrophysics. The inquisitiveness in this field grew significantly in the past few years after Choi [6]
embedded the nanoparticle in the investigation of fluid flow to develop an advanced heat transfer
fluid with substantially higher conductivities. The analysis revealed that the fluid with nanoparticles
enhanced the thermophysical properties as compared to the classical working fluid. Since then,
many researchers gained interest and contributed to this field by considering experimental and
numerical studies. Wang and Su [7] conducted an experimental study on the boiling heat transfer of a
nanofluid in a vertical tube with diverse pressure conditions. The continuation of the study has been
reported in Wang et al. [8]. The experimental works on nanofluids also have been documented by
Ahmadi and Willing [9], Masuda et al. [10], Das et al. [11] and Pak and Cho [12]. Meanwhile, study via
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a mathematical approach with various effects and surfaces was reported in work done by Kuznetsov
and Nield [13], Mahat et al. [14], Zokri et al. [15] and Waini et al. [16].

As nanofluids are extensively used as coolants; lubricants; and also in practical applications,
including refrigeration, air-conditioning, microelectronics and processors of mobile computers,
the advancements in this topic are being further investigated by considering fluids containing
more than one type of nanoparticle called hybrid nanofluids. This new invention has new thermal
characteristics as compared to conventional nanofluids. The application of Al2O3-Cu/water in
the boundary layer flow was further analyzed by Waini et al. [17,18] for thin needle and sensor
surfaces, respectively; Khashi’ie et al. [19,20] for Riga plate and cylinder surfaces, respectively;
and Zainal et al. [21–23] specifically for the flat plate cases. They also performed a stability analysis to
justify the stability of the dual solutions. Moreover, the collection of documents on hybrid nanofluids
can be found in works done by Yen et al. [24], Labib et al. [25], Nasrin and Alim [26], Takabi and
Shokouhmand [27], Devi and Devi [28,29], Yousefi et al. [30], Hayat et al. [31], Ghadikolaei et al. [32],
Tayebi and Chamkha [33] and Ashorynejad and Shahriari [34].

According to the current studies on the fluid mechanics of fluid flow, the flow characteristics
depend on what type of geometry the fluid is moving over. A group of researchers focused
on the fluid flow problem over different types of stretching/shrinking surfaces. For instance,
Kasim et al. [35] investigated the interaction on a fluid and solid moving over a stretching sheet,
and Lund et al. [36] considered the study of fluid flow past an inclined stretching/shrinking surface.
Waini et al. [37] and Anuar et al. [38] deliberated on the problem of fluid flow under an exponentially
shrinking sheet. The fluid flow passing over a shrinking cylinder was first discussed by Wang [39].
The exponential transformation was used to facilitate numerical integration in order to compute the
solution. His work was further investigated by Mukhopadhyay [40], Vajravelu et al. [41], Butt and
Ali [42], Abbas et al. [43], Malik et al. [44] and Shafik et al. [45]. Besides, the problem of the flow
past a cylinder has important applications in the study of geological formations that includes the
exploration and thermal recovery of oil, geothermal reservoirs and underground nuclear waste storage
sites. The outcomes from this study will be beneficial to the engineers in the prediction of flow, heat
transfer and solute or contaminant dispersion about intrusive bodies such as salt domes, magnetic
intrusions, piping and casting systems (see Ganesan and Loganathan [46]). Recent works on flow
past a stretching cylinder with various physical phenomena can be found in Ferdows et al. [47]
(gyrotactic microorganism), Ullah et al. [48] (chemical reaction and heat generation/absorption) and
Suleman et al. [49] (homogeneous-heterogeneous reactions).

The choices of the thermal boundary conditions for the fluid flow problem are very crucial, since a
difference in conditions leads one to describe a different situation for the problem. They are four
types of boundary conditions which are generally used. They are constant wall temperature (CWT),
constant/prescribe heat flux (PHF), Newtonian heating (NH) and convective boundary condition
(CBC). According to Muthtamilselvan and Prakash [50], the constant thermal boundary conditions that
are imposed on the surface are not adequate in some cases, for example, in a microelectromechanical
(MEM) condensation application where a fixed heat dissipation due to condensation on the lower
surface of the plate is removed by the gas flowing over the top surface. Therefore, a lot of research
work was replaced with a different heating process. The condition of CWT is generally used to describe
bodies with very high heat conductivity while PHF is used to present the problem with the supplied
thermal energy from the surface. The NH and CBC correspond to the existence of convection heating
(or cooling) at the surface and are obtained from the surface energy balance. They are many reported
articles that considered those thermal boundary conditions. The present problem considered the case
of PHF, since it seems more realistic. The existing studies involving the particular thermal boundary
condition can be found in [51–55].

Motivated by the above literature, the present paper aims to extend the existing investigation of
hybrid nanofluids by considering the flow past a shrinking cylinder through adopting the model of
nanofluids proposed by Tiwari and Das [56]. The hybrid nanofluid deliberated with two elements,
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which were Al2O3 and Cu in pure water. The governing equations with thermal condition heat
flux were first transformed into a system of ordinary differential equations by using an appropriate
similarity transformation. The system of equations was then solved numerically using the boundary
value problem solver (bvp4c) which is embedded in Matlab software. The validation of the present
works was done by direct comparison with the current output in the literature for special cases (limiting
cases). The effects of pertinent parameters on the flow and heat transfer characteristics are presented in
tabular and graphical form. To the best of the authors’ knowledge, minimal studies have been reported
in the literature regarding the investigation of flow over a shrinking cylinder in hybrid nanofluids
embedded in the heat flux thermal condition.

2. Mathematical Formulation

A steady, incompressible and laminar boundary layer flow of hybrid nanofluid (Cu-Al2O3/water)
towards a horizontal cylinder is studied here. The circular cylinder with radius a is deformed
(stretch/shrink) with velocity uw(x) = u0x/L where constant u0 is a characteristic velocity and L is
the characteristic length of the cylinder. Figure 1 illustrates the physical model and coordinate system
(x, r) of this problem. The deformable cylinder is subjected to the prescribed heat flux qw(x) = T0x/L
where T0 is a characteristic temperature.
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Figure 1. The coordinate system and physical models of (a) the stretching cylinder and (b) the
shrinking cylinder.

The governing model in the PDEs (partial differential equations) is given as (see Khashi’ie
et al. [20], Qasim et al. [57])

∂(ru)
∂x

+
∂(rv)

∂r
= 0, (1)

u
∂u
∂x

+ v
∂u
∂r

=
µhn f

ρhn f

(
∂2u
∂r2 +

1
r

∂u
∂r

)
, (2)

u
∂T
∂x

+ v
∂T
∂r

=
khn f

(ρCp)hn f

(
∂2T
∂r2 +

1
r

∂T
∂r

)
, (3)

while the boundary conditions are

v = vw(r), u = λuw(x), khn f
∂T
∂r

= −qw(x), at r = a

u→ 0, T → T∞, as r → ∞
(4)
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where vw(r) represents the mass flux velocity through the permeable surface such that vw(r) > 0 for
mass injection and vw(r) < 0 for mass suction. For the case of an impermeable surface, vw(r) = 0.
Besides, u and v denote the velocities along x− and r−axes, correspondingly and T is the temperature
of the hybrid nanofluid. In this work, the constant far-field temperature T∞ is considered while the
cylinder wall is subjected to the variable heat flux qw(x). In addition, the constant stretching/shrinking
parameter λ signifies the shrinking cylinder when λ < 0 and stretching cylinder when λ > 0. The static
cylinder is symbolized by λ = 0. The correlations of the nanofluids (regular and hybrid) are presented
in Table 1 where s1 and s2 denote the alumina and copper nanoparticles, respectively; φ1 and φ2 are the
volumetric concentrations of the alumina and copper nanoparticles, accordingly. Besides, the subscript
b f denotes the base fluid (pure water); n f and hn f are single and hybrid nanofluids, respectively.
In Table 1, φhn f = φ1 + φ2 where φhn f ≈ 0 corresponds to water—base fluid. The thermophysical
properties of the water and both nanoparticles are presented in Table 2.

Table 1. The correlations of single (n f ) and hybrid nanofluids (hn f ) (see Tiwari and Das [56],
Takabi and Salehi [58]).

Properties Nanofluids

Density (ρ) ρn f = (1− φ) ρb f + φρs

ρhn f = (1− φhn f )ρb f + φ1ρs1 + φ2ρs2

Heat Capacity (ρCp) (ρCp)n f = (1− φ)(ρCp)b f + φ(ρCp)s(
ρCp

)
hn f =

(
1− φhn f

)
(ρCp)b f + φ1(ρCp)s1 + φ2(ρCp)s2

Dynamic Viscosity (µ)
µn f

µb f
=

1
(1− φ)2.5

µhn f

µb f
=

1
(1− φhn f )2.5

Thermal Conductivity (k)
kn f

kb f
=

 ks + 2kb f − 2φ
(

kb f − ks

)
ks + 2kb f + φ

(
kb f − ks

)


khn f

kb f
=

 φ1k1+φ2k2
φhn f

+ 2kb f + 2 (φ1k1 + φ2k2)− 2φhn f kb f
φ1k1+φ2k2

φhn f
+ 2kb f − (φ1k1 + φ2k2) + φhn f kb f


Table 2. Thermo-physical properties of the nanoparticles and water (see Oztop and Abu-Nada [59]).

Thermophysical Properties
Base Fluid Nanoparticles

Pure Water Alumina Copper

Cp (J/kgK) 4179 765 385
ρ (kg/m3) 997.1 3970 8933
k (W/mK) 0.6130 40 400

The following similarity variables are introduced as (Qasim et al. [57], Giri et al. [60])

u =
u0x

L
f ′(η), v = − a

r

√
u0ν f

L
f (η), T = T∞ +

qw

k f

√
ν f L
u0

θ(η), η =

√
u0

ν f L
r2 − a2

2a
, (5)

so that

vw(r) = −
a
r

√
u0ν f

L
S, (6)

where ν f is the kinematic viscosity of the water, S is the dimensionless mass flux parameter and
categorized as S > 0 and S < 0 for suction and injection, respectively. The continuity equation
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in Equation (1) is obeyed by adopting the transformation in Equation (5). Hence, considering this
transformation, Equations (2)–(4) are transformed and simplified to

µhn f /µ f

ρhn f /ρ f

[
(1 + 2Kη) f ′′ + 2K f ′′

]
+ f f ”− f ′2 = 0, (7)

1
Pr

khn f /k f

(ρCp)hn f /(ρCp) f

[
(1 + 2Kη)θ′′ + 2Kθ′

]
+ f θ′ − f ′θ = 0, (8)

f ′(0) = λ, f (0) = S, θ′(0) = −
k f

khn f
,

f ′(∞)→ 0, θ(∞)→ 0,

(9)

where K =
√

ν f L/u0a2 is the curvature parameter and Pr = (µCp) f /k f is the Prandtl number.
The local skin friction coefficient C f and the local Nusselt number Nux (heat transfer rate) are defined as

C f =
µhn f

ρ f uw2

(
∂u
∂r

)
r=a

, Nux = −
xkhn f

k f (Tw − T∞)

(
∂T
∂r

)
r=a

. (10)

By substituting Equation (5) into Equation (10), we obtain

Re1/2
x C f =

µhn f

µ f
f ”(0), Re−1/2

x Nux =
1

θ(0)
(11)

where Rex = uw(x)x/ν f is the local Reynolds number.

3. Stability Analysis

Consider an unsteady problem of Equations (2) and (3) to test the stability of the particular
similarity solutions such that

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂r

=
µhn f

ρhn f

(
∂2u
∂r2 +

1
r

∂u
∂r

)
, (12)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂r

=
khn f

(ρCp)hn f

(
∂2T
∂r2 +

1
r

∂T
∂r

)
. (13)

The disturbance in a solution may grow or decay with time; hence, it is worth using an unsteady
model. The relevant similarity transformation which is applicable to reducing Equations (12) and (13) is

u =
u0x

L
∂ f (η, τ)

∂η
, v = − a

r

√
u0ν f

L
f (η, τ), T = T∞ +

qw

k f

√
ν f L
u0

θ(η, τ), η =

√
u0

ν f L
r2 − a2

2a
, (14)

where τ = u0t/L is a time variable. Thus, the reduced differential equations including the boundary
conditions are

µhn f /µ f

ρhn f /ρ f

[
(1 + 2Kη)

∂3 f
∂η3 + 2K

∂2 f
∂η2

]
+ f

∂2 f
∂η2 −

(
∂ f
∂η

)2

− ∂2 f
∂η∂τ

= 0, (15)

1
Pr

khn f /k f

(ρCp)hn f /(ρCp) f

[
(1 + 2Kη)

∂2θ

∂η2 + 2K
∂θ

∂η

]
+ f

∂θ

∂η
− θ

∂ f
∂η
− ∂θ

∂τ
= 0, (16)
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f (0, τ) = S,
∂ f (0, τ)

∂η
= λ,

∂θ(0, τ)

∂η
= −

k f

khn f
,

∂ f (∞, τ)

∂η
→ 0, θ(∞, τ)→ 0. (17)

Further, to examine the solution’s stability, the following perturbation equations in (18) can be
substituted into Equations (15)–(17) to generate a list of unknown eigenvalues β where β1 < β2 <

... < βn. The positive or negative sign from the smallest eigenvalue β1 is important in determining a
solution’s stability. The perturbation equations are (Merkin [61], Weidman et al. [62])

f (η, τ) = f0(η) + e−βτ F(η), θ(η, τ) = θ0(η) + e−βτG(η), (18)

where f0(η) = f (η), θ0(η) = θ(η); and F(η) and G(η) are small relatives to f0(η) and θ0(η),
respectively. The linearized eigenvalue problem is represented by

µhn f /µ f

ρhn f /ρ f

[
(1 + 2Kη)F′′′ + 2KF′′

]
+ F′′ f0 − (2 f ′0 − β)F′ + f ′′0 F = 0, (19)

1
Pr

khn f /k f

(ρCp)hn f /(ρCp) f

[
(1 + 2Kη)G′′ + 2KG′

]
+ G′ f0 + (β− f ′0)G− θ0F′ + Fθ′0 = 0, (20)

and the homogeneous boundary condition is

F(0) = 0, G′(0) = 0, F′(0) = 0,

F′(∞)→ 0, G(∞)→ 0.
(21)

As recommended by Harris et al. [63], the trivial eigenvalue solution can be prevented by replacing
and relaxing F′(∞)→ 0 in Equation (21) with F′′(0) = 1. β1 > 0 implies that the solution is stable and
realistic while β1 < 0 concludes that the solution is unreal or unstable.

4. Results and Discussion

The essential factor for the computation of flow behaviors and the heat transfer performance
of a nanofluid is the preparation of appropriate mono/hybrid nanofluids. The selection of
alumina-copper/water (Al2O3−Cu/water) hybrid nanofluid in this study was motivated by
Suresh et al. [64] who set up an experiment to examine the thermophysical properties of
Al2O3−Cu/water hybrid nanofluids. Their investigational work proved that the stability of a hybrid
nanofluid relies on the nanoparticles’ volume concentration, and the stability of a nanofluid with
a higher concentration is poor. Additionally, the experimental results indicate that the prepared
hybrid nanofluid substantially improved in efficiency of thermal conductivity and stability. Thus,
the impacts of the aggregation and sedimentation of mono/hybrid nanoparticles can be ignored in
this numerical work. It is worth mentioning that the Prandtl number was fixed at 6.2 (representing
water) throughout the analysis of this study (Oztop and Abu Nada [59]). Obeying the remarkable work
of Suresh et al. [64], the nanoparticles’ volume concentration of this study was set within the range of
0.005 ≤ φ1, φ2 ≤ 0.015 to ensure the stability of the hybrid nanofluid. Meanwhile, the other parameters
were used between these ranges (excluding the validation part): 0 ≤ K ≤ 0.2 (curvature parameter),
2.6 < S ≤ 3.2 (suction parameter) and −2.5 < λ ≤ 0.5 (stretching/shrinking parameter). Further, the
bvp4c in Matlab was fully utilized to solve the ordinary and reduced differential equation systems
of Equations (7) and (8) together with the boundary equations (see Equation (9)). This recognized
solver has been utilized extensively by many other investigators to address the boundary value issue.
With the aim of achieving the required precision of the solutions, an initial approximation shall be
offered at an initial mesh point and for a certain step size. The appropriate initial approximation
and the thickness of the boundary layer η∞ must be selected in accordance with the values of the
parameter listed.
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In pursuance of the numerical outcomes, verification and accuracy of the utilized method,
i.e., bvp4c, the comparison values of θ(0) when S = 0, λ = 1 and φ1, φ2 ≈ 0 (viscous fluid) with a
different value of the curvature parameter K were assessed and are presented in Table 3. It is important
to note here when K = 0 the cylindrical surface is reduced to a flat plate, while the increment value
of K, i.e., K = 1 denotes as a cylinder with 100% curvature. Table 4 provides the comparison values
of Re1/2

x C f x when K = 0 (flat plate), S = 2.5, λ = −1, Pr= 6.2, φ1 = 0.1 and various φ2, and it is
evident that the obtained results are in outstanding agreement with the formerly published results of
Qasim et al. [57], Khashi’ie et al. [65] and Bachok et al. [64]. The results of several parameters on the
coefficient of skin friction and the local Nusselt number together with the velocity and temperature
profiles are provided by Figures 2–13 in graphical form. The impacts of the curvature parameter and
various nanoparticles volumetric concentrations towards the suction/injection parameter and the
stretching/shrinking parameter are discussed in detail. As a matter of fact, this current work confirms
the existence of dual solutions, i.e., the first and second solutions, and a unique solution for a certain
range of controlling parameters.

Table 3. Comparison values of θ(0) when S = 0, λ = 1 and φ1, φ2 ≈ 0 (viscous fluid).

K Pr Present Qasim et al. [57] Bachok et al. [66]

0.0 0.72 1.23666 1.23664 1.2367
1.0 1.00000 1.00000 1.0000
6.7 0.33330 0.33330 0.3333
10 0.26877 0.26876 0.2688

1.0 0.72 0.87058 0.87018 0.8701
1.0 0.74395 0.74406 0.7439
6.7 0.29653 0.29661 0.2966
10.0 0.24412 0.24217 0.2442

Table 4. Comparison values of Re1/2
x C f x when K = 0, S = 2.5, λ = −1, Pr= 6.2, φ1 = 0.1 and

various φ2.

φ2
Present Khashi’ie et al. [65]

First Solution Second Solution First Solution Second Solution

0 2.594177 0.645222 2.594178 0.645222
0.01 2.781516 0.655350 2.781516 0.655350
0.02 2.967257 0.666893 2.967257 0.666894
0.03 3.151544 0.679725 3.151544 0.679725

Figures 2 and 3 depict the variation of Re1/2
x C f and Re−1/2

x Nux towards S when λ = −1.9,
φ1 = φ2 = 0.01 with different values of the curvature parameter where K = 0.0, 0.1, 0.2 in
Al2O3−Cu/H2O hybrid nanofluid, respectively. The results of Re1/2

x C f rise with the intensification
of K in the first solution, and decrease in the second solution when the cylinder is in the shrinking
state, as demonstrated in Figure 2. Similar outcome patterns for both solutions can also be found in
Re−1/2

x Nux, as evaluated in Figure 3. The deployment of appropriate wall mass suction parameters
(S > 0) in the present work was able to produce the dual similarity solutions, which is clearly proven in
Figures 2 and 3. On the other hand, in the state of the impermeable cylinder where no suction/injection
parameter is being considered (S = 0) or if the injection parameter (S < 0) is added, no equivalent
solutions can be achieved, including the unique or dual solutions. Notably, Figure 2 also illustrates
that when K upsurges, the additional value of suction parameter S (more magnitude) is required
in Al2O3−Cu/H2O hybrid nanofluid. In the present work, however, the authors merely evaluated
the value of K within the scope of 0 ≤ K ≤ 0.2 in Al2O3−Cu/water hybrid nanofluid, and the
authors would like to declare that the outcome could be varied if different values of the curvature
parameter or distinctive type of hybrid nanofluid are measured. Surprisingly, Figure 3 reveals that the
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inclusion of K in the shrinking cylinder eventually declines the heat transfer rate of Al2O3−Cu/water
hybrid nanofluid. The results oppose the fact that the augmentation in K supposedly improves the
heat transfer performance in a nanofluid. This is because the increase in curvature parameter causes
diminution of the curvature radius, which consequently lessens the area of the cylinder. The cylinder
encounters less resistance from the fluid particles, increases the fluid velocity and ultimately boosts
the rate of heat transfer. However, the authors believe that the selection of governing parameter values
and the presence of prescribing heat flux at the shrinking surface of the cylinder are the explanations
for this behavior. The presence of prescribed heat flux at the boundary condition system imposes some
amount of heat flowing, and this consequently may worsen the process of heat transfer. Overall, the
Al2O3−Cu/water hybrid nanofluid has better heat transfer efficiency in a flat plate (K = 0) compared
to the cylinder case (K = 0.1, 0.2).

Figures 4 and 5 display the diversity of Re1/2
x C f and Re−1/2

x Nux towards λ when S = 3,
φ1 = φ2 = 0.01 with distinct values of K in Al2O3−Cu/water hybrid nanofluid. The dual solutions
are observed in the shrinking surface where λ < 0, whereas no dual solutions can be perceived when
the surface is stretching, i.e., λ > 0. Figure 4 proves that an increment of K decreases Re1/2

x C f in the
first solution, but upsurges the results in the second solution. Meanwhile, Figure 5 portrays the heat
transfer rate of the shrinking surface where Re−1/2

x Nux is clearly diminished when the values of K
rises in Al2O3−Cu/H2O hybrid nanofluid. From here, we note that the same pattern is observed in
Figures 2 and 3, when K increases. However, these results may vary if different values of the controlling
parameter are taken into account. On another note, the effect of the volumetric concentration is also
examined in this study. It was observed that the Re1/2

x C f and Re−1/2
x Nux, as presented in Figures 6

and 7, respectively, improve with the rise of the Cu nanoparticle concentration in the first solution.
In fact, the higher concentration of Cu nanoparticles creates more kinetic energy, and thereby increases
the heat transfer of the fluid particles. Nevertheless, Figures 6 and 7 also disclose that the second
solution can be obtained only for a small value of negative λ in the opposing or shrinking region.

Figures 8–13 establish the distribution of temperature θ(η) and velocity profiles f ′(η) with
different controlling parameter, for instance, the suction/injection parameter S, the curvature parameter
K and the stretching/shrinking parameter λ. All profiles asymptotically fulfilled the boundary
condition (9) when η∞ = 20 is implemented. Figures 8 and 9 depict the impact of S on f ′(η) and
θ(η), accordingly. The findings show that the increasing value of S is proven to boost the resistance
of the flow in f ′(η) of the first solution; however, an opposite behaviour is observed in the second
solution. Meanwhile, Figure 9 exposes a reduction trend of θ(η) in the first and second solutions.
The temperature distribution with the inclusion of the suction parameter is discussed to inspect the
deterioration in temperature, which hence cools the system. As the temperature of the system reduces,
the heat transfer rate is enhanced, and this is proven in Figure 3 above.

Figures 10 and 11 exhibit the variation of K on f ′(η) and θ(η), appropriately. f ′(η) is reduced
in the first solution but decreases (second solution) when K is added, as displayed in Figure 10.
Figure 11 illustrates the rises of θ(η) with increments of K in both solutions, i.e, the first and second
solutions. The reduction in the fluid velocity and the increases of temperature profiles are inline
with the results obtained in Figure 3, where the addition of K in the shrinking state at last worsens
the heat transfer rate of Al2O3−Cu/water hybrid nanofluid. Further, the influences of the static
cylinder (λ = 0), the stretching parameter (λ = 0.3, 0.5) and the shrinking parameter (λ = −0.3,−0.5)
on the velocity and temperature profiles are illustrated in Figures 12 and 13. The findings reveal a
unique solution, and no second solution appeared in either profile. That obviously indicates that the
changes in behavior from shrinking to stretching state in the cylinder concurrently increase f ′(η),
as clarified in Figure 12. Meanwhile, the temperature profiles θ(η) decrease with the enhancement of
the stretching/shrinking parameter λ.

A temporal stability analysis was conducted by solving the linearized eigenvalue problem
in (19)–(21) with the inclusion of the new boundary condition F′′(0) = 1. The results in Figure 14 exhibit
that the first solution has β1 > 0 (positive smallest eigenvalues). The second solution contributes to
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the negative smallest eigenvalue. This shows that the first solution is more realistic than the second
solution. Meanwhile, as λ→ λc, β1 → 0 from both solutions, which is in accordance with Merkin [61]
and Weidman et al. [62], the transitions from stable (β1 > 0) to unstable (β1 < 0) occur at the turning
point λ = λc.
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Figure 2. Re1/2
x C f towards S when λ = −1.9, φ1 = φ2 = 0.01 and disparate values of the curvature

parameter K.
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x Nux towards S when λ = −1.9, φ1 = φ2 = 0.01 and disparate values of the curvature

parameter K.
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5. Conclusions

The present work scrutinized the laminar and two-dimensional Al2O3-Cu/water nanofluid flow
and heat transfer towards a permeable stretching/shrinking cylinder with prescribed surface heat flux.
The respective differential equations can be reduced to a flat plate case when the curvature parameter
K = 0, while K > 0 represents a circular cylinder surface. The conclusions are:

• For both shrinking cylinder and flat plate surfaces with the prescribed surface heat flux, the steady
flow solutions are obtainable when the suction parameter is S > 2.6. No second solution was
observed when considering the stretching surface.

• The separation of boundary layer can be decelerated by the extension of the critical value when
K = 0. The flat plate surface also contributes to the maximum heat transfer rate.

• Among the three sets of hybrid Al2O3-Cu nanoparticle concentrations such that (φ1 = 0.5%,
φ2 = 1.5%), (φ1 = 1%, φ2 = 1%) and (φ1 = 1.5%, φ2 = 0.5%), the hybrid nanofluids with
concentration (φ1 = 0.5%, φ2 = 1.5%) provided the greatest heat transfer rate and skin
friction coefficient.

• The stability analysis mathematically supports the reliability of the first solution.
• The hybrid nanofluid flow due to the shrinking surfaces is a reverse (opposite) flow from the

stretching surfaces. The velocity profile for the shrinking case (λ < 0) shows a negative value
and contradicts the positive velocity profile for the stretching case (λ > 0).

• The hybrid nanofluid temperature for the stretching case is lower than the shrinking case.

6. Recommendations for Future Work

The present findings are limited to the combination of Al2O3 and Cu nanoparticles only with
φhn f = 2%. For future work, it will be worth studying the significance of the cylinder in augmenting
the heat transfer rate while delaying the separation of boundary layer flow by considering:

• Different hybrid nanofluids (other stable combinations based on the experimental work of
hybrid nanofluids);

• Stagnation point flow (exclusion of the wall mass suction parameter);
• Other physical parameters, such as magnetic field, thermal radiation, viscous dissipation and

Joule heating.
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